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CHAPTER I
INTRODUCTION

Our early universe was most likely an extremely hot and dense form of
matter. At time 10−12s after the big bang, hadronic soup consist of quarks and
gluons. The property of Quantum Chromodynamics (QCD) (Gross and Wilczek,
1973) predicts that such a phase of deconfined quarks and gluons, known as
the Quark- Gluon Plasma (QGP) existed (Shuryak, 1978). At 10−6s after Big-Bang,
the universe has reached a temperature. Where the QCD phase transition took
place and quarks became confined into hadrons.

Because our world is limited to confined matter, we cannot directly
measure the properties of quarks and gluons. Thus, we are focused on signals in
the later stages of a cooled fireball produced in Heavy-ion collisions (HIC) following
its hadronization. Some of the common signals for QGP are jet quenching,
dilepton production, strangeness enhancement, charmoniume suppression, and
anisotropic.

Exploring the QCD phase structure is one of the primary objectives
of research involving heavy ion collisions at high beam energies which is the
possible existence of a first order phase transition which ends in a critical
endpoint, located at high temperature and non-zero baryon chemical potential.
It is one of the main goals of the Beam Energy Scan (BES) program at the
Relativistic Heavy-Ion Collider (RHIC) (Aggarwal et al., 2010), which is located at
the Brookhaven National Laboratory (BNL) in the United States and the Large
Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN).
It also motivaties for the research programs at the future accelerator facilities
FAIR in Darmstadt and NICA in Dubna.

1.1 QCD Phase Diagram

Thermodynamic properties of a system are expressed in the terms of a
phase diagram. Changes in the relevant thermodynamic variables lead to phase
transition in the system. Phase transitions are divided into first-order, second-
order, and crossover transitions. The first-order phase transition is characterized
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by a discontinuity in one of the first derivatives of the thermodynamic potential,
e.g., the density, and it allows for coexistence of two phases at a certain
transition point. At arrive at a point where the two phases can no longer be
distinguished. Here, the density changes continuously and a discontinuity can
only be found in a second derivative of the thermodynamic potential. One
speaks of a second-order phase transition or critical point. If the characteristic
observable changes rapidly but smoothly, the transition is called a crossover.

The QCD phase diagram is often depicted as a function of temperature
(T) and baryon chemical potential (µ) which is associated with the net-baryon
number. As show in Figure 1.1, tattie QCD calculation predict a crossover
transition at zero baryon chemical potential (µB = 0) and around a critical
temperature Tc ∼ 150 − 160 MeV (Cheng et al., 2006) between hadronic and
quark-gluon phase. At large baryon chemical potential, QCD based models predict
the possible existence of the endpoint of the first order phase transition in the
QCD phase diagram. The experimentalists attempt to vary the temperature and
baryon chemical potential of the nuclear matter created in heavy-ion collisions.
It is expected that fluctuations of conserved quantities yield information on the
QCD phase structure it the freeze-out is sufficiently close to the phase boundary.

1.2 Signals of The Quark Gluon Plasma

Undoubtedly, identifying the QGP phase is one of the most difficult
aspects of heavy-ion collision experiments. However, since the evolution of
the earliest phases of the universe cannot be directly measured, we do not
have a direct understanding of their development. The HIC signatures are
analyzed. Among the primary characteristics of QGP are jet suppression, oddity
enhancement, collective flow and fluctuation etc. The most integral ones to
this thesis are fluctuation.

1.2.1 Jet Quenching

In QCD, when a parton in a nucleus scatters off of a parton in another
nucleus is called jets. After the scattering, the parton are formed a parton
shower leading to a spray of hadrons. The propagation of partons through a hot
and dense medium modifies their transverse momentum (pT) due to induced
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Figure 1.1 The QCD phase diagram of nuclear matter at temperature (T) and
chemical baryon potential (µB). The solid white line is the first-order phase
transition and the end point (solid circle) of this transition is the QCD critical
point (Nayak, 2020).

energy loss, this energy loss of parton is known as jet quenching. Jet quenching
is investigated by measurement of jets which can be used to determine the
properties of the QGP.
Jet quenching can be measured by using the nuclear modification factor (R),
which is defined as

RAA =
1

Ncoll

d2NAA/dyd2pT

d2Npp/dyd2pT
, (1.1)

where Ncoll is the number of binary collisions in nucleus-nucleus (AA) collisions. If
collisions between nucleus are a superposition of collisions between protons,then:
RAA = 1, indicating the absence of any medium. An RAA < 1 indicates
suppression and an RAA > 1 indicates enhancement. The RHIC experiment
shows the result of RAA of Au+Au collision at

√
sNN = 200 GeV as a function

of pT, as shown in Figure 1.2 (Kormilitzin et al., 2011). It is found that the
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results of RAA of hadron production for pT > 4GeV/c is less than unity. It
means that the interaction of the high energy jets with the thermal medium is
formed by the nuclear collisions.

Figure 1.2 The results of RAA of Au+Au collision at
√

sNN = 200 GeV as a
function of pT at RHIC.

1.2.2 Strangeness Enhancement

In heavy ion collisions, a strangeness enhancement is observed to
research excited nuclear matter and investigate the transition from hadronic
matter to quark-gluon matter. Strange particle production is enhanced in the
QGP with respect to a hadron gas. In comparison to the hadronic scenario,
the time required for the thermalization of strangeness is drastically reduced as
a result of the enhancement of strangeness production in different channels.
This is supported by the difference in threshold energies due to the fact
that odd quarks must be produced only in a deconfined state. In a QGP,
strange quarks are created through gluon fusion qq → s̄s and light qq̄ pair
annihilation qq̄ → s̄s processes. The threshold energy necessary to produce a
pair of s̄s quarks in the QGP is simply the mass of the two unusual quarks
(Ethreshold ≈ 300MeV)). The process of light quarks by using Pauli blocking is an
additional source of enhanced s̄s production. Therefore, the collision produces
more light quarks. To create s̄s the available energy level must be filled.



5

The additional mechanisms for s̄s production in a QGP are predicted to result
in a production rate that is 10 to 30 times greater than in a hadron gas,
resulting in an equilibration of strangeness even during the brief duration of
the the fireball. Consequently, it is supposed that the production of strange
and anti-strange particles at freeze-out will be greater if the system proceeds
through a deconfined phase as opposed to one that remained in the hadronic
phase. Moreover, strangeness enhancement of the (anti-)hyperon yields (Λ, Ω,
Ξ) in Pb-Pb collisions as compared to p-Pb collisions has been measured by
the WA97 and NA57 Collaborations (Caliandro et al., 1999; Evans et al., 1999;
Gabler et al., 1999; Margetis et al., 1999). It was found that the measured
enhancement increases with the strangeness content of the particle.

1.2.3 Collective Flow

The collective flow in heavy ion collisions is one of the experimental
and theoretical instruments used to study the properties of heated and dense
nuclear matter. The transverse flow is connected to the pressure gradients in
the initial overlap region of the colliding nuclei. Therefore, the flow is sensitive
to the equation of state (EoS) and may be used to investigate phase transitions
in QGP. Over the past two decades, the collective flow has been investigated to
provide an overview of the corresponding theoretical investigations (Poskanzer
and Voloshin, 1998; Bleicher and Stoecker, 2002; Yin et al., 2017; Retinskaya
et al., 2012) and the experiment (Alt et al., 2003; Liu et al., 2000; Adamczyk
et al., 2014; Andronic et al., 2005). The collective flow is given as the fourier
expansion of the momentum distribution (Poskanzer and Voloshin, 1998)

E
d3N
d3p

=
1

2π
d2N

pTdpTdy

(
1 + 2

∞∑
n=1

vncos[n(φ− ψRP)]

)
(1.2)

where ψRP denotes the reaction plane angle and φ is the azimuthal angle.
Due to the symmetry of reflection with respect to the reaction plane, the sine
terms in such an expansion disappear. The coefficients of Fourier, also known
as vn , are expressed by

vn (pT, y) = ⟨cos[n(φ− ψRP)]⟩ (1.3)
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where ⟨⟩ denotes an average over all particles in all events.

1.3 Fluctuations

Event-by-event fluctuations of conserved quantities, such as electric
charge, baryon number and strangeness, are used to explore phase transitions in
the QCD phase structure. We investigate a system in grand canonical ensemble
(thermal equilibrium) where the pressure of a thermal system is related to the
logarithm of the partition function, which is characterized by

P =
T
V
ln Z(T, V, µ), (1.4)

where V is the volume, T is the temperature and µ is the chemical potential.
The particle number is obtained as

⟨N⟩ = 1
Z

∑
Ne

−(E−µN)
T . (1.5)

The susceptibility of conserved quantities is defined as the pressure derivative
relative to the chemical potential. The generalized susceptibilities as

χn =
∂n(P/T4)

∂(µ/T)n
. (1.6)

The cumulants are related to the susceptibility of the system by

Cn =
∂n ln Z(V, T, µ)
∂(µ/T)n

(1.7)

= VT3χn(T, µ), (1.8)

where n is the nth order cumulants. Thus, it is straightforward to show that

C1 = VT3χ1 = ⟨N⟩ = M, (1.9)
C2 = VT3χ2 =

⟨
(δN)2

⟩
= σ2, (1.10)

C3 = VT3χ3 =
⟨
(δN)3

⟩
= Sσ3, (1.11)

C4 = VT3χ4 =
⟨
(δN)4

⟩
− 3
⟨
(δN)2

⟩2
= κσ4, (1.12)
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where M, σ2, S, κ are Mean, Variance, Skewness and Kurtosis and (δN) =
N− ⟨N⟩. These variables will be discussed in Chapter ll. In experiment, the
dependence on volume and temperature is hard to study. Therefore, we focus
on ratios of cumulants,

C2

C1
=

⟨δN2⟩
⟨N⟩

=
σ2

M
, (1.13)

C3

C2
=

⟨δN3⟩
⟨δN2⟩

= Sσ, (1.14)

C4

C2
=

⟨δN4⟩
⟨δN2⟩

− 3 ⟨δN2⟩ = κσ2. (1.15)

From the above equations, we can calculate the cumulants and cumulant ratios
of the measured net-proton, net-baryon, and net-charge distributions.

1.4 Hadron Resonance Gas Model

One model used to study the QCD phase transition and critical point
is the Hadron Resonance Gas (HRG) model. Event-by-event fluctuations of the
cumulant ratio of the baryon number are investigated. They used the Boltzmann
approximation to calculate the ratio of baryon number susceptibility. Event-by-
event fluctuations of the cumulant ratio of baryon number are investigated. They
used the Boltzmann approximation to calculate the ratio of baryon number
susceptibility. finally, they got the results of the ratio of baryon number
susceptibility (related to cumulant ratios), χ

(3)
B

χ
(2)
B

= Sσ = tanh(µB/T) and
χ
(4)
B

χ
(2)
B

= κσ2 = 1. This result is usually used as a baseline for the study
of fluctuations of conserved quantities to find the signature of the QCD phase
transition and critical point in heavy-ion collisions.

1.5 σ Field Model

The calculation of the σ field model (Stephanov, 2011) described
the behavior of fluctuations of kurtosis (fourth order cumulants) near the QCD
critical point. It is realized by the fluctuations of the order parameter σ field,
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which can be characterized by the probability distribution as

P[σ] ∼ exp{−Ω[σ]/T}, (1.16)

where Ω is the effective action functional for σ field can be augmented in
power of σ as

Ω =

∫
d3x

[
(∇σ)2

2
+

m2
σ

2
σ2 +

λ3

3
σ3 +

λ4

4
σ4 + ...

]
. (1.17)

From calculating the 2-point correlation, ⟨σ(x)σ(0)⟩ they found that the
correlation length ξ = 1/mσ . At ξ → ∞ is characterized as the critical
point in the QCD structure. For zero momentum mode correlation functions,
σV =

∫
σ(x)d3x in a volume system. Therefore, it can be demonstrated that

⟨σ2
V⟩ = VTξ2, (1.18)

⟨σ3
V⟩ = 2λ3VTξ6, (1.19)

⟨σ4
V⟩ = 6VT3 [2(λ3ξ)

2 − λ4
]
ξ8 ≡ ⟨σ4

V⟩ − 3⟨σ2
V⟩

2
. (1.20)

It is found that the higher order cumulants diverge with ξ faster. Therefore,
the negative fourth order cumulants are sensitive signatures of the critical point.
In the left panels of Figure 1.3 is the QCD phase diagram from calculation of
the sigma field, where the dashed line indicates the chemical freeze-out lines
from the critical point to the crossover size. The probability distributions of the
σ field demonstrate the fourth order cumulants changed from zero to negative
(it is shown in the red region) and to positive (it is shown in the blue region).
It leads to a non-monotonic energy dependence of distribution of fourth order
cumulants, as shown in right panels of Figure 1.3. It is expected that there
is a similar behavior in the κσ2 of the net-baryon number as a function of
energies.

1.6 STAR experiment

The STAR experiment at RHIC (Abdallah et al., 2021) calculated energy
dependence of the cumulant ratios of the net-proton distributions for 0 − 5%
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Figure 1.3 Left: the QCD phase diagram from the σ field model. Right: A
non-monotonic energy dependence of the distribution of fourth order cumulants(
κ4 =

⟨
(δN)4

⟩
c/ ⟨N⟩

)
(Luo and Xu, 2017).

central Au+Au collisions at
√

sNN = 7.7 to 200 GeV and compared with HRG
and UrQMD models. It is found that the STAR experiment results for C2/C1 and
C3/C2 of net-proton distributions show a monotonic behavior with energies. As
well, the results from the UrQMD and HRG models show monotonic behavior
in the cumulant ratios with energies. On the other hand, the STAR experiment
results for the C4/C2 of net-proton shows a non-monotonic behavior with
energies. Therefore, the STAR experiment explores the critical point at the QCD
phase diagram via net-proton multiplicity distributions by using the dependence
of the cumulants and cumulant ratios on collision energies, centrality, rapidity,
and transverse momentum acceptance.

1.7 Research objectives

1. To study the dependence of cumulant ratios of the net-proton number on
the centrality definition.

2. To study the rapidity and transverse momentum acceptance dependence of
cumulant ratios of net-proton number on centrality definition.

3. To study the deuteron production at various beam energies and system sizes.
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Figure 1.4 Energy dependence of cumulant ratios of the net-proton distributions
for 0− 5% central Au+Au collisions at

√
sNN = 7.7 to 200 GeV and compared

with the HRG and UrQMD models.

1.8 Scope and limitations of the study

In my thesis, the fluctuations of the cumulant ratios of the net-proton
number on the centrality definition will be measured with Au+Au collisions
at the center of mass energy

√
sNN = 7.7 GeV by using the UrQMD model.

Moreover, We observe the production of deuteron via phase-space coalescence
in the UrQMD model.



CHAPTER II
THE MODEL AND THEORY

2.1 The UrQMD model

The UrQMD model is the ultrarelativistic quantum molecular dynamics
model (Bass et al., 1998; Bleicher et al., 1999)(Bass et al., 1998; Bleicher
et al., 1999), which is used to study cumulant ratios of net-proton number
and deuteron production. The UrQMD model is a transport model for the
simulation of p+p, p+A and A+A collisions with range of energy from SIS energy
(
√

sNN = 2 GeV) to LHC energy (
√

sNN = 14 TeV). It is based on binary elastic
and inelastic scattering of hadrons, including resonance excitation and decays as
well as string dynamics. This model has been described in heavy ion collisions
from the initiation of the projectile and target nuclei until the end of the
final state of the system. The UrQMD model has been used to predict and
interpret experimental data at various energies and reaction systems such as:
hadron yields, collective flow, hadron resonance production and event-by-event
fluctuations.

In this section, we briefly describe the projectile and target nuclei
initialization, the equation of motions, cross section of hadron-hadron interactions,
and reaction channel in the UrQMD model.

2.1.1 Initialization

In the UrQMD model, The nucleons are expressed by Gaussian shaped
density distributions,

φj(
⇀x j, t) =

(
2α
π

) 3
4

exp

{
−α(⇀x j − ⇀r j(t))

2
+

i
~

⇀p(t)⇀x j

}
. (2.1)
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The wave function of the nucleus is defined as the product of the wave
functions of the individual nucleons,

Φ =
∏

j

φj(
⇀x i,

⇀p i, t). (2.2)

Each initialized nucleus must meet the aforementioned constraints,
•
∑

i
⇀q i = 0,, which indicates that it is centered in configuration space around

0,
•
∑

i
⇀v i = 0,, indicating that the nucleus is at rest,

• Its binding energy must correspond to the value specified by the Bethe-
Weizacker formula,
• The nuclear radius must produce the following mass dependence

R(A) ∼ r0.A
1
3 (2.3)

and have an acceptable surface thickness,
• The nucleus should have a ground state density of nucleus matter at its
center. The Gaussian centroids are distributed at random within a spherical
configuration space. Due to the finite breadth of the Gaussians, there is a
surface region that exceeds the radius of the sphere. Therefore, the radius is
reduced by half a layer of nucleons relative to the value given by Equation
(2.3).

R(A) = r0

(
1
2

[
A + (A

1
3 − 1)

3]) 1
3

. (2.4)

where the r0 is radius and is expressed as a function of the nuclear matter
ground state density (ρ0),

r0 =
(

3
4πρ0

) 1
3

, (2.5)

The initial nucleon momenta are randomly selected from a distribution between
0 and the local Thomas-Fermi momentum.

pmax
F = ~c(3π2ρ)

1
3 , (2.6)
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where ρ0 is the corresponding local proton density or neutron density.

2.1.2 Equation of motion

This section describes the interaction between nucleons in the UrQMD
model. The interaction is based on a density-dependent non-relativistic Skyrme-
type equation of state with additional Coulomb- and Yukawa potentials. There
is no use of momentum-dependent potentials, but the Pauli potential may be
included if desired. From Equation (2.1), the nucleon density can be obtained,

ϱj(
⇀x j, t) =

(
2α
π

) 3
2

exp
{
−2α(⇀x j − ⇀r j(t))

2}
, (2.7)

In the given context,⇀x j denotes the quantum mechanical position variable, while
⇀r j(t) represents the classical Gaussian parameter. The Skyrme-Potential, which
disregards momentum dependence and spin exchange, is as follows:

VSk =
1
2!

t1
∑

j,k

δ(⇀x j − ⇀x k) +
1
3!

t2
∑

j,k

δ(⇀x j − ⇀x k)δ(
⇀x j − ⇀x k). (2.8)

In order to prevent self-interactions, any primed summation elements consisting
of at least two identical indices are omitted. The Skyrme potential is the sum
of two-body interaction terms and three-body interaction terms. Because of
the linear density dependence of the two-body term, the long-range attractive
component of the nucleon-nucleon interaction can be described. The three-body
term, whose density dependence is quadratic, is accountable for the short-range
repulsive portion of the interaction. Using Equation (2.1) as the wave function
of the nucleon, we can calculate the two-body Skyrme potential of particle j
as follows,

Vj
Sk2 =

N∑
k

∫
d⇀x jd⇀x kφ

∗
j (

⇀x j)φ
∗
k (

⇀x k)t1δ(⇀x j − ⇀x k)φj(
⇀x j)φk(

⇀x k)

= t1
N∑
k

(
α
π

) 3
2 exp

{
−α(⇀r j − ⇀r k)

2}
= t1ϱintj (⇀r j).

(2.9)
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The interaction density proposed in the last line of Equation (2.9). This density
has the same form as Equation (2.7), which is derived from the Wigner-transform
of the Gaussian (2.1), with the exception that the nucleon at location j is
neglected and its Gaussian has twice the width of the one used in Equation
(2.9). Obtaining the three-body potential of particle j is possible,

Vj
Sk3 = 1

2!

N∑
kl

∫
d⇀x jd⇀x kd⇀x lφ

∗
j (

⇀x j)φ
∗
k (

⇀x k)φ
∗
l (

⇀x l)

×t2δ(⇀x j − ⇀x k)δ(
⇀x j − ⇀x l)φj(

⇀x j)φk(
⇀x k)φl(

⇀x l)

= t1 1
2!

N∑
kl

(4α2

3π2

) 3
2

× exp
{
−2

3α(
⇀r j − ⇀r k)

2
+ (⇀r k − ⇀r l)

2
+ (⇀r l − ⇀r j)

2}
.
(2.10)

When infinite nuclear matter is involved, this potential is considered when the
individual relative distances are close to their average value. Thus, the relative
distance between particles k and l can be replaced by the average of the
other two relative distances,

Vj
Sk3 ≈ 1

2!
t2

N∑
kl

(
4α2

3π2

) 3
2

exp
{
−α(⇀r j − ⇀r k)

2
+ (⇀r k − ⇀r l)

2}
. (2.11)

By utilizing the definition of the interaction-density provided in Equation (2.10),
Equation (2.11) can be expressed as Equation (2.12),

VSk3
j ≈ t23−

3
2(ϱintj )2 → tγ(γ + 1)−

3
2(ϱintj )γ. (2.12)

It is worth noting that the expression in Equation (2.12) is always used for the
UrQMD model, even in cases where γ = 2
Equations (2.14), (2.15), and (2.16), respectively, describe the Yukawa, Coulomb,
and (optional) Pauli potentials. They take the form of interactions between two
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particles,

Vij
Yuk = VYuk

0
exp{−|⇀r i−⇀r j|/γY

|⇀r i−⇀r j| ,

Vij
Coul =

ZiZje2

|⇀r i−⇀r j|,

Vij
Pau = V0

Pau

(
~

q0p0

)3
exp

{
−|⇀r i−⇀r j|2

2q2
0

− |⇀p i−
⇀p j|2

2p2
0

}
δτiτjδσiσj,

(2.13)

where σj and τj are the spin and isospin of particle j, Zj denotes its charge.
In the case of infinite nuclear matter, the Yukawa potential contribution to
total energy has the same linear density dependence as the two-body Skyrme
contribution. Consequently, all parameter sets satisfying the following relation
for the parameter t1 would produce the same equation of state for infinite
nuclear matter,

1
2
t1 + 2πVYuk

0 γ
2
Y = const. (2.14)

In finite nuclei, it is possible to adjust the parameters of the Yukawa potential
to achieve the appropriate surface properties of the nuclei without changing the
equation of state.
The classical Hamiltonian in UrQMD is responsible for governing the motion of
parameters ⇀r j and ⇀p j of the wave-functions, can be defined by

HUrQMD =
N∑

j=1
Ekin
j + 1

2

N∑
j=1

N∑
k=1

(
ESk2
jk + EYukawa

jk + ECoulomb
jk + EPauli

jk
)

+1
6

N∑
j=1

N∑
k=1

N∑
l=1

ESk3
jkl

(2.15)

where the kinetics term is

Ekin
j =

√
p2

j + m2
j , (2.16)

and the two body Skyrme is

ESk2
jk = t1

(
α

π

)3
2
exp

{
−αr2jk

}
, (2.17)
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and the three body Skyrme is

ESk3
jkl = tγ

(
4α2

3π2

)3
2
exp

{
−α

(
r2jk + r2jl

)}
. (2.18)

The Yukawa potential is

EYukawa
jk = VYuk

0
1

2rjk
exp

{
1

4αγ2
Y

}
×[

exp
{
− rjk

γY

}(
1 − erf

(
1

2γY
√
α
−
√
αrjk
))

− exp
{

rjk
γY

}(
1 − erf

(
1

2γY
√
α
+
√
αrjk
))]

,

(2.19)

and the Coulomb potential is

ECoulomb
jk =

ZiZje2

rjk
erf
(√
αrjk
)
, (2.20)

and the Pauli potential is

EPauli
jk = V0

Pau

(
~

p0q0

)3(
1 − 1

2αq2
0

)−3
2

× exp
{
− αr2jk

2αq2
0+1 −

p2
jk

2p2
0

}
δτjτkδσjσk

, (2.21)

with
rjk = |⇀r j − ⇀r k| (2.22)

and
pjk = |⇀p j − ⇀pk| . (2.23)

In Table 2.1 shows the parameters for achieving only a hard equation of state
for the UrQMD model. These potential interactions are imposed for particles
with relative momenta ∆p < 2 GeV/c. For the hadronic collision the potential
interactions are neglected with ∆p > 2 GeV/c.

2.1.3 Cross section of hadron-hadron interactions

The particle species and energy dependent cross-sections of hadron-
hadron interactions are fundamental inputs in the microscopic transport models
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Table 2.1 With and without the Pauli potential, the parameters for implementing
the rigid equation of state in the UrQMD model are listed below.

paremeter without Pauli-potential with Pauli-potential
α(fm−2) 0.25 0.1152
t1(MeVfm2) -7264.04 -84.5
tγ(MeVfm6) 87.65 188.2
γ 1.675 1.46
VYukawa
0 (MeVfm) -0.498 -85.1
γY 1.4 1.0
VPauli
0 (MeV) - 98.95

q0(fm) - 2.16
p0(MeV/c) - 120

and thus crucial for the UrQMD model. The total cross-sections are interpreted
geometrically. The collision between two hadrons will occur when

d <
√
σtot

π
, (2.24)

where d is the distance between two hadrons and σtot are the total cross
section of the two hadrons.
In UrQMD model, the total cross section is dependent the spin of the colliding
particles and the center of mass energy. The UrQMD model’s cross sections
are compared with experimental data.
In this model, there are 55 baryon and 32 meson species, as well as all
resonances with masses up to 2.25 GeV. Table 2.2 displays the baryons and
baryon resonances that can be occupied in UrQMD. In addition, Table 2.3
presents mesons and meson resonances ordered according to their spin and
parity.
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Table 2.2 ID of baryon and baryon-resonances used in UrQMD model.

ID Nucleon ID Delta ID Lambda ID Sigma ID Xi ID Omega
1 N983 17 ∆1232 27 Λ1116 40 Σ1192 49 Ξ1317 55 Ω1671
2 N1140 18 ∆1600 28 Λ1405 41 Σ1385 50 Ξ1530
3 N1520 19 ∆1620 29 Λ1520 42 Σ1660 51 Ξ1690
4 N1535 20 ∆1700 30 Λ1600 43 Σ1670 52 Ξ1820
5 N1650 21 ∆1900 31 Λ1670 44 Σ1775 53 Ξ1950
6 N1675 22 ∆1905 32 Λ1690 45 Σ1790 54 Ξ2025
7 N1680 23 ∆1910 33 Λ1800 46 Σ1915
8 N1700 24 ∆1920 34 Λ1810 47 Σ1940
9 N1710 25 ∆1930 35 Λ1820 48 Σ2030
10 N1720 26 ∆1950 36 Λ1830
11 N1900 37 Λ1890
12 N1990 38 Λ2100
13 N2080 39 Λ2110
14 N2190
15 N2200
16 N2250

Cross-Section of Baryon-Baryon Reaction

The formula for the total cross-section of the baryon-baryon reaction
A + C → D + E is

σBB
tot(
√

s) ∝ (2SD + 1)(2SE + 1)
⟨pD,E⟩
⟨pA,C⟩

1
s
|M(D, E)|2, (2.25)

where Si is the spin of particle, M2 is the matrix element which is a function
of masses of outgoing particle (D,E) and < pi,j > are the moments of the
pairs of particles in the two particle restframe. It can be defined as

⟨pi,j(
√

s)⟩ = 1
2
√

s

√
(s − (mi + mj)

2
)(s − (mi − mj)

2
). (2.26)
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Table 2.3 Mesons and meson resonance are arranged in the UrQMD model in
accordance with spin and parity.

ID 0−+ ID 1−− ID 0++ ID 1++

101 π 104 K∗ 111 a0 114 a1
106 K 108 ω 110 K∗0 113 K∗1
102 η 103 ρ 105 f0 115 f1
107 η

′
109 ϕ 112 f∗0 116 f

′

0

ID 1+− ID 2++ ID (1−−)∗ ID (1−−)∗

122 b1 118 a2 126 ρ1450 130 ρ1700
121 1 117 K∗2 125 K∗1410 129 K∗1680
123 h1 119 f2 127 ω1420 131 ω1662

124 f
′

1 120 f
′

2 128 ϕ1680 132 ϕ1900

The baryon-baryon cross sections is compared in detail between the UrQMD
model and experiment data (Zyla et al., 2020) can be examined in Bleicher:
1999xi.

Cross-Section of Antibaryon-Baryon Reactions

The energies at plab ≤ 100 GeV/c is important to the total cross-
section which originates the process of annihilation. The earlier experiments
of p̄p annihilation indicated a number of differences from the non-annihilation
channels, but it is not obviously understood whether these differences come
from the kinematic restrictions on the available phase space or whether they
are associated with dynamical differences between the annihilation and non-
annihilation mechanisms. By comparing pp and non-annihilation pp interactions
at 32 GeV/c, the experimental outcomes are presented by (Zabrodin et al.,
1995).

The UrQMD model uses available data to set the elementary annihilation
cross section. Figure 2.1 shows a comparison between the UrQMD parameterization
and the data for the total, elastic, and annihilation cross sections of p̄p. The
solid line represents the total p̄p cross sections, the dashed line represents
the annihilation cross sections, and the dotted line represents the elastic cross
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sections. For the annihilation cross section is proposed by Koch and Dover

Figure 2.1 The UrQMD parameterization of p̄p cross sections compared with
experiment data (Barnett et al., 1996) The diffractive cross section is the difference
between the total cross section and the sum of elastic and annihilation cross
sections.

(Koch and Dover, 1989)

σp̄p
ann = σN

0
s0
s

[
A2s0

(s − s0)
2
+ A2s0

+ B
]
, (2.27)

with σN
0 = 120 mb, s0 = 4m2

N, A= 50 MeV and B=0.6.
The total and elastic cross sections of p̄p reactions are considered according to
the CERN/HERA parameter as

σ(p) = A + Bpn + Cln2(p) + Dln(p), (2.28)
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where p indicates the laboratory-momentum in GeV/c, σ indicates the cross-
section in millibarn (mb). The respective parameters are shown in Table 2.4.

Table 2.4 The CERN/HERA parameterization parameters for the elastic and total
cross sections of p̄p. This parameters is used in UrQMD for plab > 5 GeV/c

σ A B C D n
total 38.4 77.6 0.26 -1.2 -0.64
elastic 10.2 52.7 0.125 -1.28 -1.16

For plab > 5 GeV/c, The UrQMD model employs a different parame-
terization to calculate the total and elastic cross sections, which are shown in
Equations (2.29) and (2.30), respectively

σtot(p) =

{
75.0 + 43.1p−1 + 2.6p−2 − 3.9p : 0.3 < p < 5

271.6 exp(−1.1p2) : p < 0.3 (2.29)

σel(p) =

{
31.6 + 18.3p−1 − 1.1p−2 − 3.8p : 0.3 < p < 5

78.6 : p < 0.3
(2.30)

Experimentally, the total cross-section is greater than the sum of the annihilation
and elastic cross-sections,

∆σ = σtot − σel − σann (2.31)

In UrQMD, ∆σ is the diffractive cross-section that characterizes the probability
of exciting one or more of the colliding particles to a resonance or string state.

Cross section of Meson-meson and meson-baryon Reactions

At center-of-mass energies up to 2.2 GeV, resonance scattering, or
the formation of intermediate resonance, dominates the meson-baryon and
meson-meson interactions. The total meson-baryon cross section for non-strange
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particles can be expressed as follows,

σMB
tot tot(

√
s) =

∑
R=∆,N∗

⟨jB,mB, jM,mM ∥JR , MR⟩

× 2SR+1
(2SB+1)(2SM+1)

× π
p2
cm

ΓR→MBΓtot
(MR−

√
s)2+Γ2

tot/4.

(2.32)

The total width of decay (Γtot) is the sum of all partial widths of decay. It’s
contingent on the mass of the excited resonance. ΓR→MB is the partial width
of decay into the exit channel for two particles, and MR is the resonance pole
mass. The data of the partial decay widths and all pole masses are given in
(Zyla et al., 2020).
We investigate the collisions of strange baryons and mesons.These UrQMD
processes are contrasted with experimental data (?). Figure 2.2 shows the cross
section of K− on proton interactions as a function of laboratory momentum
(plab). The formation of hyperon resonances is observed to be readily apparent
at lower energies, whereas the t-channel reaction dominates the high energy
tail. In addition, the K+ on protons cross section is shown in Figure 2.3.
It was determined that the formation of resonances is forbidden because the
s-quark cannot be destroyed bynon-strange baryons. The elastic channel and
the t-channel excitation of both particles are used. The CERN-HERA parameters
determine the cross sections at very high energies. The additive quark model
is utilized to describe the total meson-meson cross-sections.

2.1.4 The Additive Quark Model (AQM)

The Additive Quark Model (AQM) is used to calculate the indeterminate
cross sections (Close, 1979; Perkins, 1982). To apply the AQM to calculations of
heavy ion collisions, the cross sections of quark interactions must be determined,
which can be approximated using the masses of quarks. The unknown total
cross section is then calculated based on the assumption that the s quark
has a 40% smaller cross section than the u and d particles. Regge theory
(Goulianos, 1983) produces the elastic cross-section.

σelastic = 0.039σ
3
2
total[mb], (2.33)
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Figure 2.2 The total cross-section of K−p interaction as a function of laboratory
momentum (plab). The data are taken from (Zyla et al., 2020).

where

σtatal = 40
(

2
3

)m1+m2
(

1 − 0.4
s1

3 − m1

)(
1 − 0.4

s2
3 − m2

)
[mb],

(2.34)
Due to the interactions’ high energy, there is no distinction between particles and
antiparticles. The cross-sections of non-strange baryons are not calculated via the
AQM because they have an obvious energy dependence in line with experimental
data. The Cross-sections of meson-baryon and meson-meson interactions are
expressed by

σX1X2(
√

s) =
σπN(

√
s)

σAQM
πN

σAQM
X1X2

(2.35)
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Figure 2.3 The total cross-section of K+p interaction as a function of laboratory
momentum (plab). The data are taken from (Zyla et al., 2020).

The total cross-sections of interaction of baryon-baryon, meson-baryon, and
meson-meson is calculated in Tables 2.5, 2.6, and 2.7, respectively.

Table 2.5 The cross section of baryon-baryon reactions in [mb] according to the
Additive Quark Model. The baryon-baryon scattering is demonstrated explicitly.

B1B2 N Λ Ξ Ω
N 40.0 34.7 29.3 24.0
Λ 34.7 30.0 25.4 20.8
Ξ 29.3 25.4 21.5 17.8
Ω 24.0 20.8 17.6 14.4
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Table 2.6 The cross-section of meson-bayron reactions in [mb] according to the
Additive Quark Model. The meson-bayron scattering in the resonance region
(
√

s < 1.7 GeV) is demonstrated explicitly.

M1B2 N Λ Ξ Ω
π 26.6 23.1 19.6 16.0
K 21.3 18.5 15.6 12.8
Φ 16.0 13.9 11.7 9.6

Table 2.7 The cross-sections of meson-meson reactions in [mb] according to
the Additive Quark Model. The meson-meson scattering in the resonance region
(
√

s < 1.7 GeV) is demonstrated explicitly.

M1M2 π K Φ
π 17.8 14.2 10.7
K 14.2 11.4 8.5
Φ 10.7 8.5 6.4

2.1.5 Reaction channel

Particle production primarily takes place via the production and decay
of resonances at energies below

√
s = 5 GeV for baryon-baryon interactions and√

s = 3 GeV for meson-baryon and meson-meson interactions. Nevertheless,
above

√
s = 3.5 GeV, the cross sections are neglected because the multiple

decay and string channels are considered and allowed for the production of
multiple resonances.

This section focuses on high-energy particle production through baryon-
baryon interactions, which primarily occurs via resonances. Furthermore, the string
model can also account for the generation of particles in high-energy domains
through the mechanism of baryon-antibaryon interaction.

Resonances

Baryon resonances are generated via two distinct processes:
ii) soft production: π− + p → ∆0,K− + p → Λ∗... .
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i) hard production: N + N → ∆N, ∆∆, N∗N, etc.
There are six channels of non-strange resonance excitation for the UrQMD
model, i.e. NN → N∆1232,NN∗, N∆∗, ∆1232∆1232, ∆1232N∗, and ∆1232∆

∗.
The ∆1232 is explicitly listed, whereas higher excitations of the ∆ resonance
is denoted as ∆∗. Once the excited resonance numbers have been allocated,
it becomes necessary to ascertain its mass and properties. Table 2.8 presents
the masses, widths, and branching ratios of non-strange baryon-resonances. The
meson-resonances must be seen in Bass:1998ca. Note that the soft production
produce strange particles.

Strings

The string model (similar to the LUND model (Andersson et al., 1983))
is used to characterize the inelastic reactions in the high energy regime and
baryon-antibaryon annihilation. The string model is based on the assumption that
the color field between two quarks or anti-quarks at sufficiently great distances
can be transformed into the color string. Between the quark and diquark, the
linear string potential is located at z1 and z2, respectively. It could be described
as

V = κ |z1 − z2| , (2.36)

where κ is the string tension. The lattice QCD calculation (Born et al., 1994)
supports this form of potential.
From the Hamiltonian, we obtain the dynamics of the quark system (with p1
and p2 as the quark momenta).

H = |p1| + |p2| + κ|z1 − z2|, (2.37)

which leads to the motion equation for the massless string endpoints,

dpi

dt
= −∂H

∂zi
= −sign(zi − z

′

i), (2.38)

dzi

dt
= +

∂H
∂pi

= −sign(pi). (2.39)
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Table 2.8 Masses (GeV/c2), widths (MeV) and branching ratios of non-strange
baryon-resonances in UrQMD model. All parameters are given by the Review of
Particle Properties (Barnett et al., 1996).

resonance mass width Nγ Nπ Nη Nω Nϱ Nππ ∆1232π N∗1440π ΛK
N∗1440 1.440 200 0.70 0.05 0.25
N∗1520 1.520 125 0.60 0.15 0.25
N∗1535 1.535 150 0.001 0.55 0.35 0.05 0.05
N∗1650 1.650 150 0.65 0.05 0.05 0.10 0.05 0.10
N∗1675 1.675 140 0.45 0.55
N∗1680 1.680 120 0.65 0.20 0.15
N∗1700 1.700 100 0.10 0.05 0.05 0.45 0.35
N∗1710 1.710 110 0.15 0.20 0.05 0.20 0.20 0.10 0.10
N∗1720 1.720 150 0.15 0.25 0.45 0.10 0.05
N∗1900 1.870 500 0.35 0.55 0.05 0.05
N∗1990 1.990 550 0.05 0.15 0.25 0.30 0.15 0.10
N∗2080 2.040 250 0.60 0.05 0.25 0.05 0.05
N∗1440 1.440 200 0.70 0.05 0.25
N∗1520 1.520 125 0.60 0.15 0.25
N∗1535 1.535 150 0.001 0.55 0.35 0.05 0.05
N∗1650 1.650 150 0.65 0.05 0.05 0.10 0.05 0.10
N∗1675 1.675 140 0.45 0.55
N∗1680 1.680 120 0.65 0.20 0.15
N∗1700 1.700 100 0.10 0.05 0.05 0.45 0.35
N∗1710 1.710 110 0.15 0.20 0.05 0.20 0.20 0.10 0.10
N∗1720 1.720 150 0.15 0.25 0.45 0.10 0.05
N∗1900 1.870 500 0.35 0.55 0.05 0.05
N∗1990 1.990 550 0.05 0.15 0.25 0.30 0.15 0.10
N∗2080 2.040 250 0.60 0.05 0.25 0.05 0.05
N∗2190 2.190 550 0.35 0.30 0.15 0.15 0.05
N∗2220 2.220 550 0.35 0.25 0.20 0.20
N∗2250 2.250 470 0.30 0.25 0.20 0.20 0.05
Λ∗

1232 1.232 115 0.01 1.00
Λ∗

1600 1.700 200 0.15 0.55 0.30
Λ∗

1620 1.675 180 0.25 0.60 0.15
Λ∗

1700 1.750 300 0.20 0.10 0.55 0.15
Λ∗

1900 1.850 240 0.30 0.15 0.30 0.25
Λ∗

1905 1.880 280 0.20 0.60 0.10 0.10
Λ∗

1910 1.900 250 0.35 0.40 0.15 0.10
Λ∗

1920 1.920 150 0.15 0.30 0.30 0.25
Λ∗

1930 1.930 250 0.20 0.25 0.25 0.30
Λ∗

1950 1.950 250 0.01 0.45 0.15 0.20 0.20
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The sign of sign(zi − z
′

i) relates to a change in momentum, whereas the sign
of quark momentum pi defines the propagation direction.
When the momentum transfer is sufficiently high, qq pairs are produced from
the vacuum and break the string excitation into pieces. In their rest frame, each
of the produced qq pairs have small relative momenta due to the consistent
stretching of the color string. Hadrons produced through string fragmentation will
be distributed in a consistent manner within the kinematically allowed range of
ymin = 0 and ymax = ln(s/m2

T).
Figure 2.4 shows the production of particles during string excitation. On the left
are showed the quark and diquark (non-strange) with string tension. Afterwards,
two quark-antiquark pairs (uu and ss pair) are created from the vacuum. A
diquark and a new s quark can combine to create a hyperon. In addition, a
new s quark and an u quark can combine to create a kaon. Finally, a new u
quark and a quark at the end of a string can combine to create a pion.

Figure 2.4 Particle production resulting from string excitation.

The probability |M2| for the creation of a qq pair with mass (m) in
a color field can be written as,

|M2| = constant × exp
(
−πm2

κ

)
, (2.40)

where the value for κ is 1 GeV/fm. This probability is introduced by
Schwinger′s QED-based results for particle-antiparticle creation in a strong electric
field (Schwinger, 1951). The relative production probabilities of the different
quark flavors are adjusted to e+e− data:

u : d : s : diquark = 1 : 1 : 0.35 : 0.1. (2.41)

To determine which type of hadron is produced based on the quark configuration
formed in the color field. we will choose in the case of a produced
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(i) baryon − the baryon decays into the octet and decuplet with equal
probabilities.
(ii) meson − the meson multiplets are determined using a probability proportional
to spin degeneracy and inverse mean mass m,

PJPC ∼
2S + 1
⟨m⟩ JPC

(2.42)

Table 2.9 presents the corresponding values for the meson multiplets that are
taken into consideration by the UrQMD model.

Table 2.9 Probabilities for the different meson multiplets.

multiplet JPC 0−+ 1−− 0++ 1++ 2++ 1+− 1−−∗ 1−−∗∗

probability 0.102 0.190 0.056 0.124 0.197 0.127 0.110 0.095

A diquark-antidiquark (or quark-antiquark) pair is formed and inserted
between the primary constituent diquark-antidiquark (or quark-antiquark) pair
during the string’s excitation and fragmentation. At the string’s endpoints, a
hadron is then generated at random. The quark content of the hadron must be
determined, including its species and charge. Breit-Wigner distributions determine
the mass in the case of resonances. Finally, the fraction of the string’s energy
designated to the newly created hadron must be determined. After a random
transverse momentum is assigned to the hadron, the fragmentation function
determines the fraction of momentum transferred from the string to the hadron.

2.2 Cumulants

In statistics, the moments are a quantitative measurement of the shape
of a set of the probability density. The moment consists of five moments. The
zeroth moment will always be equal to 1, which means that the probability
distribution has a normalized mean. The first moment is the mean, which is
defined as

M =

N∑
i=1

xi

N
, (2.43)
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where xi is the particle number in event i,
N is the number of events.

The second moment is variance, which is a measurement of how much
the probability distribution is spread from the mean. The variance is defined as
the square of the standard deviation. It can be calculated as follows:

σ2 =

N∑
i=1

(xi − M)2

N
. (2.44)

The third moment is Skewness, which is a measurement of the
asymmetry of a probability distribution. It describes the extent to which a
distribution deviates from being symmetric. A distribution is said to be symmetric
if it is mirror-image about its mean. If the distribution is skewed, it means
that it is not symmetric. The skewness of a distribution can be calculated as
follows:

S =

N∑
i=1

(xi − M)3

Nσ3 . (2.45)

The skewness measure indicates the direction and degree of skewness
in a distribution. If the skewness measure is positive, the tail of the distribution
is longer on the right side,it is called right-skewed or positively skewed. If the
skewness measure is negative, the tail of the distribution is longer on the left
side, it is called left-skewed or negatively skewed. If the skewness measure is
close to zero, the distribution is symmetric. These three types are shown in
Figure 2.5.

The fourth moment is Kurtosis, which is a statistical measurement used
to describe the shape of a probability distribution. It provides information about
the tailedness or peakedness of the distribution in comparison to the normal
distribution. It can be calculated as follows:

κ =

N∑
i=1

(xi − M)4

Nσ4 − 3. (2.46)
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If the data distribution has a higher peak than a normal distribution, it is called
leptokurtic or positive kurtosis, while the data distribution has a lower peak
than a normal distribution, it is called platykurtic or negative kurtosis. A kurtosis
value of 0 indicates a normal distribution. The kurtosis distribution are shown
in Figure 2.6.

Figure 2.5 Difference of the skewness distribution (Sheskin, 2003).

Figure 2.6 Difference of the kurtosis distribution. (Glen, 2017).
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2.3 Statistical Error

The statistical error is estimated from delta theorem (Luo, 2012) for
normal distributions. The error of the cumulant ratios are expressed by

error(
Cr

C2
) ∝ σr−2

√
n
, (2.47)

where rth is the order of cumulants,
n is the number of events,
C2 is the variance (σ2).

From Equation (15), the error of skewness and kurtosis can be derived as
following formula

error(Sσ) =
σ
√

n
, (2.48)

error(κσ2) =
σ2

√
n
. (2.49)



CHAPTER III
HIGHER ORDER CUMULANTS OF NET-PROTON NUMBER ON THE

CENTRALITY DEFINITION

Exploration the QCD phase structure of the strong interaction has been
investigated both in experimentally and theoretically. The QCD based models
predicted that at large µB region, the phase transition of QCD is a first-order and
exist the endpoint of the first order phase boundary a so called QCD Critical
Point (CP) (Stephanov, 2004). The QCD phase structure is revealed through the
study of event-by-event fluctuations of conserved quantities, such as net-baryon
(B), net-charge (Q) and net-strangeness (S), which can be determined in the
form of cumulants. Especially, the measurement of higher order cumulants of
the net-proton number close to the phase transition (Steinheimer and Randrup,
2012; Chomaz et al., 2004; Randrup, 2004; Sasaki et al., 2007) and CP (Stephanov
et al., 1998; Stephanov, 2009; Koch, 2010).

Although higher order cumulants are widely measured, it is still difficult
to obtain a detailed understanding and interpretation of the measured higher
order cumulants due to uncertainties in the centrality definition, the dependence
of transverse momentum (pT) and rapidity acceptance, and detector efficiency.
Therefore, In this section, the UrQMD model is used to elucidate some of the
previously mentioned effects and their influence on distribution of net-proton
cumulant ratios.

3.1 Centrality Definition

In nucleus-nucleus collisions, the impact parameter (b) is the perpen-
dicular distance between the momentum vectors of the two nuclei. For central
collisionsb = 0, for peripheral collisions 0 < b < 2R, and for ultra-peripheral
collisions b ∼ 2R. These correspond to head-on, most central, and peripheral
collisions, respectively. During the collisions, two areas of the nuclei that overlap
are called an overlap region. The degree of overlapping is called centrality,
which is related with the impact parameter. The centrality can be determined
by measuring the number of nucleons that participate in the collision. The
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nucleons in the overlap region are called participants, while the others are
called spectators. The impact parameter, participant, and spectator are shown
in Figure 3.1.

Figure 3.1 Left: Two nuclei before collision with impact parameter b. Right:
participant and spectator nucleons during collision.

The centrality definition is not exclusive and can be defined by various
quantities. such as impact parameter, the number of participants and the
number of charged particles. Unfortunately, in heavy ion collision experiments,
the impact parameter cannot be directly measured. Therefore, centrality is
determined by particle multiplicity. In this work, we want to know how
different centrality definition affect the cumulant ratios of net proton numbers.
Therefore, the centrality will be defined by the number of charged particles
(Ncharge), number of participants (Npart) and number of participants in the
projectile (Npart−projectile). We simulate Au+Au collisions at

√
sNN=7.7 GeV

with minimum bias collisions. We define the following quantities,

• Ncharge: The number of all charged particles with |η| ≤ 1 and 0.15 <
pT < 2.0 GeV minus the number of protons and anti-protons in this
specific acceptance range.

• Npart: 394 minus all spectator protons and neutrons with |y| > 1.5 and
pT < 0.3 GeV.

• Npart−projectile: 197 minus all projectile spectator protons and neutrons
with y > 1.5 and pT < 0.3 GeV.
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Figure 3.2 Distributions of Ncharge, Npart and Npart−projectile in minimum
bias Au+Au collisions at

√
sNN=7.7 GeV.

We should note that in our study, we define a spectator different from other
transport model studies, where a spectator is strictly a nucleon that has not
undergone any scattering. In experiments, such a definition is not measurable.
Therefore, our definitions are motivated by the experimental definition of a
spectator. However, we have also verified that our definition, which is based
on the number of scatterings and our rapidity and pT cut, gives similar results
for the number of spectators. We used events around 11 million events which
is generated with the UrQMD model. Figure 3.2 shows the distributions of
Ncharge, Npart and Npart−projectile. The three different centrality definition
are different distributions. It is found that the participant distribution of Npart
shows a sharp cutoff at the maximum number of participants, whereas the
distributions of Ncharge shows a much smoother drop. Next the centrality is
classified into 10 centrality bins of 0-10%, 10-20%, 20-30%, 30-40%, 40-50%,
50-60%, 60-70%, 70-80%, 80-90% and 90-100%. Each centrality bin contains
10

Our first objective is to examine the correlation between the number
of charged particles generated in a single event and the number of participants
involved in that event. Figure 3.3 shows the distribution of Ncharge as a
function of Npart in an event. It is found that there is an apparent correlation,
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Figure 3.3 Distribution of Ncharge as a function of Npart for 11 million minimum
bias events.

however, the resulting distribution also shows a significant width in both Ncharge

and Npart.
Moreover, we calculate the correlation between Ncharge and Npart

or Npart−projectile as a function of an impact parameter, as shown in Figure
3.4. The linear correlation coefficient (cor) can be defined as

cor =

∑
i(N

i
charge − ⟨Ncharge⟩)(Ni

part − ⟨Npart⟩)
σchargeσpart

. (3.1)

where the sum always runs over all events in a given range of impact parameters
b, with ∆b = 3 fm. The circle line denotes correlation between Npart

and Ncharge. The square line denotes correlation between Npart−projectile

and Ncharge. The results shown that both the correlation for Npart and
Npart−projectile with Ncharge shows a strength and centrality dependence. At
very central and very peripheral collision show the weakest correlation between
Npart , Npart−projectile and Ncharge whereas the strongest correlations are
shown at the mid-central collision. Moreover, for the most central collisions, the
number of participants is limited and the number of charged particles fluctuates
significantly. For peripheral collisions, the number of participants only changes a
little and is limited to Npart > 1, while the number of charged particles varies
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Figure 3.4 The correlation coefficient between Ncharge and Npart or
Npart−projectile as a function of impact parameter in Au+Au collisions at√

sNN= 7.7 GeV. The circle line denotes correlation between Npart and
Ncharge. The square line denotes correlation between Npart−projectile and
Ncharge.

more strongly.

3.2 Dependence on centrality definition

In this section, we will calculate the average of cumulants over a
given centrality bin. There are 3 methods in principle as follows:

1. We calculate the cumulants Cn for a fixed Npart and then average the
cumulants over all Npart in a given centrality bin. The cumulants ratios
are taken as ratios of averages (Luo and Xu, 2017).

2. We calculate the cumulants ratios for a given Npart and then average the
ratios over the centrality bin.

3. We calculate the variance, skewness, and kurtosis (σ, S and κ) for a given
Npart and average them over a given centrality bin. Then appropriate
average ratios are taken to get the ratios of cumulants.
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Figure 3.5 The ratios of cumulant of the net-proton number distributions as a
function of centrality which is defined by Npart. It is shown in Figure 3.5. The
square line denotes first method, the circle line denotes second method, the
square line denotes third method and the grey band indicates the statistical
error.

Note that all three methods should provide similar the results. The estimation
of statistical errors is based on the delta-theorem, which is explained in Chapter
II. Additionally, the equation of cumulants and cumulant ratios from chapter II
is utilized.

The cumulant ratios of the net-proton number distributions as a function
of centrality which is defined by Npart. It are shown in Figure 3.5. The square
line denotes first method, the circle line denotes second method, the triangle
line denotes third method and the grey band indicates the statistical error. It is
found that the results of all three methods do agree well, but it is excepted
for the most peripheral collisions. Because peripheral centrality bins the values
of the cumulant ratios appear to be changing rapidly with centrality. Thus, the
average of cumulant ratios depend on the method that is used to calculate
them. Therefore, we will use first method for calculation the cumulant rations
in next section.

We assumed that the detection efficiency and acceptance are perfect
(100%) for all particles used to determine the centrality. Figure 3.6 shows
the results of κσ2 of the net-proton number as a function of centrality for
the three centrality definition at mid-rapidity |y| < 0.5 and within transverse
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momentum 0.4 < pT < 0.8 GeV. The square line denotes centrality as defined
by Ncharge, while the circle and triangle lines denote centrality as defined by
Npart and Npart−projectile, respectively. We found that the value of κσ2

does not depend on the different centrality definitions, although the different
definitions are only weakly correlated, as shown in Figure 3.4. This indicates
that, although the measures of centrality are weakly correlated, the effective
volume is essentially fixed and ‘volume fluctuations’ do not contribute strongly
to the observed cumulant ratios. When we increase the centrality, the κσ2

gives the different value for all three centrality definition. In particular, the
centrality is defined by Npart−projectile, which indicates that the value of
κσ2 increases significantly for 40% − 60% of the most central collisions. It
is clear that the number of target participants is allowed to fluctuate, leading
to a significant increase in measured cumulant ratios. Moreover, the centrality
defined by Ncharge has a weak effect on the kurtosis. Because the charged
particles are also measured around mid-rapidity, their multiplicity is more strongly
correlated with the mid-rapidity ‘volume’ and therefore with the number of
protons at mid-rapidity. Thus, we will use Ncharge to define the centrality for
investigating other effects.

3.3 Effects of transverse momentum (pT) acceptance

In this section, we investigate the kurtosis of the net-proton number
as a function of centrality which is defined by Ncharge for two different
pT acceptances. The results of two different transverse momentum for the
protons and anti-protons used to calculate the kurtosis is shown in Figure 3.7.
The square line denotes 0.4 < pT < 0.8 GeV and the circle line denotes
0.4 < pT < 2.0 GeV. It is found that for the most central collisions, the
value of the kurtosis is significantly reduced for the larger pT acceptance due
to the baryon number conservation. For mid-central collisions, the value of the
kurtosis is larger in the case of increased pT acceptance which indicates that
volume fluctuations have effect on the kurtosis.
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Figure 3.6 The results of κσ2 of the net-proton number as a function of
centrality for the three centrality definitions at mid-rapidity |y| < 0.5 and
within transverse momentum 0.4 < pT < 0.8 GeV. The square line denotes
centrality as defined by Ncharge, while the circle and triangle lines denote
centrality as defined by Npart and Npart−projectile, respectively.

3.4 Effects of efficiency

In experiments, particle detectors were not ideal systems and suffered
from finite particle detection efficiency. This efficiency is defined as the number
of particles that are produced and subsequently recorded in the detector, divided
by the overall yield (Abelev et al., 2009). This means that the detector used
to measure particle number distributions can never perform perfectly. Therefore,
we will show how if the efficiency of the detector is less than 100% this will
have an effect on the measurement of the cumulant ratios of the net proton
number.

Firstly, we study the effects of efficiency on centrality definition. Figure
3.8 shows the results of the kurtosis of the net-proton number as a function
of centrality which is defined by Ncharge within two different pT acceptance.
The open and solid square lines denote the efficiency of Ncharge at 100 and
70% within 0.4 < pT < 0.8 GeV, respectively. The open and solid circle lines
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Figure 3.7 The kurtosis of the net-proton number as a function of centrality
which is defined by Ncharge for two different pT acceptance. The square line
denotes 0.4 < pT < 0.8 GeV and the circle line denotes 0.4 < pT < 2.0
GeV.

denote the efficiency of Ncharge at 100 and 70% within 0.4 < pT < 2.0
GeV, respectively. It is found that the reduced efficiency leads to an increase
in kurtosis.

Secondly, we study the effects of proton efficiency. The cumulant
ratios of the net-proton number as a function of centrality which is defined
by 70% efficiency Ncharge within 0.4 < pT < 2.0 GeV is shown in Figure
3.9. The circle line denotes the proton efficiency at 100% (true), the square
line denotes the proton efficiency at 75% (uncorrected). It is found that
the results of the cumulant ratios of the net-proton number for the 75%
proton efficiency are smaller than the 100% proton efficiency that is observed
in the experimental data. For the most central events, the results of the
cumulant ratios are decreased due to efficiency. It is the opposite behavior
from what is observed in the analysis of the STAR experiment data because the
results of STAR data for central collisions demonstrate the greatest efficiency
corrections (Luo and Xu, 2017).
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Figure 3.8 The kurtosis of the net-proton number as a function of centrality
(defined by Ncharge) within two different pT acceptance.

3.5 Effects of rapidity dependence

In the following, we study the dependence of the cumulant ratios on
the size of the rapidity acceptance ∆y. In Figure 3.10 shows the dependence
of the kurtosis and skewness of proton number on the size of the rapidity
window, 0.0 6 y 6 2.0, within 0.4 < pT < 2.0 GeV. The circle line denotes
the results of kurtosis and the square line denotes the results of skewness. It is
found that as the rapidity increases, the kurtosis and skewness tend to decrease.
This phenomenon can be attributed to the increasing impact of baryon number
conservation. This effect is particularly strong for kurtosis compared to skewness.
For very small rapidity windows, the cumulants should resemble those of a
Poisson distribution, i.e., they should converge towards 1, which is also observed.
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Figure 3.9 The result of cumulant ratios of net-proton number as a function of
centrality which is defined by 70% Ncharge efficiency within 0.4 < pT < 2.0
GeV. The circle line denotes the proton efficiency at 100% (true), the square
line denotes the proton efficiency at 75% (uncorrected).
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Figure 3.10 The dependence of the kurtosis and skewness of proton number on
the size of the rapidity window, 0.0 6 y 6 2.0, within 0.4 < pT < 2.0 GeV.



CHAPTER IV
DEUTERON PRODUCTION

The aim of the collision of heavy and light ions is to explore the
dynamics and properties of strongly interacting matter which is governed by the
laws of quantum chromodynamics (QCD). QCD matter under extreme conditions
has been present since the first microseconds after the big bang and is also
present in neutron star mergers and other compact stellar objects. An ideal
environment for studying dense QCD matter in the laboratory is provided by the
collision of light and heavy ions in accelerators such as the SIS18 at GSI or at
the future Facility for Antiproton and Ion Research (FAIR) facility. These collisions
can probe energies similar to those previously explored in experiments at the
BNL Alternating Gradient Synchrotron (BNL-AGS) and the CERN Super Proton
Synchrotron (CERN-SPS), particularly in the beam energy scan run by NA49
experiment. Nowadays systematic studies of dense QCD matter are ongoing
through programs at the CERN-SPS (NA61 experiment) and the Relativistic Heavy
Ion Collider Beam Energy Scan (RHIC-BES) (STAR experiment). The production of
nuclear clusters, such as deuterons, is particularly interesting because it can shed
light on the formation process, e.g., direct thermal production or coalescence. The
thermal model supposes that the deuteron comes to equilibrium with hadrons
until its individual points of chemical freeze-out. The deuteron is formed inside
of fireball. The yields of deuteron have been accurately characterized by the
results of thermal models (Shuryak and Torres-Rincon, 2020; Andronic et al.,
2021; Wang et al., 2020). In contrast, the coalescence model assumes that the
deuteron is produced by the coalescence of nucleons outside of the fireball’s
phase space. In this work, we study the deuteron production that is performed
in UrQMD via phase space coalescence at the point of last interaction of the
proton and neutron in space and time. We will present calculations of yields,
ratios, and rapidity distributions of deuteron compared to experimental data.

The old version of UrQMD does not include the formation of deuterons
or other nuclear clusters. To calculate the abundances and spectra of nuclear
clusters are possible at different approaches. For instance, the cluster production
in the UrQMD hybrid approach (Steinheimer et al., 2012) was calculated via
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the Cooper-Frye equation on a hypersurface of constant energy density. This
approach assumes that the deuterons are not formed by coalescence but
they are emitted as a single entity from the fireball as suggested in statistical
hadronization models. An alternative way is the coalescence approach introduced
by the Gyulassy, Frankel, and Remler approach (Gyulassy et al., 1983) based on
the von Neumann equation for the n-body density ρ(t). The cross section to
observe a deuteron in the final state is then given by

σD = lim
t→∞

TrρDρ(t) (4.1)

with ρD being the Wigner transform of the deuteron state. This Wigner function
approach follows the original idea of Sato and Yazaki (Sato and Yazaki, 1981).
The formation of deuterons in Wigner function approach is calculated at the
last point of interaction of either nucleon. The Wigner function approach has
been applied very successfully in the description of deuteron production. It is
shown in (Aichelin and Remler, 1987; Nagle et al., 1994; Ko et al., 2010; Zhu
et al., 2015)
Finally, it is possible to use a direct coalescence approach, either in momentum
space or coordinate space or in full phase space. One defines a maximum
relative momentum ∆p and/or a maximum distance ∆r between the proton
and the neutron to from a deuteron. This approach is similar to the Wigner
function approach but essentially assumes a flat probability in coordinate space
and momentum space for the coalescence probability (instead of the deuteron
wave function). Phase-space coalescence has been shown to work successfully
and to yield results similar to the Wigner function approach (Nagle et al., 1994).
Therefore, in this work, we model deuteron production in UrQMD via phase
space coalescence at the point of last interaction of the respective proton and
neutron in space and time. The method we will use is the following:

1. We follow the protons and neutrons through the evolution of the system
until their individual space-time points of last interaction.

2. For each p-n pair the momentum and position of proton and neutron is
boosted to the 2-particle restframe of this p-n pair.

3. The particle that dissociated earlier is then propagated to the other particle
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later time.

4. We calculate the relative momenta ∆p = |−→p 1 −−→p 2| and the relative
distances ∆r = |−→x 1 −−→x 2| of the p-n pair in the 2-particle restframe
at equal times. The yield of deuteron candidates is given by the condition
of ∆p < ∆pmax and ∆r < ∆rmax. Here we use the set of parameter
∆pmax = 0.285 GeV/c and ∆rmax = 3.575 fm.

5. We operate the statistical spin and isospin projection to the deuteron
state (probability 1/2× 3/4 = 3/8) (Aichelin and Remler, 1987) for each
deuteron candidate. Then, the chosen p-n pair is recorded as a deuteron
and cannot be used to produce another deuteron.
Note that the parameters for deuteron formation are independent of energy,
the collision system, and centrality. We will find that the parameter values
are chosen to give a good description of the available data for a wide
range of systems and beam energies.

4.1 Proton-induced reaction

Proton induced reactions are the simplest to study in our model
studies. In these systems, the rescattering stage is rather short and the freeze-
out volumes are smaller than in nucleus-nucleus reactions.

The rapidity distributions of protons and deuterons in minimum bias
p+Au (left) and p+Be (right) collisions at a beam energy of 14.6A GeV are
calculated. It is shown in Figure 4.1. The lines indicate the UrQMD calculations
and the circle symbol denotes the E802 experimental data (Abbott et al., 1993).
y is the rapidity which can be seen in appendix B for more detail. It is found
that the deuteron and proton yields are consistent with the E802 experimental
data and the rapidity distributions are well reproduced. The distributions of
protons and deuterons are found a lot at y = 0. Because the ejection of
protons and deuterons occur mainly in the target fragmentation region. The
protons shows an approximate symmetry around the center-of-mass rapidity
(yc.m = ybeam/2 = 1.72). It indicates that these collisions are dominated by
single nucleon-nucleon collisions.
Moreover, the integrated yields (dN/dy) of deuterons and antideuterons in p +
p collisions with midrapidity |y| < 0.5 are calculated by the UrQMD model at
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Figure 4.1 Rapidity distributions of protons and deuterons in minimum bias
p+Be (left) and p+Au (right) collisions at a beam energy of 14.6A GeV. The
lines indicate the UrQMD calculations and the solid circle denotes the E802
experimental data (Abbott et al., 1993).

different center-of-mass energies
√

sNN = 0.9, 2.76, and 7 TeV and compared to
ALICE experimental data , as shown in Table 4.1. We can see that our results
are in agreement with the ALICE experimental data.

Table 4.1 The integrated yield (dN/dy) of deuterons and anti-deuterons in p+p
collisions with midrapidity |y| < 0.5 at different center of mass energies as√

sNN = 0.9, 2.76 and 7 TeV.

dN/dy√
sNN (TeV) ALICE UrQMD
0.9 (1.12 ± 0.09 ± 0.09)× 10−4 (0.96 ± 0.05)× 10−4

d 2.76 (1.53 ± 0.05 ± 0.13)× 10−4 (1.47 ± 0.06)× 10−4

7 (2.02 ± 0.02 ± 0.17)× 10−4 (2.05 ± 0.09)× 10−4

0.9 (1.11 ± 0.10 ± 0.09)× 10−4 (1.00 ± 0.05)× 10−4

d 2.76 (1.37 ± 0.04 ± 0.12)× 10−4 (1.55 ± 0.07)× 10−4

7 (1.92 ± 0.02 ± 0.15)× 10−4 (2.22 ± 0.09)× 10−4



48

Figure 4.2 Energy dependence of d/p and d/ p ratios in pp collisions with
|y| < 0.5 at

√
sNN = 53, 900, 2760 and 7000 GeV. The open circle and

triangle are calculated by the UrQMD model, the solid star denotes the results
from ISR (Alper et al., 1973; Henning et al., 1978; Alper et al., 1975) and the
solid circle and triangle denote the results from ALICE experimental data.

From the integrated yields in Table 4.1, one can calculate the ratios of
deuteron to proton (d/p) and antideuteron to antiproton (d/ p) as a function
of energies

√
sNN = 53, 900, 2760 and 7000 GeV, as shown in Figure 4.2. The

open circle and triangle are calculated by the UrQMD model and compared
to the experimental data. The solid star denotes the results from ISR (Alper
et al., 1973; Henning et al., 1978; Alper et al., 1975) and the solid circle and
triangle denote the results from ALICE experimental data (Acharya et al., 2018).
It is found that, at high energies, our results are consistent with the ALICE
experimental data. The results of this ratio increase with increasing energies.

4.2 Nucleus-nucleus reaction

Next, we will present the results of deuteron and antideuteron produc-
tion for collisions of light to heavy nuclei at various beam energies. At lowest
beam energies, we compare the rapidity distributions (dN/dy(0)) of deuterons,
protons, and π− in Ni+Ni collisions with b ≤ 1.8 fm at beam energies of
1.93A, 1.45A and 1.06A GeV within UrQMD model. Our results are compared
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Figure 4.3 The dN/dy(0) distributions of deuterons, protons and π− for Ni+Ni
collisions with b ≤ 1.8 at beam energies of 1.93A, 1.45A and 1.06A GeV.
The lines indicate the UrQMD model and the circle symbols denote the FOPI
experiment (Hong et al., 1998).

to the data from the FOPI experiment, as shown in Figure 4.3. The lines
indicate the UrQMD model and the circle symbols denote the FOPI experimental
data (Hong et al., 1998). Here the normalized rapidity y(0) = y/ycm is the
rapidity scaled with the center-of-mass rapidity ycm. We found that our results
are consistent with the FOPI data. For these low beam energies, the deuteron
yields are observed as deviations at forward and backward rapidities. However,
these deviations are expected for the lowest beam energies because we did not
include the effects of nuclear potential interactions in our simulations. Moreover,
the results show that the rapidity distributions of protons and deuterons have
a similar shape at different energies. However, the magnitude of the rapidity
distributions of the protons is increased, whereas the magnitude of the deuteron
rapidity distributions decreases with increasing beam energy. For higher beam
energies, the results of our calculations in Au+Au collision at a beam energy
10.8A GeV are presented in Figures 4.4 and 4.5, respectively. Figure 4.4 shows
the rapidity distributions (dN/dy) of protons and deuterons (time 5) in Au+Au
collisions at a beam energy 10.8A GeV with b = 3 fm. The dashed lines
indicate our simulations and the circle symbol denotes the E917 experimental
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data (Back et al., 2001). It is found that the rapidity distributions of protons and
deuterons are peaked around midrapidity (in the laboratory frame), due to the
increased stopping power in the symmetric heavy-ion collision. Moreover, Figure
4.5 shows invariant yields of deuterons at pt = 0 as a function of rapidity
in central colliaions which are shown on the left hand side and minimum-bias
which are shown on the right hand side, in Au+Au collisions at a beam energy of
10.8A GeV. The lines show the UrQMD model calculations which are compared
to the E878 experiment data (Bennett et al., 1998) which is the circle symbol.

The expression for the invariant yield of deuterons as a function of
velocity is

E
d3N
dp3 =

1
2πpt

d2N
dptdy

, (4.2)

where E is the energy and pT is the transverse momentum

pt =
√

p2
x + p2

y, (4.3)

where px and px are the momentum components in the transverse momentum
plane. It is found that our calculations are consistent with the E878 experimental
data. The yields in central collisions are higher than in minimum-bias collisions
due to the increased stopping in central collisions.

In the following, we present results of deuteron production in various
colliding systems at a beam energy of 14.6A GeV. A wealth of deuteron
measurements were taken, which allow a systematic comparison with our model
calculations. At this beam energy, the deuteron measurements allow a systematic
comparison with our model calculations. Figure 4.6 shows the rapidity distributions
of protons and deuterons in Si+Au collisions at a beam energy of 14.6A GeV
with b=2 fm. The lines indicate our model calculations and the circle symbols
denote the E802 experimental data (Abbott et al., 1994). From the results,
we observed that the rapidity distributions of protons and deuterons are in
reasonable agreement with E802 experimental data. Figure 4.7 shows invariant
yields of deuterons as a function of rapidity in central which is shown on the
left hand side and minimum-bias which is shown on the right hand side in
Si+Pb collisions at a beam energy of 14.6A GeV at pt = 0. The lines indicate
the UrQMD calculations and the circle symbols denote the E814 experimental
data (Anticic et al., 2016). It is found that the invariant yields measured in
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Figure 4.4 Rapidity distributions of protons and deuterons (times 5) in Au+Au
collisions at a beam energy of 10.8A GeV with b = 3 fm. The dashed line
indicates our simulation and the circle symbol denotes the E917 experimental
data (Back et al., 2001).

our simulation are consistent with the E814 experimental data. The yields of
deuterons in central collisions are higher than in minimum-bias collisions due
to the increased stopping in central collisions.

Moreover, the invariant yields of deuterons as a function of mt − m
in central Si+Al, Si+Cu and Si+Au collisions at a beam energy 14.6A GeV
are calculated by UrQMD model and compared to the experiment E802 data
(Abbott et al., 1994), as shown in Figure 4.8. The lines indicate the UrQMD
calculations and the circle symbols denote the E802 experimental data. The
central collisions ,the rapidity interval is y = 0.5 to 1.5 with ∆y = 0.2. Each
successive spectrum is divided by 100 for visual clarity. The invariant yields is
defined as

E
(

d3N
dp3

)
=

1
2πmt

d2N
dydmt

, (4.4)

where mt is the transverse mass

mt = (p2
t + m2)1/2 , (4.5)
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Figure 4.5 Invariant yields of deuterons at pt = 0 as a function of rapidity in
central (left) and minimum-bias (right) Au+Au collisions at a beam energy of
10.8A GeV. The lines denote the UrQMD model calculations,the circle symbol
denotes the E878 experiment data (Bennett et al., 1998).

It is found that our results are consistent with the E802 experimental data.
The resulting invariant yields of deuterons for the three targets for each rapidity
interval show that the invariant yields are decreased with increasing rapidity
value until the fragmentation region.

In the next step, we explore deuteron formation at various energies
and centralities. Figure 4.9 shows the deuteron distributions as a function of
rapidity in Pb+Pb collisions at a beam energy of 20A GeV for different centralities.
The lines denote the UrQMD calculations and the circle symbols denote the
NA49 experimental data (Anticic et al., 2016). It is found that our results are
in good agreement with the NA49 experimental data. However, we can observe
a small deviation in the experimental data that the baryon stopping in UrQMD
is stronger than the NA49 data, when going towards more central collisions.
Moreover, Figure 4.10 shows the deuteron distributions as a function of rapidity
at beam energies 20A GeV, 30A GeV, 40A GeV, 80A GeV, and 158A GeV in
central Pb+Pb collisions. The lines denote the UrQMD calculations and the circle
symbols denote the experimental data of the NA49 collaboration (Anticic et al.,
2016). For visibility the calculations and the data are successively divided by a
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Figure 4.6 Rapidity distributions of protons and deuterons in Si+Au collisions at a
beam energy of 14.6A GeV with impact parameter b = 2 fm. The lines indicate
our model calculations and the circle symbols denote the E802 experimental
data (Abbott et al., 1994).

factor of 10. It is found that are consistent with the NA49 experimental data.
From the results represented above, it has been demonstrated that deuteron
production at medium energies can be very well described by a phase-space
coalescence parameter set.

Finally, we show the invariant yields of anti-deuterons (d) and anti-
protons (p) at pt = 0 as a function of rapidity in Si+Au collisions at a beam
energy of 14.6A GeV with b = 2 fm. Our results are compared to the data
from the E858 (Shiva et al., 1994) and E814 (Barrette et al., 1993) experiments,
it is shown in Figure 4.11. The lines denote the UrQMD calculation The circle
symbols denote the E858 and E814 experimental data. It is found that the our
results are consistent with the experimental data.

4.3 Excitation function

In this section, the ratio of the deuteron to proton and antideuteron to
antiproton as a function of energy dependence in Au+Au collisions with b ≤ 4.6
fm and mid-rapidity (|y| < 0.3) are calculated. It is shown in Figure 4.12. The
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Figure 4.7 Invariant yields of deuterons at pt = 0 as a function of rapidity
in central (left) and minimum-bias (right) Si+Pb collisions at a beam energy of
14.6A GeV. The lines indicate the UrQMD calculations and the circle symbols
denote the E814 experimental data (Anticic et al., 2016)

UrQMD calculations are compared to a thermal model fit (Andronic et al.,
2011) and experimental data from the SIS (Cleymans et al., 1999), E802 (Ahle
et al., 1999), PHENIX (Adler et al., 2005), NA49 (Anticic et al., 2016), STAR (Yu,
2017), ALICE (Anielski, 2015), and E814 collaboration (Barrette et al., 1993). The
solid lines denote UrQMD calculation, the dotted line denote thermal model fit
and the symbols denote the experimental data from various collaborations. It
is found that our results are consistent with both the thermal model and the
experimental data. The ratio of d/p decreases with increasing higher energies
due to the decreasing phase space density for baryons at higher beam energies.
The ratio of d̄/p̄ decreases with decreasing lower energies which indicates the
surface freeze-out of the anti-protons and thus also a decreased phase space
density (Mrowczynski, 1993; Bleicher et al., 1995).
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Figure 4.8 Invariant yields of deuterons as a function of mt−m in central Si+Al,
Si+Cu and Si+Au collisions at a beam energy of 14.6A GeV. The rapidity interval
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et al., 1994) and the lines indicate the UrQMD calculations.
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Figure 4.9 Deuteron distributions as a function of rapidity in Pb+Pb collisions
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Figure 4.11 The invariant yields of anti-deuterons (d) and anti-protons (p) at
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Figure 4.12 The ratio of deuteron to proton ratio and a function of energy
dependence in Au+Au collisions with b ≤ 4.6 fm and |y| < 0.3. The solid
lines denote UrQMD model results, the dotted lines denote the thermal model
fit (Andronic et al., 2011) and symbols denote experimental data from various
collaborations (triangle down: SIS (Cleymans et al., 1999), hexagon: E802 (Ahle
et al., 1999), triangles up: PHENIX (Adler et al., 2005), diamonds: NA49 (Anticic
et al., 2016), circles: STAR (Yu, 2017), pentagon: ALICE (Anielski, 2015), square:
E814 (Barrette et al., 1993).



CHAPTER V
CONCLUSIONS

In this work, we study the effect of different methods for centrality
definition on the measured net-proton kurtosis. Three centrality definitions (
Ncharge, Npart, Npart−projectile) give different results of kurtosis. Ncharge is
used for the centrality definition because it has the smallest dependence of the
cumulant ratios. Moreover, we have studied the effects of pT acceptance and
rapidity windows. We have demonstrated that for the most central collisions,
the value of the kurtosis is significantly reduced for the larger pT acceptance.
An increasing rapidity window will give decreasing cumulant ratios. Finally, we
explore the effects of centrality definition efficiency which is defined by Ncharge

and proton efficiency. We found that a smaller efficiency for Ncharge leads to
an increase in the kurtosis. Smaller efficiency for proton leads to the decrease
of the kurtosis.
we investigate the deuteron production in the FAIR up to LHC energy regime
using UrQMD + coalescence model. The UrQMD + phase space coalescence
model with parameters ∆pmax = 0.285 GeV/c and ∆rmax = 3.575 fm provides
a very good description of the available data of deuteron production. Form
the results for proton induced reactions (p+p and p+Au, p+Be) at low and high
energies, forward Pb+Pb collision at the CERN-SPS and CERN-LHC is found that
deuteron production for all systems can be described by coalescence with the
same phase space parameters. Given the current discussion of the deuteron
production at LHC, we want to stress that coalescence provides similar results
for the d/p ratios as the thermal model over the whole range of expected
energies. In addition it captures the decrease of the d/p ratio for the high
centrality bin in Pb+Pb reactions at the LHC. Furthermore, our results of the
distribution of deuterons and protons as a function of rapidity in Ni+Ni and
Au+Au collision are consistent with the experiment data. Moreover, the result
of the invariant yield of antideuterons and antiprotons at pt = 0 as a function
of rapidity in minimum-bias Si+Au collisions at 14.6A GeV found that the UrQMD
calculation is in agreement with the E814 experimental data.
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APPENDIX A
LORENTZ TRANSFORMATION

In this thesis, the Lorentz transformation is used to convert between
the center of mass frame (CM) and laboratory frame (Lab). It is used to convert
the rapidity and momentum distribution of the observed particle. In relativity
physics, Lorentz transformations are a set of equations used to link the space
and time coordinates of two systems with the same velocity.
Lorentz boost is considered in z-axis when a particle in a coordinate frame
L at (t, x, y, z, ) is boosted to (t, x, y, z) for L’ with velocity (v). Lorentz
transformation in the z-axis is defined in the form as:

t′ = γ (ct − βz) ,
x′ = x,
y′ = y,
z′ = γ (z − βct) .

(A.1)

where Lorentz factor is γ = 1√
1−β2 and β = v

c . By the same way, the
Lorentz transformation for a Four-Vector (E,−→p ) can be defined as:

E′ = γ (E − βpz) ,
p
′

x = px,
p
′

y = py,
p
′

z = γ (pz − βE) .

(A.2)

where the velocity of particle is β−→ =
−→p
E and E2 − |−→p | = m2.



APPENDIX B
KINEMATIC VARIABLES

In particle collisions, several kinematic variables are used in this thesis
to study the properties and dynamics of particles. We consider a particle traveling
in the z axis as the beam direction. The momentum in the z-direction is called
the longitudinal momentum (pz). The transverse momentum (pt) magnitude is
defined as:

pt =
√

p2
x + p2

y. (B.1)

As well as the transverse mass (mt) can be defined in the form

mt =
√

p2
t + m2. (B.2)

We also define a quantity called the rapidity y, the rapidity of a particle is
defined as:

y =
1
2
ln

E + pz

E − pz
(B.3)

In the laboratory system the center of mass of the rapidity can be defined in the
term velocity when the total energy in the center of mass is Ecm =

√
s. The

energy and longitudinal momentum are γcm
√

s and βcmγcm
√

s respectively.
Then we get

y = 1
2 ln
[
γcm

√
s+βcmγcm

√
s

γcm
√

s−βcmγcm
√

s

]
y = 1

2 ln
[

1+βcm
1−βcm

] (B.4)

Assume a particle is emitted at an angle θ with respect to the beam’s axis.
Then from Equation (B.3) the rapidity can be defined as:

y =
1
2
ln

(
(m2 + p2)

1
2 + pz

(m2 + p2)
1
2 − pz

)
(B.5)

At a highly relativistic particle, p ≫ m hence we get
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y = 1
2 ln
(

p(1+m2
p2 )

1
2+pz

p(1+m2
p2 )

1
2−pz

)
,

≃ 1
2 ln
(

1+pz+
m2
2p +...

p−pz+
m2
2p +...

)
,

≃ 1
2 ln
(

1+ pz
p +

m2
2p2+...

1− pz
p +

m2
2p2+...

)
.

(B.6)

Now pz/p = cosθ we have

1 +
pz

p
= 1 + cosθ = 1 + (cos2

θ

2
− sin2θ

2
) = 2cos2

θ

2
(B.7)

and
1 − pz

p
= 1 − cosθ = 1 − (cos2

θ

2
− sin2θ

2
) = 2sin2θ

2
(B.8)

Substituting Equation (B.7) and (B.8) into Equation (B.6) we obtain

y ≃ 1
2 ln

cos2 θ2
sin2 θ

2

≃ −ln tanθ2 .
(B.9)

So that for highly relativistic particles, y ≃ η, the the pseudorapidity η can
be defined as:

η = −ln tan
θ

2
(B.10)
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