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This thesis presents a process for forecasting the short-term hourly power
output of Photovoltaic cells using deep learning (DL) and self-organizing neural
networks (Self-Organizing Map, SOM), along with probabilistic calculations. The study
is divided into three parts: a comparative study to identify suitable models and
methods; a solution for increasing the accuracy of data-driven forecasting techniques
by utilizing self-organizing mapping to group datasets with similar correlation
characteristics as inputs to the model; and the use of probabilistic calculations to
determine the extent of prediction error. The comparative study was conducted
using six test cases to examine the impact of hyperparameter tuning, activation
function, normalization, seasonality, test set selection, and incomplete data sets.
Two test datasets were used: a 14 MWp rooftop solar system for cases 1-5 and a 1.5
MWp surface-mounted photovoltaic system at Suranaree University of Technology
for case 6. The results showed that the best-performing system was the rooftop solar
system, with a multilayer feedforward neural network model producing an average
mean absolute percentage error (MAPE) of 8.504% using a 70:30 data split for training
and testing. In contrast, the surface-mounted system achieved an average MAPE of
19.052% due to the high variability of the available data. Furthermore, an
optimization process was proposed to enhance forecasting accuracy by utilizing SOM
techniques. The results demonstrated that the average MAPE could be reduced to

4.90% using the rooftop solar system in case 1.



Additionally, probabilistic calculations were used to accurately identify the probability
range of electricity generation from solar cells, with a Prediction Interval Coverage

Probability (PICP) of 1 indicating full coverage of the forecasting period with a 100%
probability.
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CHAPTER 1
INTRODUCTION

1.1  Background

The persistent growth of the economy has resulted in a commensurate
increase in demand for electricity, necessitating the need for electrical systems that
exhibit reliability and quality. This is because a fault in the electrical system could have
catastrophic implications for the entire economy of the country. In light of the
pressures posed by these challenges and carbon emissions, renewable energy sources
(RES) have been widely integrated into power grids. However, the inherently
intermittent nature of RES electricity poses several technical issues to the power
system, underscoring the need to estimate photovoltaic (PV) output accurately to
ensure the dependable functioning and economical dispatch of the power systems.
Among the various energy sources available, RES is regarded as one of the most cost-
effective and environmentally friendly options for electrical systems. To enhance the
stability of the power transmission system, it is imperative to manage the power system
to maximize its benefits and increase competition in the energy sector while ensuring
maximum reliability and performance. Moreover, the use of RES in the distribution
system can reduce the infrastructure costs involved in generating, transmitting,
distributing, and using electricity, making it an essential component of the country's
economic growth and industrial development. In 2018, Thailand unveiled the Power
Development Plan 2018-2037 (PDP 2018) and Alternative Energy Development Plan
2018-2037 (AEDP 2018), which outlines the country's energy future for the next two

decades.

The central aim of both plans is to increase the power capacity of distributed
energy resources (DER) through RES to reduce pollution from conventional power

generation and enhance reliability. The PDP 2018 underscores the need to procure



electricity from renewable energy sources in keeping with the country's remaining
renewable energy potential and support the changing behavior of electricity
consumers, including disruptive technology in electrical energy. This will occur while
adhering to the COP21 agreement and will comprise biomass, biogas, solar, and floating
solar, combined with hydropower, and other renewable energy sources to maintain
the retail price of electricity. The PDP 2018 also accounts for future energy
conservation measures that will be cost-competitive with renewable energy plants and
reliable. The new renewable energy power plants and energy conservation measures

of PDP 2018 are presented in Table 1.1.

Table 1.1 New renewable energy power plants of PDP 2018

Contract capacity | Reliable capacity
Renewable energy

(MW) (MW)
Solar power 10,000 4,250
Biomass 3,376 2,296
Biogas 546 325
Solar floating and hydro power plant 2,725 1,158
Wind power 1,485 189
Industrial waste aaq 26
Electrical energy conservation measures - 4,000
Total as of 2037 18,176 12,244

(Source: PDP2018, EPPO)

AEDP2018 seeks to augment the proportion of renewable and alternative energy in the
form of electricity, heat, and biofuels, constituting 30 percent of the total energy
consumption by 2037. A detailed breakdown of the energy and alternative energy

production targets for each fuel type is provided in Table 1.2.



Table 1.2 Comparison of alternative energy production targets of AEDP 2018

Production capacity (MW)

AEDP2015 AEDP2018
Fuel type Cumulative
Goal Done Goal
(MW) (MW) (MW) demand’

(MW)
Solar energy 6,000 2,849 9,290 12,139
Solar floating energy - - 2,725 2,725
Biomass 5,570 2,290 3,500 5,790
Wind energy 3,000 1,504 1,485 2,989
Biogas 1,280 382 1,183 1,565
Community waste 500 500 400 900
Industrial waste 50 31 aq 75
Small hydro energy 376 239 69 308
Large hydro energy 2,906 2,920 - 2,920
Total Capacity (MW) 19,684 | 10,715 | 18,696 29,411
Total energy production (GWh) | 65,582 | 37,757 | 52,864 85,652
Total energy demand (GWh) 326,119 | 329,119 | 250,204 250,204
Electricity from RES per demand | 20.11 10.04 21.14 34.23
(%)
Electricity from RES per final | 4.27 2.13 3.55 5.75
energy (%)

Note: 1 is Cumulative demand that can be calculated from done from AEDP 2015

plus 2018
(Source: AEDP2018, EPPO)

Table 1.1 and Table 1.2 indicate that power generation from photovoltaics (PV)

represents the most substantial component of power capacity that must be

augmented due to the necessity to scrutinize and enhance PV system operation

technologies.



1.2  Statement of the problem

To realize the objectives outlined in the PDP2018 and AEDP2018, it is
imperative to investigate and implement the photovoltaic (PV) power generation
forecasting approach in modern power system operation. Multiple approaches have
been proposed to achieve this task, broadly classified into three main groups: physical,
statistical, and hybrid approaches. While physical and statistical approaches possess
varying strengths and drawbacks, physical approaches utilize theoretical simulation
models to compute the PV system power generation based on its fundamental design
variables. On the other hand, statistical approaches encompass all data-driven
methodologies, ranging from conventional statistical modeling to advanced machine
learning algorithms. Mayer and Gréf (2021). Subsequently, hybrid techniques were
proposed to miticate the limitations of each method by integrating two distinct
methodologies, namely a physical and a statistical approach or multiple statistical
models. The literature suggests that statistical approaches are primarily employed for
PV power prediction. (Antonanzas et al., 2016). These data-driven methods are reliant
on historical irradiance, weather, and production data. Additionally, these models do
not necessitate a comprehensive understanding of the PV system's parameters.
Nonetheless, the precision of data-driven forecasting is substantially influenced by the
quality, resolution, and accuracy of the training dataset, and even state-of-the-art deep
learning systems exhibit restricted accuracy if the historical data provided is limited to
less than 1-3 years and fails to encompass various weather and PV conditions. (Wang,
Qi, & Liu, 2019). The literature has documented various statistical approaches, such as
artificial neural networks (ANN) (Liu, Fang, Zhang, & Yang, 2015), and long short-term
memory (LSTM) (Kim, Ko, & Kim, 2019) , to predict PV production. However, in practice,
the measured data may be incomplete, while the traditional methods rely on the
completeness of the PV-generating dataset. According to the Korea Meteorological
Administration (Kim et al., 2019), roughly 19.0 percent of data was missing in 2017. A
flawed dataset impedes the application of machine learning-based PV forecasting

models or significantly reduces the accuracy of forecasting models. Despite the gravity



of the problem of missing data and a dearth of multiple inputs, relatively few research
studies have addressed this issue. Furthermore, it is challenging to ascertain the
efficacy of any forecasting model in predicting the output close to the actual value.
Therefore, techniques to enhance the accuracy of PV power generation forecasting
and probabilistic forecasting, which can bridge this gap by delineating the range and
probability of electricity production during various periods, are necessary.

As mentioned earlier, it is essential to investigate solutions that can facilitate
more accurate PV generation predictions for practical applications. Firstly, widely
adopted models will be comparatively analyzed to assess their accuracy using
performance matrices. Subsequently, an alternative forecasting framework will be
proposed to enhance the efficiency of PV power generation. Finally, probabilistic
calculations will be implemented to determine the range of firm PV power generation

forecasting for the test system.

1.3  Objective of the study

The objective of PV (photovoltaic) forecasting is to accurately predict the
amount of energy that will be generated by a solar PV system at a given time in the
future. This information is useful for a variety of stakeholders, including grid operators,
energy traders, and solar power plant owners and operators. Accurate PV forecasting
helps to improve the reliability and stability of the electricity grid by allowing grid
operators to better anticipate fluctuations in renewable energy supply. It can also help
energy traders to optimize their energy trading strategies and solar power plant owners
and operators to better manage their power output and revenue streams. Overall, the
main objective of PV forecasting is to provide reliable and accurate information on the
expected energy output of a solar PV system, which can be used to inform decision-

making and improve the efficiency and effectiveness of the renewable energy sector.
The primary goal of this study comprises of the following objectives:

1.3.1 To undertake a comparative analysis of commonly employed forecasting

models with the aim of ascertaining their accuracy.



1.3.2 To enhance the precision of PV forecasting for a select set of input

variables.

1.3.3 To employ probabilistic forecasting techniques in order to determine the

reliable range of PV power generation.

1.4  Structure of thesis
The present thesis is composed of six chapters, and the subsequent section

provides concise overviews of each chapter.

Chapter | serves as the introductory section of this thesis, wherein the
background information, problem statement, objectives, and overall structure of the

thesis are outlined.

Chapter Il provides an in-depth discussion of the various applications of power
forecasting in distribution systems. This includes an overview of machine and deep
learning, as well as a review of recent research in photovoltaic power forecasting. The
chapter covers both point and interval forecasting methods, including a description of
the fundamental workflow from data collection to the implementation of forecasting
models. In addition, the chapter explores widely used methods and adopted
predictive models. Finally, the chapter concludes with a detailed description of

validation methods and performance metrics.

Chapter lll presents a comparative study workflow between widely used
forecasting model that were mentioned in chapter Il, which includes the datasets used
for this study, data preprocessing, and visualization techniques. The chapter also
explores the impact of hyperparameter tuning on the forecasting models and

evaluates the performance of the deployed models.

Chapter IV presents the proposal of a Self-Organizing Map (SOM) to enhance
the clustering efficiency of a nonlinear problem. The findings of this study suggest that
SOM is an effective method for addressing this type of challenge, as it can depict the

relationship between two or more parameters through numerous states. Additionally,



this research proposes an alternate technique for enhancing the performance of a
Deep Learning (DL)-based forecasting model with few inputs by utilizing a SOM to

estimate an unmeasured and related factor as one of the inputs.

Chapter V outlines the probabilistic forecasting process, which is utilized to

attain a high level of accuracy in predicting intervals.

Chapter VI described on conclusion of thesis.

1.5 Thesis overview

The overview of this thesis is illustrated in Figure 1.1.

PV forecasting model for
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Figure 1.1 Thesis overview
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CHAPTER 2
LITERATURE REVIEWS

In order to identify and determine the appropriate methodology, a thorough
review of related research and methods is necessary. Chapter 2 addresses this need
by providing an overview of recent research in several key areas, including the
background of power forecasting, the application of PV forecasting, machine learning
for electrical systems, recent research in photovoltaic power forecasting, and the

fundamental theory behind adopted methods.

2.1  Background of power forecasting

Power forecasting is the process of predicting future electricity production or
consumption, typically at a particular location and time. It involves the use of various
mathematical and statistical models, as well as data analysis techniques, to estimate
the amount of energy that will be generated or consumed over a given time period.
Power forecasting is used in a variety of applications, including grid management,
energy trading, and renewable energy integration, among others. Accurate power
forecasting is critical for ensuring the stability and reliability of the electrical grid and
maximizing the efficiency of energy systems. Energy forecasting is a process of
predicting the future demand and supply of energy, typically at a particular location
and time. It involves the use of various mathematical and statistical models, as well
as data analysis techniques, to estimate the amount of energy that will be consumed
or produced over a given time period. Energy forecasting can be applied to various
energy sources, including electricity, gas, and renewable energy, among others.
Accurate energy forecasting is essential for efficient energy management, as it helps
energy providers to plan for future energy supply and demand, manage energy prices,

and make informed investment decisions. Energy forecasting is used in a variety of
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applications, including energy trading, load management, and renewable energy
integration, among others. The main difference between power forecasting and energy
forecasting lies in the scope of their predictions. Power forecasting specifically focuses
on the prediction of electricity production or consumption, while energy forecasting
encompasses a broader range of energy sources, such as oil, gas, and renewable energy
sources, in addition to electricity. Power forecasting is typically used in the
management of electrical grids, energy trading, and renewable energy integration,
among other applications, whereas energy forecasting is used in broader energy
management contexts, including the planning and optimization of energy supply and
demand, the management of energy prices, and the planning of energy infrastructure.
In summary, power forecasting is a subset of energy forecasting that specifically focuses
on the prediction of electricity production and consumption, while energy forecasting

encompasses a wider range of energy sources and applications.

The history of forecasting in electrical systems dates back to the early 20th
century when the demand for electricity began to rise rapidly. At that time, electrical
utilities needed to be able to predict the amount of electricity that would be needed
in order to ensure that they could generate and distribute enough power to meet
demand. The history of forecasting in electrical systems can be traced back to the
early days of the electricity industry. As the demand for electricity grew and power
grids became more complex, accurate forecasting became increasingly important for
efficient system operation, planning, and resource allocation. This history can be
broadly divided into several key phases, each marked by significant advancements in
methodologies, technology, and data collection. In the early days of electricity (late
19th century - early 20th century), During this period, electrical systems were relatively
simple, and forecasting techniques were primarily based on simple linear models and
intuition. Utilities relied on load duration curves and basic statistical techniques to
estimate demand for electricity. For the growth of statistical methods (mid-20th

century):
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As electricity demand increased and power systems became more
interconnected, there was a growing need for more accurate and reliable forecasting
methods. Statistical techniques, such as regression analysis and time series analysis,
began to be applied to electrical load forecasting. This led to the development of
more sophisticated short-term and long-term forecasting models. With the advent of
computer technology (the 1960s - 1980s), the introduction of computers
revolutionized forecasting techniques in electrical systems. With increased
computational power, more complex and efficient forecasting models were
developed, including the Box-Jenkins method (ARIMA) and exponential smoothing
state space models. Additionally, the advent of digital computers enabled the
collection, storage, and processing of laree amounts of data, which further improved
the accuracy and reliability of forecasting models. For the development of artificial
intelligence and machine leaming techniques (1990s - early 21st century), during this
period, advances in artificial intelligence and machine learning led to the development
of new forecasting techniques, such as artificial neural networks (ANNs), fuzzy logic,
and support vector machines (SVMs). These methods were capable of capturing
complex nonlinear relationships between input variables and offered improved
accuracy and adaptability compared to traditional statistical methods. For big data and
advanced analytics (2010s - present), The ongoing digital revolution and widespread
use of smart grid technologies, such as advanced metering infrastructure (AMI) and
phasor measurement units (PMUs), have eenerated large volumes of data in the power
sector. With the help of big data analytics and high-performance computing, advanced
forecasting models like deep learning, ensemble methods, and hybrid models have
been developed. These models are capable of handling high-dimensional and
complex data, leading to improved forecasting accuracy and reliability. Throughout its
history, forecasting in electrical systems has evolved in response to the growing
complexity and interconnectedness of power grids, as well as advancements in

technology and data collection methods. Today, accurate forecasting plays a crucial
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role in ensuring the reliable, efficient, and sustainable operation of power systems

around the world.

Load forecasting is the process of predicting the amount of electricity demand
that will be required at a future time. There are several different types of load
forecasting, each with its own approach and methodology. Some of the most common
types of load forecasting are: Short-term load forecasting (STLF) predicts electricity
demand for a period of up to one week ahead. This type of forecasting is used for day-
to-day operation of the power system, such as scheduling generation and transmission
resources. Medium-term load forecasting (MTLF) predicts electricity demand for a
period of up to one year ahead. This type of forecasting is used for mid-term planning
of the power system, such as determining the need for new transmission lines or power
plants. Long-term load forecasting (LTLF) predicts electricity demand for a period of
more than one year ahead. This type of forecasting is used for long-term planning of
the power system, such as developing energy policies and making investment
decisions. Peak load forecasting: Peak load forecasting predicts the maximum amount
of electricity demand that will occur during a specific time period, such as a day or a
week. This type of forecasting is used to plan for the highest levels of demand and
ensure that there is enough generation and transmission capacity available to meet it.
Weather-sensitive load forecasting takes into account weather patterns and other
external factors that can affect electricity demand, such as holidays and special events.
This type of forecasting is used to plan for the impact of weather conditions on
demand, such as high levels of air conditioning use during heatwaves. Customer load
forecasting predicts the electricity demand for individual customers or groups of
customers. This type of forecasting is used to plan for the needs of specific customer
segments, such as industrial or residential customers. Spatial load forecasting is a type
of load forecasting that predicts the amount of electricity demand for different
geographical areas within a power system. This type of forecasting takes into account
the unique characteristics of each area, such as population density, weather patterns,

and economic activity. Spatial load forecasting is important because electricity demand
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can vary significantly from one area to another, depending on factors such as the types
of customers in the area, the time of day, and the season. By predicting the demand
for each area, utilities can plan for the resources needed to meet that demand and
ensure that there is enough capacity available to avoid power outages and other
disruptions. Average load forecasting is a type of load forecasting that predicts the
average amount of electricity demand for a particular time period, such as an hour,
day, or week. This type of forecasting is important because it provides a baseline for
estimating the resources needed to meet expected demand. Average load forecasting
is typically based on historical data, which is used to identify patterns and trends in
electricity demand. For example, a utility might analyze electricity demand data from
the same day in previous years to identify trends in demand based on factors such as
weather patterns, economic activity, and population growth. Overall, load forecasting
is a critical tool for ensuring the reliable and efficient operation of the power system.
By predicting future electricity demand, utilities can plan for the resources needed to
meet that demand and ensure that there is enough capacity available to avoid power

outages and other disruptions.

Wind power forecasting is the process of predicting the amount of electricity
that will be produced by wind turbines at a future time. This is important for ensuring
the reliable and efficient operation of wind power systems, as well as for integrating
wind power into the larger electrical grid. The background of wind power forecasting
can be traced back to the early days of wind energy research when scientists began to
explore the potential of wind power as a renewable energy source. In the early days,
wind power forecasting was done manually, using simple statistical techniques to
predict the amount of energy that would be produced by a wind turbine in a given
time period. As wind power systems became more common in the 1980s and 1990s,
computer-based forecasting models began to be developed. These models used more
sophisticated techniques such as time series analysis and neural networks to predict
wind energy production. The introduction of these models made it possible to make

more accurate forecasts, which in turn helped to improve the reliability and efficiency
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of wind power systems. During the 2000s and 2010s, the focus of wind power
forecasting shifted from just predicting energy production to also predicting the impact
of weather patterns on energy production. This required the development of new
forecasting techniques that could take into account the variable nature of weather
patterns and their impact on wind energy production. Today, wind power forecasting
plays a critical role in the operation of wind power systems. By predicting the amount
of energy that will be produced at a future time, utilities and system operators can
plan for the resources needed to meet that demand and ensure that there is enough
capacity available to avoid power outages and other disruptions. As wind power
continues to grow as a source of renewable energy, it is likely that even more advanced

forecasting techniques will be developed in the future.

Photovoltaic (PV) forecasting is the process of predicting the amount of
electricity that will be produced by a solar power system at a future time. This is
important for ensuring the reliable and efficient operation of solar power systems, as
well as for integrating solar power into the larger electrical grid. The background of PV
forecasting can be traced back to the early days of solar energy research when
scientists began to explore the potential of solar power as a renewable energy source.
In the early days, PV forecasting was done manually, using simple statistical techniques
to predict the amount of energy that would be produced by a solar panel in a given
time period. As solar power systems became more common in the 1980s and 1990s,
computer-based forecasting models began to be developed. These models used more
sophisticated techniques such as time series analysis and neural networks to predict
solar energy production. The introduction of these models made it possible to make
more accurate forecasts, which in turn helped to improve the reliability and efficiency
of solar power systems. During the 2000s and 2010s, the focus of PV forecasting shifted
from just predicting energy production to also predicting the impact of weather
patterns on energy production. This required the development of new forecasting
techniques that could take into account the variable nature of weather patterns and

their impact on solar energy production. Today, PV forecasting plays a critical role in
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the operation of solar power systems. By predicting the amount of energy that will be
produced at a future time, utilities and system operators can plan for the resources
needed to meet that demand and ensure that there is enough capacity available to
avoid power outages and other disruptions. As solar power continues to grow as a
source of renewable energy, it is likely that even more advanced forecasting

techniques will be developed in the future.

In conclusion, power forecasting is a critical tool for ensuring the reliable and
efficient operation of power systems. By predicting the amount of electricity demand
or production at a future time, utilities and system operators can plan for the resources
needed to meet that demand and ensure that there is enough capacity available to
avoid power outages and other disruptions. The history of power forecasting can be
traced back to the early 20th century when simple statistical techniques were used to
predict electricity demand. With the advent of computers, more sophisticated
forecasting methods were developed, including artificial intelligence and machine
learning algorithms. In recent years, the focus of power forecasting has shifted to the
integration of renewable energy sources such as solar and wind power, which require
new forecasting techniques that can take into account the variable nature of these
energy sources. Overall, power forecasting is an important tool for ensuring the
reliability and sustainability of power systems, and its importance is likely to grow as

renewable energy sources become more common.

2.2  Applications of Power forecasting

The utilization of photovoltaic (PV) forecasting in distribution systems offers a
range of benefits, including capacity firming, battery size determination, and energy
market management. In a recent study by (Keerthisinghe, Mickelson, Kirschen, Shih, &
Gibson, 2020), different forecasting techniques such as persistent forecasts, long short-
term memory (LSTM), encoder-decoder LSTM, and multi-layer feed forward neural
network (ML-FNN) were compared to firm capacity. The study found that both ML-FNN

and LSTM, which are deep learning (DL) models, outperformed the conventional
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model by reducing the annual battery energy throughput the most. Similarly, (Beltran,
Cardo-Miota, Segarra-Tamarit, & Pérez, 2021) utilized DL-based irradiance forecasts to
determine battery size for solar capacity stabilization, demonstrating that this
methodology increases the predictability of PV output and enables PV capacity firming.
(Visser, AlSkaif, & van Sark, 2022) proposed a comparison of day-ahead solar power
forecasting algorithms for PV systems with variable geographical distribution, which
revealed that DL-based forecasting methods outperformed other models in terms of
both performance and economics. These findings highlight the potential of short-term
PV forecasting models to enhance grid benefits, with ML-based forecasting models
demonstrating superior performance compared to other methods. Consequently, the
application of ML in electrical systems and PV forecasting will be discussed in

subsequent sections.

In power system planning studies, the time horizon can be classified into long-
term and short-term. Long-term planning studies typically involve generation and
transmission expansion planning, policy development, and investment decisions over
several decades. On the other hand, short-term planning studies focus on issues such
as unit commitment, economic dispatch, power flow, and day-ahead markets, with a
time horizon of up to one year (Seifi & Sepasian, 2011). Therefore, the duration of

forecasting can be defined as shown in Tables 2.1 to 2.3.



Table 2.1 Classification of load forecasting methods according to the time period

(Wang, Guo, & Huang, 2011)

17

forecasting

Methods Time horizon Applications
very short-term load - distribution’s schedule
few mins
forecasting - generation forecasting
short-term load - distribution’s schedule
few hours

- generation forecasting

forecasting

medium-term load

few days to a month

- seasonal load forecasting

long-term load forecasting

>1 year

generation growth

planning

Table 2.2 Wind generation forecasting methods according to the period (Soman,

Zareipour, Malik, & Mandal, 2010)

Time horizon Range Applications
1 sec to - electricity market clearing
very short-term
30 minutes - regulation actions

short term

30 minutes to

6 hours ahead

- economic load dispatch planning

- load increment/decrement decisions

medium-term

6 hours to

1 day ahead

- generator online/offline decisions
- operational security in the day-ahead

electricity market

long-term

forecasting

1 day to 1 week

or more ahead

- unit commitment decisions
- reserve requirement decisions
- maintenance scheduling to obtain optimal

operating cost
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Table 2.3 PV generation forecasting methods according to the period (Akhter, Mekhilef,
Mokhlis, & Mohamed Shah, 2019)

Time horizon Range Applications

very short-term | 1 secto 1 hr - real-time electricity dispatch
- optimal reserves

- power smoothing

short term 1 hrto 24 hr - increase the security of the grid
medium-term 1 week to 1 - maintains the power system planning and
month maintenance schedule by predicting the

available electric power shortly

long-term 1 month to - helps in electricity generation planning,
forecasting many years transmission, and distribution authorities in

addition to energy bidding and security

operations.

This thesis categorizes the forecasting horizon into four different time periods,
namely Nowcasting (Intra hour), Short-term forecast (Intraday), Medium-term forecast,
and Long-term forecast. Intra-hour forecasting requires investigation of a few seconds
to several minutes and is crucial for real-time decision-making, particularly in
applications such as distributed load dispatching and energy storage planning. In
networks with high penetration of renewable energy, short-term forecasting using
renewable energy resources and related storage enhances grid stability, especially in
unexpected islanding/fault scenarios. Although numerical weather prediction (NWP)-
based methods suffer performance degradation, typically, historical and/or
meteorological information are wused for nowcasting assessments. Recent
advancements in image processing of captured sky images have the potential to yield
promising results. Short-term forecasting estimates PV power generation for up to

seven days, enabling unit commitment, rescheduling, and dispatch of electricity
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supply, making it beneficial in constructing a PV-integrated energy management
system. It also improves grid operation security. Medium-term forecasting uses a time
frame of more than a week to a month, enabling the projection of the future
availability of electric power to facilitate power system design and maintenance
schedule. Long-term forecasting estimates PV power generation from one month to
one year and is useful for planning electricity production, transmission, and distribution

organization and for energy bidding and security operations.

2.3 Machine/Deep Learning for forecasting

Machine learning (ML) is a subfield of artificial intelligence (Al) concerned with
the evolution of systems that can be trained or improved by the data they receive.
The term "machine learning” was coined in 1959 by American scientist Arthur Lee
Samuel, who defined it as "a field of study devoted to the study of a computer's ability
to learn without being explicitly programmed". ML is a data-driven approach that
enables mechanisms to evaluate information without explicit programming. DL, also
known as deep learning, is one of the neural networks distinct from conventional
artificial neural networks (ANNs) in that it consists of multiple hidden layers, intricate
interconnection structures, and various transition operators. In recent decades, several
machine-learning architectures have been developed, facilitating the proliferation of
deep learning. With the increasing use of deep learning in various fields, numerous
techniques and algorithms have been developed for training DLs (Kingma & Ba, 2015).
DL can effectively perform without feature engineering, which is the process of
extracting significant features from the dataset, and this is a key difference between
ML and DL. Generally, DL models require substantially more data to be effectively
trained. As previously mentioned, machine learning is a statistical method that
captures insights from a dataset without being primarily ordered. However, the ability
to do so requires an information source on which the model is "trained". Following this
initial step of information extraction from statistical information, the machine learning

model can be used to provide accurate forecasts/insights throughout the process,
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which is known as the 'inference" mode. Training data must be appropriately
standardized/normalized to provide the appropriate features that enable the artificial
neural network (ANN) to be efficiently trained. ML/DL methods can be applied in
various categories in the electrical system or related topics. Nonetheless, each ML/DL
method has different strengths and drawbacks. To select the appropriate model that
works well with the research objective, in-depth details of recent research on the PV

power forecasting model will be discussed in the next section.

2.4  Recent Research in Photovoltaic Power Forecasting

In order to develop a comprehensive understanding of photovoltaic power
forecasting, a review paper will be examined as presented in Table 2.4. The review
paper aims to analyze and discuss the most popular and effective methods utilized in
this field. Photovoltaic (PV) power forecasting is a critical aspect of renewable energy
generation, and its importance has grown exponentially in recent years due to the
increased deployment of solar panels worldwide. Accurate PV power forecasting is
essential for optimal energy management, ¢rid integration, and maintenance
scheduling, among other purposes. To achieve this, a variety of forecasting techniques
have been developed, ranging from conventional statistical models to advanced
artificial intelligence (Al) and machine learning (ML) techniques. These techniques have
become increasingly popular due to their effectiveness in dealing with the inherent
complexities of PV power forecasting, such as weather fluctuations and solar panel
degradation. The review paper will provide a comprehensive overview of the various
methods utilized in the field of PV power forecasting and will serve as a useful
reference for researchers, practitioners, and policymakers seeking to understand the

state-of-the-art techniques in this domain.
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Table 2.4 Literature Review of Review Paper in PV forecasting field

Ref. Notes
(Das et al,, The study examined the effectiveness of ML and statistical models
2018) from historical data. ANNs and SVMs were found to be the most

adaptable models, while GAs were preferred for hyperparameter
optimization. These findings emphasize the importance of
advanced techniques in PV power forecasting for better energy
management. The study's results provide valuable insights for
renewable energy researchers and practitioners, paving the way for

future improvements in PV power forecasting models.

(H. Wang et al,,
2020)

This article comprehensively reviews Al-based solutions for solar
energy forecasting, evaluating methods such as DL and
optimization and identifying obstacles and research goals. These
include developing probabilistic prediction models, improving
model explainability, and estimating cloud behavior. Continued
research is essential for effective solar energy management, and
the study provides valuable insights for renewable energy
researchers and practitioners. The review's findings pave the way

for future advancements in solar energy forecasting.

(Mellit, Massi

Pavan, Ogliari,

Leva, & Lughi,
2020)

This article reviews publications between 2008 and 2019 on ML,
DL, and hybrid models for solar energy output forecasting. The
review focuses on point forecasting, with ANNs and SVMs being the
most popular methods. These methods enable accurate solar
energy output forecasting for efficient energy management and
grid integration. The findings provide insights into current
techniques for solar energy forecasting, paving the way for

advancements in renewable energy.
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Table 2.4 Literature Review of Review Paper in PV forecasting field (continue)

Ref.

Notes

(Carrera & Kim,

2020)

This study compares various forecasting approaches for PV power
output using a 1.5-day prediction horizon. ML models are
evaluated with a k-fold cross-validation process and grid search to
find optimal hyperparameters. Data from weather forecasts and
observations validate each model. The XGBoosting algorithm
outperforms others due to its ability to handle non-linear
relationships and interactions between input variables. This study
provides insights for researchers and practitioners in renewable

energy, improving PV power output forecasting models.

(Rajagukguk,
Ramadhan, &
Lee, 2020)

This study evaluates three DL approaches for forecasting solar
irradiance and PV power production: LSTM, CNN+LSTM, and ED-
LSTM models. The CNN+LSTM model performs best in predicting
solar irradiance and PV power production. The study emphasizes
the importance of using RMSE for comparing outcomes. RMSE
provides a reliable error rate measure, enabling researchers and
practitioners to assess model accuracy. The study's findings
provide insights for developing accurate and reliable forecasting

models for solar irradiance and PV power production, contributing

to optimal energy management and grid integration.

Table 2.4 provides an overview of various machine learning (ML) and deep

learning (DL) models proposed for PV power generation forecasting, as well as the

preprocessing techniques used in these studies. The reviewed articles demonstrate

that ML and DL models outperform conventional techniques in short-term PV power

forecasting, and provide insight into which methods are most effective for this task.

Table 2.4 presents a concise summary of the key findings. In this thesis, we will discuss

the literature review on PV power generation forecasting in two groups: 1) point-

forecast ML-based methods and 2) interval (or probabilistic)-forecast ML/DL-based
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methods. The review will analyze and compare the strengths and limitations of these
different methods, providing valuable insights for researchers and practitioners seeking
to develop accurate and reliable PV power forecasting models. The aim of this analysis
is to contribute to the ongoing efforts to improve renewable energy management and

grid integration, ultimately enabling a more sustainable energy future.

Table 2.5 Reviews on PV power generation forecasting

Forecasting Parameters

Ref. horizon (Historical & Method & notes

& Resolution forecast)

Point-forecast ML-based methods

(Fekri, Ghosh, & | Not Not applicable The R-GAN has  been
Grolinger, 2020) | applicable employed to  generate
realistic datasets suitable for
training energy forecasting

models.
(Li, Zhou, Lu, & | One hour Metrological In this study, a comparison is
Yang, 2020) ahead data conducted between a hybrid
,5 min Power deep learning (DL) model
production that  integrates  wavelet

packet decomposition (WPD)
and DL models.
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Table 2.5 Reviews on PV power generation forecasting (continue)

Ref.

Forecasting
horizon

& Resolution

Parameters
(Historical &

forecast)

Method & notes

(Niu, Wang, Sun,
Wu, & Xu, 2020)

1-150 steps
ahead

.5 min

Metrological
data
Power

production

In order to generate ultimate
forecasts, an artificial neural
network (ANN) constructs a
hybrid model by leveraging
historical photovoltaic (PV)
power data that have been
decomposed  using  the

Ensemble

Mode
(CEEMD)

Complementary
Empirical

Decomposition
aleorithm, and  weather
information that has been
selected through the use of a
random forest (RF) approach
and optimized using the
Improved Grey Ideal Value
Approximation (IGIVA)

method.

(H. Zhou et al,,
2019)

1-8 steps
ahead

, 7.5 min

Metrological
data
Power

production

An  ensemble model is

constructed for temperature
and power series, comprising

two Long Short-Term

Memory  (LSTM)  models,

each equipped with

attention mechanisms.
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Table 2.5 Reviews on PV power generation forecasting (continue)

Ref.

Forecasting
horizon

& Resolution

Parameters
(Historical &

forecast)

Method & notes

(S. Zhou, Zhou,
Mao, & Xi, 2020)

1-4 weeks

,10 min

Irradiance
Power

production

In order to address the issue
of limited training data, a
technique based on
sequential model-based
optimization is employed to
optimize hyperparameters of
LSTM model that features
shared-optimized layers.
Furthermore, transfer
learning is incorporated into
this LSTM model, with a
source domain consisting of
historical ~ solar irradiance
data and a target domain
comprised of power

production data.

(Severiano, Silva,
Weiss Cohen, &
Guimaraes,

2021)

1,2 and 8
steps
, every 15

min

Solar energy &
Wind energy

In this study, a mechanism
known as TEDA is utilized in
conjunction  with  Evolving
Time

Multivariate  Fuzzy

Series and Data Analytics to

distinguish  typicality —and
eccentricity.  The  pyFTS
module in  Python was

employed to implement the

model, which offers a novel
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Table 2.5 Reviews on PV power generation forecasting (continue)

Ref.

Forecasting
horizon

& Resolution

Parameters
(Historical &

forecast)

Method & notes

means of detecting concept

drift.

Power from a

physical model

(F. Wang et al,, Day ahead Direct normal In this study, a group or
2020) ,15 min irradiance (DNI) | ensemble is created by
and integrating a Long Short-Term
temperature Memory (LSTM) recurrent
Power neural network (RNN) with a
production Time Correlation
Modification (TCM) model.
The coefficients of the TCM
model are calibrated through
the utilization of a partial
daily  pattern  prediction
(PDPP) framework.
(Zhao et al,, One day Metrological The AML model comprises
2021) ahead data three regression techniques,
,30 min Power namely Elastic Net CV
production regression, Gradient Boosting

Regression, and RF
Regression. The selection of
appropriate features for the
region-specific base models
is carried out using a
modified genetic algorithm
(GA) approach. In addition,
the forecast of power

generation at the base level
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Table 2.5 Reviews on PV power generation forecasting (continue)

Ref.

Forecasting
horizon

& Resolution

Parameters
(Historical &

forecast)

Method & notes

is enhanced through the
incorporation of a physical
model, thus elevating the
performance of the final

model.

(Chang, Li, &
Zomaya, 2020)

1-12 steps
ahead

, 30 min

Metrological

data

In order to cluster weather
patterns,  Light
Boosting Machine (LightGBM)

Gradient-

models were employed in

tandem  with  temporal
pattern aggregation and Time
Series

(TS-SOM)

Self-Organizing  Map
techniques. The
resulting approach
demonstrated  noteworthy
performance not only in
terms of accuracy but also in
relation to training and
inference time, even on edge

devices.

(Hossain &
Mahmood,

2020)

12to 24 h

, hourly

Metrological
data
Power

production

In this study, the Long Short-
Term Memory (LSTM) model
leverages a synthetic
irradiance forecast that is
generated using a k-MEANS

classification algorithm. This

approach results in a 33%
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Table 2.5 Reviews on PV power generation forecasting (continue)

Forecasting

Parameters

Ref. horizon (Historical & Method & notes
& Resolution forecast)
improvement in accuracy
compared to the use of an
hourly sky forecast, and a
44% enhancement relative
to utilizing a daily sky
forecast.

(Pan & Tan, 1-24 steps Metrological In this study, an ensemble
2019) ahead data approach is employed for
hourly Power Random Forest (RF) models,
production utilizing ridge regression, in
addition  to  preliminary
cluster analysis of weather

predictions.
(Leva, Dolara, 1-24 steps Metrological In this study, the clear sky
Grimaccia, ahead data model was utilized to pre-
Mussetta, & , hourly Irradiance process data prior to its
Ogliari, 2017) measurement utilization with the Artificial
Power Neural Network (ANN) model.
production Furthermore, various periods

of the year were examined,
and the simulation outcomes
both

were analyzed for

partially cloudy and cloudy

days.
(Nkuriyingoma & | Depending on | Metrological In order to achieve this
Selcuklu, 2021) metrological data from the objective, Nonlinear
data station AutoRegressive with
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Table 2.5 Reviews on PV power generation forecasting (continue)

Forecasting

Parameters

Ref. horizon (Historical & Method & notes
& Resolution forecast)
, hourly Irradiance eXogenous input  (NARX)
measurement models were proposed. The
Power activation  function, also
production known as the transfer
function, plays a crucial role
in adjusting the output
amplitude of the neural
network model, as it s
responsible  for translating
the input signals into the
corresponding output signals.
The most commonly utilized
transfer  functions include
sigmoid (logistic and
hyperbolic tangent), linear,
and Gaussian.
(Lateko, Yang, & | Depend on Metrological In ~this  study, Linear
Huang, 2022) metrological | data regression, Support Vector
data (7 days) | Power Regression (SVR), and an
, hourly production ensemble of trees were

compared with the proposed

forecasting methods. The
proposed method employed
a combination of Support
Vector Machines (SVM) and K-

means, resulting in higher

performance compared to




30

Table 2.5 Reviews on PV power generation forecasting (continue)

Forecasting

Parameters

, hourly

, Hourly
temperature
difference,
Sunshine
duration, Power

production

Ref. horizon (Historical & Method & notes
& Resolution forecast)
the other compared
methods. To achieve this
task, Gaussian Process
Regression (GPR) was
proposed, with consideration
given to some unique inputs
that were tested using
correlation analysis.
(Fen et al., Depend on Metrological In this study, Linear
2017) metrological | data regression, Support Vector
data (3 days) |, Clearness index | Regression (SVR), and an

ensemble of trees were
compared with the proposed
forecasting methods. The
proposed method employed
a combination of Support
Vector Machines (SVM) and K-
means, resulting in higher
performance compared to
the other compared
methods. To achieve this
Gaussian Process

(GPR) was

task,
Regression
proposed, with consideration
given to some unique inputs
that tested

were using

correlation analysis.
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Table 2.5 Reviews on PV power generation forecasting (continue)

Forecasting

Parameters

Ref. horizon (Historical & Method & notes
& Resolution forecast)
Interval-forecast ML/DL-based methods
(du Plessis, 1-6 h ahead | Weather sensor | In this study, a comparison
Strauss, & Rix, (21 steps) data was conducted between
2021) 15 min PV power data Artificial ~ Neural  Network
(ANN),  Long  Short-Term
Memory Recurrent Neural
Network (LSTM-RNN), and
Gate Recurrent Unit
Recurrent Neural Network
(GRU-RNN) models.
(Carriere, 30 min-36 h Historical The Analog Ensemble (AnEn)
Vernay, Pitaval, | ahead Weather model utilizing  Numerical
& Kariniotakis, 30 min Historical power | Weather Prediction (NWP),
2020) Forecast altitude | satellite, and in situ data was
& azimuth sun employed to forecast results
position for a horizon ranging from 5
to 36 hours.
(Wen et al,, 1,3,6 h ahead | Historical In this study, a hybrid model
2020) Weather was constructed by
Historical power | combining  Radial  Basis
Artificial ~ Neural  Networks
(RBANN) with Particle Swarm

Optimization ~ (PSO).  The

Prediction Interval (Pl) was

determined  through the

utilization of Bootstrap with
(QR)

Quantile  Regression
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Table 2.5 Reviews on PV power generation forecasting (continue)

Forecasting

Parameters

& Alonso, 2021)

Historical power
azimuth sun

position

Ref. horizon (Historical & Method & notes
& Resolution forecast)
results. It was found that the
utilization  of  Bootstrap
resulted in  superior Pl
reliability diagrams.
(Huang & Wei, 1-24 h ahead | Historical To address the non-
2020) Hourly data Weather differentiable loss functions
Historical power | problem  associated  with
Quantile Convolutional
Neural Networks (QCNN), a
two-stage training strategy
was implemented in this
study.
(Najibi, 1-24 h ahead | Historical In this study, Gaussian
Apostolopoulou, | Hourly data Weather Process Regression (GPR) was

utilized with the Matern 5/2

kernel function on pre-

clustered data (using k-

means clustering).

While a range of Artificial Neural Network (ANN) architectures and other Machine

Learning (ML) techniques have been utilized in this field, earlier research has

predominantly focused on shallow architectures such as multilayer perceptron (MLP)

networks. In recent years, however, there has been a shift towards more advanced

Deep Learning (DL) techniques, such as Long Short-Term Memory (LSTM) networks. In

order to accurately evaluate the performance of forecasting models, an understanding

of performance metrics is necessary. The most commonly employed performance
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measurements are the mean absolute error (MAE) and the root mean square error
(RMSE). It is important to note that the scenario under consideration has a significant
impact on the model's performance. It would be unfair to compare outcomes from
frameworks applied to different scenarios, where the scenario encompasses various
attributes of the plant under independent inquiry (e.g., dimension, structure in terms
of the number of strings, cell type, etc.), environmental factors, the size of the training
and testing datasets, and feature preprocessing and/or extraction. This holds true not
only for absolute measurements such as MAE or RMSE but also for relative
performance measures such as Mean Average Percentage Error (MAPE), which are more
suitable for comparing the results of models across different plants. A detailed
description of the measures utilized to evaluate models can be found in (Zhang et al.,

2015).

Over the past few years, numerous machine learning frameworks have been
developed to simplify the process of developing and deploying machine learning
models in production. Many of these frameworks support AML (Automated Machine
Learning), which is a technique that enables the automatic selection, training, and
optimization of a machine learning model, or an ensemble of machine learning
models. In a recent study conducted by (Zhao et al., 2021). an AutoML approach was
proposed for creating an ensemble that utilized an improved genetic algorithm (GA)
optimization technique to select the best attributes for each region. The proposed
approach combined historical data from photovoltaic (PV) plants, weather data, and
the output of a physical model to forecast generated power, utilizing features such as
tilted solar irradiance, PV panel temperature, and ambient temperature. The dataset
covered 2016 and 2017 and was recorded every thirty minutes. The researchers trained
a multi-regional model using Elastic Net CV regression, Gradient Boosting Regression,
and RF Regression, which was subsequently applied to data from different plant
locations. The study is one of the few to examine the effectiveness of AutoML in
forecasting PV output, and interestingly, the models used in the ensemble have not

been widely used in the industry before. Historical data from PV power plants in
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Hokkaido, Japan were used to train the models from January 1, 2016 to December 31,

2017, but only one month (December 2017) was utilized for testing purposes.

In a recent study by (Severiano et al., 2021). , the aspect category problem was
introduced for the first time in the field of energy forecasting, as evidenced by a review
of relevant literature. Although the focus of the study was on the forecasting of solar
and wind energy, the methods employed in the research are potentially applicable in
the context of PV energy generation, and the study utilized a public dataset. The
research utilized the Evolving Multivariate Fuzzy Time Series (e-MVFTS) approach to
forecast time series and evaluated its effectiveness in the context of solar and wind
energy by utilizing a publicly available dataset from the United States National
Renewable Energy Laboratory (NREL) for solar energy data, and the 2012 Global Energy
Forecasting Competition (GEFCom2012) for wind energy data, which is now accessible
through the Kaggle platform. The proposed method integrates a forecasting model
based on Fuzzy Time Series with an evolving clustering method based on Typicality
and Eccentricity Data Analytics (TEDA), enabling it to adapt to concept drift that occurs

in time series and to automatically handle changes in the data distribution.

(Li et al.,, 2020) proposed a novel combination method of Wavelet Packet
Decomposition (WPD) and Long Short-Term Memory (LSTM) networks in their research.
This method incorporates historical information regarding power and weather but does
not consider future irradiance predictions in the model. The WPD technique is applied
to a photovoltaic power series to generate four new sub-series, which are then fed
into individual LSTMs. The outputs from each LSTM are combined using linear
weighting to produce the final forecast. Moreover, each LSTM generates sequential

forecasts.

In a study conducted by (Liu, Zhao, Wang, Sun, & Wennersten, 2019), historical
photovoltaic power data, past weather conditions, and artificially generated weather
forecasts using k-means clustering were utilized to develop multi-step predictions with

an LSTM network. The results indicate that the proposed LSTM model outperformed
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RNNs, GRNNs, and ELM models. In comparison to utilizing an hourly sky forecast, the
accuracy of the model was found to improve by 33-44.6% when a synthetic irradiance

prediction was employed.

The concept of Transfer Learning (TF) was first introduced in the field of
photovoltaic (PV) generation forecasting, as proposed by (S. Zhou et al., 2020), In Deep
Learning (DL), TF is a commonly used technique where pre-trained DL model, which is
complex and successful, is employed to transfer its domain knowledge to a new but
similar domain. In the context of image classification/recognition, TF for Convolutional
Neural Networks (CNN) has been extensively utilized. The initial layers of a CNN can
learn basic features of image collections, such as edges, shapes, and textures. Only the
last one or two layers of a CNN are responsible for the most complex classification of
vectorized visual input. This approach is more efficient than freezing the weights of
early layers and training only the last layers for a specific task in the target domain. In
PV power forecasting, TF involves transferring data from a pre-trained LSTM model,
which is trained on historical irradiance time series, to a PV power time series to
overcome the lack of data in the target domain. The study concluded that TF can be

extremely advantageous for a new plant lacking sufficient historical data.

(Chang et al., 2020) propose an ensemble technique, LightGBM, along with a
Bayesian optimization algorithm to determine the optimal time steps for temporal
pattern grouping, and a clustering-based training framework based on a tree-structured
self-organized map (TS-SOM) for short-term forecasting of photovoltaic power output.
The effectiveness of this approach is demonstrated in a power generation environment
that includes an edge computing platform (Raspberry Pi 3B). Utilizing historical weather
conditions, the proposed model consists of three functional steps: Bayesian-optimized
temporal pattern aggregation, weather clustering using TS-SOM, and model training
with LightGBM. The authors demonstrate that their proposed approach outperforms
well-known deep learning alternatives such as GRNN and LSTM by significantly reducing

both training and inference time.
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(Niu et al., 2020) propose a hybrid machine learning-based approach for short-
term forecasting of PV generation capacity. The approach involves using an RF model
to rank the input weather-related features, followed by an Improved Grey Ideal Value
Approximation (IGIVA) model that uses the RF outcomes as weight values to identify
similar days of various meteorological types and enhance the data for training.
Subsequently, a Complementary Ensemble Empirical Mode Decomposition (CEEMD)
methodology is used to decompose the original power series, and an Artificial Neural
Network (ANN) is trained using the dynamic factor Particle Swarm Optimization (DIFPSO)

method to create short-term PV power forecasts.

There has been a relatively low number of studies focusing on probabilistic
forecasting in recent years, compared to studies on point forecasting. Global
forecasting challenges like the M3 and M4 challenges have contributed to the
development of probabilistic forecasting techniques, highlighting concepts such as
Prediction Intervals (Pl) and probability coverage, and introducing measurements like
pinball loss that are more appropriate for this type of forecasting. Interested readers
can refer to (Hong et al., 2016; Hyndman, 2020; Makridakis, Spiliotis, & Assimakopoulos,

2018). for further information on these forecasting challenges.

In their study, (du Plessis et al., 2021) have introduced a novel approach for
point prediction with a confidence interval (Cl) that considers uncertainties in available
forecasts. The Cl is computed using a bootstrap method based on expected changes
and the level of certainty for each forecast. It is worth noting that Cl and prediction
interval (PI) are distinct concepts, with CI being smaller than PI. The primary focus of
this study is on short-term forecasting for a range of 1-6 hours. The proposed method
is unique in its application to a large-scale multi-megawatt PV system (specifically a 75
MW plant with 84 inverters), where a macro-level modeling approach provides a slight
improvement in accuracy compared to the conventional inverter-level modeling

approach.
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In their study, (Najibi et al., 2021), employ a Multi-Layer Feed Forward Neural
Network (ML-FNN), a long short-term memory (LSTM) network, and a gated recurrent
unit (GRU) in their proposed model. The authors conduct a probabilistic analysis of the
accuracy of a Gaussian process regression model with Matérn 5/2 kernel function using
the same criteria for confidence interval (Cl) estimation. The proposed model, like
many in the field of photovoltaic output prediction, employs weather data and past
photovoltaic output as inputs. The data is clustered into four groups based on solar
output and time using k-means clustering. The authors validate their proposed model
using data from five different PV plants with both a five-fold cross-validation technique

and a hold-out process with 30 randomly selected test days.

The studies by (Carriere et al,, 2020; Huang & Wei, 2020) aim to develop
accurate probabilistic solar output forecasting models that emphasize prediction
intervals (PI). In addition to the traditional point forecastings metrics like RMSE and
MAE, the researchers introduce Pl coverage probability and prediction interval
normalized average width (PINAW) as new metrics to evaluate the reliability of
predictions and the width of the Pls. The research considers an hourly day-ahead
forecasting horizon and uses a CNN-based quantile regression (QR) approach with a
two-stage training strategy to address the non-differentiable loss function of QR. The
proposed model outperforms other models like quantile extreme learning models
(QELM), quantile echoes state networks (QESN), direct quantile regression (DQR), and
RBML-ML-FNN.

The researchers in (Wen et al., 2020) investigated probabilistic forecasting by
proposing a hybrid model that involves a wavelet transform applied to historical power
output, followed by an RBML-FNN trained using the PSO approach for point prediction.
To calculate the prediction interval (PI), the indirect bootstrap method is utilized. The
performance of the proposed model is evaluated against the direct and indirect

quantile regression (QR) approaches using reliability diagrams. The comparison
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demonstrates that the bootstrap method is crucial for identifying the best-performing

model.

The study conducted by (Gonzalez Ordiano, Groll, Mikut, & Hagenmeyer, 2020)
evaluates a novel approach for probabilistic forecasting using data from the 2014
Global Energy Forecast Competition (GEFCom2014). The proposed approach, known
as the nearest neighbor's quantile filter (CNQF), addresses the challenges associated
with training quantile regressions using gradient-based optimization by modifying the
training set. The modified training set is then used to train a generic regression model
that directly outputs the conditional empirical g-quantile given by the training
neighbors. The results indicate that the proposed method achieves pinball loss levels
that are comparable to those of the GEFCom14 competition winners, with a difference

of less than 1 percent.

Based on the literature review, several forecasting horizons and sampling have
been researched. However, for the purpose of this study, the most applicable
forecasting horizon is days ahead, with an hourly sampling frequency. This is because
the required input parameters can be obtained from readily available weather data
sources. Additionally, such a forecasting horizon and sampling frequency can be useful
in the energy market and capacity-firming applications. Regarding the input parameters
for the forecasting model, the available meteorological data is commonly used with
data-driven methods such as Artificial Neural Networks (ANN), Nonlinear Autoregressive
Networks with eXogenous inputs (NARX), Long Short-Term Memory (LSTM), Linear
Regression (LR), Support Vector Regression (SVR), Ensemble learning, Gaussian Process
Regression (GPR), and Duranial Persistence (DP). These methods will be further

discussed and utilized in the present study.

2.5 Fundamental forecasting workflow
In order to develop a forecasting model, there exist various methodologies.

However, in this study, the four-step approach for creating a forecasting model will be
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employed, as it provides a clear and systematic framework that is easy to understand
and implement. The four steps include data importation, data preprocessing and
analysis, predictive modeling, and deployment of forecasting models, as illustrated in

Figure 2.1.

Access and Explore
Data

Develop Predictive
Model

Model Creation Desktop Apps
Parameter Enterprise Scale
Optimization Systemns

Embedded
Model validation Devices and

Hardware

Integrate Analytics
Process Data o VI
with Systems

Working with
File
messy data

Data Reduction/
Transformation

Database

Feature
Extraction

Sensor

Figure 2.1 Fundamental workflow to create forecasting models

251 Import data
The initial step in the data analysis process is importing the necessary
data, including historical data and real-time data from various sources such as sensors,

the web, and databases.

25.2 Preprocessing and analyzing data
The next step after importing data is to preprocess and analyze it. The
data will be converted to a suitable data type that can be used in the model, such as
timetable, table, cell, or struct, among others. Relevant data from various sources will
be selected and organized into a dataset for model training, validation, and testing.
Additionally, this process involves removing unnecessary data or noise from the
dataset, managing missing data, outliers, and resampling irregular data to a uniform

format.

Various techniques are utilized to analyze the dataset, such as group

summary computations, transform by group, resample or aggregate data in the



40

timetable, resolve duplicate or irregular times, split data into groups and apply
function, and data visualization techniques such as heat maps, geo-bubbles, word

clouds, box plots, scatter plots, and exploration of connections.

253 Predictive modeling

In order to develop the predictive model, it is essential to have
knowledge of selecting the appropriate model for addressing the problem at hand.
There exist several ways to approach a predictive modeling problem, such as curve
fitting, classification, regression, deep learning, system identification, and econometric
time-series modeling (e.g., ARIMA, GARCH, etc.), or designing a custom model.
Afterward, the data needs to be prepared for machine learning, which involves
removing infrequent data, partitioning the data into training and testing sets, and
defining validation methods (such as hold-out or cross-validation). The subsequent
step involves training and testing the model with the partitioned data and then
evaluating it using performance metrics. If the model does not provide the expected
results, the hyperparameters of the model should be reconfigured to achieve better

outcomes.

2.5.4 Deploying forecasting model
In the process of deploying a forecasting model, the chosen
deployment option should align with the desired goals of the project. As highlighted
by previous studies, there are numerous options for deploying a model, ranging from
desktop applications to web applications, and even generating C and C++ code for
deployment on various platforms, including GPUs and FPGAs. Other options include

Java, Python, .NET applications, and the MATLAB production server.

The selection of a deployment option should be based on the specific
needs of the project, such as the desired level of scalability, performance, and
accessibility. For example, if the project requires real-time forecasting with low latency,

a desktop or server-based application may be the most suitable option. Alternatively,
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if the goal is to make the model accessible to a large number of users, a web

application may be more appropriate.

Furthermore, the deployment process should ensure that the model is
integrated with the existing infrastructure and systems and that it is updated regularly
with new data to ensure that it continues to produce accurate and reliable forecasts.
Additionally, the deployment process should also consider the security and privacy
implications of deploying the model, and ensure that appropriate measures are in

place to protect sensitive data.

Overall, the deployment of a forecasting model is a crucial step in
ensuring that the model can be utilized effectively to generate accurate and reliable
forecasts. The selection of an appropriate deployment option and the careful
consideration of deployment-related factors can greatly impact the success of the

project.

2.6 Adopted predictive models

This section presents a comprehensive overview of the various prediction
models utilized in this study. The objective of this study is to compare and evaluate
the performance of different prediction models for photovoltaic (PV) power generation
forecasting. Linear regression is a widely used statistical technique for predicting a
numerical value based on a linear relationship between the input variables and the
target variable. In this study, linear regression is applied as a baseline model for
comparison. Support Vector Regression (SVR) is a machine learning algorithm that uses
a nonlinear kernel function to map the input variables to a higher dimensional space,
where a linear regression model is then applied. The SVR algorithm aims to minimize
the margin of the regression function while still maintaining a certain level of error
tolerance. Ensemble learning combines multiple prediction models to improve the
overall accuracy of the forecast. This study employs two types of ensemble models,

namely, bagging and boosting. Bagging is a technique that combines multiple models
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by averaging their predictions while boosting is a technique that combines multiple
models by sequentially training new models on the residual errors of the previous
models. Deep Learning techniques have shown remarkable performance in a wide
range of applications, including PV power generation forecasting. This study utilizes
three types of Deep Learning models, namely, and Long Short-Term Memory (LSTM).
ML-FNN is a Multi-Layer Feed Forward Neural Network that consists of multiple layers
of perceptrons, LSTM is a type of Recurrent Neural Network (RNN) that is designed to
handle sequential data with long-term dependencies. In addition to the above models,
a benchmark model is also included in the study. This model uses a simple average
of the previous day's power output as the forecast for the next day.

Finally, the evaluation of the performance of the forecast models is described.
The metrics used for evaluation include Mean Absolute Error (MAE), Root Mean

Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE).

2.6.1 Linear regression
1) Multivariate Linear Regression
In this research, the first model studied is a Multivariate Linear
Regression (MLR) model. This technique is commonly used for solar forecasting due to
its simplicity. The MLR model predicts photovoltaic (PV) power output by establishing
a linear relationship between a matrix (X) consisting of (n) predictors and (m)
timestamps and the power output (™). The model is characterized by a vector of

regression coefficients f3:

Y™ = BX + BXy + ot fX HE (2.1)

where & demonstrates the uncertainty, minimizing discrepancies between the actual

(y) and expected (§™) power output yields S is the coefficients:
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2) Linear regression with interact
An interaction effect exists in regression when the influence of an
independent variable on a dependent variable varies with the value(s) of one or more

other independent variables.

~ml
Y™ = BX A+ BoXy et X+ BiX Xy + B XX+ B XX +E (2.2)

3) Robust linear regression

Robust linear regression is a preferred approach to standard linear
regression as it is less sensitive to outliers. Standard linear regression uses least-squares
fitting to determine the model parameters that connect the response data to the
predictor data using one or more coefficients. However, outliers can have a significant
impact on the fit as squaring the residuals multiplies the impact of extreme data points.
This can invalidate model assumptions and result in unreliable parameter estimates,
confidence intervals, and other statistics.

Robust regression uses iteratively reweighted least squares to assign
weights to each data point, making the technique less susceptible to outliers than
conventional linear regression. Weighted least squares incorporate the weight as an
additional scale element in the fitting process, which improves the fit. Preexisting
weight functions, such as Tukey's bisquare function, can be used to calculate the
weights. The iteratively reweighted least-squares method automatically and
repeatedly calculates the weights. Initially, the algorithm assigns equal weight to each
data point and estimates the model coefficients using ordinary least squares. At each
iteration, the algorithm computes the weights, assigning a lower weight to locations
that deviated the most from regression models in the previous iteration. The method
calculates the model coefficients using the least-squares method, aiming to find the
curve that best fits most of the data while minimizing the effects of outliers. The

algorithm stops iterating when the estimated coefficient values converge within a
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specified tolerance. Table 2.6 provides an overview of the process for the iteratively

reweighted least-squares method.

Table 2.6 Reweighted least-squares methods

Step Descriptions

1 The initial step in robust linear regression is to estimate the weights,

followed by utilizing weighted least squares to fit the model.

2 The calculation of adjusted residuals can be expressed as follows:

L = 77—, (2.3)

The calculation of adjusted residuals involves the use of the expression
where r; refers to the least-squares residuals and h; represents the leverage
values for the least-squares fit. The adjustment of residuals is done to
reduce the weight of high-leverage data points that have a considerable

impact on the least-squares fit.
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Table 2.6 Reweighted least-squares methods (continue)

Step

Descriptions

3

When standardized residuals are modified, the resulting standardized

modified residuals are given by:

Fagi f
== (2.4)
Ks Ksy1-h

In the equation above, K'is a scaling constant and s is an estimation of the
standard deviation of the error term, calculated as s = MAD/0.6745, where
MAD is the median absolute deviation of the residuals from their median.
The constant 0.6745 renders the estimate for the normally distributed
independent. If the predictor data matrix X includes p columns, the
program excludes the p absolute deviations with the smallest values while

calculating the median.

To obtain the robust weights w; based on u, the following equation is used

to calculate the weights:

W, = {(1—Ui2)2 U <1

0 fupl (2.5)

Estimate the robust regression coefficients f. The weights adjust the

following expression for the parameter estimates £ as follows
B=(X"WT) " X"Wy, (2.6)

where W'is the diagonal weight matrix, X is the predictor data matrix, and

y is the response vector.

Computing the least-squares weighted error

2 n

e=dw(y-9) =Swr’, @.7)
1

1

where w; are the weights, y; is the observed responses, )7,- are the fitted

responses, and r; are the residuals.

If the convergence criteria are met or the maximum allowable number of

iterations is reached, the iteration process is terminated.
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4) Stepwise linear regression
Stepwise regression is a systematic method of adding and removing
predictor variables from a linear or generalized linear model based on their statistical
significance in explaining the response variable. This technique involves comparing the

predictive ability of progressively larger and smaller models.

Table 2.7 Conclusion of Regression models

Regression model type Interpretability Model Flexibility
Linear Easy Very low
Interactions Linear Easy Medium

Very low, less sensitive to
Robust Linear Easy
outliers, slow to train

Stepwise Linear Easy Medium

2.6.2 Support Vector Regression
Support Vector Regression (SVR) is a kernel-based approach used for
forecasting, which evolved from the Support Vector Machine (SVM) that is frequently
used to solve classification problems. Like SVM, SVR employs hyperplanes to establish
the relationship between the predictor and target variables. In the present study, we
explore an SVR model with a linear kernel known as least square SVR (LS-SVR), which

is represented as follows:

A :Ziril(ai _ai*)K(Xi’Xj)"‘b’ (2.8)
where ¥ represents the goal variable (PV power output), (¢, —ai*)
represents the difference between the Lagrange multipliers, and b represents the bias.

The kernel function for a linear SVR is denoted by K(Xi.Xj) as follows:
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2
]

7 s (2.8)
o

K(x,X;)=exp| -

where o is a hyperparameter from the manual set.

2.6.3 Gaussian process regression
Gaussian process regression (GPR) models are nonparametric kernel-
based probabilistic models. Consider taking the training dataset {(Xi Y)i=12,..,n},
where x, e R? and y, € R, where R and R are unknown distributions. Given the
incoming input vector x,., and the training data, a GPR model predicts the value of

the response variable y,.,. A linear regression model has the following form:

y=x'f+e, (2.9)

where & ~N(0,6°) . Using the data, the error variance ¢® and f
coefficients are calculated. A GPR model describes the response by incorporating
Gaussian process (GP) latent variables, f(x),i=12,...,n and specified basis functions,
h. The covariance function of the latent variables represents the smoothness of the
response, while the basis functions map the inputs x into a p-dimensional feature

space, see (Fen et al., 2017) for more details.

2.6.4. Ensembles of Trees
Decision trees are commonly used in both classification and regression
tasks to predict responses based on a series of decisions made on input variables. The
tree is traversed from the root node to a leaf node, where the predicted response is
stored. Nominal responses such as "true" or "false" are provided by classifier trees,
while regression trees provide numerical responses. Figure 2.2 illustrates an example

of a decision tree.
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Figure 2.2 Decision tree for predicting energy gain from solar collector (Ahmad,

Reynolds, & Rezgui, 2018)

Ensemble methods have been shown to outperform single decision
trees in terms of predictive performance. The basic principle behind ensemble
methods is the combination of multiple weak learners to create a strong learner. Two
commonly used ensemble decision trees are bagging and boosting. Bagging, also
known as Bootstrap Aggregation, is utilized when the objective is to minimize the
variance of a decision tree. This method involves generating several subsets of data
from a training sample that are selected at random with replacement. Each subset of
data is then used to train its decision tree, resulting in a collection of distinct models.
The forecasts from several trees are averaged to produce a more reliable result than

that of a single decision tree.

Boosting, on the other hand, is an ensemble strategy for generating a
set of predictors. In this method, learners are taught progressively, with novice models
being fit to the data before analyzing it for flaws. In other words, we fit successive trees
(random sample) to minimize the net error of the previous tree at each stage. The

summary of trees is presented in Table 2.8.
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Table 2.8 Summarize Ensembles of Trees

Regression
Interpretability | Ensemble method Model Flexibility
model type
Boosted trees | Hard Least-squares boosting | Medium to high
Bageed trees hard Bootstrap aggregating High

2.6.5 Deep learning

In addition to the aforementioned models, this research employs three
distinct types of Neural Networks (NNs). NNs possess a distinctive architecture that
enables them to model intricate nonlinear relationships between input and output
variables without the need for any preconceived notions about the relationship
between them. The NN architecture consists of an input layer that receives the input
data, an output layer that produces the predictions, and a specific number of hidden
layers that transform the input data. These hidden layers consist of multiple nodes

where the data is processed and transformed.
1) Multi-Layer Feed Forward Neural Network

Multi-Layer Feed Forward Neural Network (ML-FNN) is a type of
neural network where the information flows in a forward direction only, from the input
layer through the hidden layers to the output layer. Each neuron in a layer is
connected to all neurons in the previous layer, and the output of each neuron is
determined by a weighted sum of the inputs, followed by the application of an
activation function as described in (Jiriwibhakorn, 2022). ML-FNN, on the other hand,
can be with multiple hidden layers. Each layer is fully connected to the previous layer,
and the weights of each connection are learned during the training process. ML-FNN
are typically used for supervised learning tasks, such as classification or regression. ML-
FNN have been successfully applied to a variety of tasks, including image recognition,

speech recognition, and natural language processing.
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In this study, the ML-FNN is one of the neural network architectures
examined. The ML-FNN is designed to transmit data unidirectionally from one layer's
node to every node in the following layer. The activation function, weight, and bias
within each node perform the data transformation. The primary objective of
implementing the ML-FNN is to train it to achieve optimal weights and biases, which
can enhance its performance. To adjust the weights and biases of the training ML-FNN,
the Levenberg-Marquardt backpropagation, an advanced version of the gradient
descent method, is used. The learning error computation function can be MAE, RMSE,
MAPE, or MSE, with MSE utilized in this study. The computation of MSE is shown in
equation (2.10), and Figure 2.3 illustrates the workflow diagram of the ML-FNN and the
hidden node.

| Hidden 1 Hidden 2 ' Hidden 3

Figure 2.3 Structure of ML-FNN



51

Ei = Z MSE (yfjorecast,i’ yajctual,i) ’ (2.10)

i=1

where £; is training error at training iteration Jj s actual output at
sample /™", x; is input, n is the number of the training sample, and forecasting output

at the training sample j can be calculated following equation 2.11

Yi :za)k,jf(hk)+ﬁj, (2.11)
i1

where g, ;is weights from hidden node k" to output node at iteration
i B,is the bias of output node at Jj. f(h,)is the outcome of hidden h, . The fitness
function is estimated using the training error (E). The fitness function can be calculated

as follows:

Fitness (x) =Minimize E(X), (2.12)

2)LST™M

In this study, the LSTM architecture is considered as a second option.
Unlike the ML-FNN which processes samples individually, the LSTM processes a
sequence of samples simultaneously. Each sample is independently processed by the
RNN model, and the output of the previous sample is passed to every layer. The LSTM
RNN can retain several previous outputs of nodes in all layers, including the output
layer. To guide the preservation of information, three gates are included in the data
transformation steps performed by the nodes: an input gate, an output gate, and a
forget gate. These gates determine what information is retained, discarded, and
provided as input to the next sample. The output of these gates is determined by an

activation function, weight, and bias, much like the node operations. Similar to the
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ML-FNN, the output of the forecast in the LSTM model can be described as a
combination of the input data from the previous layer and data from previous samples.

The LSTM block's architecture is depicted in Figure 2.4.

Fig. 2.4 The structure of the LSTM memory block

Given an input (x| t = 1, ..., T) with ji, frames, where x; is the static
feature of the T frame, the standard LSTM is used to learn a sequence of hidden states
(hy [t = 1, .., T ) to describe the dynamic of this input. The standard LSTM mainly
consists of an input cate, forget gate, output gate, input modulation gate, and memory

cell state, and one common LSTM unit at time step j can be repressed as follows:

f =W X, +Wieh_ +Wc _, +by) (2.13)

I = oW X, +Wyhy +Wc, +b) (2.14)
¢ = f, ¢, +i tanh(W, X, +W, h_, +b.), (2.15)
Otk = O-(vaoxt +Whoh[—1 +W,C + bo) s (2.16)
h =o, tanh(c,), (2.17)

s,=9,.( +c_ (f)), (2.18)

where i, f¢, 0¢, 6 , and ¢; are the input gate, forget gate, output gate,
input modulation gate, and memory cell state, respectively; o is a sigmoid function.

The weight matrices W, and W, along with the bias vector b, are used in the LSTM
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model. The input gate, represented as "i;," regulates how much newly received input
data at time step t should contribute to updating the memory cell. The forget gate,
"f,," controls how much the previous state (c;;) should be taken into account when
deriving the current state (c). Finally, the output gate, "o," is responsible for
determining how the LSTM unit's output at time step t should be generated based on

the current state of the memory cell (cy).
3) NARX

The Nonlinear Auto-Regressive Neural Network was a simpler version
of NARX, which is an advanced implementation. The output regressor in the former
was obtained using only one delayed feedback loop, whereas the latter uses m-tapped
delay lines in both input and output signals n time. In the case of NARX, the parametric
equation includes exogenous values. This information was reported by (Di Piazza, Di
Piazza, & Vitale, 2016). Exogeneous values are included in NARX's parametric equation

as follows.

y(t) = f[x(-0),.. x(t-d); y(t-1),..., y(t-d)] , (2.19)

where d denotes the past value of output y(t) and another series

input x(t) at sample t". The structure of NARX is shown in Figure 2.5

X(1)

x(t-1)

x(t-d)

y(e-1)  y0-d)

Fig. 2.5 NARX Architecture
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Table 2.9 Activation function

Activation
No. Formulation Graph
functions
a
Hyperbolic a = tansig(1)
1 2
i i = -1 2.20
tangent sigmoid | 2 (dre™) (2.20)
Logarithmic a =logsig(n)
? ! (2.2
i i a= .
sigemoid dxe™)
-1
a = poslin(n)
3 | Positive linear -
poslin(n) = {n Y (2.22)
0n<=0

In machine learning and deep learning models, activation functions play a
crucial role in the functioning of artificial neural networks. They allow each neuron to
create a weighted sum of its inputs and transfer the resulting scalar value through a
specified function. Various activation functions are used in ML/DL models, and some
of the commonly used ones are described in Table 2.9, which provides a brief

explanation of each function's characteristics and usage.

2.6.6 Benchmark model
Lastly, to offer context for the accuracy achieved by the prediction
models provided, we evaluate one benchmark model.
1) Diurnal Persistence (DP)
Initially, we incorporate a Diurnal Persistence (DP) model in which the
PV prediction matches the most recent available daily series data. Because PV
production values are only accessible up to noon on day T, we examine the

production values for T+1 as shown in Eq. 2.24
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J® (1) = y(t—48), (2.24)
where time t varies between h = 0 and h = 24.

2.7 Validation methods

To evaluate the performance of forecasting models, it is important to use
appropriate validation methods and variables. In this research, two widely used
techniques in the machine learning field are employed: K-fold cross-validation and
Holdout. K-fold cross-validation involves dividing the data into K equally sized subsets,
training the model on K-1 subsets, and using the remaining subset for testing. This
process is repeated K times, with each subset serving as the testing data exactly once.
Holdout validation, on the other hand, involves randomly dividing the data into two
sets: one for training and one for testing. The model is trained on the training set and
then evaluated on the testing set. In addition to validation methods, various validation
factors should be considered. (Braganca, Colonna, Oliveira, & Souto, 2022). identify
several factors that can impact the performance of forecasting models, including the
size and quality of the data set, the selection of input variables, the model
architecture, the training algorithm, and the hyperparameters. These factors should be
carefully considered and optimized to ensure that the forecasting model performs

well and accurately predicts future outcomes.

2.7.1 Holdout (Training-test split)

The hold-out method is a simple way to divide the data into two
separate subsets: the training set and the test set (Arlot & Celisse, 2010). This
partitioning approach usually assigns 70 to 80 percent of the data for training and 30
to 20 percent for testing. It is beneficial since it requires less computational effort, but
it can lead to a pessimistic estimator since the classifier is trained on only a portion of
the data broader (Kohavi, 1995). The accuracy of the model depends on the choice of

subjects for evaluation and the number of samples used for testing. If the data are re-
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divided, the model's conclusions may change, and accuracy may be affected

(Gholamiangonabadi, Kiselov, & Grolinger, 2020).

2.7.2 K fold cross validation

K-fold cross-validation (Kf-cv) is a statistical technique utilized in
machine learning to evaluate the effectiveness of models. This technique is widely
used to compare and choose a model for a specific predictive task, as it is easy to
understand, implement, and yields less biased skill estimates compared to other
approaches. This method involves dividing the dataset into k disjoint, roughly equal-
sized folds, and then using each fold as a test set for a classification model produced
from the remaining k-1 folds. The total performance is then computed as the mean of
the k accuracies derived from k-CV (Wong, 2015). It should be noted that there is no
universally superior cross-validation approach, and the method should be tailored to
the specific context. However, this approach can be computationally expensive when

k values are high, and the sample size is large (Arlot & Celisse, 2010).

2.7.3 Performance metric

Evaluating the accuracy of a forecast is essential for comparing its
effectiveness with benchmark approaches, typically the naive method, and existing
methods. However, there are numerous metrics available, and the appropriate ones
should be selected based on the characteristics of the time series, such as the
presence of zero values or the performance of the benchmark approach. This section
aims to provide guidance on selecting the appropriate metrics for the point or
probabilistic forecasts.

To assess the performance of a model, multiple performance indicators
should be used, as each metric has unique characteristics. For example, the root-
mean-square error (RMSE) heavily penalizes outliers due to the squared errors. In
contrast, the mean absolute error (MAE) demonstrates the accuracy of a forecast
relative to observations by calculating the average error between them using the

following formula:
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MAE = Zi:ll Yacwat,i ~ Y forecast,i | ’ (2.25)

n

where Yoai and Yiorecasti are the actual power output and forecast
power output, respectively, at sample /", and n is the sample number. This indicator
helps compare forecasts based on the same time series. However, since it is scale-
dependent, it cannot be used for predictions of distinct time series owing to the
intrinsic scale variations. In addition, a high number of relatively minor mistakes might
mask a small number of substantial errors, which can be problematic if the prediction
shows noise.

Mean square error (MSE) and root mean square error (RMSE) are defined

as the following:

A 2
MSE = Zi:l(yactual,i - yforecast,i) ’ (2.26)
n

n 2
RMSE = \/zizl(yactual,i B yforecast,i) ’ (2.27)
n

Similarly, their application is constrained by size dependence. In
addition, the squared error makes these measures more susceptible to outliers than
the MAE. Nonetheless, these measures are extensively used owing to their theoretical
importance in statistical research and because they give immediate insight into the

error variance and standard deviation, respectively.

As noted earlier, the metrics presented in equations (2.26) to (2.27) are
inadequate for evaluating forecast accuracy across various time series and are
insufficient without prior knowledge of the studied PV power plant. Percentage error
measurements can facilitate comparisons of forecasts across different temporal and
geographic dimensions. Several denominators can be used to normalize the inaccuracy

of PV power forecasting. It was determined subjectively that MAE normalized by
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average output would be preferred, but normalizing by capacity would be more
acceptable if both MAE and RMSE were to be used. A similar principle may apply to
load forecasting, although no supporting literature was found. Normalized by capacity,
the mean absolute percentage error (MAPE) and normalized root mean square error

(NRMSE) can be calculated as follows:

MAPE _ zinil yactual,l yforecast,l ><100% ’ (228)
h yactual,i
2
n yactual,i m yforecast,i
NRMSE = 21[ ' J x100% , (2.29)
actual i

The MAPE measure is commonly used in forecasting due to its simplicity
and widespread recognition. On the other hand, NRMSE, like RMSE, is more sensitive
to outliers than MAPE. Equations (2.26) and (2.27) are sometimes normalized by the
rated power rather than the measured value, which has the advantage of not having

an absolute zero.

In order to assess forecasting biases, such as overestimation or
underestimation, the mean bias error (MBE) is commonly used. This metric provides
an immediate indication of the average bias in a model. A large and positive MBE
indicates a significant overestimate, while a large and negative MBE indicates a
significant underestimate. However, it should be noted that MBE is dependent on the
scale of the data and does not provide information about the error distribution. Despite
these drawbacks, MBE is still considered useful as it can be reduced or eliminated
through post-processing or considered directly by the utility. The MBE can be

expressed as follows:

1o
MBE = Hzizl(yactual,i - yforecast,i) ) (2.30)
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The coefficient of determination, R? is a statistical measure that
indicates the degree to which a statistical model fits the data and shows the extent to
which the variance of the errors and the variance of the observed values correspond.

R? is given by:

_ O-(yactual - yforecast)

o ( y forecast )

R?=1 ) (2.31)

In the context of short-term forecasting, the methods described in the
previous section can be applied, but additional metrics have also been developed for
probabilistic forecasting. However, the lack of well-established assessment
methodologies is one of the primary reasons for the immaturity of probabilistic
irradiance forecasting (PIF). Perfect reliability of a probabilistic prediction occurs when
the probability derived from the quantiles of the forecast model and the actual
probability is the same. Any deviation from this reduces the forecast's reliability, and
it is linked to the forecast's bias, where high predictability corresponds to low bias. The
dependability of the model can be determined by creating a time series that tracks
instances of over- or under-prediction. If this series is near the diagonal, the model's
dependability is considered good. Another way to assess dependability is to examine
the histograms of the probability integral transformation (PIT). If the probabilistic
prediction is accurate, the PIT histograms are uniform by definition. The purpose of a
probabilistic prediction is to ensure that the probability distribution of data falls within
the prediction interval. The prediction interval coverage probability (PICP) is computed

to determine whether this is true, which can be expressed as follows:

PICP =32ci, (2.32)
n

i=1

where ¢;is defined as:
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(2.33)

1, if x; e[Li,Ui]
Z{o, if x 2[L,U;]

where L; and U, indicate the lower and upper limits, respectively, of the
prediction interval. From the definition of C, we may derive that a high value for PICP
indicates that a larger proportion of findings fall inside the prediction interval, which is
desirable. The PICP measurement is a quantitative statement of dependability and
should be more than the actual confidence level since they are invalid and should be
disregarded if they are lower.

Nonetheless, if one considers the performance of the forecast based
purely on the PICP, it is feasible to choose a wide range between lower bound Li and
upper bound Ui, so that the scope probability is artificially increased while the
deviation of the forecast is unacceptable and decision makers are provided with little
useful information. The informativeness of prediction intervals is in reality governed by
their breadth. Therefore, the PICP should be simultaneously examined with the
prediction interval normalized average width (PINAW), a metric that quantitatively

evaluates the width of the prediction intervals. Following is a description of the PINAW:

PINAW :izn:(ui—Li), (2.34)
NR =

where R is used to standardize the average width of the prediction

interval and reflects the highest forecast value minus the lowest forecast value.

2.8 Conclusion

This chapter serves as an introduction to the application of PV forecasting.
Within this context, the use of machine learning (ML) and deep learning (DL) has been
widely discussed within the realm of electrical research. Specifically, recent research
in PV power forecasting has been reviewed. Following this discussion, the adopted

method has been presented, which incorporates forecasting methods alongside a



61

performance matrix for evaluation purposes. The accurate forecasting of PV power is
a crucial topic within the renewable energy industry, as it aids in the integration of PV
power into the electrical grid and enhances the operation of PV power plants. ML and
DL techniques have become popular in the context of PV power forecasting due to
their ability to derive predictions from complex patterns within historical data.
Incorporating methods such as time series analysis, statistical modeling, and ML/DL
models, the forecasting techniques utilized in PV power forecasting are further
evaluated using a performance matrix, which measures the effectiveness of the
forecast by utilizing metrics such as mean absolute error, root means squared error
and correlation coefficient.

In conclusion, this chapter provides an overview of the application of ML/DL in

PV power forecasting and highlights recent advancements in this field.
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CHAPTER 3
COMPARATIVE STUDY OF DATA-DRIVEN-BASED SHORT-TERM

PHOTOVOLTAIC POWER GENERATION FORECASTING MODELS:
SELECTION OF HYPERPARAMETER AND VALIDATION METHODS

3.1 Background

In the context of designing a distribution grid that incorporates a PV system,
accurate forecasting is crucial to optimize efficiency. To address this issue, various
techniques have been proposed, but the selection of an appropriate method requires
a thorough understanding and knowledge of the available options. This chapter
presents a comparative study that examines the efficacy and benefits of supervised
photovoltaic power forecasting methods that can be applied appropriately to various

systems.

The study will test predictive models from chapter 2 using holdout validation
and k-fold cross-validation. Performance metrics will be used to evaluate each
method. A MATLAB program will simulate the study and the results, strengths, and
limitations of each method will be discussed. The objective is to comprehensively
analyze available forecasting techniques for photovoltaic power generation, identify
their strengths and weaknesses, and aid in selecting an appropriate technique. The
study contributes valuable insights to the field and can inform the development of
efficient forecasting schemes for photovoltaic systems in distribution grids. It includes
six cases to assess factors impacting forecasting model performance. The cases
investigated are as follows: 1) the impact of hyperparameter tuning, 2) the impact of
activation function selection, 3) the impact of normalization techniques, 4) the impact
of seasonal and test set selection, 5) the impact of validation methods, and 6) the

impact of incomplete datasets.
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3.2 Comparative study workflow
The four steps consist of importing data, visualizing and preprocessing data,

predictive modeling, deploying the forecasting model, and evaluating the model as

shown in Figure 3.1.

Data collection

3.5.1, Hyperparameter tuning using all training sets as training set and validation set

solar rooftap (all mentioned in chapter 2)

A 4

(Industrial site) 3.5.2. Impact of activation function (ML-FNN)

3.5.3. Impact of normalization (ML-FMIN)

3.5.4, Impact of validation method with resample data 3 time:

1) Using all training sets as training set and validation set (Hold out),
(all mentioned in chapter 2)

2) Using the training set and validation set as 70:30 (Hold out),
{all mentioned in chapter 2)

3) Using k=5 (k-fold)
(all mentioned in chapter 2 beside time series models)

4) Using k=10 (k-fold).
{all mentioned in chapter 2 beside time series models)

3.5.5. Impact of validation method with seasonal data (ML-FNN)

3.5.6. Impact of validation method with resample data 3 time:

Solar float 1) Using all training sets as training set and validation set (Hold out),
(BUT site) {all mentioned in chapter 2)
2) Using the training set and validation set as 70:30 (Hold out),

Y

(all mentioned in chapter 2)
3) Using k=5 (k-fold)

{all mentioned in chapter 2 beside time series models)
4) Using k=10 (k-fold).

(all mentioned in chapter 2 beside time series models)

Figure 3.1 Case of comparative study

3.3 Imported dataset
The are two datasets that were used in this study: (1) Solar rooftop dataset

(Industry) and (2) Solar floating plant dataset (at Suranaree university of technology).

The first dataset contains one year's worth of historical data from a 14 MWp

rooftop solar power plant in Nakhon Ratchasima province, Thailand. The data includes
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time, irradiance, temperature, and power output (Junhuathon & Chayakulkheeree,
2021; Mongkol Treekijjanon, 2020). The second dataset contains eight months of
historical data from a 1.5 MWp solar floating plant at Suranaree University of
Technology (SUT), also located in Nakhon Ratchasima province. The data for this plant
includes time, irradiance, ambient temperature, wind speed, and power output. Table
3.1 provides a summary of the datasets, including their parameters, sample sizes, and

resolutions.

Table 3.1 Dataset description

Detail Industrial site SUT site
Time, Ambient temperature, Time, Ambient temperature,
Parameters
irradiance irradiance, wind speed
Sample 8,760 6,651
Resolutions hourly hourly

3.4 Data preprocessing and visualization

For the industrial site, the dataset was standardized into 0 to 1 for every
variable. However, this dataset is unnecessary to remove outliers, missing data, and
NAN data because the dataset is completely preprocessed before. The dataset before
standardization and after standardization will be shown in Figure 3.2 (a) and (b),

respectively.
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Figure 3.2 Industrial site dataset visualization (a) before normalization (b) after

normalization

As shown in figure 3.2 (a), this dataset consists of solar irradiance (kW),
temperature (°C), and power generation (kW) from the PV system. The dataset is

rather complete.
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Figure 3.3 SUT site dataset visualization (a) original dataset (b) preprocessed dataset

As shown in Figure 3.3, outlier, missing data, and not a number (NaN) data need
to be managed because this dataset has a problem of data collecting process for a
huge period. The dataset before standardization and after standardization will be
shown in Figure 3.3 (a) and (b), respectively. From Figure 3.3 (a), temperature (°C),
wind speed (m/s), and solar irradiance (W) were collected from a local measurement

station and power generation was collected from 8 inverters (Inverter rated power:175
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kW). There are different huge gaps among collecting devices. Then, the dataset was

preprocessed and selected the intersect period as shown in Figure 3.3 (b).

3.5 Case studies

The cases investigated are as follows: 1) the impact of hyperparameter tuning,
2) the impact of activation function selection, 3) the impact of normalization
techniques, 4) the impact of seasonal and test set selection, 5) the impact of validation

methods, and 6) the impact of incomplete datasets.

3.5.1 Impact of hyperparameter tuning
To maximize the accuracy of the data-driven-based forecasting method,
the widely implemented forecasting methods were used with industrial dataset, and
each dataset. Before splitting the dataset into the training set and validation set, the
test set had been chosen randomly to evaluate the performance of forecasting

models.

To achieve the best condition in data-driven-based forecasting models,
besides using the appropriate dataset to train and validate, the hyperparameter of
models should be adjusted to the appropriate value. The hyperparameter tuning

results are shown in Table 3.2 and more details of adjustment can be seen in appendix A.

Table 3.2 Hyperparameter tuning from data set in case 1

No. Methods Hyperparameters

1 LR: Linear Preset: Linear

Terms: Linear

Robust option: Off




Table 3.2 Hyperparameter tuning from data set in case 1 (continue)
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No.

Methods

Hyperparameters

LR: Interactions linear

Preset: Interactions Linear

Terms: Interactions

Robust option: Off

LR: Robust linear

Preset: Robust Linear

Terms: Linear

Robust option: On

LR: Stepwise linear

regression

Preset: Stepwise Linear
Initial terms: Linear

Upper bound on terms: Interactions

Maximum number of steps:1000

Optimized Ensemble of

Trees

Ensemble method: Bag
Minimum leaf size: 39
Number of learners: 24

Number of predictors to sample: 3

Optimized SVR

Kernel function: Linear
Box constraint: 105.0635
Epsilon: 238.7449

Standardize data: true

Optimized GPR

Basis function: Linear

Kernel function: Isotropic Exponential
Kernel scale: 0.054297

Sigma: 0.0010932

Standardize: false
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Table 3.2 Hyperparameter tuning from data set in case 1 (continue)

No. Methods Hyperparameters

8 | ML-FNN (Manual, See Number of fully connected layers: 3
First layer size: 20, Second layer size: 20

Third layer size: 20

more details in Appendix

A)
Activation function: Poslin

9 | NARX (Manual, See more | Number of fully connected layers: 3
First layer size: 20, Second layer size: 20

Third layer size: 20

details in Appendix A)

Activation function: Poslin

10 | LSTM (Manual, See more | Number of fully connected layers: 3
details in Appendix A) First layer size: 20, Second layer size: 20
Third layer size: 20

Solver: adam

Initial Learn Rate: 0.03

Learn Rate Schedule: piecewise

Learn Rate Drop Factor: 0.7

Learn Rate Drop Period: 100

Max Epochs: 300

Mini Batch Size: 24

11 | Benchmark model: DP -

Note: Hyperparameters of Ensemble of trees, SVR, and GPR, were optimized by

Bayesian optimization.

3.5.2 Impact of activation function
Activation functions are a critical component in machine learning and
deep learning models, as they introduce nonlinearity into the model, allowing it to
capture complex patterns and relationships within data. The key impacts of activation
functions in these models are: firstly, activation functions introduce nonlinearity into

the model, enabling it to learn and capture complex nonlinear relationships in the
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data, without which a neural network would only be a linear regression model.
Secondly, activation functions impact gradient propagation in the model, as different
activation functions possess varying gradients, which affect the error signals propagating
back through the network during training. Activation functions such as the sigmoid and
hyperbolic tangent functions are vulnerable to the vanishing gradient problem, where
the gradients become very small, making it difficult for the network to learn. Thirdly,
certain activation functions, such as the rectified linear unit and its variants, can induce
sparsity into the model by setting some of the activations to zero, which reduces the
number of parameters in the model and improves its efficiency. Lastly, activation
functions also affect the output range of the model, with the sigmoid function
outputting values between 0 and 1, while the hyperbolic tangent function outputs
values between -1 and 1. The performance of the model may be impacted based on

the problem's nature being solved.

In summary, the choice of activation function can have a significant impact on
the performance of a machine learning or deep learning model. It is important to
choose an appropriate activation function for the problem at hand, taking into account
its nonlinearity, gradient propagation, sparsity, and output range. Therefore, this thesis

aim to compare between commonly used activation function as shown in Table 3.3.

Table 3.3 Comparison of activation function with normalization

Layer | Layer | Layer MAPE RMSE MAE Time
No. Norm
1 2 3 (%) (kW) (kw) (Sec)

1 logsig | logsig | logsig | yes 8.916 | 309.866 | 157.404 | 253.208

2 | poslin | poslin | poslin | yes 8.504 | 314.900 | 159.798 | 182.084

3 | tansig | tansig | tansig yes 9.431 | 358.750 | 172.391 192.778

As show in table 3.3 show that the different activation function slightly
affect to forecasting accuracy and the the best performance actibation function for this

study with normalization (minmax 0 to 1) is positive linear.
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3.5.3 Impact of normalization

Normalization is a process of transforming the input into a more suitable
format for machine learning and deep learning models. It can have a significant impact
on the performance of the model. Here are some of the impacts of normalization. 1)
Normalization can help the model to converge faster during training by preventing it
from getting stuck in a local minimum. 2) Normalization can reduce overfitting by
preventing the model from becoming too sensitive to the scale of the input features.
This can improve the generalization performance of the model on unseen data. 3)
Normalization can help the model to extract more meaningful features from the input
data by removing correlations between input features. And 4) normalization can
increase the efficiency of the model during training by reducing the number of

iterations required for convergence.

There are several normalization techniques, such as min-max
normalization, z-score normalization, and log normalization, each with its own
advantages and disadvantages. The choice of normalization technique depends on the
nature of the data and the specific requirements of the model. In summary,
normalization is an important technique in machine learning and deep learning models
that can help improve convergence, reduce overfitting, improve feature extraction, and
increase efficiency during training. Therefore, this thesis aim to compare between

commonly used normalization (Faruque et al., 2022) as shown in Table 3.4.
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Table 3.4 Comparison of normalization for ML-FNN

Layer | Layer | Layer MAPE | RMSE MAE Time
No. Norm
1 2 3 (%) (kw) (kw) (Sec)
1 poslin | poslin | poslin | minmax | 8.504 | 314.900 | 159.798 | 179.017
2 poslin | poslin | poslin | minmax | 8.504 | 314.900 | 159.798 | 182.084
zero
3 poslin | poslin | poslin 36.212 | 314.900 | 159.798 | 177.318
mean
zero
4 logsig | logsig | logsig 47.613 | 309.867 | 157.403 | 193.467
mean
zero
5 tansig | tansig | tansig 47.767 | 358.770 | 172.409 | 486.802
mean

3.5.4 Impact of seasonal selection and test set selection

As mentioned, seasonal selection and test set selection can both have
significant impacts on the outcomes of experiments and analyses. Seasonal selection
refers to the bias that can be introduced when data is collected or analyzed during
specific times of the year. For example, if a study is conducted only in the summer
months, it may not be representative of the entire year and may lead to incorrect
conclusions. To address this issue, it is important to collect data across different
seasons or to use statistical methods to account for seasonal effects. Test set selection
is the process of choosing a subset of data to evaluate the performance of a machine
learning model. The choice of test set can impact the results of the evaluation, and it
is important to choose a test set that is representative of the data that the model will
encounter in the real world. If the test set is not representative, the evaluation may
be overly optimistic or pessimistic, leading to incorrect conclusions about the model's

performance.

In summary, both seasonal selection and test set selection can have

significant impacts on the outcomes of experiments and analyses. It is important to be
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aware of these issues and to take appropriate steps to mitigate their effects. Therefore,

the seasonal selection and test set selection need to be investigated. The results are

shown in Table 3.5 and Figure 3.4

Table 3.5 Performance of each seasonal model

MAPE | RMSE MAE Time
Season
(%) (kw) (kw) (Sec)
1 Winter (Jan - April) 6.727 | 213.355 | 118.709 | 30.530
2 Summer (May - August) 9.308 | 110.297 | 80.663 5.056
3 Rainy (October - December) 10.486 | 319.570 | 209.986 | 40.054
Average 8.840 | 214.407 | 136.453 -
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Figure 3.4 forecasting of each model: (a) winter forecasting, (b) summer forecasting,

and (c) rainy forecasting

As shown in Figure 3.4 and Table 3.5, the performance of seasonal models
depends on various factors, such as the length of the historical data, the selection of
appropriate seasonal periods, and the choice of forecasting model. Overall, seasonal
models are an effective tool for PV power forecasting, and their accuracy can be further

improved by incorporating weather and other relevant data into the forecasting model.

3.5.5 Impact of validation method

To evaluate the performance of forecasting models solar rooftop at
Industrial site was used. In order to assess the performance of forecasting models for
the solar rooftop site, four case studies were conducted. The first two cases evaluated
the performance of all models described in chapter 2. However, for the third and
fourth cases, the LSTM and NARX models were excluded due to their significant time
requirements. These models would require more time for k-fold cross-validation, and
therefore, were not considered for these cases. The best forecasting results of the

industrial site are shown in Table 3.6-3.10 and Figure 3.5-3.12, respectively.



1) Case 1: using all training set as training set and validation set

Table 3.6 The forecasting results of case 1
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MAPE RMSE MAE Time
No. Model
(%) (kW) (kW) (Sec)
1 LR: Linear 13.289 383.902 260.725 2.552
2 LR: Interactions linear 13.564 369.345 262.075 0.899
3 LR: Robust linear 9.747 377.425 202.106 1.072
4 LR: Stepwise linear regression  13.564 369.345 262.075 1.127
5  Optimized Ensemble of trees  11.687 395.768 194.175 147.850
6 Optimized SVR 10.995 345.295 203.743 372.390
7 Optimized GPR 16.085 364.564 203.489  2,163.200
8 ML-FNN 8.504 314.900 159.797 181.924
9 NARX 55.437 1,509.200 808.321 36,200.000
10 LSTM 12.167 369.067 204.658  3,873.700
11 Benchmark model: DP 61.310 2,114.300 = 1,073.100 0.013
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Figure 3.5 The best forecasting results of case 1 (ML-FNN)
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Figure 3.6 summary of case 1

Figure 3.6 reveals that the most accurate model for photovoltaic (PV)
forecasting, concerning the use of all training sets as validation sets, is the multi-layer
feedforward neural network (ML-FNN). This model exhibits a mean absolute
percentage error (MAPE) of 8.504% and a training time of 181.924 seconds. These
findings demonstrate that the ML-FNN model is highly effective in predicting short-
term hourly power output from PV systems, thus contributing to the development of
efficient and effective forecasting schemes for distribution grids that incorporate PV

systems.
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2) Case 2: using training set and validation set as 70:30

Table 3.7 The forecasting results of case 2

MAPE RMSE MAE Time
No. Model
(%) (kw) (kw) (Sec)
1 LR: Linear 13.289 283.902 260.725 2.112
2 LR: Interactions linear 13.564 369.345 262.075 0.899
3 LR: Robust linear 9.747 377.425 202.106 1.172

4 LR: Stepwise linear regression 13.564 369.345 262.075 1.027

5  Optimized Ensemble of trees  10.986 333.148 174.674  147.850

6 Optimized SVR 9.781 368.052 201.550 372.390
7 Optimized GPR 9.187 306.598 157.714  2,163.20
8 ML-FNN 8.504 314.900 159.798  494.448
9 NARX 41.521 1,022.400 654.549  480.212

10 LST™M 21.905 634.677 342,914 43,783.0

11 Benchmark model: DP 61310 2,114.300 = 1,073.100 0.013
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Figure 3.7 The forecasting results of case 2
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Figure 3.8 Summary of case 2

Figure 3.8 reveals that the most accurate model for photovoltaic (PV)
forecasting, concerning the use of holdout (70:30), is the multi-layer feedforward neural
network (ML-FNN). This model exhibits a mean absolute percentage error (MAPE) of
8.504% and a training time of 494.448 seconds.



3) Case 3: 5-fold cross-validation

Table 3.8 The forecasting results of case 3
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MAPE RMSE MAE Time
No. Model
(%) (kW) (kW) (Sec)
1 LR: Linear 13.289 383.902 260.725 1.685
2 LR: Interactions linear 13564  369.345  262.075 1.301
3 LR: Robust linear 9.747  377.425 < 202.106 1.218
4 LR: Stepwise linear regression 13.564  369.345  262.075 0.907
5 Optimized Ensemble of trees 11.220  337.051 176.242 44.994
6 Optimized SVR 16.699  448.622 316.743 10,322.000
7 Optimized GPR 8.793 304.422 153081 6,819.400
8 ML-FNN 9.218 317.448 171.287 76.235
9 Benchmark model: DP 61.310 2,114.30 1,073.10 0.013
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Figure 3.9 The forecasting results of case3 (Optimized GPR)
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The results presented in Figure 3.10 demonstrate that the optimized Gaussian

Process Regression (GPR) model is the most accurate for photovoltaic (PV) forecasting

when using 5-fold cross validation. This model achieves a mean absolute percentage

error (MAPE) of 8.793% and a training time of 6,819.400 seconds. It is noteworthy that

ML-FNN also demonstrates good performance, with a MAPE of 9.218% and train time

of 76.235 seconds. These findings indicate the effectiveness of the optimized GPR

model for PV forecasting, while also highlighting the potential utility of ML-FNN for this

purpose.
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4) Case 4: 10-fold cross-validation

Table 3.9 The forecasting results of case 4

MAPE RMSE MAE Time
No. Model
(%) (kw) (kw) (Sec)
1 LR: Linear 13.289 383.902 206.725 1.180
2 LR: Interactions linear 13.564 369.345  262.075 1.029
3 LR: Robust linear 9.747 377.425  202.106 1.873

4 LR: Stepwise linear regression 13.564 369.345  262.075 1.619

5  Optimized Ensemble of trees 10.923 330.336  172.168 72.138

6 Optimized SVR 12.290 384.386  229.845 1324.900
7 Optimized GPR 9.178 331978 161.851 19,617.0
8 ML-FNN 9.219 317.445  171.287  263.890
9 Benchmark model: DP 61.310 2,114.300 1,073.10 0.013
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Figure 3.11 The forecasting results of case 4 (Optimized GPR)
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Figure 3.12 summary of case 4

The results presented in Figure 3.12 demonstrate that the optimized Gaussian
Process Regression (GPR) model is the most accurate for photovoltaic (PV) forecasting
when using 5-fold cross validation. This model achieves a mean absolute percentage
error (MAPE) of 9.178% and a training time of 19,617.000 seconds. It is noteworthy that
ML-FNN also demonstrates good performance, with a MAPE of 9.219% and train time
of 263.890 seconds. These findings indicate the effectiveness of the optimized GPR
model for PV forecasting, while also highlighting the potential utility of ML-FNN for this

purpose.

From Figure 3.5-3.12, the simulation results show that the MAPE of LR models
is between 9-13 %, and the accuracy of each model is close to the same. Moreover,
LR models are the fastest training model. Robust LR is the highest forecasting accuracy
among LR models because reweight process in Robust LR make reduce the sensitivity
of the outlier to the model. Among ML models (Ensemble of trees, SVR, GPR), GPR is
the highest forecasting accuracy model with a k-fold cross-validation method.
Nerveless, this also model takes the highest time to train because many parameters

and matrices have to be calculated in this model. For, SVR is well-known as good for
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classification tasks and can be used to forecast regression tasks. However, the
performance of this model is quite low when compared to another method. SVR
worked well with the holdout validation method. The performance of an ensemble of
trees is not outperformed other methods for this PV forecasting task but it is also not
bad because the performance of this model is close to the best method for each case.
Among DL models (ML-FNN, NARX, LSTM) with this dataset (hourly), the simulation
results can be concluded that ML-FNN outperforms other DL methods, in terms of
accuracy and training time. ML-FNN can work-well with both holdout and k-fold cross-
validation methods. For NARX and LSTM, these models are time series models that
can work-well with related time series problems. Therefore, this work aims to forecast
hourly PV power generation that has a big gap in changing per step causing the curve
fitting deep learning (ML-FNN) to outperform both. However, if both time series models
will be used with higher resolution systems such as 5 mins/step or 15 min/step that

have a small gap in changing per step, both models may outperform ML-FNN.

MAPE
20 16.085

g 8.504 b ar O, A 8793 9.218 9178 9-219
L
o /4
= ) . A . .
= 0 ~ . N

case 1, all case 2, 70:30  « case 3, 5-fold  case 4, 10-fold

B Optimized-GPR i ML-FNN

Figure 3.13 Summary of case 1-4 in term of percent
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Training time
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Figure 3.14 Summary of case 1-4 in term of training time

From all validation methods, the simulation results show that ML-FNN and
optimized GPR outperform other methods. Figure 3.13 and Figure 3.14 show that ML-
FNN is the highest accuracy at MAPE of 8.504% with holdout validation method.
Moreover, ML-FNN is more stable than optimized GPR when the validation method

was changed and also better in term of training time.

3.5.6 Impact of uncomplete dataset
For the solar floating site, the forecasting models were used to test with
4 cases as solar rooftop sites. All models that were mentioned in chapter 2 will be
used to illustrate the performance besides both time series models because there are
only 45 days in the dataset that can be used for the forecasting model. Then, there is
a big gap between the selected test sets cause of the inappropriate use of time series
models. The best forecasting results of the industrial site are shown in Table 3.7-3.10

and Figure 3.8-3.11, respectively.
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1) Case 1: using all training set as training set and validation set

Table 3.10 The forecasting results of case 1 of SUT dataset

MAPE RMSE MAE Time
No. Model
(%) (kw) (kw) (Sec)
1 LR: Linear 25.079 52.945 29.786 3.192
2 LR Interactions linear 25.876 55.271 30.463 0.878
3 LR: Robust linear 25.385 59.730 27.005 1.545
4 LR: Stepwise linear regression  26.579 54.980 30.978 4.039
5  Optimized Ensemble of trees  20.893 78.901 34.702 101.560
6  Optimized SVR 25.172 58.008 26.912 157.860
7 Optimized GPR 19.680 58.788 27.695 381.040
8  ML-FNN 22.076 47.910 26.364 312.825
30 25079 2587625385 26279 25172 500
25 400
20 300
15
0 200
= : 100 o
< g
& 0 0 2
< ]
= & E
N
¥
&
\?'\.

I VAPE (%)

Figure 3.15 Sumary of case 1
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2) Case 2: using training set and validation set as 70:30

Table 3.11 The forecasting results of case 2

90

MAPE RMSE MAE Time
No. Model

(%) (kw) (kw) (Sec)
1 LR: Linear 25.079 52945 29.786 2.654
2 LR: Interactions linear 25876 55.271 30.462 1.279
3 LR: Robust linear 25.385 59.730 27.005 0.826
4 LR: Stepwise linear regression 26.579  54.980 30.978 1.457
5 Optimized Ensemble of trees 21.150 53.626 27.459 169.230
6  Optimized SVR 18.010 52.489 26.108 196.070
7 Optimized GPR 25.079 52945 29.786 242.910
8  ML-FNN 19.052 47.833 26.552 8.690

Note: for SVR, sometimes the optimizer cannot find the optimum hyperparameter
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Figure 3.16 The forecasting results of case 2
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3) Case 3: 5-fold cross-validation

Table 3.12 The forecasting results of case 3
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MAPE  RMSE MAE Time
No. Model
(%) (kw) (kw) (Sec)
1 LR: Linear 25.079 52945 29.786 1.645
2 LR: Interactions linear 25876 55271 30.463 1.213
3 LR: Robust linear 25385 59.730 27.005 1.327
4  LR: Stepwise linear regression 26.579 54980 30.978 371.200
5 Optimized Ensemble of trees 24.098 58.189 30.186 563.980
6 Optimized SVR 25.039 57.880 26.977 563.980
7 Optimized GPR 26.189 60.830 33.318 16124.000
8 ML-FNN 19.449 47508 25.625 27.052
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Figure 3.17 The forecasting results of case 3 (ML-FNN):



4) Case 4: 10-fold cross-validation

Table 3.13 The forecasting results of case 4

92

MAPE RMSE MAE Time
No. Model
(%) (kw) (kw) (Sec)
1 LR: Linear 25.079 52945 29.786 1.323
2 LR: Interactions linear 25876 55271 30.463 1.055
3 LR: Robust linear 25385  59.729 27.005 1.158
4 LR: Stepwise linear regression ~ 18.630  51.354  25.151 286.510
5 Optimized Ensemble of trees  152.594 335350 290.64 687.230
6 Optimized SVR 182.594 335350 29.648 691.122
7 Optimized GPR 21.703 56978 29.278 17724.0
8 ML-FNN 19.905  50.774 27.227 33.101
200 [5p5gq 122294 20000
< 150 15000
& 100 10000
S 5, 25079 125876 25385 9.905 5000
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Figure 3.18 Summary of case 4
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MAPE
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Figure 3.19 Summary of incomplete dataset in term of accuracy
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Figure 3.20 Summary of incomplete dataset in term of training time

Based on the simulation results presented in Figure 3.15-3.20, it can be
observed that the trend of accuracy for each forecasting model applied to the solar
floating site is similar to that of the solar rooftop site. However, the overall forecasting
performance for this dataset is lower compared to the solar rooftop site due to the
presence of a large amount of missing data. Additionally, it is important to note that
the test set used in this study was randomly selected, which introduces variance from

the training set.
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3.6 Conclusion

In this chapter, a comparative study of various short-term photovoltaic (PV)
forecasting methods was conducted to evaluate the appropriate hyperparameter
adjustment for each model. The chapter begins by describing the workflow of the
comparative study, followed by a discussion on the imported datasets and data
preprocessing techniques. The study was divided into six cases, including 1) the impact
of hyperparameter tuning, 2) the impact of activation function selection, 3) the impact
of normalization techniques, 4) the impact of seasonal and test set selection, 5) the
impact of validation methods, and 6) the impact of incomplete datasets. The
simulation results demonstrate that these case studies have an impact on the accuracy
or training time of data-driven-based forecasting models. The results also show that

ML-FNN with holdout validation method outperforms other forecasting methods.
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CHAPTER 4

Deep-Learning-Based Short-Term Photovoltaic Power Generation
Forecasting Using Improved Self-Organization Map

Neural Network

4.1 Background

Accurate forecasting of PV power generation is essential for an energy
management system for distributed energy resources, efficient operation in distribution
systems, and minimizing potential negative consequences of PV systems. This chapter
describes an alternate method for improving the accuracy of short-term PV power-
generation forecasting models based on deep learning by clustering the input data
using a self-organization map (SOM). To verify the proposed model, LSTM, ML-FNN,
ML-FNN-SOM, and LSTM-SOM were evaluated and compared with hourly datasets
spanning one year (8,760 samples). RMSE, MSE, and MAPE were used as parameters
evaluated. The results demonstrate that the suggested method provides a more
precise forecast of solar power generation than alternative methods. Moreover, the

proposed method can operate well with a minimal number of inputs.

4.2 Introduction

According to the literature review, LSTM and ANN are the most commonly used
forecasting models for solar power generation in current research. These models can
be improved by using data preprocessing or statistical techniques and by including
additional climate variables in the analysis. However, many small to medium-sized PV
systems lack accurate measurements and historical data on variables such as cell
temperature and irradiation angle, which are important for predicting energy

generation. To address this issue, a DL-based forecasting model that approximates the
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relationship between these factors was proposed. This technique uses SOM to
enhance clustering efficiency and depict the relation between two or more parameters
as numerous states. By estimating unmeasured and related factors as inputs, this
method provides an alternate technique for improving the performance of a DL-based
forecasting model with few inputs. The proposed method offers several novel aspects
that can enhance the accuracy of the predictive model as follows: 1) The proposed
method is suitable for photovoltaic power facilities that monitor only the ambient
temperature and irradiance. The sensor data is more reliable than the
available weather website, which considerably increases the accuracy of forecasts. 2)
SOM was used to Classify the level of correlation between latent variables and PV
power generation. And 3) the proposed method can be used as an alternate strategy

for improving the precision of photovoltaic power generation forecasts.

4.3 Methodology

The current forecasting models for PV power generation rely on historical data
and weather forecasts, which are often available through public weather websites.
However, some crucial factors such as cell temperature and sky classification are not
always available, which can lead to inaccurate forecasting. To improve the precision
of PV forecasting, a new model proposes using a relative state factor from SOM as an
input to the forecasting model. This approach estimates unmeasured relative
components by clustering measured input and can effectively handle time series
regression and classification problems. The model includes dataset preparation,
estimation of unmeasured factors, and statistical analysis using ANN clustering-based

preprocessing. This section will provide a detailed explanation of this approach.

In this section, we will describe the ANN clustering-based preprocessing
method, which includes dataset preparation, estimation of unmeasured factors, and
statistical analysis. To ensure the accuracy of the data and eliminate outliers, historical

data was processed for the PV forecasting framework. The processed data was then
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categorized using SOM, as shown in Figure 4.1, and both the processed and clustered

data were used to train the DL model for higher efficiency.

Historical data
Irradiance R Data
Ambicnt Temp. | Processing l
Time Bl Train
PV output =
SOM
Train
Measurement data 3 PV
- L
2 r
Irradiance Deep output
: | Learning
Ambient Temp. I
|
Time I |
T B 1 I

Figure 4.1 Conceptual framework for forecasting PV power generation

4.3.1 APPROACH OVERVIEW

The first step in developing a model for predicting PV power generation
is to gather and preprocess historical data related to the plant's power output and
meteorological data, including metrics such as solar irradiance and temperature.
However, some important parameters may not have been measured. To address this,
the existing dataset can be clustered using a clustering method to provide input for a
DL-based forecasting model. Past data for each hour of the day can be clustered into
various "states" of unobserved parameters to identify elements related to irradiance,
time of day, weather, and past PV power generation. The state is determined using a
SOM algorithm and used as one of the inputs for a DL-based forecasting model. The
proposed framework will be compared to a recently developed method to evaluate

its performance.
4.3.2 DATA PREPROCESSING

To prepare the data for the DL model, two fundamental processes are

necessary: data cleansing and preprocessing. The goal of data preparation is to make



98

the data ready for use with the DL model. In contrast, data cleaning is focused on
improving the quality of the data, which involves handling null or outlier data. Data
completeness or data cleaning is the process of verifying and correcting inaccurate or
incomplete data entries from a dataset or database. Since inaccurate data can impact
the reliability of the database, it is essential to correct, update, or delete these errors
to ensure data accuracy. For this study, data with zero solar irradiance were removed

as they may affect the DL model parameters during the training process.

The procedure for removing these data is illustrated in Table 4.1, where
X represents the input matrix, y represents the output matrix, k corresponds to the

number of inputs, and X is the input matrix post-preprocessing.

Table 4.1 Data preprocessing process

Input: x e R* contain time()), temperature(j) and imadiance()), PV output at step (-1)

Output: ye R’ PV output at the previous step ())
1. j=1,.. 8760

2: k=4

3: x={Remove x(all, j)and y(j)if x(irr(j), j) =0}

% KX joew 1 1
XeR is an (Kx j,,)matrix

Once the dataset has undergone the data preprocessing stage, it
proceeds to the clustering phase. Clustering involves grouping similar items together
into input clusters of the same type. Two commonly used clustering techniques are
the K-means algorithm and Self-Organizing Maps (SOMs). SOMs work in a similar way
to K-means but with the added challenge of determining centroids using input vector
categories, which can be tricky in this study.

In this stage, the dataset was grouped using a SOM. A SOM trains an ANN
to provide clustering based on pattern similarities and related topology by exposing it
to patterns. This is beneficial for data analysis and simplification before further

processing. ANNs have demonstrated their effectiveness as classifiers and are ideally
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suited for handling nonlinear issues. Given the occurrence of nonlinear behaviors in
the real world, such as sorting, ANNs are unquestionably a great contender for tackling
the clustering problem. For a SOM to cluster a dataset, the input data for clustering
issues are prepared. Each row of the input matrix would have the same number of
elements as the component being calculated. For this study, the four assessed
variables (i.e., time, temperature, irradiance, and PV output) will be supplied into a
SOM network, which will transfer the data J,,, sample to a two-dimensional layer of
neurons. Input data for clustering problems are formatted as a matrix. Each row j of
The input matrix will have k members that correspond to a vector derived from the
PV plant data. Then, there are k rows in each /" sample as an input set. Defining the
number of neurons in each layer dimension enables SOM to categorize samples to
acquire the dataset's state parameter. In a hexagonal grid, a layer of two-dimensional
neurons was utilized. Using more neurons produces higher resolution, while the

addition of dimensions enables the modeling of the topology of more intricate

M unit is found with the

function spaces. For the SOM process, given input Xj, the /*
closest weight vector Wji by competition and Wjin will be the maximum for each unit
Jj*in the neighborhood (i) of winning neuron i to update the weights of j (W), and the
weights outside of N(i) are not updated (Table 4.2). The SOM has three stages: 1)

competition, 2) collaboration, and 3) weight update. For the competition stage, the

most similar unit i(x) is found with Equation 1:
i(x)=arg max Ix=W, 1, , (4.1)

Where j=1, 2, ..., m, and m=samples. For the collaboration state, the lateral distance

d; between the winner unit / and unit j is used in Equations 4.2 and 4.3:

_du? (4.2)

hi,j (dij) = exp(252) ’

8(0) =, exp(-3) 4
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Where h is the neighborhood function, n is the number of iterations, and T is constant.

Weights-updated states are shown in equations 4.4 and 4.5:

W, (n+1) =W, (n) +AW, (4.4)

AW, =y, x—g(y; W, , (4.5)

where 77is the learning rate, Y; is the output, and gly;) can be found with equation

6:

g(y;) =ny, =nh;(x) , (4.6)

Table 4.2 Self-organizing map process

Input: R e R isan (kx j.,)matrix

Output: i(X)is neishborhood i as equation 1

1: for j=1:1:8760

2: N(%;)={i, if i(%; ) closesttoN(i)} as shown in Figure 1.

| |
| neuron l
l W 65%,‘,}‘»&-«, —N

Irradiance-t—»O |

. P T o |
Ambient Temp.+—O =7 1~ |

Time :—>O ] @4_'

PV outputJ-—>O o |
I e |
I :
I I
| ORDINATION AND | MAPPING OF
LR | CLUSTERING OF INPUT | CLUSTERED INPUT (N(i))

Figure 4.2 SOM structure
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Figure 4.2 depicts the neuron-to-neuron connections. Typically, nearby samples are
categorized using neighborhood. The SOMs' topology consists of / neurons organized
in a hexagonal grid. Each neuron has acquired the capability to represent a unique

state class, with neighboring neurons typically expressing the same class.

SOM Neighbor Connections

Figure 4.3 SOM Neighbor Connections

4.4 Results and Discussion

The results of the simulation will be presented in two parts: (1) the
categorization using SOM and (2) the forecasting results of the proposed framework.
The weight planes of the SOM classes are shown in Figure 4.4 (a), which represents a
visual representation of the weights that link each input to one of the 24 neurons in
the 6x4 hexagonal grid. Darker hues indicate heavier weights, while lighter hues indicate
lishter weights. When the weight planes of four variables are similar, there is a strong
correlation between them. Additionally, it was observed that power output and solar
irradiance have equal weight, which is contrary to the pattern observed with
temperature.

During the peak of light intensity and power output, there is a substantial

impact over time. Figure 4.4 illustrates the Euclidean distance between the class of
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each neuron and its nearby regions. The bright links represent regions in the input
space that have a strong connection. On the other hand, the black links indicate groups
that represent parts of the feature space that have few or no members. Large barriers
with dark connections that divide significant areas of the input space indicate that the
groups on either side of the boundary have notably different characteristics.

Figure 4.5 displays the number of members within each class, along with the
classes associated with each neighborhood. Areas of high neural activity correspond to
groups that are similar in densely populated areas of the feature space. In contrast,
areas with low activity indicate sparsely populated parts of the feature space. Through
the analysis of the weights in Figure 4.4 and the clustering results in Figure 4.5, it was
discovered that the classes were evenly distributed on the 4x6 plane but had a greater
proportion than the other classes, indicating that the solar cells located in the upper-

right plane were more likely to generate energy.

Weights from Time Weights from Irradiance

0 2 4 6 i 0 2 4 6

Weights from Power output Weights from Ambient Temp

(a)
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SOM Neighbor Weight Distances

(b)

Figure 4.5 Sample hits of SOM
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Short-term forecasting results (Forecast vs Actual)
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Short-term forecasting results (Forecast vs Real)
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Figure 4.6 The results of (a) ML-FNN (1 hidden layer); (b) LSTM, (c) ML-FNN (3 hidden
layers); (d) LSTM-SOM; (e) ML-FNN-SOM (1 hidden layer) (f) ML-FNN SOM (3

hidden layers)
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To verify that the proposed model can be forecast at the same performance,
ML-FNN-SOM (3 hidden layers) was trained and tested 30 times, and the simulation
are results shown in Figure 4.7. We can conclude that the proposed model can achieve

almost forecasting accuracy when the model was retrained and test at 30 times.

55

ADOQI@MOO OC® O OO © O (@) @) @) @)

mean of MAPE (%)
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Figure 4.7 The retrain results of ML-FNN-SOM (3 hidden layer)

After the classification of the dataset, the resulting data from the classes were
used as one of the DL features in the FNN and LSTM models. The proposed model's
prediction results were then compared to those of the unclassified model, but only
during the electricity generation period of 678 hours. Figure 4.6 (a) shows the LSTM
forecasting results with error values and forecasting results, where the maximum error
was 3,104.5 kW and the mean error was 371.77 kW. Figure 4.6 (b) shows the FNN
forecasting results with resultant and error values, where the maximum inaccuracy was
853.05 kW and the mean error was 225.28 kW. Figure 4.6 (c) shows the ML-FNN (3
HIDDEN LAYER) forecasting results with resultant and error values, where the maximum
inaccuracy was 1,105.70 kW and the mean error was 232.49 kW. Figure 4.6 (d) shows
the LSTM-SOM forecasting results with resultant error values, where the maximum

error was 1,371 kW and the mean error was 216.95 kW. Figure 4.6 (e) shows the FNN-
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SOM forecasting results with resultant error values, where the maximum error was
458.77 kW, and the mean error was 106.69 kW. Figure 4.6 (f) shows the FNN forecasting
results with resultant and error values, where the maximum inaccuracy was 1445.70
kW and the mean error was 105.03 kW. The forecast results during the peak period

had greater errors than other periods in all cases.

Table 4.3 Comparing the simulation results of ML-FNN/ LSTM/LSTM-SOM/ ML-FNN -SOM

MAPE MAE RMSE
Methods
(%) (kW) (kW)
ML-FNN (1 hidden layer) 12.92 205.01 266.72
ML-FNN (3 hidden layers) 11.46 240.36 334.285
LSTM 17.38 371.77 551.05
ML-FNN-SOM (1 hidden layer) 4.56 106.69 131.32
ML-FNN-SOM (3 hidden layers) 4.08 95.84 122.84
LSTM -SOM 7.55 216.95 301.18

Table 4.3 presents the results of the simulation, comparing the performance of
several models for short-term power forecasting. ML-FNN (1 hidden layer) model
achieved a MAPE of 12.92%, a MAE of 205.01 kW, and a RMSE of 266.72 kW. ML-FNN
(3 hidden layers) model had a lower MAPE of 11.46%, but a higher MAE of 240.36 kW,
and a higher RMSE of 334.285 kW. LSTM model had the highest MAPE of 17.38%, a
MAE of 371.77 kW, and an RMSE of 551.05 kW. On the other hand, the ML-FNN-SOM
(1 hidden layer) model showed superior performance, achieving a MAPE of 4.56%, a
MAE of 106.69 kW, and an RMSE of 131.32 kW. Similarly, the ML-FNN (3 hidden layer)-
SOM model performed well, with a MAPE of 4.08%, a MAE of 95.84 kW, and an RMSE
of 122.84 kW. Finally, the LSTM-SOM model achieved a MAPE of 7.55%, a MAE of
216.95 kW, and an RMSE of 301.18 kW. These results indicate that the models that
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used a clustering method to group the training dataset were more accurate than the

conventional methods, particularly during peak power production times.

4.5 Conclusion

This chapter presents an approach aimed at enhancing the precision of deep
learning (DL)-based short-term forecasting models for photovoltaic (PV) power
generation. The proposed method utilizes self-organizing maps (SOM) and data
processing techniques to cluster input data, which were thoroughly tested and
compared against commonly employed forecasting techniques. By employing SOM, a
set of numerical inputs can be grouped into a single feature during the training process,
thereby addressing the issue of curve fitting in the ML-FNN (3 hidden layer) approach.
The results obtained from extensive simulations demonstrate the superiority of SOM-
based clustering in enhancing the accuracy of PV power generation forecasting, making
it a viable alternative to DL-based forecasting methods such as ML-FNN and LSTM. This
alternative approach not only outperforms existing techniques but also exhibits
exceptional adaptability to situations where the number of available inputs is limited,
making it a practical and efficient solution for PV power generation forecasting. The
utilization of SOM as a clustering mechanism plays a pivotal role in improving the
accuracy of the forecasting models. By organizing input data into cohesive groups, SOM
enables the identification of underlying patterns and relationships within the dataset.
This clustering approach ensures that the forecasting model captures the intricate
dynamics of PV power generation, resulting in more precise predictions. Moreover, the
SOM-based clustering technique overcomes the limitations associated with traditional
DL-based methods. ML-FNN and LSTM often encounter difficulties in accurately
capturing the complexities of PV power generation due to curve fitting issues and the
potential loss of important information in the data. However, the integration of SOM

mitigates these problems, leading to significantly improved forecasting accuracy.
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One notable advantage of the proposed method is its ability to perform
effectively with a limited number of inputs. This feature is particularly valuable in
practical applications where acquiring a vast amount of data may be challenging or
costly. By making accurate predictions using a smaller set of inputs, the SOM-based
clustering approach offers a cost-effective and efficient solution for PV power
generation forecasting. In conclusion, the introduction of SOM-based clustering
combined with data processing presents a pioneering approach for enhancing the
accuracy of DL-based short-term forecasting models in PV power generation. The
extensive simulations conducted demonstrate its superiority over traditional methods
such as ML-FNN and LSTM, making it an appealing alternative for accurate and practical

PV power generation forecasting, even with a limited number of inputs.



CHAPTER 5
PROBABILISTIC FORECASTING OF SHORT-TERM

PV POWER GENERATION

5.1 Background

In recent years, solar energy has expanded rapidly. Numerous nations have
invested in solar energy technology, particularly photovoltaic (PV) energy generation.
Increasing solar energy penetration makes solar power forecasting more difficult.
Probabilistic forecasting provides more information than traditional point forecasting
to account for solar power's inherent uncertainty. In addition, multiple PV sites with
spatial-temporal correlations should be considered. This thesis proposed a method
to minimize the probabilistic range of PV power generation forecasting. The simulation

results will be verified using both Kf-cv and the holdout method.

Forecasting photovoltaic power is difficult since PV power is impacted by
several variables, such as irradiance, temperature, etc. (VanDeventer et al., 2019).
Consequently, PV power forecasting is now primarily separated into two groups based
on the distinct prediction results: certain point/deterministic prediction (Oneto, Laureri,
Robba, Delfino, & Anguita, 2018) and uncertainty interval prediction (El-Baz,
Tzscheutschler, & Wagner, 2018). In recent years, several researchers have
concentrated on the study of deterministic prediction, and artificial intelligence has
become a popular technique. To anticipate photovoltaic power, the approach
unearths the link between the input factors inherent in the historical output data of
solar power plants and the expected outcomes via machine learning. Common
artificial intelligence algorithms include mostly of BP neural networks, support vector
machines, regression tree techniques, etc (Gao, Li, Hong, & Long, 2019). Recognizing
that photovoltaic power generation is significantly influenced by meteorological

parameters when the meteorological conditions within the forecast period fluctuate
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significantly, the photovoltaic output curve will no longer be smooth and there will
be a large peak-to-valley difference, resulting in a significant reduction in the accuracy
of the deterministic prediction results (Ahmed, Sreeram, Mishra, & Arif, 2020). Interval
predictions may thus compensate for the absence of deterministic forecasts and
provide more detailed information. This not only enables decision-makers to
comprehend the possible output of the prediction point, but it also enables decision-
makers to comprehend the future change trend of the output of the prediction point,
vastly enhancing the prediction accuracy and promoting grid planning, risk analysis,
and reliability evaluation (Sayed, Elgeldawi, Zaki, & Galal, 2020). Therefore, interval
prediction is a useful technique for enhancing the precision of solar power forecasts.
In the field of deterministic prediction, Reference (VanDeventer et al., 2019) categorizes
meteorological circumstances as either ideal or non-ideal. For ideal weather, the LSTM
prediction technique is used; for non-ideal weather, the time-series correlation and
features of non-ideal weather types are considered to obtain the final point prediction
value. Regarding the constraints and inadequacies of historical PV output data and
weather information, Reference (Wang et al., 2020) introduced a day-ahead forecasting
approach related to cloud space synthesis to accomplish point prediction.
Furthermore, Reference (Li et al, 2018)created independent day-ahead PV power
forecasting models based on LSTM and proposed a method to modify the forecasting
results of the LSTM model based on the principle of time correlation, which improved
the model's prediction accuracy. In the field of probabilistic forecasting, Reference (Ni,
Zhuang, Sheng, Kang, & Xiao, 2017) developed an adaptive method of short-term PV
power forecasting based on extreme learning machine (ELM) and lower and upper
bound estimation (LUBE), as well as an improved differential evolution algorithm to
determine the best-generating prediction intervals. Reference (Zhang, Wang, Liao,
Zhang, & Zha, 2015)established a novel two-stage model to quantify the forecast
interval value of solar power production, combined several neural network models to
provide point forecasting values and generated the prediction interval using the kernel
density estimation technique. Under the principle of assuring interval coverage,

Reference (Raza, Mithulananthan, & Summerfield, 2018) provided a modified Bootstrap
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approach to enhance the classic theoretical method, eliminate the issue of incorrect
prediction error hypothesis, and minimize the interval width. Reference Furthermore,
(Bouzerdoum, Mellit, & Massi Pavan, 2013) suggested a forecasting model based on
PSO and boundary theory; the interval prediction of photovoltaic output was achieved
by utilizing a PSO to optimize the output weight of boundary estimation theory. ML
and DL algorithms dynamically alter their internal settings depending on inputs. These
parameters are referred to as "model parameters". Other factors, however, are not
modified throughout the learning process, but rather must be preconfigured before
the learning process is initiated. These parameters are often known as
"hyperparameters.”" The model parameters specify how the input data are transformed
into the intended output, while the hyperparameters describe the model's
architecture. The efficiency of an ML and DL model is very sensitive to the selection
and settings of its hyperparameters. A variety of techniques could be used to establish
hyperparameters for a particular dataset. The first is to manually configure them and
determine their accuracy appropriately. Then, various hyperparameter values may be
evaluated, and the associated accuracy can be determined for each modification.
Configuring the hyperparameter settings manually in this trial-and-error manner is a
laborious and time-consuming operation. The default values of hyperparameters that
are suggested by the software packages used in the implementation, which are in turn
based on recommendations from the literature and experience, may also be utilized
to determine an acceptable hyperparameter configuration. Sometimes the default
values work well for a particular dataset, but this does not necessarily imply that they
provide the highest degree of precision. hyperparameter optimization techniques may
be used to achieve the problem. These techniques are data-dependent optimization
algorithms that aim to minimize the predicted training error of a machine learning
model throughout the search space of possible hyperparameter configurations. The
ML algorithms were initially assessed using the default hyperparameter values,
followed by a comparison with the outcomes of hyperparameter tweaking methods.
When attempting to solve a particular classification issue, the vast majority of

published publications examine the impact of one hyperparameter tuning strategy on



114

the precision of one or more machine language algorithms. Both the classification
accuracy of the machine learning approach and the hyperparameters combination that
provides the highest classification accuracy is heavily influenced by the nature of the
challenge. Prior studies focused mostly on deterministic or point forecasting. Hong and
Fan (Rahab, Zitouni, & Djoudi, 2018) theorized that this might be because probabilistic
predictions were evaluated using the same performance measures as deterministic
forecasts and performed worse than their deterministic equivalent. Chapter 2, which
describes the most used performance measures, can be deduced that evaluating
probabilistic predictions using metrics designed for point forecasts may result in
erroneous findings. Supplying a utility with a PDF or prediction interval, i.e., an interval
in which the random variable is projected to be measured with a specified probability
of future production and demand is arguably more beneficial than providing a single
value since it permits risk management. It should be emphasized that a prediction
interval and a confidence interval are not the same, but they are regrettably used
interchangeably at times. A prediction interval relates to a random variable, while a
confidence interval is related to an unknown parameter and is generated using the
data. In probabilistic forecasting, there are often two ways to generate a PDF. First, a
density function may be assumed, which is the parametric method. Second is the
nonparametric method, which makes no such assumption. Nevertheless, assuming a
distribution is seldom indicative of data and is often inaccurate or suboptimal (Rauf et

al., 2020).

Probabilistic photovoltaic (PV) forecasting with truncation and Monte Carlo
simulation is a technique used to predict the output of a solar PV system with a high
degree of accuracy. This approach combines the use of truncated probability
distributions with the Monte Carlo simulation method, which involves generating
multiple iterations of the forecast to account for the variability in PV output due to

changing weather conditions.

Probabilistic PV forecasting with truncation and Monte Carlo simulation relies

on statistical models and algorithms to generate truncated probability distributions
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that describe the possible outcomes of a PV system's output. These models take into
account a range of factors, including historical data, weather patterns, and solar
irradiance to predict future outcomes. The use of truncation improves the accuracy of
the forecast by capping the upper and lower limits of the output range, while Monte
Carlo simulation generates multiple iterations of the forecast to account for the
uncertainty in the input parameters. The output of a probabilistic PV forecast with
truncation and Monte Carlo simulation typically includes a probability distribution,
such as a histogram or density plot, that shows the likelihood of different outcomes
occurring within the truncated range. This information can be useful for grid operators,
energy traders, and PV system operators, who can use the forecast to better manage
their resources and make more informed decisions. Overall, probabilistic PV forecasting
with truncation and Monte Carlo simulation is a powerful tool for anyone seeking to
maximize the efficiency and profitability of a solar PV system. By combining the
benefits of truncated probability distributions with the Monte Carlo simulation method,
it provides decision-makers with a more nuanced understanding of the probabilities
surrounding the system's output and allows them to optimize their use of this

renewable energy source.

5.2 Methodology

The present study involves a stepwise approach to probabilistic forecasting.
Firstly, a point forecasting method, namely the ML-FNN (3 hidden layers), is employed
to generate a point forecast. Subsequently, the obtained point forecast is used in
conjunction with probabilistic computation techniques, based on a training set, to
derive the prediction intervals that represent the range of confident predictions for
each time step. The ensuing discussion delineates the methodology employed to
achieve probabilistic forecasting at each time step and the resulting findings are

presented in Figure 5.1, which also includes a comparative analysis.
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5.2.1 Probabilistic computation of the dataset

The first step of probabilistic analysis is to use the point forecasting

model that was proposed in chapter 3 (3 hidden layers). Then, the probabilistic of the

training set was computed as all, seasons, months, 2 weeks, and 7 days before the test

set. After getting the appropriate case, the truncated was used to select the

appropriate range and select the lower bound and upper bound of interval forecasting.

The process of probabilistic analysis of the dataset is shown in Figure 5.2
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5.2.2 Truncate probabilistic

Truncation is a concept used in probabilistic forecasting to improve the
accuracy of the forecast by capping the upper and lower limits of the probability
distribution. In this approach, the probability distribution of possible outcomes is
generated using statistical techniques such as Kernel Density Estimation (KDE) or
Gaussian Mixture Models (GMM). The distribution is then truncated to a specified range,
removing any extreme values outside of the range. Truncation is particularly useful in
situations where there is a high degree of uncertainty or where the outcomes can vary
significantly. By truncating the distribution to a specific range, the probabilistic forecast
becomes more accurate, as it focuses on the most probable outcomes and removes
the unlikely or extreme values. This approach also allows decision-makers to better
understand the range of possible outcomes and make more informed decisions based
on that information. The process of truncation involves setting upper and lower limits
on the probability distribution. This can be done using a fixed range or a dynamic range
that changes depending on the input data. For example, in solar PV forecasting, the
upper limit of the distribution might be set to the maximum expected output of the
PV system, while the lower limit might be set to zero or a small negative value to

account for measurement error.
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The truncated probabilistic workflow is a method used to forecast the
output of a system while taking into account the uncertainty associated with the
prediction. This approach involves generating a probability distribution of possible
outcomes, and then truncating the distribution to a specified range to improve the
accuracy of the forecast. The following steps outline the truncated probabilistic
workflow: 1) Data Collection: Collect relevant data such as historical performance,
external variables, weather patterns, etc. 2) Point Forecasting: Use a point forecasting
model such as Artificial Neural Networks (ANN), Support Vector Regression (SVR), or
Gradient Boosted Regression Trees (GBRT) to generate a point forecast. 3) Probability
Distribution Generation: Using the point forecast, generate a probability distribution of
possible outcomes using statistical techniques such as Kernel Density Estimation (KDE)
or Gaussian Mixture Models (GMM). 4) Truncation: Truncate the probability distribution
to a specified range to improve the accuracy of the forecast. This can be achieved by
capping the upper and lower limits of the range to remove any extreme values. 5)
Prediction Intervals: Use the truncated distribution to determine the prediction
intervals, which represent the range of confident predictions for each time step. 6)
Model Validation: Validate the model by comparing the predicted intervals against the
actual outcomes. This step ensures that the model is accurate and can be used with

confidence.

Overall, the truncated probabilistic workflow is a powerful method that
allows decision-makers to make informed decisions in the face of uncertainty. By
combining point forecasting with probability distribution generation and truncation, this
approach provides a more nuanced understanding of the range of possible outcomes
and enables decision-makers to optimize their use of resources and plan for a range

of contingencies.

5.2.3 Monte carlo
Monte Carlo is a computational method that involves using random
sampling techniques to generate a large number of possible outcomes or scenarios.

This method is often used in statistical analysis and mathematical modeling to
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calculate the probability of certain events or outcomes. The technique is named after
the Monte Carlo Casino in Monaco, where games of chance involve a high degree of
randomness and unpredictability. In the Monte Carlo method, a large number of
simulations are performed, each using different random inputs or variables. The
outputs from these simulations are then aggregated and analyzed to determine the
probability of certain events or outcomes. This approach can be used to generate a
probability distribution for a particular variable, allowing decision-makers to better
understand the likelihood of different scenarios and make more informed decisions.
The Monte Carlo method is particularly useful when dealing with complex systems or
situations where there is a high degree of uncertainty. For example, it can be used to
model the potential outcomes of a financial investment, to simulate the spread of a
disease, or to forecast the output of a solar PV system under changing weather
conditions. By generating a large number of possible outcomes, the Monte Carlo
method can provide decision-makers with a more nuanced understanding of the range

of possible outcomes and enable them to plan for a variety of contingencies.

The Monte Carlo workflow is a method used to generate probabilistic
forecasts using random sampling techniques. The following steps outline the basic
Monte Carlo workflow: 1) Define the Problem: Identify the problem or system to be
modeled and determine the input variables, output variables, and assumptions to be
made. 2) Define Probability Distributions: Define the probability distributions for each
of the input variables, based on historical data, expert knowledge, or assumptions. 3)
Sample Inputs: Generate a large number of random samples from the probability
distributions for each of the input variables. 4) Simulate System: Run the model or
simulation using the sampled inputs to generate a large number of outputs. 5)
Aggregate Outputs: Aggregate the outputs from the simulations to generate a
probability distribution for the output variable(s). 6) Analyze Results: Analyze the
probability distribution to determine the likelihood of different outcomes or scenarios.
7) Sensitivity Analysis: Conduct sensitivity analysis to determine which input variables

have the greatest impact on the output variable(s) and identify potential sources of
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uncertainty. 8) Validation: Validate the model or simulation by comparing the output

against historical data or known outcomes, and adjust the model as necessary.

Overall, the Monte Carlo workflow is a powerful method for generating
probabilistic forecasts and analyzing complex systems. By using random sampling
techniques to simulate a large number of possible outcomes, this approach allows
decision-makers to better understand the range of possible outcomes and make more

informed decisions in the face of uncertainty.

5.3  Simulation Results and Discussion

The simulation results presented in this study can be divided into two parts.
The first part involves the generation of probabilistic PV power using Monte Carlo
simulation techniques, which is subsequently used to establish the lower and upper
bounds of the probability distribution, as depicted in Figures 5.3, 5.4, and 5.5. The
second part entails the probabilistic forecasting results obtained from six case studies,
as outlined in Table 5.1, with the best-case scenario presented in Figure 5.6. The
generative probabilistic PV power results from the Monte Carlo simulation serve as a
crucial input in defining the lower and upper bounds of the probability distribution.
This step is instrumental in establishing the range of potential outcomes and enables
decision-makers to better understand the likelihood of different scenarios. The
probabilistic forecasting results provide further insights into the range of possible

outcomes and allow decision-makers to optimize their use of RES
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Upon analyzing the dataset, the researchers determined the appropriate lower
and upper bounds for the probabilistic PV power forecast. The lower bound was
selected as the point forecast value, since the proposed point forecasting was found
to be not over the actual value. The upper bound was determined to be half of the
standard deviation of the power output in the training set, based on its

comprehensiveness to the test set. The simulation results, which validate the chosen
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lower and upper bounds, are presented in Figure 5.6, while the corresponding

probabilistic forecasting results for the six case studies are provided in Table 5.1.
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Figure 5.6 Probabilistic forecasting results of Monthly case (best PINAW)

Table 5.1 Probabilistic forecasting results

Case PICP PINAW
1 Using all training set 1 0.1010
2 Seasonal (Oct - Dec) 1 0.1008
3 Monthly (Dec) 1 0.1002
5 2 weeks 1 0.1004
6 Previous 7 days 1 0.1018

Note: the performance of each model is not the same when monte carlo was re-

calculated

Simulation results show that the selected lower bound and upper bound can

be comprehensively used to forecast the interval of the study. As shown in Table 5.1,

PICP means how this forecasting model comprehensive the actual value is at 1 (max

value). PINAW illustrates the proportion of the width of the average prediction range
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per actual value range (max-min) that mean if PINAW is higher, the prediction is wider.
PINAW | this case is 10.02 %. As mentioned, we can conclude that this probabilistic

model is cover al of the actual value and the prediction range is not over size

5.4  Conclusion

The present chapter introduced a alternative method for enhancing the
reliability of forecasting results through the utilization of probabilistic computation in
conjunction with a proposed point forecasting technique, namely ML-FNN (3 HIDDEN
LAYER). The simulation results demonstrated the effectiveness of this approach in
providing a reliable and accurate forecast range for the dataset under consideration,

thereby boosting decision-makers' confidence in the reliability of the forecast.
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CHAPTER 6

Conclusion

6.1 Conclusion

The thesis aims to develop the performance and reliability of forecasting results
using SOM and probabilistic forecasting. This thesis divides into 3 parts: 1) comparative
study to find the appropriate forecasting model and the way to tune the
hyperparameter, the simulation results show that ML-FNN (3 hidden layers) is the best
model when considering accuracy, training time, and reaching the global minimum
error. 2) Improving the performance of the forecasting model using SOM, the simulation
results show that SOM can be used to improve the performance of data-driven-based
forecasting methods including ML-FNN-SOM (3 hidden layers) and LSTM. And 3) using
the probabilistic computation to firm the forecasting range of the point forecasting
model, the simulation results show that this proposed method can cover 100 percent
of the prediction interval of this dataset. The limitation of this study is considered only

hourly data

6.2  Suggestions
There is a suggestion for hyperparameter tuning, using SOM, and probabilistic

computation.
6.2.1 Suggestions for tuning hyperparameter of ML-FNN

Tuning hyperparameters of a neural network is an essential step in
achieving optimal performance. Here are some suggestions to help you tune your

hyperparameters effectively:

Start with a baseline model: Before beginning any hyperparameter

tuning, start by building a baseline model. This model should be relatively simple and
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use default hyperparameters. It provides a starting point for comparison, and you can

use it to establish a baseline performance metric.

Identify the Key Hyperparameters: Hyperparameters are model
parameters that are not learned during training. These include learning rate, batch size,
activation function, number of hidden layers, and number of neurons in each layer.

Identify which hyperparameters are most critical to the performance of your model.

Choose a search strategy: There are several strategies for
hyperparameter tuning, including grid search, random search, and Bayesian
optimization. Grid search involves trying all possible combinations of hyperparameters,
whereas random search randomly selects a subset of hyperparameters to try. Bayesian
optimization uses past results to determine the most promising hyperparameters to
try next. Choose a search strategy that suits your problem asnd computational

resources.

Define the search space: The search space is the range of
hyperparameters you want to explore. Define the search space for each
hyperparameter you want to tune. For example, you might define a learning rate

search space of [0.001, 0.01, 0.1].

Train and evaluate models: train and evaluate the model using the
search space you defined. For each combination of hyperparameters, train the model
and evaluate its performance. Repeat this process for all combinations of

hyperparameters in your search space.

Analyze results: analyze the results of your hyperparameter search.
Identify the hyperparameters that result in the best performance. Visualize the results

to identify any trends or relationships between hyperparameters and performance.

Refine the search space: refine the search space based on the results

of your analysis. If a particular hyperparameter is not affecting the performance of the
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model, remove it from the search space. If a particular hyperparameter has a significant

impact on performance, expand the search space to include more values.

Repeat the process: repeat the hyperparameter tuning process until you
have found the optimal set of hyperparameters for your model. It may take several

rounds of tuning to achieve the best performance.

Test on unseen data: finally, evaluate the performance of your model

on unseen data to ensure that it generalizes well.

By following these suggestions, you should be able to tune the

hyperparameters of your neural network effectively and achieve optimal performance.

6.2.2 Suggestions for using self-organizing maps (SOMs)

Data Visualization: SOMs can be used for visualizing high-dimensional
data. By mapping the data onto a 2D or 3D space, patterns and relationships between

data points can be easily observed.

Clustering: SOMs can be used for clustering data. Data points that are
mapped onto the same neuron on the SOM are considered to be similar and can be

grouped.

Anomaly Detection: SOMs can be used for anomaly detection. Data
points that are mapped onto neurons that are far away from the others may be

considered outliers.

Feature Selection: SOMs can be used for feature selection. By analyzing
which features contribute the most to the formation of clusters on the SOM, less

important features can be removed, reducing the dimensionality of the data.

Prediction: SOMs can be used for prediction. Once the SOM has been
trained on a set of data, it can be used to predict the mapping of new, unseen data

points onto the SOM, allowing for classification or regression.
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Optimization: SOMs can be used for optimization. By creating a SOM of
a set of design parameters and their corresponding outcomes, it is possible to find the

optimal set of parameters that lead to the desired outcome.

Image Processing: SOMs can be used for image processing. By mapping
the pixels of an image onto the SOM, the SOM can learn to recognize patterns in the

image, allowing for image segmentation, object recognition, and image compression.

These are just a few examples of how SOMs can be used. The
applications of SOMs are wide-ranging, and they can be used in any field where high-

dimensional data needs to be analyzed.
6.2.3 Suggestion for PV power generation probabilistic forecasting

Probabilistic forecasting is a critical component of PV power generation
forecasting, as it provides information about the uncertainty and risk associated with
the predicted output. Here are some suggestions to help you develop an effective

probabilistic forecast for PV power generation:

Data preprocessing: ensure that the input data is preprocessed and
cleaned before feeding it into the forecasting model. This includes outlier removal,

normalization, and feature engineering to extract useful information.

Select appropriate Models: Several models can be used for probabilistic
forecasting, including Gaussian Process regression, quantile regression, bayesian neural
networks, and ensemble methods. choose the model that is most suitable for your

problem and data.

Train the model: train the model using historical PV power generation
data, and use cross-validation techniques to evaluate the model's performance. Use
appropriate loss functions such as mean absolute error or quantile loss function to

train the model to predict the desired quantile.
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Use ensemble models: ensemble models such as Bayesian Model
Averaging, Weighted Average, or Stacking can help combine the strength of multiple

models to produce more accurate probabilistic forecasts.

Incorporate weather forecast: weather plays a critical role in the
generation of PV power. Incorporate weather forecast data, such as solar irradiance

and temperature, into the model to improve the accuracy of the forecast.

Model evaluation: evaluate the model's performance using appropriate
metrics such as Continuous Ranked Probability Score (CRPS) or Pinball loss to assess

the quality of the probabilistic forecast.

Calibration: ensure that the probabilistic forecast is well calibrated by
comparing the predicted probabilities to the actual outcomes. Calibration can be

achieved using post-processing techniques like Platt scaling or Beta Regression.

Update the model: update the model regularly as new data becomes

available to ensure the forecast remains accurate and up to date.

By following these suggestions, you can develop an effective
probabilistic forecast for PV power generation that provides valuable information about

the uncertainty and risk associated with the predicted output.
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Table A.1. Hyperparameter for case 1 (at 1000 iteration or maximum performance)

Activation MAPE RMSE MAE Time
No. Layer/ node )
function (%) (kW) (kw) (Sec)
1.1 1 layer/layer 1: 10
tansig 8.827 308.454  164.410 5.413
nodes
1.2 1 layer/layer 1: 20
tansig 9.006 307.988  158.655  11.583
nodes
1.3 1 layer/layer 1: 50
tansig 8.998 306.941  161.314  25.132
nodes
1.4 1 layer/layer 1: 10
logsig 9.116 311.396  171.566 5.291
nodes
1.5 1 layer/layer 1: 20
logsie 8.663 301.181  156.489  11.331
nodes
1.6 1 layer/layer 1: 50
logsig 9.114 300.041  156.585  25.926
nodes
1.7 1 layer/layer 1: 10
poslin 8.604 315.388  158.569 0.317
nodes
1.8 1 layer/layer 1: 20
poslin 8.839 316.673  167.373 1.307
nodes
1.9 1 layer/layer 1: 50
poslin 8.638 314.238 160.388  21.441
nodes
2.1 2 layer/layer 1: 10
nodes tansig 9.349 303.037  158.554  18.177
layer 2: 10 nodes
2.2 2layer/layer 1: 20
tansig 8.738 295.470  152.800  72.047

nodes
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No.

Layer/ node

Activation

function

MAPE

(%)

RMSE

(kw)

MAE

(kW)

Time

(Sec)

layer 2: 20 nodes

2.3

2 layer/layer 1: 50

nodes

layer 2: 50 nodes

tansig

8.915

300.648

156.385

2,570.8
00

24

2 layer/layer 1: 10

nodes

layer 2: 20 nodes

tansig

8.568

298.384

156.850

35.547

25

2 layer/layer 1: 10

nodes

layer 2: 50 nodes

tansig

8.568

298.384

156.850

33.68

2.6

2 layer/layer 1: 20

nodes

layer 2: 10 nodes

tansig

8.792

299.770

159.217

127.344

2.7

2 layer/layer 1: 20

nodes

layer 2: 50 nodes

tansig

8.891

299.485

160.940

369.004

2.8

2 layer/layer 1: 50

nodes

layer 2: 10 nodes

tansig

8.763

293.94

153.19

115.820

2.9

2 layer/layer 1: 50

nodes

layer 2: 20 nodes

tansig

9.018

302.211

156.94

305.480

2.10

2 layer/layer 1: 10

nodes

layer 2: 10 nodes

logsig

8.764

297.340

156.32

17911
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No.

Layer/ node

Activation

function

MAPE

(%)

RMSE

(kw)

MAE

(kW)

Time

(Sec)

2.11

2 layer/layer 1: 20

nodes

layer 2: 20 nodes

logsig

8.664

295.596

155.695

71771

212

2 layer/layer 1: 50

nodes

layer 2: 50 nodes

logsig

9.343

304.309

161.270

2506.40
0

2.13

2 layer/layer 1: 10

nodes

layer 2: 20 nodes

logsig

8.598

294.741

151.720

29.302

2.14

2 layer/layer 1: 10

nodes

layer 2: 50 nodes

logsig

9.391

300.848

155.331

107.715

2.15

2 layer/layer 1: 20

nodes

layer 2: 10 nodes

logsig

8.987

298.534

156.071

32.412

2.16

2 layer/layer 1: 20

nodes

layer 2: 50 nodes

logsig

8.533

297.839

155.567

294.962

2.17

2 layer/layer 1: 50

nodes

layer 2: 10 nodes

logsig

9.194

305.095

157.108

129.257

2.18

2 layer/layer 1: 50

nodes

layer 2: 20 nodes

logsig

9.018

302.211

156.941

305.480

2.19

2 layer/layer 1: 10

nodes

poslin

9.005

313.663

164.073

2.072
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Activation MAPE RMSE MAE Time
No. Layer/ node )
function (%) (kW) (kw) (Sec)

layer 2: 10 nodes

2.20 2 layer/layer 1: 20
nodes poslin 8.728 320.388  167.217 2.465

layer 2: 20 nodes

221 2 layer/layer 1: 50
nodes poslin 8.717 321.62 167.521 774970

layer 2: 50 nodes

2.22 2 layer/layer 1: 10
nodes poslin 8.731 320.799  164.458 2.965

layer 2: 20 nodes

2.23 2 layer/layer 1: 10
nodes poslin 8.782 324.250  165.510  23.570

layer 2: 50 nodes

2.24 2 layer/layer 1: 20
nodes poslin 8.992 322971  170.001 1.353

layer 2: 10 nodes

2.25 2 layer/layer 1: 20
nodes poslin 8.697 319.608  163.157 136.343

layer 2: 50 nodes

2.26 2 layer/layer 1: 50
nodes poslin 8.560 311.590  157.260 7.937

layer 2: 10 nodes

2.27 2 layer/layer 1: 50
nodes poslin 9.011 3179190 168.044  25.967

layer 2: 20 nodes
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No.

Layer/ node

Activation

function

MAPE

(%)

RMSE

(kw)

MAE

(kW)

Time

(Sec)

3.1

3 layer/layer 1: 10

nodes
layer 2: 10 nodes

layer 3: 10 nodes

tansig

9.363

300.937

153.231

31.939

3.2

3 layer/layer 1: 20

nodes
layer 2: 20 nodes

layer 3: 20 nodes

tansig

9.431

358.750

172.391

193.958

3.3

3 layer/layer 1: 50

nodes
layer 2: 50 nodes

layer 3: 50 nodes

tansig

9.374

312.871

157.963

10,198.
000

3.4

3 layer/layer 1: 10

nodes
layer 2: 10 nodes

layer 3: 20 nodes

tansig

8.620

309.195

158.454

49.862

35

3 layer/layer 1: 10

nodes
layer 2: 20 nodes

layer 3: 10 nodes

tansig

9.383

332.639

164.741

66.486

3.6

3 layer/layer 1: 10

nodes
layer 2: 20 nodes

layer 3: 20 nodes

tansig

9.032

300.547

154.746

120.150

3.7

3 layer/layer 1: 20

nodes

tansig

9.406

302.888

158.611

54.985
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Activation MAPE RMSE MAE Time
No. Layer/ node )
function (%) (kW) (kw) (Sec)

layer 2: 10 nodes

layer 3: 10 nodes

3.8 3 layer/layer 1: 20

nodes

tansig 9.176 325266  160.932 124.592
layer 2: 20 nodes

layer 3: 10 nodes

39 3 layer/layer 1: 20

nodes

tansig 9.196 306.239  163.160  84.842
layer 2: 10 nodes

layer 3: 20 nodes

3.10 3 layer/layer 1: 10

nodes

logsig 8.857 306.998 161.593  31.153
layer 2: 10 nodes

layer 3: 10 nodes

3.11 3 layer/layer 1: 20

nodes

logsig 8.916 309.866  157.404 193.980
layer 2: 20 nodes

layer 3: 20 nodes

3.12 3 layer/layer 1: 50

nodes 9,751.6
logsig 8.962  303.772  158.284
layer 2: 50 nodes 00

layer 3: 50 nodes

3.13 3 layer/layer 1: 10

nodes

logsig 9.264 304.938 161.328  48.439
layer 2: 10 nodes

layer 3: 20 nodes
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No.

Layer/ node

Activation

function

MAPE

(%)

RMSE

(kw)

MAE

(kW)

Time

(Sec)

3.14

3 layer/layer 1: 10

nodes
layer 2: 20 nodes

layer 3: 10 nodes

logsig

9.555

311.327

166.509

63.207

3.15

3 layer/layer 1: 10

nodes
layer 2: 20 nodes

layer 3: 20 nodes

logsig

8.716

310.796

162.895

118.522

3.16

3 layer/layer 1: 20

nodes
layer 2: 10 nodes

layer 3: 10 nodes

logsig

9.040

305.686

160.838

53.528

3.17

3 layer/layer 1: 20

nodes
layer 2: 20 nodes

layer 3: 10 nodes

logsig

2 2

302.928

163.158

126.519

3.18

3 layer/layer 1: 20

nodes
layer 2: 10 nodes

layer 3: 20 nodes

logsig

9.244

306.197

163.340

85.083

3.19

3 layer/layer 1: 10

nodes
layer 2: 10 nodes

layer 3: 10 nodes

poslin

8.572

319.565

162.838

9.378

3.20

3 layer/layer 1: 20

nodes

poslin

8.504

314.900

159.797

181.924
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No.

Layer/ node

Activation

function

MAPE

(%)

RMSE

(kw)

MAE

(kW)

Time

(Sec)

layer 2: 20 nodes

layer 3: 20 nodes

3.21

3 layer/layer 1: 50

nodes
layer 2: 50 nodes

layer 3: 50 nodes

poslin

10.115

326.178

186.254

717.26

3.22

3 layer/layer 1: 10

nodes
layer 2: 10 nodes

layer 3: 20 nodes

poslin

8.681

319.550

164.365

4.564

3.23

3 layer/layer 1: 10

nodes
layer 2: 20 nodes

layer 3: 10 nodes

poslin

8.711

326.173

166.322

4.617

3.24

3 layer/layer 1: 10

nodes
layer 2: 20 nodes

layer 3: 20 nodes

poslin

8.745

320.129

167.589

6.069

3.25

3 layer/layer 1: 20

nodes
layer 2: 10 nodes

layer 3: 10 nodes

poslin

8.565

312.657

158.320

27.654

3.26

3 layer/layer 1: 20

nodes
layer 2: 20 nodes

layer 3: 10 nodes

poslin

8.509

317.002

162.633

7.634
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Activation MAPE RMSE MAE Time
No. Layer/ node )
function (%) (kW) (kw) (Sec)
3.27 3 layer/layer 1: 20
nodes
poslin 8.713 321.253  164.837 3.557

layer 2: 10 nodes

layer 3: 20 nodes
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Layer Layer Layer MAPE RMSE MAE Time
No. Norm
1 2 3 (%) (kw) (kW) (Sec)

1 logsig  logsig  logsig yes 8916  309.866  157.404  253.208
2 logsie  logsig  tansig yes 8.916  309.866 157.404 253.208
3 logsig  tansig  logsig yes 9.411 315340 159.152  217.273
4  logsig  logsig  poslin yes 9.333  317.794  170.151 45.891
5 logsig  poslin logsig yes 8.947  323.675 170.460 116.523
6 logsig  tansig  tansig yes 8.812  297.740 155471 259.814
7 logsig  poslin poslin ~ yes 8.402 311954  159.126 14.705
8 logsig  tansig  poslin  yes 10.590 235430  174.892 12.594
9 logsig  poslin tansig yes 8.881  321.409  166.080 14.292
10  poslin  poslin  poslin  yes 8.504 314900  159.798 182.084
11 poslin = poslin logsig yes 8.771  318.652  165.939 20.258
12 poslin logsig  poslin  yes 8.740  309.095  159.658 18.651
13 poslin  poslin  tansig  yes 9.986  324.266 = 176.096 18.204
14 poslin  tansig ~ poslin. yes 8.690  314.263  160.972 33.714
15  tansig  poslin  tansig yes 8.687  317.713  164.333 5.575
16 poslin  tansig  tansig yes 8.977  313.266  163.037 48.419
17 poslin logsig  tansig yes 8.491  310.309  158.237 14.470
18 poslin tansig  logsig yes 8.969 322249  172.325 32.454
19 tansig tansig tansig  yes 9.431  358.750 172.391 192.778
20 tansig  tansig  logsig yes 9.999  387.018 186.085 197.925
21  tansig  logsig  tansig yes 8.736  300.372 154916 192.239
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22  tansig  tansig  poslin yes 9.754  319.155 178.164 33.591
23 tansig  poslin  tansig yes 8.675  310.752  158.637 37.944
24 tansig  logsig  logsig yes 9.402 306910 156977 190.803
25 tansig  poslin  poslin  yes 9.346 322221 173.886 176.386
26  tansig  poslin  logsig yes 8.774  315.054  163.050 186.226
27  tansig  logsig  poslin yes 8.705  313.445 160.146 46.766
Note: Using model 3.20 in table A.1
Table A.3 Comparison of activation function without normalization
Layer MAPE  RMSE MAE Time
No. Layer 2 Layer 3 Norm
1 %) (kw) (kw) (Sec)
1 logsig  poslin poslin no 8.402 311.954 159.126 10.598
2 poslin logsig tansig no 8.491 310.309 158.237 14.590
3 poslin  poslin  poslin no 8.504 314.900 159.798 179.017
q tansig poslin tansig no 8.675 310.752 158.637 37.396
5 tansig logsig poslin no 8.705 313.445 160.146 45.387

Note: Using top 5 models in table A.2
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NARX (Manual, See more details in Appendix C)

Table A.4 hyperparameter tuning for NARX
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Activation  MAPE RMSE MAE Time
No. Layer/ node )
function (%) (kw) (kw) (Sec)
1 1 layer/layer 1: 10nodes poslin 59.190 1,578.200  918.342 35.732
2 1 layer/layer 1: 20nodes poslin 59.894 1,584.200  920.452 426.591
3 1 layer/layer 1: 50nodes poslin 56.319 1,554.700  904.376  4,918.500
2 layer/layer 1: 10nodes
a4 poslin 60.038 1,654.900  928.406 20.675
layer 2: 10nodes
2 layer/layer 1: 20nodes
5 poslin 64.320 1,637.900  934.445 346.316
layer 2: 20nodes
2 layer/layer 1: 50nodes
6 poslin 56.231 1,573.900  898.595 13,753.000
layer 2: 50nodes
3 layer/layer 1: 10nodes
7 layer 2: 10 nodes poslin 58.160 1,647.000  912.574 21.936
layer 3: 10 nodes
3 layer/layer 1: 20nodes
8 layer 2: 20 nodes poslin 56.797 1,609.500 904.325 1,900.100
layer 3: 20 nodes
3 layer/layer 1: 50nodes
9 layer 2: 50 nodes poslin 55.437 1,509.200  808.321 36,200.000

layer 3: 50 nodes




A.3  LSTM (Manual, See more details in Appendix C)

Table A5 hyperparameter tuning for LSTM

145

MAPE RMSE MAE Time
No. Layer/ node
(%) (kw) (kw) (Sec)

1 1 layer/layer 1: 10nodes 14.808 462.120  249.644 3,571.000

2 1 layer/layer 1: 20nodes 14.398 450.952  235.199 3,596.200

3 1 layer/layer 1: 50nodes 12.167 369.067  204.658 3,873.700
2 layer/layer 1: 10nodes

4 13.464 390.240  241.690 2,672.400
layer 2: 10nodes
2 layer/layer 1: 20nodes

5 15.922 373.357  222.856 2,935.300
layer 2: 20 nodes
2 layer/layer 1: 50nodes

6 18.018 430.047  254.411 2,841.200
layer 2: 50 nodes
3 layer/layer 1: 10nodes

7 layer 2: 10 nodes  16.037 ~ 392.5301  229.179 5,270.000
layer 3: 10 nodes
3 layer/layer 1. 20nodes

8 layer 2: 20 nodes = 12.968 339.225  17.3623 5,713.900
layer 3: 20 nodes
3 layer/layer 1: 50nodes

9 layer 2: 50 nodes ~ 15.972 361.602  223.119 5,493.500

layer 3: 50 nodes
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To achieve the best performance of ML based-forecasting model,

hyperparameter optimization technique is necessary. The hyperparameter were

optimized by Bayesian Optimization that used MSE as minimize function results are

shown in figure C.1- C.12
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Abstract— An  accurate forecasting scheme is
essential te optimize efficiency +when planning a
distribution grid with a photovoltaic system. This article
proposed a comparative study of the efficiency and
advantages between supervised photovoltaic power
forecasting methods that can be appropriately applied
to varicus systems. For comparative study, Feedforward
Neural Network (FIVN) was compared with Long Short-
Term Flemery (L5TH) and Neolinear Auteregressive
with External Input (NARX) that use the previous
output as input via MATLAB program. The forecasting
dataset consists of time, cell temperature, irradiance,
and power cutput from the PV system in 8,760 samples
(for each bour). The dataset was divided into three parts
following: (1) training set is 70%, (2) validating set 20%
and (3) testing 10 %o. The simulation results show that,
compared to the three methods, LSTHM had the highest
accuracy, fellowed by FNN and NARX, respectively.
However, NARX iz cleser te the peak at high
temperatures and irradiance. For data set analysis, the
difference in power cutput ranges between the training
and test sets affects forecasting accuracy.

Keywards—PYV pawer generafion farecasting, shari-
lerm forecasting, LYTM, FINN, NARX

1 INTRODUCTION

Providing the resources is eszential to balance the
increasingly powerful of inherently variable and
unpredictable generation from solar and wind that
might be prohibitively expensive for the balancing
authority responsible for mamtaning the balance of
load and generation within their region. Solar
photovoltaic (PV) generation is one of the most
promising renewable energy options for mitigating
climate change and enhancing global energy security.
‘Weather factors such as solar irradiance, temperature,
humidity, and cloud characteristics influence
photovoltaic power generation. These variables
comtribute to the mtermittent and stochastic nature of
photovoltaie production. As a result, uncertain power
should be accurately forecasted to manage system
costs and power balance.

Numerous  strategies for  forecasting
photovoltaic  electricity  gemeration have been
developed over the years. They can be generally
categorized according to their approach to the
problem. For instance, indirect approaches anticipate
sun irradiance first and then photovoltaic output, but
direct methods forecast photovoltaic output directly.

978-1-6654-0216-3/2 1/$31.00 ©2021 IEEE

Keerati Chayakulkheeree
School ¢ f electrical engineering
Tastitute o f Engineering
Suranaree University ¢ f Technalagy
Makhon Rarchasima, Thailand
keerar.ch(@surac.th

The most frequently used classification scheme for
direct methods is machine learning and statistical
approaches [1]. PV forecasting was divided into two
categories as follows: Short-term forecasting, long-
termn  forecasting. The shortterm forecasting of
photovoltaic generation spans an hour to 24 hours and
13 crucial for grid security and operation [1, 2]. Long-
term forecasting horizons, on the contrary, range from
one month to one year and are used for long-term
planning [3, 4].

In the field of shortterm forecasting, statistical
techniques are viral. They use historical data to train
various data-driven methodologies, including time
series, regression models, machine learning, and deep
learning, Statistical models are more adaptable and
simpler to operate than physical models. The most
often utilized statistical techniques are Feedforward
Newral Networks (FININ) [5], Long Short-Term
Memories (LSTM) [1, 2], and in some interesting
cases, Nomlinear Auto Regressive Networks with
Exogenous nputs (NARX) [6, 7]. This popularity
originates from their performance, resulting from the
high nonlinearity of the connections between solar
photovoltaic output and its associated variables.

According to the research discussed previously, a
variety of methods and datasets were used to forecast.
Ay a result, this article presents a comparative study
between interesing methods and factors for
forecasting solar emergy generation. The rest of the
article is organized as follows: Section 2 discusses
forecasting solar cell power using deep learning.
Section 3 contains the case study, Data set, Method
parameter, and validation factor. Section 4 contains
the simulation and its results, as well as a discussion.
The last section is cotclusions.

. PV FORECASTING LJSING DEEP LEARNING

This part introduces a commonly used deep
learning technique to forecast power output from the
PV gystem. Hourly weather data and power output
data from the past are uszed as inputs to the deep
learning, forecast algorithm Multiple rows of
historieal hourly data comprise the input data. The
input data set has  rows. Thus, the mput data for
FNIN and LSTM are m rows by t (m for weather
data) NARX is m+1 for {for weather data and PV
output power data), and the output of these
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techniques is the power output from the photovoltaic
system.

A FNN

The following sections outline the critical aspects
of implementing FNN. The primary aim is to train the
feed-forward neural network to get the optimal
weiphts and biases for improving the network's
performance. The weights and biases of the training
FNN are adjusted using a technique known as
Levenberg-Marquardt backpropagation, an enhanced
version of the pradient descent approach [5]. The
learning error computation function may also be used
as Mean Absolute Error (MAE), Root Mean Square
Error (FMSE), and Mean Absolute Percentage Error
(MAPE). In this work, MSE is used and can be
calculated as following as equation 1.

The workflows diagram of the hidden node and
FNI are shown in Fig. 1.

(b
Fig. 1. (2) Structure of hidden node 1
(b) Structure of TN

;
By = 3 MSE (Ve » Yocuat 1) (n
i=1

Ej i3 training error at training iteration j%, is actual
output at sample #, x; is input, 7 15 number of training
sample, and forecasting output at the training sample
™ can be calculated following equation 2.

1
Autharized licensed use limited to: Rejamangala Univ of Technalogy Thanyaburi praviced by

=3 o fH)+ 5, 2)

Where @, ;is weights from hidden node #* to
output node at iteration 7% A, is the bias of output

node at 7 f(A )is an outcome of hidden A . The

fitness function is estimated using the training error
(E). The fitness function can be caleulated as follows.

Fitness (x)=Minimize E(x) {3)

8. LSIAf

Hochreiter and Schmidhuberin introduced the
LSTM in 1997 [5]. A conventional LSTM neural
network comprizes an input layer, hidden layers, and
arn owtput layer. The hidden layer is composed of a
collection of memory cells equipped with mput and
output gates. Then, Gers et al. erthanced the LSTM by
imtroducing a new gate in the memory cell called the
forget gate [6]. These gates regulate the flow of
informnation through a memory cell. The cemtral
compotient of a hidden layer 15 a memory block,
which consists of 2 collection of memory cells that
share the same gate units. Figure 2 illustrates the
architecture of the LSTM block.

Input LSTM memory block i Output

Outpat

h,

o

X) [ranh| || Next cell St
|19 % [tanh)| {75‘,—‘(5[.
) 00 &)
t Bl + t
;I\Ju<-.|sw.|u|ﬁ l—«L STL TTL
(| |@ @ ® ®
h4 f{

Y Next hidden State

Input |

Fig. 2. The structure of the L3 Th memory block

Given an nput {x;| i=1,2, _ n} with j* frames,
where x; 15 the static feature of the #* sample, the
standard L3TM 15 used to learn a sequence of hidden
states {A [i = 1, ..., n} to describe the output and
dynamic of this input at time step #*+/. The standard
L3TH mainly consists of an input gate, forpet pate,
output gate, input modulation gate, and memory cell
state. [1] provides additional LSTM equations.

C. NARX

NARX was presemted as a2 more advanced
implemerttation of the MNonlinear Auto-Regressive
Neural Network.
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The output regressor of the Nonlinear Auto-
Regressive Neural Network was given via a single
delayed feedback loop. On the other hand, the NARX
Meural Network uses m tapped delay lines in the
wnput and output signals n tume [7]. The exogenous
values are included in NARX's parametric equation
as follows.

Yy = fx@= 0 x(t— dx p(t=1,.., pE-d)] (4

Where d denote the passed value of output ¥(#) and
another series mputx(t) at sample #* The structure
of NARX 15 shown in Fig. 3.

vit)

vir-1) vit-cl)

Fig. 3. NARX structure
1. DATA SET AND PARAMETER

A, Data set

To compare the forecasting methods, the datasets
were used to test each method. The data set includes
time, irradiance, and cell temperature a3 input and
power output from the PV system. This research uses
a dataset from the northeastern region of Thailand
with the installation of a 14 MW solar cell system.
The data set with 8,760 samples for each hour was
divided into three sets: 70% of the traiming set, 20%
of the validation set, and 10% of the test set. The
detail of the datasets 15 shown in Fig. 4.

5,760 sample of Power output

10000
= s000

o
] 1000 2000 5000

o 5000 GO0 7000 BOOO
Time (hr)
Mean pewer eutput with SD in training set

o /"_'_'-""'
5000 _..-——----::\
il e

0 e
5 0 15 20

P i)

Mean pawer output with 8D in test set

= 1ocva- — ——
= sooaf __--"----T::\\\
- S

s 0 5 20
Tirme (hr)

Fig. 4. Dataset for comparative study

B. Method parameter

The data set was trained and tested by FIVIN,
L3TH, and NARX. Before tramng, the structure
parameter of these forecast methods must be set for
each scenario following as table 1 The hidden rnode
and epoch were defined by several tests to determine
the minimal parameter that can reach the optimal
network to forecast with the same condition.

TABLE 1 PARAMETER FOREACHNETWORK
Hidden
Methods input node epoch
LSTM 3 40 300
FNN 3 40 300
NARX 3+1 40 300

C. Validation Factor

To compare and wvalidate each method, MAE,
RMSE, and MAPE, respectively, were used as
validation factors. These can be calculated as follow
equation 5 to 7.

»
MAE = Z;:J Yearwali — Ypavecase.d | (5)
n

B B
Z;ﬂ[yaam; = ¥ tovecasri }
n

RMSE = (6)

Yocuat 1 7ymmyi|

MAPE=Y" .

X100%  (7)

Where ¥, 15 the actual power output at

sample i, and 5 is sample number.

IV, SIMULATION RESULTS anp DISCUSSION

The sinulation results in Fig. 5 show the
comparizon between actual power output and forecast
power output 875 samples in the test set. The
simulation results show that FNIV and L3TM are
quite accurate at power output lower than 8,000 KW,
and MARX is lower accurate at this range. For over
8,000 kW of power output, NMARX output is higher
accurate than other methods. The Fig. 6. Show the
different forecasting results in high and low power
output clearly.

After caleulating the validation factors by used
forecast and aetual power output, the results are
shown in Table 2. Table 2 shows LSTM, which is
630 kW of BMSE, 429 kW of MAE, and 30.06 %
MAPE, i3 the best forecasting method among these
three methods by considered 3 of validation factors.
However, the forecasting results of LSTM quite low
accurately on the day that high power output, but the
output shape is the same (different in size). For TN,
that 15 798 kW of RMSE, 647 kW of MAE, and 35.56
% MAPE, the shape results of this method closely to
L3TM, but there is more error than LSTM. For
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MARX that is 680 kW of RMSE, 429 K'W of MAE,
and 30.06 % MAPE, the shape results are guite
different from L3TM and FNN but, at the peak of
high-power output day, the size of power output 15
closest than L3TM and FNN.

Moreover, the cause of FINIM and LSTM error is
the difference in the Power output of the test set and
training set. The cause can be occurred by the
difference of weather such as temperature, wind
speed, or humidity that cause PV panel i3 lower
efficiency .

15000 [——Fortil_—— Rea

P

Fig. 5. Forecasting results for 875 of the test set

Ferecasting results (Forecast vs Real)

——LSTM

12000 FNN

10000

8000

P (kW)

4000

2000

180 180 200 210 220 230 240 250 260 270 280

Fig. 6. The most ditferent power output period

TABLE I

Network | RMSE MAE | MAPE
(kW) (kW) (%)

FORECASTING RESULTS

LSTM 680 429 30.06
FNN 798 647 35.56
NARX 761 429 43.93

V. CONCLUSION

This paper proposed the comparative study of
short-term PV forecasting methods including FNN,
LSTM, and WARX with 8, 760 samples of titne, solar

iradiance, cell temperature, and power ouwiput for
each hour. The simulation results show LSTM is the
most accurately followed by FNN and NARZ
Besides, at the peak of high-power output day, NARX
iz the most accurate in this range. The cause that
makes a high error at this range is the difference of the
weather data caused efficiency of PV panel is
decreased. For the impact from dataset, the data in the
test set should cover the season for which the
forecasting model 13 being evaluvated in order to
achieve high performance.
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ABSTRACT

As a vital function of an energy management system for distributed energy resources, optimal operation in distribution systems, and
mitigating potentially adverse effects of photovoltaic (PV) systems, accurate forecasting of PV power generation is required. This article
presents an alternative technique to improve the accuracy of deep-learning-based short-term PV power-generation forecasting models
by clustering the input data using a self-organization map (SOM). To validate the proposed model, long short-term memory (LSTM), feed-
forward neural network (FNN), FNN with the proposed SOM clustering method (FNN-SOM), and LSTM with the proposed SOM clustering
method (LSTM-SOM) were tested and compared with one-year hourly datasets (8760 samples). Root mean square error, mean absolute
error, and mean absolute percentage error were used as validation factors in this work_ The results show that the proposed method provides
a more aceurate solar power generation forecast than other methods. Moreover, the proposed method can work effectively even with a few

inputs system.

Published under an exclusive license by AIP Publishing, biipsil/doi.c

1. INTRODUCTION

Renewable energy penetration is greater than 20% at the national
level in Denmark, Germany, and Treland.' A regional grid would pro-
vide a more significant proportion of clean energy. For instance, China
may likely meet all new electricity demands with renewable energy by
20357 These projects ensure that in the extreme, instantaneous electric
power supply could be entirely supplied by photovoltaics (PVs). This
penetration can be considerably higher at the local level.™ Due to the
high variability of PV-generated electricity, power-system management
and control become more challenging as its penetration increases by
gither renewable energy plants or separate renewable energy resource
(RER) operations. According to this argument, forecasting solar energy
production is essential for operation and management,” especially for
short-term planning for distribution systems or low-marginal-risk
power systems.” These requirements demonstrate why a significant
amount of recent research bas been dedicated to forecasting PV power
generation.

Short-term PV power generation forecasting is essential for the
efficient functioning of current power systems.”” Due to the decentral-
ization of the power grid, PV forecasting technologies have become

much more prominent in today’s power delivery networks. Real-time
tracking of distribution networks, neighborhood battery usage,
peak shaving techniques, and some benefits of demand response tech-
nology are only a few examples of how reliable one-step-ahead PV
power-generation predictions are vital. Over the years, the issue of PV
power-generation forecasting development has been well-established.
Presently employed methods for predicting short-term PV production
are primarily classified as either physical or mathematical and statisti-
cal methods.'” The physical approach is based on the equations for
solar irradiance conversion, PV module function, or other physical
equations. This category creates a model using comprehensive and
specific geographic-position details and weather, solar irradiance, and
cther data from PV plants. This solution, which is a significant chal-
lenge, relies on comprebensive and accurate geographic position
knowledge as well as weather and solar irradiance data from the PV
plants to establish the model and the physical formula that contains
defects, indicating tht the physical method’s anti-interference capabil-
ity and robustness are inadequate. ™' However, the disadvantage of
this model is that it requires plenty of computing resources and is
less effective than statistical approaches for short-term forecasting.

J. Renewable Sustainable Energy 14, 043702 (2022); doi: 10.1063/5.0031454.
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The statistical approach is focused on correlations between the PV
forecasting model’s input and output variables. However, it does not
include complex spatial knowledge about PV power plants,” which
simplifies forecasting using mathematical regression methods such as
the support vector machine (SVM)'" and artificial neural networks
(ANNs). """ Artificial intelligence (AT})-based models capture the sto-
chastic structures of PV power time series by using ANN5, and other
deep-learning (DL) techniques were also proposed in Refs. 15 and 16,
Both physical and statistical models have recently been merged and
proposed bybrid models by Zhou et al " Akbter ef al. studied the suc-
cess of DL, statistical, and bybrid models in forecasting. According to
this extensive review, hybrid models outperform physical and statisti-
cal models that only focus on DL or mathematical techniques.'® Wang
proposed a hybrid short-term wind-speed prediction that utilized par-
ticle swarm optimization to determine the optimal regularization and
kernel parameters regularization for an SVM.'” In Ref. 13, Asrari et al.
proposed a single-step-forward forecasting algorithm that combined
metabeuristic optimization with an ANN. Meanwhile, a probabilistic
forecasting method for single-step-abead PV power forecasting that
incorporates quantile regression and an extreme learning machine was
proposed by Wan et al'” The prediction models in Refs. 13 and 12
demonstrate high precision; but their use is limited in real-time grid
operations due to a PV generation sampling resolution of only 5 min.
When the sampling resolution is greater than 15 min, long short-term
memory neural network (LSTM NN)-based models outperform tradi-
tional NN-based models as shown in Ref. 17. In addition, the model
suggested in Ref. 17 employed the attention mechanism and LSTM for
the single-step forecasting of PV generation at sampling resolutions
ranging from 7.5 min to 1 h.

Aside from the hybrid forecasting system, data processing with
datasets before training improves forecasting performance. Hossain
and Mabmood utilized the K-means algorithm to classify historical
irradiance data into complex sky categories that differed from hour to
hour within  single season to mitigate short-term PV power forecast-
ing using LSTM. " To improve the method’s performance in Ref. 20,
Massaoudi et al. permitted one parameter and estimated the forecast-
ing error increase in each case by caleulating the probability value
(P-value).

The literature survey illustrates that the most popular PV power
generation forecasting models in the present research are LSTM and
ANNs. These two models can use data-preprocessing or other statisti-
cal techniques to create features for improving the efficiency of the
forecasting model. Moreover, numerous studies frequently incorporate
additional variables, including various climate variables. However,
small- to medium-scale PV systems frequently lack detailed measure-
ments and some historical parameters. The historical data for these
systems are usually limited to ambient temperature, solar irradiance,
and power output. Other variables, such as cell tem perature and angle
of irradiance, which significantly affect the amount of energy gener-
ated by a PV system, usually have limited access over long perinds in
many areas.” If the relation of these variables can be estimated and
used as inputs for a DL algorithm, the accuracy of the forecasting
model will increase.

Therefore, a self-organization map (SOM) was proposed. SOMs
were used to improve the clustering efficiency of a nonlinear problem,
and the results demonstrated that this technique was effective for this
type of problem. Additionally, this technique can illustrate the
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relationship between two or more parameters as multiple states. This
paper presents an alternative method to improve the efficiency of 2
DL-based forecasting model with few inputs, which employs a SOM
to estimate an unmeasured and related factor as one of the inputs.

The novelties of the proposed method are as follows:

(1) The proposed method is appropriate for photovoltaic power
plants that typically measure only ambient temperature and
irradiance. The sensor data are more precise than the weather
web and, thus, significantly improve forecasting accuracy. In
addition, some systems may make it challenging to find aceu-
rate information on other topic areas.

(2) Classifying the level of correlation between latent variables and
PV power generation using SOM.

(3) Provide an alternative method for enhancing the accuracy of
photovoltaic power generation forecasting.

The remainder of the article is organized as follows: Sec. 1T dis-
cusses the approach, data preparation, the clustering method, the DL
architecture, and the proposed PV forecasting framework. Section [T
describes the dataset and system configuration used in a few case stud-
ies. Section [V wontains results demonstrating the efficacy of the
proposed method for increasing accuracy. Finally, Sec. V provides
concluding remarks for the paper.

Il. METHODOLOGY

As discussed previously, recent forecasting models for PV power
generation consider the historical data of the PV plantand take advan-
tage of available weather forecasting utilities or sensors at the PV plant.
The weather forecast for a city area is available on public weather web-
sites at hourly and regular resolution. Moreover, climate variables,
such as temperature and solar irradiance, are nearly identical in city
environments. However, certain critical factors cannot be obtained
from public weather websites. Many PV plants do not collect historical
data such as the cell temperature or accufate classifications of the sky
in the region. As a result, the available data from a PV plant may be
insufficient for PV forecasting. This can result in an erroneous forecast
of PV generation at a specific plant location. Therefore, utilizing 4 rela-
tive state factor from SOM as an input to a forecasting model that can
be correlated with the output level can be « beneficial strategy for
increasing forecasting accuracy. The proposed model’s data processing
includes estimating unmeasured relative factors through clustering
measured input. Cluster analysis is typically used to solve time series
regression and classification This section will describe the ANN
clustering-based preprocessing approach, including a dataset prepara-
tion, the estimation of relative unmeasured factors, and statistical
analysis.

A. Approach overview

The first step to create « PV forecasting model s gathering and
preprocessing the historical data, including PV power generation and
weather data. Solar irradiance, temperature, and other related parame-
ters are processed in this step. As mentioned, other related factors
were unmeasured. This process can be accomplished by clustering the
historical dataset into related groups using the clustering method for
input toa DL framework based on pre-forecasting. It is proposed that
the historical data were clustered into complex states of unmeasured
factors for each hour of the day. The objective of defining unmeasured
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factors is to determine the factors for each hour related to the degree
of irradiance, the time of day, the weather, and previous PV power
production. Consequently, each bour of the day i divided into distinct
clusters based on the factors mentioned above. In this work, distinct
clusters will be called “states.” A state is accomplished with the aid of a
SOM algorithm. After obtaining the state using SOM, it will be used as
one of the inputs to a DL-based PV forecasting model. The proposed
forecasting framework will be compared to a recently developed
method to ensure that the proposed method performs as expected.

B. Data preprocessing

Before going to the DL model, data have to go through two pri-
mary processes: clean data and preprocessing data. This paragraph will
serve as a summary of preprocessing that can be used in its entirety.
Data preprocessing aims to prepare our data for use with the DL model
by selecting features or converting text to numeric values. In comparison
to clean data, which focus on improving the accuracy of the data, such
as dealing with undefinition (NAN) o no value (Null) data or dealing
with outlier data, clean data focus on data analysis. Clean data steps are
also included in this task. Data cleaning or data completion is the pro-
cess of verifying and correcting (or removing) invalid data entries from
a dataset, table, or database that have been designated as a “managed
object” Because invalid data refer to incompleteness, inaccuracies, and
correlation with other data, a database’s cornerstone, these inaccuracies
must be replaced, updated, or removed to ensure the quality of the data.

This work removes the dataset in the zero solar irradiance period,
because those data will affect the training process’s DL model parame-
ters. The process to remove these data is shown in Table I, where x is
the input matrix, ¥ & the output matrix, & is the number of inputs, and
% is the input matrix after preparation.

After obtaining the dataset from the data preprocessing step, it is
processed through the clustering step. Clustering is the capability of
grouping similar objects into a similar class of input clusters. The well-
known methods to cluster include the K-means algorithm and SOM:s.
SOMs perform similarly to a constrained K-mean, but it is challenging
to use the inpul vector category in this study to set the centroids:
Therefore, a SOM was used to cluster the dataset in this step.

A SOM trains an ANN on patterns to generate classifications based
on pattern similarities and relative topology. This is advantageous for
delying into data or simplifying it before further processing ANNs have
shown their ability to perform well as classifiers and are especially well-
suited to solve nonlinear problems. Given the nonlinear existence of
real-world phenomena such as sorting, ANNs are undoubtedly an excel-
lent candidate for solving the clustering problem. The input data for

TABLE |. Data preprocessing process

Data preparation

Input:x € R%Y contain time (j), temperature (j), and irradiance (j),
PV putput at previous step (j — 1)
Output: y € R/ PV output at previous step (j)
1:j=1,..., 8760
2:k=4
3:% = {Remove x{all,j) and y{j) :f x{irr{j), j) = 0}
R€ REm i an (k X fuow) matrix
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clustering problems are prepared for 2 SOM to cluster the dataset. Each
row of the input matrix would contain the same number of elements as
the calculated component. For this work, the four evaluated variables
(i.e, time, temperature, irradiance, and PV output) will be fed into the
SOM network, mapping the data j,, sample to a two-dimensional
layer of neurons. The input data for clustering problems are prepared
for 2 SOM as an input matrix. Each row jih of the input matrix will
contain & elements, corresponding to a caleulated vector from the PV
plant data_ Note that the jtb sample contains k rows as an input set in
this research. Specifying the number of neurons in each dimension of
the layer provides SOM for classifying samples to obtain the state
parameter of the dataset. A two-dimensional layer of neurons was used
in a hexagonal grid Using more neutrons provides more detail, and
adding dimensions enables modeling the topology of more complex
function spaces. For the SOM process, given input X, the Jth unit is
found with the closest weight vector W' by competition and W'x' will
be the maximum for each unit jth in the neighborhood N(i) of winning
neuron § to update the weights of j (W), and the weights putside of
N(i) is not updated ( e I1). The SOM bhas three stages: (1) competi-
tion, (2) collaboration; and (3) weight update. For the competition
stage, the most similar unit x) is found with the following equation:

i{x) = arg m}axux — Wil, (1)

where j=1,2, ..., mand m = samples. For the collaboration state, the
lateral distance d; between the winner unit 7 and unit j & used in the
following equations:

—dt
hijld)) = exp (zT;) : @
8{n) = doexp (— %) 3)

where f is the neighborhood function, # is the number of iterations,
and T is constant. Weights-updated states are shown in the following
equations:
Wiin+1) = Win) +AW, (4)
AW = nyx - g () W )
where # i¢ the learning rate, y is the output, and g(y;) can be found
with the following equation:

gl = nyi = nhyx). (6]

Figure 2 demonstrates the neuson-to-neuron relations. Typically, neigh-
bors classify adjacent samples. The topology of the SOMs includes i neu-
tons arranged in a hexagonal grid. Bach neuron has acquired the ability
to represent a distinct state class with neighboring neurons usually rep-
resenting identical classes.

TABLE Il Sef-organization map process.

SOM

Input: & € R is an (K X jo) matrix

Output: i{% ) is neighborhood  as Eq. (1)

1: for j =1:1:8760

2: N{x)) = (i, +f i{%;) closest to N (i) } 4s shown in Fig 1.
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FIG. 1, SOM structure.

€. LSTM architecture

Hochreiter and Schmidbuberin introduced the LSTM in
1997.7° A conventional LSTM comprises input, bidden, and output
layers. The hidden layer comprises a collection of memory cells
equipped with input and output gates. Then, Gers ¢f al. enbanced
the LSTM by introducing a new gate in the memory cell called the
forget gate. These gates regulate the flow of information through a
memory cell. The central component of the hidden layer is a mem-
ory block; which consists of a collection ofmamory cells that share
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SOM Neighbor Connections

-

FIG. 2. SOM neighbor connections.

the same gate units. Figure 3 illustrates the architecture of the
LSTM block.™

Given an input (x| ¢=1, ..., T) with ¢ frames, where i is the
static feature of the ¢ frame, the standard LSTM'" is used to learn z
sequence of hidden states (f |¢=1, ..., T) to describe the dynamic of
this input. A standard LSTM mainly consists of an input gate, a forget
gate, an output gate, an input modulation gate, and a memory cell
state, and one standard LSTM unit at time step ¢ can be represented as
follows:

FIG. 3. The structure of the LSTM mem-
ory block.

Input | LSTM memory block ¢« I @utput
! Ourput
| | e
I i+ A,
| [
|
Gei) c
Cell State | le cell State
| il
|
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FIG. 4. Architecture of FNNs.

fo= o Wi Xe + Wigheoy +by), @

i = a{ Wiy Xe + Wiiheo) +85), ()]

& = fiee) + itanh{ Wi X, + Wicheo) + &), (9)
of = o{ Wi Xi + Wioheo) + &), (10}

H = optanbic,), (11)

where &, fi, 0, g and ¢ are the input gate, forget gate, output gate,
input modulation gate, and memory cell state, respectively; o is a sig-
moid function, which denotes an elementwise product; Wy areweight
matrices; and b is the bias vector. Precisely, the input gate controls the
contributions of the newly arrived input data at time step ¢ for updat-
ing the memory cell. In contrast, the forget gate £ determines how
much of the contents of the previous state ¢, contribute to deriving
the current state c,. The output gate o, learns how the output of the
LSTM unit at time step ¢ should be derived from the current state of
the memory cell ¢
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D. Feed-forward neural network architecture

The primary aim of this network is to train the feed-forward
neural network (FNN) to obtain the optimal weights and biases for
improving the network’s performance. The weights and biases of
the training process are adjusted using 2 Levenberg-Marquardt
backpropagation. The learning error computation function may
also be used asmean absolute error (MAE), Root mean square
error (RMSE), MSE, and mean absolute percentage error (MAPE).
In this work, MSE is used and can be calculated with the following
equation:

E =ZMS£ ()f;ovmr,;'}/.;cmar,i]* (12)
=1

where E is the training error at training iteration jth, )/‘;mﬂ“. & the
actual putput at sample ith, x; s the input, and # is the number of the
training sample.

The workflow diagram of FINNs is shown in Fig. 4.

The forecasting output at training sample jth can be calculated
using the following equation:

)/,’=Zwk‘jf(kk]+ﬂ)'. (13)
=

where wy; are the weights from a hidden node kth to an output
node at jteration jth, ff; is the bias of the output node at jth, and
Fihg) is the putcome of hidden f. The fitness function is esti-
mated using the training error (E), which can be caleulated as
follows:

Fitness {x) = Minimize E{x). (14)

E. PV Forecasting framework

The bistorical data were processed for the PV forecasting frame-
work to obtain the highly efficient data and remove outliers. Then, the
processed data were input to SOM to classify the data type and use
both processed and classified data to train the DL model, as shown in
Fig. 5.

Historical data

Irradiance

Data

Ambient Temp. Processi"g l

Train

Time

 ERE!

PV output

SOM

FIG. 5 Propoeed PY power generation
foregasting framework,

Teuin

Measurement dats
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o
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|
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F. Performance factor

To validate the performance of the proposed forecasting model,
MAE, RMSE, and MAPE were evaluated in the following equations:

"
> |l — Sroneist]
MAE =2 1 (1s)
n
I—n_———
Z (}’m} = ,Vfamm)z
RMSE=4| S — (16)
n
3
Mapg = 3 Ui ol o0, an
Freal

=1

where Y is the actual power from the PV plant, yoreer 5 the fore-
casted power from the PV, and # & the number of samples.

Mean rr | Tomp | Pout with SD for Training set

Time (he)
(©

FIG. &. [3) Irradiancs, temperature, and power of the tr:
test set. (d) Power outputof the training set, validation
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Ill. CASE STUDY AND CONFIGURATION FOR DL
MODELS

A. Case stucly dataset

The dataset used in this research consisted of historical data from a
PV plant for one year or 8760h, including time, irradiance, ambient
temperature, cell temperature, and power output. The hourly mean irra-
diance and power output from the PV plant, along with standard devia-
tions, are shown in Fig. & The test system is a rooftop solar power plant
with 14 MWp in Nakhon Ratchasima province, Thailand, in 2020. The
peak generation s 1320 MW during the training period, while the
lowest peak day is 245 MW. The average peak generation capacity is
820MW with a standard deviation of approximately 54 MW. The
peak power generation capacity for the testing set is 13.20 MW, while
the lowest peak day is 245 MW. The average peak generation capacity
is 8.20 MW with a standard deviation of approximately 5.4 MW.

Figure & illustrates the user inputs in the training set and com-
pares solar irradiance and PV power generation in the training set, val-
idating set, and test set. Figure 6] shows the average solar irradiance,
temperature, and PV power generation in a day during the training set

Maoan kr / Temp / Pout with SD for Test set

Wit

Tiemee (he)

Temsertature (C)
&

]

FH
g

-3
8

Power output (kW

Tieme (hr)

(b)

2000

7000

= 5000
=
=
Q. 4000

000

Time (hr)

(d)

| power of the test set. (<) Irradiance of the training set, validation set, and
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FIG. 7. The power cutput of the training set, validation set, and test set.

period. The average peak solar irfadiance in a day is 0.6 kW/m? with a
standard deviation of 0.5 KW/m®. For tem perature, the average peak in
a day is 40 “Cwith a standard deviation of 15 “C. For PV power gener-
ation, the average peak in a day is 11 MW with a standard deviation of
7MW. Figure o(b) shows the average solar irradiance, temperature,
and PV power generation in a day during the test set period. The aver-
age peak solar irradiance in a day is 0.6kW/m® with a standard devia-
tion of 0.5 KW/m®. For temperature, the average peak in a day is 40°C
with a standard deviation of 15 °C. For PV power generation, the ayer-
agepeak in a day is 11 MW with a standard deviation of 7MW (Fig. 7).
IV. RESULTS AND DISCUSSION

The simulation result will be discussed in two parts: (1) classifica-
tion using the SOM and (2) power output forecasting results trained
by DL. The SOM classes showing each of the four input features are
presented in Fig 5(4) in a weight plane representation, a visual repre-
sentation of the weights that bind each input to one of the 24 neurons
in the 6 x 4 hevagonal grid. Darker shades denote heavier weights
than lighter ones. When four inputs have similar weight planes (their

Weights from Time

Waights from Irradiance

0 2 ) f

Waeights from Power output

color gradients can be identical or inverted), they are strongly corre-
lated. Additionally, it was discovered that when all four variables are
weighted equally, the weight ratio of light intensity to output power
tends to be equal, which is the opposite of the temperature trend. In
terms of time, it carries 4 disproportionate amount of weight near the
peak of light intensity and output power. As a result, Fig 8 indicates a
Euclidean interval between each neuron’s class and jts neighborhoods.
The bright connections denote closely connected areas of the input
space. However, the dark connections denote groups representing
regions of the function space that are separated by few or no members.
Extended boundaries with dark connections dividing vast areas of the
input space suggest that the groups on either side of the boundary rep-
resent neighborhonds with significantly different characteristics.
Figure @ shows the classes associated with each neighborbood
and the number of classes included within each class. Neuronal areas
with many bits correspond to groups that reflect identical densely pop-
ulated regions of the function space. In contrast, areas with few hits
signify parts of the feature space that are sparsely inhabited. After
analyzing the correlation between the weights in Fig 5 and the

SOM Neighbor Weight Distances

FIG. B, {s) Welghts from inputs; (5) SOM neighbor weight distances.
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FIG. 9. Sampk hits of SOM.
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FIG. 10, The generated power forecast and error of (a3 FNN, (61 LSTM, (c) LSTM-SOM, and (d) FNN-SOM.
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grouping results in Fig. 9 it was determined that the cassifications
were fairly distributed in the 4 x 6 plane but possessed a more signifi-
cant fraction than the other classes, which indicated that the solar cells
in the upper-right plane were more likely to generate energy.

After classifying the dataset, the resulting class data are taken as
one of the DL features, including the FNN and LSTM. We then com-
pared the prediction results from the proposed model to the conven-
tional model that is non-classified. Only the results during the power
generation period are shown (678 h). The forecasting results via LSTM
are presented in Fig 10(z) slong with the forecasting results and error
values. The highest error was 3104.5kW, and the average error was
371.77KW. The forecasting results via FNNs are presented in Fig
10(b) along with the resulting and error values. The highest error was
85351 kW, and the average error was 225.28KW. The forecasting
results via LSTM-SOM are presented in Fig. 0(c) along with the
resulting error values. The higbest error was 1371 KW, and the average
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TABLE Ill. Comparing the simulation resutts of FNN/LSTM/LSTM-SOMIFNN-SOM.
The italic values denote the best performance method.

Methods MAPE (%) MAE (kW) RMSE (kW)
ENN 1232 205.01 266.72
LSTM 17.38 37177 551.05
ENN-SOM 4.56 106.69 13132
LSTM-SOM 7.55 216.95 30118

error was 216.95 kW. The forecasting results via FNN-SOM are pre-
sented in Fig. 10(d) along with the resulting error values. The highest
error was 458.77 kW, and the average error was 106.69kW. The fore-
cast results during the peak period contain more errors than in other
periods for all cases.

The simulation results are summarized in Table 111 The FNN
has a MAPE of 1292%, a MAE of 20501 kW, and a RMSE of
266.72 KW, whereas LSTM has 17.38%, a MAE of 371.77kW, and an
RMSE of 551.05 kKW. FNN-SOM has an MAPE of 4.56%, an MAE of
106.69 kW, and an RMSE of 131.32 kW, whereas LSTM-SOM has an
MAPE of 7.55%, an MAE of 21695kW, and an RMSE of 301.18kW.
As shown in the simulation results, the model that bad used the clus-
tering method to cluster the dataset before being used in the training
process was more accurate than the conventional method, especially
in the peak power production period.

V. CONCLUSICN

This article presents an alternative technique to improve the
accuracy of deep-learning-based short-term PV power-generation
forecasting models by clustering the input data using a self-
organization map (SOM) and data-preprocessing. The most widely
used forecasting methods in this field were simulated and compared to
the proposed method to validate its efficiency. Particularly in FNNs
for fitting problems, a SOM was used to map a set of numeric inputs
to 4 set of numeric targets. The simulation results indicated that clus-
tering via the SOM provided better PV power generation forecasting
and can be used in place of the FNN and LSTM, which are DL-based
forecasting methods. In addition, the proposed methnd can work
effectively even with a few inputs system.
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