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CHAPTER 1 
INTRODUCTION 

 

1.1  Background 
The persistent growth of the economy has resulted in a commensurate 

increase in demand for electricity, necessitating the need for electrical systems that 

exhibit reliability and quality. This is because a fault in the electrical system could have 

catastrophic implications for the entire economy of the country. In light of the 

pressures posed by these challenges and carbon emissions, renewable energy sources 

(RES) have been widely integrated into power grids. However, the inherently 

intermittent nature of RES electricity poses several technical issues to the power 

system, underscoring the need to estimate photovoltaic (PV) output accurately to 

ensure the dependable functioning and economical dispatch of the power systems. 

Among the various energy sources available, RES is regarded as one of the most cost-

effective and environmentally friendly options for electrical systems. To enhance the 

stability of the power transmission system, it is imperative to manage the power system 

to maximize its benefits and increase competition in the energy sector while ensuring 

maximum reliability and performance. Moreover, the use of RES in the distribution 

system can reduce the infrastructure costs involved in generating, transmitting, 

distributing, and using electricity, making it an essential component of the country's 

economic growth and industrial development. In 2018, Thailand unveiled the Power 

Development Plan 2018-2037 (PDP 2018) and Alternative Energy Development Plan 

2018-2037 (AEDP 2018), which outlines the country's energy future for the next two 

decades.  

The central aim of both plans is to increase the power capacity of distributed 

energy resources (DER) through RES to reduce pollution from conventional power 

generation and enhance reliability. The PDP 2018 underscores the need to procure
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electricity from renewable energy sources in keeping with the country's remaining 

renewable energy potential and support the changing behavior of electricity 

consumers, including disruptive technology in electrical energy. This will occur while 

adhering to the COP21 agreement and will comprise biomass, biogas, solar, and floating 

solar, combined with hydropower, and other renewable energy sources to maintain 

the retail price of electricity. The PDP 2018 also accounts for future energy 

conservation measures that will be cost-competitive with renewable energy plants and 

reliable. The new renewable energy power plants and energy conservation measures 

of PDP 2018 are presented in Table 1.1. 
 

Table 1.1 New renewable energy power plants of PDP 2018 

Renewable energy 
Contract capacity 

(MW) 
Reliable capacity 

(MW) 
Solar power 10,000 4,250 
Biomass 3,376 2,296 
Biogas 546 325 
Solar floating and hydro power plant 2,725 1,158 
Wind power 1,485 189 
Industrial waste 44 26 
Electrical energy conservation measures - 4,000 
Total as of 2037 18,176 12,244 

(Source: PDP2018, EPPO) 
 

AEDP2018 seeks to augment the proportion of renewable and alternative energy in the 

form of electricity, heat, and biofuels, constituting 30 percent of the total energy 

consumption by 2037. A detailed breakdown of the energy and alternative energy 

production targets for each fuel type is provided in Table 1.2. 
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Table 1.2 Comparison of alternative energy production targets of AEDP 2018 

Fuel type 

Production capacity (MW) 
AEDP2015 AEDP2018 

Goal 
(MW) 

Done 
(MW) 

Goal 
(MW) 

Cumulative 
demand1 

(MW) 
Solar energy 6,000 2,849 9,290 12,139 
Solar floating energy - - 2,725 2,725 
Biomass 5,570 2,290 3,500 5,790 
Wind energy 3,000 1,504 1,485 2,989 
Biogas 1,280 382 1,183 1,565 
Community waste 500 500 400 900 
Industrial waste 50 31 44 75 
Small hydro energy 376 239 69 308 
Large hydro energy 2,906 2,920 - 2,920 
Total Capacity (MW) 19,684 10,715 18,696 29,411 
Total energy production (GWh) 65,582 37,757 52,864 85,652 
Total energy demand (GWh) 326,119 329,119 250,204 250,204 
Electricity from RES per demand 
(%) 

20.11 10.04 21.14 34.23 

Electricity from RES per final 
energy (%) 

4.27 2.13 3.55 5.75 

Note: 1 is Cumulative demand that can be calculated from done from AEDP 2015 

plus 2018 

(Source: AEDP2018, EPPO) 

 

Table 1.1 and Table 1.2 indicate that power generation from photovoltaics (PV) 

represents the most substantial component of power capacity that must be 

augmented due to the necessity to scrutinize and enhance PV system operation 

technologies.  
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1.2  Statement of the problem 
To realize the objectives outlined in the PDP2018 and AEDP2018, it is 

imperative to investigate and implement the photovoltaic (PV) power generation 

forecasting approach in modern power system operation. Multiple approaches have 

been proposed to achieve this task, broadly classified into three main groups: physical, 

statistical, and hybrid approaches. While physical and statistical approaches possess 

varying strengths and drawbacks, physical approaches utilize theoretical simulation 

models to compute the PV system power generation based on its fundamental design 

variables. On the other hand, statistical approaches encompass all data-driven 

methodologies, ranging from conventional statistical modeling to advanced machine 

learning algorithms. Mayer and Gróf (2021). Subsequently, hybrid techniques were 

proposed to mitigate the limitations of each method by integrating two distinct 

methodologies, namely a physical and a statistical approach or multiple statistical 

models. The literature suggests that statistical approaches are primarily employed for 

PV power prediction. (Antonanzas et al., 2016). These data-driven methods are reliant 

on historical irradiance, weather, and production data. Additionally, these models do 

not necessitate a comprehensive understanding of the PV system's parameters. 

Nonetheless, the precision of data-driven forecasting is substantially influenced by the 

quality, resolution, and accuracy of the training dataset, and even state-of-the-art deep 

learning systems exhibit restricted accuracy if the historical data provided is limited to 

less than 1-3 years and fails to encompass various weather and PV conditions. (Wang, 

Qi, & Liu, 2019). The literature has documented various statistical approaches, such as 

artificial neural networks (ANN) (Liu, Fang, Zhang, & Yang, 2015), and long short-term 

memory (LSTM) (Kim, Ko, & Kim, 2019) , to predict PV production. However, in practice, 

the measured data may be incomplete, while the traditional methods rely on the 

completeness of the PV-generating dataset. According to the Korea Meteorological 

Administration (Kim et al., 2019), roughly 19.0 percent of data was missing in 2017. A 

flawed dataset impedes the application of machine learning-based PV forecasting 

models or significantly reduces the accuracy of forecasting models. Despite the gravity 
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of the problem of missing data and a dearth of multiple inputs, relatively few research 

studies have addressed this issue. Furthermore, it is challenging to ascertain the 

efficacy of any forecasting model in predicting the output close to the actual value. 

Therefore, techniques to enhance the accuracy of PV power generation forecasting 

and probabilistic forecasting, which can bridge this gap by delineating the range and 

probability of electricity production during various periods, are necessary. 

As mentioned earlier, it is essential to investigate solutions that can facilitate 

more accurate PV generation predictions for practical applications. Firstly, widely 

adopted models will be comparatively analyzed to assess their accuracy using 

performance matrices. Subsequently, an alternative forecasting framework will be 

proposed to enhance the efficiency of PV power generation. Finally, probabilistic 

calculations will be implemented to determine the range of firm PV power generation 

forecasting for the test system. 

 

1.3  Objective of the study 
 The objective of PV (photovoltaic) forecasting is to accurately predict the 

amount of energy that will be generated by a solar PV system at a given time in the 

future. This information is useful for a variety of stakeholders, including grid operators, 

energy traders, and solar power plant owners and operators. Accurate PV forecasting 

helps to improve the reliability and stability of the electricity grid by allowing grid 

operators to better anticipate fluctuations in renewable energy supply. It can also help 

energy traders to optimize their energy trading strategies and solar power plant owners 

and operators to better manage their power output and revenue streams. Overall, the 

main objective of PV forecasting is to provide reliable and accurate information on the 

expected energy output of a solar PV system, which can be used to inform decision-

making and improve the efficiency and effectiveness of the renewable energy sector. 

 The primary goal of this study comprises of the following objectives: 

1.3.1 To undertake a comparative analysis of commonly employed forecasting 

models with the aim of ascertaining their accuracy. 
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1.3.2 To enhance the precision of PV forecasting for a select set of input 

variables. 

1.3.3 To employ probabilistic forecasting techniques in order to determine the 

reliable range of PV power generation.   

 

1.4  Structure of thesis 
 The present thesis is composed of six chapters, and the subsequent section 

provides concise overviews of each chapter. 

 Chapter I serves as the introductory section of this thesis, wherein the 

background information, problem statement, objectives, and overall structure of the 

thesis are outlined. 

 Chapter II provides an in-depth discussion of the various applications of power 

forecasting in distribution systems. This includes an overview of machine and deep 

learning, as well as a review of recent research in photovoltaic power forecasting. The 

chapter covers both point and interval forecasting methods, including a description of 

the fundamental workflow from data collection to the implementation of forecasting 

models. In addition, the chapter explores widely used methods and adopted 

predictive models. Finally, the chapter concludes with a detailed description of 

validation methods and performance metrics. 

Chapter III presents a comparative study workflow between widely used 

forecasting model that were mentioned in chapter II, which includes the datasets used 

for this study, data preprocessing, and visualization techniques. The chapter also 

explores the impact of hyperparameter tuning on the forecasting models and 

evaluates the performance of the deployed models. 

Chapter IV presents the proposal of a Self-Organizing Map (SOM) to enhance 

the clustering efficiency of a nonlinear problem. The findings of this study suggest that 

SOM is an effective method for addressing this type of challenge, as it can depict the 

relationship between two or more parameters through numerous states. Additionally, 
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this research proposes an alternate technique for enhancing the performance of a 

Deep Learning (DL)-based forecasting model with few inputs by utilizing a SOM to 

estimate an unmeasured and related factor as one of the inputs. 

Chapter V outlines the probabilistic forecasting process, which is utilized to 

attain a high level of accuracy in predicting intervals.  

Chapter VI described on conclusion of thesis. 

 

1.5  Thesis overview 
 The overview of this thesis is illustrated in Figure 1.1. 

 

 
 

Figure 1.1 Thesis overview 

 

1.6  References 
Antonanzas, J., Osorio, N., Escobar, R., Urraca, R., Martinez-de-Pison, F. J., & 

Antonanzas-Torres, F. (2016). Review of photovoltaic power forecasting. Solar 
Energy, 136, 78-111. doi:https://doi.org/10.1016/j.solener.2016.06.069 

 

https://doi.org/10.1016/j.solener.2016.06.069


8 

Kim, T., Ko, W., & Kim, J. (2019). Analysis and Impact Evaluation of Missing Data 
Imputation in Day-ahead PV Generation Forecasting. Applied Sciences, 9(1). 
doi:10.3390/app9010204 

Liu, J., Fang, W., Zhang, X., & Yang, C. (2015). An Improved Photovoltaic Power 
Forecasting Model With the Assistance of Aerosol Index Data. IEEE 
Transactions on Sustainable Energy, 6(2), 434-442. 
doi:10.1109/TSTE.2014.2381224 

Mayer, M. J., & Gróf, G. (2021). Extensive comparison of physical models for 
photovoltaic power forecasting. Applied Energy, 283, 116239. 
doi:https://doi.org/10.1016/j.apenergy.2020.116239 

Wang, K., Qi, X., & Liu, H. (2019). A comparison of day-ahead photovoltaic power 
forecasting models based on deep learning neural network. Applied Energy, 
251, 113315. doi:https://doi.org/10.1016/j.apenergy.2019.113315 

 

 

https://doi.org/10.1016/j.apenergy.2020.116239
https://doi.org/10.1016/j.apenergy.2019.113315


CHAPTER 2 
LITERATURE REVIEWS 

 

In order to identify and determine the appropriate methodology, a thorough 

review of related research and methods is necessary. Chapter 2 addresses this need 

by providing an overview of recent research in several key areas, including the 

background of power forecasting, the application of PV forecasting, machine learning 

for electrical systems, recent research in photovoltaic power forecasting, and the 

fundamental theory behind adopted methods. 

 

2.1  Background of power forecasting 
 Power forecasting is the process of predicting future electricity production or 

consumption, typically at a particular location and time. It involves the use of various 

mathematical and statistical models, as well as data analysis techniques, to estimate 

the amount of energy that will be generated or consumed over a given time period. 

Power forecasting is used in a variety of applications, including grid management, 

energy trading, and renewable energy integration, among others. Accurate power 

forecasting is critical for ensuring the stability and reliability of the electrical grid and 

maximizing the efficiency of energy systems. Energy forecasting is a process of 

predicting the future demand and supply of energy, typically at a particular location 

and time. It involves the use of various mathematical and statistical models, as well 

as data analysis techniques, to estimate the amount of energy that will be consumed 

or produced over a given time period. Energy forecasting can be applied to various 

energy sources, including electricity, gas, and renewable energy, among others. 

Accurate energy forecasting is essential for efficient energy management, as it helps 

energy providers to plan for future energy supply and demand, manage energy prices, 

and make informed investment decisions. Energy forecasting is used in a variety of 
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applications, including energy trading, load management, and renewable energy 

integration, among others. The main difference between power forecasting and energy 

forecasting lies in the scope of their predictions. Power forecasting specifically focuses 

on the prediction of electricity production or consumption, while energy forecasting 

encompasses a broader range of energy sources, such as oil, gas, and renewable energy 

sources, in addition to electricity. Power forecasting is typically used in the 

management of electrical grids, energy trading, and renewable energy integration, 

among other applications, whereas energy forecasting is used in broader energy 

management contexts, including the planning and optimization of energy supply and 

demand, the management of energy prices, and the planning of energy infrastructure. 

In summary, power forecasting is a subset of energy forecasting that specifically focuses 

on the prediction of electricity production and consumption, while energy forecasting 

encompasses a wider range of energy sources and applications. 

The history of forecasting in electrical systems dates back to the early 20th 

century when the demand for electricity began to rise rapidly. At that time, electrical 

utilities needed to be able to predict the amount of electricity that would be needed 

in order to ensure that they could generate and distribute enough power to meet 

demand. The history of forecasting in electrical systems can be traced back to the 

early days of the electricity industry. As the demand for electricity grew and power 

grids became more complex, accurate forecasting became increasingly important for 

efficient system operation, planning, and resource allocation. This history can be 

broadly divided into several key phases, each marked by significant advancements in 

methodologies, technology, and data collection. In the early days of electricity (late 

19th century - early 20th century), During this period, electrical systems were relatively 

simple, and forecasting techniques were primarily based on simple linear models and 

intuition. Utilities relied on load duration curves and basic statistical techniques to 

estimate demand for electricity. For the growth of statistical methods (mid-20th 

century): 
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As electricity demand increased and power systems became more 

interconnected, there was a growing need for more accurate and reliable forecasting 

methods. Statistical techniques, such as regression analysis and time series analysis, 

began to be applied to electrical load forecasting. This led to the development of 

more sophisticated short-term and long-term forecasting models. With the advent of 

computer technology (the 1960s - 1980s), the introduction of computers 

revolutionized forecasting techniques in electrical systems. With increased 

computational power, more complex and efficient forecasting models were 

developed, including the Box-Jenkins method (ARIMA) and exponential smoothing 

state space models. Additionally, the advent of digital computers enabled the 

collection, storage, and processing of large amounts of data, which further improved 

the accuracy and reliability of forecasting models. For the development of artificial 

intelligence and machine learning techniques (1990s - early 21st century), during this 

period, advances in artificial intelligence and machine learning led to the development 

of new forecasting techniques, such as artificial neural networks (ANNs), fuzzy logic, 

and support vector machines (SVMs). These methods were capable of capturing 

complex nonlinear relationships between input variables and offered improved 

accuracy and adaptability compared to traditional statistical methods. For big data and 

advanced analytics (2010s - present), The ongoing digital revolution and widespread 

use of smart grid technologies, such as advanced metering infrastructure (AMI) and 

phasor measurement units (PMUs), have generated large volumes of data in the power 

sector. With the help of big data analytics and high-performance computing, advanced 

forecasting models like deep learning, ensemble methods, and hybrid models have 

been developed. These models are capable of handling high-dimensional and 

complex data, leading to improved forecasting accuracy and reliability. Throughout its 

history, forecasting in electrical systems has evolved in response to the growing 

complexity and interconnectedness of power grids, as well as advancements in 

technology and data collection methods. Today, accurate forecasting plays a crucial 
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role in ensuring the reliable, efficient, and sustainable operation of power systems 

around the world. 

 Load forecasting is the process of predicting the amount of electricity demand 

that will be required at a future time. There are several different types of load 

forecasting, each with its own approach and methodology. Some of the most common 

types of load forecasting are: Short-term load forecasting (STLF) predicts electricity 

demand for a period of up to one week ahead. This type of forecasting is used for day-

to-day operation of the power system, such as scheduling generation and transmission 

resources. Medium-term load forecasting (MTLF) predicts electricity demand for a 

period of up to one year ahead. This type of forecasting is used for mid-term planning 

of the power system, such as determining the need for new transmission lines or power 

plants. Long-term load forecasting (LTLF) predicts electricity demand for a period of 

more than one year ahead. This type of forecasting is used for long-term planning of 

the power system, such as developing energy policies and making investment 

decisions. Peak load forecasting: Peak load forecasting predicts the maximum amount 

of electricity demand that will occur during a specific time period, such as a day or a 

week. This type of forecasting is used to plan for the highest levels of demand and 

ensure that there is enough generation and transmission capacity available to meet it. 

Weather-sensitive load forecasting takes into account weather patterns and other 

external factors that can affect electricity demand, such as holidays and special events. 

This type of forecasting is used to plan for the impact of weather conditions on 

demand, such as high levels of air conditioning use during heatwaves. Customer load 

forecasting predicts the electricity demand for individual customers or groups of 

customers. This type of forecasting is used to plan for the needs of specific customer 

segments, such as industrial or residential customers. Spatial load forecasting is a type 

of load forecasting that predicts the amount of electricity demand for different 

geographical areas within a power system. This type of forecasting takes into account 

the unique characteristics of each area, such as population density, weather patterns, 

and economic activity. Spatial load forecasting is important because electricity demand 
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can vary significantly from one area to another, depending on factors such as the types 

of customers in the area, the time of day, and the season. By predicting the demand 

for each area, utilities can plan for the resources needed to meet that demand and 

ensure that there is enough capacity available to avoid power outages and other 

disruptions. Average load forecasting is a type of load forecasting that predicts the 

average amount of electricity demand for a particular time period, such as an hour, 

day, or week. This type of forecasting is important because it provides a baseline for 

estimating the resources needed to meet expected demand. Average load forecasting 

is typically based on historical data, which is used to identify patterns and trends in 

electricity demand. For example, a utility might analyze electricity demand data from 

the same day in previous years to identify trends in demand based on factors such as 

weather patterns, economic activity, and population growth. Overall, load forecasting 

is a critical tool for ensuring the reliable and efficient operation of the power system. 

By predicting future electricity demand, utilities can plan for the resources needed to 

meet that demand and ensure that there is enough capacity available to avoid power 

outages and other disruptions. 

 Wind power forecasting is the process of predicting the amount of electricity 

that will be produced by wind turbines at a future time. This is important for ensuring 

the reliable and efficient operation of wind power systems, as well as for integrating 

wind power into the larger electrical grid. The background of wind power forecasting 

can be traced back to the early days of wind energy research when scientists began to 

explore the potential of wind power as a renewable energy source. In the early days, 

wind power forecasting was done manually, using simple statistical techniques to 

predict the amount of energy that would be produced by a wind turbine in a given 

time period. As wind power systems became more common in the 1980s and 1990s, 

computer-based forecasting models began to be developed. These models used more 

sophisticated techniques such as time series analysis and neural networks to predict 

wind energy production. The introduction of these models made it possible to make 

more accurate forecasts, which in turn helped to improve the reliability and efficiency 
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of wind power systems. During the 2000s and 2010s, the focus of wind power 

forecasting shifted from just predicting energy production to also predicting the impact 

of weather patterns on energy production. This required the development of new 

forecasting techniques that could take into account the variable nature of weather 

patterns and their impact on wind energy production. Today, wind power forecasting 

plays a critical role in the operation of wind power systems. By predicting the amount 

of energy that will be produced at a future time, utilities and system operators can 

plan for the resources needed to meet that demand and ensure that there is enough 

capacity available to avoid power outages and other disruptions. As wind power 

continues to grow as a source of renewable energy, it is likely that even more advanced 

forecasting techniques will be developed in the future. 

 Photovoltaic (PV) forecasting is the process of predicting the amount of 

electricity that will be produced by a solar power system at a future time. This is 

important for ensuring the reliable and efficient operation of solar power systems, as 

well as for integrating solar power into the larger electrical grid. The background of PV 

forecasting can be traced back to the early days of solar energy research when 

scientists began to explore the potential of solar power as a renewable energy source. 

In the early days, PV forecasting was done manually, using simple statistical techniques 

to predict the amount of energy that would be produced by a solar panel in a given 

time period. As solar power systems became more common in the 1980s and 1990s, 

computer-based forecasting models began to be developed. These models used more 

sophisticated techniques such as time series analysis and neural networks to predict 

solar energy production. The introduction of these models made it possible to make 

more accurate forecasts, which in turn helped to improve the reliability and efficiency 

of solar power systems. During the 2000s and 2010s, the focus of PV forecasting shifted 

from just predicting energy production to also predicting the impact of weather 

patterns on energy production. This required the development of new forecasting 

techniques that could take into account the variable nature of weather patterns and 

their impact on solar energy production. Today, PV forecasting plays a critical role in 
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the operation of solar power systems. By predicting the amount of energy that will be 

produced at a future time, utilities and system operators can plan for the resources 

needed to meet that demand and ensure that there is enough capacity available to 

avoid power outages and other disruptions. As solar power continues to grow as a 

source of renewable energy, it is likely that even more advanced forecasting 

techniques will be developed in the future. 

 In conclusion, power forecasting is a critical tool for ensuring the reliable and 

efficient operation of power systems. By predicting the amount of electricity demand 

or production at a future time, utilities and system operators can plan for the resources 

needed to meet that demand and ensure that there is enough capacity available to 

avoid power outages and other disruptions. The history of power forecasting can be 

traced back to the early 20th century when simple statistical techniques were used to 

predict electricity demand. With the advent of computers, more sophisticated 

forecasting methods were developed, including artificial intelligence and machine 

learning algorithms. In recent years, the focus of power forecasting has shifted to the 

integration of renewable energy sources such as solar and wind power, which require 

new forecasting techniques that can take into account the variable nature of these 

energy sources. Overall, power forecasting is an important tool for ensuring the 

reliability and sustainability of power systems, and its importance is likely to grow as 

renewable energy sources become more common. 

 

2.2  Applications of Power forecasting 
 The utilization of photovoltaic (PV) forecasting in distribution systems offers a 

range of benefits, including capacity firming, battery size determination, and energy 

market management. In a recent study by (Keerthisinghe, Mickelson, Kirschen, Shih, & 

Gibson, 2020), different forecasting techniques such as persistent forecasts, long short-

term memory (LSTM), encoder-decoder LSTM, and multi-layer feed forward neural 

network (ML-FNN) were compared to firm capacity. The study found that both ML-FNN 

and LSTM, which are deep learning (DL) models, outperformed the conventional 
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model by reducing the annual battery energy throughput the most. Similarly, (Beltran, 

Cardo-Miota, Segarra-Tamarit, & Pérez, 2021) utilized DL-based irradiance forecasts to 

determine battery size for solar capacity stabilization, demonstrating that this 

methodology increases the predictability of PV output and enables PV capacity firming. 

(Visser, AlSkaif, & van Sark, 2022) proposed a comparison of day-ahead solar power 

forecasting algorithms for PV systems with variable geographical distribution, which 

revealed that DL-based forecasting methods outperformed other models in terms of 

both performance and economics. These findings highlight the potential of short-term 

PV forecasting models to enhance grid benefits, with ML-based forecasting models 

demonstrating superior performance compared to other methods. Consequently, the 

application of ML in electrical systems and PV forecasting will be discussed in 

subsequent sections.  

In power system planning studies, the time horizon can be classified into long-

term and short-term. Long-term planning studies typically involve generation and 

transmission expansion planning, policy development, and investment decisions over 

several decades. On the other hand, short-term planning studies focus on issues such 

as unit commitment, economic dispatch, power flow, and day-ahead markets, with a 

time horizon of up to one year (Seifi & Sepasian, 2011). Therefore, the duration of 

forecasting can be defined as shown in Tables 2.1 to 2.3. 
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Table 2.1 Classification of load forecasting methods according to the time period 

(Wang, Guo, & Huang, 2011) 

Methods Time horizon Applications 

very short-term load 
forecasting 

few mins 
- distribution’s schedule 
- generation forecasting 

short-term load 
forecasting 

few hours 
- distribution’s schedule 
- generation forecasting 

medium-term load 
forecasting 

few days to a month - seasonal load forecasting 

long-term load forecasting >1 year 
generation growth 
planning 

 
Table 2.2 Wind generation forecasting methods according to the period (Soman, 

Zareipour, Malik, & Mandal, 2010) 

Time horizon Range Applications 

very short-term 
1 sec to  

30 minutes 

- electricity market clearing 

- regulation actions 

short term 
30 minutes to  

6 hours ahead 

- economic load dispatch planning 

- load increment/decrement decisions 

medium-term 
6 hours to  

1 day ahead 

- generator online/offline decisions 

- operational security in the day-ahead 

electricity market 

long-term 

forecasting 

1 day to 1 week 

or more ahead 

- unit commitment decisions 

- reserve requirement decisions 

- maintenance scheduling to obtain optimal 

operating cost 
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Table 2.3 PV generation forecasting methods according to the period (Akhter, Mekhilef, 

Mokhlis, & Mohamed Shah, 2019) 

Time horizon Range Applications 

very short-term 1 sec to 1 hr - real-time electricity dispatch 

- optimal reserves  

- power smoothing 

short term 1 hr to 24 hr - increase the security of the grid 

medium-term 1 week to 1 

month 

- maintains the power system planning and 

maintenance schedule by predicting the 

available electric power shortly 

long-term 

forecasting 

1 month to 

many years 

- helps in electricity generation planning, 

transmission, and distribution authorities in 

addition to energy bidding and security 

operations. 

 

This thesis categorizes the forecasting horizon into four different time periods, 

namely Nowcasting (Intra hour), Short-term forecast (Intraday), Medium-term forecast, 

and Long-term forecast. Intra-hour forecasting requires investigation of a few seconds 

to several minutes and is crucial for real-time decision-making, particularly in 

applications such as distributed load dispatching and energy storage planning. In 

networks with high penetration of renewable energy, short-term forecasting using 

renewable energy resources and related storage enhances grid stability, especially in 

unexpected islanding/fault scenarios. Although numerical weather prediction (NWP)-

based methods suffer performance degradation, typically, historical and/or 

meteorological information are used for nowcasting assessments. Recent 

advancements in image processing of captured sky images have the potential to yield 

promising results. Short-term forecasting estimates PV power generation for up to 

seven days, enabling unit commitment, rescheduling, and dispatch of electricity 
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supply, making it beneficial in constructing a PV-integrated energy management 

system. It also improves grid operation security. Medium-term forecasting uses a time 

frame of more than a week to a month, enabling the projection of the future 

availability of electric power to facilitate power system design and maintenance 

schedule. Long-term forecasting estimates PV power generation from one month to 

one year and is useful for planning electricity production, transmission, and distribution 

organization and for energy bidding and security operations. 

 

2.3  Machine/Deep Learning for forecasting  
 Machine learning (ML) is a subfield of artificial intelligence (AI) concerned with 

the evolution of systems that can be trained or improved by the data they receive. 

The term "machine learning" was coined in 1959 by American scientist Arthur Lee 

Samuel, who defined it as "a field of study devoted to the study of a computer's ability 

to learn without being explicitly programmed". ML is a data-driven approach that 

enables mechanisms to evaluate information without explicit programming. DL, also 

known as deep learning, is one of the neural networks distinct from conventional 

artificial neural networks (ANNs) in that it consists of multiple hidden layers, intricate 

interconnection structures, and various transition operators. In recent decades, several 

machine-learning architectures have been developed, facilitating the proliferation of 

deep learning. With the increasing use of deep learning in various fields, numerous 

techniques and algorithms have been developed for training DLs (Kingma & Ba, 2015). 

DL can effectively perform without feature engineering, which is the process of 

extracting significant features from the dataset, and this is a key difference between 

ML and DL. Generally, DL models require substantially more data to be effectively 

trained. As previously mentioned, machine learning is a statistical method that 

captures insights from a dataset without being primarily ordered. However, the ability 

to do so requires an information source on which the model is "trained". Following this 

initial step of information extraction from statistical information, the machine learning 

model can be used to provide accurate forecasts/insights throughout the process, 
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which is known as the "inference" mode. Training data must be appropriately 

standardized/normalized to provide the appropriate features that enable the artificial 

neural network (ANN) to be efficiently trained. ML/DL methods can be applied in 

various categories in the electrical system or related topics. Nonetheless, each ML/DL 

method has different strengths and drawbacks. To select the appropriate model that 

works well with the research objective, in-depth details of recent research on the PV 

power forecasting model will be discussed in the next section. 

 

2.4  Recent Research in Photovoltaic Power Forecasting 
In order to develop a comprehensive understanding of photovoltaic power 

forecasting, a review paper will be examined as presented in Table 2.4. The review 

paper aims to analyze and discuss the most popular and effective methods utilized in 

this field. Photovoltaic (PV) power forecasting is a critical aspect of renewable energy 

generation, and its importance has grown exponentially in recent years due to the 

increased deployment of solar panels worldwide. Accurate PV power forecasting is 

essential for optimal energy management, grid integration, and maintenance 

scheduling, among other purposes. To achieve this, a variety of forecasting techniques 

have been developed, ranging from conventional statistical models to advanced 

artificial intelligence (AI) and machine learning (ML) techniques. These techniques have 

become increasingly popular due to their effectiveness in dealing with the inherent 

complexities of PV power forecasting, such as weather fluctuations and solar panel 

degradation. The review paper will provide a comprehensive overview of the various 

methods utilized in the field of PV power forecasting and will serve as a useful 

reference for researchers, practitioners, and policymakers seeking to understand the 

state-of-the-art techniques in this domain. 
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Table 2.4 Literature Review of Review Paper in PV forecasting field 
Ref. Notes 

(Das et al., 
2018) 

The study examined the effectiveness of ML and statistical models 
from historical data. ANNs and SVMs were found to be the most 
adaptable models, while GAs were preferred for hyperparameter 
optimization. These findings emphasize the importance of 
advanced techniques in PV power forecasting for better energy 
management. The study's results provide valuable insights for 
renewable energy researchers and practitioners, paving the way for 
future improvements in PV power forecasting models. 

(H. Wang et al., 
2020) 

This article comprehensively reviews AI-based solutions for solar 
energy forecasting, evaluating methods such as DL and 
optimization and identifying obstacles and research goals. These 
include developing probabilistic prediction models, improving 
model explainability, and estimating cloud behavior. Continued 
research is essential for effective solar energy management, and 
the study provides valuable insights for renewable energy 
researchers and practitioners. The review's findings pave the way 
for future advancements in solar energy forecasting. 

(Mellit, Massi 
Pavan, Ogliari, 
Leva, & Lughi, 

2020) 

This article reviews publications between 2008 and 2019 on ML, 
DL, and hybrid models for solar energy output forecasting. The 
review focuses on point forecasting, with ANNs and SVMs being the 
most popular methods. These methods enable accurate solar 
energy output forecasting for efficient energy management and 
grid integration. The findings provide insights into current 
techniques for solar energy forecasting, paving the way for 
advancements in renewable energy. 
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Table 2.4 Literature Review of Review Paper in PV forecasting field (continue) 
Ref. Notes 

(Carrera & Kim, 
2020) 

This study compares various forecasting approaches for PV power 
output using a 1.5-day prediction horizon. ML models are 
evaluated with a k-fold cross-validation process and grid search to 
find optimal hyperparameters. Data from weather forecasts and 
observations validate each model. The XGBoosting algorithm 
outperforms others due to its ability to handle non-linear 
relationships and interactions between input variables. This study 
provides insights for researchers and practitioners in renewable 
energy, improving PV power output forecasting models. 

(Rajagukguk, 
Ramadhan, & 

Lee, 2020) 

This study evaluates three DL approaches for forecasting solar 
irradiance and PV power production: LSTM, CNN+LSTM, and ED-
LSTM models. The CNN+LSTM model performs best in predicting 
solar irradiance and PV power production. The study emphasizes 
the importance of using RMSE for comparing outcomes. RMSE 
provides a reliable error rate measure, enabling researchers and 
practitioners to assess model accuracy. The study's findings 
provide insights for developing accurate and reliable forecasting 
models for solar irradiance and PV power production, contributing 
to optimal energy management and grid integration. 

 

Table 2.4 provides an overview of various machine learning (ML) and deep 

learning (DL) models proposed for PV power generation forecasting, as well as the 

preprocessing techniques used in these studies. The reviewed articles demonstrate 

that ML and DL models outperform conventional techniques in short-term PV power 

forecasting, and provide insight into which methods are most effective for this task. 

Table 2.4 presents a concise summary of the key findings. In this thesis, we will discuss 

the literature review on PV power generation forecasting in two groups: 1) point-

forecast ML-based methods and 2) interval (or probabilistic)-forecast ML/DL-based 
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methods. The review will analyze and compare the strengths and limitations of these 

different methods, providing valuable insights for researchers and practitioners seeking 

to develop accurate and reliable PV power forecasting models. The aim of this analysis 

is to contribute to the ongoing efforts to improve renewable energy management and 

grid integration, ultimately enabling a more sustainable energy future. 

 

Table 2.5 Reviews on PV power generation forecasting 

Ref. 
Forecasting 

horizon 
& Resolution 

Parameters 
(Historical & 

forecast) 
Method & notes 

Point-forecast ML-based methods 
(Fekri, Ghosh, & 
Grolinger, 2020) 

Not 
applicable 

Not applicable The R-GAN has been 
employed to generate 
realistic datasets suitable for 
training energy forecasting 
models. 

(Li, Zhou, Lu, & 
Yang, 2020) 

One hour 
ahead 
,5 min 

Metrological 
data 
Power 
production 
 

In this study, a comparison is 
conducted between a hybrid 
deep learning (DL) model 
that integrates wavelet 
packet decomposition (WPD) 
and DL models. 
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Table 2.5 Reviews on PV power generation forecasting (continue) 

Ref. 
Forecasting 

horizon 
& Resolution 

Parameters 
(Historical & 

forecast) 
Method & notes 

(Niu, Wang, Sun, 
Wu, & Xu, 2020) 

1–150 steps 
ahead 
,5 min 

Metrological 
data 
Power 
production 
 

In order to generate ultimate 
forecasts, an artificial neural 
network (ANN) constructs a 
hybrid model by leveraging 
historical photovoltaic (PV) 
power data that have been 
decomposed using the 
Complementary Ensemble 
Empirical Mode 
Decomposition (CEEMD) 
algorithm, and weather 
information that has been 
selected through the use of a 
random forest (RF) approach 
and optimized using the 
Improved Grey Ideal Value 
Approximation (IGIVA) 
method. 

(H. Zhou et al., 
2019) 

1–8 steps 
ahead 
,7.5 min 

Metrological 
data 
Power 
production 
 

An ensemble model is 
constructed for temperature 
and power series, comprising 
two Long Short-Term 
Memory (LSTM) models, 
each equipped with 
attention mechanisms. 
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Table 2.5 Reviews on PV power generation forecasting (continue) 

Ref. 
Forecasting 

horizon 
& Resolution 

Parameters 
(Historical & 

forecast) 
Method & notes 

(S. Zhou, Zhou, 
Mao, & Xi, 2020) 

1–4 weeks 
,10 min 
 

Irradiance 
Power 
production 
 

In order to address the issue 
of limited training data, a 
technique based on 
sequential model-based 
optimization is employed to 
optimize hyperparameters of 
LSTM model that features 
shared-optimized layers. 
Furthermore, transfer 
learning is incorporated into 
this LSTM model, with a 
source domain consisting of 
historical solar irradiance 
data and a target domain 
comprised of power 
production data. 

(Severiano, Silva, 
Weiss Cohen, & 
Guimarães, 
2021) 

 1,2 and 8 
steps 
, every 15 
min 
 

Solar energy & 
Wind energy 
 

In this study, a mechanism 
known as TEDA is utilized in 
conjunction with Evolving 
Multivariate Fuzzy Time 
Series and Data Analytics to 
distinguish typicality and 
eccentricity. The pyFTS 
module in Python was 
employed to implement the 
model, which offers a novel 
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Table 2.5 Reviews on PV power generation forecasting (continue) 

Ref. 
Forecasting 

horizon 
& Resolution 

Parameters 
(Historical & 

forecast) 
Method & notes 

means of detecting concept 
drift. 

(F. Wang et al., 
2020) 

Day ahead 
,15 min 

Direct normal 
irradiance (DNI) 
and 
temperature 
Power 
production 
 

In this study, a group or 
ensemble is created by 
integrating a Long Short-Term 
Memory (LSTM) recurrent 
neural network (RNN) with a 
Time Correlation 
Modification (TCM) model. 
The coefficients of the TCM 
model are calibrated through 
the utilization of a partial 
daily pattern prediction 
(PDPP) framework. 

(Zhao et al., 
2021) 

One day 
ahead 
,30 min 

Metrological 
data 
Power 
production 
Power from a 
physical model 

The AML model comprises 
three regression techniques, 
namely Elastic Net CV 
regression, Gradient Boosting 
Regression, and RF 
Regression. The selection of 
appropriate features for the 
region-specific base models 
is carried out using a 
modified genetic algorithm 
(GA) approach. In addition, 
the forecast of power 
generation at the base level 
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Table 2.5 Reviews on PV power generation forecasting (continue) 

Ref. 
Forecasting 

horizon 
& Resolution 

Parameters 
(Historical & 

forecast) 
Method & notes 

is enhanced through the 
incorporation of a physical 
model, thus elevating the 
performance of the final 
model. 

(Chang, Li, & 
Zomaya, 2020) 

1–12 steps 
ahead 
,30 min 

Metrological 
data 
 

In order to cluster weather 
patterns, Light Gradient-
Boosting Machine (LightGBM) 
models were employed in 
tandem with temporal 
pattern aggregation and Time 
Series Self-Organizing Map 
(TS-SOM) techniques. The 
resulting approach 
demonstrated noteworthy 
performance not only in 
terms of accuracy but also in 
relation to training and 
inference time, even on edge 
devices. 

(Hossain & 
Mahmood, 
2020) 

12 to 24 h  
, hourly 

Metrological 
data 
Power 
production 
 

In this study, the Long Short-
Term Memory (LSTM) model 
leverages a synthetic 
irradiance forecast that is 
generated using a k-MEANS 
classification algorithm. This 
approach results in a 33% 
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Table 2.5 Reviews on PV power generation forecasting (continue) 

Ref. 
Forecasting 

horizon 
& Resolution 

Parameters 
(Historical & 

forecast) 
Method & notes 

improvement in accuracy 
compared to the use of an 
hourly sky forecast, and a 
44% enhancement relative 
to utilizing a daily sky 
forecast. 

(Pan & Tan, 
2019) 

1–24 steps 
ahead 
hourly 

Metrological 
data 
Power 
production 
 

In this study, an ensemble 
approach is employed for 
Random Forest (RF) models, 
utilizing ridge regression, in 
addition to preliminary 
cluster analysis of weather 
predictions. 

(Leva, Dolara, 
Grimaccia, 
Mussetta, & 
Ogliari, 2017) 

1–24 steps 
ahead 
, hourly 

Metrological 
data 
Irradiance 
measurement 
Power 
production 

In this study, the clear sky 
model was utilized to pre-
process data prior to its 
utilization with the Artificial 
Neural Network (ANN) model. 
Furthermore, various periods 
of the year were examined, 
and the simulation outcomes 
were analyzed for both 
partially cloudy and cloudy 
days. 

(Nkuriyingoma & 
Selcuklu, 2021) 

Depending on 
metrological 
data 

Metrological 
data from the 
station 

In order to achieve this 
objective, Nonlinear 
AutoRegressive with 

 



29 

Table 2.5 Reviews on PV power generation forecasting (continue) 

Ref. 
Forecasting 

horizon 
& Resolution 

Parameters 
(Historical & 

forecast) 
Method & notes 

, hourly Irradiance 
measurement 
Power 
production 

eXogenous input (NARX) 
models were proposed. The 
activation function, also 
known as the transfer 
function, plays a crucial role 
in adjusting the output 
amplitude of the neural 
network model, as it is 
responsible for translating 
the input signals into the 
corresponding output signals. 
The most commonly utilized 
transfer functions include 
sigmoid (logistic and 
hyperbolic tangent), linear, 
and Gaussian. 

(Lateko, Yang, & 
Huang, 2022) 

Depend on 
metrological 
data (7 days) 
, hourly 

Metrological 
data 
Power 
production 

In this study, Linear 
regression, Support Vector 
Regression (SVR), and an 
ensemble of trees were 
compared with the proposed 
forecasting methods. The 
proposed method employed 
a combination of Support 
Vector Machines (SVM) and K-
means, resulting in higher 
performance compared to 
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Table 2.5 Reviews on PV power generation forecasting (continue) 

Ref. 
Forecasting 

horizon 
& Resolution 

Parameters 
(Historical & 

forecast) 
Method & notes 

the other compared 
methods. To achieve this 
task, Gaussian Process 
Regression (GPR) was 
proposed, with consideration 
given to some unique inputs 
that were tested using 
correlation analysis. 

(Fen et al., 
2017) 
 

Depend on 
metrological 
data (3 days) 
, hourly 

Metrological 
data 
, Clearness index 
, Hourly 
temperature 
difference, 
Sunshine 
duration, Power 
production 

In this study, Linear 
regression, Support Vector 
Regression (SVR), and an 
ensemble of trees were 
compared with the proposed 
forecasting methods. The 
proposed method employed 
a combination of Support 
Vector Machines (SVM) and K-
means, resulting in higher 
performance compared to 
the other compared 
methods. To achieve this 
task, Gaussian Process 
Regression (GPR) was 
proposed, with consideration 
given to some unique inputs 
that were tested using 
correlation analysis. 

 



31 

Table 2.5 Reviews on PV power generation forecasting (continue) 

Ref. 
Forecasting 

horizon 
& Resolution 

Parameters 
(Historical & 

forecast) 
Method & notes 

 Interval-forecast ML/DL-based methods  
(du Plessis, 
Strauss, & Rix, 
2021) 

1–6 h ahead  
(21 steps) 
15 min 

Weather sensor 
data 
PV power data 

In this study, a comparison 
was conducted between 
Artificial Neural Network 
(ANN), Long Short-Term 
Memory Recurrent Neural 
Network (LSTM-RNN), and 
Gate Recurrent Unit 
Recurrent Neural Network 
(GRU-RNN) models. 

(Carriere, 
Vernay, Pitaval, 
& Kariniotakis, 
2020) 

30 min–36 h 
ahead 
30 min 

Historical 
Weather 
Historical power  
Forecast altitude 
& azimuth sun 
position 
 

The Analog Ensemble (AnEn) 
model utilizing Numerical 
Weather Prediction (NWP), 
satellite, and in situ data was 
employed to forecast results 
for a horizon ranging from 5 
to 36 hours. 

(Wen et al., 
2020) 

1,3,6 h ahead Historical 
Weather 
Historical power  
 

In this study, a hybrid model 
was constructed by 
combining Radial Basis 
Artificial Neural Networks 
(RBANN) with Particle Swarm 
Optimization (PSO). The 
Prediction Interval (PI) was 
determined through the 
utilization of Bootstrap with 
Quantile Regression (QR) 
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Table 2.5 Reviews on PV power generation forecasting (continue) 

Ref. 
Forecasting 

horizon 
& Resolution 

Parameters 
(Historical & 

forecast) 
Method & notes 

results. It was found that the 
utilization of Bootstrap 
resulted in superior PI 
reliability diagrams. 

(Huang & Wei, 
2020) 

1–24 h ahead 
Hourly data 

Historical 
Weather 
Historical power  
 

To address the non-
differentiable loss functions 
problem associated with 
Quantile Convolutional 
Neural Networks (QCNN), a 
two-stage training strategy 
was implemented in this 
study. 

(Najibi, 
Apostolopoulou, 
& Alonso, 2021) 

1–24 h ahead 
Hourly data 

Historical 
Weather 
Historical power  
azimuth sun 
position 

In this study, Gaussian 
Process Regression (GPR) was 
utilized with the Matern 5/2 
kernel function on pre-
clustered data (using k-
means clustering). 

 

While a range of Artificial Neural Network (ANN) architectures and other Machine 

Learning (ML) techniques have been utilized in this field, earlier research has 

predominantly focused on shallow architectures such as multilayer perceptron (MLP) 

networks. In recent years, however, there has been a shift towards more advanced 

Deep Learning (DL) techniques, such as Long Short-Term Memory (LSTM) networks. In 

order to accurately evaluate the performance of forecasting models, an understanding 

of performance metrics is necessary. The most commonly employed performance 
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measurements are the mean absolute error (MAE) and the root mean square error 

(RMSE). It is important to note that the scenario under consideration has a significant 

impact on the model's performance. It would be unfair to compare outcomes from 

frameworks applied to different scenarios, where the scenario encompasses various 

attributes of the plant under independent inquiry (e.g., dimension, structure in terms 

of the number of strings, cell type, etc.), environmental factors, the size of the training 

and testing datasets, and feature preprocessing and/or extraction. This holds true not 

only for absolute measurements such as MAE or RMSE but also for relative 

performance measures such as Mean Average Percentage Error (MAPE), which are more 

suitable for comparing the results of models across different plants. A detailed 

description of the measures utilized to evaluate models can be found in (Zhang et al., 

2015).  

 Over the past few years, numerous machine learning frameworks have been 

developed to simplify the process of developing and deploying machine learning 

models in production. Many of these frameworks support AML (Automated Machine 

Learning), which is a technique that enables the automatic selection, training, and 

optimization of a machine learning model, or an ensemble of machine learning 

models. In a recent study conducted by (Zhao et al., 2021). an AutoML approach was 

proposed for creating an ensemble that utilized an improved genetic algorithm (GA) 

optimization technique to select the best attributes for each region. The proposed 

approach combined historical data from photovoltaic (PV) plants, weather data, and 

the output of a physical model to forecast generated power, utilizing features such as 

tilted solar irradiance, PV panel temperature, and ambient temperature. The dataset 

covered 2016 and 2017 and was recorded every thirty minutes. The researchers trained 

a multi-regional model using Elastic Net CV regression, Gradient Boosting Regression, 

and RF Regression, which was subsequently applied to data from different plant 

locations. The study is one of the few to examine the effectiveness of AutoML in 

forecasting PV output, and interestingly, the models used in the ensemble have not 

been widely used in the industry before. Historical data from PV power plants in 
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Hokkaido, Japan were used to train the models from January 1, 2016 to December 31, 

2017, but only one month (December 2017) was utilized for testing purposes. 

 In a recent study by (Severiano et al., 2021). , the aspect category problem was 

introduced for the first time in the field of energy forecasting, as evidenced by a review 

of relevant literature. Although the focus of the study was on the forecasting of solar 

and wind energy, the methods employed in the research are potentially applicable in 

the context of PV energy generation, and the study utilized a public dataset. The 

research utilized the Evolving Multivariate Fuzzy Time Series (e-MVFTS) approach to 

forecast time series and evaluated its effectiveness in the context of solar and wind 

energy by utilizing a publicly available dataset from the United States National 

Renewable Energy Laboratory (NREL) for solar energy data, and the 2012 Global Energy 

Forecasting Competition (GEFCom2012) for wind energy data, which is now accessible 

through the Kaggle platform. The proposed method integrates a forecasting model 

based on Fuzzy Time Series with an evolving clustering method based on Typicality 

and Eccentricity Data Analytics (TEDA), enabling it to adapt to concept drift that occurs 

in time series and to automatically handle changes in the data distribution. 

 (Li et al., 2020) proposed a novel combination method of Wavelet Packet 

Decomposition (WPD) and Long Short-Term Memory (LSTM) networks in their research. 

This method incorporates historical information regarding power and weather but does 

not consider future irradiance predictions in the model. The WPD technique is applied 

to a photovoltaic power series to generate four new sub-series, which are then fed 

into individual LSTMs. The outputs from each LSTM are combined using linear 

weighting to produce the final forecast. Moreover, each LSTM generates sequential 

forecasts. 

In a study conducted by (Liu, Zhao, Wang, Sun, & Wennersten, 2019), historical 

photovoltaic power data, past weather conditions, and artificially generated weather 

forecasts using k-means clustering were utilized to develop multi-step predictions with 

an LSTM network. The results indicate that the proposed LSTM model outperformed 
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RNNs, GRNNs, and ELM models. In comparison to utilizing an hourly sky forecast, the 

accuracy of the model was found to improve by 33-44.6% when a synthetic irradiance 

prediction was employed. 

The concept of Transfer Learning (TF) was first introduced in the field of 

photovoltaic (PV) generation forecasting, as proposed by (S. Zhou et al., 2020), In Deep 

Learning (DL), TF is a commonly used technique where pre-trained DL model, which is 

complex and successful, is employed to transfer its domain knowledge to a new but 

similar domain. In the context of image classification/recognition, TF for Convolutional 

Neural Networks (CNN) has been extensively utilized. The initial layers of a CNN can 

learn basic features of image collections, such as edges, shapes, and textures. Only the 

last one or two layers of a CNN are responsible for the most complex classification of 

vectorized visual input. This approach is more efficient than freezing the weights of 

early layers and training only the last layers for a specific task in the target domain. In 

PV power forecasting, TF involves transferring data from a pre-trained LSTM model, 

which is trained on historical irradiance time series, to a PV power time series to 

overcome the lack of data in the target domain. The study concluded that TF can be 

extremely advantageous for a new plant lacking sufficient historical data. 

(Chang et al., 2020) propose an ensemble technique, LightGBM, along with a 

Bayesian optimization algorithm to determine the optimal time steps for temporal 

pattern grouping, and a clustering-based training framework based on a tree-structured 

self-organized map (TS-SOM) for short-term forecasting of photovoltaic power output. 

The effectiveness of this approach is demonstrated in a power generation environment 

that includes an edge computing platform (Raspberry Pi 3B). Utilizing historical weather 

conditions, the proposed model consists of three functional steps: Bayesian-optimized 

temporal pattern aggregation, weather clustering using TS-SOM, and model training 

with LightGBM. The authors demonstrate that their proposed approach outperforms 

well-known deep learning alternatives such as GRNN and LSTM by significantly reducing 

both training and inference time. 
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(Niu et al., 2020) propose a hybrid machine learning-based approach for short-

term forecasting of PV generation capacity. The approach involves using an RF model 

to rank the input weather-related features, followed by an Improved Grey Ideal Value 

Approximation (IGIVA) model that uses the RF outcomes as weight values to identify 

similar days of various meteorological types and enhance the data for training. 

Subsequently, a Complementary Ensemble Empirical Mode Decomposition (CEEMD) 

methodology is used to decompose the original power series, and an Artificial Neural 

Network (ANN) is trained using the dynamic factor Particle Swarm Optimization (DIFPSO) 

method to create short-term PV power forecasts. 

 There has been a relatively low number of studies focusing on probabilistic 

forecasting in recent years, compared to studies on point forecasting. Global 

forecasting challenges like the M3 and M4 challenges have contributed to the 

development of probabilistic forecasting techniques, highlighting concepts such as 

Prediction Intervals (PI) and probability coverage, and introducing measurements like 

pinball loss that are more appropriate for this type of forecasting. Interested readers 

can refer to (Hong et al., 2016; Hyndman, 2020; Makridakis, Spiliotis, & Assimakopoulos, 

2018). for further information on these forecasting challenges. 

In their study, (du Plessis et al., 2021) have introduced a novel approach for 

point prediction with a confidence interval (CI) that considers uncertainties in available 

forecasts. The CI is computed using a bootstrap method based on expected changes 

and the level of certainty for each forecast. It is worth noting that CI and prediction 

interval (PI) are distinct concepts, with CI being smaller than PI. The primary focus of 

this study is on short-term forecasting for a range of 1-6 hours. The proposed method 

is unique in its application to a large-scale multi-megawatt PV system (specifically a 75 

MW plant with 84 inverters), where a macro-level modeling approach provides a slight 

improvement in accuracy compared to the conventional inverter-level modeling 

approach. 
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 In their study, (Najibi et al., 2021), employ a Multi-Layer Feed Forward Neural 

Network (ML-FNN), a long short-term memory (LSTM) network, and a gated recurrent 

unit (GRU) in their proposed model. The authors conduct a probabilistic analysis of the 

accuracy of a Gaussian process regression model with Matérn 5/2 kernel function using 

the same criteria for confidence interval (CI) estimation. The proposed model, like 

many in the field of photovoltaic output prediction, employs weather data and past 

photovoltaic output as inputs. The data is clustered into four groups based on solar 

output and time using k-means clustering. The authors validate their proposed model 

using data from five different PV plants with both a five-fold cross-validation technique 

and a hold-out process with 30 randomly selected test days. 

The studies by (Carriere et al., 2020; Huang & Wei, 2020) aim to develop 

accurate probabilistic solar output forecasting models that emphasize prediction 

intervals (PI). In addition to the traditional point forecastings metrics like RMSE and 

MAE, the researchers introduce PI coverage probability and prediction interval 

normalized average width (PINAW) as new metrics to evaluate the reliability of 

predictions and the width of the PIs. The research considers an hourly day-ahead 

forecasting horizon and uses a CNN-based quantile regression (QR) approach with a 

two-stage training strategy to address the non-differentiable loss function of QR. The 

proposed model outperforms other models like quantile extreme learning models 

(QELM), quantile echoes state networks (QESN), direct quantile regression (DQR), and 

RBML-ML-FNN. 

 The researchers in (Wen et al., 2020) investigated probabilistic forecasting by 

proposing a hybrid model that involves a wavelet transform applied to historical power 

output, followed by an RBML-FNN trained using the PSO approach for point prediction. 

To calculate the prediction interval (PI), the indirect bootstrap method is utilized. The 

performance of the proposed model is evaluated against the direct and indirect 

quantile regression (QR) approaches using reliability diagrams. The comparison 
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demonstrates that the bootstrap method is crucial for identifying the best-performing 

model. 

 The study conducted by (González Ordiano, Gröll, Mikut, & Hagenmeyer, 2020) 

evaluates a novel approach for probabilistic forecasting using data from the 2014 

Global Energy Forecast Competition (GEFCom2014). The proposed approach, known 

as the nearest neighbor's quantile filter (CNQF), addresses the challenges associated 

with training quantile regressions using gradient-based optimization by modifying the 

training set. The modified training set is then used to train a generic regression model 

that directly outputs the conditional empirical q-quantile given by the training 

neighbors. The results indicate that the proposed method achieves pinball loss levels 

that are comparable to those of the GEFCom14 competition winners, with a difference 

of less than 1 percent. 

 Based on the literature review, several forecasting horizons and sampling have 

been researched. However, for the purpose of this study, the most applicable 

forecasting horizon is days ahead, with an hourly sampling frequency. This is because 

the required input parameters can be obtained from readily available weather data 

sources. Additionally, such a forecasting horizon and sampling frequency can be useful 

in the energy market and capacity-firming applications. Regarding the input parameters 

for the forecasting model, the available meteorological data is commonly used with 

data-driven methods such as Artificial Neural Networks (ANN), Nonlinear Autoregressive 

Networks with eXogenous inputs (NARX), Long Short-Term Memory (LSTM), Linear 

Regression (LR), Support Vector Regression (SVR), Ensemble learning, Gaussian Process 

Regression (GPR), and Duranial Persistence (DP). These methods will be further 

discussed and utilized in the present study. 

 

2.5  Fundamental forecasting workflow 
 In order to develop a forecasting model, there exist various methodologies. 

However, in this study, the four-step approach for creating a forecasting model will be 
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employed, as it provides a clear and systematic framework that is easy to understand 

and implement. The four steps include data importation, data preprocessing and 

analysis, predictive modeling, and deployment of forecasting models, as illustrated in 

Figure 2.1. 

 

 
 

Figure 2.1 Fundamental workflow to create forecasting models 

 2.5.1   Import data 

  The initial step in the data analysis process is importing the necessary 

data, including historical data and real-time data from various sources such as sensors, 

the web, and databases. 

 2.5.2   Preprocessing and analyzing data 

The next step after importing data is to preprocess and analyze it. The 

data will be converted to a suitable data type that can be used in the model, such as 

timetable, table, cell, or struct, among others. Relevant data from various sources will 

be selected and organized into a dataset for model training, validation, and testing. 

Additionally, this process involves removing unnecessary data or noise from the 

dataset, managing missing data, outliers, and resampling irregular data to a uniform 

format. 

Various techniques are utilized to analyze the dataset, such as group 

summary computations, transform by group, resample or aggregate data in the 
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timetable, resolve duplicate or irregular times, split data into groups and apply 

function, and data visualization techniques such as heat maps, geo-bubbles, word 

clouds, box plots, scatter plots, and exploration of connections. 

 2.5.3   Predictive modeling 

In order to develop the predictive model, it is essential to have 

knowledge of selecting the appropriate model for addressing the problem at hand. 

There exist several ways to approach a predictive modeling problem, such as curve 

fitting, classification, regression, deep learning, system identification, and econometric 

time-series modeling (e.g., ARIMA, GARCH, etc.), or designing a custom model. 

Afterward, the data needs to be prepared for machine learning, which involves 

removing infrequent data, partitioning the data into training and testing sets, and 

defining validation methods (such as hold-out or cross-validation). The subsequent 

step involves training and testing the model with the partitioned data and then 

evaluating it using performance metrics. If the model does not provide the expected 

results, the hyperparameters of the model should be reconfigured to achieve better 

outcomes. 

 2.5.4   Deploying forecasting model 

In the process of deploying a forecasting model, the chosen 

deployment option should align with the desired goals of the project. As highlighted 

by previous studies, there are numerous options for deploying a model, ranging from 

desktop applications to web applications, and even generating C and C++ code for 

deployment on various platforms, including GPUs and FPGAs. Other options include 

Java, Python, .NET applications, and the MATLAB production server. 

The selection of a deployment option should be based on the specific 

needs of the project, such as the desired level of scalability, performance, and 

accessibility. For example, if the project requires real-time forecasting with low latency, 

a desktop or server-based application may be the most suitable option. Alternatively, 
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if the goal is to make the model accessible to a large number of users, a web 

application may be more appropriate. 

Furthermore, the deployment process should ensure that the model is 

integrated with the existing infrastructure and systems and that it is updated regularly 

with new data to ensure that it continues to produce accurate and reliable forecasts. 

Additionally, the deployment process should also consider the security and privacy 

implications of deploying the model, and ensure that appropriate measures are in 

place to protect sensitive data. 

Overall, the deployment of a forecasting model is a crucial step in 

ensuring that the model can be utilized effectively to generate accurate and reliable 

forecasts. The selection of an appropriate deployment option and the careful 

consideration of deployment-related factors can greatly impact the success of the 

project. 

 

2.6  Adopted predictive models 
 This section presents a comprehensive overview of the various prediction 

models utilized in this study. The objective of this study is to compare and evaluate 

the performance of different prediction models for photovoltaic (PV) power generation 

forecasting. Linear regression is a widely used statistical technique for predicting a 

numerical value based on a linear relationship between the input variables and the 

target variable. In this study, linear regression is applied as a baseline model for 

comparison. Support Vector Regression (SVR) is a machine learning algorithm that uses 

a nonlinear kernel function to map the input variables to a higher dimensional space, 

where a linear regression model is then applied. The SVR algorithm aims to minimize 

the margin of the regression function while still maintaining a certain level of error 

tolerance. Ensemble learning combines multiple prediction models to improve the 

overall accuracy of the forecast. This study employs two types of ensemble models, 

namely, bagging and boosting. Bagging is a technique that combines multiple models 
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by averaging their predictions while boosting is a technique that combines multiple 

models by sequentially training new models on the residual errors of the previous 

models. Deep Learning techniques have shown remarkable performance in a wide 

range of applications, including PV power generation forecasting. This study utilizes 

three types of Deep Learning models, namely, and Long Short-Term Memory (LSTM). 

ML-FNN is a Multi-Layer Feed Forward Neural Network that consists of multiple layers 

of perceptrons, LSTM is a type of Recurrent Neural Network (RNN) that is designed to 

handle sequential data with long-term dependencies. In addition to the above models, 

a benchmark model is also included in the study. This model uses a simple average 

of the previous day's power output as the forecast for the next day. 

Finally, the evaluation of the performance of the forecast models is described. 

The metrics used for evaluation include Mean Absolute Error (MAE), Root Mean 

Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE).  

 2.6.1   Linear regression 

  1) Multivariate Linear Regression 

 In this research, the first model studied is a Multivariate Linear 

Regression (MLR) model. This technique is commonly used for solar forecasting due to 

its simplicity. The MLR model predicts photovoltaic (PV) power output by establishing 

a linear relationship between a matrix (X) consisting of (n) predictors and (m) 

timestamps and the power output (ymlr). The model is characterized by a vector of 

regression coefficients  : 

 

1 1 2 2
ˆ ...mlr

i iy x x x   = + + + + , (2.1) 

 

where   demonstrates the uncertainty, minimizing discrepancies between the actual 

(y) and expected ( ˆmlry ) power output yields   is the coefficients: 
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  2) Linear regression with interact 

 An interaction effect exists in regression when the influence of an 

independent variable on a dependent variable varies with the value(s) of one or more 

other independent variables. 

 

1 1 2 2 3 1 2 1 1 2 2
ˆ ...mlr

i i i i i iy x x x x x x x x x      + += + + + + + + + , (2.2) 

  

3) Robust linear regression 

 Robust linear regression is a preferred approach to standard linear 

regression as it is less sensitive to outliers. Standard linear regression uses least-squares 

fitting to determine the model parameters that connect the response data to the 

predictor data using one or more coefficients. However, outliers can have a significant 

impact on the fit as squaring the residuals multiplies the impact of extreme data points. 

This can invalidate model assumptions and result in unreliable parameter estimates, 

confidence intervals, and other statistics. 

 Robust regression uses iteratively reweighted least squares to assign 

weights to each data point, making the technique less susceptible to outliers than 

conventional linear regression. Weighted least squares incorporate the weight as an 

additional scale element in the fitting process, which improves the fit. Preexisting 

weight functions, such as Tukey's bisquare function, can be used to calculate the 

weights. The iteratively reweighted least-squares method automatically and 

repeatedly calculates the weights. Initially, the algorithm assigns equal weight to each 

data point and estimates the model coefficients using ordinary least squares. At each 

iteration, the algorithm computes the weights, assigning a lower weight to locations 

that deviated the most from regression models in the previous iteration. The method 

calculates the model coefficients using the least-squares method, aiming to find the 

curve that best fits most of the data while minimizing the effects of outliers. The 

algorithm stops iterating when the estimated coefficient values converge within a 
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specified tolerance. Table 2.6 provides an overview of the process for the iteratively 

reweighted least-squares method. 

 

Table 2.6 Reweighted least-squares methods 
Step Descriptions 

1 The initial step in robust linear regression is to estimate the weights, 

followed by utilizing weighted least squares to fit the model. 

2 The calculation of adjusted residuals can be expressed as follows: 

1

i
adj

i

r
r

h
=

−
, (2.3) 

The calculation of adjusted residuals involves the use of the expression 

where ri refers to the least-squares residuals and hi represents the leverage 

values for the least-squares fit. The adjustment of residuals is done to 

reduce the weight of high-leverage data points that have a considerable 

impact on the least-squares fit. 
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Table 2.6 Reweighted least-squares methods (continue) 
Step Descriptions 

3 When standardized residuals are modified, the resulting standardized 

modified residuals are given by: 

1

adj i

i

r r
u

Ks Ks h
= =

−
, (2.4) 

In the equation above, K is a scaling constant and s is an estimation of the 

standard deviation of the error term, calculated as s = MAD/0.6745, where 

MAD is the median absolute deviation of the residuals from their median. 

The constant 0.6745 renders the estimate for the normally distributed 

independent. If the predictor data matrix X includes p columns, the 

program excludes the p absolute deviations with the smallest values while 

calculating the median. 

4 To obtain the robust weights wi based on u, the following equation is used 

to calculate the weights: 
2 2(1 )

0

i

i

u
w

 −
= 


,| | 1

,| | 1

i

i

u

u




, (2.5) 

 

5 Estimate the robust regression coefficients  . The weights adjust the 

following expression for the parameter estimates   as follows 

( )
1

T TX WT X Wy
−

= , (2.6) 

where W is the diagonal weight matrix, X is the predictor data matrix, and 

y is the response vector. 

6 Computing the least-squares weighted error 

( )
2

2

1 1

ˆ
n n

i i i i ie w y y w r= − =  , (2.7) 

where wi are the weights, yi is the observed responses, ŷi are the fitted 

responses, and ri are the residuals. 

7 If the convergence criteria are met or the maximum allowable number of 

iterations is reached, the iteration process is terminated.  
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4) Stepwise linear regression 

 Stepwise regression is a systematic method of adding and removing 

predictor variables from a linear or generalized linear model based on their statistical 

significance in explaining the response variable. This technique involves comparing the 

predictive ability of progressively larger and smaller models. 

 

Table 2.7 Conclusion of Regression models 

Regression model type Interpretability Model Flexibility 

Linear Easy Very low 

Interactions Linear Easy Medium 

Robust Linear Easy 
Very low, less sensitive to 

outliers, slow to train 

Stepwise Linear Easy Medium 

 

 2.6.2   Support Vector Regression 

Support Vector Regression (SVR) is a kernel-based approach used for 

forecasting, which evolved from the Support Vector Machine (SVM) that is frequently 

used to solve classification problems. Like SVM, SVR employs hyperplanes to establish 

the relationship between the predictor and target variables. In the present study, we 

explore an SVR model with a linear kernel known as least square SVR (LS-SVR), which 

is represented as follows: 

 
*

1
ˆ ( ) ( , )

mSVR

i i i ji
y K x x b 

=
= − + , (2.8) 

 

where ˆ svry  represents the goal variable (PV power output), *( )i i −  

represents the difference between the Lagrange multipliers, and b represents the bias. 

The kernel function for a linear SVR is denoted by ( , )i jK x x  as follows: 
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2

2
( , ) exp

2

i j

i j

x x
K x x



 −
 = −
 
 

, (2.8) 

 

where  is a hyperparameter from the manual set. 

 2.6.3   Gaussian process regression 

Gaussian process regression (GPR) models are nonparametric kernel-

based probabilistic models. Consider taking the training dataset  ( , ); 1, 2,...,i ix y i n= , 

where d

ix   and iy  , where d  and  are unknown distributions. Given the 

incoming input vector xnew and the training data, a GPR model predicts the value of 

the response variable ynew. A linear regression model has the following form: 

 

Ty x  = + , (2.9) 
 

where 2(0, )N  . Using the data, the error variance 2  and   

coefficients are calculated. A GPR model describes the response by incorporating 

Gaussian process (GP) latent variables, ( ), 1,2,...,if x i n=  and specified basis functions, 

h. The covariance function of the latent variables represents the smoothness of the 

response, while the basis functions map the inputs x into a p-dimensional feature 

space, see (Fen et al., 2017) for more details. 

 2.6.4. Ensembles of Trees 

  Decision trees are commonly used in both classification and regression 

tasks to predict responses based on a series of decisions made on input variables. The 

tree is traversed from the root node to a leaf node, where the predicted response is 

stored. Nominal responses such as "true" or "false" are provided by classifier trees, 

while regression trees provide numerical responses. Figure 2.2 illustrates an example 

of a decision tree. 
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Figure 2.2  Decision tree for predicting energy gain from solar collector (Ahmad, 

Reynolds, & Rezgui, 2018)  
 

Ensemble methods have been shown to outperform single decision 

trees in terms of predictive performance. The basic principle behind ensemble 

methods is the combination of multiple weak learners to create a strong learner. Two 

commonly used ensemble decision trees are bagging and boosting. Bagging, also 

known as Bootstrap Aggregation, is utilized when the objective is to minimize the 

variance of a decision tree. This method involves generating several subsets of data 

from a training sample that are selected at random with replacement. Each subset of 

data is then used to train its decision tree, resulting in a collection of distinct models. 

The forecasts from several trees are averaged to produce a more reliable result than 

that of a single decision tree. 

Boosting, on the other hand, is an ensemble strategy for generating a 

set of predictors. In this method, learners are taught progressively, with novice models 

being fit to the data before analyzing it for flaws. In other words, we fit successive trees 

(random sample) to minimize the net error of the previous tree at each stage. The 

summary of trees is presented in Table 2.8. 
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Table 2.8 Summarize Ensembles of Trees 

Regression 
model type 

Interpretability Ensemble method Model Flexibility 

Boosted trees Hard Least-squares boosting Medium to high 
Bagged trees hard Bootstrap aggregating High 

 

 2.6.5  Deep learning 

In addition to the aforementioned models, this research employs three 

distinct types of Neural Networks (NNs). NNs possess a distinctive architecture that 

enables them to model intricate nonlinear relationships between input and output 

variables without the need for any preconceived notions about the relationship 

between them. The NN architecture consists of an input layer that receives the input 

data, an output layer that produces the predictions, and a specific number of hidden 

layers that transform the input data. These hidden layers consist of multiple nodes 

where the data is processed and transformed. 

1) Multi-Layer Feed Forward Neural Network 

 Multi-Layer Feed Forward Neural Network (ML-FNN) is a type of 

neural network where the information flows in a forward direction only, from the input 

layer through the hidden layers to the output layer. Each neuron in a layer is 

connected to all neurons in the previous layer, and the output of each neuron is 

determined by a weighted sum of the inputs, followed by the application of an 

activation function as described in (Jiriwibhakorn, 2022). ML-FNN, on the other hand, 

can be with multiple hidden layers. Each layer is fully connected to the previous layer, 

and the weights of each connection are learned during the training process. ML-FNN 

are typically used for supervised learning tasks, such as classification or regression. ML-

FNN have been successfully applied to a variety of tasks, including image recognition, 

speech recognition, and natural language processing.  
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 In this study, the ML-FNN is one of the neural network architectures 

examined. The ML-FNN is designed to transmit data unidirectionally from one layer's 

node to every node in the following layer. The activation function, weight, and bias 

within each node perform the data transformation. The primary objective of 

implementing the ML-FNN is to train it to achieve optimal weights and biases, which 

can enhance its performance. To adjust the weights and biases of the training ML-FNN, 

the Levenberg-Marquardt backpropagation, an advanced version of the gradient 

descent method, is used. The learning error computation function can be MAE, RMSE, 

MAPE, or MSE, with MSE utilized in this study. The computation of MSE is shown in 

equation (2.10), and Figure 2.3 illustrates the workflow diagram of the ML-FNN and the 

hidden node. 

 

 

 

Figure 2.3 Structure of ML-FNN 
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1

( , )
n

j j

j forecast i actual i

i

E MSE y y
=

= , (2.10) 

 

where Ej is training error at training iteration jth, is actual output at 

sample ith, xi is input, n is the number of the training sample, and forecasting output 

at the training sample jth can be calculated following equation 2.11 

 

,

1

( )
n

j k j k j

j

y f h 
=

= + , (2.11) 

 

where 
,k j is weights from hidden node kth to output node at iteration 

jth, 
j is the bias of output node at jth. ( )kf h is the outcome of hidden kh . The fitness 

function is estimated using the training error (E). The fitness function can be calculated 

as follows: 

 

( ) ( )Fitness x Minimize E x= , (2.12) 
 

2) LSTM 

 In this study, the LSTM architecture is considered as a second option. 

Unlike the ML-FNN which processes samples individually, the LSTM processes a 

sequence of samples simultaneously. Each sample is independently processed by the 

RNN model, and the output of the previous sample is passed to every layer. The LSTM 

RNN can retain several previous outputs of nodes in all layers, including the output 

layer. To guide the preservation of information, three gates are included in the data 

transformation steps performed by the nodes: an input gate, an output gate, and a 

forget gate. These gates determine what information is retained, discarded, and 

provided as input to the next sample. The output of these gates is determined by an 

activation function, weight, and bias, much like the node operations. Similar to the  
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ML-FNN, the output of the forecast in the LSTM model can be described as a 

combination of the input data from the previous layer and data from previous samples. 

The LSTM block's architecture is depicted in Figure 2.4. 

 

 
 

Fig. 2.4 The structure of the LSTM memory block 

 

Given an input (xt | t = 1, ..., T ) with jth frames, where xt is the static 

feature of the T frame, the standard LSTM is used to learn a sequence of hidden states 

(ht |t = 1, ..., T ) to describe the dynamic of this input. The standard LSTM mainly 

consists of an input gate, forget gate, output gate, input modulation gate, and memory 

cell state, and one common LSTM unit at time step j can be repressed as follows: 

 

1 1( )t hf t hf t cf t ff W X W h W c b − −= + + + , (2.13) 

1 1( )t hf t hi t ci t ii W X W h W c b − −= + + + , (2.14) 

1 1tanh( )k

t t t t xc t hc t cc f c i W X W h b− −= + + + , (2.15) 

1 1( )k

t xo t ho t co t oo W X W h W c b − −= + + + , (2.16) 
tanh( )k

t t th o c= , (2.17) 

1
( ( ))

t t t tts g i c f
−

= + , (2.18) 
 

where it , ft , ot , gt , and ct are the input gate, forget gate, output gate, 

input modulation gate, and memory cell state, respectively;   is a sigmoid function. 

The weight matrices Wx and Wh, along with the bias vector b, are used in the LSTM 
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model. The input gate, represented as "it," regulates how much newly received input 

data at time step t should contribute to updating the memory cell. The forget gate, 

"ft," controls how much the previous state (ct-1) should be taken into account when 

deriving the current state (ct). Finally, the output gate, "ot," is responsible for 

determining how the LSTM unit's output at time step t should be generated based on 

the current state of the memory cell (ct). 

3) NARX 

 The Nonlinear Auto-Regressive Neural Network was a simpler version 

of NARX, which is an advanced implementation. The output regressor in the former 

was obtained using only one delayed feedback loop, whereas the latter uses m-tapped 

delay lines in both input and output signals n time. In the case of NARX, the parametric 

equation includes exogenous values. This information was reported by (Di Piazza, Di 

Piazza, & Vitale, 2016). Exogeneous values are included in NARX's parametric equation 

as follows. 

 ( ) ( 0),..., ( ); ( 1),..., ( )y t f x t x t d y t y t d= − − − − , (2.19) 
 

where d denotes the past value of output ( )y t  and another series 

input ( )x t  at sample tth. The structure of NARX is shown in Figure 2.5 

 

 
 

Fig. 2.5 NARX Architecture 

 



54 

Table 2.9 Activation function 

No. 
Activation 
functions 

Formulation Graph 

1 
Hyperbolic 
tangent sigmoid 

tan ( )a sig n=  

2

2
1

(1 e )n
a

−
= −

+
             (2.20) 

 

2 
Logarithmic 
sigmoid 

log ( )a sig n=  
1

(1 e )n
a

−
=

+
                 (2.21) 

 

3 Positive linear 
( )  a poslin n=  

( )
0

n
poslin n


= 


0

0

n

n

=

=
       (2.22) 

 
 

In machine learning and deep learning models, activation functions play a 

crucial role in the functioning of artificial neural networks. They allow each neuron to 

create a weighted sum of its inputs and transfer the resulting scalar value through a 

specified function. Various activation functions are used in ML/DL models, and some 

of the commonly used ones are described in Table 2.9, which provides a brief 

explanation of each function's characteristics and usage. 

 2.6.6  Benchmark model 

Lastly, to offer context for the accuracy achieved by the prediction 

models provided, we evaluate one benchmark model. 

1) Diurnal Persistence (DP) 

 Initially, we incorporate a Diurnal Persistence (DP) model in which the 

PV prediction matches the most recent available daily series data. Because PV 

production values are only accessible up to noon on day T, we examine the 

production values for T+1 as shown in Eq. 2.24 
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ˆ ( ) ( 48)dpy t y t= − , (2.24) 

 

where time t varies between h = 0 and h = 24. 
 

2.7  Validation methods 
 To evaluate the performance of forecasting models, it is important to use 

appropriate validation methods and variables. In this research, two widely used 

techniques in the machine learning field are employed: K-fold cross-validation and 

Holdout. K-fold cross-validation involves dividing the data into K equally sized subsets, 

training the model on K-1 subsets, and using the remaining subset for testing. This 

process is repeated K times, with each subset serving as the testing data exactly once. 

Holdout validation, on the other hand, involves randomly dividing the data into two 

sets: one for training and one for testing. The model is trained on the training set and 

then evaluated on the testing set. In addition to validation methods, various validation 

factors should be considered.  (Bragança, Colonna, Oliveira, & Souto, 2022). identify 

several factors that can impact the performance of forecasting models, including the 

size and quality of the data set, the selection of input variables, the model 

architecture, the training algorithm, and the hyperparameters. These factors should be 

carefully considered and optimized to ensure that the forecasting model performs 

well and accurately predicts future outcomes. 

 2.7.1   Holdout (Training-test split) 

  The hold-out method is a simple way to divide the data into two 

separate subsets: the training set and the test set (Arlot & Celisse, 2010). This 

partitioning approach usually assigns 70 to 80 percent of the data for training and 30 

to 20 percent for testing. It is beneficial since it requires less computational effort, but 

it can lead to a pessimistic estimator since the classifier is trained on only a portion of 

the data broader (Kohavi, 1995). The accuracy of the model depends on the choice of 

subjects for evaluation and the number of samples used for testing. If the data are re-
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divided, the model's conclusions may change, and accuracy may be affected 

(Gholamiangonabadi, Kiselov, & Grolinger, 2020). 

 2.7.2   K fold cross validation 

  K-fold cross-validation (Kf-cv) is a statistical technique utilized in 

machine learning to evaluate the effectiveness of models. This technique is widely 

used to compare and choose a model for a specific predictive task, as it is easy to 

understand, implement, and yields less biased skill estimates compared to other 

approaches. This method involves dividing the dataset into k disjoint, roughly equal-

sized folds, and then using each fold as a test set for a classification model produced 

from the remaining k-1 folds. The total performance is then computed as the mean of 

the k accuracies derived from k-CV (Wong, 2015). It should be noted that there is no 

universally superior cross-validation approach, and the method should be tailored to 

the specific context. However, this approach can be computationally expensive when 

k values are high, and the sample size is large (Arlot & Celisse, 2010). 

 2.7.3   Performance metric 

Evaluating the accuracy of a forecast is essential for comparing its 

effectiveness with benchmark approaches, typically the naive method, and existing 

methods. However, there are numerous metrics available, and the appropriate ones 

should be selected based on the characteristics of the time series, such as the 

presence of zero values or the performance of the benchmark approach. This section 

aims to provide guidance on selecting the appropriate metrics for the point or 

probabilistic forecasts. 

To assess the performance of a model, multiple performance indicators 

should be used, as each metric has unique characteristics. For example, the root-

mean-square error (RMSE) heavily penalizes outliers due to the squared errors. In 

contrast, the mean absolute error (MAE) demonstrates the accuracy of a forecast 

relative to observations by calculating the average error between them using the 

following formula: 
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, ,1
| |

n

actual i forecast ii
y y

MAE
n

=
−

=
 , (2.25) 

 

where ,actual iy  and ,forecast iy are the actual power output and forecast 

power output, respectively, at sample ith, and n is the sample number. This indicator 

helps compare forecasts based on the same time series. However, since it is scale-

dependent, it cannot be used for predictions of distinct time series owing to the 

intrinsic scale variations. In addition, a high number of relatively minor mistakes might 

mask a small number of substantial errors, which can be problematic if the prediction 

shows noise. 

  Mean square error (MSE) and root mean square error (RMSE) are defined 

as the following: 

 

( )
2

, ,1

n

actual i forecast ii
y y

MSE
n

=
−

=
 , (2.26) 

( )
2

, ,1

n

actual i forecast ii
y y

RMSE
n

=
−

=
 , (2.27) 

 

Similarly, their application is constrained by size dependence. In 

addition, the squared error makes these measures more susceptible to outliers than 

the MAE. Nonetheless, these measures are extensively used owing to their theoretical 

importance in statistical research and because they give immediate insight into the 

error variance and standard deviation, respectively. 

  As noted earlier, the metrics presented in equations (2.26) to (2.27) are 

inadequate for evaluating forecast accuracy across various time series and are 

insufficient without prior knowledge of the studied PV power plant. Percentage error 

measurements can facilitate comparisons of forecasts across different temporal and 

geographic dimensions. Several denominators can be used to normalize the inaccuracy 

of PV power forecasting. It was determined subjectively that MAE normalized by 
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average output would be preferred, but normalizing by capacity would be more 

acceptable if both MAE and RMSE were to be used. A similar principle may apply to 

load forecasting, although no supporting literature was found. Normalized by capacity, 

the mean absolute percentage error (MAPE) and normalized root mean square error 

(NRMSE) can be calculated as follows: 

 

, ,

1
,

100%
n actual i forecast i

i
actual i

y y
MAPE

y=

−
=  , (2.28) 

2

, ,

1
,

100%
n actual i forecast i

i
actual i

y y
NRMSE

y=

 −
 = 
 
 

 , (2.29) 

 

The MAPE measure is commonly used in forecasting due to its simplicity 

and widespread recognition. On the other hand, NRMSE, like RMSE, is more sensitive 

to outliers than MAPE. Equations (2.26) and (2.27) are sometimes normalized by the 

rated power rather than the measured value, which has the advantage of not having 

an absolute zero. 

  In order to assess forecasting biases, such as overestimation or 

underestimation, the mean bias error (MBE) is commonly used. This metric provides 

an immediate indication of the average bias in a model. A large and positive MBE 

indicates a significant overestimate, while a large and negative MBE indicates a 

significant underestimate. However, it should be noted that MBE is dependent on the 

scale of the data and does not provide information about the error distribution. Despite 

these drawbacks, MBE is still considered useful as it can be reduced or eliminated 

through post-processing or considered directly by the utility. The MBE can be 

expressed as follows:  

 

, ,1

1
( )

n

actual i forecast ii
MBE y y

n =
= − , (2.30) 
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The coefficient of determination, R2, is a statistical measure that 

indicates the degree to which a statistical model fits the data and shows the extent to 

which the variance of the errors and the variance of the observed values correspond. 

R2 is given by: 

 

2
( )

1
( )

actual forecast

forecast

y y
R

y





−
= − , (2.31) 

 

In the context of short-term forecasting, the methods described in the 

previous section can be applied, but additional metrics have also been developed for 

probabilistic forecasting. However, the lack of well-established assessment 

methodologies is one of the primary reasons for the immaturity of probabilistic 

irradiance forecasting (PIF). Perfect reliability of a probabilistic prediction occurs when 

the probability derived from the quantiles of the forecast model and the actual 

probability is the same. Any deviation from this reduces the forecast's reliability, and 

it is linked to the forecast's bias, where high predictability corresponds to low bias. The 

dependability of the model can be determined by creating a time series that tracks 

instances of over- or under-prediction. If this series is near the diagonal, the model's 

dependability is considered good. Another way to assess dependability is to examine 

the histograms of the probability integral transformation (PIT). If the probabilistic 

prediction is accurate, the PIT histograms are uniform by definition. The purpose of a 

probabilistic prediction is to ensure that the probability distribution of data falls within 

the prediction interval. The prediction interval coverage probability (PICP) is computed 

to determine whether this is true, which can be expressed as follows: 

 

1

1 n

i

i

PICP c
n =

=  , (2.32) 

 

where ci is defined as: 
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where Li and Ui indicate the lower and upper limits, respectively, of the 

prediction interval. From the definition of Ci, we may derive that a high value for PICP 

indicates that a larger proportion of findings fall inside the prediction interval, which is 

desirable. The PICP measurement is a quantitative statement of dependability and 

should be more than the actual confidence level since they are invalid and should be 

disregarded if they are lower. 

Nonetheless, if one considers the performance of the forecast based 

purely on the PICP, it is feasible to choose a wide range between lower bound Li and 

upper bound Ui, so that the scope probability is artificially increased while the 

deviation of the forecast is unacceptable and decision makers are provided with little 

useful information. The informativeness of prediction intervals is in reality governed by 

their breadth. Therefore, the PICP should be simultaneously examined with the 

prediction interval normalized average width (PINAW), a metric that quantitatively 

evaluates the width of the prediction intervals. Following is a description of the PINAW: 

 

( )
1

1 n

i i

i

PINAW U L
nR =

= − , (2.34) 

 

where R is used to standardize the average width of the prediction 

interval and reflects the highest forecast value minus the lowest forecast value. 

 

2.8  Conclusion 
This chapter serves as an introduction to the application of PV forecasting. 

Within this context, the use of machine learning (ML) and deep learning (DL) has been 

widely discussed within the realm of electrical research. Specifically, recent research 

in PV power forecasting has been reviewed. Following this discussion, the adopted 

method has been presented, which incorporates forecasting methods alongside a 
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performance matrix for evaluation purposes. The accurate forecasting of PV power is 

a crucial topic within the renewable energy industry, as it aids in the integration of PV 

power into the electrical grid and enhances the operation of PV power plants. ML and 

DL techniques have become popular in the context of PV power forecasting due to 

their ability to derive predictions from complex patterns within historical data. 

Incorporating methods such as time series analysis, statistical modeling, and ML/DL 

models, the forecasting techniques utilized in PV power forecasting are further 

evaluated using a performance matrix, which measures the effectiveness of the 

forecast by utilizing metrics such as mean absolute error, root means squared error 

and correlation coefficient. 

In conclusion, this chapter provides an overview of the application of ML/DL in 

PV power forecasting and highlights recent advancements in this field. 
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CHAPTER 3 
COMPARATIVE STUDY OF DATA-DRIVEN-BASED SHORT-TERM 

PHOTOVOLTAIC POWER GENERATION FORECASTING MODELS: 

SELECTION OF HYPERPARAMETER AND VALIDATION METHODS 

 

3.1  Background 
 In the context of designing a distribution grid that incorporates a PV system, 

accurate forecasting is crucial to optimize efficiency. To address this issue, various 

techniques have been proposed, but the selection of an appropriate method requires 

a thorough understanding and knowledge of the available options. This chapter 

presents a comparative study that examines the efficacy and benefits of supervised 

photovoltaic power forecasting methods that can be applied appropriately to various 

systems.  

The study will test predictive models from chapter 2 using holdout validation 

and k-fold cross-validation. Performance metrics will be used to evaluate each 

method. A MATLAB program will simulate the study and the results, strengths, and 

limitations of each method will be discussed. The objective is to comprehensively 

analyze available forecasting techniques for photovoltaic power generation, identify 

their strengths and weaknesses, and aid in selecting an appropriate technique. The 

study contributes valuable insights to the field and can inform the development of 

efficient forecasting schemes for photovoltaic systems in distribution grids. It includes 

six cases to assess factors impacting forecasting model performance. The cases 

investigated are as follows: 1) the impact of hyperparameter tuning, 2) the impact of 

activation function selection, 3) the impact of normalization techniques, 4) the impact 

of seasonal and test set selection, 5) the impact of validation methods, and 6) the 

impact of incomplete datasets.
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3.2  Comparative study workflow 
The four steps consist of importing data, visualizing and preprocessing data, 

predictive modeling, deploying the forecasting model, and evaluating the model as 

shown in Figure 3.1. 

 

 
 

Figure 3.1 Case of comparative study 

 

3.3  Imported dataset 
The are two datasets that were used in this study: (1) Solar rooftop dataset 

(Industry) and (2) Solar floating plant dataset (at Suranaree university of technology). 

 The first dataset contains one year's worth of historical data from a 14 MWp 

rooftop solar power plant in Nakhon Ratchasima province, Thailand. The data includes 
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time, irradiance, temperature, and power output (Junhuathon & Chayakulkheeree, 

2021; Mongkol Treekijjanon, 2020). The second dataset contains eight months of 

historical data from a 1.5 MWp solar floating plant at Suranaree University of 

Technology (SUT), also located in Nakhon Ratchasima province. The data for this plant 

includes time, irradiance, ambient temperature, wind speed, and power output. Table 

3.1 provides a summary of the datasets, including their parameters, sample sizes, and 

resolutions. 
 

Table 3.1 Dataset description 

Detail Industrial site SUT site 

Parameters 
Time, Ambient temperature, 

irradiance 
Time, Ambient temperature, 

irradiance, wind speed 
Sample 8,760 6,651 
Resolutions hourly hourly 

 

3.4  Data preprocessing and visualization 

For the industrial site, the dataset was standardized into 0 to 1 for every 

variable. However, this dataset is unnecessary to remove outliers, missing data, and 

NAN data because the dataset is completely preprocessed before. The dataset before 

standardization and after standardization will be shown in Figure 3.2 (a) and (b), 

respectively. 
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(a) 

 

(b) 

 

Figure 3.2 Industrial site dataset visualization (a) before normalization (b) after 

normalization 

 

As shown in figure 3.2 (a), this dataset consists of solar irradiance (kW), 

temperature ( C ), and power generation (kW) from the PV system. The dataset is 

rather complete. 
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(a) 

 

(b) 

 

Figure 3.3 SUT site dataset visualization (a) original dataset (b) preprocessed dataset 

 

 As shown in Figure 3.3, outlier, missing data, and not a number (NaN) data need 

to be managed because this dataset has a problem of data collecting process for a 

huge period. The dataset before standardization and after standardization will be 

shown in Figure 3.3 (a) and (b), respectively. From Figure 3.3 (a), temperature ( C ), 

wind speed (m/s), and solar irradiance (W) were collected from a local measurement 

station and power generation was collected from 8 inverters (Inverter rated power:175 
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kW). There are different huge gaps among collecting devices. Then, the dataset was 

preprocessed and selected the intersect period as shown in Figure 3.3 (b). 
 

3.5  Case studies 
 The cases investigated are as follows: 1) the impact of hyperparameter tuning, 

2) the impact of activation function selection, 3) the impact of normalization 

techniques, 4) the impact of seasonal and test set selection, 5) the impact of validation 

methods, and 6) the impact of incomplete datasets. 

 3.5.1 Impact of hyperparameter tuning 

To maximize the accuracy of the data-driven-based forecasting method, 

the widely implemented forecasting methods were used with industrial dataset, and 

each dataset. Before splitting the dataset into the training set and validation set, the 

test set had been chosen randomly to evaluate the performance of forecasting 

models.  

To achieve the best condition in data-driven-based forecasting models, 

besides using the appropriate dataset to train and validate, the hyperparameter of 

models should be adjusted to the appropriate value. The hyperparameter tuning 

results are shown in Table 3.2 and more details of adjustment can be seen in appendix A. 

 

Table 3.2 Hyperparameter tuning from data set in case 1 

No. Methods Hyperparameters 

1 LR: Linear Preset: Linear 
Terms: Linear 

Robust option: Off 
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Table 3.2 Hyperparameter tuning from data set in case 1 (continue) 

No. Methods Hyperparameters 

2 LR: Interactions linear Preset: Interactions Linear 
Terms: Interactions 

Robust option: Off 

3 LR: Robust linear Preset: Robust Linear 
Terms: Linear 

Robust option: On 

4 LR: Stepwise linear 

regression 

Preset: Stepwise Linear 
Initial terms: Linear 
Upper bound on terms: Interactions 

Maximum number of steps:1000 

5 Optimized Ensemble of 

Trees 

Ensemble method: Bag 

Minimum leaf size: 39 

Number of learners: 24 

Number of predictors to sample: 3 

6 Optimized SVR Kernel function: Linear 
Box constraint: 105.0635 
Epsilon: 238.7449 

Standardize data: true 

7 Optimized GPR Basis function: Linear 
Kernel function: Isotropic Exponential 
Kernel scale: 0.054297 
Sigma: 0.0010932 

Standardize: false 
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Table 3.2 Hyperparameter tuning from data set in case 1 (continue) 

No. Methods Hyperparameters 

8 ML-FNN (Manual, See 

more details in Appendix 

A)  

Number of fully connected layers: 3 
First layer size: 20, Second layer size: 20 
Third layer size: 20 
Activation function: Poslin 

9 NARX (Manual, See more 

details in Appendix A) 

Number of fully connected layers: 3 
First layer size: 20, Second layer size: 20 
Third layer size: 20 
Activation function: Poslin 

10 LSTM (Manual, See more 
details in Appendix A) 

Number of fully connected layers: 3 
First layer size: 20, Second layer size: 20 
Third layer size: 20 
Solver: adam 
Initial Learn Rate: 0.03  
Learn Rate Schedule: piecewise 
Learn Rate Drop Factor: 0.7 
Learn Rate Drop Period: 100 
Max Epochs: 300 
Mini Batch Size: 24 

11 Benchmark model: DP - 

Note: Hyperparameters of Ensemble of trees, SVR, and GPR, were optimized by 

Bayesian optimization. 

 

 3.5.2 Impact of activation function 

  Activation functions are a critical component in machine learning and 

deep learning models, as they introduce nonlinearity into the model, allowing it to 

capture complex patterns and relationships within data. The key impacts of activation 

functions in these models are: firstly, activation functions introduce nonlinearity into 

the model, enabling it to learn and capture complex nonlinear relationships in the 
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data, without which a neural network would only be a linear regression model. 

Secondly, activation functions impact gradient propagation in the model, as different 

activation functions possess varying gradients, which affect the error signals propagating 

back through the network during training. Activation functions such as the sigmoid and 

hyperbolic tangent functions are vulnerable to the vanishing gradient problem, where 

the gradients become very small, making it difficult for the network to learn. Thirdly, 

certain activation functions, such as the rectified linear unit and its variants, can induce 

sparsity into the model by setting some of the activations to zero, which reduces the 

number of parameters in the model and improves its efficiency. Lastly, activation 

functions also affect the output range of the model, with the sigmoid function 

outputting values between 0 and 1, while the hyperbolic tangent function outputs 

values between -1 and 1. The performance of the model may be impacted based on 

the problem's nature being solved. 

In summary, the choice of activation function can have a significant impact on 

the performance of a machine learning or deep learning model. It is important to 

choose an appropriate activation function for the problem at hand, taking into account 

its nonlinearity, gradient propagation, sparsity, and output range. Therefore, this thesis 

aim to compare between commonly used activation function as shown in Table 3.3.  

 

Table 3.3 Comparison of activation function with normalization 

No.  
Layer 

1 
Layer 

2 
Layer 

3 
Norm 

MAPE 

(%) 

RMSE 

(kW) 

MAE 

(kW) 

Time 

(Sec) 

1 logsig logsig logsig yes 8.916 309.866 157.404 253.208 

2 poslin poslin poslin yes 8.504 314.900 159.798 182.084 

3 tansig tansig tansig yes 9.431 358.750 172.391 192.778 

As show in table 3.3 show that the different activation function slightly 

affect to forecasting accuracy and the the best performance actibation function for this 

study with normalization (minmax 0 to 1) is positive linear. 
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 3.5.3 Impact of normalization 

  Normalization is a process of transforming the input into a more suitable 

format for machine learning and deep learning models. It can have a significant impact 

on the performance of the model. Here are some of the impacts of normalization.  1) 

Normalization can help the model to converge faster during training by preventing it 

from getting stuck in a local minimum. 2) Normalization can reduce overfitting by 

preventing the model from becoming too sensitive to the scale of the input features. 

This can improve the generalization performance of the model on unseen data. 3) 

Normalization can help the model to extract more meaningful features from the input 

data by removing correlations between input features. And 4) normalization can 

increase the efficiency of the model during training by reducing the number of 

iterations required for convergence. 

There are several normalization techniques, such as min-max 

normalization, z-score normalization, and log normalization, each with its own 

advantages and disadvantages. The choice of normalization technique depends on the 

nature of the data and the specific requirements of the model. In summary, 

normalization is an important technique in machine learning and deep learning models 

that can help improve convergence, reduce overfitting, improve feature extraction, and 

increase efficiency during training. Therefore, this thesis aim to compare between 

commonly used normalization (Faruque et al., 2022) as shown in Table 3.4. 
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Table 3.4 Comparison of normalization for ML-FNN 

No.  
Layer 

1 
Layer 

2 
Layer 

3 
Norm 

MAPE 

(%) 

RMSE 

(kW) 

MAE 

(kW) 

Time 

(Sec) 

1 poslin poslin poslin minmax 8.504 314.900 159.798 179.017 

2 poslin poslin poslin minmax 8.504 314.900 159.798 182.084 

3 poslin poslin poslin 
zero 
mean 

36.212 314.900 159.798 177.318 

4 logsig logsig logsig 
zero 
mean 

47.613 309.867 157.403 193.467 

5 tansig tansig tansig 
zero 
mean 

47.767 358.770 172.409 486.802 

 

 3.5.4 Impact of seasonal selection and test set selection 

  As mentioned, seasonal selection and test set selection can both have 

significant impacts on the outcomes of experiments and analyses. Seasonal selection 

refers to the bias that can be introduced when data is collected or analyzed during 

specific times of the year. For example, if a study is conducted only in the summer 

months, it may not be representative of the entire year and may lead to incorrect 

conclusions. To address this issue, it is important to collect data across different 

seasons or to use statistical methods to account for seasonal effects. Test set selection 

is the process of choosing a subset of data to evaluate the performance of a machine 

learning model. The choice of test set can impact the results of the evaluation, and it 

is important to choose a test set that is representative of the data that the model will 

encounter in the real world. If the test set is not representative, the evaluation may 

be overly optimistic or pessimistic, leading to incorrect conclusions about the model's 

performance.  

In summary, both seasonal selection and test set selection can have 

significant impacts on the outcomes of experiments and analyses. It is important to be 
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aware of these issues and to take appropriate steps to mitigate their effects. Therefore, 

the seasonal selection and test set selection need to be investigated. The results are 

shown in Table 3.5 and Figure 3.4 

 

Table 3.5 Performance of each seasonal model 

Season 
MAPE 

(%) 

RMSE 

(kW) 

MAE 

(kW) 

Time 

(Sec) 

1 Winter (Jan - April) 6.727 213.355 118.709 30.530 

2 Summer (May - August) 9.308 110.297 80.663 5.056 

3 Rainy (October - December) 10.486 319.570 209.986 40.054 

Average 8.840 214.407 136.453 - 

 

 

(a) 

 

(b) 
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(c) 

 

Figure 3.4 forecasting of each model: (a) winter forecasting, (b) summer forecasting,    

 and (c) rainy forecasting 

 

As shown in Figure 3.4 and Table 3.5, the performance of seasonal models 

depends on various factors, such as the length of the historical data, the selection of 

appropriate seasonal periods, and the choice of forecasting model. Overall, seasonal 

models are an effective tool for PV power forecasting, and their accuracy can be further 

improved by incorporating weather and other relevant data into the forecasting model. 

 3.5.5 Impact of validation method 

  To evaluate the performance of forecasting models solar rooftop at 

Industrial site was used. In order to assess the performance of forecasting models for 

the solar rooftop site, four case studies were conducted. The first two cases evaluated 

the performance of all models described in chapter 2. However, for the third and 

fourth cases, the LSTM and NARX models were excluded due to their significant time 

requirements. These models would require more time for k-fold cross-validation, and 

therefore, were not considered for these cases. The best forecasting results of the 

industrial site are shown in Table 3.6-3.10 and Figure 3.5-3.12, respectively. 
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  1) Case 1: using all training set as training set and validation set 

 

Table 3.6 The forecasting results of case 1 

No. Model 
MAPE 

(%) 

RMSE 

(kW) 

MAE 

(kW) 

Time 

(Sec) 

1 LR: Linear 13.289        383.902 260.725 2.552 

2 LR: Interactions linear 13.564 369.345 262.075 0.899 

3 LR: Robust linear 9.747 377.425 202.106 1.072 

4 LR: Stepwise linear regression 13.564 369.345 262.075 1.127 

5 Optimized Ensemble of trees 11.687 395.768 194.175 147.850 

6 Optimized SVR 10.995 345.295 203.743 372.390 

7 Optimized GPR 16.085 364.564 203.489 2,163.200 

8 ML-FNN  8.504 314.900 159.797 181.924 

9 NARX  55.437 1,509.200 808.321 36,200.000 

10 LSTM 12.167 369.067 204.658 3,873.700 

11 Benchmark model: DP 61.310 2,114.300 1,073.100 0.013 

 

 
 

Figure 3.5 The best forecasting results of case 1 (ML-FNN) 
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Figure 3.6 summary of case 1 

 

 Figure 3.6 reveals that the most accurate model for photovoltaic (PV) 

forecasting, concerning the use of all training sets as validation sets, is the multi-layer 

feedforward neural network (ML-FNN). This model exhibits a mean absolute 

percentage error (MAPE) of 8.504% and a training time of 181.924 seconds. These 

findings demonstrate that the ML-FNN model is highly effective in predicting short-

term hourly power output from PV systems, thus contributing to the development of 

efficient and effective forecasting schemes for distribution grids that incorporate PV 

systems. 
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  2) Case 2: using training set and validation set as 70:30 

 

Table 3.7 The forecasting results of case 2 

No. Model 
MAPE 

(%) 

RMSE 

(kW) 

MAE 

(kW) 

Time 

(Sec) 

1 LR: Linear 13.289 383.902 260.725 2.112 

2 LR: Interactions linear 13.564 369.345 262.075 0.899 

3 LR: Robust linear 9.747 377.425 202.106 1.172 

4 LR: Stepwise linear regression 13.564 369.345 262.075 1.027 

5 Optimized Ensemble of trees 10.986 333.148 174.674 147.850 

6 Optimized SVR 9.781 368.052 201.550 372.390 

7 Optimized GPR 9.187 306.598 157.714 2,163.20 

8 ML-FNN  8.504 314.900 159.798 494.448 

9 NARX 41.521 1,022.400 654.549 480.212 

10 LSTM 21.905 634.677 342.914 43,783.0 

11 Benchmark model: DP 61.310 2,114.300 1,073.100 0.013 

 

 
 

Figure 3.7 The forecasting results of case 2 

 



82 

 
 

Figure 3.8 Summary of case 2 

 

Figure 3.8 reveals that the most accurate model for photovoltaic (PV) 

forecasting, concerning the use of holdout (70:30), is the multi-layer feedforward neural 

network (ML-FNN). This model exhibits a mean absolute percentage error (MAPE) of 

8.504% and a training time of 494.448 seconds. 
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  3) Case 3: 5-fold cross-validation 

 

Table 3.8 The forecasting results of case 3 

No. Model 
MAPE 

(%) 

RMSE 

(kW) 

MAE 

(kW) 

Time 

(Sec) 

1 LR: Linear 13.289 383.902 260.725 1.685 

2 LR: Interactions linear 13.564 369.345 262.075 1.301 

3 LR: Robust linear 9.747 377.425 202.106 1.218 

4 LR: Stepwise linear regression 13.564 369.345 262.075 0.907 

5 Optimized Ensemble of trees 11.220 337.051 176.242 44.994 

6 Optimized SVR 16.699 448.622 316.743 10,322.000 

7 Optimized GPR 8.793 304.422 153.081 6,819.400 

8 ML-FNN  9.218 317.448 171.287 76.235 

9 Benchmark model: DP 61.310 2,114.30 1,073.10 0.013 

 

 

Figure 3.9 The forecasting results of case3 (Optimized GPR)  
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Figure 3.10 Summary of case 3 
 

The results presented in Figure 3.10 demonstrate that the optimized Gaussian 

Process Regression (GPR) model is the most accurate for photovoltaic (PV) forecasting 

when using 5-fold cross validation. This model achieves a mean absolute percentage 

error (MAPE) of 8.793% and a training time of 6,819.400 seconds. It is noteworthy that 

ML-FNN also demonstrates good performance, with a MAPE of 9.218% and train time 

of 76.235 seconds. These findings indicate the effectiveness of the optimized GPR 

model for PV forecasting, while also highlighting the potential utility of ML-FNN for this 

purpose. 
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  4) Case 4: 10-fold cross-validation 

 

Table 3.9 The forecasting results of case 4 

No. Model 
MAPE 

(%) 

RMSE 

(kW) 

MAE 

(kW) 

Time 

(Sec) 

1 LR: Linear 13.289 383.902 206.725 1.180 

2 LR: Interactions linear 13.564 369.345 262.075 1.029 

3 LR: Robust linear 9.747 377.425 202.106 1.873 

4 LR: Stepwise linear regression 13.564 369.345 262.075 1.619 

5 Optimized Ensemble of trees 10.923 330.336 172.168 72.138 

6 Optimized SVR 12.290 384.386 229.845 1324.900 

7 Optimized GPR 9.178 331.978 161.851 19,617.0 

8 ML-FNN  9.219 317.445 171.287 263.890 

9 Benchmark model: DP 61.310 2,114.300 1,073.10 0.013 

 

 
 

Figure 3.11 The forecasting results of case 4 (Optimized GPR)  
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Figure 3.12 summary of case 4 

 

The results presented in Figure 3.12 demonstrate that the optimized Gaussian 

Process Regression (GPR) model is the most accurate for photovoltaic (PV) forecasting 

when using 5-fold cross validation. This model achieves a mean absolute percentage 

error (MAPE) of 9.178% and a training time of 19,617.000 seconds. It is noteworthy that 

ML-FNN also demonstrates good performance, with a MAPE of 9.219% and train time 

of 263.890 seconds. These findings indicate the effectiveness of the optimized GPR 

model for PV forecasting, while also highlighting the potential utility of ML-FNN for this 

purpose. 

 From Figure 3.5-3.12, the simulation results show that the MAPE of LR models 

is between 9-13 %, and the accuracy of each model is close to the same. Moreover, 

LR models are the fastest training model. Robust LR is the highest forecasting accuracy 

among LR models because reweight process in Robust LR make reduce the sensitivity 

of the outlier to the model. Among ML models (Ensemble of trees, SVR, GPR), GPR is 

the highest forecasting accuracy model with a k-fold cross-validation method. 

Nerveless, this also model takes the highest time to train because many parameters 

and matrices have to be calculated in this model. For, SVR is well-known as good for 
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classification tasks and can be used to forecast regression tasks. However, the 

performance of this model is quite low when compared to another method. SVR 

worked well with the holdout validation method. The performance of an ensemble of 

trees is not outperformed other methods for this PV forecasting task but it is also not 

bad because the performance of this model is close to the best method for each case. 

Among DL models (ML-FNN, NARX, LSTM) with this dataset (hourly), the simulation 

results can be concluded that ML-FNN outperforms other DL methods, in terms of 

accuracy and training time. ML-FNN can work-well with both holdout and k-fold cross-

validation methods. For NARX and LSTM, these models are time series models that 

can work-well with related time series problems. Therefore, this work aims to forecast 

hourly PV power generation that has a big gap in changing per step causing the curve 

fitting deep learning (ML-FNN) to outperform both. However, if both time series models 

will be used with higher resolution systems such as 5 mins/step or 15 min/step that 

have a small gap in changing per step, both models may outperform ML-FNN. 

 

 
 

Figure 3.13 Summary of case 1-4 in term of percent 
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Figure 3.14 Summary of case 1-4 in term of training time 
  

 From all validation methods, the simulation results show that ML-FNN and 

optimized GPR outperform other methods. Figure 3.13 and Figure 3.14 show that ML-

FNN is the highest accuracy at MAPE of 8.504% with holdout validation method. 

Moreover, ML-FNN is more stable than optimized GPR when the validation method 

was changed and also better in term of training time. 

 3.5.6 Impact of uncomplete dataset 

  For the solar floating site, the forecasting models were used to test with 

4 cases as solar rooftop sites. All models that were mentioned in chapter 2 will be 

used to illustrate the performance besides both time series models because there are 

only 45 days in the dataset that can be used for the forecasting model. Then, there is 

a big gap between the selected test sets cause of the inappropriate use of time series 

models. The best forecasting results of the industrial site are shown in Table 3.7-3.10 

and Figure 3.8-3.11, respectively. 
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  1) Case 1: using all training set as training set and validation set 
 

Table 3.10 The forecasting results of case 1 of SUT dataset 

No. Model 
MAPE 

(%) 

RMSE 

(kW) 

MAE 

(kW) 

Time 

(Sec) 

1 LR: Linear 25.079 52.945 29.786 3.192 

2 LR: Interactions linear 25.876 55.271 30.463 0.878 

3 LR: Robust linear 25.385 59.730 27.005 1.545 

4 LR: Stepwise linear regression 26.579 54.980 30.978 4.039 

5 Optimized Ensemble of trees 20.893 78.901 34.702 101.560 

6 Optimized SVR 25.172 58.008 26.912 157.860 

7 Optimized GPR 19.680 58.788 27.695 381.040 

8 ML-FNN  22.076 47.910 26.364 312.825 

 

 
 

Figure 3.15 Sumary of case 1 
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  2) Case 2: using training set and validation set as 70:30 

 

Table 3.11 The forecasting results of case 2 

No. Model 
MAPE 

(%) 

RMSE 

(kW) 

MAE 

(kW) 

Time 

(Sec) 

1 LR: Linear 25.079 52.945 29.786 2.654 

2 LR: Interactions linear 25.876 55.271 30.462 1.279 

3 LR: Robust linear 25.385 59.730 27.005 0.826 

4 LR: Stepwise linear regression 26.579 54.980 30.978 1.457 

5 Optimized Ensemble of trees 21.150 53.626 27.459 169.230 

6 Optimized SVR 18.010 52.489 26.108 196.070 

7 Optimized GPR 25.079 52.945 29.786 242.910 

8 ML-FNN  19.052 47.833 26.552 8.690 

Note: for SVR, sometimes the optimizer cannot find the optimum hyperparameter 

 

 
 

Figure 3.16 The forecasting results of case 2   
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  3) Case 3: 5-fold cross-validation 
 

Table 3.12 The forecasting results of case 3 

No. Model 
MAPE 

(%) 

RMSE 

(kW) 

MAE 

(kW) 

Time 

(Sec) 

1 LR: Linear 25.079 52.945 29.786 1.645 

2 LR: Interactions linear 25.876 55.271 30.463 1.213 

3 LR: Robust linear 25.385 59.730 27.005 1.327 

4 LR: Stepwise linear regression 26.579 54.980 30.978 371.200 

5 Optimized Ensemble of trees 24.098 58.189 30.186 563.980 

6 Optimized SVR 25.039 57.880 26.977 563.980 

7 Optimized GPR 26.189 60.830 33.318 16124.000 

8 ML-FNN  19.449 47.508 25.625 27.052 

 

 
 

Figure 3.17 The forecasting results of case 3 (ML-FNN):   
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 4) Case 4: 10-fold cross-validation 

 

Table 3.13 The forecasting results of case 4 

No. Model 
MAPE 

(%) 

RMSE 

(kW) 

MAE 

(kW) 

Time 

(Sec) 

1 LR: Linear 25.079 52.945 29.786 1.323 

2 LR: Interactions linear 25.876 55.271 30.463 1.055 

3 LR: Robust linear 25.385 59.729 27.005 1.158 

4 LR: Stepwise linear regression 18.630 51.354 25.151 286.510 

5 Optimized Ensemble of trees 152.594 335.350 290.64 687.230 

6 Optimized SVR 182.594 335.350 29.648 691.122 

7 Optimized GPR 21.703 56.978 29.278 17724.0 

8 ML-FNN  19.905 50.774 27.227 33.101 

 

 
 

Figure 3.18 Summary of case 4 
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Figure 3.19 Summary of incomplete dataset in term of accuracy 

 

 
 

Figure 3.20 Summary of incomplete dataset in term of training time 
 

 Based on the simulation results presented in Figure 3.15-3.20, it can be 

observed that the trend of accuracy for each forecasting model applied to the solar 

floating site is similar to that of the solar rooftop site. However, the overall forecasting 

performance for this dataset is lower compared to the solar rooftop site due to the 

presence of a large amount of missing data. Additionally, it is important to note that 

the test set used in this study was randomly selected, which introduces variance from 

the training set. 
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3.6 Conclusion 

In this chapter, a comparative study of various short-term photovoltaic (PV) 

forecasting methods was conducted to evaluate the appropriate hyperparameter 

adjustment for each model. The chapter begins by describing the workflow of the 

comparative study, followed by a discussion on the imported datasets and data 

preprocessing techniques. The study was divided into six cases, including 1) the impact 

of hyperparameter tuning, 2) the impact of activation function selection, 3) the impact 

of normalization techniques, 4) the impact of seasonal and test set selection, 5) the 

impact of validation methods, and 6) the impact of incomplete datasets. The 

simulation results demonstrate that these case studies have an impact on the accuracy 

or training time of data-driven-based forecasting models. The results also show that 

ML-FNN with holdout validation method outperforms other forecasting methods. 
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CHAPTER 4 
Deep-Learning-Based Short-Term Photovoltaic Power Generation 

Forecasting Using Improved Self-Organization Map              

Neural Network 
 

4.1  Background 
Accurate forecasting of PV power generation is essential for an energy 

management system for distributed energy resources, efficient operation in distribution 

systems, and minimizing potential negative consequences of PV systems. This chapter 

describes an alternate method for improving the accuracy of short-term PV power-

generation forecasting models based on deep learning by clustering the input data 

using a self-organization map (SOM). To verify the proposed model, LSTM, ML-FNN, 

ML-FNN-SOM, and LSTM-SOM were evaluated and compared with hourly datasets 

spanning one year (8,760 samples). RMSE, MSE, and MAPE were used as parameters 

evaluated. The results demonstrate that the suggested method provides a more 

precise forecast of solar power generation than alternative methods. Moreover, the 

proposed method can operate well with a minimal number of inputs. 

 

4.2  Introduction 
 According to the literature review, LSTM and ANN are the most commonly used 

forecasting models for solar power generation in current research. These models can 

be improved by using data preprocessing or statistical techniques and by including 

additional climate variables in the analysis. However, many small to medium-sized PV 

systems lack accurate measurements and historical data on variables such as cell 

temperature and irradiation angle, which are important for predicting energy 

generation. To address this issue, a DL-based forecasting model that approximates the
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relationship between these factors was proposed. This technique uses SOM to 

enhance clustering efficiency and depict the relation between two or more parameters 

as numerous states. By estimating unmeasured and related factors as inputs, this 

method provides an alternate technique for improving the performance of a DL-based 

forecasting model with few inputs. The proposed method offers several novel aspects 

that can enhance the accuracy of the predictive model as follows: 1) The proposed 

method is suitable for photovoltaic power facilities that monitor only the ambient 

temperature and irradiance. The sensor data is more reliable than the 

available weather website, which considerably increases the accuracy of forecasts. 2) 

SOM was used to Classify the level of correlation between latent variables and PV 

power generation. And 3) the proposed method can be used as an alternate strategy 

for improving the precision of photovoltaic power generation forecasts. 

 

4.3  Methodology 
The current forecasting models for PV power generation rely on historical data 

and weather forecasts, which are often available through public weather websites. 

However, some crucial factors such as cell temperature and sky classification are not 

always available, which can lead to inaccurate forecasting. To improve the precision 

of PV forecasting, a new model proposes using a relative state factor from SOM as an 

input to the forecasting model. This approach estimates unmeasured relative 

components by clustering measured input and can effectively handle time series 

regression and classification problems. The model includes dataset preparation, 

estimation of unmeasured factors, and statistical analysis using ANN clustering-based 

preprocessing. This section will provide a detailed explanation of this approach. 

In this section, we will describe the ANN clustering-based preprocessing 

method, which includes dataset preparation, estimation of unmeasured factors, and 

statistical analysis. To ensure the accuracy of the data and eliminate outliers, historical 

data was processed for the PV forecasting framework. The processed data was then 
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categorized using SOM, as shown in Figure 4.1, and both the processed and clustered 

data were used to train the DL model for higher efficiency.  

 

 
 

Figure 4.1 Conceptual framework for forecasting PV power generation 

 

 4.3.1  APPROACH OVERVIEW 

The first step in developing a model for predicting PV power generation 

is to gather and preprocess historical data related to the plant's power output and 

meteorological data, including metrics such as solar irradiance and temperature. 

However, some important parameters may not have been measured. To address this, 

the existing dataset can be clustered using a clustering method to provide input for a 

DL-based forecasting model. Past data for each hour of the day can be clustered into 

various "states" of unobserved parameters to identify elements related to irradiance, 

time of day, weather, and past PV power generation. The state is determined using a 

SOM algorithm and used as one of the inputs for a DL-based forecasting model. The 

proposed framework will be compared to a recently developed method to evaluate 

its performance. 

 4.3.2  DATA PREPROCESSING 

To prepare the data for the DL model, two fundamental processes are 

necessary: data cleansing and preprocessing. The goal of data preparation is to make 
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the data ready for use with the DL model. In contrast, data cleaning is focused on 

improving the quality of the data, which involves handling null or outlier data. Data 

completeness or data cleaning is the process of verifying and correcting inaccurate or 

incomplete data entries from a dataset or database. Since inaccurate data can impact 

the reliability of the database, it is essential to correct, update, or delete these errors 

to ensure data accuracy. For this study, data with zero solar irradiance were removed 

as they may affect the DL model parameters during the training process. 

The procedure for removing these data is illustrated in Table 4.1, where 

x represents the input matrix, y represents the output matrix, k corresponds to the 

number of inputs, and x̂ is the input matrix post-preprocessing. 

 

Table 4.1 Data preprocessing process 

 
Once the dataset has undergone the data preprocessing stage, it 

proceeds to the clustering phase. Clustering involves grouping similar items together 

into input clusters of the same type. Two commonly used clustering techniques are 

the K-means algorithm and Self-Organizing Maps (SOMs). SOMs work in a similar way 

to K-means but with the added challenge of determining centroids using input vector 

categories, which can be tricky in this study. 

In this stage, the dataset was grouped using a SOM. A SOM trains an ANN 

to provide clustering based on pattern similarities and related topology by exposing it 

to patterns. This is beneficial for data analysis and simplification before further 

processing. ANNs have demonstrated their effectiveness as classifiers and are ideally 

Input: k jx R  contain time(j), temperature(j) and irradiance(j), PV output at step (j-1) 
Output: jy R  PV output at the previous step (j) 
1:  j =1, …, 8760 

2:  k = 4  
3:  ˆ {Re ( , ) ( ) ( ( ), ) 0}x move x all j and y j if x irr j j= =  
     ˆ newk j

x R


  is an ( )newk j matrix  
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suited for handling nonlinear issues. Given the occurrence of nonlinear behaviors in 

the real world, such as sorting, ANNs are unquestionably a great contender for tackling 

the clustering problem. For a SOM to cluster a dataset, the input data for clustering 

issues are prepared. Each row of the input matrix would have the same number of 

elements as the component being calculated. For this study, the four assessed 

variables (i.e., time, temperature, irradiance, and PV output) will be supplied into a 

SOM network, which will transfer the data newj  sample to a two-dimensional layer of 

neurons. Input data for clustering problems are formatted as a matrix. Each row jth of 

The input matrix will have k members that correspond to a vector derived from the 

PV plant data. Then, there are k rows in each jth sample as an input set. Defining the 

number of neurons in each layer dimension enables SOM to categorize samples to 

acquire the dataset's state parameter. In a hexagonal grid, a layer of two-dimensional 

neurons was utilized. Using more neurons produces higher resolution, while the 

addition of dimensions enables the modeling of the topology of more intricate 

function spaces. For the SOM process, given input jx , the ith unit is found with the 

closest weight vector i

jW  by competition and i j

jW x  will be the maximum for each unit 

jth in the neighborhood N(i) of winning neuron i to update the weights of j (Wj), and the 

weights outside of N(i) are not updated (Table 4.2). The SOM has three stages: 1) 

competition, 2) collaboration, and 3) weight update. For the competition stage, the 

most similar unit i(x) is found with Equation 1: 

 

2( ) arg max || ||j
j

i x x W= − , (4.1) 

 

Where j=1, 2, …, m, and m=samples. For the collaboration state, the lateral distance 

dij between the winner unit i and unit j is used in Equations 4.2 and 4.3: 

 
2

, 2
( ) exp( )

2

ij

i j ij

d
h d



−
= , (4.2) 

0( ) exp( )
n

n
T

 = − , (4.3) 
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Where h is the neighborhood function, n is the number of iterations, and T is constant. 

Weights-updated states are shown in equations 4.4 and 4.5: 

 

( 1) ( )j j jW n W n W+ = + , (4.4) 
( )j j j jW y x g y W = − , (4.5) 

 

where  is the learning rate, jy  is the output, and g(yj) can be found with equation 

6: 

 

( ) ( )j i ijg y y h x = = , (4.6) 

 

Table 4.2 Self-organizing map process 

 

 
 

Figure 4.2 SOM structure  

Input: ˆ newk j
x R


  is an ( )newk j matrix   

Output: ˆ( )i x is neighborhood i as equation 1    
1: for j=1:1:8760 
2: ˆ ˆ( ) { , ( ) ( )}j jN x i if i x closest to N i=  as shown in Figure 1. 
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Figure 4.2 depicts the neuron-to-neuron connections. Typically, nearby samples are 

categorized using neighborhood. The SOMs' topology consists of i neurons organized 

in a hexagonal grid. Each neuron has acquired the capability to represent a unique 

state class, with neighboring neurons typically expressing the same class. 

 

 
 

Figure 4.3 SOM Neighbor Connections 

 

4.4  Results and Discussion 
 The results of the simulation will be presented in two parts: (1) the 

categorization using SOM and (2) the forecasting results of the proposed framework. 

The weight planes of the SOM classes are shown in Figure 4.4 (a), which represents a 

visual representation of the weights that link each input to one of the 24 neurons in 

the 6x4 hexagonal grid. Darker hues indicate heavier weights, while lighter hues indicate 

lighter weights. When the weight planes of four variables are similar, there is a strong 

correlation between them. Additionally, it was observed that power output and solar 

irradiance have equal weight, which is contrary to the pattern observed with 

temperature. 

During the peak of light intensity and power output, there is a substantial 

impact over time. Figure 4.4 illustrates the Euclidean distance between the class of 
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each neuron and its nearby regions. The bright links represent regions in the input 

space that have a strong connection. On the other hand, the black links indicate groups 

that represent parts of the feature space that have few or no members. Large barriers 

with dark connections that divide significant areas of the input space indicate that the 

groups on either side of the boundary have notably different characteristics. 

Figure 4.5 displays the number of members within each class, along with the 

classes associated with each neighborhood. Areas of high neural activity correspond to 

groups that are similar in densely populated areas of the feature space. In contrast, 

areas with low activity indicate sparsely populated parts of the feature space. Through 

the analysis of the weights in Figure 4.4 and the clustering results in Figure 4.5, it was 

discovered that the classes were evenly distributed on the 4x6 plane but had a greater 

proportion than the other classes, indicating that the solar cells located in the upper-

right plane were more likely to generate energy. 

 

s  

(a) 
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(b) 
 

Figure 4.4 (a) Weights from inputs; (b) SOM neighbor weight distances 
 

 
 

Figure 4.5 Sample hits of SOM 
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(a) 

 
(b) 
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(c) 

 

(d) 
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(e) 

 

(f) 
 

Figure 4.6 The results of (a) ML-FNN (1 hidden layer); (b) LSTM, (c) ML-FNN (3 hidden 

layers); (d) LSTM-SOM; (e) ML-FNN-SOM (1 hidden layer) (f) ML-FNN SOM (3 

hidden layers) 
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To verify that the proposed model can be forecast at the same performance, 

ML-FNN-SOM (3 hidden layers) was trained and tested 30 times, and the simulation 

are results shown in Figure 4.7. We can conclude that the proposed model can achieve 

almost forecasting accuracy when the model was retrained and test at 30 times. 

 

 
 

Figure 4.7 The retrain results of ML-FNN-SOM (3 hidden layer) 
 

After the classification of the dataset, the resulting data from the classes were 

used as one of the DL features in the FNN and LSTM models. The proposed model's 

prediction results were then compared to those of the unclassified model, but only 

during the electricity generation period of 678 hours. Figure 4.6 (a) shows the LSTM 

forecasting results with error values and forecasting results, where the maximum error 

was 3,104.5 kW and the mean error was 371.77 kW. Figure 4.6 (b) shows the FNN 

forecasting results with resultant and error values, where the maximum inaccuracy was 

853.05 kW and the mean error was 225.28 kW. Figure 4.6 (c) shows the ML-FNN (3 

HIDDEN LAYER) forecasting results with resultant and error values, where the maximum 

inaccuracy was 1,105.70 kW and the mean error was 232.49 kW. Figure 4.6 (d) shows 

the LSTM-SOM forecasting results with resultant error values, where the maximum 

error was 1,371 kW and the mean error was 216.95 kW. Figure 4.6 (e) shows the FNN-
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SOM forecasting results with resultant error values, where the maximum error was 

458.77 kW, and the mean error was 106.69 kW. Figure 4.6 (f) shows the FNN forecasting 

results with resultant and error values, where the maximum inaccuracy was 1445.70 

kW and the mean error was 105.03 kW. The forecast results during the peak period 

had greater errors than other periods in all cases. 

 

Table 4.3 Comparing the simulation results of ML-FNN/ LSTM/LSTM-SOM/ ML-FNN -SOM  

 
Table 4.3 presents the results of the simulation, comparing the performance of 

several models for short-term power forecasting. ML-FNN (1 hidden layer) model 

achieved a MAPE of 12.92%, a MAE of 205.01 kW, and a RMSE of 266.72 kW. ML-FNN 

(3 hidden layers) model had a lower MAPE of 11.46%, but a higher MAE of 240.36 kW, 

and a higher RMSE of 334.285 kW. LSTM model had the highest MAPE of 17.38%, a 

MAE of 371.77 kW, and an RMSE of 551.05 kW. On the other hand, the ML-FNN-SOM 

(1 hidden layer) model showed superior performance, achieving a MAPE of 4.56%, a 

MAE of 106.69 kW, and an RMSE of 131.32 kW. Similarly, the ML-FNN (3 hidden layer)-

SOM model performed well, with a MAPE of 4.08%, a MAE of 95.84 kW, and an RMSE 

of 122.84 kW. Finally, the LSTM-SOM model achieved a MAPE of 7.55%, a MAE of 

216.95 kW, and an RMSE of 301.18 kW. These results indicate that the models that 

Methods 
MAPE 

(%) 

MAE 

(kW) 

RMSE 

(kW) 
ML-FNN (1 hidden layer) 12.92 205.01 266.72 
ML-FNN (3 hidden layers) 11.46 240.36 334.285 
LSTM 17.38 371.77 551.05 
ML-FNN-SOM (1 hidden layer) 4.56 106.69 131.32 
ML-FNN-SOM (3 hidden layers) 4.08 95.84 122.84 
LSTM -SOM 7.55 216.95 301.18 
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used a clustering method to group the training dataset were more accurate than the 

conventional methods, particularly during peak power production times. 
 

4.5  Conclusion 
This chapter presents an approach aimed at enhancing the precision of deep 

learning (DL)-based short-term forecasting models for photovoltaic (PV) power 

generation. The proposed method utilizes self-organizing maps (SOM) and data 

processing techniques to cluster input data, which were thoroughly tested and 

compared against commonly employed forecasting techniques. By employing SOM, a 

set of numerical inputs can be grouped into a single feature during the training process, 

thereby addressing the issue of curve fitting in the ML-FNN (3 hidden layer) approach. 

The results obtained from extensive simulations demonstrate the superiority of SOM-

based clustering in enhancing the accuracy of PV power generation forecasting, making 

it a viable alternative to DL-based forecasting methods such as ML-FNN and LSTM. This 

alternative approach not only outperforms existing techniques but also exhibits 

exceptional adaptability to situations where the number of available inputs is limited, 

making it a practical and efficient solution for PV power generation forecasting. The 

utilization of SOM as a clustering mechanism plays a pivotal role in improving the 

accuracy of the forecasting models. By organizing input data into cohesive groups, SOM 

enables the identification of underlying patterns and relationships within the dataset. 

This clustering approach ensures that the forecasting model captures the intricate 

dynamics of PV power generation, resulting in more precise predictions. Moreover, the 

SOM-based clustering technique overcomes the limitations associated with traditional 

DL-based methods. ML-FNN and LSTM often encounter difficulties in accurately 

capturing the complexities of PV power generation due to curve fitting issues and the 

potential loss of important information in the data. However, the integration of SOM 

mitigates these problems, leading to significantly improved forecasting accuracy. 
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One notable advantage of the proposed method is its ability to perform 

effectively with a limited number of inputs. This feature is particularly valuable in 

practical applications where acquiring a vast amount of data may be challenging or 

costly. By making accurate predictions using a smaller set of inputs, the SOM-based 

clustering approach offers a cost-effective and efficient solution for PV power 

generation forecasting. In conclusion, the introduction of SOM-based clustering 

combined with data processing presents a pioneering approach for enhancing the 

accuracy of DL-based short-term forecasting models in PV power generation. The 

extensive simulations conducted demonstrate its superiority over traditional methods 

such as ML-FNN and LSTM, making it an appealing alternative for accurate and practical 

PV power generation forecasting, even with a limited number of inputs. 

 



CHAPTER 5 
PROBABILISTIC FORECASTING OF SHORT-TERM                     

PV POWER GENERATION  
 

5.1  Background 
In recent years, solar energy has expanded rapidly. Numerous nations have 

invested in solar energy technology, particularly photovoltaic (PV) energy generation. 

Increasing solar energy penetration makes solar power forecasting more difficult. 

Probabilistic forecasting provides more information than traditional point forecasting 

to account for solar power's inherent uncertainty. In addition, multiple PV sites with 

spatial-temporal correlations should be considered.  This thesis proposed a method 

to minimize the probabilistic range of PV power generation forecasting. The simulation 

results will be verified using both Kf-cv and the holdout method. 

Forecasting photovoltaic power is difficult since PV power is impacted by 

several variables, such as irradiance, temperature, etc. (VanDeventer et al., 2019). 

Consequently, PV power forecasting is now primarily separated into two groups based 

on the distinct prediction results: certain point/deterministic prediction (Oneto, Laureri, 

Robba, Delfino, & Anguita, 2018) and uncertainty interval prediction (El-Baz, 

Tzscheutschler, & Wagner, 2018). In recent years, several researchers have 

concentrated on the study of deterministic prediction, and artificial intelligence has 

become a popular technique. To anticipate photovoltaic power, the approach 

unearths the link between the input factors inherent in the historical output data of 

solar power plants and the expected outcomes via machine learning. Common 

artificial intelligence algorithms include mostly of BP neural networks, support vector 

machines, regression tree techniques, etc (Gao, Li, Hong, & Long, 2019). Recognizing 

that photovoltaic power generation is significantly influenced by meteorological 

parameters when the meteorological conditions within the forecast period fluctuate 
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significantly, the photovoltaic output curve will no longer be smooth and there will 

be a large peak-to-valley difference, resulting in a significant reduction in the accuracy 

of the deterministic prediction results (Ahmed, Sreeram, Mishra, & Arif, 2020). Interval 

predictions may thus compensate for the absence of deterministic forecasts and 

provide more detailed information. This not only enables decision-makers to 

comprehend the possible output of the prediction point, but it also enables decision-

makers to comprehend the future change trend of the output of the prediction point, 

vastly enhancing the prediction accuracy and promoting grid planning, risk analysis, 

and reliability evaluation (Sayed, Elgeldawi, Zaki, & Galal, 2020). Therefore, interval 

prediction is a useful technique for enhancing the precision of solar power forecasts. 

In the field of deterministic prediction, Reference (VanDeventer et al., 2019) categorizes 

meteorological circumstances as either ideal or non-ideal. For ideal weather, the LSTM 

prediction technique is used; for non-ideal weather, the time-series correlation and 

features of non-ideal weather types are considered to obtain the final point prediction 

value. Regarding the constraints and inadequacies of historical PV output data and 

weather information, Reference (Wang et al., 2020) introduced a day-ahead forecasting 

approach related to cloud space synthesis to accomplish point prediction. 

Furthermore, Reference (Li et al., 2018)created independent day-ahead PV power 

forecasting models based on LSTM and proposed a method to modify the forecasting 

results of the LSTM model based on the principle of time correlation, which improved 

the model's prediction accuracy. In the field of probabilistic forecasting, Reference (Ni, 

Zhuang, Sheng, Kang, & Xiao, 2017) developed an adaptive method of short-term PV 

power forecasting based on extreme learning machine (ELM) and lower and upper 

bound estimation (LUBE), as well as an improved differential evolution algorithm to 

determine the best-generating prediction intervals. Reference (Zhang, Wang, Liao, 

Zhang, & Zha, 2015)established a novel two-stage model to quantify the forecast 

interval value of solar power production, combined several neural network models to 

provide point forecasting values and generated the prediction interval using the kernel 

density estimation technique. Under the principle of assuring interval coverage, 

Reference (Raza, Mithulananthan, & Summerfield, 2018) provided a modified Bootstrap 
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approach to enhance the classic theoretical method, eliminate the issue of incorrect 

prediction error hypothesis, and minimize the interval width. Reference Furthermore, 

(Bouzerdoum, Mellit, & Massi Pavan, 2013) suggested a forecasting model based on 

PSO and boundary theory; the interval prediction of photovoltaic output was achieved 

by utilizing a PSO to optimize the output weight of boundary estimation theory. ML 

and DL algorithms dynamically alter their internal settings depending on inputs. These 

parameters are referred to as "model parameters". Other factors, however, are not 

modified throughout the learning process, but rather must be preconfigured before 

the learning process is initiated. These parameters are often known as 

"hyperparameters." The model parameters specify how the input data are transformed 

into the intended output, while the hyperparameters describe the model's 

architecture. The efficiency of an ML and DL model is very sensitive to the selection 

and settings of its hyperparameters. A variety of techniques could be used to establish 

hyperparameters for a particular dataset. The first is to manually configure them and 

determine their accuracy appropriately. Then, various hyperparameter values may be 

evaluated, and the associated accuracy can be determined for each modification. 

Configuring the hyperparameter settings manually in this trial-and-error manner is a 

laborious and time-consuming operation. The default values of hyperparameters that 

are suggested by the software packages used in the implementation, which are in turn 

based on recommendations from the literature and experience, may also be utilized 

to determine an acceptable hyperparameter configuration. Sometimes the default 

values work well for a particular dataset, but this does not necessarily imply that they 

provide the highest degree of precision. hyperparameter optimization techniques may 

be used to achieve the problem. These techniques are data-dependent optimization 

algorithms that aim to minimize the predicted training error of a machine learning 

model throughout the search space of possible hyperparameter configurations. The 

ML algorithms were initially assessed using the default hyperparameter values, 

followed by a comparison with the outcomes of hyperparameter tweaking methods. 

When attempting to solve a particular classification issue, the vast majority of 

published publications examine the impact of one hyperparameter tuning strategy on 
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the precision of one or more machine language algorithms. Both the classification 

accuracy of the machine learning approach and the hyperparameters combination that 

provides the highest classification accuracy is heavily influenced by the nature of the 

challenge. Prior studies focused mostly on deterministic or point forecasting. Hong and 

Fan (Rahab, Zitouni, & Djoudi, 2018) theorized that this might be because probabilistic 

predictions were evaluated using the same performance measures as deterministic 

forecasts and performed worse than their deterministic equivalent. Chapter 2, which 

describes the most used performance measures, can be deduced that evaluating 

probabilistic predictions using metrics designed for point forecasts may result in 

erroneous findings. Supplying a utility with a PDF or prediction interval, i.e., an interval 

in which the random variable is projected to be measured with a specified probability 

of future production and demand is arguably more beneficial than providing a single 

value since it permits risk management. It should be emphasized that a prediction 

interval and a confidence interval are not the same, but they are regrettably used 

interchangeably at times. A prediction interval relates to a random variable, while a 

confidence interval is related to an unknown parameter and is generated using the 

data. In probabilistic forecasting, there are often two ways to generate a PDF. First, a 

density function may be assumed, which is the parametric method. Second is the 

nonparametric method, which makes no such assumption. Nevertheless, assuming a 

distribution is seldom indicative of data and is often inaccurate or suboptimal (Rauf et 

al., 2020).  

Probabilistic photovoltaic (PV) forecasting with truncation and Monte Carlo 

simulation is a technique used to predict the output of a solar PV system with a high 

degree of accuracy. This approach combines the use of truncated probability 

distributions with the Monte Carlo simulation method, which involves generating 

multiple iterations of the forecast to account for the variability in PV output due to 

changing weather conditions. 

Probabilistic PV forecasting with truncation and Monte Carlo simulation relies 

on statistical models and algorithms to generate truncated probability distributions 
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that describe the possible outcomes of a PV system's output. These models take into 

account a range of factors, including historical data, weather patterns, and solar 

irradiance to predict future outcomes. The use of truncation improves the accuracy of 

the forecast by capping the upper and lower limits of the output range, while Monte 

Carlo simulation generates multiple iterations of the forecast to account for the 

uncertainty in the input parameters. The output of a probabilistic PV forecast with 

truncation and Monte Carlo simulation typically includes a probability distribution, 

such as a histogram or density plot, that shows the likelihood of different outcomes 

occurring within the truncated range. This information can be useful for grid operators, 

energy traders, and PV system operators, who can use the forecast to better manage 

their resources and make more informed decisions. Overall, probabilistic PV forecasting 

with truncation and Monte Carlo simulation is a powerful tool for anyone seeking to 

maximize the efficiency and profitability of a solar PV system. By combining the 

benefits of truncated probability distributions with the Monte Carlo simulation method, 

it provides decision-makers with a more nuanced understanding of the probabilities 

surrounding the system's output and allows them to optimize their use of this 

renewable energy source. 
 

5.2 Methodology 
The present study involves a stepwise approach to probabilistic forecasting. 

Firstly, a point forecasting method, namely the ML-FNN (3 hidden layers), is employed 

to generate a point forecast. Subsequently, the obtained point forecast is used in 

conjunction with probabilistic computation techniques, based on a training set, to 

derive the prediction intervals that represent the range of confident predictions for 

each time step. The ensuing discussion delineates the methodology employed to 

achieve probabilistic forecasting at each time step and the resulting findings are 

presented in Figure 5.1, which also includes a comparative analysis. 
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Figure 5.1 Probabilistic computation workflow 
 

5.2.1  Probabilistic computation of the dataset 

 The first step of probabilistic analysis is to use the point forecasting 

model that was proposed in chapter 3 (3 hidden layers). Then, the probabilistic of the 

training set was computed as all, seasons, months, 2 weeks, and 7 days before the test 

set. After getting the appropriate case, the truncated was used to select the 

appropriate range and select the lower bound and upper bound of interval forecasting. 

The process of probabilistic analysis of the dataset is shown in Figure 5.2 
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Figure 5.2 Probabilistic analysis of dataset process 
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Figure 5.3 Lower bound and upper bound selection of PV power 
 

5.2.2 Truncate probabilistic 

  Truncation is a concept used in probabilistic forecasting to improve the 

accuracy of the forecast by capping the upper and lower limits of the probability 

distribution. In this approach, the probability distribution of possible outcomes is 

generated using statistical techniques such as Kernel Density Estimation (KDE) or 

Gaussian Mixture Models (GMM). The distribution is then truncated to a specified range, 

removing any extreme values outside of the range. Truncation is particularly useful in 

situations where there is a high degree of uncertainty or where the outcomes can vary 

significantly. By truncating the distribution to a specific range, the probabilistic forecast 

becomes more accurate, as it focuses on the most probable outcomes and removes 

the unlikely or extreme values. This approach also allows decision-makers to better 

understand the range of possible outcomes and make more informed decisions based 

on that information. The process of truncation involves setting upper and lower limits 

on the probability distribution. This can be done using a fixed range or a dynamic range 

that changes depending on the input data. For example, in solar PV forecasting, the 

upper limit of the distribution might be set to the maximum expected output of the 

PV system, while the lower limit might be set to zero or a small negative value to 

account for measurement error. 
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The truncated probabilistic workflow is a method used to forecast the 

output of a system while taking into account the uncertainty associated with the 

prediction. This approach involves generating a probability distribution of possible 

outcomes, and then truncating the distribution to a specified range to improve the 

accuracy of the forecast. The following steps outline the truncated probabilistic 

workflow: 1) Data Collection: Collect relevant data such as historical performance, 

external variables, weather patterns, etc. 2) Point Forecasting: Use a point forecasting 

model such as Artificial Neural Networks (ANN), Support Vector Regression (SVR), or 

Gradient Boosted Regression Trees (GBRT) to generate a point forecast. 3) Probability 

Distribution Generation: Using the point forecast, generate a probability distribution of 

possible outcomes using statistical techniques such as Kernel Density Estimation (KDE) 

or Gaussian Mixture Models (GMM). 4) Truncation: Truncate the probability distribution 

to a specified range to improve the accuracy of the forecast. This can be achieved by 

capping the upper and lower limits of the range to remove any extreme values. 5) 

Prediction Intervals: Use the truncated distribution to determine the prediction 

intervals, which represent the range of confident predictions for each time step. 6) 

Model Validation: Validate the model by comparing the predicted intervals against the 

actual outcomes. This step ensures that the model is accurate and can be used with 

confidence. 

Overall, the truncated probabilistic workflow is a powerful method that 

allows decision-makers to make informed decisions in the face of uncertainty. By 

combining point forecasting with probability distribution generation and truncation, this 

approach provides a more nuanced understanding of the range of possible outcomes 

and enables decision-makers to optimize their use of resources and plan for a range 

of contingencies. 

 5.2.3 Monte carlo 

  Monte Carlo is a computational method that involves using random 

sampling techniques to generate a large number of possible outcomes or scenarios. 

This method is often used in statistical analysis and mathematical modeling to 
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calculate the probability of certain events or outcomes. The technique is named after 

the Monte Carlo Casino in Monaco, where games of chance involve a high degree of 

randomness and unpredictability. In the Monte Carlo method, a large number of 

simulations are performed, each using different random inputs or variables. The 

outputs from these simulations are then aggregated and analyzed to determine the 

probability of certain events or outcomes. This approach can be used to generate a 

probability distribution for a particular variable, allowing decision-makers to better 

understand the likelihood of different scenarios and make more informed decisions. 

The Monte Carlo method is particularly useful when dealing with complex systems or 

situations where there is a high degree of uncertainty. For example, it can be used to 

model the potential outcomes of a financial investment, to simulate the spread of a 

disease, or to forecast the output of a solar PV system under changing weather 

conditions. By generating a large number of possible outcomes, the Monte Carlo 

method can provide decision-makers with a more nuanced understanding of the range 

of possible outcomes and enable them to plan for a variety of contingencies. 

  The Monte Carlo workflow is a method used to generate probabilistic 

forecasts using random sampling techniques. The following steps outline the basic 

Monte Carlo workflow: 1) Define the Problem: Identify the problem or system to be 

modeled and determine the input variables, output variables, and assumptions to be 

made. 2) Define Probability Distributions: Define the probability distributions for each 

of the input variables, based on historical data, expert knowledge, or assumptions. 3) 

Sample Inputs: Generate a large number of random samples from the probability 

distributions for each of the input variables. 4) Simulate System: Run the model or 

simulation using the sampled inputs to generate a large number of outputs. 5) 

Aggregate Outputs: Aggregate the outputs from the simulations to generate a 

probability distribution for the output variable(s). 6) Analyze Results: Analyze the 

probability distribution to determine the likelihood of different outcomes or scenarios. 

7) Sensitivity Analysis: Conduct sensitivity analysis to determine which input variables 

have the greatest impact on the output variable(s) and identify potential sources of 
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uncertainty. 8) Validation: Validate the model or simulation by comparing the output 

against historical data or known outcomes, and adjust the model as necessary. 

  Overall, the Monte Carlo workflow is a powerful method for generating 

probabilistic forecasts and analyzing complex systems. By using random sampling 

techniques to simulate a large number of possible outcomes, this approach allows 

decision-makers to better understand the range of possible outcomes and make more 

informed decisions in the face of uncertainty. 
 

5.3  Simulation Results and Discussion 
 The simulation results presented in this study can be divided into two parts. 

The first part involves the generation of probabilistic PV power using Monte Carlo 

simulation techniques, which is subsequently used to establish the lower and upper 

bounds of the probability distribution, as depicted in Figures 5.3, 5.4, and 5.5. The 

second part entails the probabilistic forecasting results obtained from six case studies, 

as outlined in Table 5.1, with the best-case scenario presented in Figure 5.6. The 

generative probabilistic PV power results from the Monte Carlo simulation serve as a 

crucial input in defining the lower and upper bounds of the probability distribution. 

This step is instrumental in establishing the range of potential outcomes and enables 

decision-makers to better understand the likelihood of different scenarios. The 

probabilistic forecasting results provide further insights into the range of possible 

outcomes and allow decision-makers to optimize their use of RES 

 



122 

 
 

Figure 5.4 Convergent of mean of probabilistic PV output each hr from monte carlo  

 simulation (1 to 12 refer to 7 A.M. to 18 P.M. ) 

 

 
 

Figure 5.5 SD of probabilistic PV output each hr from monte carlo simulation 
 

 

Upon analyzing the dataset, the researchers determined the appropriate lower 

and upper bounds for the probabilistic PV power forecast. The lower bound was 

selected as the point forecast value, since the proposed point forecasting was found 

to be not over the actual value. The upper bound was determined to be half of the 

standard deviation of the power output in the training set, based on its 

comprehensiveness to the test set. The simulation results, which validate the chosen 
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lower and upper bounds, are presented in Figure 5.6, while the corresponding 

probabilistic forecasting results for the six case studies are provided in Table 5.1. 

 

 
 

Figure 5.6 Probabilistic forecasting results of Monthly case (best PINAW) 

 

Table 5.1 Probabilistic forecasting results 

Case PICP PINAW 

1 Using all training set 1 0.1010 
2 Seasonal (Oct - Dec) 1 0.1008 
3 Monthly (Dec) 1 0.1002 
5 2 weeks 1 0.1004 
6 Previous 7 days 1 0.1018 

Note: the performance of each model is not the same when monte carlo was re-

calculated 
 

 Simulation results show that the selected lower bound and upper bound can 

be comprehensively used to forecast the interval of the study. As shown in Table 5.1, 

PICP means how this forecasting model comprehensive the actual value is at 1 (max 

value). PINAW illustrates the proportion of the width of the average prediction range 
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per actual value range (max-min) that mean if PINAW is higher, the prediction is wider. 

PINAW I this case is 10.02 %. As mentioned, we can conclude that this probabilistic 

model is cover al of the actual value and the prediction range is not over size 
 

5.4  Conclusion 
The present chapter introduced a alternative method for enhancing the 

reliability of forecasting results through the utilization of probabilistic computation in 

conjunction with a proposed point forecasting technique, namely ML-FNN (3 HIDDEN 

LAYER). The simulation results demonstrated the effectiveness of this approach in 

providing a reliable and accurate forecast range for the dataset under consideration, 

thereby boosting decision-makers' confidence in the reliability of the forecast. 
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CHAPTER 6 
Conclusion  

 

6.1  Conclusion 
The thesis aims to develop the performance and reliability of forecasting results 

using SOM and probabilistic forecasting. This thesis divides into 3 parts: 1) comparative 

study to find the appropriate forecasting model and the way to tune the 

hyperparameter, the simulation results show that ML-FNN (3 hidden layers) is the best 

model when considering accuracy, training time, and reaching the global minimum 

error. 2) Improving the performance of the forecasting model using SOM, the simulation 

results show that SOM can be used to improve the performance of data-driven-based 

forecasting methods including ML-FNN-SOM (3 hidden layers) and LSTM. And 3) using 

the probabilistic computation to firm the forecasting range of the point forecasting 

model, the simulation results show that this proposed method can cover 100 percent 

of the prediction interval of this dataset. The limitation of this study is considered only 

hourly data 
 

6.2  Suggestions 
There is a suggestion for hyperparameter tuning, using SOM, and probabilistic 

computation. 

 6.2.1  Suggestions for tuning hyperparameter of ML-FNN 

Tuning hyperparameters of a neural network is an essential step in 

achieving optimal performance. Here are some suggestions to help you tune your 

hyperparameters effectively: 

Start with a baseline model: Before beginning any hyperparameter 

tuning, start by building a baseline model. This model should be relatively simple and
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use default hyperparameters. It provides a starting point for comparison, and you can 

use it to establish a baseline performance metric. 

Identify the Key Hyperparameters: Hyperparameters are model 

parameters that are not learned during training. These include learning rate, batch size, 

activation function, number of hidden layers, and number of neurons in each layer. 

Identify which hyperparameters are most critical to the performance of your model. 

Choose a search strategy: There are several strategies for 

hyperparameter tuning, including grid search, random search, and Bayesian 

optimization. Grid search involves trying all possible combinations of hyperparameters, 

whereas random search randomly selects a subset of hyperparameters to try. Bayesian 

optimization uses past results to determine the most promising hyperparameters to 

try next. Choose a search strategy that suits your problem asnd computational 

resources. 

Define the search space: The search space is the range of 

hyperparameters you want to explore. Define the search space for each 

hyperparameter you want to tune. For example, you might define a learning rate 

search space of [0.001, 0.01, 0.1]. 

Train and evaluate models: train and evaluate the model using the 

search space you defined. For each combination of hyperparameters, train the model 

and evaluate its performance. Repeat this process for all combinations of 

hyperparameters in your search space. 

Analyze results: analyze the results of your hyperparameter search. 

Identify the hyperparameters that result in the best performance. Visualize the results 

to identify any trends or relationships between hyperparameters and performance. 

Refine the search space: refine the search space based on the results 

of your analysis. If a particular hyperparameter is not affecting the performance of the 
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model, remove it from the search space. If a particular hyperparameter has a significant 

impact on performance, expand the search space to include more values. 

Repeat the process: repeat the hyperparameter tuning process until you 

have found the optimal set of hyperparameters for your model. It may take several 

rounds of tuning to achieve the best performance. 

Test on unseen data: finally, evaluate the performance of your model 

on unseen data to ensure that it generalizes well. 

By following these suggestions, you should be able to tune the 

hyperparameters of your neural network effectively and achieve optimal performance. 

 

 6.2.2  Suggestions for using self-organizing maps (SOMs) 

Data Visualization: SOMs can be used for visualizing high-dimensional 

data. By mapping the data onto a 2D or 3D space, patterns and relationships between 

data points can be easily observed. 

Clustering: SOMs can be used for clustering data. Data points that are 

mapped onto the same neuron on the SOM are considered to be similar and can be 

grouped. 

Anomaly Detection: SOMs can be used for anomaly detection. Data 

points that are mapped onto neurons that are far away from the others may be 

considered outliers. 

Feature Selection: SOMs can be used for feature selection. By analyzing 

which features contribute the most to the formation of clusters on the SOM, less 

important features can be removed, reducing the dimensionality of the data. 

Prediction: SOMs can be used for prediction. Once the SOM has been 

trained on a set of data, it can be used to predict the mapping of new, unseen data 

points onto the SOM, allowing for classification or regression. 
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Optimization: SOMs can be used for optimization. By creating a SOM of 

a set of design parameters and their corresponding outcomes, it is possible to find the 

optimal set of parameters that lead to the desired outcome. 

Image Processing: SOMs can be used for image processing. By mapping 

the pixels of an image onto the SOM, the SOM can learn to recognize patterns in the 

image, allowing for image segmentation, object recognition, and image compression. 

These are just a few examples of how SOMs can be used. The 

applications of SOMs are wide-ranging, and they can be used in any field where high-

dimensional data needs to be analyzed. 

 6.2.3  Suggestion for PV power generation probabilistic forecasting 

Probabilistic forecasting is a critical component of PV power generation 

forecasting, as it provides information about the uncertainty and risk associated with 

the predicted output. Here are some suggestions to help you develop an effective 

probabilistic forecast for PV power generation: 

Data preprocessing: ensure that the input data is preprocessed and 

cleaned before feeding it into the forecasting model. This includes outlier removal, 

normalization, and feature engineering to extract useful information. 

Select appropriate Models: Several models can be used for probabilistic 

forecasting, including Gaussian Process regression, quantile regression, bayesian neural 

networks, and ensemble methods. choose the model that is most suitable for your 

problem and data. 

Train the model: train the model using historical PV power generation 

data, and use cross-validation techniques to evaluate the model's performance. Use 

appropriate loss functions such as mean absolute error or quantile loss function to 

train the model to predict the desired quantile. 
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Use ensemble models: ensemble models such as Bayesian Model 

Averaging, Weighted Average, or Stacking can help combine the strength of multiple 

models to produce more accurate probabilistic forecasts. 

Incorporate weather forecast: weather plays a critical role in the 

generation of PV power. Incorporate weather forecast data, such as solar irradiance 

and temperature, into the model to improve the accuracy of the forecast. 

Model evaluation: evaluate the model's performance using appropriate 

metrics such as Continuous Ranked Probability Score (CRPS) or Pinball loss to assess 

the quality of the probabilistic forecast. 

Calibration: ensure that the probabilistic forecast is well calibrated by 

comparing the predicted probabilities to the actual outcomes. Calibration can be 

achieved using post-processing techniques like Platt scaling or Beta Regression. 

Update the model: update the model regularly as new data becomes 

available to ensure the forecast remains accurate and up to date. 

By following these suggestions, you can develop an effective 

probabilistic forecast for PV power generation that provides valuable information about 

the uncertainty and risk associated with the predicted output. 

 

 



 

 

 
 
 
 
 
 

 

 

 

APPENDIX A 
TEST CASE FOR HYPERPARAMETER TUNING  
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A.1 ML-FNN 

Table A.1. Hyperparameter for case 1 (at 1000 iteration or maximum performance) 

No. Layer/ node 
Activation 
function 

MAPE 

(%) 

RMSE 

(kW) 

MAE 

(kW) 

Time 

(Sec) 

1.1 1 layer/layer 1: 10 
nodes 

tansig 8.827 308.454 164.410 5.413 

1.2 1 layer/layer 1: 20 
nodes 

tansig 9.006 307.988 158.655 11.583 

1.3 1 layer/layer 1: 50 
nodes 

tansig 8.998 306.941 161.314 25.132 

1.4 1 layer/layer 1: 10 
nodes 

logsig 9.116 311.396 171.566 5.291 

1.5 1 layer/layer 1: 20 
nodes 

logsig 8.663 301.181 156.489 11.331 

1.6 1 layer/layer 1: 50 
nodes 

logsig 9.114 300.041 156.585 25.926 

1.7 1 layer/layer 1: 10 
nodes 

poslin 8.604 315.388 158.569 0.317 

1.8 1 layer/layer 1: 20 
nodes 

poslin 8.839 316.673 167.373 1.307 

1.9 1 layer/layer 1: 50 
nodes 

poslin 8.638 314.238 160.388 21.441 

2.1 2 layer/layer 1: 10 
nodes 

layer 2: 10 nodes 

tansig 9.349 303.037 158.554 18.177 

2.2 2 layer/layer 1: 20 
nodes 

tansig 8.738 295.470 152.800 72.047 
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No. Layer/ node 
Activation 
function 

MAPE 

(%) 

RMSE 

(kW) 

MAE 

(kW) 

Time 

(Sec) 

layer 2: 20 nodes 

2.3 2 layer/layer 1: 50 
nodes 

layer 2: 50 nodes 

tansig 8.915 300.648 156.385 
2,570.8

00 

2.4 2 layer/layer 1: 10 
nodes 

layer 2: 20 nodes 

tansig 8.568 298.384 156.850 35.547 

2.5 2 layer/layer 1: 10 
nodes 

layer 2: 50 nodes 

tansig 8.568 298.384 156.850 33.68 

2.6 2 layer/layer 1: 20 
nodes 

layer 2: 10 nodes 

tansig 8.792 299.770 159.217 127.344 

2.7 2 layer/layer 1: 20 
nodes 

layer 2: 50 nodes 

tansig 8.891 299.485 160.940 369.004 

2.8 

2 layer/layer 1: 50 
nodes 

layer 2: 10 nodes 

tansig 8.763 293.94 

 

153.19 

 

115.820 

2.9 2 layer/layer 1: 50 
nodes 

layer 2: 20 nodes 

tansig 9.018 302.211 156.94 305.480 

2.10 2 layer/layer 1: 10 
nodes 

layer 2: 10 nodes 

logsig 8.764 297.340 156.32 
17.911 
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No. Layer/ node 
Activation 
function 

MAPE 

(%) 

RMSE 

(kW) 

MAE 

(kW) 

Time 

(Sec) 

2.11 2 layer/layer 1: 20 
nodes 

layer 2: 20 nodes 

logsig 8.664 295.596 155.695 71.771 

2.12 2 layer/layer 1: 50 
nodes 

layer 2: 50 nodes 

logsig 9.343 304.309 161.270 
2506.40

0 

2.13 2 layer/layer 1: 10 
nodes 

layer 2: 20 nodes 

logsig 8.598 294.741 151.720 29.302 

2.14 2 layer/layer 1: 10 
nodes 

layer 2: 50 nodes 

logsig 9.391 300.848 155.331 107.715 

2.15 2 layer/layer 1: 20 
nodes 

layer 2: 10 nodes 

logsig 8.987 298.534 156.071 32.412 

2.16 2 layer/layer 1: 20 
nodes 

layer 2: 50 nodes 

logsig 8.533 297.839 155.567 294.962 

2.17 2 layer/layer 1: 50 
nodes 

layer 2: 10 nodes 

logsig 9.194 305.095 157.108 129.257 

2.18 2 layer/layer 1: 50 
nodes 

layer 2: 20 nodes 

logsig 9.018 302.211 156.941 305.480 

2.19 2 layer/layer 1: 10 
nodes 

poslin 9.005 313.663 164.073 2.072 

 



136 

 

No. Layer/ node 
Activation 
function 

MAPE 

(%) 

RMSE 

(kW) 

MAE 

(kW) 

Time 

(Sec) 

layer 2: 10 nodes 

2.20 2 layer/layer 1: 20 
nodes 

layer 2: 20 nodes 

poslin 8.728 320.388 167.217 2.465 

2.21 2 layer/layer 1: 50 
nodes 

layer 2: 50 nodes 

poslin 8.717 321.62 167.521 774.970 

2.22 2 layer/layer 1: 10 
nodes 

layer 2: 20 nodes 

poslin 8.731 320.799 164.458 2.965 

2.23 2 layer/layer 1: 10 
nodes 

layer 2: 50 nodes 

poslin 8.782 324.250 165.510 23.570 

2.24 2 layer/layer 1: 20 
nodes 

layer 2: 10 nodes 

poslin 8.992 322.971 170.001 1.353 

2.25 2 layer/layer 1: 20 
nodes 

layer 2: 50 nodes 

poslin 8.697 319.608 163.157 136.343 

2.26 2 layer/layer 1: 50 
nodes 

layer 2: 10 nodes 

poslin 8.560 311.590 157.260 7.937 

2.27 2 layer/layer 1: 50 
nodes 

layer 2: 20 nodes 

poslin 9.011 317.9190 168.044 25.967 
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No. Layer/ node 
Activation 
function 

MAPE 

(%) 

RMSE 

(kW) 

MAE 

(kW) 

Time 

(Sec) 

3.1 3 layer/layer 1: 10 
nodes 

layer 2: 10 nodes 

layer 3: 10 nodes 

tansig 9.363 300.937 153.231 31.939 

3.2 3 layer/layer 1: 20 
nodes 

layer 2: 20 nodes 

layer 3: 20 nodes 

tansig 9.431 358.750 172.391 193.958 

3.3 3 layer/layer 1: 50 
nodes 

layer 2: 50 nodes 

layer 3: 50 nodes 

tansig 9.374 312.871 157.963 
10,198.

000 

3.4 3 layer/layer 1: 10 
nodes 

layer 2: 10 nodes 

layer 3: 20 nodes 

tansig 8.620 309.195 158.454 49.862 

3.5 3 layer/layer 1: 10 
nodes 

layer 2: 20 nodes 

layer 3: 10 nodes 

tansig 9.383 332.639 164.741 66.486 

3.6 3 layer/layer 1: 10 
nodes 

layer 2: 20 nodes 

layer 3: 20 nodes 

tansig 9.032 300.547 154.746 120.150 

3.7 3 layer/layer 1: 20 
nodes 

tansig 9.406 302.888 158.611 54.985 
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No. Layer/ node 
Activation 
function 

MAPE 

(%) 

RMSE 

(kW) 

MAE 

(kW) 

Time 

(Sec) 

layer 2: 10 nodes 

layer 3: 10 nodes 

3.8 3 layer/layer 1: 20 
nodes 

layer 2: 20 nodes 

layer 3: 10 nodes 

tansig 9.176 325.266 160.932 124.592 

3.9 3 layer/layer 1: 20 
nodes 

layer 2: 10 nodes 

layer 3: 20 nodes 

tansig 9.196 306.239 163.160 84.842 

3.10 3 layer/layer 1: 10 
nodes 

layer 2: 10 nodes 

layer 3: 10 nodes 

logsig 8.857 306.998 161.593 31.153 

3.11 3 layer/layer 1: 20 
nodes 

layer 2: 20 nodes 

layer 3: 20 nodes 

logsig 8.916 309.866 157.404 193.980 

3.12 3 layer/layer 1: 50 
nodes 

layer 2: 50 nodes 

layer 3: 50 nodes 

logsig 8.962 303.772 158.284 
9,751.6

00 

3.13 3 layer/layer 1: 10 
nodes 

layer 2: 10 nodes 

layer 3: 20 nodes 

logsig 9.264 304.938 161.328 48.439 
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No. Layer/ node 
Activation 
function 

MAPE 

(%) 

RMSE 

(kW) 

MAE 

(kW) 

Time 

(Sec) 

3.14 3 layer/layer 1: 10 
nodes 

layer 2: 20 nodes 

layer 3: 10 nodes 

logsig 9.555 311.327 166.509 63.207 

3.15 3 layer/layer 1: 10 
nodes 

layer 2: 20 nodes 

layer 3: 20 nodes 

logsig 8.716 310.796 162.895 118.522 

3.16 3 layer/layer 1: 20 
nodes 

layer 2: 10 nodes 

layer 3: 10 nodes 

logsig 9.040 305.686 160.838 53.528 

3.17 3 layer/layer 1: 20 
nodes 

layer 2: 20 nodes 

layer 3: 10 nodes 

logsig 9.272 302.928 163.158 126.519 

3.18 3 layer/layer 1: 20 
nodes 

layer 2: 10 nodes 

layer 3: 20 nodes 

logsig 9.244 306.197 163.340 85.083 

3.19 3 layer/layer 1: 10 
nodes 

layer 2: 10 nodes 

layer 3: 10 nodes 

poslin 8.572 319.565 162.838 9.378 

3.20 3 layer/layer 1: 20 
nodes 

poslin 8.504 314.900 159.797 181.924 
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No. Layer/ node 
Activation 
function 

MAPE 

(%) 

RMSE 

(kW) 

MAE 

(kW) 

Time 

(Sec) 

layer 2: 20 nodes 

layer 3: 20 nodes 

3.21 3 layer/layer 1: 50 
nodes 

layer 2: 50 nodes 

layer 3: 50 nodes 

poslin 10.115 326.178 186.254 717.26 

3.22 3 layer/layer 1: 10 
nodes 

layer 2: 10 nodes 

layer 3: 20 nodes 

poslin 8.681 319.550 164.365 4.564 

3.23 3 layer/layer 1: 10 
nodes 

layer 2: 20 nodes 

layer 3: 10 nodes 

poslin 8.711 326.173 166.322 4.617 

3.24 3 layer/layer 1: 10 
nodes 

layer 2: 20 nodes 

layer 3: 20 nodes 

poslin 8.745 320.129 167.589 6.069 

3.25 3 layer/layer 1: 20 
nodes 

layer 2: 10 nodes 

layer 3: 10 nodes 

poslin 8.565 312.657 158.320 27.654 

3.26 3 layer/layer 1: 20 
nodes 

layer 2: 20 nodes 

layer 3: 10 nodes 

poslin 8.509 317.002 162.633 7.634 
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No. Layer/ node 
Activation 
function 

MAPE 

(%) 

RMSE 

(kW) 

MAE 

(kW) 

Time 

(Sec) 

3.27 3 layer/layer 1: 20 
nodes 

layer 2: 10 nodes 

layer 3: 20 nodes 

poslin 8.713 321.253 164.837 3.557 
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Table A.2 Comparison of activation function with normalization 

No.  
Layer 

1 
Layer 

2 
Layer 

3 
Norm 

MAPE 

(%) 

RMSE 

(kW) 

MAE 

(kW) 

Time 

(Sec) 

1 logsig logsig logsig yes 8.916 309.866 157.404 253.208 

2 logsig logsig tansig yes 8.916 309.866 157.404 253.208 

3 logsig tansig logsig yes 9.411 315.340 159.152 217.273 

4 logsig logsig poslin yes 9.333 317.794 170.151 45.891 

5 logsig poslin logsig yes 8.947 323.675 170.460 116.523 

6 logsig tansig tansig yes 8.812 297.740 155.471 259.814 

7 logsig poslin poslin yes 8.402 311.954 159.126 14.705 

8 logsig tansig poslin yes 10.590 235.430 174.892 12.594 

9 logsig poslin tansig yes 8.881 321.409 166.080 14.292 

10 poslin poslin poslin yes 8.504 314.900 159.798 182.084 

11 poslin poslin logsig yes 8.771 318.652 165.939 20.258 

12 poslin logsig poslin yes 8.740 309.095 159.658 18.651 

13 poslin poslin tansig yes 9.986 324.266 176.096 18.204 

14 poslin tansig poslin yes 8.690 314.263 160.972 33.714 

15 tansig poslin tansig yes 8.687 317.713 164.333 5.575 

16 poslin tansig tansig yes 8.977 313.266 163.037 48.419 

17 poslin logsig tansig yes 8.491 310.309 158.237 14.470 

18 poslin tansig logsig yes 8.969 322.249 172.325 32.454 

19 tansig tansig tansig yes 9.431 358.750 172.391 192.778 

20 tansig tansig logsig yes 9.999 387.018 186.085 197.925 

21 tansig logsig tansig yes 8.736 300.372 154.916 192.239 
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22 tansig tansig poslin yes 9.754 319.155 178.164 33.591 

23 tansig poslin tansig yes 8.675 310.752 158.637 37.944 

24 tansig logsig logsig yes 9.402 306.910 156.977 190.803 

25 tansig poslin poslin yes 9.346 322.221 173.886 176.386 

26 tansig poslin logsig yes 8.774 315.054 163.050 186.226 

27 tansig logsig poslin yes 8.705 313.445 160.146 46.766 

Note: Using model 3.20 in table A.1 

Table A.3 Comparison of activation function without normalization 

No.  
Layer 

1 
Layer 2 Layer 3 Norm 

MAPE 

(%) 

RMSE 

(kW) 

MAE 

(kW) 

Time 

(Sec) 

1 logsig poslin poslin no 8.402 311.954 159.126 10.598 

2 poslin logsig tansig no 8.491 310.309 158.237 14.590 

3 poslin poslin poslin no 8.504 314.900 159.798 179.017 

4 tansig poslin tansig no 8.675 310.752 158.637 37.396 

5 tansig logsig poslin no 8.705 313.445 160.146 45.387 

Note: Using top 5 models in table A.2 
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A.2 NARX (Manual, See more details in Appendix C) 

Table A.4 hyperparameter tuning for NARX 

No. Layer/ node 
Activation 
function 

MAPE 

(%) 

RMSE 

(kW) 

MAE 

(kW) 

Time 

(Sec) 

1 1 layer/layer 1: 10nodes poslin 59.190 1,578.200 918.342 35.732 

2 1 layer/layer 1: 20nodes poslin 59.894 1,584.200 920.452 426.591 

3 1 layer/layer 1: 50nodes poslin 56.319 1,554.700 904.376 4,918.500 

4 
2 layer/layer 1: 10nodes 

layer 2: 10nodes 
poslin 60.038 1,654.900 928.406 20.675 

5 
2 layer/layer 1: 20nodes 

layer 2: 20nodes 
poslin 64.320 1,637.900 934.445 346.316 

6 
2 layer/layer 1: 50nodes 

layer 2: 50nodes 
poslin 56.231 1,573.900 898.595 13,753.000 

7 

3 layer/layer 1: 10nodes 

layer 2: 10 nodes 

layer 3: 10 nodes 

poslin 58.160 1,647.000 912.574 21.936 

8 

3 layer/layer 1: 20nodes 

layer 2: 20 nodes 

layer 3: 20 nodes 

poslin 56.797 1,609.500 904.325 1,900.100 

9 

3 layer/layer 1: 50nodes 

layer 2: 50 nodes 

layer 3: 50 nodes 

poslin 55.437 1,509.200 808.321 36,200.000 
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A.3 LSTM (Manual, See more details in Appendix C) 

Table A.5 hyperparameter tuning for LSTM 

No. Layer/ node 
MAPE 

(%) 

RMSE 

(kW) 

MAE 

(kW) 

Time 

(Sec) 

1 1 layer/layer 1: 10nodes 14.808 462.120 249.644 3,571.000 

2 1 layer/layer 1: 20nodes 14.398 450.952 235.199 3,596.200 

3 1 layer/layer 1: 50nodes 12.167 369.067 204.658 3,873.700 

4 
2 layer/layer 1: 10nodes 

layer 2: 10nodes 
13.464 390.240 241.690 2,672.400 

5 
2 layer/layer 1: 20nodes 

layer 2: 20 nodes 
15.922 373.357 222.856 2,935.300 

6 
2 layer/layer 1: 50nodes 

layer 2: 50 nodes 
18.018 430.047 254.411 2,841.200  

7 

3 layer/layer 1: 10nodes 

layer 2: 10 nodes 

layer 3: 10 nodes 

16.037 392.5301 229.179 5,270.000 

8 

3 layer/layer 1: 20nodes 

layer 2: 20 nodes 

layer 3: 20 nodes 

12.968 339.225 17.3623 5,713.900 

9 

3 layer/layer 1: 50nodes 

layer 2: 50 nodes 

layer 3: 50 nodes 

15.972 361.602 223.119 5,493.500 
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A.4 Others Optimize-based ML 

 To achieve the best performance of ML based-forecasting model, 

hyperparameter optimization technique is necessary. The hyperparameter were 

optimized by Bayesian Optimization that used MSE as minimize function results are 

shown in figure C.1- C.12 

 

Figure A.1 Optimized Ensemble of trees for case 1 

 

 

Figure A.2 Optimized SVR for case 1 
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Figure A.3 Optimized GPR for case 1 

 

 

Figure A.4 Optimized Ensemble of trees for case 2 
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Figure A.5 Optimized SVR for case 2 

 

 

Figure A.6 Optimized GPR for case 2 
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Figure A.7 Optimized Ensemble of trees for case 3 

 

 

Figure A.8 Optimized SVR for case 3 
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Figure A.9 Optimized GPR for case 3 

 

 

Figure A.10 Optimized Ensemble of trees for case 4 
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Figure A.11 Optimized SVR for case 4 

 

 

Figure A.12 Optimized GPR for case 4 
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