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วตัถุประสงค์ของงานวิจยัน้ีเพื่อศึกษาประสิทธิภาพการดูดซึมเกลือสังกะสีในรูปต่าง ๆ 

(สังกะสีซลัเฟต สังกะสีไนเตรท และสังกะสีคลอไรด์) ของสไปรูไลนา และระบุตาํแหน่งของธาตุ
สังกะสีท่ีสะสมในเซลลส์ไปรูไลนา เพื่อประเมินการพร้อมนาํไปใชป้ระโยชน์ (accessibility) และ
การนาํไปใชป้ระโยชน์ (availability) ของธาตุสังกะสีอินทรียใ์นสไปรูไลนาโดยวิธีการจาํลองระบบ
การย่อยในระบบทางเดินอาหารในหลอดทดลอง (in vitro) และรวมถึงประเมินการเปล่ียนแปลง 
และการเก็บรักษาสไปรูไลนาสด จากการทดลองพบว่า สไปรูไลนาท่ีเล้ียงในอาหารเล้ียงดดัแปร 
Zarrouk’s ดว้ยธาตุสังกะสีซัลเฟต (MZS) มีค่าชีวมวล (biomass) ปริมาณธาตุสังกะสี และปริมาณ
โปรตีนของเซลลสู์งท่ีสุด และแตกต่างอยา่งมีนยัสาํคญั (p<0.05) จากอาหารเล้ียงท่ีเติมเกลือสังกะสี
ชนิดอ่ืน นอกจากน้ีสไปรูไลนาท่ีเล้ียงในอาหารเล้ียงดดัแปร Zarrouk’s ดว้ยธาตุสังกะสีเขม้ขน้ 1.6 
ไมโครโมลของสังกะสีซัลเฟต พบว่ามีธาตุสังกะสีมากท่ีสุดคือ 69.55±0.27 ไมโครกรัมต่อกรัม 
(นํ้าหนกัแหง้) โปรตีนร้อยละ 63.11±1.40 (นํ้าหนกัแหง้) อตัราการเจริญจาํเพาะ (μ) 0.46 ต่อวนั อตัรา
การผลิตของเซลล ์(cell productivity) (Px) 0.55 กรัมต่อลิตร-วนั (นํ้ าหนกัแห้ง) และเวลาท่ีเซลลเ์พ่ิม
จาํนวนเป็น 2 เท่า (doubling time) (td)  1.50 วนั 
 ในส่วนของไซโทพลาซึม (cytoplasm fraction) จากเซลล์สไปรูไลนา พบว่ามีธาตุสังกะสี
ร้อยละ 72.8 (60.50 ไมโครกรัมต่อกรัมนํ้ าหนักแห้ง) เปรียบเทียบกบัส่วนของผนังเซลล ์(cell wall 
fraction) มีธาตุสังกะสีร้อยละ 27.2 (22.62 ไมโครกรัมต่อกรัมนํ้ าหนักแห้ง)  จากผลการทดลอง
ดงักล่าวอธิบายโดยนยัว่าธาตุสังกะสีสามารถเขา้ไปอยูใ่นไซโทพลาซึม โดยการขนถ่ายสารแบบใช้
พลงังาน (active transport) ผา่นเยื่อหุ้มเซลล ์นอกจากน้ีค่าสเปกตรา (spectra) จากการวิเคราะห์ดว้ย
เทคนิค fourier transform infrared (FT-IR) spectroscopy ช่วยยนืยนัผลการเปล่ียนแปลงของหมู่เอมีน
ในสไปรูไลนาท่ีเกิดข้ึนหลงัจากมีการจบักบัธาตุสงักะสี 
 จากการจาํลองการพร้อมนําไปใช้ประโยชน์ (accessibility) และการนําไปใช้ประโยชน์ 
(availability) ของธาตุสังกะสีอินทรียใ์นสไปรูไลนา พบว่าสไปรูไลนาท่ีเล้ียงในอาหารเล้ียงดดัแปร 
Zarrouk’s (SPM) หลงัจากการย่อยผ่านไป 2 ชัว่โมง มีค่าการพร้อมนาํไปใชป้ระโยชน์ของสังกะสี 
(Zn accessibility) สูงท่ีสุด โดยภายหลงัการยอ่ยของกระเพาะอาหารร้อยละ 55.20±0.57 และภายหลงั
การย่อยของลาํไส้เล็กร้อยละ 63.55±0.21 ความสามารถนาํไปใช้ประโยชน์ของธาตุสังกะสี ของ 
สไปรูไลนาท่ีเล้ียงในอาหาร SPM มีค่ามากท่ีสุดเช่นกนัคือ ภายหลงัการย่อยของกระเพาะอาหาร 
ร้อยละ 62.94±1.75 และภายหลงัการยอ่ยของลาํไสเ้ลก็ร้อยละ 34.63±0.95 
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The objectives of this study were to investigate the Zn uptake performance of 

Spirulina platensis using different Zn salts (zinc sulfate, zinc nitrate, and zinc chloride), 

and locate Zn deposit in cells to assess accessibility and availability of organic Zn in 

Spirulina platensis using in vitro simulated gastrointestinal digestion, and to evaluate 

changes and storage life of fresh Spirulina platensis. Spirulina platensis cultured in 

modified Zarrouk’s medium with zinc sulfate (MZS) had significantly highest cell 

biomass, Zn, and protein among different various salts of Zn fortified media (p<0.05). 

In addition, the modified Zarrouk’s medium with 1.6 µmol Zn of MZS provided cells 

with the highest Zn content of 69.55±2.70 µg/g dry weight, protein content of 

63.11±1.40% dry weight, specific growth rate (µ) of 0.46 /day, cell productivity (Px) of 

0.55 g/L.day dry weight and doubling time (td) of 1.50 day.  

 Cytoplasm fraction obtained from Spirulina platensis cells had 72.8% (60.50 

µg/g dry weight) Zn compared with 27.2% (22.62 µg/g dry weight) in cell wall fraction. 

This implied that Zn entered to cytoplasm via active transport across to the cell 

membrane. Fourier transform infrared (FT-IR) spectra indicated that the binding of Zn2+ 

apparently occurred at the amide groups. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Introduction 

 Spirulina platensis is a filamentous prokaryotic cyanobacteria and commonly used 

as food, feed, dietary supplement and function due to its high protein content with low 

nucleic acids and good balance of nutritional values (Ciferri, 1983; Castenholz, 1984; 

Campanella, Crescentini, and Avino, 1999; Mosulishvili, Kirkesali, Belokobylsky, 

Khizanishvili, Frontasyeva, Pavlov, and Gundorina, 2002; Caballero, Trugo, and 

Finglas, 2003; Gershwin and Belay, 2008). Spirulina platensis can be utilized for the 

production of health foods commanding a high market value because some chemicals 

are unique to the alga. In addition, novel foods from Spirulina platensis have been 

developed with added nutrition value. Examples are biscuits, pasta, noodles, salad 

dressing, drinks, and pudding (Gouveia and Empis, 2003; Raymundo, Gouveia, Batista, 

Empis, and Sousa, 2005; Fradique, Batista, Nunes, Gouveia, Bandarra, and Raymundo, 

2010; Batista, Nunes, Raymundo, Gouveia, Sousa, Cordobes, and Franco, 2011). 

Moreover, cells of Spirulina platensis contain functional groups such as carboxyl, 

hydroxyl, sulphate, and other charged groups which are responsible for metal binding 

(Li, Guo, and Li, 2003; Seker, Shahwan, Eroglu, Yilmaz, Demirel, and Dalay, 2008). 

Therefore, Spirulina platensis may be suitable an intermediated for minerals enrichment 

and may be used as dietary supplement. 
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 Zinc (Zn) is an essential trace element for humans, plants, animals and involved in 

a wide variety of biochemical functions (Compano, Grima, Izquierdo, and Prat 1989; 

McClung and Bobilya, 1999; Al-Kindy, Al-Bulushi, and Suliman, 2008). An estimation 

of 31% of the world’s population faces Zn deficiency, especially in African, Eastern 

Mediterranean, South Asian, and South-east Asian countries. International Zinc 

Nutrition Consultative Group (IZiNCG) has suggested the daily dosages of 

supplemental zinc for the adult men 13-19 mg/day and adult women 7-9 mg/day (Hotz 

and Brown, 2004; Black, Allen, Bhutta, Caulfield, Onis, Ezzati, Mathers, and Rivera, 

2008; Pinkaew, Wegmuller, and Hurrell, 2012). Zn deficiency leads to several 

disorders, these include, a retardation of growth and development in children, retarded 

genital development and hypogonadism, dermatitis and delayed wound healing, 

alopecia, poor pregnancy outcomes and teratology. Further, this may result in decreased 

immune function with an increased susceptibility to infections, and metabolic disorders 

associated with neurological diseases which are Alzheimer’s disease, Parkinson’s 

disease, epilepsy hypoxia-ischemia and prostate cancer (Gyorkey, Min, Huff, and 

Gyorkey, 1967; Welch, 2002; Flinn, Hunter, Linkous, Lanzirotti, Smith, Brightwell, 

and Jones, 2005; Franklin and Costello, 2007; Haase, Overbeck, and Rink, 2008). 

However, Zn absorption is inhibited in human body by phytic acid which is found in 

cereal grains, legumes, nuts, oil seeds, and tubers (Hunt, 2003; Dost and Tokul, 2006; 

Abebea, Bogalea, Hambidgeb, Stoecker, Baileyd, and Gibsond, 2007; Moazedi, 

Ghotbeddin, and Parham, 2007; Karunaratne and Amerasinghe, 2008). As a result, 

phytic acid forms Zn-complex that cannot be absorbed in human body. To evaluate the 

absorption, availability of food nutrients is considered as a parameter.    
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 Although, many foods are good sources of Zn, the availability of Zn in foods is 

limited by its bioavailability. A principle of bioavailability is the evaluation of nutrient 

effectiveness which is absorbed from gut to the systemic circulation (McDougall, 

Dobson, Smith, Blake, and Stewart, 2005; Fernandez, Carvajal, and Perez, 2009). In 

vivo digestion is performed to determine the bioavailability, which is simulation of 

gastrointestinal digestion. The in vitro method study is a simple predictive technique to 

estimate the potential bioavailability of food compounds. Previous researchers have 

studied the bioavailability of iodine and bromine in different types of edible seaweed. 

The results show that the in vitro method has a good accuracy evaluation of the 

bioavailability (Romaris, Garcia, Barciela, Dominguez, Moreda, and Bermejo, 2011). 

Therefore, the in vivo digestion method could be used to assess the availability of Zn in 

Spirulina platensis.  

 Autolysis is a biochemical mechanism of microalga self-digestion, which caused 

by lytic enzyme to decompose the cells. The autolysis leads to the breakdown of cell 

membrane, which release enzyme store in vacuole (Lahoz, Reyes, and Leblic, 1976; 

Harvey, McNeil, Berry, and White, 1998; Lewis, 2000; Ngwenya, 2007). However, this 

mechanism could be retarded by decreasing the temperature which is one of the most 

important factors in the postharvest of fresh produces by regulating the rate of all 

associated physiological and biochemical processes. As a result, the biochemical 

reaction rates would be reduced and the shelf-life of products would be increased. 

(Salunkhe and Desai, 1984; Robertson, 1993). The optimum storage condition of 

microalgae biomass has been studied and shown that the harvested biomass stored at 

chilled temperature could extend the shelf life. (Harith, Yusoff, Shariff, and Ariff, 

2010). Furthermore, the use of cell protectants with temperature controlled techniques 
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can preserve quality of microalga cells (Montaini, Zittelli, Tredici, Grima, Sevilla, and 

Perez, 1995). Consequently, the storage temperature with cell protectants could inhibit 

cell autolysis and extend the storage life.  

 Postharvest technique does not only extend the storage life, but it also can maintain 

the quality of foods. In addition, the storage life can be predicted using a kinetics 

reaction model. Many researchers have studied the storage life of fresh vegetable to 

preserve the quality of produces, such as, asparagus, mushroom, and lettuce. It has been 

shown that the predicting storage life from the predictive model provides the accurate 

results under the different storage conditions which can be applied to the industry (Ares, 

Parentelli, Gambaro, Lareo, and Lema, 2006; Sanchez, Perez, Flores, Guerrero, and 

Garrido, 2009; Posada, Perez, Lopez, Allende, Gil, and Zurera, 2014). However, few 

studies have shown that the storage life of fresh Spirulina platensis is limited. 

 Therefore, the objectives of this study were to investigate Zn absorption of 

Spirulina platensis in different zinc salts media, to determine absorption and 

availability of organic zinc from Spirulina platensis in vitro simulating gastrointestinal 

tract, and the storage life of fresh Spirulina platensis during storage will be provided. 

 

1.2 Research objectives 

 The objectives of this study were: 

 1. To study the absorption of different zinc salts by Spirulina platensis. 

 2. To locate zinc deposition in Spirulina platensis cells. 

 3. To study the availability of organic zinc of Spirulina platensis. 

 4. To evaluate the storage life of fresh Spirulina platensis. 
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1.3 Research hypotheses 

 The hypotheses of this study were: 

 1. Spirulina platensis could absorb zinc into the cells and transform to organic 

zinc. 

 2.  Different sources of zinc affect zinc uptake in the Spirulina platensis cells. 

 3.  Organic zinc in Spirulina platensis will be available. 

 4. Proper postharvest treatments would extend fresh Spiralina platensis storage 

life.  

 

1.4  Scopes of the study 

 The scopes of this study were: 

 1. The cultivation of Spirulina platensis in different types of media with high 

levels of zinc from ZnCl2, Zn(NO3)2 and ZnSO4 will be carried out. The zinc 

concentrations will be measured using atomic absorption spectrometry. 

 2. Spirulina platensis cells will be disrupted and separated to obtain cell envelops, 

and remaining soluble fraction for zinc determination.   

 3. The availability of organic zinc will be tested using in vitro digestion.  

 4. Cold storage together with a cell protectant will be used to extend storage life 

of fresh Spirulina platensis.  

 

1.5 Expected results 

 This research will be able to increase Zn content and lead to better understandings 

about the absorption of organic zinc by Spirulina platensis. Organic zinc enriched in 
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Spirulina platensis will be available. Additionally, the knowledge about postharvest 

stability and storage life evaluation of fresh Spirulina platensis, will be gained. 
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CHAPTER II 

LITERATURE REVIEWS 

 

2.1 Spirulina platensis 

 Spirulina platensis is a photosynthetic filamentous cyanobacterium, spiral-shape, 

multicellular and blue-green algae which has been used as food, food supplement, 

nutraceuticals, biomedical research, and cosmetics industry (Ciferri, 1983; Leema, 

Kirubagaran, Vinithkumar, Dheenan, and Karthikayulu, 2010; Jeamton, Dulsawat, 

Laoteng, Tanticharoen, and Cheevadhanarak, 2011). Spirulina platensis can grow in 

tropical and subtropical water which high levels of carbonate and bicarbonate and high 

pH up to 11. In addition, Spirulina platensis is a widely distributed species, mainly 

found in Africa, as well as in Asia and South America. Nowadays, it is cultivated in 

several countries such as, USA, China, Japan, Myanmar, Taiwan, and Thailand 

(Vonsak, 2002; Henrikson, 2009) 

 2.1.1 Morphology of Spirulina platensis 

 Spirulina platensis, observed by scanning electron microscopy, showed 

filaments of cylindrical cells arranged in unbranched, helicoidal trichomes (Figure 2.1). 

The filaments are motile and gliding along their axis.  The helical shape of the trichome 

is characteristic of the genus but the helical parameters (i.e., pitch length and helix 

dimensions) vary with the species or may be induced by changing the environmental 

conditions. The morphological cell walls exhibit similarly an outer gram-negative 

bacteria envelope. Trichomes are surrounded with a thin sheath about 0.5 μm thickness 
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and has a fibrillar. The sheath material, excreted through pores situated on the cell wall, 

has been thought to be involved in the filament motion (Van Eykelenburg, 1977; 

Gershwin and Belay, 2008; Vonsak, 2002). The multilayered cell wall is thin, about  

40–60 nm, and has a sensitive electron-dense layer corresponding to the peptidoglycan. 

The general trichome widths vary about 3-12 µm, the helix open spiral with diameters 

ranging about 35-60 µm, and length about 200-500 µm (Ciferri,1983; Vonsak, 2002).  

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Scanning Electron Microscope of Spirulina platensis, IFRTD1208 at  

  1,000× (a) and 2,500× (b). 

 

 The cell wall of Spirulina platensis is divided into four layers that are LI, LII, 

LIII, and LIV layers (Figure 2.2). The outer membrane layer (LIV) is composed of 

lipopolysaccharides arranged linearly in parallel with the trichome axis. Layer III (LIII) 

is composed of protein fibrils coiled helically around the trichomes, whereas the 

peptidoglycan-containing layer (LII) folds towards the inside of the filament. The LI 

(a) (b) 
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layer contains β-1,2-glucan, which presented in septum wall to separate cells. The 

septum wall includes in LI and LII layers. In addition, plasmalema is the origin of 

thylakoids system which is important of cytoplasmic structure (Van Eykelenburg, 1977; 

Gershwin and Belay, 2008). 

 

 

Figure 2.2 Cell wall of Spirulina platensis; the section through the wall (a)  

 and the scheme cell wall model (b). The black bar indicates  

 500 nm. 

Source: Van Eykelenburg (1977). 

 

 2.1.2 Life cycle of Spirulina platensis 

  A principal reproductive system of Spirulina pltensis includes three stages 

which are: 1) cell maturation; 2) cell division; 3) cell amplification (Figure 2.3). In the 

first stage, a mature trichome fragments into several pieces through the formation of 

specialized cells called “necridia”. In the second stage, the necridia divides itself to form 

short and motile filaments called “hormogonia”.  In the last stage, the hormogonia cells 

LIV -  Outer most layer 

LIII -  Fibrillar 

LII  -  Peptidoglycan 

LI   -  Fibrillar 

Plasmalema 

LI  LII  LI 

(a) (b) 
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will go through the amplification and maturation processes (Ciferri, 1983; Gershwin 

and Belay, 2008).  

 

 

Figure 2.3 Life cycle of Spirulina platensis.  

Source: Ciferri (1983). 

 

 2.1.3 Metal ion absorption of Spirulina platensis 

 Cell walls of Spirulina platensis, cyanobacterium, are those of similar to the 

gram-negative bacteria, which contain polysaccharides, lipids, and proteins. The 

absorption/binding of metal ions by cyanobacteria started from the coordination of the 

ions with functional groups in/on the cyanobactrium cell. These functional groups are 

carboxyl, hydroxyl, amines, sulfhydryl, imidazole, phosphate and other charged groups 

(Gardea-Torresdey, Becker-Hapak, Hosea, and Darnall, 1990; Chen, Shi, Chen, Xu, 

Chen, Wang, and Hu, 2007; Seker, Shahwan, Eroglu, Yilmaz, Demirel, and Dalay, 

2008). The absorption mechanism of metal ions depends on the type of metal ions and 
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cyanobacteria (Gardea-Torresdey et al., 1990). The metal ions are generally transported 

into cells by specialized protein channel, which implicate 3 steps (Figure 2.4). Firstly, 

metal solution diffuse to the cell surface, while the complexion reaction occur rapidly. 

Secondly, absorption/surface complexion of the metal occurs at passive binding sites 

on the outer surface of the plasma membrane, and this interaction occurs by ligand 

exchange reaction (M–X cell). Lastly, the metal transports across the plasma membrane 

through the protein channel into cell interior (Sunda, Huntsman, 1998; Campbell, 

Errecalde, Fortin, Hiriart-Baer, and Vigneault, 2002). In addition, the Zn(II) uptake 

system in prokaryotes includes ABC (ATP-binding cassette) transporters, which allow 

the transport of a specific substrate from one side of the membrane to the other side, 

form a specific channel in the cell membrane. The ATP-binding regions play an 

important role to provide the energy for the substrate transports from ATP hydrolysis 

(Blencowe and Morby, 2003). This could explain the mechanism of metal absorption 

into the Spirulina platensis cell. Therefore, the enrichment of minerals could be possibly 

used Spirulina platensis as an intermediate.  
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Figure 2.4 Conceptual model of cyanobacteria interactions. MZ+, free-metal ion;  

 ML, metal complex in solution; M–X membrane, surface metal complex;  

 MU, metal uptake. 

Source: Campbell et al. (2002).  

 
 2.1.4 Nutritional values, quality standards and applications of Spirulina 

platensis 

 Spirulina platensis is high in protein and could be applied for the production 

of several products e.g., food, feed, fertilizer, cosmetics, biomedical research, and 

dietary supplement, (Ciferri, 1983; Leema et al., 2010; Jeamton et al., 2011), when 

compared with the protein from other sources (Table 2.1). Spirulina powder has the 

highest protein among different protein sources (fish, egg, beer yeast, skimmed 

powdered milk, eggs, cheese, beef, and poultry). The chemicals composition of 

Spirulina have been reported as in Table 2.2. Currently, about 70% of Spirulina 

products have been used for human consumption. Therefore, the quality standard 

requirements for Spirulina products in Europe, Japan and United States Food and Drug 

Cell 
interior 

Plasma  
membrane Cell wall 

Diffusion 
layer Solution 

MU 
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Administration’s (FDA) have been established to control the quality of Spirulina 

products (Table 2.3).   

 

Table 2.1 Protein contents in different sources.  

Food type 
Crude Protein 

(% dry weight) 

Spirulina powder  65 

Chicken egg  47 

Poultry 24 

Beer yeast  45 

Skimmed powdered milk 37 

Cheese  36 

Beef 22 

Fish  22 

Modified from: Switzer (1982) and Ciferri (1983). 
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Table 2.2 Chemical components of Spirulina powder. 

Compositions Per 100 g (dry weight) 

Total fat  4.3 g 

    - Saturated fat  1.95 g 

    - Polyunsaturated fat  1.93 g 

    - Monounsaturated fat  0.26 g 

    - Cholesterol  <0.1 mg 

Total carbohydrate  17.8 g 

    - Dietary fiber  7.7 g 

    - Sugars  1.3 g 

Protein  63 g 

Calcium  468 mg 

Iron  87.4 mg 

Phosphorus  961 mg 

Magnesium  319 mg 

Zinc  1.45 mg 

Copper  0.47 mg 

Manganese  3.26 mg 

Potassium  1,660 mg 

Sodium  641 mg 

Source: Gershwin and Belay (2008). 
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Table 2.3 Quality standards for Spirulina. 

Standard 
Country 

France Sweden Japan USA 

Protein 55-65% 55-65% ≥50% 55-65% 

Total Carotenoids - - >100 mg 300 mg/100g 

Chlorophyll-a >500 mg % - >500 mg %  900 mg/100g 

Phycocyanin - - >2,000 mg %  8,000 mg/100g

Moisture - - <7 %  <7 % 

Standard Plate Count <100,000/g <1,000,000/g <200,000/g <200,000/g 

Mold - <1,000/g - <100/g 

Coliform bacteria <10/g <100/g negative negative 

Total heavy metals 

(Lead, Mercury, 

Cadmium, Arsenic) 

- - <20.0 ppm  <2.1 ppm 

Insect fragment - - - <30 pcs/10 g 

Rodent hair   - - - <1.5 pcs/150 g 

Definitions;  -   =  No set standard,  <  =  less than, >  =  greater than,  

     ≥  =  greater than or equal to. 

Source: Koru (2012). 

  

  Spirulina platensis cells contain various functional groups with negative 

charged, namely, carboxyls, hydroxyls, sulfates, amines and other charged groups (Li, 

Guo and Li, 2003; Seker et al., 2008). These functional groups can be bound with 
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metals; thus, the changes of Spirulina platensis cells were examined using fourier 

transform infrared spectroscopy (FT-IR).   

 FT-IR is a simple, rapid, nondestructive, and effective technique applied to 

characterize the carboxyl groups of the cyanobacteria (Chen et al., 2007; Liu, Xu, Zhou, 

Wanga, MingLi, Ha, and Sun, 2013). The vibration infrared extends from 4000 to 400 

cm-1 which corresponds to the wavelengths of 2.5 to 25 µm. The infrared (IR) spectrum 

(or the pattern of absorption) is used to investigate information of the molecule 

structure. The absorption of each type of bond (N-H, C-H, O-H, C-X, C=O, C-O, C-C, 

C=C, C≡C, C≡N, and others) is commonly detected in a small portion of the vibrational 

infrared region. However, the small range of absorption can be defined for each type of 

bond. The principal components have their own infrared characteristic peaks. 

Approximate regions of common types of bonds absorption are shown in Figure 2.5. 

(Pavia, Lampman, and Kriz, 1996).  

 Liu et al. (2013) have found that IR spectra of Spirulina powder sample are 

complex and contain several bands from different functional groups such as proteins, 

saccharides, and others nutrients (Figure 2.6). The main absorption bands at 1658 and 

1541 cm-1 characterizing the vibrations of amines I and II, are from proteins in Spirulina 

powder. The IR band at 3302 cm-1, assigned for O-H or N-H vibrations, is from 

saccharides or proteins. The IR bands at 1152, 1079, and 1051 cm-1, which represent 

C–O or C–C vibrations, are from saccharides. The intensity of the characteristic band 

at 1658 cm-1, representing the C=O bond in proteins is the strongest band because 

Spirulina contains protein more than 60% of the total weight. These results are 

consistent with the study by Finocchio, Lodi, Solisio, and Converti (2010) indicating 

the strong IR spectrum at 3450 cm-1 for starching vibration modes of O-H and the band 
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at 3300 cm-1 for NH2 of primary amides or amine compounds. Additionally, the strong 

and complex IR spectrum at 1650 cm-1 associates to the amine I band of protein. The 

main IR spectra of cyanobacteria and detail spectral bands are presented in Table 2.4.  

 

Figure 2.5 The approximate regions of various common types of bonds absorption  

 (stretching vibration only; bending, twisting, and other types of bond  

 vibrations have been omitted for clarity).  

Source: Pavia, Lampman, and Kriz (1996). 
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Figure 2.6 Infrared spectra of Spirulina powder (4000 to 400 cm-1).  

Source: Liu et al. (2013). 

 

Table 2.4  Major infrared spectra and functional groups of cyanobacteria. 

Frequency (cm-1) Functional groups Main attribution 

3000-2800  -CH2, -CH3 Protien, lipid 

1658-1650 C=O, C-N Protein 

1545-1540 N-H, C-N Protein 

1455-1451 -CH3 Protein, lipid, polysaccharide 

1155-1030 C-O, C-C, C-O-C Polysaccharides 

Modified from: Yee, Liane, Phoenix, and Ferris (2004); Chen et al. (2007); Pistorius, 

DeGrip, and Egorova-Zachernyuk (2009); Finocchio, Lodi, Solisio, and Converti 

(2010); Liu et al. (2013).   
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 2.1.4.1 Applications of Spirulina platensis  

 Several studies have shown that Spirulina platensis could be applied 

in several novel food products to enhance nutritional quality and provide higher 

antioxidant activity for examples, pasta (Rodriguez De Marco, Steffolani, Martinez, and 

Leon, 2014), concentrated juice (Morist, Montesinos, Cusido, and Godia, 2001), and 

alternative vegetarian foods. The addition of Spirulina biomass to vegetable gelled 

deserts could provide good thermal stability to the products (Batista, Nunes, Fradinho, 

Gouveia, Sousa, Raymundo, and Franco, 2012). Therefore, application of Spirulina 

platensis in foods would provide novel alternative products to the market niche 

(Gouveia, Batista, Raymundo, and Bandarra, 2008). These research works supported 

that the Spirulina platensis could be used in innovative food products. 

  

2.2 Zinc-essential micromineral 

 Major energy sources of human are carbohydrates, protein, and lipid. Minerals are 

also important for growth, maintenance, metabolic processes, and reproduction of body 

system. The minerals can be classified into two categories which are macrominerals and 

microminerals (trace elements). In general, the body needs macrominerals (i.e., 

calcium, phosphorus, magnesium, sodium, chloride, and potassium, and sulphur) more 

than 0.01% of body weight. Likewise, the body needs microminerals (i.e., iron, zinc, 

iodine, selenium, copper, manganese, chromium, fluorine, and molybdenum) less than 

100 mg/day or less than 0.01% of body weight (Groff and Gropper, 1999; Benardot, 

2000). Although, the microminerals are needed in a little amount, they play an essential 

role in metabolism and synthesis processes of the body system. At present, many 
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countries have focused on the retardation of growth and development in children due to 

inadequate zinc intake.  

 Zinc (Zn) has been known to be an essential trace element for more than a hundred 

years and zinc deficiency may severely affect human health. Zn is found in all organs, 

tissues and fluids, which is a component of more than 300 enzyme from all six classes 

(Tuormaa, 1995; Haase et al., 2008). Zn can be found in several foods, and good sources 

of zinc are seafood, meat and poultry (Table 2.5). Zn from plant foods tends to be low, 

and is absorbed less than that from meat (Groff and Gropper, 1999). Zn deficiency has 

been estimated about 31% of the world's population, especially in the developing 

countries in Africa, the Eastern Mediterranean, and Southeast Asia. Zn deficiency leads 

to the problems of growth and maturation in children, poor wound healing, alopecia, 

night blindness, cancerous prostate, and associated with neurological diseases (Gyorkey 

Min, Huff, and Gyorkey, 1967; Stefanidou, Maravelias, Dona, and Spiliopoulou, 2006; 

Franklin and Costello, 2007; Haase, Overbeck, and Rink, 2008). International Zinc 

Nutrition Consultative Group (IZiNCG) has suggested the daily dosages of 

supplemental zinc 13-19 mg/day for adult men, and 7-9 mg/day for adult women (Hotz 

and Brown, 2004; Black, Allen, Bhutta, Caulfield, Onis, Ezzati, Mathers, and Rivera, 

2008).   

 Previous research studies in human prostate gland showed that the zinc content in 

carcinoma cell nuclei was low, when compared with normal cell (Gyorkey, Min, Huff, 

and Gyorkey, 1967). As well, zinc supplementation produced positive responses in 

increasing of height and weight in children. This finding supports an increased intake 

of zinc in populations at risk of zinc deficiency (Brown, Peerson, Rivera, and Allen, 

2002). It has been found that zinc therapy for wound healing is effective for patients 
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with low serum zinc (Haley, 1979). Moreover, it has been reported that oral 

administration of zinc chloride with 30 mg/kg/day after 2 weeks at the stage of 

pregnancy rat, can improve the working memory offspring (Moazedi, Ghotbeddin, and 

Parham, 2007).  

 

Table 2.5 Zn content in foods. 

Foods Zn  

(mg/100g dry weight) 

Seafood  

    Oyster  17-91 

    Crabmeat 3.8-4.3 

    Shrimp 1.1 

    Tuna 0.5-0.8 

Meat and poultry  

     Chicken 1.0-2.0 

     Beef 3.9-4.1 

     Pork 1.6-2.1 

Eggs and dairy products  

     Eggs 1.1 

     Milk 0.4 

Legumes 0.6-1.0 

Grains and cereals       

      Rice and pasta 0.3-0.6 

      Bread (white) 0.6-0.8 

Vegetables 0.1-0.7 

Fruits <0.1 

Source: United states department of agriculture (2011). 

 



27 
 

 2.2.1 Absorption and availability of zinc in food    

 Zinc is released from food as free ions during digestion. The liberated ions 

may then bind to endogenously secreted ligands before their transport into enterocytes 

in the duodenum and jejunum (Sharma and Singh, 2009). Zn is absorbed into the 

enterocyte by active and passive movements. Zn is mainly absorbed in gastrointestinal 

tract which is in the segment jejunum of the small intestine. The jejunum shows the 

highest rate of Zn absorption when compared with duodenum and ileum segment of the 

small intestine (Lee, Prasad, Brewer, and Owyang, 1989). However, there are chemical 

complexes to inhibit the Zn availability absorption. 

 Zinc and micronutrients in foods could be bonded with phytic acid in small 

intestinal as phytate complexes. These phytate complexes are not absorbed across the 

intestinal mucosa resulting in low bioavailability of Zn (Thavarajah, Thavarajah, See, 

and Vandenberg, 2010). Moreover, previous it has been reported that Zn solubility in 

soy polysaccharide fiber decreased with increasing of calcium concentration. As the 

results, the competitive effect between zinc and calcium required the suitable proportion 

to get high solubility and more potential availability absorption (Corneau, Lavigne, Zee, 

and Desrosiers, 1996).   

 Zinc is a trace element of the greatest concern considering the nutritional 

value of vegetarian diets without meat and increasing intake of phytate-containing 

legumes and whole grains. Moreover, the adsorption of zinc is lower with vegetarian 

diet than non-vegetarian diets (Hunt, 2003). Therefore, there are attempts to create an 

alternative for zinc fortification because of several disadvantages of zinc compounds 

used for fortification, such as zinc oxide and zinc sulfate. In generally, zinc(II) ions are 

hydrophilic that cannot cross cell membranes by the passive diffusion. Metal-binding 
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proteins (MTs) containing amino acids, most of which are cysteine, are introduced to 

improve the absorption of zinc into cells. The MTs are important for Zn uptake, 

distribution, storage, and release (Stefanidou, Maravelias, Dona, and Spiliopoulou, 

2006). The metals are absorbed into the cell having a specific metal transport channel 

to allow passive and active transports of metal ions across the cell membrane (Ma, 

Jacobsen, and Giedroc, 2009; Hudek, Rai, Michalczyk, Rai, Neilan, and Ackland, 

2012). Salgueiro, Zubillaga, Lysionek, Sarabia, Caro, Paoli, Hager, Ettlin, and Boccio 

(2000) reported that the absorption of Zn gluconate stabilized with glycine (BioZn-

AAS) diet in rat (male) was higher than that from other Zn sources. Gluconic acid and 

glycine in BioZn-AAS are considered as weak ligands which may react with hydroxyl 

group and inhibit zinc precipitation. Therefore, BioZn-AAS has high solubility. In 

addition, Zn enriched yeast and Zn gluconate supplements showed that Zn gluconate 

gave higher Zn concentrations in blood, and also higher losses in feces, whereas  more 

available Zn enriched yeast increased in blood and less loss in feces (Tompkins, Renard, 

and Kiuchi, 2007).  

   Additionally, Corneau, Lavigne, Zee, and Desrosiers (1996) found that the 

availability of Zn supplementation could be enhanced by binding with organic 

compounds to reduce oxidative stress in quail. The results suggested that organic Zn 

(zinc picolinate) gave higher protective effects than inorganic Zn (feed-grade zinc 

sulfate) by reducing the negative effect of oxidative stress. These findings are consistent 

with the earlier studies. When the bioavailability of zinc-methionine was compared with 

zinc sulfate in chick feed, the zinc methionine had more bioavailable zinc than zinc 

sulfate, because the zinc sulfate diet contained phytate and fiber which inhibited the Zn 

absorption (Wedekind, Hortin, and Baker, 1992).   
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 2.2.2 Determination of trace elements using atomic absorption spectrometry 

(AAS) 

  There are several techniques to analyze minerals or inorganic elements, e.g., 

absorption techniques, emission techniques, and fluorescence techniques. Atomic 

absorption spectrometry (AAS) is the most commonly used method to measure the 

qualitative and quantitative of around 70 elements with extreme sensitivity of 

electrothermal atomic absorption. In addition, AAS can be applied in many research 

areas such as water, food, animal feedstuffs, soils, and clinical analysis (Parsons, 1990; 

Rouessac and Rouessac, 2007).  

  The principal advantages of the AAS techniques are the high sensitivity in 

the case of graphite furnace atomic absorption spectrometry (GF-AAS) and simplicity 

and low cost in the case of flame atomic absorption spectrometry (F-AAS). The 

determination of one element at-a-time is the only disadvantage of AAS techniques. 

However, the plasma techniques have the advantages of high sensitivity and multi-

element determination. Unfortunately, the complex condition setting for each element 

and the higher cost of plasma technique are disadvantage of the technique (Garcia and 

Baez, 2012: Boschettii, Rampazzo, Dessuy, Vale, Rios, Hertz, Manfroi, Celso, and 

Ferrao, 2013).  

  The quantification of elements is evaluated using a relating existence between 

the concentration and the intensity of the corresponding light absorption or emission. In 

addition, the calibration method, standard addition and internal standard are used to 

estimate the concentration of analytes (Rouessac and Rouessac, 2007; Siraj and Kitte, 

2013). Several studies used the AAS to determine the elements such as copper, nickel, 

cadmium, zinc, and manganese in water (Brajter and Slonawska, 1988) and cadmium, 
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copper, and zinc in fish and mussel (Manutsewee, Aeungmaitrepimon, Varanusupakul, 

and Imyim, 2007). 

 2.2.3 Bioavailability of elements  

 It has been recognized that total content of essential elements present in food 

is not totally absorbed by the human body (Intawonse and Dean, 2006). Bioavailability 

is a key concept for nutritional effectiveness. It has several working definitions, 

depending upon the research area it is applied to. From the nutritional point of view, as 

defined by Fairweather-Tait (1993, p. 384) “bioavailability refers to the fraction of the 

nutrient or bioactive compound ingested that is available for use in physiologic 

functions or to be stored”. In addition, Benito and Miller (1998, p. 586) define it as 

“bioavailability as the proportion of a given nutrient in a given food or diet that the body 

can actually utilize”. Moreover, Schumann, Classen, Hages, Prinz-Langenhol, Pietrzik, 

and Biesalski (1997, p. 369) define it as “the fraction of an oral dose of a parent 

compound or active metabolic from a particular preparation that reaches the systemic 

circulation”. Regarding bioaccessibility, Fernandez-Garcia, Carvajal-Lerida, Perez-

Galvez (2009, p. 752) define it as “the fraction of a compound that is released from its 

matrix in the gastrointestinal tract and thus becomes available for the intestinal 

absorption (i.e., enters the blood stream)”. Furthermore, Harden, Diaz, and Svanberg 

(2002, p. 426) define it as “bioaccessibility as the fraction of a nutrient available for 

absorption, i.e., the amount of a nutrient that is released from its food matrix during 

digestion and made accessible for absorption into mucosa”. 

 Bioavailability of essential elements from foodstuff can be achieved by in 

vitro or in vivo methods. However, using animals is expensive, difficult, and limited 
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data in each experiment (Intawonse and Dean, 2006). Therefore, the in vitro testing can 

be performed in bioavailability with more advantages and it is simple, rapid, 

inexpensive, and to control (Romaris-Hortas, Garcia-Sartal, Barciela-Alonso, 

Dominguez-Gonzlez, Moreda-Pineiro, and Bermejo-Barrera, 2011). The in vitro 

method is usually involved two experimental steps which are the simulation of 

gastrointestinal and intestinal digestion of food. The gastrointestinal step is conducted 

for mirroring the physiochemical conditions of food that take place during the human 

digestion in mouth, stomach, and intestine. The second step consists of determining the 

amount of nutrient or bioactive compound digestion that is assimilated from the digesta 

by the intestinal mucosa (Fernandez-Garcia, Carvajal-Lerida, and Perez-Galvez, 2009). 

At this second step, different experimental options are available including cell culture–

based models (Caco-2 cell line) and dialysis method for measuring the fraction of the 

element available for absorption. A monolayer of cells or membrane of dialysis tubing 

is applied as a filter separating the digesta from gastric digestive. The filtrate fraction, 

which is passed through the cell (bottom) or dialysis tubing (IN), is used to determine 

the absorption efficiency (Ikeda, 1990; Fazzari, Fukumoto, Mazza, Livrea, Tesoriere, 

and Marco, 2008). The dialysis method could be modified to assess the bioavailability 

of microminerals including calcium, zinc, magnesium, and others (Miller, Schricker, 

Rasmussen, and Van Campen, 1981; Etcheverry, Grusak, and Flegie, 2012). 

 The in vitro digestion with the Caco-2 cell models has been used to determine 

the iron bioavailability in plant (Glahn, Lee, Yeung, Goldman, and Miller, 1998). In 

addition, the bioavailability of calcium, iron, zinc and copper has been measured by 

using a combined in vitro digestion with the Caco-2 cell culture system as well (Camara, 

 



32 
 

Barbera, Amaro, and Farre, 2007). However, the in vitro model with the Caco-2 is not 

useful for estimating the zinc bioavailability from food sample with limitation of zinc 

concentration (< 10 µmol/L of Zn) (Cheng, Tako, Yeung, Welch, and Glahn, 2012). 

 The simulated intestinal digestion with the dialysis tubing method is 

established to determine bioavailability of trace elements in several plants and foods, 

such as iron, zinc, copper, calcium, and magnesium in meat-based weaning foods 

(Santaella, Martinez, Ros, and Periago, 1996), iron, zinc, magnesium, calcium, and 

phosphorus in fish-based weaning foods (Martinez, Santaella, Ros, and Periago, 1998), 

and selenium in seafood (Moreda-Pineiro, Moreda-Pineiro, Romaris-Hortas, 

Dominguez-Gonzalez, Alonso-Rodriguez, Lopez-Mahia, Muniategui-Lorenzo, Prada-

Rodriguez, and Bermejo-Barrera, 2013). The in vitro digestion method with the dialysis 

tubing is used to estimate trace metals, i.e. aluminum, cadmium, cobalt, chromium, 

copper, iron, manganese, nickel, vanadium, and zinc, bioavailability of marine products 

(Moreda-Pineiro, Moreda-Pineiro, Romaris-Hortas, Dominguez-Gonzalez, Alonso-

Rodriguez, Lopez-Mahia, Muniategui-Lorenzo, Prada-Rodriguez, and Bermejo-

Barrera, 2012) and bioavailability of anthocyanins from raspberry extracts (McDougall, 

Dobson, Smith, Blake, and Stewart, 2005). Similarly, the bioavailability of phenolic 

compounds from five different cultivar of cherries (Prunus avium L.) has also been used 

this method (Fazzari et al., 2008).  

 The in vitro method (the simulated gastric and intestinal digestion/dialysis 

tubing) has been applied to Himanthalia elongate, Saccorhiza polyschides, Palmaria 

palmate, Porphyra umbilicalis, Ulva rigida, Undaria pinnatifida, and Spirulina 

platensis to evaluate iodine and bromine bioavailability. The molecular weight cut-off 

 



33 
 

of the dialysis tubing at 10 kDa indicated that the iodine and bromine bioavailability are 

not significantly different in dialyzability of the samples (Romaris-Hortas et al., 2011). 

 It has been shown that in vitro methods can predict nutrient values of food in 

human (Etcheverry, Grusak, and Fleige, 2012). However, in vitro studies require in vivo 

studies to confirm the results. Therefore, the in vitro method could be used a preliminary 

test to identify nutrient bioavailability of the food matrix. 

 

2.3 Storage life of food 

  Foods are perishable and will change during processing and storage affecting 

quality attributes of that food (Singh, 2000). Shelf life of food products is usually 

defined as the period of time which the product remains acceptable safety and either 

characteristics including sensory perspectives when stored under recommended 

conditions (Gimenez, Ares, and Ares, 2013). Environmental factors such as 

temperature, humidity, oxygen, and light cause several reaction mechanisms that lead 

to food deterioration. Physical, chemical, and microbiological changes are the major 

modes of food degradation, resulting in rejection by the consumer or becoming harmful 

for consuming (Singh, 2000). Therefore, the chemical reaction and rate of chemical 

change are useful for determining storage life of food.  

 2.3.1 Kinetic reaction 

  The rate of chemical reaction is normally evaluated by monitoring the 

concentration of either the reactant consumed or the product produced. A general form 

of kinetic model is obtained by equation (1) below:  

                     ܽA ൅ ܾB				
݇௙
݇௕
				ܿC ൅ ݀D                                       (1) 
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Where A and B are reactants; C and D are the products; a, b, c, and d are stoichiometric 

coefficients for reactants and products; and kf and kb are reaction rate constant for 

forward and backward. The rate at which reactant, example, reactant A, are given in 

equation (2): 

                    െୢሾ஺ሿ

ୢ௧
ൌ ݇௙ሾܣሿఈሾܤሿఉ െ ݇௕ሾܥሿఊሾܦሿఋ            (2) 

Where [A], [B], [C], and [D] are the concentration of reactant and product; α, β, γ, and 

δ are the reactant orders; and t is time. Equation (1) and (2) are unsolvable because of 

too many unknown parameters. Therefore, the simple procedures are used by choosing 

either the forward or the backward reaction which is predominant. If the change of 

reactant B is unimportant and the backward rate constant will be smaller than the 

forward reaction rate reaction, then the rate of reaction can be represented by  

equation (3):  

   െୢሾ஺ሿ

ୢ௧
ൌ ݇′௙ሾܣሿ௡                                            (3) 

Where; ݇′௙ is the pseudo forward rate constant and n is the reaction order. Equation (3) 

may be rewritten as equation (4): for more specific quality attribute that decreasing with 

time.  

   െୢሾ஺ሿ

ୢ௧
ൌ ݇ሾܣሿ௡                                            (4) 

Where; k is the rate constant. 

 However, the reaction rate of quality change depends on the order of reaction 

(Singh, 2000).  
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  2.3.1.1 Zero-order reaction 

  Zero-order reaction is used to describe the reaction such as enzyme 

degradation, non-enzyme browning and lipid oxidation. The linear plot represents a 

zero-order reaction (n=0) using equation (5) derived from equation (4). The zero-order 

reaction is represented by equation (5) and the shelf-life is determined by equation (6): 

  െୢሾ஺ሿ

ୢ௧
ൌ ݇ሾܣሿ                                   (5) 

   A௜ 			ൌ 		 A଴ െ kݐ௦                                             (6) 

Where; Ai  =  concentration at time i  

 A0  =  initial concentration  

 k = the concentration rate constant  

 ts = the shelf-life time 

 2.3.1.2 First-order reaction 

  First-order reaction usually indicates food deterioration reaction 

include vitamin, proteins losses, and microbial growth. The rate of loss in quality 

attributes depends on the amount of quality remaining which shows the exponential plot 

between quality and time represents as first-order reaction with n = 1, and equation (4) 

is modified for first-order reaction equation (7). 

                ݈݊
ሾ஺ሿ೔
ሾ஺ሿబ

ൌ െ݇ݐ௦                                                  (7) 

 2.3.1.3 Second-order reaction 

 A few food deteriorations relate to the second-order reaction such as 

auto-oxidation of pigments in chili. The reaction depends on the double concentration 

of reactant ([A]2) or the concentration of two reactants ([A] and [B]) or the concentration 

of three reactant ([A], [B], and [C]). The equation of second-order reaction is shown in 

equation (8):  
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  ቂ ଵ

ሾ஺ሿ೔
ቃ ൌ ቂ ଵ

ሾ஺ሿబ
ቃ ൅  ௦                                  (8)ݐ݇

 2.3.2 Predictive model and model performance  

  Because the shelf life determination of food requires factors which limit the 

shelf life evaluation. The factors including chemical, physical, and biological changes 

affect changes in food and food safety. However, the limitation of shelf life test is cost 

and time-consuming. Alternatively, predictive models of food allow shelf life study 

under various conditions such as, temperature, pH, and modified atmosphere. The 

development of predictive models are simple and inexpensive (Walker, 2000). The last 

stage of model development is to ensure that the obtained prediction is useful. 

Therefore, the validation should state that not only does the model accurately describe 

the used data, but it should also demonstrate performance of the model to prediction 

(Singh, 2000).  

   Accuracy factor (Af) and bias factor (Bf) are used as a quantitative method 

to measure the performance of the models (Ross, 1996; Zhong Chen, Wang, Wu, Liao, 

and Hu, 2005). Equation (11) was suggested by McClure, Baranyi, Boogard, Kelly, and 

Roberts (1993) to measure the accuracy of models, the fitted models are compared by 

statistical and graphical means of the root mean square error (RMSE) values of the 

differences between the observed and predicted values. These can be defined by the 

following equations:  

 A୤ ൌ 10Ʃሺ
൤ౢ౥ౝ൬

౦౨౛ౚ౟ౙ౪౛ౚ
౥ౘ౩౛౨౬౛ౚ൰൨

౤
ሻ	                           (9) 

 B୤ ൌ 10Ʃ ୪୭୥ሾቀ
౦౨౛ౚ౟ౙ౪౛ౚ
౥ౘ౩౛౨౬౛ౚ

ቁ/୬ሿ	                         (10) 

 RMSE	 ൌ 	ටƩሺ୮୰ୣୢ୧ୡ୲ୣୢି୭ୠୱୣ୰୴ୣୢሻమ

୬ିଵ
	              (11) 

 



37 
 

Where; observed  = observed values 

 predicted = predicted values 

 n = number of observations 

Bf and Af for the model are calculated from the predicted and observed values. 

If the Bf is 1.00, the model shows a perfect agreement with the observed values. An 

underestimation value leads to the Bf above 1.00, an overestimation gives the Bf factor 

below 1.00. Similarly, the Af of 1.00 showed a perfect agreement between observed and 

predicted values. The RMSE at lower values presents the better fit model (Ross, 1996; 

Zhong et al., 2005; Wang, Ni, Hu, Wu, Liao, Chen, Wang, 2007; Bruckner, Albrecht, 

Petersen, and Kreyenschmidt, 2013).    

Wang et al (2007) have reported that the loss kinetics of total amino acid 

concentration is well fitted using the first-order reaction and the zero-reaction. When 

compared with the zero-order reaction, the first-order reaction provided a perfect fit 

with better model performance parameters with 1.057 of Af, 1.013 of Bf, and 53.51 of 

RMSE (less than that of the zero-order reaction). Moreover, the first-order reaction 

coefficient (R2) (0.979) is greater than that (0.940) of the zero-order reaction. Therefore, 

in this case, the first-order reaction presented the better explanation for the experimental 

data than the zero-order reaction.  
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CHAPTER III 

ZINC UPTAKE AND ITS LOCALIZATION  

IN SPIRULINA PLATENSIS 

 

3.1 Abstract 

 Spirulina platensis has high proteins, carbohydrates, lipids and minerals and has 

been widely used as a food supplement. However, Spirulina platensis has low 

concentration of Zinc (Zn) (approximately 20-30 µg/g dry weight). This study aimed 

to investigate the Zn uptake of Spirulina platensis using different media for Zn sources 

and to localize Zn deposition in the cell. The results revealed that Spirulina platensis 

cultured for 7 days in modified Zarrouk’s medium 1.6 µmol Zn of ZnSO4 (MZS) 

contained the highest Zn concentration of 69.55±2.70 µg/g dry weight with protein 

concentration of 63.11±1.40 % dry weight, specific growth rate (µ) of 0.46 /day, cell 

productivity (Px) of 0.55 g/L.day dry weight and doubling time (td) of 1.50 days. The 

majority of Zn deposit was in cytoplasm which was 2.7 fold higher than that in cell 

walls. Fourier transform infrared (FT-IR) spectra showed that peak intensity of the 

amide groups decreased after the Zn uptake indicating an important role of these 

functional groups in binding Zn2+. 

Keywords: Spirulina platensis, Zinc, Zinc uptake, Fourier transform infrared 

spectroscopy 
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3.2 Introduction 

 Zinc (Zn) is an essential trace mineral for humans, plants, animals because of its 

involvement in a wide variety of biochemical functions. It can prevent free radical 

formation to protect biological structures from damage, correct the immune functions, 

enhance growth in children, prevent neurological diseases such as Alzheimer’s disease 

and Parkinson’s disease, and prevent in prostate cancer (Gyorkey, Min, Huff, and 

Gyorkey, 1967; Stefanidou, Maravelias, Dona, and Spiliopoulou, 2006; Franklin and 

Costello, 2007; Haase, Overbeck, and Rink, 2008). Thai RDI (1995) recommends a 

dietary allowance of Zn for Thais over 6 years old at 15 mg/day. International Zinc 

Nutrition Consultative Group (IZiNCG) has estimated that zinc deficiency affects 31% 

of the world's population, especially those in the developing countries in Africa, the 

Eastern Mediterranean and Southeast Asia (Black, Allen, Bhutta, Caulfield, Onis, 

Ezzati, Mathers, and Rivera, 2008). Plant foods tend to be rich sources of Zn, but the 

bioavailability of zinc dietary can be reduced by phytic acid in most cereal grains, 

legumes, nuts, oil seeds, and tubers (Hunt, 2003; Dost and Tokul, 2006; Karunaratne, 

Amerasinghe, and Ramanujam 2008). Zinc bioavailability correlates well with 

solubility in aqueous solution depending on Zn sources (Allen, 1998). Zinc sulfate, 

chloride, and acetate are soluble, whereas zinc carbonate and zinc oxide are insoluble. 

The bioavailability of supplemental zinc will be decreased if Zn conjunction with food 

containing phytate inhibitor occurs. Diets, therefore, play an important role in 

determining zinc bioavailability. 

 Spirulina platensis is a filamentous cyanobacteria, known as micro algae. It has 

been widely used as a food supplement for promoting human health. It contains high 

essential nutrients such as 60-70% proteins, 12-16% carbohydrates, 9-14% lipid and  
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4-9% minerals dry weight, but low in Zn and it has not been reported to have toxic side 

effects (Ciferri, 1983; Castenholz, 1984; Salazar, Martinez, Madrigal, Ruiz, and 

Chamorro, 1998; Campanella, Crescentini, and Avino, 1999; Caballero, Trugo, and 

Finglas 2003; Gershwin and Belay, 2008). In addition, it can be used in nutraceuticals, 

biomedical research, food and cosmetics (Ciferri, 1983; Leema, Kirubagaran, 

Vinithkumar, Dheenan, and Karthikayulu, 2010; Jeamton, Dulsawat, Laoteng, 

Tanticharoen, and Cheevadhanarak, 2011). More than 70% of Spirulina platensis has 

been commercialized mainly as health food. It is cultivated in several countries such as, 

USA, China, Japan, Taiwan, and Thailand. 

 Active and passive uptakes are two processes for metal ions absorption into the 

algae cells and they vary significantly depending on the type of metal ions. 

Alternatively, the metal ions binding can occur on cell walls with different functional 

groups. These functional groups are carboxyls, hydroxyls, sulfates, amines, and other 

negative charge groups. The mechanisms responsible for metal binding are electrostatic 

interactions, ion exchange and ion complexion (Li, Guo, and Li, 2003; Chen, Shi, Chen, 

Xu, Chen, Wang, and Hu, 2007; Seker, Shahwan, Eroglu, Yilmaz, Demirel, and Dalay, 

2008). These may have been used for zinc enrichment in Spirulina platensis.  

 Fourier transform infrared (FT-IR) spectroscopy is a non-destructive analysis 

method used for metal composition analyses in biological sources, e.g., cyanobacteria, 

yeast and bacteria and plants (Pistorius, DeGrip, and Egorova-Zachernyuk, 2009; 

Vazquez, Calvo, Sonia Freire, Gonzalez-Alvarez, and Antorrena, 2009; Finocchio, 

Lodi, Solisio, and Converti, 2010; Ferreira, Rodrigues, Carvalho, Lodi, Finocchio, 

Perego, and Converti, 2011; Liu, Xu, Zhou, Wang, Li, Ha, and Sun, 2013), which can 

identify.  However, very little information is available for Zn absorption of the Spirulina 
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platensis cells. Therefore, FT-IR spectroscopy would be able to identify the functional 

groups involving metal ions binding. 

The objectives of this study were to compare variety of zinc salts and their 

optimum concentration for growth, Zn absorption as well as location of Zn in the cell 

of Spirulina platensis. 

 

3.3 Materials and Methods 

 3.3.1 Chemicals 

  Zinc chloride (ZnCl2), Zinc nitrate (ZnNO3)2, and Zinc sulfate (ZnSO4) were 

from Ajax Finechem (Scoresby, VIC, Australia). Standard Zinc was from Fisher 

Scientific Co. (Fair Lawn, NJ, USA). Nitric acid (HNO3) and Hydrochloric acid (HCl) 

were from Merck KGaA (Darmstadt, Germany). Perchloric acid (HClO4) was from 

Mallinckrodt Baker Inc. (Phillipsburg, NJ, USA). 

 3.3.2 Starter culture and preparation 

 Spirulina platensis IFRPD 1208 culture was from algae laboratory, Institute 

of Food Research and Product Development, Kasetsart University, Bangkok. The 

Spirulina platensis starter culture was grown indoors in 200 mL culture tubes supplied 

with Zarrouk’s medium pH 8.5 ±0.2 at 30±2°C with 12 Klux light intensity (16h:8h; 

light:dark cycle), CO2 flow rate 2 L/min. The starter cultures were grown for 6 days 

during which the growth was monitored from O.D. with a spectrophotometer at 

wavelength 560 nm. 

 The starter culture (O.D. = 0.2) was inoculated in culture tubes containing 

150 mL of Zarrouk’s medium (ZM), non-Zn Zarrouk’s (NZM), modified Zarrouk’s 

medium with zinc sulfate (ZnSO4; MZS), zinc nitrate (Zn(NO3)2; MZN), and zinc 
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chloride (ZnCl2; MZC) at concentrations of 0.4, 0.8, and 1.6 µmol of Zn. The inoculated 

culture tubes were maintained at 30 ± 2°C for 7 days before Spirulina platensis cell 

were filtered (nylon filter pore size 35 µm, Nylon mesh 140-T, Swiss Nybolt) and 

washed with 20 mL distilled water repeatedly 3 times to remove medium from the cells 

(Duangsee, Phoopat, and Ningsanond, 2009). 

 3.3.3 Growth measurement  

 Protein (Protein, %) was calculated from nitrogen in the samples the 

modified Kjeldahl analysis (AOAC, 2000; Lopez, Garcia, Fernandez, Bustos, Chisti, 

and Sevilla, 2010) and expressed as percent on dry basis. Biomass (X, g/L dry weight) 

was evaluated according to AOAC (2000), Doubling time (td, day), expressed in day, 

and Cell productivity (Px), expressed in g/L.day, were calculated using equation (1) and 

(2), respectively.  

 Doubling time (td, day)   =        (1) 

Where; µ = Specific growth rate (/day) 

 Cell productivity (Px, g/L.day)  =         (2) 

Where; X0  = initial biomass density (mg/L dry weight) 

  Xi  = biomass density at time i (mg/L dry weight) 

 ti = time interval between X0 and Xi (day) 

 Specific growth rate (µ), expressed in /day, was calculated according to 

equation (3): 

 Specific growth rate (µ, /day)   =      (3) 

Where; X0  = initial biomass density (mg/L dry weight) 
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  Xi  = biomass density at time i (mg/L dry weight) 

to = initial time (day) 

ti = time i (day) 

 3.3.4 Determination of Zn 

 One hundred mg (dry weight) of the fresh Spirulina platensis cells were 

digested in 50 mL Erlenmeyer flask with 7 mL mixed 65% HNO3: 85% HClO4 (5:2), 

until clear solution was observed, and then the volume was adjusted to 25 mL. Zn in 

the Spirulina platensis was determined using Atomic Absorption Spectrometry (AAS), 

Perkin Elmer model PinAAcle 900F, MA, USA, as described by AOAC (2005). 

 3.3.5 Isolation of cell fractions 

  Cell fraction were prepared according to the method reported by 

Duangsee, Phoopat, and Ningsanond (2009); Vladimirescu (2010); Gan, Tang, Shi, 

Wang, Cao, and Zhao (2004). Spirulina platensis cells were filtered and washed with 

20 mL distilled water for 3 times to remove medium remains with the sample, then was 

lyophilized and resuspened to 10 % solid with mixed solution 0.1 M Phosphate buffer 

pH 7.0 and 0.5% lysozyme at 35 °C and incubated for 4 h. The cells were collected by 

centrifugation at 10000g for 15 min. Supernatant and pellet were determined Zn 

concentration by AAS. Suspension was represented cytoplasm fractions and pellet was 

represented cell wall fractions. Extraction times of cells gave different Zn 

concentrations; thus, the cells were extracted until no significant differences in Zn 

concentrations between extraction times were found. Therefore, the fourth time was 

chosen to extract the Zn concentrations in Spirulina platensis cells. 
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 3.3.6 Determination of cell functional groups  

 The Spirulina platensis cells (from section 3.3.2) was lyophilized in a Heto 

FD8 (Holten AS, Denmark) freeze dryer. The absorption of zinc in Spirulina platensis 

cells were investigated to seek the functional groups using Attenuated Total Reflectance 

Fourier Transformed Infrared (ATR-FTIR) Spectrometer (Bruker Tenser 27, GmbH). 

The FT-IR spectra were recorded in the region of 4000-700 cm-1, the acquisition 64 

scans and the resolution 4 cm-1. Five mg of ground Spirulina platensis cells were used 

in the study. OPUS 7.0 (Bruker, GmbH) software was used for the intensity and 

frequency identification. 

 3.3.7 Statistical analysis  

 Results were statistically evaluated using analysis of variance (ANOVA) 

and Duncan’s multiple range test (DMRT) with the confidence level of 95% (p<0.05) 

in order to verify significance of different effects among the media. 

 

3.4 Results and discussion 

 3.4.1 Growth and Zn uptake 

 Growth of Spirulina platensis cultured in ZM, NZM, MZS, MZN, and MZC 

media at concentrations of 0.4, 0.8, 1.6 µmol Zn for 7 days was present in Figures 3.1-

3.3. The Spirulina platensis cultured in MZS (1.6 µmol Zn) had the highest biomass of 

4.03±0.01 g/L dry weight, Zn 69.55 µg/g dry weight, and protein concentration 63.11% 

compared with NZM, MZC, and MZN. Zn in the media is not a main growth factor of 

Spirulina platensis, but nitrogen and carbon sources are. Growth of Spirulina platensis 

depends on nutrients of medium, especially balance between carbon and nitrogen in the 

cell. If the nitrogen and the carbon are not assimilated in the cell, the growth rate could 
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not reach in the maximum (Gordillo, Jimenez, Figueroa, and Niell, 1999; Rodigues, 

Ferreira, Concerti, Sato, and Carvalho, 2011).  

 However, medium without Zn (NZM) significantly showed the lowest 

biomass among cell treatments This indicate that Zn was essential for cell growth 

ZnSO4 used in medium Zn enrichment at all concentrations was the best salts form to 

significantly increase Zn content in Spirulina platensis cells (showed provide reasons 

for this). Generally, increasing Zn in growth media did not give higher protein content 

in cells (Figure 3.3). Only ZnSO4 at 0.8 and 1.6 µmol Zn provide cells with statistically 

same protein content as the standard medium (ZM).  The rest of the media fortified 

with various Zn salts significantly resulted in low protein contents in the cell. These 

results showed similarity with cell biomass. The effects of ZnSO4 on enhancing Zn 

uptake of Spirulina platensis cells while maintaining cell biomass and protein content 

may be important due to increases in protein bound sulfur, such as, cysteine (Cys), 

methionine (Met), histidine (His) and prokaryotic enzyme systems (Menon and Varma, 

1982; Zander, Faust, Klink, Sanctis, Panjikar, Quentmeier, Bardisschewsky, Friedrich, 

and Scheidig, 2011).  
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Figure 3.1 Biomass of Spirulina platensis cultured in ZM, NZM, MZS, MZN, and 

MZC media. Different letters indicate the significant differences (p<0.05). 

   Values are the mean of triplicates (n=3).  

 

 

Figure 3.2 Zn in Spirulina platensis cultured in ZM, NZM, MZS, MZN, and MZC  

media. Different letters indicate the significant differences (p<0.05). 

Values are the mean of triplicates (n=3). 
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Figure 3.3 Protein in Spirulina platensis cultured in ZM, NZM, MZS, MZN, and 

MZC media. Different letters indicate the significant differences (p<0.05). 

 Values are the mean of triplicates (n=3). 

 

 Table 3.1 showed specific growth rate (µ, /day), doubling time (td, day) and 

cell productivity (Px, g/L.day) of Spirulina platensis. Zarrouk’s modified 1.6 µmol Zn 

of ZnSO4 exhibited significantly highest growth parameters; specific growth rate of 

0.46 /day, doubling time of 1.50 days and cell productivity of 0.55 g/L.day dry weight.  

 The results presented ZnSO4 form was absorbed in Spirulina platensis cell 

higher than ZnCl2 and Zn(NO3)2 form because sulfate groups provided synthesis 

protein, which consist of amino acid groups in structure. Amino acid groups were 

cysteine and methionine, which can be bound Zn molecule in the cell.    
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Table 3.1 Specific growth rate (µ, /day), doubling time (td, day) and cell productivity 

  (Px,g/L.day) of Spirulina platensis cultured in ZM, NZM, MZS, MZN, and 

 MZC media. 

Media µ (/day) td (day) 
Px 

 (g/L.day) 

ZM 0.45±0.00ab 1.53±0.01bc 0.51±0.01bcd 

NZM 0.43±0.01c 1.59±0.04a 0.46±0.02e 

0.4 µmol Zn of MZS 0.45±0.01abc 1.54±0.05bc 0.51±0.02bcd 

0.8 µmol Zn of MZS 0.45±0.00ab 1.53±0.02bc 0.53±0.02ab 

1.6 µmol Zn of MZS 0.46±0.01a 1.50±0.03c 0.55±0.02a 

0.4 µmol Zn of MZN 0.44±0.00bc 1.58±0.01ab 0.48±0.02de 

0.8 µmol Zn of MZN  0.45±0.01abc 1.56±0.04ab 0.49±0.01bcd 

1.6 µmol Zn of MZN 0.44±0.01bc 1.56±0.04abc 0.49±0.03bcd 

0.4 µmol Zn of MZC  0.45±0.01abc 1.54±0.03bc 0.51±0.02bc 

0.8 µmol Zn of MZC  0.44±0.01bc 1.57±0.02ab 0.49± 0.02cd 

1.6 µmol Zn of MZC  0.45±0.00abc 1.54±0.02abc 0.50±0.02bcd 

Values with the different letters within a column are significantly different for p<0.05. 

Data are the mean of triplicates (n=3). 

 

 3.4.2 Location of Zn in Spirulina platensis  

  3.4.2.1 Zn in cell fractions 

  Spirulina platensis cells were separated into two fractions; the first 

fraction representing cytoplasm (supernatant) and the second fraction for cell wall 

(pellet). The results showed that Zn concentrated in cytoplasm in the amount of 60.50 
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µg/g dry weight (72.8%) and presented in cell wall in the amount of 22.62 µg/g dry 

weight (27.2%). Previous research studied the uptake of Zn, Cd, and Se in four species 

of phytoplankton, Phaeodactylum tricornutum, Prorocentrum minimum, Tetraselmis 

levis, and Chlorella autotrophica. The metals uptake in phytoplankton normally 

implicated an initial rapid surface absorption and the metals transport into the 

intracellular, respectively (Wang and Dei, 2001). The cell surface absorption 

incorporated complexion with algal extracellular organic compounds, e.g., extracellular 

polysaccharides. Inorganic selenite could be transformed into organic forms through 

binding with proteins, lipids, polysaccharides, and other cellular components in 

Spilulina platensis (Li, Guo, and Li, 2003). 

 3.4.2.2 FT-IR analysis of functional groups binding Zn 

 FT-IR spectra of lyophilized Spirulina platensis cells were 

normalized and obtained to evaluate the effects of MZS media on the functional group 

of cells. The FT-IR spectra in the 2,000-800 cm-1 region were shown in Figure 3.4. 

Band assignments are based on the references in Table 3.2. The bands at 1652 cm-1 can 

be assigned to amide I C=O and/or C-N groups of proteins. Amide II appeared at 1541 

cm-1 can indicate the N-H and/or C-N groups of proteins. McLaughlin, Mulrine, 

Gresalfi, Vaio, and McLaughlin (1981) examined the mode of metal cations binding to 

membranes. The metal cations affected the stability and the structure of phospholipid 

bilayers, and modulated the binding proteins insertion. Infrared (IR) spectra showed the 

complex formation of the phosphate groups with Ba2+, Mg2+, Ca2+, Cu2+, Sr2+, and Zn2+ 

ions that gave conformational change (Binder and Zschornig, 2002).  

 The FT-IR spectra band of amide I and amide II groups of modified 

Zarrouk’s Zn of MZS decreased when compared with ZM. Intensity of amide I and 
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amide II groups decreased because Zn was absorbed in cells at these functional groups 

of protein. ZM showed the higher absorbance while 1.6 µmol Zn of MZS had the lower 

absorbance for amide I and amide II groups. Intensity absorbance of the free amide I 

and amide II functional groups was decreased by Zn2+. This finding of the current study 

was consistent with those of Rodrigues, Ferreira, Carvalho, Lodi, Finocchio, and 

Converti (2012) who performed the Zn2+, Ni2+, and Pb2+ onto dry Spirulina platensis 

and Chlorella vulgaris using FT-IR spectroscopic method. The metals binding affected 

amide groups with a decrease in the bands intensities. Moreover, the metalloprotein or 

intracellular protein containing sulfhydryl group would also bind Zn2+. Therefore, 

amide I and amide II played an important role in binding of Zn2+. 

 

 

Figure 3.4 FT-IR spectra of Spirulina platensis cells cultured in; a) ZM, b) 1.6  

 µmol Zn of MZS media. 
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Table 3.2 Major absorption peaks in infrared spectra of Spirulina platensis sample. 

Frequency (cm-1) Functional groups Main attribution 

1658-1650 C=O, C-N Amide I, Protein 

1545-1540 N-H, C-N Amide II, Protein 

Modified from: Chen, Shi, Chen, Xu, Chen, Wang, and Hu (2007); Pistorius, 

DeGrip, and Egorova-Zachernyuk (2009); Finocchio, Lodi, Solisio, and Converti, 

(2010); Liu et al. (2013). 

  

3.5  Conclusions 

 Spirulina platensis cultured in 1.6 µmol Zn of Zarrouk medium modified with 

ZnSO4 (MZS) had the highest Zn concentration, protein, biomass, specific growth rate, 

doubling time and cell productivity. ZnSO4 is appropriate form for Zn enrichment of 

Spirulina platensis cells.  Zn uptake was higher in cytoplasm (72.8%) than in cell walls 

(27.2%). FT-IR spectra analysis and indicated that Zn2+ would bind to amide I and 

amide II functional groups of protein.  
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CHAPTER IV 

IN VITRO STUDY OF ORGANIC ZINC ACCESSIBILITY AND 

AVAILABILITY IN SPIRULINA PLATENSIS 

 

4.1 Abstract 

Health benefit of organic Zn in Spirulina platensis depends on its being accessible 

and available. Accessibility and availability of organic Zn in Spirulina platensis were 

investigated using in vitro digestion. Dry Spirulina platensis samples cultured in 

Zarrouk’s medium (SPZ) and in modified Zarrouk’s medium (SPM) were compared 

with a commercial sample (SPC). The results showed that SPM (starting with 

98.07±0.59 µg Zn/g dry weight) at 2 h digestion gave the highest Zn accessibility at 

55.20±0.57% in gastric simulation and 63.55±0.21% in small intestinal simulation. Zn 

concentrations in SPC (starting with 64.21±0.26 µg Zn/g dry weight) and SPZ (starting 

with 29.54±0.32 µg Zn/g dry weight) were accessible at 52.85±0.21% and 52.55±0.21% 

in gastric simulation whereas at 60.30±0.14% and 60.95±0.78% were accessible in 

small intestinal simulation, respectively. For the availability study, the simulation for 2 

h was suitable. The results showed that Zn availability of SPM, SPC, and SPZ was 

34.63±0.95, 31.68±0.07, and 31.43±0.63%, respectively. This indicated that organic Zn 

in SPM had the highest accessibility and availability. 

Keywords: Spirulina platensis, Organic Zinc, Accessibility, Availability, Digestion 
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4.2 Introduction 

 Spirulina platensis is a filamentous cyanobacterium. It contains high amino acids, 

polyunsaturated fatty acids, vitamins, and pigments (Ciferri, 1983; Castenholz, 1984; 

Salazar, Martinez, Madrigal, Ruiz, and Chamorro, 1998; Campanella, Crescentini, and 

Avino, 1999; Caballero, Trugo, and Finglas 2003; Gershwin and Belay, 2008). The 

cyanobacteria cells consist of complex structures having unique cellular functional 

groups which can bind metals (Yee, Benning, Phoenix, and Ferris, 2004; Hudek, Rai, 

Michalczyk, Rai, Neilan, and Ackland, 2012). Spirulina platensis cells also have many 

functional groups, e.g., carboxyl, hydroxyl, sulphate, and other groups which can bind 

metals (Li, Guo, and Li, 2006; Seker, Shahwan, Eroglu, Yilmaz, Demirel, and Dalay, 

2008).   

 Zinc (Zn) is an essential trace element which can plays a role in protect biological 

structures from damages, correct immune functions, and enhance growth in children, 

and prevent neurological diseases (Gyorkey, Min, Huff, and Gyorkey, 1967; 

Stefanidou, Maravelias, Dona, and Spiliopoulou, 2006; Franklin and Costello, 2007; 

Haase, Overbeck, and Rink, 2008). International Zinc Nutrition Consultative Group 

(IZiNCG) has suggested the daily dosages of supplemental zinc at 13-19 mg/day for the 

adult men and 7-9 mg/day for adult women. It has been estimated that zinc deficiency 

affects 31% of the world's population (Hotz and Brown, 2004; Black, Allen, Bhutta, 

Caulfield, Onis, Ezzati, Mathers, and Rivera, 2008). Therefore, Zn deficiency 

population can be reduced by consuming foods containing the bioavailable Zn element. 

The compounds having bioavailable properties in the tissue or organ, are called 

bioactive compounds (McDougall, Dobson, Smith, Blake, and Stewart, 2005).  
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 Usefulness of bioactive compound depends on their accessibility and availability. 

Accessibility refer to the amount of the bioactive compound that is released from its 

food matrix during digestion and made accessible for absorption into mucosa (Harden, 

Diaz, and Svanberg, 2002). Availability defines as the fraction of bioactive compound 

ingested that is available for use in physiologic functions or to be stored (Fairweather-

Tait, 1993). Zn is a cofactor of more than 200 enzymes. The Zn binding proteins have 

been categorized as metalloprotein which are intracellular proteins in living cells. Zn 

binding proteins play an important role in the immune system (Mocchegiani, Giacconi, 

Cipriano, Muzzioli, Fattoretti, Bertoni-Freddari, Isani, Zambenedetti, and Zatta, 2001; 

Stefanidou, Maravelias, Dona, and Spiliopoulou, 2006).  

 The assessment of mineral bioavailability using in vitro method has been proposed 

as an alternative to in vivo method. Most in vitro methods consist of a simulation of 

gastrointestinal digestion followed by determination of the element using dialysis 

through a membrane of a certain pore size. The in vitro methods may give higher 

precision and lower variability than that of the in vivo methods. Other advantages the in 

vitro methods are low cost and shorter time needed to obtain results. Additionally, the 

in vitro tests of minerals bioavailability, the in vitro dialysis model has usually been 

used together with the Caco-2 cell monolayers model. This method requires technical 

skills and research facilities. Therefore, the dialysis model remains an advantageous 

technique for particular research work by providing efficient experimental 

measurements and minimal research facilities (Argyri, Theophanidi, Kapna, Staikidou, 

Pounis, Komaitis, Georgiou, and Kapsokefalou, 2011). Previous studies showed that 

the in vitro procedure using dialysis tubing was developed to estimate availability in 

plants and foods, which are for example, legumes, nuts, grains, spinaches, carrots, 
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cherries, pears, juices, fish, and mollusk (Gil-Izquierdo, Gil, Tomas-Barberaan, and 

Ferreres, 2003; Sahuquillo, Barbera, and Farre, 2003; Bollinger, Tsunoda, Ledoux, 

Ellersieck, and Veum, 2005; Fazzari, Fukumoto, Mazza, Livrea, Tesoriere, and Marco, 

2008; Tesroiere, Fazzari, Angileri, Gentile, and Liverea, 2008). This study adopted, in 

vitro accessibility and availability of organic Zn in cultivated Spirulina platensis along 

with the optimum times of gastric and small intestinal digestion to obtain Zn released 

from Spirulina platensis samples.  

  

4.3 Materials and methods 

 4.3.1 Chemicals 

  Pepsin and Bile extract were from Sigma-Aldrich Co. (St. Louis, MO, USA). 

Pancreatin was from Acros Organics (Fair Lawn, NJ, USA). Sodium hydrogen 

carbonate (NaHCO3) and Standard Zinc were from Fisher Scientific Co. (Fair Lawn, 

NJ, USA). Nitric acid (HNO3) and Hydrochloric acid (HCl) were from Merck KGaA 

(Darmstadt, Germany). Perchloric acid (HClO4) was from Mallinckrodt Baker Inc. 

(Phillipsburg, NJ, USA). 

 4.3.2 Samples preparation 

  Spirulina platensis cultured for 8 days in Zarrouk’s medium (SPZ) and in 

Zarrouk’s medium (SPM) modified were washed with deionized water for 3 times to 

remove media from the Spirulina platensis cells and then lyophilized in a Heto FD8 

(Holten AS, Denmark) freeze dryer. The Spirulina platensis commercial sample (SPC) 

was purchased from The Royal Chitralada Project. 
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 4.3.3 Zn accessibility simulation 

  The simulated accessibility study consists of two sequential steps:  

1) simulated gastric digestion and 2) simulated small intestinal digestion. 

 

 4.3.3.1 Gastric digestion simulation 

 Five hundred mg of lyophilized Spirulina platensis samples were 

transferred into a 50 mL polypropylene tube, then 20 mL of deionized water was added, 

and pH was adjusted to 2.0 with 6 M HCl. Subsequently, 315 units/mL pepsin was 

added to the sample before incubation in a shaking bath set at 37 °C, 150 rpm for 0.30, 

1, 1.30, 2, 2.30, 3, 3.30, and 4 h. Activity of enzyme was stopped by immersion of the 

tube in ice-water bath. The sample was centrifuged at 13000g at 4 °C for 15 min. The 

supernatant was collected for Zn concentration and the further use in simulated small 

intestinal digestion (McDougall et al., 2005; Fazzari et al., 2008; Moreda-Pineiro, 

Moreda-Pineiro, Romaris-Hortas, Dominguez-Gonzalez, Alonso-Rodriguez, Lopez-

Mahia, Muniategui-Lorenzo, Prada-Rodriguez, and Bermejo-Barrera, 2012). 

 Accessibility of Zn after the simulated gastric digestion (Martinez, 

Santella, Ros, and Periago, 1998; Arkasuwan, Siripinyanond, and Shiowatana, 2011; 

Moreda-Pineiro et al., 2012), expressed as a percentage (% dry weight), was calculated 

as the following equation:  

Accessibility of Zn after the simulated gastric digestion (% dry weight) 

 = 
୞୬	ୟ୤୲ୣ୰	ୱ୧୫୳୪ୟ୲ୣୢ	୥ୟୱ୲୰୧ୡ	ୢ୧୥ୣୱ୲୧୭୬

୘୭୲ୟ୪	୞୬	୧୬	ୱୟ୫୮୪ୣ
	× 100 (1) 

 4.3.3.2 Small intestinal digestion simulation 

 Five mL of intestinal solution (4% panceratin and 2.5% bile salts 

dissolved in 0.1 M NaHCO3) was added to the 50 mL tube containing digested sample 
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from the simulated gastric digestion and the mixture was adjusted to pH 7.5 with 1 M 

NaHCO3. Then the sample was incubated in a shaking bath set at  

37 °C, 150 rpm for 0.30, 1, 1.30, 2, 2.30, 3, 3.30, and 4 h. Enzymatic activity was 

stopped by immersion the tube in an ice-water bath. The sample was centrifuged at 

13000g at 4 °C for 15 min and the collected supernatant was used for Zn concentration 

(Gil-Izquierdo et al., 2003; Sahuquillo, Barbera, and Farre, 2003; Tesroiere, Fazzari, 

Angileri, Gentile, and Liverea, 2008).  

  Accessibility of Zn after the simulated small intestinal digestion 

(Martinez, Santella, Ros, and Periago, 1998; Arkasuwan, Siripinyanond, and 

Shiowatana, 2011; Moreda-Pineiro et al., 2012), expressed as a percentage (% dry 

weight), was calculated as the following equations: 

Accessibility of Zn after the simulated small intestinal digestion (% dry weight)  

 =    
୞୬	ୟ୤୲ୣ୰	ୱ୧୫୳୪ୟ୲ୣୢ	ୱ୫ୟ୪୪	୧୬୲ୣୱ୲୧୬ୟ୪	ୢ୧୥ୣୱ୲୧୭୬

୘୭୲ୟ୪	୞୬	୧୬	ୱୟ୫୮୪ୣ
 ×100 (2) 

 4.3.4 Zn availability simulation 

  The simulated availability study was conducted in two sequential steps: 1) 

gastric digestion and 2) small intestinal digestion. 

 4.3.4.1 Gastric digestion simulation 

 The simulated gastric digestion method was prepared as described in 

section 4.3.3.1. The supernatant was collected for Zn concentration and the further use 

in small intestinal digestion.  

 4.3.4.2 Small intestinal digestion simulation 

  Five mL intestinal solution (4% panceratin and 2.5% bile salts 

dissolved in 0.1 M NaHCO3) containing digested samples into a 50 mL polypropylene 

tube was added. Dialysis tubing (molecular weight cut-off of 10-14 kDa; Fisher 
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Scientific Co., Pittsburgh, PA, USA) that contained sufficient NaHCO3 to neutralize the 

sample (adjusted pH to7.5) was then placed into the polypropylene tube. Consequently, 

the tube was incubated in a shaking bath set at 37 °C, 150 rpm for 0.30, 1, 1.30, 2, 2.30, 

3, 3.30, and 4 h after sealed with parafilm and screw-cap. The enzymatic activity was 

stopped activity by immersion the tube in an ice-water bath. The solution outside the 

dialysis tubing represented materials remained in the gastrointestinal tract.  The solution 

entered the dialysis tubing represented materials entered the serum. The solution inside 

the dialysis tubing was used for Zn concentration (Gil-Izquierdo et al., 2003; 

McDougall et al., 2005; Fazzari et al., 2008; Moreda-Pineiro et al., 2012). 

 Availability of Zn after the simulated digestion (Martinez, Santella, Ros, and 

Periago, 1998; Arkasuwan, Siripinyanond, and Shiowatana, 2011; Moreda-Pineiro et 

al., 2012), expressed as a percentage (% dry weight), was calculated as the following 

equation:  

Availability of Zn after the simulated digestion (% dry weight)  

=     
୞୬	ୟ୤୲ୣ୰	ୢ୧ୟ୪୷ୱ୧ୱ	୲୳ୠ୧୬୥	ୢ୧୥ୣୱ୲୧୭୬	

୘୭୲ୟ୪	୞୬	୧୬	ୱୟ୫୮୪ୣ
 ×100 (3) 

 4.3.5 Atomic absorption spectrometry (AAS) analysis 

 The determination of Zn accessibility and availability in samples obtaining 

from section 4.3.3 and 4.3.4.2, five mL digested sample was transferred to a 50 mL 

flask and 15 mL mixed HNO3:HClO4 (5:2) was added, before the sample was 

hydrolyzed to obtain clear solution and then volume was adjusted to 25 mL. 

Subsequently, the hydrolyzed sample was used for Zn content determination as 

described in section 3.3.4.  
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 4.3.6 Statistical analysis  

 All experiments were prepared in duplicate. Analysis of variance (ANOVA) 

was performed on data obtained with the confidence level of 95% (p<0.05) in order to 

verify the significant difference among the samples. 

 

4.4  Results and Discussion 

 4.4.1 Zn accessibility simulation 

  Pepsin was used to digest the samples in the simulated gastric digestion. 

Optimum time of the gastric digestion and the small intestinal digestion were examined 

by varying time of digestion (0.30, 1, 1.30, 2, 2.30, 3, 3.30, and 4 h). SPM in simulated 

gastric digestion showed the highest Zn concentration of 54.14±0.61 µg Zn/g dry 

weight, at 2 h (Figure 4.1). For longer digestion, Zn concentrations were not 

significantly different increase. Zn concentrations of SPC and SPZ after simulated 

gastric digestion were 33.59±0.88 and 15.53±0.05 µg Zn/g dry weight, respectively. 

Similar to the results of previous work, the optimum simulated gastric digestion time of 

2 h was found in spinaches, carrots, cherries, tomatoes, and fruit beverages (Garrett, 

Failla, and Sarama, 1999; Fazzari et al., 2008; Cilla, Garcia-Nebot, Perales, Lagarda, 

Barbera, and Farre, 2009). Therefore, 2 h digestion was chosen in sample preparation 

for the simulated small intestinal digestion step. 
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Figure 4.1 Zn concentrations of Spirulina platensis after the simulated gastric  

 digestion. 

 

 The samples were digested in the simulated small intestine by pancreatin and 

bile salts.  The optimum time was at 2 h, during which 2-4 h digestion showed no 

significant difference. SPM had the highest Zn concentration of 62.30±0.18 µg Zn/g 

dry weight whereas Zn concentration of SPC and SPZ were 38.48±0.30 and 18.01±0.24 

µg Zn/g dry weight, respectively (Figure 4.2). This study indicated that the simulated 

small intestinal digestion had higher Zn concentration than the simulated gastric 

digestion because the activity of pancreatic enzymes and bile salts effectively released 

Zn from the matrix of Spirulina platensis cells. Pancreatin and bile salts contain many 

enzymes, such as trypsin, lipase, amylase, chymotrypsin, and carboxypeptidase (Young, 

Nau, Pasco, and Mine, 2011). Moreover, the mixture of pancreatic enzymes and bile 

salts is important for the micellarization of lipid (Hofmann and Borgstrom 1962; 

Monsbach, Newton, and Stevens, 1980). 
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Figure 4.2 Zn concentrations of Spirulina platensis after simulated small intestinal 

digestion. 

 

 SPM (starting with 98.07±0.59 µg Zn/g dry weight) gave significantly higher 

Zn concentration after simulated gastric digestion (55.20±0.57%) and simulated small 

intestinal digestion (63.55±0.21%) than the other samples (p<0.05) (Figure 4.3). 

Accessibility after the simulated gastric digestion and simulated small intestinal 

digestion of SPC (starting with 64.21±0.26 µg Zn/g dry weight) were 52.85±0.21% and 

60.30±0.14%, respectively, which was statistically similar to Zn concentration of SPZ 

(starting with 29.54±0.32 µg Zn/g dry weight) with 52.55±0.21% after gastric digestion 

and 60.95±0.78% after small intestinal digestion. 
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Figure 4.3 Simulated accessibility of Zn after Spirulina platensis digestion. Different  

 letters indicate the significant differences (p<0.05).  

 

 4.4.2 Zn availability of simulation 

 Digested samples from the simulated gastric digestion were evaluated for Zn 

availability using dialysis tubing. SPM showed the highest available Zn concentration 

at 2 h of 33.96±0.93 µg Zn/g dry weight, while Zn availability of SPC and SPZ were 

20.29±0.24 and 9.28±0.19 µg Zn/g dry weight, respectively (Figure 4.4). Digestion 

longer than 2 h showed no significant difference. Therefore, the 2-hour digestion time 

was selected for the Zn availability study. 
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Figure 4.4 Zn concentrations of Spirulina platensis after simulated digestion.  

 

 Zn availability of samples after the post gastric digestion was illustrated in 

Figure 4.5. Availability of Zn of SPM, SPZ, and SPC were 62.94±1.75, 59.45±1.19 and 

59.97±0.15 %, respectively. Surprisingly, the availability of all samples has lower Zn 

concentration than the gastric digestion. The availability of the samples of SPM was 

34.63±0.95 followed by SPC of 31.68±0.07 and SPZ of 31.43±0.63 %. 
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Figure 4.5 Simulated availability of Zn after simulated digestion with Spirulina  

 platensis. Different letters indicate the significant differences (p<0.05). 

 

 The decreases in Zn availability could be the result of high chlorophyll in 

Spirulina platensis inhibiting pancreatic enzyme activity. Ferruzzi, Failla, and Schwartz 

(2001) reported that the chlorophyll derivatives from spinach puree showed the 

obstruction of pancreatic enzyme catalytic capacity because the porphyrin backbone of 

chlorophyll could be reacted with proteolytic of enzymes. The large molecular weight 

of Zn complex could also be formed between deprotonated form of bile acid and Zn 

which would not allow passage through the pore of dialysis tubing. The molecular 

weight of platonic cyanobacterium Anabaena flos-aquae protein was 20.6 kDa (Walker 

and Walsby, 1983).  

 Therefore, the coordination of Zn with constituents in Spirulina platensis 

such as, protein and pigments may increase molecular weight of organic Zn together 

with Zn-bile complex reduced Zn availability of Spirulina platensis after small 
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intestinal digestion. In addition, Zn in Spirulina platensis has been reported to be lower 

availability than accessibility because using the dialysis tubing method to mimic the 

small intestine cell wall could not mimic active transport mechanism. As the result, Zn 

in Spirulina platensis diffused into the dialysis tubing only by the passive transport 

mechanism (McDougall et al., 2005). 

  

4.5  Conclusions 

The optimum time of the simulated gastric and small intestinal digestion for Zn 

accessibility in this study was 2-hour. SPM had the highest accessibility which was 

55.14±0.61 µg Zn/g dry weight (55.20±0.57%) in the simulated gastric and 62.30±0.18 

µg Zn/g dry weight (63.55±0.21%) in the small intestinal simulation, respectively. The 

optimum time for Zn availability study was 2-hour. Zn concentration in SPM had the 

highest availability at 33.96±0.93 µg.g-1 dry weight (34.63±0.95%). Simulated 

availability of Zn after small intestinal digestion was low due to pancreatic enzyme 

inhibited by chlorophyll and Zn-bile complex. 
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CHAPTER V 

STORAGE LIFE OF FRESH SPIRULINA PLATENSIS  

 

5.1 Abstract  

 The objectives of this study were to evaluate changes and storage life of fresh 

Spirulina platensis packed in low density polypropylene (LDPE) with various glycerol 

concentrations (0, 5, and 10%) and stored at 4, 20, and 30°C. The results showed that 

storage of fresh Spirulina platensis 14 days was best at 4ºC and 5% glycerol. After 

protein and Zn contents were 60.89% dry weight and 83.34 µg/g dry weight, 

respectively. The kinetics reactions of protein and Zn changes and fitted well with the 

zero-order reaction. The storage life of fresh Spirulina platensis with 5% glycerol was 

then predicted using the zero-order reaction models to be about 50 days at 4ºC with 55% 

protein, and 54.89 µg/g dry weight Zn remaining. The storage life of fresh Spirulina 

platensis without glycerol as a protectant would be about 22 days, leaving cell with  

55% protein and 70.34 µg/g dry weight Zn. 

Keywords: Fresh Spirulina platensis, Storage life, Kinetics reaction, Zn 

 

5.2 Introduction 

 Spirulina platensis, a filamentous cyanobacterium, has been widely used as food, 

dietary supplement, and functional food. It is one of the richest protein sources up to 

74% dry weight. The general protein standard for Spirulina food requires ≥50% in Japan 
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and 55-65% in France, Sweden, and USA (Castenholz, 1984; Cohen, 1997; 

Campanella, Crescentini, and Avino, 1999; Ciferri, 1983; Caballero, 2003; Gershwin 

and Belay, 2008; Koru, 2012). Detrimental changes of fresh Spirulina platensis cells 

during storage start with autolysis.  

 The cell autolysis is a part of the development process, including, reproduction of 

cells, released of nutrients, and transfer of genetic materials. This begin with the 

breakdown of cell wall process by peptidoglycan hydrolase (Lewis, 2000; Ngwenya, 

2007; Harvey, McNeil, Berry, and White, 1998). After harvested, however, storage life 

of microalgae with cell protectant can be extended at chilled temperature (Harith, 

Yusoff, Shariff, and Ariff, 2010). 

 Cell protectants e.g. glycerol, serum albumin, skimmed milk, peptone have been 

used in cold storage for microorganisms i.e. viruses, bacteria, fungi, algae, and protozoa. 

(Hubalek, 2003; Motham, 2009; Tan, Aziz, and Aroua, 2013). Among cell protectants 

mentioned above, glycerol has been widely used, because it has low toxicity, high 

solubility, no color, and no odor (Tan, Aziz, and Aroua, 2013). The glycerol mixed 

protein samples would enhance crystallization of proteins leading to stabilization of the 

protein structure (Hussels and Brecht, 2011).  

Prediction of storage life and nutrient deterioration during processing and storage 

can be establish by the kinetics reaction model (Tiburcio, Galvez, Cruz, and Gavino, 

2007; Ma, Yu, Frear, Zhao, Li, and Chen, 2013). However, there are very few reports 

on using kinetics model for storage life evaluation of fresh Spirulina platensis. 

Therefore, this study aimed to evaluate storage changes and storage life of fresh 

Spirulina platensis as well as to estimate change from kinetics production.  
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5.3 Materials and Methods 

 5.3.1 Chemicals 

  Glycerol (C3H8O3), Nitric acid (HNO3), and Perchloric acid (HClO4) were 

from Quality Research Chemical (New Zealand), Merck KGaA (Darmstadt, Germany), 

and Mallinckrodt Baker Inc. (Phillipsburg, NJ, USA), respectively. Standard Zinc was 

from Fisher Scientific Co. (Fair Lawn, NJ, USA). 

 5.3.2 Fresh Spirulina platensis 

 The Spirulina platensis starter was cultured as described in Chapter III 

(section 3.3.2), and then grow in 200 mL culture tube containing Zarrouk’s medium 

fortified with 1.6 µmol Zn of ZnSO4 (MZS) at 30 ± 2°C for 8 days (starting O.D. = 0.2). 

Then, Spirulina platensis cells were filtered (nylon filter pore size 35 µm, Nylon mesh 

140-T, Swiss Nybolt) and washed with 20 mL distilled water for 3 times to remove 

growth medium. 

 5.3.3 Samples preparation 

 Fresh Spirulina platensis were used to evaluate the stability and shelf life 

evaluation. Three grams of washed Spirulina platensis cells were packed in a low 

density polypropylene (LDPE) zip lock bag size 9×13 cm. with addition of   glycerol of 

5 and 10%.  The samples were kept out of daylight at 4, 20, and 30°C for 14 days. 

Samples were collected and filtered using Whatman, Grade 1 (Sigma-Aldrich Co.; St. 

Louis, MO, USA) every 2 days for protein and Zn analyze. All samples were evaluated 

in duplicate.  
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 5.3.4 Determination of protein and Zn  

 Protein (Protein, %) was calculated as nitrogen in samples using modified 

Kjeldahl analysis (AOAC, 2000; Lopez, Garcia, Fernandez, Bustos, Chisti, and Sevilla, 

2010) and expressed as protein percentage on dry basis.   

 Zn contents were determined using Atomic Absorption Spectrometry (AAS) 

as described in Chapter III (section 3.3.4). The results were expressed as µg/g (dry 

weight). All of the samples were evaluated in duplicate. 

  5.3.5 Prediction model from kinetics reaction 

 A general form of zero-order and first order reaction kinetic models was 

derived from kinetic chemical reactions (Carabasa-Giribet, and Ibarz- Ribas, 2000; 

Singh, 2000; Trifiro, Gherardi, Belloli, Saccani, and Aldini, 1990; Avila and Silva, 

1999; Wang, Ni, Hu, Wu, Liao, Chen, and Wang, 2007) as the following equations:  

Zero-order reaction: 

   C௜ 			ൌ 		 C଴ െ kt  

First-order reaction: 

   C௜ 	ൌ 		 C଴	expሺെktሻ	  

Where; Ci  =  concentration at time i  

 C0  =  initial concentration  

 k = the concentration rate constant  

 t = the time  
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 5.3.6 Model performance 

 Accuracy factor (Af) and bias factor (Bf) were used as a quantitative method 

to measure the performance of the models by comparing predicted and observed values 

(Ross,1996; Zhong, Chen, Wang, Wu, Liao, and Hu, 2005; Wang et al., 2007; Bruckner, 

Albrecht, Petersen, and Kreyenschmidt, 2013).  

 The fitted models were compared by root mean square error (RMSE) value 

(Ross, 1996; Wang et al., 2007). These models were defined as the following equations:  

Af				 ൌ 	 10
൬∑
|୪୭୥ሺ୮୰ୣୢ୧ୡ୲ୣୢ೔/୭ୠୱୣ୰୴ୣୢ೔ሻ|

୬ ൰
	 

Bf			 ൌ 	 10∑
୪୭୥ሺ୮୰ୣୢ୧ୡ୲ୣୢ೔/୭ୠୱୣ୰୴ୣୢ೔ሻ

୬  

RMSE	 ൌ 	ඨ
Ʃሺpredicted௜ െ observed௜ሻଶ

n െ 1
	 

Where; predictedi  =  predicted values at time i 

 observedi = observed values at time i 

 n  = number of observations  

 5.3.7 Statistical Analysis  

  All experiments were performed at least in duplicate. Analysis of variance 

(ANOVA) with confidence level of 95% (p<0.05) was performed on the obtained data. 

 

5.4 Results and discussion 

 5.4.1 Changes of fresh Spirulina platensis 

  Fresh Spirulina platensis were packed in LDPE zip lock bags with 0, 5, and  

10 % glycerol and kept at 4, 20, and 30ºC for 14 days. At 4ºC fresh Spirulina platensis 

highest protein contents (p<0.05). The protein concentrations were gradually decreased 

during storage. Protein contents of Spirulina platensis stored with reduced from  
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about 62% to 0, 5 and 10% glycerol at 4ºC of 58.88, 60.89, and 60.58%, respectively 

after 14 days. At 5 and 10% glycerol changes in protein contents were not significantly 

different (Figure 5.1a) for all storage temperatures. Decreased in protein contents were 

more pronounced at high temperature storage. Cell samples with no glycerol showed 

highest decreased in protein contents in all temperature storages. This clearly 

emphasized the role of glycerol as a good cell protectant. Spirulina platensis cells stored 

at 20 ºC for 14 days had protein contents of about 54% with glycerol and 52.8% without 

glycerol (Figure 5.1b) whereas the cells stored at 30ºC had protein about 47% with 

glycerol and 44.2% without glycerol (Figure 5.1c). Using Japanese standard for protein 

content in Spirulina of >50%, fresh cell would have storage life longer than 14 days if 

they were kept below 20ºC, but only 10 days without glycerol and 12 days with glycerol 

at 30ºC.   
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Figure 5.1 Protein contents of fresh Spirulina platensis with 0, 5, and 10% glycerol  

stored at 4ºC (a), 20ºC (b), and 30ºC (c).  
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  Similarly, Zn contents of fresh Spirulina platensis store at 4ºC was highest 

during storage for 14 days. Zn contents decreased grater at higher storage temperature. 

Glycerol addition at 5 and 10% glycerol gave no significant changes in Zn contents of 

every storage temperature. The content of Zn remained after 14 days at about 83 µg/g 

dry weight with glycerol and 80 µg/g dry weight without glycerol (Figure 5.2a).  The 

storage of fresh Spirulina platensis at 20ºC for 14 days showed Zn contents at about 72-

73 µg/g dry weight with glycerol and 68.5 µg/g dry weight without glycerol (Figure 

5.2b). The lowest Zn content (p<0.05) was found in the fresh Spirulina platensis 

samples stored at 30 ºC for 14 days without the 0% glycerol at 51.21 µg/g dry weight 

and at about 56. µg/g dry weight with glycerol (Figure 5.2c).    

  Decrease in protein and Zn contents were due to cell autolysis of fresh 

Spirulina platensis resulted from the action of lytic enzymes especially peptidoglycan 

hydrolase (Lahoz, Reyes, and Leblic, 1976; Harvey, McNeil, Berry, and White, 1998).  
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Figure 5.2 Zn contents of fresh Spirulina platensis with 0, 5, and 10% glycerol  

stored at 4ºC (a), 20ºC (b), and 30ºC (c).  
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  Among storage life of different temperatures of this study, storage at 4ºC best 

extended storage of fresh Spirulina platensis with high remaining protein. Low 

temperature is the simple way for retaining the cell quality. The metabolic process, 

oxidative denature of vitamins and unsaturated fatty acids, autolysis, and microbial 

degradation are reduced at low temperature condition while the cell viability is 

maintained (Harith et al., 2010; Heasman, Sushames, Diemar, O’Connor, and Foulkes, 

2001).     

 5.4.2 Kinetics reaction life prediction from fresh Spirulina platensis 

  Data of decreased protein and Zn contents were used to fit the kinetics 

reaction model. The zero-order and first-order kinetics reactions were considered to 

predict the storage life of fresh Spirulina platensis (See Appendix C). The correlation 

between the observed and predicted data obtained from the zero-order and first-order 

reaction models were constructed for protein (Figure 5.4) and Zn (Figure 5.5). The 

results showed that the fitted model was determined by regression values. The 

regression values of zero- and first-order reaction seem to be fitted both of the reactions. 

Previous researchers reported the degradation gamma linolenic acid in sun-dried 

Spirulina platensis at 45 and 55ºC followed first-order reaction (Tiburcio, Galvez, Cruz, 

Gavino, 2007) as well as the thermal degradation kinetics of phycocyanin extract from 

Spirulina platensis at 50-55ºC which related to first-order reaction (Antelo, Costa, and 

Kalil, 2008). Therefore, the model performance was used to evaluate the best fitted of 

zero- and first-order reactions. The accuracy factor (Af), bias factor (Bf), and root mean 

square error (RMSE) values of protein and Zn were compared (Table 5.1). The model 

could provide a better fit when the Af and Bf of performance model closed to 1 and a 

lower values of RMSE was obtained (Ross, 1996; Devlieghere, Belle, and Debevere, 
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1999; Wang et al., 2007; Bruckner, Albrecht, Petersen, and Kreyenschmidt, 2013). In 

this study, the kinetic reaction of protein was fitted zero-order reaction which Af, Bf, 

and RMSE of 1.0001, 0.9999, and 0.0419, respectively. Similarly, the kinetic reaction 

of Zn was also fitted zero-order reaction that Af, Bf, and RMSE values were 1.0000, 

10000, and 0.034. Thus, the zero-order reaction was selected for this study. The zero-

order reaction linear regression of protein at 4ºC with 5% glycerol was expressed as the 

equation; Y ൌ െ0.1469X ൅ 0.0843. Zn at 4ºC with 5% glycerol was expressed as the 

equation; Y ൌ 	െ0.7829X ൅ 1.34. According to the equations, the storage life of fresh 

Spirulina platensis with 5% glycerol was predicted to last about 50 days with the 55% 

protein (Base on quality standard of Spirulina platensis), and 54.89 µg/g dry weight Zn  

remained at the end of 50 days. The storage life of fresh Spirulina platensis at 4ºC 

without glycerol as a protectant would be about 22 days, and 70.34 54.89 µg/g dry 

weight Zn.        
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Figure 5.3 Correlation between the observed and the predicted data of protein  

 contents in Spirulina platensis obtained with the zero-order reaction 

  (a) and first-order reaction (b). 
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Figure 5.4 Correlation between the observed and the predicted data of Zn  

 contents in Spirulina platensis obtained with the zero-order reaction (a) and 

first-order reaction (b). 
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Table 5.1 Model performance of Af, Bf, and RMSE values of zero-order and  

first-order reaction order for protein and Zn contents. 

Model Protein Zn 

performance Zero-order First-order Zero-order First-order 

Af 1.0001 1.0002 1.0000 1.0001 

Bf 0.9999 0.9998 1.0000 1.0000 

RMSE 0.0419 0.0468 0.0034 0.0054 

 

5.5 Conclusions 

 Using glycerol as a cell protectant retarded these changes with statistically similar 

results between 5 and 10% application. Therefore, storage of fresh Spirulina platensis 

was best at 4ºC with 5% glycerol addition providing high protein and Zn content 

retention. Storage at higher temperature increased greater losses protein and Zn 

contents. The zero-order reaction was fitted the kinetic reaction of storage changes for 

fresh Spirulina platensis. The storage life of fresh Spirulina platensis was predicted to 

be about 50 days with the 55% protein, and 54.89 µg/g dry weight Zn. 
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CHAPTER VI 

SUMMARY 

 

Zn uptake performance of Spirulina platensis was studied using different Zn 

salts media which include Zarrouk’s medium (ZM), non-Zn Zarrouk’s (NZM), 

modified Zarrouk’s medium with zinc sulfate (MZS), zinc nitrate (MZN), and zinc 

chloride (MZC). Spirulina platensis cultured in 1.6 µmol Zn of MZS showed the highest 

Zn concentration of 69.55±2.70 µg/g dry weight with protein concentration of 

63.11±1.40% dry weight. It also shows specific growth rate (µ) of 0.46 /day, cell 

productivity (Px) of 0.55 g/L.day dry weight, and doubling time (td) of 1.50 days. Zn 

uptake was higher in cytoplasm 72.8% (60.50 µg/g dry weight) than that in cell walls 

27.2% (22.62 µg/g dry weight). Decreased FT-IR spectra band intensity of the amide 

groups after Zn uptake at high concentrations suggested that the amide I and amide II 

groups played a crucial role in the binding of Zn2+. 

Zn accessibility and availability were evaluated using in vitro digestion. The 

results revealed that 2 h digestion of modified Zarrouk’s medium (SPM) had the highest 

accessibility compared with Zarrouk’s medium (SPZ) and commercial sample (SPC) 

which was 55.14±0.61 µg Zn/g dry weight (55.20±0.57%) in the simulated gastric and 

62.30±0.18 µg Zn/g dry weight (63.55±0.21%) in the small intestinal simulation, 

respectively. The highest Zn availability of SPM after small intestinal digestion was at  

2 h digestion with 34.63±0.95% (33.96±0.93 µg/g dry weight). 
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The storage life of fresh Spirulina platensis was studied using various glycerol 

concentration (0, 5, and 10%) and temperature (4, 20, and 30°C). Storage at the higher 

temperature increased greater losses of protein and Zn contents. The results showed that 

protein and Zn contents of the Spirulina platensis storage at 5% glycerol and 4ºC were 

maintained at the highest contents at 60.89% and 83.34 µg/g dry weight, respectively. 

The zero-order reaction well fitted with storage changes of fresh Spirulina platensis. 

The prediction of storage life at 4°C with 5% glycerol, providing 55% protein, was 

about 50 days with 54.89 µg/g dry weight Zn. 
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APPENDIX A 

ZARROUK’S MEDIUM PREPARATION 

 

Zarrouk’s medium 1 liter contains chemicals composition as the following: 

Table A1 The chemicals composition of Zarrouk’s medium. 

Chemicals 
Concentrations  

(g/L) 

NaHCO3 16.8 

NaNO3 2.50 

K2HPO4 0.50 

K2SO4 1.00 

NaCl 1.00 

MgSO4.7H2O 0.20 

CaCl2.7H2O 0.04 

EDTA 0.08 

FeSO4.7H2O 0.01 

A5  1 mL/L 

B6  1 mL/L 
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Table A2 The chemicals composition of A5. 

Chemicals 
Concentrations 

 (g/L) 

H3BO3   2.86 

MnCl2·4H2O 1.81 

ZnSO4.7H2O 0.22 

Cu2SO4.5H2O 0.08 

MoO3 0.01 

 

 

Table A3 The chemicals composition of B6. 

Chemicals 
Concentrations 

 (mg/L) 

NH4VO3 22.96 

K2Cr(SO4).24H2O 96.00 

NiSO4.7H2O 47.80 

NaWO4.2H2O 17.94 

Co(NO3)2.6H2O 43.98 
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APPENDIX B 

STANDARD CURVE OF SPIRULINA PLATENSIS 

 

 

Figure B1 Standard curve of Spirulina platensis cell dry weight. 
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APPENDIX C 

KINETICES REACTION MODEL OF FRESH  

SPIRULINA PLATENSIS 

 

 

Figure C1 The plot of zero-order reaction of protein concentrations of fresh  

                  Spirulina platensis with various glycerol concentrations at 4ºC. 
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Figure C2 The plot of zero-order reaction of protein concentrations of fresh  

             Spirulina platensis with various glycerol concentrations at 20ºC. 

 

 

Figure C3 The plot of zero-order reaction of protein concentrations of fresh  

             Spirulina platensis with various glycerol concentrations at 30ºC. 
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Figure C4 The plot of zero-order reaction of zinc concentrations of fresh  

             Spirulina platensis with various glycerol concentrations at 4ºC. 

 

 

Figure C5 The plot of zero-order reaction of zinc concentrations of fresh  
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Figure C6 The plot of zero-order reaction of zinc concentrations of fresh  

             Spirulina platensis with various glycerol concentrations at 30ºC. 

 

 

Figure C7 The plot of first-order reaction of protein concentrations of fresh  

             Spirulina platensis with various glycerol concentrations at 4ºC. 
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Figure C8 The plot of first-order reaction of protein concentrations of fresh  

             Spirulina platensis with various glycerol concentrations at 20ºC. 

 

 

Figure C9 The plot of first-order reaction of protein concentrations of fresh  
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Figure C10 The plot of first-order reaction of zinc concentrations of fresh  

             Spirulina platensis with various glycerol concentrations at 4ºC. 

 

 

Figure C11 The plot of first-order reaction of zinc concentrations of fresh  

             Spirulina platensis with various glycerol concentrations at 20ºC. 

y = -0.0121x + 0.0044
R² = 0.9861

y = -0.009x + 0.0166
R² = 0.9594

y = -0.0092x + 0.0187
R² = 0.9561

-0.180

-0.160

-0.140

-0.120

-0.100

-0.080

-0.060

-0.040

-0.020

0.000
0 2 4 6 8 10 12 14 16

ln
 C

/C
0

Time (day)

0% Glycerol

5% Glycerol

10% Glycerol

y = -0.0173x - 0.049
R² = 0.9947

y = -0.0165x - 0.0072
R² = 0.9852

y = -0.0156x - 0.0028
R² = 0.9677

-0.350

-0.300

-0.250

-0.200

-0.150

-0.100

-0.050

0.000
0 2 4 6 8 10 12 14 16

ln
 C

/C
0

Time (day)

0% Glycerol

5% Glycerol

10% Glycerol

 



117 
 

 

Figure C12  The plot of first-order reaction of zinc concentrations of fresh  

             Spirulina platensis with various glycerol concentrations at 30ºC. 

 

 

 

 

 

 

 

 

 

 

 

 

y = -0.0414x - 0.0111
R² = 0.9972

y = -0.0349x + 0.0061
R² = 0.9935

y = -0.0359x + 0.0183
R² = 0.994

-0.700

-0.600

-0.500

-0.400

-0.300

-0.200

-0.100

0.000
0 2 4 6 8 10 12 14 16

ln
 C

/C
0

Time (day)

0% Glycerol

5% Glycerol

10% Glycerol

 



118 
 

APPENDIX D 

EXTRACTION TIMES OF SPIRULINA PLATENSIS 

 

 

Figure D1 Zn in Spirulina platensis cytoplasm (supernatant) with extraction times.  

 Different letters indicate the significant differences (p<0.05).  

 

The concentration of Zn in each extraction time was the first extraction of  
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results did not show a significant difference between the fourth and the fifth times.   
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