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In engineering, AlSI4140 low alloy steel is commonly utilized. It has outstanding
mechanical qualities, including high tensile strength, fatigue resistance, toughness, and
impact resistance, but low wear resistance. Surface enhancement is required for
corrosive environments and operations at high temperatures to satisfy its application.
Diamond-like carbon (DLC) film enhances hardness, modulus of elasticity, adhesion,
abrasion resistance, heat resistance, and corrosion resistance. As a result, DLC films
were produced by filtered cathodic vacuum arc (FCVA) for this investigation. This
technique is capable of fabricating a hydrogen-free tetrahedral amorphous carbon (ta-
Q) film layer with a high sp*/sp? carbon bond ratio. On the other hand, the ta-C film
has a significant internal stress, which contributes to the coating's poor adherence to
the metal surface. As a consequence, the adhesion strength is enhanced by the
incorporation of doping elements into the DLC film to relieve intermal stress. In this
work, the developed DLC film was doped with aluminum (Al) and nitrogen (N) and
synthesized by using the FCVA technique to coat AISI 4140 steel and produce ta-C,
ta-CN, ta-CAl, and ta-CAUN films, respectively. The structure and chemical
composition of the produced DLC films were investigated using Raman spectroscopy,
X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine
structures (NEXAFS). Following that, the mechanical characteristics and adhesive
strengths of the films were determined. The oxidation behavior of the DLC films was
determined using in situ heating NEXAFS, followed by the corrosion behavior of the
whole film. They were evaluated using a potentiostat in a solution of 3.5 wt% sodium
chloride (NaCl). Finally, the corroded regions and corrosion products from the corrosion

test were evaluated using X-ray photoemission electron microscopy (XPEEM) and



NEXAFS, respectively, and the corrosion products were studied using XPS. The results
indicated that Al and N-doped DLC film (ta-C:AUN) with sp® C-N and AL,O5 structures
had similar mechanical properties to that of non-doped DLC (ta-C) (hardness = 49.04
+ 1.33 GPa, elastic modulus (E) = 251.09 + 6.57GPa, elastic recovery (%ER) = 58.43

-+

1.73), and also had improved film adhesion (scratch propagation resistance, CPRs
12187.06 mN?), thermal stability (temperature resistance up to 600°C), and corrosion
resistance by raising the £, value from -443.31 to -382.93 mV (in comparison to pure
DLC). As a result, ta—C:AUN specimens are suitable for use in applications requiring

corrosion resistance and thermal resistance.
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CHAPTER 1
INTRODUCTION

1.1  Rationale of the study

AlSI 4140 steel is a low-alloy steel widely used in engineering applications. The
main feature of AISI 4140 is that it contains low compositions of chromium (Cr) and
molybdenum (Mo) which results in high hardness and fabrication ability. It has
excellent mechanical properties (i.e., tensile strength and abrasion wear resistance)
that can be enhanced by heat treatment processes such as quenching and tempering,
and surface treatment (i.e., carburizing) for suitable application. AISI 4140 is used in
automotive parts (i.e., gear, transmission, crank shaft, piston, and piston-ring) operating
in environments of humidity, lubrication, temperature, and friction as consequences
of corrosion and degradation of materials. Surface technologies, such as the
carbonitriding and nitriding processes, have been used widely to prevent the steel

surface from oxidation and corrosion (Grill, 1999; Mahmud et al., 2015).

Diamond-like carbon (DLC) is an amorphous carbon with a structural
combination of diamond (sp® bonding) and graphite (sp? bonding). It has recently been
applied to automotive industries due to its unique properties, for example it has high
hardness, a low friction coefficient, and is chemically inert. The DLC coating has been
challenging because high internal stress can exist in the films when a thickness layer is
required. Moreover, decreasing the sp*/sp? ratio of DLC film at high temperature has
an effect of low hardness. Therefore, the incorporation of elements in the DLC
structure has been employed to enhance the adhesion efficiency and mechanical
properties (Grill, 1999; Yang et al., 2012).

In this research, the improvement of the oxidation and corrosion properties of
the AISI 4140 through the DLC doping method with aluminium and nitrogen will be
studied and discussed. Also, the mechanical properties and tribology will be

investigated.



1.2 Aims of thesis

The purpose of this thesis was to synthesize DLC (ta—C), N-doped DLC (ta-C:N),
Al-doped DLC (ta—C:Al), and co—doped (AL, N) DLC (ta—C:AL:N) films on an AISI 4140 low
alloy steel substrate using a pulsed two—-FCVA deposition method for improving the
DLC films' oxidation and corrosion resistance. In addition, the structural bonding,
nanomechanical properties, adhesion strength, and corrosion properties were
examined, using a number of effective analytical approaches in order to gain a better
understanding of the films’ properties. The purpose was separated into three major
areas:

1.2.1  To determine the optimal conditions for the deposition of ta—C, ta-C:N,
ta—C:AL, and ta—C:AUN films using the pulsed two-FCVA method.

1.2.2 To examine the thermal stability (oxidation resistance) of ta-C, ta-C:N,
ta—C:Al, and ta—C:AUN films at room temperature (RT) and the annealing temperature
range to 700°C.

1.2.3  To get a better understanding of the mechanisms that contribute to the
enhancement of the nanomechanical characteristics, corrosion resistance, and

adhesion strength of ta—C, ta—C:N, ta—C:Al, and ta—C:AUN films.

1.3  The scope of the study

1.3.1  The ta-C, ta—C:N, ta—C:Al, and ta—C:AUN depositions were performed on
a Si (100) wafer and an AISI 4140 low alloy steel substrate.

1.3.2  The ta-C, ta-CN, ta—-C:Al, and ta-CALUN films were synthesized using
the developed pulsed two-FCVA deposition method with a separate cathodic arc
source.

1.3.3  The doping elements were Al and N.

1.3.4  The following factors were used to determine the critical deposition
parameters: base vacuum pressure, negative direct current bias voltage of the
substrate, deposition time, arc voltage, pulse repetition or frequency rate, and duty
cycle.

1.3.5 The following methodology was used to determine the identity of the
ta-C, ta-C:N, ta—C:Al, and ta—C:Al:N films:



(a) for the microstructure, chemical composition, and bonding configuration,
Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and near edge X-ray
absorption fine structure spectroscopy (NEXAFS) were used.

(b) morphological evaluation of the surface used scanning electron microscopy
(SEM) and atomic force microscopy (AFM).

(c) X-ray reflectometry (XRR) was used to determine density.

(d) nanomechanical properties was as determined by nanoindentation testing.

(e) adhesion strength was as determined by the nanoscratch testing.

(f) corrosion resistance was determined using a potentiostat analyzer.

(g) thermal stability was measured with X-ray photoemission electron

microscopy (X—PEEM) in conjunction with in-situ NEXAFS.

1.4 The research places
1.4.1  Suranaree University of Technology's (SUT) Center for Scientific and
Technological Equipment, Nakhon Ratchasima, Thailand.
1.4.2 Synchrotron Light Research Institute (SLRI), Nakhon Ratchasima,
Thailand:
(@) Research Department Beamline 3.2Ub PEEM,
(b) Building and Utilities Division, Mechanical System Development and
Utilities Department,
(c) Electrical and Electronics Division, Technical and Engineering

Department.

1.5 Expected results

1.5.1 The ability to synthesize and analyze ta-C, ta-C:N, ta-C:Al, and ta-
C:ALN films deposited using the pulsed two-FCVA method.

1.5.2  Knowledge of ta-C, ta—C:N, ta—C:Al, and ta—C:AUN films' microstructures,
bonding configurations, nanomechanical properties, adhesion strengths, thermal
stability, and corrosion resistance.

1.5.3 Al and N co-doping is a feasible method for increasing DLC's thermal

stability, oxidation resistance, and corrosion resistance.



1.5.4  Gain experience of research in line with the principles of research
practice, the solution of problems during research, and practice collaboration, together
with contact and coordination in order to accomplish the research.

1.5.5 The study findings are published in international publications and are

available in the SCOPUS or ISI databases.

1.6  Outline of the thesis

This thesis is split into five chapters, each of which is concerned with the
deposition and characterization of the structure and properties of ta-C, ta—C:N, ta-CAl,
and ta—C:AlLN films produced by pulsed two-FCVA deposition.

The introduction to this thesis is stated above in this Chapter 1, including the
rationale of the study, aims of this thesis, scope of the study, research places, expected
results, and thesis outline.

The literature reviews in Chapter 2 provide a basic principle and brief review of
AISI 4140 low alloy steel, diamond-Llike carbon (DLC) films, incorporation of alloying
elements in DLC films, deposition methods for DLC films, applications of DLC films,
nanomechanical properties and adhesion strength of non-doped DLC, doped DLC, and
co—-doped DLC films, thermal stability of DLC films, electrochemical corrosion, and a
review of the literature.

The experimental procedures that have been implemented are described in
Chapter 3 and include the preparation of the DLC films, the structural bonding
configuration, elemental analysis, film thickness, density, nanomechanical properties
and adhesion strength, and electrochemical corrosion analysis of the DLC films.

Chapter 4 offers a detailed description of the findings as well as a commentary
of this study, which is divided into two major sections: (i) the structure, bonding
configuration, thickness, and morphology of FCVA-synthesized ta-C, ta-C:N, ta—CAl,
and ta-CAUN films; and (i) the nanomechanical properties and adhesion strength,
thermal stability, and corrosion resistance of Al and N co-doped DLC films deposited
on AISI 4140.

Finally, in Chapter 5, the thesis's findings and suggestions for further research

are explored.



CHAPTER 2
RITERATURE REVIEWS

2.1  AISI 4140 low alloy steel

Due to its high strength and ductility, American Iron and Steel Institute (AISI)
4140 alloy steel is a chromium and molybdenum low alloy steel that is one of the
most often used materials for gears, blades, and other industrial uses. Being subjected
to difficult working conditions such as high temperatures, corrosion, oxidation,
tribology, it suffers from severe mechanical failure modes including micro—pitting and
scuffing which shorten the service life of essential components by causing full failure
(Liu et al., 2017; Khani Sanij et al., 2012; Li et al., 2014). Additionally, it is possible to
enhance the mechanical characteristics, wear, and corrosion resistance of AlSI 4140
steel by applying heat treatment and traditional surface treatments including
quenching and tempering, carburizing, nitriding, nitrocarburizing, and plasma nitriding
(Li et al., 2014; Sayuti et al., 2014; Kovaci et al., 2018). For AlSI 4140 steel, the chemical
composition is mostly carbon (C) in the range of 0.39 - 0.48 wt%, chromium (Cr) 0.80
- 1.10 wt%, and molybdenum (Mo) 0.15 - 0.25 wt%, as listed in Table 2.1.
Furthermore, Table 2.2 and Table 2.3 exhibit the mechanical and physical qualities,

respectively.

Table 2.1 Chemical composition of AISI 4140 (modified from Suryo et al., 2018)

Chemical composition (wt%)

C Si Mn P S Cr Mo Fe

0.39 - 0.20 - 0.75 - 0.80 - 0.15 -
<0.035 <0.04 balance
0.48 0.35 1.00 1.10 0.25




Table 2.2 Mechanical properties of AISI 4140 (modified from [Online], Available:

https://www.theworldmaterial.com/astm-sae-aisi-4140-steel/)

Water
quenched
Normalized at Annealed at
Conditions from 845°C &
870 °C 815 °C
tempered at
540 °C
Mechanical Properties
Tensile strength (MPa) 1020 655 1075
Yield strength (MPa) 655 414 986
Elongation in 50 mm, % 17.7 25.7 15.5
Reduction in area, % 46.8 56.9 56.9
Hardness (HB) 302 197 311
Density (g cm™) 7.85* (Liu et al., 2017)

Table 2.3 Physical properties of AISI 4140 (modified from [Online], Available:

https://www.theworldmaterial.com/astm-sae—aisi-4140-steel/)

Physical Properties Temperature (°C)
20 100 200 400 600
Electrical resistivity value (u€) m) 0.22 0.26 0.33 0.48 0.65
Thermal conductivity value (W/m-K) a2.7 42.3 37.7 331
Temperature (°C)
20-
100 20-200 20-400 20-600
Coefficients of linear thermal
expansion value (107%/K) 12.2 12.6 13.6 14.5
Specific heat value (J/Kg-K) ar3 519 561




2.2  Diamond-like carbon (DLC) films
Since the 1990s, diamond-like carbon (DLC) has been gaining in popularity in
industry (Vetter, 2014), because the DLC has excellent mechanical, tribological, and
chemical properties, e.g., high hardness, elastic modulus, wear, oxidation and corrosion
resistance, and a low friction coefficient (Donnet, 1998; Robertson, 2002; Bootkul et
al., 2014, Dai et al., 2017; Zhou et al., 2019). These properties depend on the structure
of the carbon inside the DLC. The DLC structure can be modified by the deposition
processes or methods and the incorporation elements, such as gas doping (i.e.,
hydrogen and nitrogen) and metal doping (i.e., silicon, titanium, aluminium, tungsten,
chromium, and copper).
2.2.1 Structure bonding of DLC films
The DLC is an amorphous carbon structure with a proportion of
diamond (sp® bonding) and graphite (sp?* bonding) (Robertson, 2002; Aperador et al.,
2013; Ruden et al,, 2013; Lei et al, 2019). In terms of being diamond-like, the
proportion of sp” bonding can be manipulated to give different mechanical properties
of DLC films. Figure 2.1 shows the various structures of carbon-based materials, such

as graphite, diamond, and amorphous carbon films (Robertson, 2002).
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Figure 2.1 The structure of graphite, diamond, and DLC [Online], Available:
[http://www.pvdadvancedtech.com/dlc/] Dec 30, 2021



There are 4 main categories of the DLC film depending on the hydrogen
content, which are hydrogen-free amorphous carbon (a-C), hydrogenated amorphous
carbon (a-C:H), hydrogen—free tetrahedral amorphous carbon (ta-C), and
hydrogenated tetrahedral amorphous carbon (ta-C: H), respectively, (Grill, 1999).
Figure 2.2 shows the ternary phase diagram of sp?, sp®> and H components of various
amorphous carbon (Robertson, 2002). In the lower left corner is the sp? bond showing
the graphitic carbon and glassy carbon phases. The central area is both sp? and sp’
bonded carbon demonstrated by the a-C: H or ta-C: H area (Grill, 1999; Robertson,
2002). The lower right corner shows the limits of hydrocarbon polymers and that no
films can form in those regions. Table 2.4 shows the main properties of the DLC film

(Grill, 1999).

Sp 3 Diamond-like

ta-C ta-C:H

HC polymers
sputtered a-C(:H)
no films
glassy carbon
graphitic C

sp2 | H

Figure 2.2 Ternary phase diagram of sp?, sp® and H components of various

amorphous carbon (Robertson, 2002).

2.2.2 Structure and mechanical properties of DLC films
The maximum hardness the DLC film is the tetrahedral-bonded
hydrogen-free coating (ta—C), which is generated when carbon from graphite or

hydrocarbon gas is evaporated or ionized in a vacuum and deposited on the substrate.



When the DLC film is deposited on the specimen's surface, it is organized with
amorphous carbon atoms, and thus the term amorphous carbon. Amorphous carbon
is made of carbon links between graphite (sp? bonds) and diamond (sp® bonds), with
the ratio of diamond to graphite determined by the film’s structure. Arc voltage, bias
voltage, carbon ion energy, ion density, and temperature are critical parameters for
creating a high—quality DLC film. The larger the sp® percentage of the diamond carbon
bond (DLC) or s,o3 fraction, the more diamond-like the DLC film's characteristics. The
DLC layer's distinguishing characteristics are its hardness, Young's modulus of elasticity
(Young's modulus), and strong chemical inertness (Grill, 1999; Ferrari et al., 2000,

Robertson, 2002; Anders, 2008; Vetter, 2014).

Table 2.4 The comparison of the main properties of various amorphous carbon

materials (Grill, 1999)

Density Energy gap Hardness
Materials sp’ (%) H (%)

(g.cm™)  (eV) (GPa)
Diamond 100 0 3.515 55 100
Graphite 0 0 2.267 0 -
Glassy C 0 0 1.3-1.55 0.01 3
Evaporated C 0 0 1.9 0.4-0.7 3
Sputtered C 5 0 2.2 0.5 -
ta-C 80-88 0 3.1 2.5 80
a-C:H Hard 40 =40 _ 16282 1.1-1.7 10-20
a-C:H soft 60 40-50 1.2-1.6 1.7-4 <10
ta-C:H 70 30 2.4 2.0-25 50

2.3  Doping element in DLC films

Although the DLC film is very hard, durable, and chemically inert, the adhesion
between the DLC layer and the substrate is often an issue. This is because when the
film’s thickness rises or as the DLC film grows, increased compressive forces inside the

film arise, causing the film to peel away from the substrate material (Wang et al., 2007;
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Zhang et al., 2013; Bootkul et al., 2014). Thus, in order to maximize the performance
of the DLC film without peeling and to decrease the stress inside the film layer. It also
improves the adhesion between the film layer and the substrate material, which is
why it is used for improvement and is common today, such as by including a
combination of materials into the DLC film layer or by forming an interlayer between
the film layer and the substrate material. Additionally, mixed components are used to
combine 2 or more kinds and to provide additional features as required for the
application (Sun et al., 2016; Xu et al., 2020; Dai et al., 2016, 2017). Three types of
doping agents are employed in DLC films:

Firstly, non-metallic doping elements that make bonds with carbon (C) in DLC
films, such as nitrogen (N), oxygen (O), and fluorine (F), respectively (Hauert et al., 1995;
Bootkul et al., 2014; Safaie et al., 2017; Ryu et. al., 2020).

Secondly, a class of metal alloys that react with carbon in the DLC film to form
metal carbides; examples include titanium (Ti), chromium (Cr), tungsten (W),
molybdenum (Mo), and iron (Fe) (Liu et al., 2018; Zhang et al., 2015; Cui et al., 2019;
Constantinou et. al., 2017; Ray et al., 2016).

Finally, a class of metal alloys that do not react with the carbon in the DLC
film includes carbide compounds such as aluminium (Al), gold (Au), silver (Ag), copper
(Cu), nickel (Ni), and cobalt (Co) (Ding et al. 2021; Zou et al., 2012; Wang et al., 2012).
These are available as a pure metal contained inside a film or as a cluster of
nanocrystals. The incorporation of the alloying elements of metal atoms into the DLC
structure enhances the adhesion strength and reduced compressive stress.
Additionally, it may aid in the enhancement of mechanical, tribological, and corrosion
resistance, thermal stability, electrical and optical properties, and biocompatibility. It
enables the use of film in a broader range of applications. However, since doping may
result in an increase in the content of sp? in the carbon network structure (Bootkul et
al., 2014), the doping concentrations must be considered to prevent impairing the

increased DLC film’s properties.

2.4  Deposition methods for DLC films
DLC films can be synthesized by various techniques. In 1971, the first DLC thin
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film was deposited by Aisenberg and Chabot using the ion beam deposition technique.
Subsequently, the DLC deposition was developed by the chemical vapor deposition
(CVD) and physical vapor deposition (PVD) methods, respectively. For the synthesis of
DLC films, plasma enhanced chemical vapor deposition (PECVD) is the most commonly
used method for the laboratory scale, but it has limited industrial applications. The
sputtering method is preferred for industrial processes because of the ability and
simplicity to adjust the process. Finally, the cathodic arc method can generate a high-
density plasma ion, but it is limited in its applications because of the unstable cathode
spot and insufficient filtering for the macroparticle elimination in the process. Currently,
methods such as sputtering and cathodic arc coating have been evolved into the high-
power impulse magnetron sputtering (HiPIMS) and filtered cathodic vacuum arc (FCVA)
processes, respectively, to enable the generation of high-density and uniform plasma
ions throughout the coating. Additionally, a magnetic filtered coil is included to filter
and decrease the number of macroscopic particles that fall onto the film layer during
coating, so that it is really possible to produce a high—quality diamond-Llike carbon film
and to eliminate film defects.
2.4.1 Sputtering

Sputtering is a popular coating technique. The coated target is
bombarded with ion energy created by the plasma in a glow discharge, causing
sputtering of the coated target atoms which condense and form a thin layer on the
coating surface. This procedure is carried out under argon gas conditions to promote
the co-reaction of sputtering and acetylene gas. Furthermore, the specimen must be
heated to roughly 200°C at a base pressure of approximately 107! Pa, to allow the
ionization process to proceed easily. The procedure is capable of uniformly coating
the workpiece. However, the consequence of significant surface heating is that there is
a modest rate of film deposition and ionization in the plasma. At present, it is created
by arranging magnets in such a manner that the initial pole is positioned in the middle
of the workpiece. The second pole generates a magnetic ring around the workpiece’s
outside border, trapping electrons and increasing the likelihood of atomic collisions
and electron ionization. This results in concentrated plasma in the coated target region

and greater ion bombardment of the coated target. This results in a faster sputtering
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rate and a faster surface coating deposition rate (Kelly and Arnell, 2000; Hainsworth
and Uhure, 2007). This technique is known as magnetron sputtering and is shown in

Figure 2.3.

X _“ﬁ Magnetron
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Figure 2.3 Schematic of the plasma in magnetron sputtering process (Hainsworth

and Uhure, 2007)

2.4.2 Plasma enhanced chemical vapor deposition (PECVD)

To induce electron production between cyclotron resonance,
inductively coupled or capacitively coupled areas, most PECVDs use radio frequency
(RF) plasma at the ambient temperature. The capacitive parallel plate design is the
most frequently used parallel plate configuration in which ion densities and the
temperature distinguish the features of the plasma employed in the PECVD process.
To reduce the reflected energy, the plasma has a radio frequency generator and a
matching box. For traditional film coatings, the RF power ranges from 200 W to 20 kW,
with RF electrodes utilized to form the plasma. Deposition variables such as

temperature, deposition duration, pressure, inert gas flow rate, and the RF power
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employed for the PECVD process all impact the deposition rate of the thin film created
at 13.56 MHz. In plasma production, the surface might be positioned immediately
between the parallel plates or at the plasma zone tip. The monomer inlet and argon
gas is required for plasma formation and to prevent the effects of bombardment in
the plasma zone. Additionally, it is connected to a vacuum pump which allows low-
pressure film deposition within the standard PECVD coating chamber, which is shown

in Figure. 2.4 (Vasudev et al., 2013; Pauschitz et al., 2003; Woehrl et al., 2014).

Sample holder

~= Electrodes

To vacuum
pump
Monomer Inlet

Figure 2.4 Schematic representation of a standard chamber used in the PECVD

process (Vasudev et al., 2013)

2.4.3 High power impulse magnetron sputtering (HiPIMS)

HiPIMS is a technology that uses a sputtering mechanism to generate
vapor plasma at a base pressure of 10 Pa while being vacuumed by rotary vane
pumps and turbomolecular pumps to maintain a constant amount of plasma discharge
during the coating time. It uses up to a kW/cm? of electrical power, a kHz pulse

frequency, and a microsecond duty cycle. A control approach may also be used to
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alter the plasma density. High amounts of ionization are produced via power,
frequency, and duty cycle, comparable to arc evaporation methods. As a result,
ionization during coating is high, and the coating layer is thick. To reduce the number
of flaws in the film, surfaces with intricate forms may be coated using this method. On
the workpiece’s surface, a low amount of heat is applied. HiPIMS is more suitable for
creating usable films at lower temperatures than other technologies because, during
lamination, an ion bombardment is delivered to the workpiece’s surface to deposit
the film. The schematic of the HiPIMS process is shown in Figure 2.5 (Tucker, 2016;
Gomez et al., 2021).

DC-Pulsed ' ]

A - . ™
\ .4 HiPIMS

HiPIMS

HiPIMS o

Figure 2.5 A horizontal cross—section of the HiIPIMS chamber (Gémez et al., 2021)

2.4.4 Filtered cathodic vacuum arc (FCVA)

The filtered cathodic vacuum arc (FCVA) is the most common technique
used to synthesize the DLC film since it produces an excellent DLC film with sp® carbon
bonds of more than 80% in the DLC film’s structure, but it will produce the so-called
macroparticles during the deposition. A 90-degree bending magnetic coil is used as a
filter to control the plasma’s direction. Subsequently, the macroparticles are trapped

inside the coil and the remaining ions are controllable within the coil before expanding
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rapidly toward the substrate which can remove more than 99% of the macroparticles.
Figure 2.6 shows the schematic diagram of the FCVA machine. It uses a hish—frequency
power DC voltage, a negative bias voltage at the substrate, a solid graphite used as the
cathode, and a counter anode connected to the ground potential. The DLC film can
thus be deposited in gas plasma by active ions moving through a magnetic coil and
deposited on the substrate. Figure 2.6 also shows the design of the FCVA system for
doping of Al to the DLC film. As a result, carbon and aluminium ions can be
simultaneously deposited on the substrate. The amount of the doping can be
controlled by adjusting the arcing frequency ratio of the 2 cathodes. Nitrogen doping
can be performed by introducing the nitrogen gas into a deposition chamber during
the coating process (Anders, 2008; Marques et al., 2003; Wei and Yen, 2007; Lu and
Chung, 2008).
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Figure 2.6 Schematic of developed FCVA technique for metal doping (Wongpanya
et al., 2022)
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2.5 Applications of DLC films

The DLC coating techniques are becoming more prevalent nowadays due to its
higsh hardness, wear resistance, and corrosion resistance, as well as its excellent
thermal stability. As a result, the techniques are well-suited for automotive
applications such as bearings and pistons for motors and pumps, as well as driving
components such as gears and shafts. The diamond-like carbon coating on the drive
shafts results in a 1% improvement in fuel efficiency and a 1% reduction in CO,
emissions (Hainsworth and Uhure, 2007). Due to its strong electrical resistance,
excellent thermal conductivity, and dielectric properties, DLC film may be used in a
variety of applications in the electronics sector, including hard disk heads. Additionally,
the use of elemental alloys such as Ti doping to increase the DLC characteristics may
improve biocompatibility while maintaining strong corrosion resistance. Notably, it is
non-toxic to the body (Wongpanya, Pintitraratibodee, Thumanu, & Euaruksakul, 2021;
Liu et al., 2018). This enables the use of DLC's tribological features in the medical field.
Currently, it is employed as a coating on materials used in artificial joints — knees and
hips — implants, and artificial heart valves. Depending on the DLC, this coating has
excellent wear resistance, corrosion resistance, and thermal stability. DLC film is gaining
popularity and is being utilized in an increasing number of other applications, including
home appliances, razor blades, jewellery, and wristwatches. As can be seen, the DLC
covering has been a huge success for many decades in addressing many real
engineering difficulties. There is a competitive opportunity to further enhance the
characteristics of DLC to meet the expectations of additional future applications
(Hainsworth and Uhure, 2007; Konkhonthot et al.,, 2018). Some examples of the

application of DLC films are shown in brief in Figure 2.7.
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Spindle

Figure 2.7 Examples of the DLC coating application: automotive parts, engineering
parts, hard disk drive parts, medical parts, razor blades and a watch
(Hainsworth and Uhure, 2007; [Online], Available: http://nptel.ac.in
/courses/115103038/28; [Online], Available: http://www.indiamart.com
/devraj—- engineering/job-work.html;  [Online], Available: http://www.
caperay. com/blog/ index.php /2013/i-guarantee-this-device-wont-fail/;
[Online], Available: http://www.intechopen. com/books/ arthroplasty-
update/the—evolution—of-modern-total-knee—prostheses; [Online], Available:
https://watchessiam.com/2019/10/30/panerai-luminor —titanium —dlc-bucherer
-blue-pam01021/)

2.6  The nanomechanical and adhesion strength of DLC films
2.6.1 Nanoindentation testing
Nanoindentation is commonly used for determining the mechanical
properties (i.e., hardness, elastic modulus, creep, and residual stress) of thin—film and
nanocomposite materials. The result of the nanoindentation shows the load and
contact stiffness as a function of the displacement of the indenter onto the samples,

as shown in Figure 2.8. The Oliver and Pharr equation model is used to determine the
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elastic modulus of the thin films from the linear portion of the force—displacement
unloading curve that can be shown in the following Equation (2.1) (Oliver and Pharr,

2004):

(2.1)
S —d—P—&xE

cdhv Jr

where E, is the reduced modulus (GPa), S is the contact stiffness (N/m), and A
is the contact area (m). Then, the reduced modulus E, can be computed from the

following Equation (2.2):

where £; and V; are Young’s modulus and Poisson’s ratio of the indenter. And

then, £, and V., are Young’s modulus and Poisson’s ratio of the specimen, respectively.

Finally, the hardness can be calculated using the relative of the following

Equation (2.3),

where H is the hardness (H,), Prax is the peak of indentation load (N), and A is

the projected area of the hardness impression (m).
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Figure 2.8 Schematic of the load and displacement curve, and deformation surface (Oliver

and Pharr, 2004)

2.6.2 Adhesion testing

Adhesion strength is a very important property of the coating films
which shows the critical strength between the interface of the coating film and the
substrate (Marjanovic et al., 2006; Moerlooze et al., 2011). In the field of science, the
adhesion strength is a major concern for designing engineering parts, automotive parts,
tools, medical equipment, etc. The adhesion test is widely used to investigate the
adhesion strength between the coating and the substrate because it is easy to prepare
a sample test and it is reliable. Various methods have been efficiently used to evaluate
the cohesive strength of DLC film, such as the pull-off test, tape test, chisel test, bend
test, and scratch test (Marjanovic et al., 2006). A scratch tester is used to measure the
mechanism of the adhesion strength to obtain constant normal loads on a coating film
until film damage has occurred in testing and it exhibits the critical load (L) of the film.
In addition, the constant load confirmation of the film damage during the scratch test
is also simulated by the acoustic emission (AE) and electrical surface resistance (ESR)

techniques, respectively (Moerlooze et al., 2011).
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Figure 2.9 The schematic of a scratch tester, the result of the scratch test, and a

microscope image of the damaged features at the critical (L) (Bootkul et

al., 2014; Tay et al., 2000)

For adhesion testing, the resistance to crack initiation will be considered from

Lc;. This means that the greater the L, the more difficult it is to create a fracture in

the film. Furthermore, the toughness of the film should be proportional to the

difference between the higher and lower critical loads (L. -

L), as well as

proportional to the lower critical load L.; (Zhang et al., 2004). Thus, scratch crack

propagation resistance, or CPRs, is often employed to assess the adhesion strength as

shown in Equation (2.4) below:

CPRs = L¢y (Lep = Ley)

(2.4)
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2.7 Thermal stability of DLC films by in-situ NEXAFS

High—temperature oxidation of metals is a corrosion process, involving the
reaction between a metal and the atmospheric oxygen at a high temperature. It results
in an oxide layer formed on the surface of the oxidized metal. The oxide layer may
protect an underlying metal or may also thicken into a non-protective layer with
various defects, such as a cavity, micro—crack, and porosity. The oxide layer degrades
the underlying material’s properties, particularly the strength, corrosion resistance, and
conductivity. These degradations are a problem for engineering parts such as heat
exchangers, valves, pistons, and cutting tools. Rapid deterioration is observed for steel
automotive parts exposed to high temperatures during service. The in-situ NEXAFS
methodology (Maruyama et al., 2015; Lapteva et al., 2019) was utilized to evaluate
the structural changes of the DLC film layer while heated by rapid thermal annealing
(RTA), which is a heating method, for the thermal stability investigation in this work.
RTA uses filaments to heat the specimen in a high vacuum system in the main analysis
chamber until the test temperature is attained, and then the heating period is
measured. At the end of the time, the temperature was lowered to 300°C, and the
local bonding structure was assessed to determine its thermal stability based on the
increasing quantity of the graphite structure (sp® fraction), known as graphitization, in
the DLC film layer (Konkhunthot et. al., 2019; Zhang et al., 2002).

Photoemission electron microscopy (PEEM) is an imaging technique which utilizes
photo-emitted electrons to generate an image of a surface. It can be used to analyze
the elemental components and chemical structures at a particular area at microscale
size. Figure 2.10 shows the SPELEEM schematic. The microscope consists of multiple
lenses and an energy analyzer between the projector lens and the multichannel plate
screen (MCP). Secondary electrons, Auger electrons, and photoelectrons can be

selected with the energy analyzer to form the image (i.e., low pass filtering).
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Figure 2.10 chematic of spectroscopic photoemission and low electron microscope

(SPELEEM) [Online], Available: https://groups.oist.jp/fsu/leem—peem
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Figure 2.11 C K-edge NEXAFS spectrum of DLC film from X-ray absorption technique
and C K-edge NEXAFS spectra obtained at room temperature (RT) and
thermally annealed to graphitization temperature for ta-C (Saikubo et

al., 2006; Wongpanya, Silawong, & Photongkam, 2021).
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In metallurgy, the PEEM is used to observe the formation of a microstructure
and to characterize the chemical compositions on a material’s surface in real-time.
The technique has the capability for X-ray absorption spectroscopic imaging, especially
in the soft X-ray region. It can be used to analyze the structure of the C, Al and, N in
the DLC film (Euaruksakul et al., 2013). Figure 2.11 shows the C K-edge NEXAFS
spectrum, obtained from the PEEM and C K-edge NEXAFS spectra obtained at room
temperature (RT) and thermally annealed to the graphitization temperature for ta—C
for the local bonding of carbon elements from the NEXAFS analysis in this study, as

illustrated in Table 2.5.

Table 2.5 The local bonding of carbon elements obtained from the NEXAFS analysis.

Type of bonding Energy band (eV) Reference
TU* (C=C sp?) 285.4 Konkhunthot et. al., 2019
TU* (C=N sp?) 285.9 Zhang, 2003

TUt* (C=0H) 286.1 Sainio, 2021

Tt* (C-0) 286.5 Gandhiraman, 2014

O* (C-H) 287.5 Sainio, 2016, McChan, 2005
0* (C-N sp?) 287.7 Zhang, 2003

Tt* (C=0) 288.5 Gandhiraman, 2014 Sainio, 2016
0* (C-C sp?) 289.8 Sainio, 2016

0* (C=C sp?) 292.8 Sainio, 2016

o* (C-0) 2915 Gandhiraman, 2014

0* (C=C sp!) 303.8 Ohmagari, 2009

2.8 Electrochemical corrosion of DLC films
2.8.1 Electrochemical corrosion
Corrosion is the degradation and destruction of a metal that has reacted

with the environment. The corrosion product is mostly formed as an oxide film on the



24

surface that is affected by the decrease of mechanical properties, conductivities, and
the reflection of material. Delamination of oxide film can be generated by an initial
crack on the surface and develop finally into a fracture. Therefore, corrosion testing is
important to study the corrosion behavior of materials. Currently, the potentiostat
analyzer is widely used to evaluate the corrosion rate of materials. The concept of a
potentiostat analyzer is that the corrosion current and potential occurring from an
electrochemical reaction will be measured between the specimen and the reference

electrode, and the specimen and the counter electrode, respectively.

The relationship between a potential and current density is plotted and
is called a polarization curve. The polarization curve is used to determine the corrosion

rate. Figure 2.12 shows the schematic of a potentiostat analyzer.
There are three electrodes used to conduct the corrosion test:

1. An Ag/AgCl (3.3M KCL) used as a reference electrode;
2. A platinum or graphite rod used as a counter electrode;

3. A specimen used as a working electrode.
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Figure 2.12 The schematic of a potentiostat analyzer and polarization curve [Online],

Available: http://jes.ecsdl.org/content/159/4/D181.abstract., (Bhandari

et al,

2012)
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In the DLC films, the corrosion resistance has been evaluated by potentiostat
analyzer in sodium chloride (NaCl) solution (Bhandari et al., 2012; Khun et al., 2009).
Figure 2.13 shows an example of the polarization curve of the DLC film and an SEM

image of the corrosive area after corrosion testing.
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Figure 2.13 The polarization curve of ta-C:N and SEM image after potentiodynamic

polarization test (Khun et al., 2009).

2.8.2 Electrochemical analytical method and Interpretation of result

data
Using Faraday's law and the Tafel extrapolation technique, significant
corrosion parameters such as the corrosion potential (E.,), the corrosion current
density (i.or), the polarization resistance (Rp), and the anodic and cathodic Tafel
constants (b, and b, respectively) were extracted from the acquired polarization

curves as illustrated in Figure 2.14.
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Figure 2.14 The polarization curve of £, and i, from polarization test [ASTM

standard G3-89, 2006]

The corrosion rate (CR) was calculated using i, whereas R, was calculated using
Equations (2.5) - (2.6) according to ASTM G102-89 and ASTM G59-97, respectively
(ASTM Standard G102-89, 2015; ASTM Standard G59-97, 2014).

o _ 0:00327 X igory X EW (2.5)
p

where i, is the corrosion current density (A cm™), EW is the alloy equivalent weight
(derived from using Equation (7) and is each sample's density (g cm™), in which the
XRR method was used in conjunction with XRD to determine this: 7.85, 2.52, 2.22, 2.17,
and 2.32 ¢ cm™ for AlSI 4140, ta-C, ta-C:N, ta—C:Al, and ta—C:ALN, respectively.
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EW = (2.6)

where f; is the mass fraction of the i element in the sample, n; is the number of
electrons transferred during corrosion of the i element in the sample, and W;is the

i element's atomic weight.

_ (bg X b.) (2.7
p (2.303 X (by + b.) X icorr)

R

where R, denotes the polarization resistance in Q cm?, i, denotes the corrosion
current density in A cm™, and b, and b, denote the cathode and anode Tafel slopes
in V dec™, respectively (ASTM Standard G59-97, 2014).

In addition, Equations (2.8) - (2.9) (Konkhunthot et al., 2019; Matthes et al.,
1991; Yu et al., 2003) may be used to calculate the porosity (P) and protective
efficiency (P) of each DLC film, which are crucial indicators of the films' corrosion

resistance.

Re - jag
P=—x10 | corr/bal (28)
Rp

where RS and Rj are the substrate’s and the DLC's polarization resistances,
respectively, AE., is the substrate's and the DLC's corrosion potential difference, and

b, is the substrate's anodic Tafel slope.

i0
Leorr

i
P, =100 <1 — C°”> (2.9)

The corrosion current density of the substrate and the DLC film, respectively, are i%,,

and icorr-
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This thesis will investigate the influence of Al-N dopants on the structure,
mechanical properties, adhesion strength, thermal stability, and corrosion resistance,
respectively. The DLC films were deposited utilizing 2 pulsed FCVA deposition
processes to produce the DLC films of the ta—-C type. In the system, there is a magnetic
field coil that can be used to eliminate the macroparticles that produce surface defects
in each of the DLC films. To investigate the link between the films’ structures,
mechanical characteristics, adhesion strengths, thermal stability, and corrosion
resistance capabilities, AISI 4140 steel was coated with DLC films. It was utilized to
analyze a film's structure and thermal stability using in—situ Near edge x-ray absorption
fine structure (in—situ NEXAFS) spectroscopy. The ta-C, ta—C:N, ta-C:Al, and ta—C:AUN
films were investigated at room temperature (RT) and during utilizing radiant heating
and electron beam bombardment. The cross section was evaluated using heat
annealing to 700°C, field emission scanning electron microscopy (FE-SEM), and focused
ion beam etching in conjunction with scanning electron microscopy (FIB-SEM). DLC
Raman spectroscopy was used to determine the critical structural parameters such as
the Ip/lg ratio, peak D and G, full width at half maximum (FWHM (G)), compressive
residual stress (CRS), and cluster size of the sp? sites or graphite (L,), while X-ray
photoelectron spectroscopy (XPS) was used to determine the impurities content and
sp*/sp? ratio. Nanoindentation was used to determine a film layer's adhesion capability.
Finally, the DLC film's corrosion resistance was examined using a potentiostat analyzer,
and the specimen’s surface was evaluated after corrosion tests using XPS, NEXAFS, and

SEM, respectively.



CHAPTER 3
EXPERIMENTAL PROCEDURES

3.1  Preparation of DLC films by FCVA

The workpieces were separated into 2 groups for this investigation. The first set
were investigated for the coating's nanomechanical characteristics, thermal stability,
and thickness layer. The first set (set I) of the specimens used were coated with ta-C,
ta-C:N, ta—C:Al, and ta—C:AUN film. All films were coated on AISI 4140 steel samples.
After 30 minutes for the coating time, the specimens were evaluated for the film layer
structure in preparation for mechanical property testing, the thermal stability, and the
thickness of the film layer, respectively.

For the second set (set ) of workpieces, all 4 kinds of film were coated, and
the workpieces named identically to the first set, but the thickness was uniform
throughout. All film layers were coated on Si (100) specimens to determine the film
density and thickness, as well as on AISI 4140 steel to determine the corrosion
resistance and film adhesion strength, and to analyze the complete film layer's
structure. The procedure chart of the thesis activities for the research and the coating
parameters for the FCVA deposition of ta-C, ta—C:N, ta—C:Al, and ta—C:AUN are as shown
in Figure 3.1 and Table 3.1, respectively.
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Figure 3.1 The procedure chart of project activities for research on the topic of
nanomechanical properties, thermal stability, and corrosion resistance

of aluminium and nitrogen doped diamond-like carbon film
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Table 3.1 Coating parameters for FCVA deposition of ta-C, ta-C:N, ta-C: Al, and ta-
C: At N.  (modified from Wongpanya, Silawong, & Photongkam, 2021;
Wongpanya et al., 2022)

Coating parameters Deposited time Control thickness

Coating materials (Targets) Graphite (99.99% C) and Aluminium (99.99% Al)

Arc potential applied to cathodes (V) 400 and 800 V for Al and C

Base pressure 8.5x107" Pa

Base pressure for N doping 3.0x107% Pa

UHP N, flow rate 2.5 SCCM* for ta—C:N and ta—C:AUN

Bias voltage applied to cathodes (V) -1000 V

Duty cycle 0.003%

Frequency 6.0 Hz

Coating time 30 min 19, 15, 30, and 22 min for
ta-C, ta-C:N, ta-C:Al, and
ta—C:ALN, respectively

*SCCM denotes standard cubic centimeters per minute at standard temperature and pressure (STP)

3.1.1  The DLC film samples were coated on AISI 4140 steel and Si (100) which
were cut into 10mm? pieces. All the samples were ground using silicon carbide paper
of successively finer grits up to 1500 grit, and then ultrasonically cleaned with acetone
and ethanol for 20 minutes to remove surface contamination before being dried with
N, gas (99.99% pure).

3.1.2 To deposit the non-doped, doped, and co-doped DLC coatings, the
pre—cleaned substrates were put into an FCVA chamber, which was then evacuated to
a regulated base pressure of 8.5 x 107 Pa.

3.1.3 On each cathodic source, a graphite cathode and an aluminium cathode
(99.00%C and 99.99%Al) with an 8-mm rod were fitted independently. During the DLC
deposition, targets and ceramic insulators were put between the anode and cathode
and a conduction line was marked with a graphite pencil to commence the spot arc
and create the plasma arc discharge. Magnetic filter coils with 9 0-degree bends were

used to filter the plasma produced by the source during the DLC deposition, and the
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distance between the magnetic filter coil output and the substrate was 30 mm, as
shown in Figure 3.2.

3.1.4 In order to maintain the balance between the cathode consumption
and arc stability during deposition, a bias voltage (V) of —1000V was used to drive
the arc current with pulse repetition rates of 6.0 Hz and a duty cycle of 0.003% for
both the graphite and aluminium cathodes, as shown in Table 3.1.

3.1.5 To eliminate any surface contaminations, both the aluminium and
graphite cathodes were arced for 5 minutes at V,,,, of =1500 V (Konkhunthot et al,,
2018, 2019). To eliminate any surface oxides and provide an active surface for DLC
films, the substrate was blasted with carbon ions at a V,,. of =1500 V, which was
greater than the bias employed in the deposition procedure.

3.1.6  After the vacuum pressure was reduced to 8.5 x 107* Pa, the film coating
process began. Before N doping, ultrahigh purity (UHP) N, gas was constantly circulated
into the chamber, raising the vacuum pressure from the base pressure to 3 x 107 Pa;
there was a wait of 5 minutes to ensure that the N, gas was flowing stably within the
chamber (Bootkul et al., 2014).

3.1.7  On the jig, the sample was deposited (a cross region between C and Al)
and Vi, was applied immediately.

3.1.8  Non-doped DLC (ta-C), nitrogen—-doped DLC (ta-C:N), aluminium-—
doped DLC (ta—C:Al), and aluminium and nitrogen co—doped DLC (ta—C:AUN) films can
all be produced via FCVA deposition, as listed in Table 3.1.
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Figure 3.2 Schematic of developed FCVA technique for synthesis films (Wongpanya
et al., 2022)
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3.2  Structural bonding configuration, elemental analysis, film

thickness and surface morphology
3.2.1 Raman spectroscopy
Raman spectroscopy, a popular technique, is a non-destructive method
to characterize the structure of carbon-based materials. As light is scattered on a
surface, there are 2 main types of scattering, an elastic process (Rayleigh scattering)
and an inelastic process (Raman scattering). The Raman scattering occurs by atomic
vibration in the excited state within the energy shell in accordance with the
Boltzmann’s law based on Raman spectroscopy. The scattered photon is generated
mostly into low energy (Stokes scattering) and high energy (anti-Stokes scattering)

more than an absorbed photon, as shown in Figure 3.3.
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Figure 3.3 Schematic of Raman spectroscopy [Online], Available: http://bwtek.com/
Raman-theory—of-Raman-scattering/; [Online], Available : https:// www3.

nd.edu/~kamatlab/facilities_spectroscopy.html
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Figure 3.4 shows Raman spectra of HOPG, glassy carbon and DLC film. The
Raman shift is commonly used to explain the microstructure of the amorphous carbon
via the Raman parameters, for example, the intensity ratio of the D and G bands (Iy/I¢
ratio), the position of the D and G bands (Raman shift or wavenumber in-unit cm™),
and the full width at half maximum (FWHM) of the D and G bands, respectively. The
Raman results show the relationship between the atom and molecular vibration, which
can describe the domain size and internal stress sensitivity of an amorphous thin film

(Chu and Li, 2006).
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Figure 3.4 The Raman spectra of DLC films and the relationship of Ip/Ig ratio, FWHM
(G) as a function of the various Vi, (Konkhunthot et al., 2018)
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A dispersive  Raman microscope (SENTERRA, Bruker Optik GmbH,
Ettlingen, Germany) working in backscattering mode was utilized to explore the
bonding structures of the ta-C, ta—C:N, ta—C:Al, and ta—C:AUN films. An Ar* laser A =
532 nm; power: 25 mW) was employed as the excitation source. For the scanned
Raman range (800-2000 cm™), the focused-spot size and spectral resolution were 3

um? and 3 cm™!

, respectively. OriginPro software, Version 2018 (OriginLab Corporation,
Northampton, MA, USA) was used to fit the Raman spectra to three Gaussian line forms.
Peaks at around 1360 and 1540 cm™ showed the sites of the D (disordered) and G
(graphite) bands, respectively, and the full width at half maximum (FWHM) was used
to determine the D-G band intensity ratio (Iy/l¢) from the fitted Raman spectra (Bootkul
et al., 2014; Libassi et al., 2000; Srisang et al., 2012; Ferrari, 2002; Konkhunthot et al,,
2013).
3.2.2 X-ray photoelectron spectroscopy (XPS)

XPS is a qualitative and quantitative analysis used to study the chemical
composition and chemical structure on the surface. Figure 3.5 shows the basic principle
of the XPS. Since the photon energy activates the electron in the inner shell under
the surface of a material, the energy analyzer measures the kinetic energy distribution
of photo—-emitted electrons. Therefore, the binding energy is calculated using the law
of energy conservation as shown in Equation (3.1) (Panwar et al., 2008; Gunther et al.,
2002):

E =hv—E, 6 (3.1)

nalyzer
where EB is the electron binding energy, E,. is the electron kinetic energy, hv is the
photon energy, and ¢ana|yzer is the work function of the energy analyzer.

This binding energy is useful to identify elements. The results of XPS are
a spectrum line; an example of the XPS spectrum is shown in Figure 3.5. The binding
energy also varies according to the chemical state (i.e., oxidation number) and chemical

structure (bonding) of the elements.
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Figure 3.5 Schematic of X-ray photoelectron spectroscopy (XPS) [Online], Available :

http : //www.phi.com/images/products/quantera/scanning-xray.jpg 18/13;

[Online], Available : https://www.uj.ac.za/ faculties/ science/physics/

research/ Pages/Electronic-Structure—studies—at-UJ-Physics.aspx. ; and

the C 1s XPS spectra of ta-C films at different negative substrate bias

voltages (Panwar et al., 2008)

In this study, the elemental composition of the DLC films was

determined by XPS (PHI5000; VersaProbe™, ULVAC-PHI INC, Chigasaki, Japan) at the

SUT-NANOTEC-SLRI joint research facility, beamline 5.3: SUT-NANOTEC-SLRI XPS, SLRI,
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Nakhon Ratchasima, Thailand. To remove any natural oxides, the sample surfaces were
sputtered with Ar* ions accelerated at 1000 V for 1 minute before examination. At a
100 pum spot, the pass energy and scanning step were 46.95 and 0.1 eV, respectively.
The film bonding states were quantified using XPS spectra with CasaXPS software, and
elemental atomic concentrations were computed using MultiPak Spectrum ESCA
software.
3.2.3 X-ray Photoemission electron microscopy (X-PEEM) and near edge
X-ray absorption fine structure (NEXAFS) spectroscopy
The thermal stabilities of ta-C, ta-C:N, ta-C:Al, and ta—-C:AUN were
examined sequentially in a UHV system employing in—situ high—temperature NEXAFS
spectroscopy from room temperature (RT) to 700°C at 10°C for 1 min, with the films
held for 20 minutes at each annealing temperature. At each step, the films were
cooled to 300°C, and the local bonding configuration was measured using in-situ
NEXAFS spectroscopy combined with spectroscopic photoemission and low—-energy
electron microscopy (SPELEEM) (ELMITEC Elektronenmikroskopie GmbH, Clausthal-
Zelllerfeld, Germany) at beamline 3.2Ub: PEEM, SLRI, Nakhon Ratchasima, Thailand.
The beamline's monochromatic photon energy ranged from 40 to 1040 eV, and the
synchrotron radiation was applied at 17 degrees incident to the films’ surfaces under
UHV (3x107® Pa). By setting the bias to 20 kV, which is equivalent to the hemispherical
energy analyzer's pass energy, NEXAFS spectra were obtained in partial-electron-yield
(PEY) mode. As a result, the NEXAFS intensity was limited to low-energy electrons
(around the photoelectron threshold). Photons in the range 270-350 eV were used to
analyze the NEXAFS C K-edge spectra, which were scanned in 0.1 eV increments. The
NEXAFS intensity (in the same photon-energy range) of a flashed-Si wafer and a highly
oriented pyrolytic graphite (HOPG) as the reference material were used to standardize
the absorption signals of all the DLC films. To determine the sp?>~bonding percentage
of the films, the normalized C K-edge spectra were deconvoluted using IGOR Pro 6.3
software. Based on the change in the sp>~bonding percentage, the thermal stability of
non-doped, doped, and co-doped DLC films was examined, and correlations between

thermal stability and other film parameters were found.
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3.2.4 Scanning electron microscopy (FE-SEM and FIB-SEM)

The scanning electron microscope (SEM) utilizes an electron beam to
image a specimen’s surface. It provides information about the sample’s surface and
near surface at a high magnification and resolution. Figure 3.6 shows the schematic of
the SEM. The electrons are accelerated from the electron gun to the bottom of the
column with the range of the potential accelerating voltage between 0 to 50 kV. The
condenser lenses are used for controlling the electron beam’s moving direction, while
the apertures are used for controlling the emitted electrons’ beam size through the
column to the sample. When the electrons penetrate the surface, interactions occur
leading to an emission of electrons or photons from the surface. Emitted electrons are
collected with a detector and interpreted as an image. The incident electrons or
primary electrons lead to the secondary effects, classified into 3 types: secondary
electron (SE), backscattering electrons (BSE), and relaxation of excited atoms (REA).
However, all SEMs have facilities for detecting only the SE and BSE. The SE is mostly
used in the SEM system. When a primary electron penetrates the sample surface, it
can attack an electron of an atom at the surface leading to its emission. The BSE occurs
when the primary electron goes back and leaves the surface without collision. Most of
the BSEs carry higher energies than the SE. The BSE is used for surface imaging and
elemental analysis. The images obtained from SE and BSE modes are different. The SE
provides topographic information and higher resolution images while the BSE gives the
contrast information (Toya et al., 1986; Zhang and M. Fujii, 2015; [Online], Available :
https://cellularphysiology.wikispaces.com).

FIB-SEM (AURIGA, Carl Zeiss AG, Oberkochen, Germany) at 50000
magnification and FE-SEM at 5-kV acceleration were also used to quantify the

thicknesses of the DLC film cross sections in this studly.
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Figure 3.6 Schematic and cross—section image resulting from Scanning Electron
Microscope ( SEM) [ Online], Available : https://cellularphysiology.
wikispaces.com; (Zhang and Fujii, 2015)

3.2.5 Atomic force microscopy (AFM)
Atomic force microscopy (AFM) is a versatile technique for analyzing
surface properties. It provides topographic imaging of a surface at the nano- and
microscales. The important area is the study of force and friction force with the

piconewton force resolution. The basic principle is to use a probe tip to map the
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surface of the material, controlled by a piezoelectric scanner unit. The probe tip
will bend along the surface as it changes, and the changes can be measured
by a photodetector resulting in images that correspond to the surface
conditions in each area, as shown in Figure 3.7 (Sharifahmadian et al., 2019,
[Online],Available:https://pharm.virginia.edu/facilities/atomic—force-microscope—-afm/;
[Online],Available:http://www.parkafm.com/index.php/products/small-sample-afm/
park-nx10/technical-info).

The surface roughness of the AISI 4140 substrate and all DLC layers was
determined using an atomic force microscope (AFM) (AFM XE-120, Park Systems
Corporation, Suwon, South Korea) in non-contact mode with a 5x5 um area and a

scan rate of 0.3 Hz.
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Figure 3.7 Schematic and surface image resulting from Atomic Force Microscopy
(AFM) [Online], Available : https://pharm.virginia.edu/facilities/atomic—

force-microscope-afm/; (Sharifahmadian et al., 2019)

3.2.6 X-ray reflectometry (XRR)
To determine the density of DLC film, X-ray reflectivity (XRR) and a
high-resolution X-ray diffractometer (XRD D8 ADVANCE, Bruker Optik GmbH, Ettlingen,

Germany) were used with a Cu K radiation source at a wavelength of 1.541 A, a voltage
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of 40 kV, and a current of 40 mA (Konkhunthot et al., 2018; Libassi et al., 2000). The
incidence angle was varied in the range of 0.0-3.0° with a scanning step of 0.005° for

the XRR measurements of each DLC film. The entire reflection happened at a critical

angle (OC), dependent on the electrical density of the material, when X-rays were
incident on each surface of the DLC films at grazing angles of incidence. The square of
the modulus of the Fourier transform of the electron density is proportional to the
reflection intensity of each DLC film; hence, the profile of the electron density can be
calculated from the observed intensity pattern (Konkhunthot et al., 2018; Libassi et
al., 2000). According to Parratt's idea (Parratt, 1954), the XRR profiles were simulated

using the Leptos 7.1 program. The 0. and interference fringe give the average electron
density from XRR data (reflectivity profiles); hence, Equation (3.2) may be used to
measure the thickness of the DLC films at a low angle (Konkhunthot et al., 2018; Ferrari

et al., 2000; Kishimoto et al., 2008).

[ o2 ][XC(MC—MH)+MH] (3.2)
NareA?) L Xc(Ze—Zw)+Zy

where 9C and T, are the critical angles and the classical electron

radius, respectively, N, is Avogadro's number, A is the experiment's  applied
wavelength, X and X} are the relative atomic fractions of C and H, respectively, (note
that the atomic fraction of X, is a form of 1-X), Z¢ and Z,; are the atomic numbers of

C and H, respectively, and Mc and M, are the molar of C and H element, respectively.

3.3  Nanomechanical and Adhesion strength performance analysis
3.3.1 Nanoindentation tests
The ASTM Standard (E2546-07, 2007) was used to analyze the DLC-
films’ hardness and elastic moduli using nanoindentation testing with a NanoTest
Vantage (Micro Materials Limited, Wrexham, UK) equipped with a Berkovich indenter
under maximum stress. Nanoindentation is a method for mechanically measuring
amorphous carbon thin films that uses a pendulum-based approach to detect depth-

sensing. The specimens were measured 10 times and a six—point average value was
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chosen for the report's statistical reliability. To eliminate the substrate effect, each
sample was measured using the Berkovich type of indenter, and the maximum
penetration depth for the films was in the range of 10 - 15% of the films’ thickness
(Konkhunthot et al., 2019). Furthermore, each film's maximum penetration depth was
consistent with the ASTM Standard (E2546-07, 2007). As a result, the nanomechanical
characteristics in this investigation met worldwide standards, despite the fact that their
thickness varied. With a dwell period of 10 seconds, loading and unloading curves were
observed at a rate of 0.1 mN s™.
3.3.2 Nanoscratch tests

Adhesion testing was carried out while the platform was moving, with
friction and acoustic emission measured throughout the scratch test. The nanoscratch
tests were carried out at a relative humidity of roughly 50% at a temperature of 27 +
0.5°C. A conical diamond tip (90° angle, 5 um of final radius) was used to measure 3
consecutive scratches on each DLC film. A pre—scratching method is required to reduce
the influence of surface roughness, topography, slope, and instrument bending (Beake
et al., 2006; Hassan et al., 2015). Three sequential scans at 12.30 ym s~ over a 5000
um scan length were performed in the scratch process: (i) a preliminary topography
scan at 0.50 mN with a constant load, (i) a scratch scan at 1.0 mN s applied load,
ramped after 10 um to a maximum load of 400 mN, and (iii) a final subsequent
topography scan at 0.50 mN with the constant load over the scratch area. Furthermore,
a very low speed was maintained to minimize the heat side effect, which causes the
DLC film to degrade between testing. Finally, an SEM microscope and a digital capture
system were used to see the scratch tracks, which were then evaluated and integrated

with the findings of the nanoscratch test.

3.4  Electrochemical corrosion analysis
3.4.1 Potentiodynamic polarization technique
The tests were carried out at 27 + 0.5°C in a 3.5 wt% NaCl solution (pH
~6.6) using an Autolab PGSTAT 128N (Metrohm AG, Herisau, Switzerland) equipped with
a graphite counter electrode (CE), an Ag/AgCl (3M, KCL) reference electrode (RE), and
AlSI 4140 steel with non-doped and co-doped DLC coatings as the working electrodes
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(WE) (Konkhunthot et al., 2019). The samples were immersed in the solution for 20
minutes before beginning the corrosion tests at a scan rate of 1 mV s™! (Wongpanya,
Pintitraratibodee, Thumanu, & Euaruksakul, 2021; Wachesk et al., 2016) to maintain the
steady-state or open—circuit potential (OCP). A fixed exposure area of 0.19625 cm? was
also used in the scan, which ranged from —150 mV below the OCP (the cathodic region)

to +300 mV above the OCP (the anodic region) (Konkhunthot et al., 2019).

Potentiostat analyzer

QO avrouas oF | L8]
006696680060 & arl
— L, (RE)

KCl

(CE)

NOVA (Metrohm AutoLab) /) (WE)

Figure 3.8 The schematic of a potentiostat analyzer by Autolab PGSTAT 128N
(Metrohm AG®, Switzerland)



CHAPTER 4
RESULTS AND DISCUSSION

4.1 The structural bonding configuration, thickness, and morphology
of non-doped N-doped, Al-doped, and Al-N co-doped films
synthesis by FCVA

4.1.1 Raman analysis
Raman spectroscopy is a non-destructive technology that is widely
used. It is often used to examine the bonding structure of amorphous carbon film, or

DLC. It offers data in the form of D and G peaks, FWHM, Iy/lg ratios with L, and

compressive stress (O) (Ferrari, 2002; Hauert et al., 1995).
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Figure. 4.1 Raman spectra of ta-C, ta—C:N, ta—C:Al, and ta—C:ALN ((a) Set sample |
and (b) Set sample 1I) (modified from Wongpanya, Silawong, &
Photongkam, 2021; Wongpanya et al., 2022)
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Table 4.1 The Raman analysis parameters: D and G peaks, FWHM (D), FWHM (G), 1p/1¢
ratios with L,, and of ta-C, ta-C:N, ta-C:Al, and ta—C:AUN (set I) and (set II)
(modified from Wongpanya, Silawong, & Photongkam, 2021; Wongpanya et

al., 2022)

Raman analysis

FWHM of ~ FWHM of
Sample G Peak D Peak G peak D peak I/ls L, o
(cm™)  (ecm™) . ratio (nm) (GPa)

(cm™) (cm™)
ta-C_() 1544.54 1379.77 22691 20544 0196 5.965  0.000
ta-C:N_() 1552.49 1386.85  189.17 250.05 0998 13.469 1.339
ta-CAL () 153233 1387.15  156.16 25153 3277 24.409 -2.056
ta—C:AUN () 1545.14 1384.34 19566 21915 0761 11.765 0.102
ta-C_(Il) 1544.18 1379.58  223.94 196.61  0.210 6.185 0.000
ta-C:N_(I)  1551.26 1389.18  189.52 236.43  0.873 12601 1.193
ta-CAL(I) 153297 138753  151.65 24993  3.233 24246 -1.886
ta-CAUN_(I) 154493 1383.84 19393 205.09  0.685 11.159 0.127

The findings of the Raman measurements are shown as spectra, as
shown in Figure 4.1 (a) and (b), and all the DLC films were Raman measured in the
800-2000 cm™ range of the wavenumber in this investigation. The Raman spectra on
the main Gaussian curve were split in half; peak D, with a wavelength of 1360 cm™,
corresponds to the disordered structure of 6 aromatic rings, also known as the aromatic
rings' respiration or vibrational mode, and the G peaks, which correspond to vibrations
in the carbon chain and aromatic ring, are at a wavelength of 1540 cm™!. The other
wavenumber is a band centered between 1140 and 1260 cm™ that involves sp? and
sp® bonds in a trans-polyacetylene (trans—PA) DLC film which is related to an atom of
trans—PA DLC (Nakazawa et al., 2007; Piazza et al., 2003). Hydrogen is connected to an

sp?~site carbon atom in the chain. A nanocrystalline (NC) diamond structure is also

indicated by the peak at 1260 cm™ (Singha et al., 2006), which might reflect the
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quantity of the mixed carbon sp>~hybridized and H in the DLC film (Piazza et al., 2003;
Pu et al., 2015; Liu et al., 2005; Rao et al., 2020). The major findings from the Raman
analysis are shown in Table 4.1. All the DLC films display the data of peaks D and G,

the FWHM of peaks D and G, Ip/I; ratios with L,, and O; evidently, the G peaks of the
ta—C, ta—-C:N, ta—C:Al, and ta—C:ALN films of both sample sets (set | and II) were found
at 1544.50-1544.18, 1552.49-1551.26, 1532.33-1532.97, and 1554.49-1551.26 cm
respectively. A higher wavenumber is moved for the transition of the G peaks of the
ta—C:N and ta—C:AUN film layers, whereas the ta—C:Al films are shifted to the G peak at
a lower wavenumber compared to the G peak position of the ta-C film. In previous
research (Liu et al., 2005; Rao et al., 2020), G-peak shifting has been linked to L,
changes in DLC films, and important Raman parameters such as the G and D peaks,

lo/le, and the FWHM (G) are calculated from the area under the Gaussian peak curve G

and D, while L, and G are estimated using the following Equations (4.1) and (4.2) in
below (Konkhunthot et al., 2018; Zarei Moghadam et al., 2019; Tunmee et al., 2016;
Ferrari and Robertson, 2001; Lifshitz et al.,1989):

1
I—D = C(AM)L @.1)

G

where C'(514 nm) ~ 0.0055.

oc=2G [ﬁ] [A—w] (4.2)

1-v o5

where G is the shear modulus (70 GPa), 0.3 U is the Poisson ratio, AW is the change

in the G-peak Raman wavenumber, and @, is the DLC sample's Raman wavenumber
(stress—free) as a reference material.

The Ip/lg ratio may be considerably increased by doping with N, Al, or
Al-N. The doping also resulted in a significant decrease in the FWHM (G). Because L,
estimated using Equation (4.1), was similar to that obtained in earlier research
(Konkhunthot et al., 2018; Ferrari, 2002, Tunmee et al., 2016), the drop in G correlated

to bigger graphite clusters at sp>~hybridized carbon sites. According to the Raman
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analysis, the addition of N or Al or Al-N into the DLC film resulted in a shift towards
the sp? hybridized carbon structure and carbon content, and there is less sp’-
hybridized carbon in the pure DLC film.

Internal stresses of materials may also be quantified using Raman
analysis methods. This is because the vibration frequency of atoms is directly
connected to stress. Furthermore, Raman spectroscopy yields a number of waves
proportionate to the frequency of oscillations, which is shown by the location of the

wavenumber that has changed. As a result, the Raman approach may be used to

measure the internal compressive stress (O) of the DLC film (Miki et al., 2015; Narayan
et al., 2005; Lubwama et al,, 2013). As a result, the inter-atomic force constant
associated with inter-atomic spacing, which affects the atoms' vibration frequency,
shifts. The bond length rises as the tensile load of the DLC film increases, for example,
the vibration frequency and the force constant are both lowered, and when the
material is compressed a force is exerted in the opposite direction (Miki et al., 2015;
Narayan et al., 2005; Lubwama et al., 2013). The Raman spectra clearly reveal that
simply adding N or Al-N to the DLC film causes the peak G to transition to a higher
wavenumber. The peak of G in the Al-doped element has shifted to a low
wavenumber at 1532.33-1532.97 cm™!, whereas the peak of G in the ta-C:N and
ta—C:ALN is shown in the ranges of 1552.49-1551.26 cm™ and 1545.14-1544.93 cm™,

respectively. The computed values of G in ta-C:N, ta-C:Al, and ta-C:ALN for the set |
DLC films were 1.339, =2.056, and 0.102 GPa, respectively, while for the set Il DLC films
they were 1.193, -1.886, and 0.127 GPa, respectively.

Residual stress is formed and accumulates inside the DLC coating
throughout a film’s growth process. High residual stresses are often associated with
high hardness films, and are the primary cause of disintegration and distortion of a
film's flexible surface. This is due to the fact that significant residual stress in the film
might cause it to distort (Xu et al., 2012, 2013). Furthermore, when a DLC film's layer
thickness increased, so did the residual stress inside the film. The film begins to
stabilize at a particular thickness before the residual stress inside the film is enhanced
at the maximum thickness before the film begins to start to crack (Sheeja et al., 2002).

To avoid the film peeling, residual stress in the film must be controlled. The reduction
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of residual stress in DLC may be achieved by including an elemental combination
within the film or by forming a film base layer between the specimen and the film (Xu
et al., 2013). For this investigation, the addition of alloying elements to the film layer,
such as nitrogen, aluminium, and co-doping, results in residual stress values

determined from Equation (4.2) Two of the ta-C:N, ta—C:Al, and ta—-C:AtN specimens
exhibited the internal stress (G) and the L, values that are close to one another.

The identicality was clearly shown by the peak G and computed O
value based on the difference between the higher and lower wavenumbers with
increasing and decreasing the compressive stress in the DLC films (Miki et al., 2015;

Narayan et al., 2005; Lubwama et al., 2013). The structure bonding was created by

increasing the compressive stress (O) in ta-C:N and ta CAUN. The lower the
compressive stress in ta—C:Al, where the conversion of the carbon bond from s,o3 to
sp? is especially essential, the less the carbon transition from sp® to sp®~hybridized
carbon (Xu et al., 2018; Narayan et al., 2005). The increased amount of graphite at the
disorganized of sp?~hybridized carbon in the DLC structure and combined with the low
AVALO; content in the ta-C:Al film may be affecting the peak G of the ta—C:Al film
shifted towards the low wavenumber. Furthermore, the Al crystal structure is face-
centered cubic (FCC), preventing carbide formation in the DLC layer and allowing
nanocrystals to develop in the DLC matrix (Chen et al., 2005).
4.1.2 Structural and chemical state of DLC film

XPS analysis was used to quantify the elemental composition, the
chemical bond type, the sp*/sp* ratio, and the relative fraction of sp® of all the DLC
films. It was evident that the elemental doped DLC film layer had a reduced C atom
concentration which decreased from 90.01-90.65 at.% for ta-C to 79.23-79.57 at.%,
78.20-78.23 at.% and 58.83-58.76 at.%) for ta—C:N, ta—C:Al, and ta—C:ALN, respectively,

as indicated in Table 4.2, and the 5p3 C—C content of the DLC film, as shown in Figure
4.2. The N content was approximately 11.21-11.46 at.% and 14.12-13.99 at.% in ta-
C:N and ta—C:AUN, respectively, while the Al content was approximately 4.77-5.05 at.%
and 7.18-7.59 at.% in ta-C:Al and ta—C:ALN, respectively; the O content increases with
the increasing Al content, possibly because the O has adsorbed or adhered to the Al

on the film’s surface to form an oxide layer upon the film when exposed to air (Zhou
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et al., 2019). From the chemical composition in Table 4.2, it is shown that the number
of compounds in each film is quite comparable. This provides both sets of films with
structural and mechanical properties, thermal stability, corrosion resistance, and other

characteristics of the same or comparable film layers.

Table 4.2 The ta-C, ta-C:N, ta-C: A, and ta-C: AN elemental compositions (at.%)
quantitively measured using XPS (modified from Wongpanya, Silawong, &

Photongkam, 2021; Wongpanya et al., 2022)

Atomic Concentration* (at.%)

Sample
Cls N 1s O 1s Al 2p

ta-C_(I) 90.01 — 9.99 -
ta—C:N_(I) 79.23 11.21 9.56 -
ta—C:AL (1) 78.20 3 17.03 a.77
ta—C:AUN_(I) 58.83 14.12 19.87 7.18
ta-C_(I) 90.65 - 9.35 -
ta—C:N_(Il) 79.57 11.46 8.97 -
ta—C:AL (IN) 78.23 - 16.72 5.05
ta—C:AUN_(I) 58.76 13.99 19.67 7.59

*Atomic concentration was calculated using MultiPak Spectrum ESCA software

The chemical compositions and bonding states of the undoped, doped,
and co—doped DLC films were examined using XPS, and the requisite C 1s, N 1s, and
Al 2p peaks were identified across the spectrum as shown in Figures 4.2-4.4,
respectively. As seen in Figures 4.2, the XPS spectra of C 1s were divided into distinct
Gaussian Lorentzian peaks using Shirley backgrounds to measure the fraction of sp*
C-C bonds in the DLC films (Modabberasl et al., 2015; Yan et al., 2004).

Figure 4.2 shows the acquired peaks for the C 1s spectra deconvoluted
for ta-C, ta-C:N, ta-C:Al, and ta-C:ALN, corresponding to the C-C bonds at 283.5 and
284.19 eV, the C=C bond is sp*~hybridized and the C-C bond is sp>~hybridized, while
the other peak in the 286-288 eV binding energy range is of the C-OH, C-O, or C=0

bonds, indicating the films’ bond structure with hydrogen atoms and oxygen
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contamination in the environment (Wu et al., 2007; Konkhunthot et al., 2018; Mabuchi
et al., 2013; Zarei Moghadam et al., 2019; Tunmee et al., 2016; Honglertkongsakul et
al., 2010; Maruno et al., 2018).
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Figure 4.2 The C 1s XPS spectra and corresponding deconvoluted Gaussian peaks of
(a) ta-C, (b) ta—C:N, (c) ta-C:Al, and (d) ta-C:AUN. (Wongpanya, Silawong,
& Photongkam, 2021)
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Because the double bond is somewhat shorter than the single bond,
the divided C 1s peak produced for the (sp? C-C) and (sp? C=C) bonds shifts
significantly. In the C=C sp*-hybridized bond, the charge density surrounding the C
atom shifts closer to the carbon nucleus, and the valence electrons compress. In the
deconvoluted spectra for ta—C:N, ta—C:Al, and ta—C:Al:N, the binding energy of the C
1s axis level (Wu et al.,, 2007) decreases. The sp” C=C bonds (at 284.54, 284.38, and
284.42 eV for ta—C:N, ta—C:Al, and ta-C:AUN, respectively) and sp3 C-C bonds (at 284.92,
284.80, and 285.02 eV for ta—C:N, ta—C:Al, and ta-C:ALN, respectively) were converted
to higher binding energies than may be found in practically all other work (Wu et al.,
2007; Zhou et al., 2019; Bouabibsa et al., 2018).

Due to the DLC film being doped with Al or N, the percentage of the
bond (sp® C-C) in the DLC film fell substantially from 68.01 at.% for ta-C to 40.20 and
38.58 at.% for ta—C:N and ta—-C:Al, respectively. The Al and N co-doping, on the other
hand, resulted in a minor reduction in the percentage of the bond (sp* C-C) compared
to the single doped films, from 68.01 to 50.41 at.% for ta-C and ta-C:AlN, respectively.
These data reveal that as the alloy content rises, the relative fraction of the bond (s,o3
C-Q) drops. Furthermore, the decrease in the relative fraction of sp®> C-C bond in the
ta—C:N, ta-CAl, and ta-C:AUN films corresponds to a decrease in the hardness (H)
in the doped DLC films. It can be seen that the deconvoluted peak into C 1s
spectra of ta-C:N and ta-CAUN, in the range of 285.50-286.54 eV and
285.20-287.45 eV, corresponds to sp®~hybridized C=N and sp’-hybridized C-N,
respectively. There are no peaks in the spectrum at 286.70 eV, corresponding to the
sp hybridized C=N bond (i.e., nitrile group) (Hauert et al., 1995; Mabuchi et al., 2013;
Yan et al., 2004; Shi, 2006). Various bonds are produced when the DLC film is doped
with N during the DLC coating process. Significantly with nearby carbon atoms, pyridine
(sp?~hybridized C=N bond), urotropine (sp>~hybridized C-N bond), and nitrile groups
generate an amorphous structure. As a consequence, the sp*/(sp? + sp°) ratio for ta-C
lowers to 0.49, 0.48, and 0.77, respectively, for ta—C:N, ta—C:Al, and ta-C:AUN in Figure
4.2. The C 1s spectra indicated that as the quantity of N and Al grew, the proportions

of sp* hybridized C atoms dropped, resulting in lower H values. In addition, the lower
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relative proportions of the sp>~bound C and N atoms corresponded to bigger and larger
sp?~bonded (L,) clusters and higher Ip/l;, as illustrated in the Raman results (Ferrari and

Robertson, 2000).
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Figure 4.3 The N 1s XPS spectra and corresponding deconvoluted Gaussian peaks of

(a) ta—C:N, and (b) ta—C:AUN (Wongpanya, Silawong, & Photongkam, 2021)

Similarly, Figure 4.3 depicts the separated N 1s spectra for ta-C:N and
ta C:AUN, emphasizing the 3 peaks for sp’~hybridized C-N bonds, sp?~hybridized C=N
bonds, and N-O bonds are all 397.50-399.40 eV compliant with the literature (Zhou
et al., 2019; Mabuchi et al., 2013; Yan et al., 2004). These peaks are associated with
pyridine containing organic nitrogen, which expresses the sp? C=N-hybridized and has
C 1s and N 1s peaks at 285.50 and 400.16 eV, respectively, and urotropine, which
contains sp® C-N bonds and has C 1s and N 1s peaks at 286.9 and 399.40 eV,
respectively (Yan et al., 2004). In ta—C:N and ta-C:AUN, the majority of the N atoms are
connected to the sp*~hybridized and sp’>~hybridized carbon atoms, i.e., C=N and C-N

bonds. As shown in Figure 4.3, the relative sp> C—N bonded atoms changed from 0.28
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to 0.89: (sp® C-N)/(sp> C-N + sp? C=N). Because the addition of N reduced the number
of suspended bonds in the aromatic ring, more sp?~hybridized C=N bonds in the DLC
films, especially ta-C:N, reduced the relative amounts of the sp> C—N bond (Mabuchi
et al., 2013). The Al-O-C bond is weak in the C 1s spectra of ta—C:Al and ta-C:AUN, at

282.2 eV, likely due to contamination and oxygen exposure from the air.
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Figure 4.4 The Al 2p XPS spectra and corresponding deconvoluted Gaussian peaks
of (a) ta—C:AL, and (b) ta=C:ALN (Wongpanya, Silawong, & Photongkam,
2021)

Figure 4.4 shows the peaks in the Al 2p deconvoluted spectra of ta-
CAl and ta—C:AUN. AlO, and AlL,O; have peaks at 73.54 and 74.24 eV, respectively.
While the spectra for ta-C:AUN contains just 1 peak of 74.24 eV, the relative
percentages for ALOs: ALOs/(Al205+ALO,) for ta—C:Al and ta C:AUN are 0.76 and 1.00,
respectively, as shown in Figure 4.4. Aluminium oxide (Al,O3) (Edlmayr et al., 2010), the

most stable aluminium oxide, is clearly present in ta—C:AUN, whereas aluminium
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suboxide (AlO,) coexists with Al,O5 in ta—C:AUN (Zhou et al., 2019; Dai and Wang, 2011,
Ozensoy et al., 2005). AL,O5; possesses outstanding qualities, including wear resistance

(Dingemans et al., 2010; Eklund et al., 2009), thermal stability, and corrosion resistance;

the doped DLC with Al only, on the other hand, reduces compressive stress (G) and
hardness (H), both of which are key qualities for tribological applications such as
adhesion and wear resistance. This is owing to far fewer sp® C-C bonds, as previously
observed (Bootkul et al., 2014).

In this experiment, the aluminium concentration of the DLC films was
as low as 4.77-5.05 at.%. As a consequence, the hardness and mechanical qualities

deteriorate. The interaction between the Al and N in ta-C:AtN, on the other hand,

maintains the G and H, which are required for adhesion and wear resistance. This is
most likely due to the fact that the majority of the N atoms form sp®> C-N bonds. This
involves ALLOs in ta-C:ALN, with the exception of ta~C:Al, which is unbonded (sp®> C-
N), but contains a combination of AlQ, and Al,Os.
4.1.3 Local bonding configuration

The local bonding structures and sp® proportion of all the DLC films
were evaluated using NEXAFS spectroscopy, as illustrated in Figure 4.5 - 4.7. The
normalized C K—edge NEXAFS spectra generated for all the films are shown in Figure
4.5, with 2 energy edges at 285.4 eV corresponding to the transitions from C 1s to the
unoccupied Tt* and O* state of the sp?~hybridized C=C site and the sp-hybridized
C=C site, if present, and 288-335 eV corresponding to the overlapping C 1s transitions
to the unoccupied TU* transitions at 285.1, 285.9, 286.3, 287.6, 287.7, 288.5, 289.6, and
293.7 eV which corresponded to transitions of the following states: (C=C), Tt* (C=N),
Tt* (C=OH), 0* (C-H), 0* (C-N), Tt* (C=0) or Tt* (C=0C), 0* (C-C), and O* (C=0),
respectively. As shown in Figure 4.5 for the ta-C, ta—C:N, ta—C:Al, and ta—C:ALN, the
sp? fraction was 0.345, 0.394, 0.538, and 0.348, respectively. Single dopants, such as
N-doped or Al-doped DLC films, boosted graphitization as measured by an increase
in the sp? fraction, but Al-N co-doping only slightly enhanced graphitization, and these
findings matched the XPS result.



55

C K-edge

ta-C:Al:N

Cls~o"

Cls == .
sp” fraction

0.348

ta-C:Al

Cls+=o"

Cls—»m=*
sp? fraction

0.538

ta-C:N
Cls=c"

Cls =
sp? fraction

e W 0.394

Normalized intensity (arb. units)

ta-C

Cls~c"

Cls =m* s ]
sp” fraction

0.345

280 290 300 310 320 330 340
Photon energy (eV)

Figure 4.5 The C K-edge NEXAFS spectra generated for ta-C, ta—-C:N, ta-C:Al, and
ta—C:ALN before the corrosion tests (Wongpanya et al., 2022)

A comparison of the DLC films' O K-edge NEXAFS spectra shows

that the O 1s—> TU* transitions from the carbonyl and carboxyl groups of the O atoms

double-bonded to the C atom (C=0) at photon energies of 531.2, 533.6, 536.0, and
540.0 eV, and the O 1s—> TTt* (C-0), 0* -OH, and the O 1s core-level electrons to the

0* C-O and C=0 states, respectively, are shown in Figure 4.6 (Wongpanya,
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Pintitraratibodee, Thumanu, & Euaruksakul, 2021; Kim et al., 2018; Lee et al., 2012).
For the Al-doped DLC films (ta—C:Al and ta-C:AUN), the wide peak at 540.0 eV, which

corresponds to Al,O; with C=0, was clearly visible, but the intensity of C=0 (at 531.2

eV) in the ALL,O5 that was seen was consistent with the findings from Al 2p XPS (Abaffy

et al., 2011).

Intensity (arb. units)

O K-edge ta-C:Al:N
o*
ok !
/Lﬁ
l :
: l ta-C:Al
I :
1 |
| ]
: ta-C:N
: .
1 1 o
L]
i i ta-C
| |
—/I\/:
] 1
| |
1 1 1 . ] 1 |

525 530 535 540 545 550 555

Photon energy (eV)

Figure 4.6 The O K-edge NEXAFS spectra generated for ta-C, ta—C:N, ta-C:Al, and

ta—C:ALN before the corrosion tests (Wongpanya et al., 2022)
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The NEXAFS spectra of N-doped DLC films: ta—C:N and ta—-C:ALN,
showed that N was successfully added to the DLC films. In the hexagonal graphitic
structure, there were 3 different peaks at 398.40, 399.50, and 401.50 eV, which were
ascribed to sp’~hybridized C-N (N1), sp*>~hybridized C=N (N2), and substitution nitrogen
in graphite or graphite like (N3), respectively (Roy et. al., 2005). There were moderately
high and low intensity peaks for N1, N2, and N3 at 399.30, 400.81 and 401.50 eV,
respectively, in ta—C:N, while ta—C:AUN had strong and moderately intense peaks for
N1, but no sign of N3 in the spectrum. Only N1 and N2 were found in ta—C:AUN, whereas
N3 was not identified in an XPS scan, showing the presence of sp>~hybridized C-N at
81.99 at.% and sp’~hybridized at 11.33 at.%. The NEXAFS findings were found to be
identical to the XPS results.
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Figure 4.7 The N K—edge NEXAFS spectra generated for ta-C, ta—C:N, ta—C:Al, and
ta—C:ALN before the corrosion tests (Wongpanya et al., 2022)

The investigation to evaluate the structure of the 2 coated DLC layers
revealed that the Ip/l; ratio, relative fraction of sp®, and sp? fraction values for both
sets were comparable, as shown in Table 4.3. The I/lg ratio of the DLC films ta-C,
ta-C:N, ta—C:Al, ta—C:ALN are in the range 0.196-0.210, 0.998-0.873, 3.277-3.233, and
0.761-0.685, respectively, while the relative fraction of sp’ values of the ta-C, ta~C:N,
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ta-CAl, ta-CAUN films are in the range 0.81, 0.49-0.50, 0.48-0.49, and 0.77,
respectively, and the sp? fraction values of the ta-C, ta-C:N, ta—C:Al, ta~C:AUN films
are in the range 0.340-0.345, 0.390-0.394, 0.550-0.538, and 0.360-0.348, respectively.
The mechanical properties, density, thermal stability, and corrosion resistance
properties depend on the structure of the DLC film’s layer. A high content of sp® (or
low sp? fraction and Ip/lg), gives high density, good thermal stability, sood corrosion
resistance, and good mechanical properties (Konkhunthot et al., 2018, 2019; Bootkul
et al., 2014). As a result, both sets of specimens were produced using the FCVA

technique, which indicated that the film’s layer structure is the same.

Table 4.3 The summary of the Ip/l; ratio, relative fraction of sp® and sp? fraction of

ta-C, ta-C:N, ta—-C:Al, and ta—C:At:N in both sets.

I/l ratio relative fraction of sp’ sp? fraction
Sample
set | set Il set | set |l set | set |l
ta-C 0.196 0.210 0.81 0.81 0.340 0.345
ta-C:N 0.998 0.873 0.49 0.50 0.390 0.394
ta—C:Al 3.277 3.233 0.48 0.49 0.550 0.538
ta—C:AUN 0.761 0.685 0.77 0.77 0.360 0.348

4.1.4 Thickness, roughness, and density of the DLC films
The cross—sectional images of all the DLC films and the continuous
amorphous film layer were observed using FIB-SEM in the thickness range of 100-250
nm and the films were arranged from thickest to thinnest, as shown in Figure 4.8, with

ta—C:N (230 nm) > ta—C (180.9 nm) > ta—C:AUN (154.1 nm) > ta-C: AL, respectively.
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Figure 4.8 The FIB-SEM images of (a) ta-C, (b) ta—C:N, (c) ta—C:Al, and (d) ta—C:AUN
(Wongpanya, Silawong, & Photongkam, 2021)

Although the coating conditions, pressure, duty cycle, and time are the
same for all the films, a film’s thickness is not consistent, because the bonding
structure and arrangement often influence the thickness of the DLC film. The DLC
film’s chains and aromatic rings contain impurities and carbon atoms (Bootkul et al.,
2014; Konkhunthot et al., 2018; Pu et al., 2015; Liu et al., 2009; Modabberasl et al.,
2015; Sikora et al., 2010). The compressive residual stress generated during lamination
determines the overall film thickness. As demonstrated in the Raman results, film
thickness rises as residual stress from compression increases in ta—C:N/ta—C:AtN, and
decreases as residual stress from compressive stress increases in ta—C:Al. The maximum

value of the G peak moved to a higher wavenumber when the thickness of the DLC
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film rose in tandem with the rise in compressive stress. This is in line with prior
observations that film thickness and Raman spectra data are related (Liu et. al., 2009).
The doping causes a change in the thickness of the DLC film, which may be defined as
follows. Due to the reacting N atoms functioning as additional deposition components
in the coating chamber, the ta-C:N films’ thickness may be enhanced. Because of the
high concentration of N, in the plasma during deposition, the ta—C:N films have a high
internal compressive stress (Bootkul et al., 2014; Zarei Moghadam et al., 2019). The
tension stress and thickness of ta—C:Al are correspondingly the lowest and thinnest.
This might be due to collisions between the C and Al ions during the coating process.
Because Al does not mix with C to make aluminium carbide, fewer C ions have enough
energy to coat and form sp* hybridized carbon bonds on the film layer later (Xu et al.,
2018; Chen et al., 2005). The greatest I/l and L, values, as well as the lowest hardness
values, support this acceptable explanation; however, Al- and N-co—-doped DLC (ta-
C:ALN) films do not. Although it is 26 nm thinner than undoped DLC, ta—C:AUN has a

relative compressive stress of 0.102 GPa when compared to DLC. This might be

because the N, pressure in the coating chamber was raised from the base to 3X107
Pa during the film’s formation and the combined addition of Aland N (Zarei Moghadam
et al., 2019; Son et al., 2017), which resulted in a lower collision rate between the C
and Al ions. Because N ions facilitate a film’s deposition, ta—C:AUN films are somewhat
thinner than undiluted DLC films, as previously explained for ta—C:N.

The DLC film thicknesses obtained by FE-FEM for the second specimen
set (set Il), as shown in Figure 4.9, were 118.0, 118.3, 115.3, and 119.7 nm, with
deposition times varying at 19, 15, 30, and 22 minutes for ta-C, ta-C:N, ta-C:Al, and
ta—C:AUN, respectively. Even if the coating factors for each of the films, such as the
deposition rate, are different, it is clear that each DLC film has a different deposition
time. Due to the arrangement of carbon atoms in the DLC film chain and the aromatic
ring impacted by the doped composition and bond structure, the pressure, bias
voltage, and duty cycle are all the same (Wongpanya, Silawong, & Photongkam, 2021,
Bootkul et al., 2014; Konkhunthot et al., 2018; Liu et al., 2009). Additionally, the stress—
effect of the two sets of DLC films was similar to that seen in Table 4.1, where the ta-

C:N and ta-C:AUN specimens were the compressive stress while ta-C:Al is the tensile
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stress. Because high—energy N atoms with adequate flow rates may be incorporated
into the DLC film (Bootkul et al., 2014), the ta—C:N film’s thickness is reached in the
lowest deposition time, while the ta—C:Al film requires more time. Because of the
collision of C and Al ions during the coating, the thickness is the same (Wongpanya,
Silawong, & Photongkam, 2021; Xu et al., 2018); as a consequence, the film layer has

less C ion coating and carbon bonding.
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Figure 4.9 The FE-SEM images of (a) ta-C, (b) ta—C:N, (c) ta-C:Al, and (d) ta-C:ALN
(Wongpanya et al., 2022)
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The surface roughness of the AISI 4140 substrate before and after
polishing, as well as the AFM measurements of all the DLC layers, are shown in Table
4.4. Due to the treatment of the surface, there is no SiC remaining from the SiC paper
imbedded on the surface. AISI 4140 has a surface roughness (Ra) of 8.8 nm, which is
less than the ASTM Standard for block roughness (ASTM, E2546-07, 2007). The
reference blocks should be constructed in such a way that the test is easily finished
and the surface smoothed to the greatest extent possible. Additionally, the allowable
mean surface roughness Ra measured on a 10 pym trace is Ra < 10 nm for many
applications.

This study had no effect on the nanoscale mechanical properties. Each
sample exhibited a similar surface roughness (Ra 6.4-8.8 nm), with the DLC films having
a roughness of 8.4, 8.0, 8.8, and 6.4 nm for the ta-C, ta—C:N, ta-C:Al, and ta-C:At:N
films, respectively. The surface roughness (Ra) of the second set of specimens for AlSI
4140 (pre-DLC coating) was 8.16, whereas the roughness of the ta-C, ta-C:N, ta—CAl,
and ta—C:AULN films was 8.16, 5.94, 7.48, and 6.14 nm, respectively. Additionally, larger
particles were identified in ta-C but not in ta—C:N, ta—C:Al, or ta—C:AlN, suggesting that
N and Al impurities considerably reduce the number of large particles on the DLC
surface. Collisions between the dopant and the larger particles result in a reduction in
the size of the larger particles. The large particles are subsequently deposited on the

ground and filtered by a copper filter coil.
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AFM topographies of AISI 4140, ta-C, ta—C:N, ta-C:Al, and ta—C:AUN.

(modified from Wongpanya, Silawong, & Photongkam, 2021; Wongpanya

et al., 2022)
Sample (set ) (set 1)
AISIA140 | Ra =8.80 nm " Ra =8.16 nm
ta-C Ra=840nm | o, Ra =8.16 nm
ta-C:N
ta-CAl
ta—C:AUN Ra =6.40 nm :‘ Ra=6.14 nm
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Experimental and simulation results of DLC films at different angles of
incidence in the 0.01 to 2.5° range with a 0.005° scanning step are shown in Figure 4.10
(black and red curves represent the experimental and simulated profiles of the DLC
films' XRR profiles, respectively): 2.52, 2.22, 2.17, and 2.32 ¢ cm™ for ta-C, ta-C:N, ta-
C:AL and ta—C:AUN, respectively. Adding dopant components to the DLC films resulted
in a drop in the relative fraction of sp® in the XPS result (Konkhunthot et al., 2018).

: Experimental data
: —— Simulated data

Intensity (log scale, arb. units)

20(°)

Figure 4.10 XRR profile of ta-C, ta-C:N, ta—CAl, and ta=C:AUN. (Wongpanya et al.,
2022)

4.2 The nanomechanical, adhesion strength, thermal stability, and
corrosion resistance of the DLC films deposited on AISI 4140 by Al
and N co-doping.

4.2.1 Nanomechanical property and adhesion strength analysis
The high elastic recovery (%ER) due to the elastic—to-plastic
deformation transition, as reported in Page et al. (1992), and plastic deformation bands

which are typically parallel to the indentation edges at the low-load indentations were
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depicted in this study by non-smooth load-displacement curve discontinuities. The

load—displacement curves of all the DLC films are shown in Figure 4.11.
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Figure 4.11 Load-displacement curves of ta-C, ta—C:N, ta-C:Al, and ta-C:AUN
(Wongpanya, Silawong, & Photongkam, 2021)

Nanoindentation testing was used to evaluate the nanomechanical
characteristics of the DLC films, including hardness (H), elastic modulus (E), plastic index
parameter, the ratio of hardness to elastic modulus, H/E, and elastic recovery (%ER).
The elastic recovery (%ER) obtained from the load-displacement curves displayed in
Figure 4.11 has been used to determine the elasticity of the DLC films, which has been

computed using the following equation:

%ER = (M) x 100, @3

max
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where dmax and dres are the displacement at the maximum load and the residual

displacement after load removal, respectively.

Table 4.5 Mechanical properties of ta-C, ta—C:N, ta—C:Al, and ta-C:AUN (test from set
) (from Wongpanya, Silawong, & Photongkam, 2021)

Mechanical properties

Elastic
Sample Hardness, H Elastic modulus, Plastic index
recovery
(GPa) E (GPa) parameter, H/E

(%ER)
ta-C 51.12 £ 1.08 302.29 + 6.35 0.169 + 0.005 60.06 + 1.93
ta—-C:N 47.32 + 1.91 210.51 + 4.82 0.225 £ 0.010 5792 + 1.35
ta-C:Al 28.84 + 1.78 159.65 + 3.94 0.243 + 0.013 50.47 + 1.53
ta-C:AUN 49.04 + 1.33 251.09 + 6.57 0.195 + 0.007 58.43 + 1.73

Table 4.5 shows that the H and E of ta—C:N, ta—C:Al, and ta-C:AUiN were
4732 + 1.91 and 210.51 + 4.82, 38.84 + 1.78 and 159.65 + 3.94, and 49.04 + 1.33 and
251.09 + 6.57 GPa, respectively, and were lower than those of the non-doped DLC
(51.12 + 1.08 and 302.29 + 6.35 GPa). The XPS spectra show that the lower H and E
correlate to greater Ip/lg and La ascribed to an increased sp*~hybridized carbon bond
concentration and reduced sp*/sp?.

As a result of the higher dopant concentration, the nanomechanical
characteristics of the DLC films revealed greater graphitization and bigger graphite
clusters (L,). Furthermore, the mechanical characteristics of the DLC films, particularly
the ta-C film, were dramatically impacted by the sp’-hybridized carbon bond
concentration, and with a decreasing sp>~hybridized carbon bond concentration, the
mechanical characteristics of the ta-C film, such as hardness, surface smoothness,
atomic density, and Young's modulus, all reduced (Bootkul et al., 2014). Because of
the NC diamond phase (Singha et. al., 2006) that had developed in the co-doped DLC
film, the H of the ta—C:AUN became lower than that of the non-doped DLC, as

demonstrated by the peak at ~1248.17 cm™ in the Raman result from Figure 4.1.
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These findings suggest that doping the DLC film with Al and N increased the film's
hardness. Nevertheless, all the DLC films improved the hardness of the AISI 4140 steel
bare substrate, as shown by the increased hardness of 38.84 + 1.78, 47.32 + 1.91, and
49.04 + 1.33 GPa for ta—C:Al, ta—C:N, and ta-C:AtN-coated 4140 steel, respectively,
from 3.3 GPa for AlSI 4140 (Ochoa et al., 2006). Furthermore, as compared to genuine
diamond (56-102 and 1050 GPa, respectively), the DLC nanomechanical characteristics
(H and E) were above 38 and 150 GPa, suggesting the deposition of high—quality DLC
films. Using these values, the coatings could successfully protect substrate surfaces
from scratches and wear (Savvides and Bell, 1993; Robertson, 2002). The H/E and %ER
were used to evaluate the DLC films' elastic—plastic behavior and wear resistance
(Sawvides and Bell, 1993). Materials with high elastic strain-to—failure are ranked
according to their H/E ratio. A high H/E indicates that a DLC film has a high wear
resistance, making it acceptable for use on vehicle components (Ishpal et al., 2012).

The DLC film’s hardness is reduced by Al and N-doping even though
the elastic strain to failure is increased (Table 4.5 shows that the H/E values of the
ta-C:N, ta—C:Al, and ta—C:ALN films are 0.225 + 0.010, 0.243 + 0.013, and 0.195 + 0.007,
respectively), while the ta—C film is only 0.169 + 0.005. The relaxation of the elastic
strain inside the DLC structure is well-known to result in high elasticity and recovery
in typical hard and adherent DLC films (Ankit et al., 2017; Coll et al., 1996). Elastic
recovery is also greatly influenced by the amount of sp’~hybridized carbon bonds in
the film (Ishpal et al., 2012). As a result, as shown by the %ER data in Table 4.5, the
elastic recovery of the DLC films dropped as the dopant concentration increased.
According to the XPS study, %ER has been classified in decreasing order as follows:
ta-C>ta—-C:ALN>ta-C:N>ta—-C:Al, which corresponds to the sp’~hybridized carbon bond
concentration in the films.

The following sections go through important aspects including local
bonding structure and thermal stability to see whether doping and co-doping are
acceptable for DLC films used as protective coatings for wear and tribological
applications, particularly for automotive components. Adhesion strength, scratch test

data and SEM pictures were utilized to assess and compare the adhesion failure of all
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the DLC films in Figiure 4.12. There are 2 distinct phases of critical load (L), the first
of which is loaded and utilized to initiate the DLC film's initial failure, such as plastic
deformation. The first term (L.;) represents edge cracks and fine cracks, while the
second term (L,) represents the critical normal load that identifies the reason for film
adhesion failure. The L. and L., occurred at 126.57, 87.75, 65.16, and 99.60 mN and
195.29, 191.62, 199.46, and 221.96 mN for ta-C, ta-C:N, ta-C:Al, and ta-C:ALN,
respectively. It is obvious that for L, ta—C has the greatest value and the films may be
ranked in decreasing order as ta-C, ta-C:AUN, ta-C:N, and ta C:Al, respectively, while
for L, the Al-doped film layers, ta—C:Al and ta—C:AUN had greater second-stage critical
load values than ta-C and ta—C:N. It was discovered that only L.; tended to correlate
with the film hardness (H) and elastic recovery (%ER) of the DLC films in a previous

work (Wongpanya, Silawong, & Photongkam, 2021) in which these properties depend

on the quantity of sp®> C—C in the DLC corresponding to the relative proportion of sp’.
The maximum L.; can be seen in ta-C, as evidenced by the high %ER, which was due
to elastic strain relaxation inside the film. As a result, ta-C could recover without
deformation and had a greater cohesive strength (L ;) than the other DLC films (Ankit
et al,, 2017; Coll et al., 1996).

Interestingly, increasing L., can be seen when the non-doped DLC film
(ta—C) has been doped with Al and Al-N. That effect reduces internal stress and
increases the graphite cluster size of the sp? sites (L,), resulting in a high content of
sp°>~hybridized C-N bonds (ta~C:AUN only) (Zhou et al., 2019; Dai and Wang, 2011), and
the Al doping in DLC film can reduce the friction coefficient as reported. On the other
hand, the ta—C:N had the highest stress in the DLC film, resulting in the lowest L, in
this study. Typically, the plastic index parameter (H/E) is a critical attribute for assessing
a coating surface that has been heavily deformed during elastic strain to failure in order
to determine wear resistance (Konkhunthot et al., 2019; Wongpanya, Silawong, &
Photongkam, 2021; Ishpal et al., 2012). Conversely, the toughness of the film should
be proportional to the product of the lower critical load and the difference between

the high (L) and low (L) critical loads, that was defined as scratch crack propagation
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resistance (CPRs) = L; (Lo, — L), calculated by Equation (4.4) (Zhou et al., 2019; Zhang
et al.,, 2004):

CPRS = LC] (LCZ - Ld) (44)

The ta-CAULN, ta-CN, ta-C:Al, and ta-C films had CPRs values of
12187.06, 9114.59, 8750.99, and 8697.89 mN?, respectively. As a result, the CPRs values
of the Al- and N-doped DLC films were elevated much higher than those of the other
films, indicating that ta—C:AUN exhibited the maximum toughness and adhesion
strength in this experiment.

The SEM morphologies of scratch tracks for all the DLC films at L,
which are heavily damaged and peeled off the substrate, thus showing the failure of
the adhesion strength of the DLC films to the substrate, are shown in the insets in

Figure 4.12 (a)-(d).
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Figure 4.12 Scratch curves and the SEM micrographs of the corresponding scratch

tracks at L., for (a) ta-C, (b) ta-C:N, (c) ta-CAl, and (d) ta—C:ALN,

respectively (Wongpanya et al., 2022)

There are segment fractures and breaks along both sides of the scratch

track for ta—C as evidence of brittle fracture, but for ta-C:N, ta-C:Al, and ta-C:AUN doping

the wear tracks are deeper and wider demonstrating the enhancement of the adhesion

strength. As shown by the Raman findings in Table 4.1, the compressive stress of the

film on ta-C:N was 1.193 GPa, while the compressive stress of the films on ta—C:Al and

ta—C:AUN was -2.886 GPa and 0.127 GPa, respectively; the decreases in residual stress

in the DLC films have been linked to an improvement in adhesion strength for N-

doped, Al-doped, and Al-N co-doped films. Consequently, a higher residual stress
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equals a high amount of stored elastic energy in the films. DLC films have a high stored
elastic energy, which leads them to delaminate from the substrate if the adhesion
energy between the DLC films and the substrates is inadequate (Konkhunthot et al,,
2019). Furthermore, higher sp>~hybridized C-N bonds for ta-C:N and ta-C:ALN, as well
as ALOs; which has substantially better toughness relative to ta—C for ta—C:Al and
ta—C:AUN, contribute to improved lubrication performance or friction-reducing
properties (Bootkul et al., 2014; Bouabibsa et al., 2018; Dai and Wang, 2011). This is
because, during the scratch test, the temperature in the region of the test contact
increases, resulting in film surface oxidation and the creation of a thicker AlL,O; film
layer, which slows the plastic deformation and the scratch resistance and allows the
DLC film layer to maintain its lubricating properties (Zhou et al, 2019; Wang et al.,
2018; Ye et al., 2017).
4.2.2 Thermal stability analysis by in—situ NEXAFS

Analyses of the thermal stability of the DLC films at RT and thermally
annealed between 200 and 700°C in 100°C increments were carried out utilizing high—
temperature NEXAFS spectroscopy of the local atomic structures of ta-C, ta—C:N, ta-
CAL and ta-C:AUN. The C K-edge NEXAFS spectrum produced for ta—C:AUN at RT is
shown in Figure 4.13. Subtraction and deconvolution of the spectrum resulted in
several peaks. When the sp?~hybridized C=C site is present, it may have contributed
also to the pre-edge resonance at 285.4 eV, which has been determined to be a
transition from the unoccupied TT* state (Konkhunthot et al., 2019; Lenardi et al., 1999;
Tagawa et al., 2010).

At the high—energy edge, overlapping C 1s transitions to unoccupied O*
states at sp, sp?, and sp>~hybridized sites in DLC films generated the broadband zone
between 288 and 335 eV (Lenardi et al.,, 1999). The intermediate area identified
between the Tt* and O* states corresponds to transitions between the states at 285.1,
285.9, 286.3, 287.6, 287.7, 288.5, 289.6, and 293.7 eV (Ashtijoo et al., 2016; Soin et al.,
2012). Other high resonances observed at 297.8 and 304.3 eV (Lenardi et al., 1999; Soin
et al., 2012) were attributed to C 1s —> TT* (C=QC), TT* (C=N), Tt* (C=0H), 0* (C-H), O*
(C-N), Tt* (C=0) or Tt* (C=Q), 0* (C-C), and 0* (C=C). Because hydrogen was not

present during the FCVA deposition, the hydrogen saturation of the surface-carbon



73

dangling bonds (i.e., nonpaired electrons) was assigned to 0* (C-H) states, while carbon

that had been oxidized by air exposure was assigned to 0* (C=0) states (Lenardi et al.,

1999; Ashtijoo et al., 2016; Soin et al., 2012).

C K-edge NEXAFS ta-C:AI:N
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Figure 4.13 In-situ higsh-temperature NEXAFS C K-edge spectra were generated
before (a) and after (b) data subtraction (Wongpanya, Silawong, &
Photongkam, 2021)

The peak area corresponding to the C 1s — TU* transition at 285.4 eV
must be normalized with C 1s — O* transitions in the range 288-335 eV to estimate
the sp*~hybridized bond content in a sample. The following equation (Lenardi et al.,
1999; Tagawa et al., 2010; Yoshitake et al., 2009) may therefore be used to compute
the sp?~hybridized bond fraction:
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foo= 1o /15958 4.5)
S — T+ / total’
p ref/lref

where TU* is the position of the C 1s — TU* transitions in C=C bonds, total is the
integration areas calculated under the spectrum for binding energies in the range 288-
335 eV, and sam and ref define the deconvoluted peaks for a sample thin film and a
reference sample (highly oriented pyrolytic graphite (HOPG)), respectively.

The in-situ C K-edge NEXAFS spectra of ta-C, ta-C:N, ta-C:Al, and
ta-C:AUN at RT and thermally annealed up to 700°C are shown in Figure 4.14. As
demonstrated by the spectrum characteristics, the chemical bonding configuration
displayed minor heterogeneities, indicating that the atomic bonding structure altered
gradually when the dopant concentration (Al and N) was low. As illustrated in Figure
4.14 and Figure 4.15, the sp*~hybridized bond fractions of the ta-C, ta-C:N, ta—C:Al,
and ta-C:AUN films were 0.34, 0.39, 0.55, and 0.36 at RT, respectively. Doping with
simply N or Al obviously caused the production of graphitic sp?~hybridized bonds
known as "graphitization," as demonstrated by the sp?~hybridized bond fractions, but

co—-doping with both Al and N induced very minimal graphitization. Because
graphitization converted sp’~hybridized (G*) states in the amorphous carbon film into

sp’~hybridized (TT*), the percentage sp?~hybridized bond fraction rose with increasing
the annealing temperature (Grierson et al., 2010). The NEXAFS spectra of ta-C:N, ta-C,
and ta-C:Al indicated that sp’~hybridized (G*) states had considerably converted into
sp*~hybridized (TT*) ones in the amorphous carbon films at 400, 500, and 600°C,
respectively, which meant that they had already graphitized; this is similar to results in
earlier research (Fu et al., 2005; Zhang et al., 2002; Tallant et al., 1995). In ta—C:AlN,
on the other hand, the percentage sp*~hybridized bond fraction grew steadily from

0.36 at room temperature to 0.39 at 300°C.
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Figure 4.14 The C K—edge NEXAFS spectra obtained at room temperature (RT) and

thermally annealed to graphitization temperature for (a) ta-C, (b) ta-C:N,
(c) ta—C:Al, and (d) ta—C:AUN (Wongpanya, Silawong, & Photongkam, 2021)
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The relative sp>~hybridized bond ratio in ta-C changed from 0.34 to 0.40 in the same
temperature range, which was just slightly different. From 400 to 700 °C, the relative
sp>~hybridized bond fraction of ta~C:AUN increased dramatically from 0.43 to 0.56. As
seen in Figure 4.15, the carbon in the ta-C:AtN film remained amorphous, meaning
that ta—C:AUN graphitized more slowly and at a higher annealing temperature than
ta-C:N, ta-C, and ta-C:Al, because the diamond structure had transformed to graphite
at 400-700 °C, as indicated by sp? fractions up to 1. The great thermal stability of
ta—C:AUN is indeed owing to the synergistic synthesis of stable Al,O; oxide and
sp>~hybridized N-C bonds, as evidenced by the XPS result in section 4.1, respectively,
during in—situ high-temperature annealing of amorphous ta—C:AUN, this greatly delayed
graphitization, stabilizing the DLC structure (B. Zhou, 2019, Y. Zhou, 2019, V. Podgursky,
2020)
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k] —#—12-CN
0.90 + —=A=1a-C:Al
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Figure 4.15 The sp®~hybridized bond fractions of ta-C, ta~C:N, ta-C:Al, and ta~C:ALN
as a function of thermal annealing temperature from room temperature
(RT) to graphitization temperature. (Wongpanya, Silawong, & Photongkam,
2021)
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4.2.3 Electrochemical corrosion analysis by potentiodynamic

polarization technique

The polarization curves for AlSI 4140 steel and all the DLC films, ta—C,
ta-C:N, ta—C:Al, and ta—C:AUN, electrochemically evaluated in 3.5 wt% NaCl solution
(pH ~6.6) at 27+0.5 °C are shown in Figure 4.16. The £, i, the anodic and cathodic
Tafel constants (b, and b,), Epit, i, R, CR, P, and P, as well as other important corrosion
parameters, were determined and are presented in Table 4.6. The DLC-coated steels
had 3 separate zones, the active, passive, and transpassive zones, while the 4140 steel
had no passive area and no pitting resistance, suggesting inferior corrosion resistance.
When compared to the 4140 steel, all the DLC coatings significantly improved corrosion
resistance, with increases in E..,, Epr, and R, but decreases in i, and CR. All of the
DLC films had similar i, and CR values and were 3 orders of magnitude less than the
4140 steel. The E.,,, moved from —-443.31 and -442.69 mV to -425.08 and -382.93 mV
for ta-C and ta—C:N, and ta—C:Al and ta—C:AUN, respectively, indicating that Al-doped
and Al-N-co-doped DLC films are slightly more stable than non-doped and N-doped
DLC films. Furthermore, due to the synergy of Al oxide and sp® C-N bonds generated
in the DLC films, ta-C:Al and ta—C:AUN showed the second and highest corrosion
resistance, respectively, as shown by the high R, (3890.89 and 4237.02 Q) cm?), high P;

(77.77 and 79.22 %) and low P (2.09X 10 and 3.49X10) demonstrated by XPS, which
behaves as the primary barrier against the corrosive environment's penetration and
destruction (Konkhunthot et al., 2019; Wongpanya et al., 2022; Xu et al., 2018; Zhou
et al., 2019).
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Figure 4.16 The polarization curves of AlSI 4140, ta-C, ta—C:N, ta—C:Al, and ta-C:AUN
in 3.5 wt% NaCl solution, respectively (Wongpanya et al., 2022)



Table 4.6 Corrosion results for 4140 and ta-C, ta-C:N, ta-C:Al, and ta—C:ALN electrochemically tested in 3.5 wt% NaCl solution
(Wongpanya et al., 2022)

Ecorr Izorr ba bc Ep/t ip RP CR P P
Sample
(mV) (A cm™2) (mV dec™?) (mV dec™?) (mV) (A cm~2) (Q cm?) (mm yr ) (%)
-547.44 10.30 40.38 53.13 - -
AlISI 4140 - - 967.20 1.22 X 107
(+ 8.079) (+ 0.226) (+ 1.146) (+ 0.956)
-443.31 2.39 44.76 46.79 -310.06 46.50 1.09 X
ta—C 4156.17 1.01 X 10 76.79
(+ 6.072) (+ 0.050) (+ 1.596) (+ 1.220) (£ 4.247) (£ 0.973) 107
-442.69 4.54 39.53 43.47 -126.66 354.00 1.09 X
ta-C:N 1980.11 2.14 X 107 55.92
(+ 7.949) (+0.143) (+ 1.429) (£ 1.133) (£ 2.274) (+ 11.150) 107
-425.08 2.29 39.80 42.36 -44.23 184.00 2.09 X
ta—CAl 3890.89 1.28 X 107 7777
(+ 6.837) (+ 0.064) (+ 1.201) (+ 0.629) (£ 0.711) (+ 5.140) 107
-382.93 2.14 43.12 40.49 -201.13 22.20 3.49 X
ta-C:AUN 4237.02 1.17 X 107 79.22
(+ 5.883) (+0.042) (+1.118) (+ 0.602) (£ 3.090) (+ 0.436) 107°

6.
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4.2.4 The structural and local bonding configuration analysis after the

corrosion tests

The chemical bond structure was studied using XPS and NEXAFS
methods once all the DLC films’ corrosion experiments were completed. The
observation of chemical elements C, N, and Al, as well as Fe (i.e., corrosion of the
metal surface substrate), have been associated with the deterioration of the DLC films,
with the exception of O due to contamination. This suggests that following corrosion
testing, the DLC films’ degradation was greatly decreased, as seen by the films’
characteristics, such as sp® C-C, sp*/sp? ratio, and the sp® relative fraction. The sp’
C-C bond was obviously diminished in the DLC films, as evidenced by C 1s in Table
4.8, suggesting the corrosion degradation of the sp’

C-C bond to the sp* C=C bond (Wongpanya, Pintitraratibodee,
Thumanu, & Euaruksakul, 2021). The addition of Al and N to the DLC films reduced the
deterioration of the DLC properties, as shown in the difference of the diamond
structure (sp® C-C) quantity before and after the corrosion test, (11.85, 18.70, and 26.06
at.% declines for ta-C:AUN, ta—C:Al, and ta-C:N, respectively), showing that the addition
of Al and N to the DLC films hindered the degradation of the DLC properties
(Konkhunthot et al., 2019; Wongpanya, Silawong, & Photongkam, 2021). The slowing of
all elements of the doped DLC films might be attributed to nitrides (sp>~hybridized C-
N for ta-C:N and ta—C:Al:N) and aluminium oxide (Al,O5 for ta—C: Al and ta—C:Al:N), as
shown in Tables 4.7 and 4.8, respectively. Before corrosion testing, for example, ta—
C:AUN was discovered. After corrosion degradation, sp’~hybridized C-N bond to the
high ALO5; content (81.99 and 100 at.%, respectively, in Table 4.7), and these bonds
include the converted oxide to sp*~hybridized C=N mixed with AlO, (82.95 and 100
at.%, respectively, in Table 4.8).



Table 4.7 Type of bonding, sp’/sp? ratio, and relative fraction of sp’ of all the DLC films before the corrosion tests (Wongpanya
et al., 2022)

Type of bonding (at.%)

relative
XPS Sam pl /5o’ rati fraction of
spectra m ple 5p3 5,03 Sp/ s ratio raction O
sp? C=C sp?C=N C—OH c—0 Cc=0 Al—C—0 Total 0
c—C C—N
ta-C 68.95 16.12 241 12.52 100.00 4.28 081
ta-C:N 40.52 17.74 297 26.61 12.16 100.00 0.98 050
Cls
ta-C:Al 38.81 40.99 11.09 6.94 217 100.00 0.95 049
ta-C:AUN 50.65 21.20 21.19 0.24 6.64 0.08 100.00 335 077
o) C—OH c=0 N—0 0=C—OH
ta-C 10.90 89.10 100.00
ta-C:N 81.19 18.81 100.00
O 1s
ta-C:Al 35.38 59.40 5.22 100.00
ta-CAULN 5513 41.42 3.45 100.00
sp® C—N sp? C=N N—O
ta-C:N 25.59 67.77 6.60 100.00
N 1s
ta-CALN 81.99 1133 6.68 100.00
AlO, ALO,
ta-C:Al 23.40 76.60 100.00
Al 2p
ta-CALN 100.00 100.00

18



Table 4.8 Type of bonding, sp’/sp? ratio, and relative fraction of sp®of all the DLC films after the corrosion tests (Wongpanya et

al., 2022)
Type of bonding (at.%)
<PS o5 relative
Sample s P C—OH/C-0 . fraction of
spectra 5p° C—C sp? C=C c—o C=0/COOH Al=C —0 Total ratio o
C—N C=N -C
ta-C 24.77 50.12 19.39 5.72 100.00 0.49 0.33
C1s ta-C:N 14.46 50.98 1.51 21.99 3.24 7.82 100.00 0.22 0.18
ta-CAl 20.11 50.42 18.56 2.40 6.61 1.90 100.00 0.40 0.29
ta-C:AUN 38.80 42.78 1.52 9.43 0.71 6.59 0.17 100.00 0.77 0.44
Metal
C—0O/Al—0OH C—CH Cc=0 N—0O 0O=C—0OH Fe;O, FeO/Fe,Os ALO,
carbonates
ta-C 1.16 6.32 39.57 47.42 5.53 100.00
ta-CN 2.60 3.00 18.15 21 5.04 100.00
ot ta-CAl 3.74 3.70 3.54 25.45 35.79 27.78 100.00
ta-C:AUN 2.65 574 1.62 22.54 31.24 36.21 100.00
sp> C—N spC=N_ N—O
N 1s ta-C:N 8.92 88.23 2.85 100.00
ta-C:AUN 13.54 82.95 351 100.00
AlO, ALO,  AL(OH);,  AL-OH
AL2D ta-CAl 0.56 90.63 4.63 4.18 100.00
ta-C:AUN 100.00 100.00
Fe (Me) Fe (I) Fe (Il Fe (Il)/Fe (lll) ratio
ta-C 13.93 51.59 34.48 100.00 1.496
ta-C:N 6.53 63.10 30.37 100.00 2.078
Fe 2p ta-CAl 27.13 44.73 28.14 100.00 1.589
ta-C:AUN 26.59 31.37 42.04 100.00 0.746

Z8
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This means that during corrosion, sp>~hybridized C-N coupled with
AL,O5 sacrificed itself. Thus, although ta—C:Al or ta—C:N deteriorates and sacrifices itself
during corrosion, the deterioration of the sp> C-C bonds may be slowed. Both Al,Os
(76.60 at.%) and AlO, (23.40 at.%) were used to determine this, as well as the low
content of sp’~hybridized C-N (25.59 at.%), which evaluated corrosion resistance
performance. After corrosion, the quantity of the remaining sp®> C-C bond was smaller
than that for ta—C:ALN (20.11, 14.46, and 38.80 at.% for ta—C:Al, ta—C:N, and ta—C:AU:N,
respectively, in Table 4.8). As a result, the corrosion resistance of the DLC films
degrading in NaCl solution may be graded as follows: slow decrease in sp>~hybridized
C-N and AlLO; > ALO; > sp’~hybridized C-N was established based on the synergistic
impact of the 2 materials. The sp’~hybridized C-N and Al,O5 are remarkable not only
for the gradual deterioration of the DLC film in corrosive solutions, but also for the
suppression of the DLC film degradation at high temperatures, and they are effective
in preventing DLC films from corroding in water. However, there are drawbacks to
preventing the DLC films’ deterioration at high temperatures (Wongpanya, Silawong, &
Photongkam, 2021), but the creation of a single bond sp>~hybridized C-N structure
might inhibit the process. At high temperatures, the film becomes graphitized; while it
is not quite up to par in terms of corrosion resistance, Fe 2p confirmed that the DLC
film had deteriorated. A wide range of Fe (metal and compound) XPS measurements
were made, including Fe (I) (Fe,Os, Fes04), Fe (lll) (Fe,0s, Fe;0,), and Fe (lll) (FeOOH) at
roughly 707.0, 709.6, 710.8, and 711.8 eV, respectively (Fredriksson et al., 2012; Guo et
al., 2014). Degradation of all the DLC films occurred until the metal (Fe) surface was
found. The oxidation of Fe into Fe?" ions generates oxides of Fe (Il), which are further
oxidized to create oxides of Fe (lll) (Jones, 1996) in a corrosive environment rich in
water and oxygen. All films included a combination of Fe (Il) and Fe (lll) molecules.
The Fe (Il)/Fe (lll) ratio is used to measure the stability of Fe oxides, and it is graded as
follows: deterioration of the DLC film structure may be seen in the decrease in ta—
C:AUN < ta—C:Al < ta—C:N. This investigation confirmed the interaction between the O
and C or metals (Al and Fe in this work) during corrosion, as well as the O 1s
measurement findings in the XPS and peaks compatible with Al and/or Fe oxides

(0%) at around 530.3 eV. In Konkhunthot et al., 2019, Wongpanya, Pintitraratibodee,



84

Thumanu, & Euaruksakul, 2021, Wang et al., 2001, Hanawa et al., 2002, and Marcelin
et al., 2013, the N-O/O=C-0OH bonds and the C-0O, C-OH, and C=0 at 530.50 eV and
532.0-533.4 eV peaks which existed before corrosion (Konkhunthot et al., 2019;
Jiménez et al., 2001) resembled what was discovered. A combination of X-PEEM and
NEXAFS was used to investigate the effects of corrosion on the structural bonding of
the DLC films in various locations, including the mildly corroded zone (Area 1) and the
severely corroded zone (Area 2), as seen in Figure 4.17. The NEXAFS C K-edge spectra

for all the DLC films in Figure 4.17 show distinct characteristics for Area 1 and Area 2.

According to Area 2, it is clear that the C 1s transition to the unoccupied TT* and G*
states at the sp?~hybridized site was detected by the peaks at 285.4 and 292.0eV,
respectively (Konkhunthot et al., 2019; Wongpanya, Silawong, & Photongkam, 2021;
Soin et al., 2012). Due to severe corrosion, the sp’~hybridized bond percentage of all
the DLC films before corrosion in Figure 4.5 rose from 0.345, 0.394, 0.538, and 0.348
for ta-C, ta—C:N, ta—C:Al, and ta-C:AUN, respectively, to 1.00. However, in Area 1 these
transitions, notably at 292.0 eV, were almost undetectable owing to the minor rise in
the sp?~hybridized bond fraction to 0.491 for ta-C, 0.615 for ta—C:Al, 0.455 for ta-C:Al,
and 0.640 for ta-C:N, due to mild corrosion. The graphitization of the DLC films due to

corrosion can be seen in these data, which are in agreement with the XPS results.


https://scholar.google.co.th/citations?user=EtQxQeAAAAAJ&hl=th&oi=sra
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Figure 4.17 The C K—edge NEXAFS spectra generated for ta-C, ta-C:N, ta—C:Al, and

ta—C:ALN after the corrosion tests (Wongpanya et al., 2022)
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Figure 4.18 The O K-edge NEXAFS spectra generated for ta-C, ta—C:N, ta-C:Al, and
ta—C:ALN after the corrosion tests (Wongpanya et al., 2022)

Although the NEXAFS O K-edge spectra (Figure 4.18) of all the DLC
films before corrosion were comparable, extra strong peaks at ~533.0 and 540.0 eV,
which correspond to O 2p hybridization with 3d and 4s and 4p metals, respectively,
were seen. Area 1 and Area 2 DLC films had similar O K-edge spectra before corrosion,
however the increased predominant peaks at ~533.0 and 540.0 eV, which correspond
to O 2p had become hybridized with 3d, 4s, and 4p metals, respectively, including the
O 1s — 0* (C-0 and C=0) transitions (at 540.0 eV), clearly indicating the degradation
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of the DLC films and the evolution of Fe oxides from corrosion, respectively (de Groot

et al., 1989; Kim et al., 2018).
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Figure 4.19 The N K-edge NEXAFS spectra generated for ta-C, ta-C:N, ta—C:Al, and

ta—C:ALN after the corrosion tests (Wongpanya et al., 2022)

Following the corrosion tests, all the specimens' N K—edge NEXAFS

spectra (Figure 4.19) were analyzed. The ta-C:Al:N specimen, which has N2, N3, and

N—O peaks at around 399.5, 401.5-402.4, and 403.2 eV, respectively, demonstrates the
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N K-edge NEXAFS spectral features. In the Area 1 spectral peak, the ta—C:N specimen
contains a C=N bond and/or a C=N link, graphite-like molecules, and nitrogen
molecules (lyer and Masuire, 2011; Roy et al., 2005). The spectrum is obscured and
undetectable in Area 2 due to significant corrosion on the material. The N K-edge

NEXAFS spectrum was not identified in the ta—C or ta—C:Al specimens, which is

consistent with the absence of N—O before the corrosion tests in the elemental doped
materials. The specimens may be exposed to air or natural contaminants after the
corrosion test, which react with the coating layer. In circumstances when a post-test
NEXAFS analysis is necessary, the surface cannot be cleaned using the sputtering
technique prior to testing. This is because it prevents corrosion products or the
corroded film layer from being removed, which may result in inaccurate results.

Fe (metal), Fe (II) (FeO and Fe;0,), and Fe (lll) (Fe,Os, Fes04, and
FeOOH), respectively, were found in the NEXAFS Fe L;,—-edge spectra for all the DLC
films at 708, 710.1, and 711 eV (Leveneur et al., 2011; Everett et al., 2014). Fe metal,
Fe (Il), and Fe (lll) were detected in all the DLC layers following corrosion (lll), except
for ta—C:ALN, which correlates to the XPS findings; the Fe (Il) peak was much more

intense than the Fe (lll) peak, particularly for ta—C, ta—C:N, and ta—C:Al.



Fe L32-edge ta-C:Al:N_Area 1
, - ---ta-C:Al:N_Area 2
1:29 eg
— T —~
/I"”I\I.\ L2
L7171 1] e it ===
: : : e ta-C:Al_Area 1
. Lo - - --ta-C:Al_Area 2
2 o0
c
_e L I
E L -7 1 Tmeeo - T T T e — e
> : ; : == ta-C:N_Area 1
D Lo - - --ta-C:N_Area 2
E Ion
= 1 /Ty
-1y
N Z_ N
; | : ta-C_Area 1
Lo ----ta-C_Area 2
[
I
_j/]l\ - e
I_-T4
11 g2 QN \ e m =
C- "y gy 1 1 ! L = N
705 710 715 720 725 730

Photon energy (eV)

89

FOV 75 pm

Area 1
B

FOV 75 ym

Figure 4.20 The Fe L;,—edge NEXAFS spectra generated for ta-C, ta-C:N, ta—CAl,

and ta—C:AUN after the corrosion tests (Wongpanya et al., 2022)



90

Following the corrosion tests, structural analysis using XPS and NEXAFS
was performed, as shown, and the results discussed in section 4.2.4. When all the AlSI
4140 steel specimens and specimens coated with the DLC film layer were evaluated
for corrosion in 3.5 wt% NaCl solution, the surfaces were analyzed using SEM, as shown
in Figure 4.21. Corrosion surface damage was observed to be greater in the AISI 4140
steel than in the DLC film layers. The appearances of the corrosion surfaces indicate
that the corrosion behavior of AISI 4140 is general corrosion. For the DLC coating, the
appearance of cracks in the film, delamination, and corrosion at certain spots may be
due to a defect or droplet, including cracks in the film layer owing to the high film
stress or the ability to have low adhesion between the DLC films and the substrate
material. When the solution passes through the film layer, it causes severe corrosion
with behavior comparable to crevice corrosion or localized corrosion. The DLC coatings
and substrate materials have different chemical compositions that are not all equally
resistant to corrosion, and it can be said that between these areas there are
different electrochemical potentials. Whereas the substrate material has a lower
electrochemical potential than the DLC films and, thus, the substrate material loses
its metal, the DLC films act as an electron acceptor. This is known as galvanic
corrosion. The severity of this form of corrosion is determined by the difference in
electrochemical potential. The larger the difference, the greater the degree of
corrosion. As a result, specimens with the DLC coating are prone to surface degradation
and there was such a severe loss of metal that some film sites ruptured and collapsed
following corrosion, as shown in the SEM images, consistent with the research by Liu

et al., 2006.
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Figure 4.21 Surface appearance of specimens after corrosion testing: (a) AlSI4140,

(b) ta-C, () ta—C:N, (d) ta—C:Al, and (e) ta—C:AUN, respectively, at 500X

For AISI 4140 steels contacted to a 3.5 wt% NaCl (pH ~6.6) solution, a
significant amount of hydroxyl [OH] ion was dissolved as a consequence of the NaCl
solution dissociating, resulting in surface corrosion. For the portion of the surface that
comes into touch with the solution, corrosion will develop on a regular basis across

the surface. This is often seen in metals when a protective coating cannot develop
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quickly enough, resulting in extensive corrosion and significant surface damage. To
begin, the oxidation processes that results in the formation of iron ions during corrosion
are shown in Equation (4.6) below. When the solution is exposed to air or includes
oxygen and water vapor, it begins to decompose. When iron ions react quickly with
[OH] Equation (4.7) below, ferrous hydroxide is formed and precipitates on the surface,
as shown in Equation (4.8) below, and when ferrous hydroxide reacts with oxygen,
ferric oxide or hematite compounds are formed. When the very stable oxide coating
(Fe,O3) on the steel surface interacts with water, only iron rust in the form of Fe,0s
remains, which has a reddish-brown color, as in Equation (4.9) below. As a
consequence of the dissolved oxygen in the solution forming water molecules, as
shown in Equation (4.10) below, the corrosion process continues. All of these
processes, starting with Equations (4.6) through (4.10), regulate the corrosion of

AlSI4140 steel (Datta et al., 2021).

Few — Fe*q + 267 (4.6)
O, + 2H,0 + de” —> 4OH 5y (@.7)
Fe* (g + 4OH™ —> 2Fe(OH); (4.8)
2Fe(OH), (5) + (1/2)0, (—> Fe;03:3H,0( + H,O (4.9)
Oy (g + GH o + € —> 2H,0 (4.10)

Moreover, iron oxide deposits (FeOOH, Fe,0s, Fe;04) on the substrate
have an effect on these surface film formation processes. The cathodic and anodic
reactions, Equations (4.6) and (4.7), may occur underneath the FeOOH and Fe;O,-
covered specimens. The following reactions took place on the steel substrate while
the FeOOH deposit was present (Kim and Kim, 2017). Raises in the FeOOH reduction

process demand more Fe?* ions, which increases the solubility of Equation (4.6)'s
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anode. Under deposition of FeOOH, these reactions may result in the production of

Fe;0q4, as shown in Equations (4.11) and (4.12):

2FeOOH + Fe?'(,y —> Fe;0, + 2H* (4.11)
Fe?" + 8FeOOH + 2e™— 3Fe;0, + 4H,0 (4.12)

Corrosion of the whole DLC film layer occurs when the film layer is
dissolved and ionized in the electrolyte solution upon contact with the 3.5 wt% NaCl
solution. The reaction produces electrons that flow through the film's lowest resistance
area to the cathodic reaction zone. Thus, the most significant reactions occur when
the liberated electrons reduce the dissolved oxygen, water molecules, and hydrogen
ions in the electrolyte, where O? denotes oxygen in its reduced state as H,O, OH",
and/or Me-O (Khun et al., 2009; Elam et al.,, 2021). As a result, for the film

electrochemical reaction, DLC follows Equations (4.13) to (4.18).

2H* + 2" — H, (4.13)
2H,0 + 2™ = Hyg + 20H" (4.14)
2H,0 + Op+ de” — 4OH" (4.15)
C + 60H — CO5% + 3H,0 + de” (4.16)
C+(0*) — CO + 2e” (4.17)

CO + (0*) — CO, + 2e” (4.18)
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Similarly, the reaction occurs in the nitrogen—doped DLC film. This is
because nitrogen doped in the film’s layer is capable of dissolving and forming a bind
with the film's carbon. The dissolving and ionization of the film layer in the electrolyte
solution are induced by the conversion of sp® to the sp? structure (Khun et al., 2009),
which indicates if the film layer has degraded or generated graphitization during
corrosion.

When the aluminium-doped film layer in the DLC film comes into
contact with a 3.5 wt% NaCl solution, both anodic and cathodic reaction corrosion of
the aluminium occurs. This results in an increase in the solubility of the aluminium
and a decrease in dissolved oxygen. Finally, the aluminium hydroxide, A(OH)s(qs) (Singh
et al., 2014), then develops a transformation to aluminium oxide as demonstrated in

Equations (4.19) to (4.22):

Aligy — ALP*+ 3e” (4.19)
(1/2)0, + 2H,0 + 3e™ — 30H™ + (1/2)H, (4.20)
A+ 30H" — AUOH); (3qq) (4.21)
2AUOH)3 (a4s) —> ALO5-3H,0 (4.22)

For the Al-doped and Al and N co-doped DLC, the corrosion resistance
is provided by the AlL,O; that develops on the workpiece’s surface. Due to the fact
that it is a very chemical inert compound in an aquatic environment, as long as oxygen
is available, this Al,O5; oxide develops with an increased thickness. If a fault arises, this
oxide will return to its initial condition. However, in a 3.5 wt% NaCl solution, breakdown
of the passive film occurs and repairs to it are hampered because of the strong

environment corrosion (Singh et al., 2014).



CHAPTER 5
CONCLUSION AND SUGGESSTION

5.1 Conclusion
As stated in Chapter 4, the qualities of the synthesized film were evaluated
before and after the tests for mechanical properties, thermal stability, and corrosion
resistance, which can be summarized in the thesis as follows:
5.1.1 The optimal conditions for all DLC films on the AlSI4140 substrate by
FCVA deposition are:
-V, of Cis 800V and V. of Alis 400V.
- Viias Of sample is -1000V.
- Duty cycle and Frequency are 0.003% and 6.0 Hz, respectively.
- Base pressure is 8.5x10~" Pa.
- UHP N, flow rate is 2.5 SCCM for ta-C:N and ta-C:AlN, respectively.
5.1.2 The thermal stability test using in-situ NEXAFS spectroscopy, the heat
resistance of AN co-doped film was up to 600°C because the sp®> C-N and Al,Os
bonding in the film are promoted the thermal stability of the film. The maximum
temperature resistances of the Al-doped, N-doped, and pure DLC are RT, 280, and
400°C, respectively (the sp?~fraction of up to 0.50).
5.1.3 The nanomechanical properties, adhesion strength, and corrosion
resistance of the all DLC films are:
5.1.3.1 The nanomechanical properties of the DLC films with N doping
and Al-N co-doping dropped slightly when compared to the pure DLC, while the Al-
doped films decreased considerably. Reduced H and £ correspond with higher Ip/lg,
whereas L, is related to an increase in the concentration of sp?~hybridized carbon
bonds and a decrease in sp*/sp?. The quantity of sp>~hybridized carbon bonds in the
film significantly affects the nanomechanical characteristics.

5.1.3.2 The adhesion strength of all DLC films, as the dopant
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concentration was raised, the elastic recovery of the DLC films decreased. When the
undoped DLC film (ta—C) is doped with Al and Al-N, a rising L, is seen. This decreases
internal stress and increases the size of the graphite clusters at the sp? sites (L,). This
phenomenon results in a large proportion of sp>~hybridized C-N bonds in ta-C:N and
ALOs in ta—C:Al and ta—C:AUN. These films (ta-C:AUN > ta-C:N > ta—C:Al > ta-C) had
CPRs of 12187.06, 9114.59, 8750.99, and 8697.89 mN?, respectively, with ta-C:ALN
having the highest toughness and adhesion strength.

5.1.3.3 The all DLC coatings improved corrosion resistance while
decreasing i, and CR as compared to the AISI 4140 steels. The i, and CR values for
all DLC films were identical. £, shifted from -443.31 to -442.69 mV for ta-C and ta-
C:N, and -425.08 to -382.93 mV for ta—C:Al and ta—C:AUN, respectively. DLC films with
Al-doped and Al-N-co-doped are marginally more stable than pure DLC and DLC with
N-doped. Due to the synergy of Al oxide and sp® C — N bonds in the DLC films (referred
to in the XPS result), ta—C: Al and ta—C:AUN are also exceptionally resistant to corrosion
(the second and highest, respectively). The high R, (3890.89 and 4237.02 cm?) and high
P. (77.77 and 79.22 %), as well as the low P, demonstrate this (2.09x10™* and
3.49x107), respectively. Because of co-doping DLC, the DLC film additives including Al
and N preserve both remarkable nanomechanical characteristics and great thermal
stability. Along with its excellent corrosion resistance and strong adhesion strength, the
Al-N co-doped DLC is very attractive and is ideal as an alternative for surface coating
applications to be utilized in wear and tribological applications, particularly at high

temperatures or in corrosive environments.

5.2 Suggestions

The nanoscale mechanical characteristics, film adhesion, oxidation resistance,
and corrosion resistance of AlSI 4140 steel coated with non-doped, N-doped, Al-
doped, and co-doped Al-N diamond-like carbon films by the FCVA process should
be investigated. As seen in the preceding chapter, this PhD thesis includes research
and experimentation. It is anticipated that the information gathered in this research
will be beneficial and can contribute significantly to the advancement of knowledge

useful for future development or practical application. As a result, more research
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should be conducted under that section on particular facets. As a result, the following
suggestions are given for further research:

52.1 Experiments should be conducted to determine the appropriate
quantities of aluminium alloy and nitrogen and to investigate or measure the Al which
may react with N to produce an AN layer in the film layer.

5.2.2 The thermal annealing should be cyclically tested in range of RT to 700
°C for investigation the thermal stability of DLC film nearly the apply condition.
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APPENDIX A

THE XPS SPECTRA OF BEFORE AND AFTER CORROSION TESTING
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Figure Al. The C 1s XPS spectra and the corresponding deconvoluted Gaussian

peaks of the films before the corrosion tests (Wongpanya et al., 2022)
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Figure A2. The O 1s XPS spectra and the corresponding deconvoluted Gaussian

peaks of the films before the corrosion tests (Wongpanya et al., 2022)
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Figure A3. XPS spectra and the corresponding deconvoluted Gaussian peaks of the
films before the corrosion tests: (@) N 1s, and (b) Al 2p (Wongpanya et al.,
2022)
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Figure Ad4. The C 1s XPS spectra and the corresponding deconvoluted Gaussian

peaks of the films after the corrosion tests (Wongpanya et al., 2022)
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Figure A5. The O 1s XPS spectra and the corresponding deconvoluted Gaussian

peaks of the films after the corrosion tests (Wongpanya et al., 2022)
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films after the corrosion tests: (@) N 1s, and (b) Al 2p (Wongpanya et al.,

2022)
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Figure A7. The Fe 2p XPS spectra and the corresponding deconvoluted Gaussian
peaks of the films after the corrosion tests (Wongpanya et al., 2022)
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Table 1
FCVA depeoition conditions for te-C, 1-CN, ta-CAL und taCALN.
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IRA”- -

' g b s

® Cla,

= 23]
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Table 2
Vital persniters obtaiond Srom Rasman amalysic D and G pesks, FWHM (D), PWHM (G}, L/l ratia, L, sed o of h-C, G-CN, (5-CAL and 8-CAEN.
Sorapin Rarsan sralyss
G Pouie (e ) D Pek fem ') TWIM of G pek (o= '} TWITM of D penk fcm 1) LTy Tatie L, (mem) =GP
ac 1544854 137977 o 20543 010s sves aom
=N 155249 1380 55 way 2005 oo 13400 1Im
ST 15320 136715 Py 25753 azry 24.400 —z0n
3 CALK 154514 138434 Py FTLETY orez 1nms T
where C(514 am) = 0.0055. ber might be affe ‘b;me" d of
disoedered graphite (Le., §° dized carbon) ln the DLC and
,-zg[ ][—] 2 the low ALY/ oxide 2 d and P d lnto the
Al DLC-fitn matrtx [25]. n ad the Al crystal s fa d

where G is the shear modulus (70 GPa), v s Polsson's ratlo (=0.3), Au is
the shift in the G-peak Raman wavenumber, and oy is the Raman
wavenumber of the DEC sample, which Is the (not necessarily stress
free) refesence marerial.

Table 2 lists the Raman paramesers obtalned for ta-C, ta-CN, ta-CAL
ummmnymm;mmnmwmcpum
lower or higher d In/I, and dras-
ﬁuﬂywm(ﬁlmmhﬂmupwmw'

at 2y d carbon sites because L, (calculmed
mqrxl)mmmmmlmtmmpmu-m
[31,24,44). Remarkably, the L, values of the N-doped.co-doped and Al-
doped DILC films (Le., 2-CN/@-CAEN and ta-CAl) were double and
approximately quintuple thas of the non-doped DLC film, respectively.
The Increased Lo of the doped and co-doped DEC films depends on

d 1n/1g and d d FWEM (G) 145.51]). The Increased 11
was malnly d to the d sp”-hybridized carboa in
the aromaric-ring hereby reds the sp-hybeidized carbon

mmwwmmmw was corredated with the
Q’memdmmpdmmmmm
[47]. These results indicate thas high-I, doped and co-doped DEC fillms
(ie, 1-CN, ta-CAL a0d @a-CAEN) exhibised lower spr'-bybeidized
mmmm mndnprdmc Indicating w‘
toward the grag sp*-hybridized carbon strocoare in DEC
fldms doped and co-doped with Al and N.
Raman sp Py Is employed 10 fy the 4 stoess of
materials because Mmmm
1w aromic-vib
Mmﬁummkmmm WQB
quencies, it was appdied to estimate the Internal stress of the DEC films.
When the load was applied to DEC films, the constitoens atoms reversibly

hanged. Therefore., the P which d
the atomnic freq also charged because they ae relaasd
1w the Fer P g DLC-filon
mnﬂblnll.bcndl:l@m d and force nd

fre; both o d, and the h d when the ma-

wﬂmmm&nomhﬁ[ '~54L'l\el—sp¢m
clearty showed that doplng DLC films with caly N ar Al-N shifted the G
peak to higher wavenumbers (~ 155249 and ~1545.14 cm ) while
m;m«uymmmepdmh-uwm(vlm
em™ '}, Relative 10 the | dual stress of DLC, those
of a-CN, ommuM(mmqanmlm
~2056, and 0.102 Gi%a, resp ty. 7. G peaks
shifted to higher and lower b &My db
demnmﬂmm 52541
Furthenmare, the XPS specfra peesented in Section 30 iIndicae that
Incressing the compressive sress (6) a ga-CN and ta-CAEN [nduced the
carbon-banding structure 1o transiton from 710 7 -hybridized carbon

mxdal?hnemﬂunm;nndwmﬁﬂp\wn
previous studies [25,55]. The ta-CAl G peak shifted toward the Sower

coble (FCC), which hinders carbide formation in DEC films, thereby
allowing nanocrystal growth in the DLC matrix {51].

Fly. 5 shows a smooth and continnous amorphous film layer coared
00 the AIST 4140 surface. All the DLC-Ailm cress-sections observed using
FIB-FEM were In the range 100-250-am thick, and the films are ar-
ranged from kest 10 as foll 1a-C:N (230 am) > ta-C
(180.9 nm} > BCMN(IS‘.!ND)‘ ta-CAL (1139 am). Although the

dizi voltage, duty cycle, and dme) were
mummmxmmnmn the film thicknesses were
I b DLCA1lm thickness is regularly affected by the bonding
smm.mgmdm-mmnnummmm
arcmmatic rings aod by dopant composklon [27,31,34,5557). The
thickness of all the films depends on the | stress
d during al Film ok d with
mnmmmmmmmummmm
3 wiih &
listed In Table 2 ndshownlnh‘
qmmxmwmuwmmucpﬁkmg
o & higher which is with pe findings thaa
fitm thicks {ated with Raman sp dm(.u]
mmummwmmeux:mnuumak

o

explalned as follows. The 1a-C:N filos thick conld have
becanse of reactive N aoms as an additional d el in the
chamber. The high 4 stress of the ta-CN fidm mighs
Iuwhnnnumehlghn,phma during degp
27,47)- I the ta-CAL tvien snd Yhichmets wand

mlmmmw\q which may be because C and Al
loas had collided during coating; subsequently, fewer C Sons exhibited
sufficient energy 1o coat and form sp™-hybridized carbon bonds ca the
mwrmmmmﬁmmmcumm
carbide [25,51]. This g PP d by the highest
%mgmmmmmnmmumm»mum
doped DLC film (Ga-CALN) was approximately 26 nm thinner than the
noa-doped DLC film (1a.-C), the relative compressive stress of ta-C:ALN
uwnxumuwmummm
been due 10 the veduced e b CmdMInnsheuneme
N, pressure had increased from the base 30 3 » 10 % Pa in the coating
chamber during film growth and Al and N co-doplng [47,545). As peevi-
ously described for ta-CN, b N lons als d film d
ummmmnmmmmmmwmm
Fig. 4 shows the surface i of AISI 414D {foe both
before and after polishing) and all she DLC films measured using AFM.
There was no SIiC from the SIC paper embedded oo the surface as the
b was d exly. The surfa 2y (Ra) of AIS1 4140
mummulsmmmwammm:lm
cording 10 the ASTM E2546.07 standard [ 3], menticned that the
meﬂn&smnwhm:wyl&nm“mh
A% smooth 45 ks e value of average
mmlmtmmym&mum< 10 nm measured
over & 10 pm 1race. It might therefare say that the surfa 1ghy of
all samples in this stody rarely affected | prop: The
surface rough of al the ‘was nearly the same (Ra 6.4-8.8
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(a)

(L]

<)

()

Fig 3. FIB-SEM images of (#) -C, (5) 1-CN, () ta-CAL sed (d) -CAEN

nm), and the roughness of DLC films (Ra) was 8.4, 80, 8.8, and 6.4 nm
for ta-C, ta-CN, ta-C:AL and @.CIALN, respectively. Moosover, macno-
particies were detected an ta-C, while they were found rarely oo @-CN,
ta-C:AlL and ta-CALN. It meant that N and Al dopants remaarkably
decrensed macroparticles oo the DLC surface. The decrease In the
macroparticles was due 10 the collision between the dopants and mace
ropatticles. Then, the macroparticles were faflen and filterad by the
copper fiiter coll

32 Namomechanical propersies

Fig. 5 shows the load-displacement curves of all the DLC films. Noo-
smooth koad-displacement curves (discoatinulties) vepresented the high
dastic recovery (%ER) owing to the elastic-o-plastic defocmation
transition, as described in [59], and plastie deformation bands often
paralle! to the indentation edges at the low-load Indestations (applied in
this study).

The namomechanical properties of the DLC films—including hard-
ness (H), dastic modulus (£), plastic index parameter (Le., the ratio of
hardness to elastic modulus, H/E), and elastic recovery (S%ER)—were
evaluated using dentation testing. The elasticity of the DIC films
was estimared using the elastic recovery (%ER) obtalned from the

load-displacement cwrves shown in 777 5 and was calculated using the
following equatsoen:
GER - (“-—d_“‘—'] ) (&)

whete doy, and d,,, are the displacement at the maxisnum load and the
residual displacement after Joad removal, respectively.

As listed in T . the H and E of the ta-C:N, a-C AL and 6-CAEN
were 47.32 = 1.91 and 210.51 £ 4.82 3884 = 1.78and 159.65 = 394,
and 49.04 + 1.33 and 251.09 = 6.57 GPa, respectively, and were lower
than thase of poa-doped DLC (51.12 = 1.08 and 302.29 + 635 GPa,

respectively). Lower H and E correspoad to increased In/l; and L
attributed 1o Increased sp-hybeidized carbon boad comtent aod
decreased /9, & confirmed by the XPS spectra (Section 3.3).
Theredore, the nancenechanical properties showed that che DLC films
exhibited Increased graphitization and larger graphite clusters (L) with
increasing dopant content. Maoreover, the 5 -hybridized carbon bond
comtent significantly affected the mechanical properties of the DLC
films, espectally the ta-C film. The mechanical peoperties of the ta-C film
(Le, haminess surface smoothoess, atomic density, and Young's
modudus) all degraded with decreasing sp'-hybeidized carbon bond
comtent [27]. The # of the ta-CAEN was slightly lower than that of non-
doped DLC possibly owing o the NC diamoad phase [10] that had
formed In the co-doped DLC flim, as indicated by the peak at 124817
cm ¥ In Fly. 2. These resshis imply that doping the DLC film with Al and
N lmproved the hardness of the DLC film. However, all the DLC fims
enhanced the hardoess of the hare sieel (AIS] 41 40) substrate, as verified
by the Increased hasdaess from 3.3 GPa [60] for bare steed (AISE4140) 50
38.84 = 1.78, 47.32 + 1.91, and 49.04 = 1.33 GPa for 1a-CAl, ta-CN,
and ta-CALN-coated 4140 steed, respectively. In addition, DLC nano-
mechanical properties (7 and E) were above 38 and 150 GPa, respec-
tvely, compared with those of natural diamond (56-102 and 1050 GPa,
respectivedy), therely implying the deposition of high-quality DEC films.
These valoes are comsistent with others published fn the literanre
161,52); theredore, the films could effectively protect the substrase sur-
face from scratches and wear.

The clastic-plastic behavior and wear resistance of the DLC films
were considered through HAE and SEER [61). H/E, an Important
parameter that combinges doth properties, s used 1o mok materials in
which surface layess intensively deform during service, which i the so-
called elastic stradn o Gblure. Th DLC films g high H/E
also exhible high wear resistance [57], and such protective coatings
mighs be sultable for application to automobile parts. The a-CN, a-C:
Al and ta-C AN films exhiddted H/E values of 0.225 < 0.010, 0.243 +
0.013, and 0.195 = 0.007, respectively, slightly higher than that of the
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Fig 4. AFM topographies of (4) AL 4140, (5) (e, f6) ta-CN, (d) taLEAL fed (e) a-C AN,

1a-C film (0.169 £ 0.005), as Ussed in Tolie §, meaning thar although Al
and N doping might improve the elastic strale to (ailure, they also redoce
DLCfilm hardness. It is well known that typécal hard and adherent DLC
fims exhibit high elasticity and recovery owing 10 the relaxaton of the
clastic strain within the DEC stractare [64,65]. In addition, elastic re-
covery strongly depends ca the sp’-hybridized carbon band content
the film [67]. Therefore, the elastic recovery of the DLC films decreased
with increasing dopeat content, as indicated by HER daa led in
Table 3 Samilar 1o the wend In A, %ER & ranked in descending order as
follows: ta-C > a-CALN = ta-CN - ta-CAl correspanding o the -
hybridized carbon bond contens In the filsas. as confinmed by the XPS
analyss In Sevti . Vital properties such & the local bonding
structure and thenmal stabiliry are further discussed in subsequent sec-
thoas to consider whether doping and co-dopiag are approprisse for DLC
fims applied as procective coatings for wear and wribological applica-
thoms, especially for automobile pants.

3.3. Elemenial composioion amd chemicaf bonding strucoure

The elemental composition and chemical banding structure of ta-C,
@-CN, @R-CAL and 1a-C:ALN were quancified using XPS. Table 3 lisas
the ddemental compesitions of the films. Clearly, doping decreased the
atomie conceniration (ar %) of C from 90.01 for ta-C to 7923, 7820,
and 58.83 for w-CN, ta-C:AL and 1a-C:ALN, respectively, as lseed in
Takdc 4, and decreased the sp°-hybridized C-C content of the DLC films,
as shown in Fig o The N eantent was approximasely 11.21 and 14.12at.
% I W-CN and tCAIN, respectively, while the Al content was
approximagely 477 and 7.18 A% in ta-CAl and a-CAEN, respectively.
0 content increased with increasdog Al content possibily becanse O had
adsarbed on or boaded with Al on the film surface to forms an cxdde layer
when the films were exposed o alr [29].

The chemical compositions and bonding states of the noa-doped,
doped, and co-doped DLC films were measared using XPS, and the
essential C 15, N 15, and Al 2p peaks were detected in all the spectra, as
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1.504 Al 2nd a-CAEN, resp ly) and sp™-hy d C-C boads (at 284 92,
X @C_mg 284 80, and 285.02 eV for ta-C:N, 1a-C:AL and 1a-C:ALN, respectively)
1354 @-CN_avg were shifted o binding energles higher than those of their counterpan
i ECAL avg peaks (n the deconvolused spectrum for DLC, and all the peak positions
—~ 1207 wCAEN o wmmmmmmny reparted in the litera-
Z 054 tare {15,29,59]. The p of sp™-hybeidized C-C bands in the DLC
g ﬂmsﬂcamedrﬂn:hhlymeﬂ.m%tmntlowmmm
o 0904 for @a-CN and 12-CAL respectively, because the DLC films had been
g 0.754 doped with oaly one elemezt. In comtrast, the Al and N co-dopant syn-
=3 ergy was m is, the p ge of sp’-hybetdized CC bands
0,60 1 only slightly & d to that 1o the single-doped fidms, from
0.45 4 &OInmllhlumcmm.N,rqecm}y(hs ). These re-
. sults Indicated thar the p e of sp-hybridized C-C bands
0304 d d with g alloying Furth the d d
of sp™-hyh d C-C bonds ded to reduced hard-
0154 . v v + v v oga u(mmmwmmwmmna.MucAm
6 8 10 12 14 16 18 20 22 @-CAEN), as listed n Talle 3. Althoagh the decoavoluned spectra ob-
3 rained for ta-CN and ta-CALN exhibited high-resolution deconvaduted
Displacement (nm) C 15 peaks In ranges 285.50-286.54 and 285.20-287.45 eV (coeve-
Fig. S. Lowd displacermenn clitves of 11-C. t-CN, te-CAL and 16 CAEN. spoadiag to 57-hybeidized C~N and s’ hybaidized C-N bands, respec-
tvely), the spectra did mot exhibit any peaks corresponding to sp-
Table 3
Mecherical propertis of 16-C, B-CN, W-CAL and -CAEN.
Saczple Mochazical properdes
Mardsess, 1 {GPa) Dluic modsles, E{GPa) Plasic lndex pocameser, T Esatc recowery [WEX)
-C 31124 108 R 4 AT 0.169 « Q005 nDs & 193
»-ON rx.1m I0nl L4 63235 . aowe 5792 4135
»-cAl AR LT TSNS 4 3 0243 . api3 SOAT 4133
- CALN 4904 4 223 =1 L ew a1es . oy 843 L 1T
3 hybeidized CaN bands (Le, nitrtle groups) at 286.70 eV [38,35,66,70).
e G e ae - o 2 When DLC films are doped with N during coating, N significandy forms
::‘_dmmd' S L y vmmmmwm‘mmmcnm
- {sp*-bybeidizad C~N bands), umlmplu
Sarzple Atcezic Concwrzzation” (a9} (‘P’wu“ Cl\ DOMS) and umk
Cos NIs O N boads) §39, 18,19,66,71). ‘rmtm,m:q: and v’)C.hnndra-
poT= v = = = tios changed from 0.81 for ta-C 1o 0.49, 0.48, and 0.77 for ta-C:N, ta-C:
-CN 23 1na w5 - Al nﬂnw mpe:nvdy The Clssp sh d that the fra
-Cal 20 - 1703 A7 of sp’-hybeidiaed C atoms d d with & N and Al
-CAN - 1412 1987 T8 A 0 d d 8 (Tuble 3% mnm the decreased
* Alnmic cuncentratios was cadoliied wmsing Mk Spectriem ESCA Mveumhnuw’bomucndwlmmpmdedwmnd
software. larger sp”-bonded chusters (L) [72] and Increasing koI, as listed In
shawn In Figs. &5 The € 15 XPS specira were deccovoluted into d .u- g 9ol shavwcd: gnod spmamcnt wiih  the . i
N SR the lnalyls(s« oo 3.3) and hardness tests (Secrion 320
dq'x;L " ‘C‘C!DMMIMN.CMIS«-vél Bl & the di luted N 1s sp for ta-C:N and ta-CADN,
X - O e BN T b o ¢ Mmh; 7, exhibited three peaks in ranges 397.50-399.40,
shows peaks for the Clsspe of 1a-C, a-CN, e R
AL 2 b b 7S 399.10-400.60, and 40154029 eV & ta spr-hy N-
ta-CAl and a-CALN. In chiistatiytluted SEnciranu i, C, s hybridized NoC, and N-O bonds, respectively [29,59,56]. These

carbon-carboa % 3
corresponding to pure boads ar 283.5 and 284.19 eV Tl ith ng pol sy

were assigned 50 C-C boads (Le., 5 -hybeidized carbon atams) and C-C dine gt o
- {which exhihits - hybeidized C~N bonds and C 15 and N 1s peaks
bands (Le., C sp”-hybeidized carbon moms), while another peak in the &t 285.50 and 800.16 eV, resp y) and (which

binding energy range 286-288 eV was matched to C-OH, C-0, or C-0 e

MM s m“ ,. P itieg oot Bl C-N bands and.C 15 and N 15 peaks at 286.9 and 399.40

xd 8 m = lalhtl.-‘l eV, respestively) [G0). In taONand ta-C:ALN, N aoms are mainly
nwm-boungmm1:;..1.3».47.:-&».-..m.mm v e “"""""’"“"""“’“"““"‘:‘: et
C 15 pesks obtained for - bybetdized CC and p*-hybridized C-C e 2 28

atoms (p-hybridized N-C bonds)/(sp™-hybridized N-C bonds + sp™
hybeidized N-C bands) changed from 028 ro 0.89, as shown in F1p 7.
Mare 7 fiyhridizad N-C bonds In DLC films, especially ta-CN, signift-

bands were slightly shifted beeause double boads are slighdy shorter
than single onesx; theredore, the charge density (arcund the C atom)

mvcddm«mmec.hmxmdn:ln{t.&‘pm&mmmnmu«l SN fediea the. el ~ M’PJ._ ded N and C atoms
In the * hybridized C~C bonds, ng the S | || o aile N dbping reduced the number of dangling bonds in the aromatie
of the € 15 coce Jevel [15]. In the decoavoluted spectra foe @-CN, -G n8 : it

ring {29]. In addition, the weak peak at 282 2 eV In the C 15 spectra for
n-cMnMn-c.ALNMnoM—o-cbmﬁ.whkhn!dnh
due to air and oxygen [ 73]

W

AL, and ta-C:ALN, the & Juted C 15 peaks obcatned foe s -hy-
bridized C~C bonds (s 284.54, 284,38, and 284.42 eV for a-CN, ta-C
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Fiy. § shows the peaks in the decomvaluted Al 2p spectra for ta-C-A
and ta-CALN. In the spectram for ta-CAL peaks a¢ 72.54 and 74.24 ¥
were assigned 10 AJO; and Al;O;. ely, while the sp for @-
CAEN exhibited coly one peak at 74.24 eV. The relative fraction of
A0z ALOVIALO; + AlO,) was 0.76 and 1.00 for ta-C-Al and ta-C-AX
N, respectively, as shown in Fig. 8. Notkceably, the most stable

.Imm-anu(M;D,)l 4] was presemt In 1a-CALN, whereas
(AlO,) d with ALO; In ta-CAJ (29,735,751

ALD, has been widely mwwummmw&mwu

mllsudlncmu'-'-k p b of s excell

memalmully.ndm
W[?h"'f] Hnwaer.doplngmcmmanlyuwm
compressive stress (o) and hardness (H), which are vital properties for
tribological app suuch a5 adh and wear owing to
the aof I

fewer sp'-hybeidized CC bands (without
any sp-hybeidized N.C. bonds) in the films, as repored in a peevions
study (27). This resuls suggested that single-doplag DLC films with oaly
# low alumizum costent (e.g., 4.77 at.% in this experiment) decrensed
hardness and degraded the mechanical peoperties. In contrast, the: syn-
ergy berween Al and N i0 ta-CALN matotained ¢ and H—both necessary
foe adh and wear which might be b N atoans
mainly formed sp.hyb N-C bonds with AlO3 In ta.C:
ALN, except for ta-CAL which does not contaln any sp™-hybridized N-C
bands but does contaln a mixture of AJO, and Al:O;. Therefore, altering
the DLCAilm banding structuses, especially carbon-casbon bands, and
the thermal stability changes when DLC films are co-doped with Al and
N will be further [ovestigated In Section 4.

34 Thermual stbiliy

The local atomic structures of ta-C, CK, 1a.C:AL and ta-CAEN
were evaluated using in.sita high-temg spe Py

~ € K-edge NEXAFS L ALN
g (a) sevnnnes Experimental data
E — Sublracted data
_g s Frror funcion stepy
z

w

=

2

g

E’ — Cumulative data
'ﬁ s Deconvoluted data)
=

bl
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Z
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Photon energy (eV)
Fig. 9. sesity NEXAFS C K-edige speceruen geoened foc ta-C:

AEN (4) price 10 dats sultractios (where error fusction step was applied to it
-ﬂumuhmn—p‘hl.nhﬂnnd-c-')ummm
(where wan s dused into multiple Guusdan peaia).

by the fallowing statex C 15 — 2* (C=Q), x* (C~N), 2*

(C~OH), o* (CH), a* (CN), =* (C~0) or £* (C=C), 6* (CLC), and 0"
(C~C), resp ly [£9,81) Other high resonances desected at ~297.8

mmmmﬂwqorm.cnmmnw* Uy led
In the range 200-700°C i 100 - C increments. Fig. omucx«m
mmgmwﬁum:nmwwm
d by sy ly. the
Memn m4¢vma-lmnamnmunnmcu
mmempdrnmo(me * bybeidized C-C site, Includin % the
¥ telpunu\”x.i"l For the
hlgncnefgyedgg.me mmngnmm-asssﬂ
upied " states at
,-.41’ up’aymmmnmucmmrsl The intermediate
distioguished between the =* and o states at ~285.1, 2859,
286.3, 2587.6, 287.7, 2885 2896, and 293.7 ¢V comesponded to

and ~ 3043 eV errib oCls < to the o* (C-0) and 0*
(CC) states, respectively (75,91 ). Because hydrogen was ahsent during
MAdqmmr(cmmmwmmhydmpnm
tion of the auface carbon dangl us(l:
wmmumompummmmr(c-o)
states [7580,81).

“To evalisate the sp?-tybeidized bond content i a sample, the peak
.-Mbrhrcu-l'wmmm--—mle\rmbe
mnmmcu-o-mmmmmm.aas:v.msp.
hybridized bond fraction can then be caleulated ustng the %
equation [75,79,82]:
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where “2*" denotes the position of the C 15 — 2* tmnsitions (e, C~C
bands), “total” assigns integration areas calculated under the spectrem
1o binding encrgies in the range 288335 eV, and “sam” and “ref” define
deconvoluted peaks for a sample thin flm and a reference sample

(highly orlented graphlve (HOPG)), respectively.

Fig. 10 shows the insitu C K-edge NEXAFS spectma for ta-C, -GN,
n.cALanduc.MNnnwmumnynnwnpm7m 'C. The
@ sight s
inds ‘bythe I f in, mumennmkbnm
mammnscdgqulywhmd:emmmlmdﬂ)wuw
A RT, the p*-hyhridized bond fractioas of the ta-C, ta-CN, ta-C:AlL and
1a-CiALN fidms were 0.34, 0.39, 0.55, and 0.36, respectively, i shown in
Figs. 10 and 11 Doping with only N or Al cleady induced the foemation
of g nx..?’“‘ d) bonds (called “graphitization™), as
lndk.adbymesp -hybridized bond fractions, while co-doping with
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rmnge. Although the P -hyb bond fra of a-CAIN
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