พัชรวีร์ ประทุมรัตน์: แบบจำลองสหสัมพันธ์อัตราการนำทิ้งความร้อนในคอยล์เย็น ระบบปรับอากาศของรถยนต์ (CORRELATION MODEL FOR HEAT REMOVAL RATE IN AUTOMOTIVE AIR CONDITIONING EVAPORATOR) อาจารย์ที่ปรึกษา: ผู้ช่วยศาสตราจารย์ คร.กีรติ สุลักษณ์, 93 หน้า.

คอยล์เย็นเป็นอุปกรณ์แลกเปลี่ยนความร้อนระหว่างอากาศกับสารทำความเย็นของ ระบบปรับอากาศในรถยนต์ ในการออกแบบอุปกรณ์ถูกค้า (ผู้ผลิตรถยนต์) ต้องการอุปกรณ์ที่ให้ อัตราการแลกเปลี่ยนความร้อนที่เพียงพอและมีขนาดเหมาะสม ภายใต้เงื่อนไขการใช้งานที่กำหนด อาทิ ความคันลดของน้ำยาทำความเย็น ความเร็วลมที่ใหลผ่านคอยล์ เป็นต้น ในขณะที่ผู้ผลิต คอยล์เย็นนอกจากต้องออกแบบอุปกรณ์ให้ได้สมรรถนะตามที่ถูกค้าต้องการแล้วยังต้องควบคุม ต้นทุนในการผลิตด้วย บทความนี้นำเสนอแบบจำลองสหสัมพันธ์ที่ใช้ทำนายความสัมพันธ์ระหว่าง การนำทิ้งความร้อนและขนาดของคอยล์เย็นรถยนต์ ความกว้างและความสูงของแผงคอยล์เย็น ถูกแปรค่าทั้งหมด 16 ขนาด แต่ละขนาดถูกทดสอบภายใต้ขอบเขตการทดสอบ 2 แบบ ก่อให้เกิด กรณีทดสอบทั้งสิ้น 32 กรณี ผลการทดสอบถูกนำไปปรับเทียบกับฟังก์ชันทางคณิตศาสตร์ เพื่อสร้างแบบจำลองสหสัมพันธ์ จากนั้นแบบจำลองที่ได้ถูกนำไปตรวจสอบความคลาดเคลื่อน กับแบบจำลองที่ได้จากผลการทดสอบพบว่า แบบจำลองสหสัมพันธ์ที่ได้มีความคลาดเคลื่อน เท่ากับ 1.01% สำหรับภายใต้ขอบเขตการทดสอบที่ 1 และ 0.30% สำหรับภายใต้ขอบเขต การทดสอบที่ 2

สาขาวิชา <u>วิศวกรรมเครื่องกล</u> ปีการศึกษา 2563 ลายมือชื่อนักศึกษา <u>ห์กรารี ประกานโดน</u>์ ลายมือชื่ออาจารย์ที่ปรึกษา รู้ PATCHARAWEE PRATHUMRAT: CORRELATION MODEL FOR

HEAT REMOVAL RATE IN AUTOMOTIVE AIR CONDITIONING

EVAPORATOR. THESIS ADVISOR: ASST. PROF. KEERATI

SULUKSNA, Ph.D., 93 PP.

CORRELATION MODEL/HEAT REMOVAL RATE/AUTOMOTIVE AIR

CONDITIONING EVAPORATOR

The evaporator is the device that performs as a heat exchanger between air

and refrigerant in the vehicle compartment. To design this device, the customer and

manufacturer typically require its specifications containing appropriate heat removing

rate and proper size under the control conditions. For example, the pressure drop

of refrigerant and wind speed are the necessary conditions demanded. Besides,

the manufacturer also needs regulating the cost unless the efficiency of the machine.

This article represents the correlation models to predict the relation between the heat

removal and the core size of the evaporator. The model has been developed utilizing

experimental results of the cross-sectional area of the evaporator, which evaluated

by 16 sizes. The various size was characterized under the two control conditions

resulting in the amount of 32 cases in overall. All results were compared with and

converted to mathematical function and correlation models, respectively. The models

were verified for error with correlation equations which were 1.01% and 0.30% for

condition 1 and 2, respectively.

School of Mechanical Engineering

Academic year 2020

Student's Signature Potcharawee

Advisor's Signature Leave 4