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CASSAVA MOSAIC DISEASE (CMD)/BASIC REPRODUCTION NUMBER
LOCAL STABILITY ANALYSIS/GLOBAL STABILITY ANALYSIS/OPTIMAL

CONTROL;

Cassava Mosaic Disease (CMD) is a plant disease that reduces tuber size and
starch percentage upstream in cassava supply chain, leading to sales decrease of
cassava crop. The aim of this study is to develop a mathematical model that represents
dynamics of CMD caused by the whitefly or planting infected cuttings. Dynamics of
the cassava and the whitefly populations can be traced using the proposed model. There
are four plant states: tolerant, susceptible, exposed, and infected and two vector states:
susceptible and infected. The model is used to analyze the behavior of CMD outbreak
and the optimal control policy can be determined by the proposed model.

Severity of CMD spread is assessed by basic reproduction number (R,), which
is calculated by using the next-generation method. The locally-asymptotically-stable
disease-free equilibrium point is established when R, < 1, using the Routh-Hurwitz
criteria. The globally-asymptotically-stable disease-free and the endemic equilibrium
points are established using Lyapunov-LaSalle’s Theorem. Results indicate that
disease-free equilibrium point is globally-asymptotically-stable and R, < 1, implying
that the disease can be controlled. However, the disease will persist if the endemic

equilibrium point is globally-asymptotically-stable and R, > 1.



v

Sensitivity analysis is used to evaluate all parameters for cause of disease
spread. A parameter with the highest absolute value of R, signifies the critical cause
of outbreak. Numerical results show that reducing the number of whitefly by spraying
pesticide, rouging infected cassavas, selecting non-virus cuttings, or promoting tolerant

cuttings helps containing the disease and reducing the severity of the outbreak.

However, there is no clear cost-effective approach to control disease spread.

The most cost-effective policy is determined using the optimal control theory
and average cost-effectiveness ratio analysis (ACER). Results suggest that the
combined method of tolerant cuttings, spraying, and rouging is the most cost-effective
policy with ACER = 1.643. Numerical simulations indicate that limiting transmission

of whitefly-cassava and vice versa are therefore the key policy.
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CHAPTERI

INTRODUCTION

1.1 Background

Manihot Esculenta is a kind of tuber crops, commonly called cassava or tapioca
in English and manioc in French. Cassava has been grown in many areas around the
world, especially in the tropics. According to a bank of Thailand annual report (2017),
global production was approximated 270 million tons with 30% from the African, where
Nigeria is the world’s largest producer. Cassava yields in Thailand is about 30 million
tons per year which account for 9% of global production. According to Khandare and
Choomsook (2019), an average the total export value of cassava of Thailand was
94,845.33 million baths during the period from 2010 to 2018.

In 2018 to 2019, the cassava production in Thailand decreased sharply due to
cassava mosaic disease (CMD). CMD is a plant disease that reduces tuber size and
starch percentage upstream in the cassava supply chain, reducing sales of the cassava
crop. This leads to downstream economic impacts since cassava is a major industrial
raw material.

CMD was found in the African continent in 1894 in Tanzania. It was first
reported in Uganda in 1920, resulting in great economic loss. There was no outbreak
reported of CMD for many years until the outbreak appeared again in Uganda and

Kenya in the late 1990.



An CMD outbreak hit Southeast Asia in 2016, mainly in Cambodia and Vietnam
(Wang et al., 2016). This disease was spread to Thailand through imported virus-
infected cassava cuttings in 2018 and the outbreak was found in major cassava growing
areas, such as Nakhon Ratchasima, Sa Kaeo, and Buriram provinces. The timeline of

global CMD outbreak is shown in Figure 1.1.

1894 1990 2009 2018
TANZANIA UGANDA AFRICA CONTINENT THAILAND
+ FIRSTREPORT OF CMD WAS FROM CMD EPIDEMIC IN UGANDA MANY EAST AFRICA + THAILAND, FOUND THE
TANZANIAIN 894 BEGINSAGAIN COUNTRIES IMPACTED BY DISEASE IN 2018

+ EPIDEMICS HAVE OCCURRED THROUGHOUT
AFRICAN CONTINENT, RESULTING IN GREAT CMD

ECONOMIC LOSS —

02 03 "f"‘. — (o8 @ o7

UGANDA KENYA CAMBODIA &VIETNAM

CMD RECORDED IN UGANDA CMD FIRST REPORTED FROM = FIRST OF SEA, FOUND IN

KENYA SIGNALS A REGIONAL CAMBODIA, 2016
PANDEMIC = THE DISEASE RAPIDLY SPREAD
INTO THE SOUTH OFVIETNAM
1920 1997 2016

Figure 1.1 Timeline of global CMD outbreak. Source: Wang et al. (2016),

Macfadyen et al. (2018)

CMD has caused epidemics in numerous plantations worldwide when proper
control measures were not taken (Banito et al., 2010). The financial losses due to CMD
in the African continent were estimated $1.2 — 2.3 billion in 1997 (Thresh et al., 1997),
increasing to $1.9 — 2.7 billion in 2009 (Patil and Fauquet, 2009). Thottappilly et al.
(2003) identified 23 virus species that cause diseases in cassava:

e ten species from genus Begomovirus, Geminiviridae family

e two species from genus Ipomovirus, Potyviridae family

e three species from genus Potexvirus, Flexiviridae family

e two species from genus Nepovirus, Comoviridae family

e one specie from genus Oryzavirus, Reoviridae family



e two species from genus Ourmiavirus
e one specie from genus Nucleorhabdovirus, Rhabdoviridae family
e one specie from genus Cavemovirus, Caulimoviridae family

e A further one type that is still in the identification stage.

The genus Begomovirus is the most virulent family due to its strong genetic
diversity. It has caused significant damage in Africa and parts of Asia. Without proper
study and control, this family could trigger a worldwide pandemic. CMD is spread in
two ways: by the introduction of infected cuttings or by the whitefly (Bemisia tabaci).
After acquiring the virus from an infected plant, the whitefly becomes infective in a
three-hour period. The hatching or latent period of the virus in the whitefly vector is
approximately eight hours and the time for virus transmission to a healthy cassava leaf
is at least 10 minutes. If an infected cutting is introduced, the symptoms of CMD will
appear within three months. If infection is through the whitefly vector, symptoms will
appear in 2-3 weeks. They begin with of distortion and crinkling of leaves, followed
by the color changing to mosaic. This resembles polished stone, as shown in Figure
1.2(a). Leaves become pale yellow and the whole plant is shorter than a healthy plant,

as seen in Figure 1.2(b).



()

Figure 1.2 (a) Cassava leaves symptom caused by CMD and (b) infected

cassava in a farm

Cassava is propagated by transplanting stems. CMD may proliferate rapidly if
the farmer does not check whether the transplanted stem is virus-free. An infected stem
is a potential source of inoculum for the whitefly. The progression of the outbreak
depends on the replanting rate and the population of whitefly. Whitefly populations can
increase rapidly when temperatures are between 27 and 32 °C and conditions are dry.
However, outbreaks are more serious when infected but symptomless stems are
transplanted. Whitefly generally does not migrate far from its habitat. If there are a
great number of whiteflies in the area but the plantation is virus-free, no infection will

occur. The CMD outbreak process is shown in Figure 1.3.



i Infected by infected cassava i

Infected whitefly

..............................

Figure 1.3 CMD outbreak flow

1.1.1 Outbreak prevention and control of CMD

CMD control involves (1) eliminating infected cassava from the
plantation area, (2) promoting the use of virus-free cuttings, (3) using tolerant varieties,
or (4) killing infected whitefly (Thresh et al., 1997, Legg, 1999). The first approach is
widely used, but reduces the crop yield. The government of Uganda promoted the use
of virus-free cuttings in all plantation areas and enacted laws to punish those who
released cassava infected with CMD. This was shown to be highly effective in disease
control (Jameson, 1964). However, a shift in enforcement policy by a new government
led to repeated epidemics of CMD up to the present. The third approach was developed
in 1971 by the international institute of tropical agriculture (II'TA), which created CMD-
tolerant cassava varieties. However, tolerant varieties become vulnerable to evolved
species of virus after approximately 20 years. At present, there is no reliable approach

to eliminating the CMD but the best is to limit the outbreak area.



1.2 Problem Definition

CMD epidemics negatively impact the overall global economy. Thailand, as
the world’s largest cassava exporter, is exposed to the same risks. In 2016, 2017, and
2018, Thailand’s earning from exports of cassava products were $3,294,210,
$3,048,070, and $3,179,190, respectively.

In 2018, the outbreak was spread into Thailand by farmers who imported and
planted virus-infected cassava stems. When whiteflies acquired the virus from the
infected plants, they spread the outbreak to Thailand. Currently, the only way of
containing the spread is either to remove the infected cassava plants or use pesticide
spray to Kill the whitefly. However, this imposed financial losses on the farmers, due
to lower cassava yields. The Thai ministry of agriculture and cooperatives decided to
pay compensation to farmers with no clear policy for controlling and containing plant
diseases ($40 per 400 m?, with a limit of 12,000 m? per farmer). This allows the outbreak
to spread rapidly, causing serious economic losses.

However, it is possible to apply methodologies from human epidemiology. This
involves: (1) collecting of relevant statistical data, (2) compilating and analyzing of the
data, and (3) interpretating of the data. The results are forwarded to planning and
prevention units, which select measures for countering the spread of disease.
Comprehensive data collection and analysis are equally essential in detecting and
preventing the spread of plant diseases. Appropriate plant prevention measures may

strengthen the economy and support farmers’ incomes.



1.3

Research’s approach combines the fundamental principles of epidemiology,

systems engineering, and operations research. The predicted outcome is to develop

systems for plant endemic control.

CMD outbreak. The conceptual framework underpinning this research is illustrated in

Figure 1.4.
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Figure 1.4 Framework of research

1.4  Systems Engineering

Incorporating a concept of systems engineering to epidemiology study allows

us to envision a bigger picture that may reflect the clearer analysis of cause and effect

of the CMD outbreak. The important task in systems engineering is to define and

connect all relevant sub-systems as well as to provide methods to fulfill objectives of

the defined system (Kossiakoff et al., 2011).



In order to clearly empathize epidemiology system of the CMD, it is essential
to understand the cassava cultivation process, which can be categorized into 6 activities
as follows:

(1) Selection of suitable land for cassava cultivation

(2) Cassava stem preparation

(3) Planting cassavas

(4) Weeding the cassava plantation

(5) Fertilizing the cassava plantation

(6) Harvesting cassava tubers

The main objective of planting cassava is to obtain tubers that meet expectation
of the consumers. Incorporating requirements from the demand side as input
information together with connecting all cassava cultivation process into a system
express flows of information, products, and finance. They help us visualize the effect
of the outbreak as well as find the better ways to contain the spread of disease by
selecting appropriate control policy. The system flow of cassava cultivation is

illustrated in Figure 1.5.
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Figure 1.5 Structure of cultivation systems shows relationship between

activities and flows of information, product, and finance

1.5 Epidemiology

Epidemiology is the study and analysis of the distribution (who, when, and
where), the frequency and the determinants of disease conditions in any defined
population, such as people, animals, or plants (Charlton, 1996). Any outbreak was
generally started by some factors and any disease has some certain parameters to contain
the epidemic. Systematic study among different population groups at different time
periods is required to unveil these parameters. Epidemiology is useful for disease
surveillance, investigation the cause of disease, evaluation methods of treatment, as well
as creating preventive measures.

This research incorporates epidemiology to study the process of CMD outbreak

in order to identify risk factors of the outbreak and determine key factors to control the
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spread, as well as to conduce to the establishment of appropriate policies to contain
epidemic of CMD.

A CMD outbreak can be spread in two ways (Bock and Woods, 1983, Legg,
1999):

(1) by whitefly transmission, and

(2) by planting of infected cuttings.

From the works of Thresh and Otim-Nape (1994), Bock (1994), and Legg and
Thresh (2000), the authors reported that CMD outbreaks can be controlled in four ways:

(1) by removing infected cassava from the plantation,

(2) by promoting the use of virus-free cuttings,

(3) by using tolerant varieties, or

(4) by killing infected whitefly in the plantation area.

1.6 Operations Research

Operations research (OR) applies mathematical techniques in decision-making
process of various operations in the organizations. OR is a quantitative method to
determine solutions that helps management of any organizations. (Rardin, 1998). Study
of this research focuses on severity of the CMD and prediction of outbreak patterns to
monitor and control the epidemic. Generally, outbreak patterns are simulated as various
Markov models such as SIR, SEIR, and SI models (Markov, 1971). The Markov model
is typically used to represent any systems with stochastic transition stages. It is assumed
that future states depend only on the current state, not on events that occurred before
current stage. The prediction of future stages depends on transition probability of

current stage to stages that follow.
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OR tools are used to formulate the structure of the cassava cultivation system
and important factors of spread and control into a mathematical model. This research
studies the dynamics of CMD outbreak caused by two factors: whitefly transmission
and planting of infected cuttings. It can be controlled by four factors: spraying
insecticide, rouging infected plants, selecting uninfected cuttings, and promoting

tolerant cuttings.

1.7  Gap of This Study

The main objective of this research is to construct a mathematical model for
CMD outbreak prediction and prevention. All relevant parameters were set with
reference to real world, set by applying the principles of epidemiology, systems
engineering, and operations research. Unfortunately, data collection in Thailand has
been divided among different agencies and cooperation has been poor. It is therefore
difficult to use the data to predict and prevent plant disease outbreaks.

There are quite a number of studies in the literature that focus on mathematical
model development for the spread of cassava mosaic disease virus in Africa such as
Holt et al., 1997, Kinene et al., 2015, Bokil et al., 2019, and Magoyo et al., 2019. The
planting conditions reviewed in these studies are similar to what is done in Thailand.
Therefore, all parameter values and ranges are also assumed to be the same as those in
the reviewed literature.

To develop a model that represents the dynamics of CMD outbreak. State
variables of cassava and whitefly populations are divided based on the dynamics of
CMD outbreak and the control mechanism. Holt et al., Kinene et al., and Bokil et al.,

formulated mathematical models for vector-host dynamics using a non-tolerant cassava
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state. Magoyo et al.’s model focused on the effect of promoting the use of tolerant
cuttings in an outbreak area, which was not found in earlier models. However, latent
class was not studied in Magoyo et al.’s work.

1.7.1 Latent cassava

Latent cassava is an infected cassava but asymptomatic. In practice,
symptoms of CMD take 2-3 weeks to appear (Fargette et al. (1994)). Thus, during this
time period latent cassava will spread virus. Jittamai et al. (2021) extended Bokil et
al.’s model by adding latent state in order to analyze the comparative contribution of
whitefly transmission and planting of infected cuttings. They concluded that the
severity of CMD outbreak is high due to asymptomatic cassava, which cannot be easily
detected and removed from the plantation area. However, tolerant cassava was not used
in Jittamai et al.”s work to control this disease spread.

Promoting tolerant cuttings may limit the severity of CMD spread due
to the latent cassava in the plantation area. Therefore, this study extended Jittmai et
al.’s work by adding a tolerant state to study the severity of CMD outbreak and to
determine the most cost-effectiveness policy. States and descriptions of cassava and

whitefly populations assumed in this study are listed in Table 1.1.
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Table 1.1 States and descriptions of cassava and whitefly.

State Description

Tolerant cassava

Cassava plants that resist CMD (tolerant cassava)

Cassava plants that are susceptible to infection with CMD

(healthy cassava)

Exposed cassava

Cassava plants that exposed to CMD (infected but

gLy asymptomatic)

Cassava plants with CMD symptoms

Susceptible whitefly vector (uninfected whitefly)

Infected whitefly

I, Infected whitefly vector

1.8  Objectives of The Research
The main objective of this research is to develop an epidemic model based on
CMD outbreak and cultivation system in Nakhon Ratchasima province, Thailand,

which has the largest cassava growing plantation in Thailand. The model results can be
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used as guidelines for reducing the severity of CMD spread and maximizing incomes,
yields, and profits. The following objectives will be fulfilled:
e Analyze all relevant factors contributed to CMD outbreak and assess factors that
help control the spread.
e Develop a mathematical model to analyze the dynamics of CMD outbreaks with
consideration latent and tolerant states.
e Select of optimal policy that maximizes economic benefit that yields the

minimum number of cassava plants infected.

1.9  Organization of The Research

The rest of the research is organized as follows. Chapter Il reviews related
works of epidemic and optimal control models used to determine optimal policies to
control the outbreak. Chapter Il shows CMD outbreak model formulation. Chapter
IV presents an optimal control policy. Chapter V provides discussion and

recommendation of the future works.



CHAPTER 11

MODEL DERIVATION

2.1 Models and Notations

An epidemic model is used to study the dynamics of CMD outbreak. It isolates
infection factors that have a major impact in an outbreak. The output may be used to
formulate optimal strategies for the outbreak. The most important concepts of epidemic
models can be demonstrated using SIR model.

The basic model consists of three different compartments: Susceptible (S),
Infected (1), and Recovered or Removed (R) in a population. In the model, all these state
variables are differentiable functions in time t > 0. The definition of state variables is
as follows.

e Susceptible population (in large population is denoted S): Susceptible

population in the large population that has not been infected but it is at risk
of becoming infected. When it has contracted an exposed population or an

infected population, it will become to exposed population.

e Infected (in large population is denoted I): Infected population has been

infected and show symptomatic. It can infect susceptible population.

e Recovered or Removed (in large population is denoted R): This population

has been recovered or removed (or died) from the disease.



16

2.1.1 SIR model
The first compartmental model was presented in 1927 by Kermack and
McKendrick (Kermack and McKendrick, 1927), and it has played a major role in
mathematical epidemiology. The model includes three state variables S, I, and R. The
model, which is a system of ordinary differential equations (ODESs) with three state
variables (as shown in Figure 2.1).
Definition 2.1: (Ordinary differential equations; ODEs) Consider a dynamical system

which satisfies

Z=fxt) forall t > 0. 2.1)

x(ty) = xo forall t; > 0. (2.2)

where x € R™, f is a given nonlinear continuous function in t where t € R*. Assume
that f(x, t) satisfies the standard conditions for the existence and the uniqueness of
solutions. The nonlinear system (2.1) is said to be autonomous if f(x,t) does not

depend explicitly on time, i.e., if the system can be written as

&= £(x). (2.3)

dat

The system is called non-autonomous (Allen, 2007).
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e Susceptible state Y Infected state Recovery state

kST 124
LST [ —_— R

N

Figure 2.1 Flow diagram of SIR model

ODEs of SIR model are

s _
ar

&= st~ 11, 2.5)
4R _ o1 (2.6)

where k is the rate of infection or the contact rate, ¢ is the rate of recoveryand N = S +
I + R, where N is the total population. In their study, the total population was fixed,
while k and ¢ were constants. The success of the model was the beginning of
developments in mathematical modelling of cassava mosaic virus diseases.

2.1.2 SEIR Model

As discussed above, an improved version of SIR model will be more
realistic (Jeger et al., 1998, Kinene et al., 2016, Jittamai et al., 2021). A system is a

SEIR model, which includes four state variables S, E, I, and R.
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e Exposed (in large population is denoted E): Exposed population has been
infected but not show symptomatic (latent stage). It can spread a disease to

susceptible population.

The flow of the SEIR model is shown in Figure 2.2

/" susceptible state Exposed state Infected state Recovery state

kSI

_ ! R

Figure 2.2 Flow diagram of SEIR model

ODEs from Figure 2.2 become

= = —ksI, (2.7)
& = kSl - ak, (2.8)
L =aE -1, (2.9)
==, (2.10)

where « is the rate of development to show symptomatic. Since a latent state is not
show symptomatic. It can rapidly spread virus to healthy population and increase the
severity level of the outbreak. The SEIR model is used to study the dynamics of disease

spread with more realistic. The CMD model of this research is developed based on the

SEIR model.
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2.2  Methodology of Mathematical Model Development

Research contribution helps to investigate a most cost-effectiveness policy for
disease limitation. It should help farmers by increasing cassava production and profits.
A CMD outbreak model can be constructed by following three steps:

(1) Determine infection and control factors. These factors contribute to a
CMD outbreak and estimate the prevention of the outbreak.

(2) Formulate a mathematical model. A CMD outbreak model is constructed
by formulating infection factors as parameters. This yields ODEs of the system, which
can be used to calculate the rate of changes of the population from any state to the other
state.

(3)  Analyze the stability of the system. The realistic of the dynamics of the
outbreak is proved by analyzing the stability of equilibrium point of the system.
Definition 2.2: The equilibrium point is a constant solution to ODEs. The equilibrium

point is obtained by zeroing the right-hand side of Equation (2.3) (Kinene et al., 2016).

Definition 2.3: A state x is an equilibrium point of the system if f(x) = 0. Intuitively
and somewhat crudely speaking. Suppose that an equilibrium point is stable if all
solutions which start near x (meaning that the initial conditions are in a neighborhood

of x) remain mean x for all time (Allen, 2007).

Definition 2.4: The equilibrium x is stable if all solutions starting near x tend towards

x ast — o (Allen, 2007).

The CMD outbreak model admits two equilibrium points are the disease-free

equilibrium point and the endemic equilibrium point.
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Definition 2.5: The disease-free equilibrium point (DFE) is a steady-state solution

when there is no disease in a population (Allen, 2007).

Definition 2.6: The endemic equilibrium point (EE) is the steady-state solutions when

the disease persists in the population (Allen, 2007).

Basic reproduction number (R,) is one of the most important concerns about
any infectious disease is its ability to invade a population. Therefore, R, is used to
prove the stability of the DFE or the EE of the system.

Definition 2.7: (Basic reproduction number; R,) The value of R, is the number of
secondary infections caused by one infectious individual during the individual’s
infectious period. If Ry < 1, the disease cannot invade the population, but if R, > 1,

the invasion is always possible (Hethcote, 2000).

The decision flow of the mathematical model analyzing as shown in Figure 2.3
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Figure 2.3 Decision flow of the mathematical model

This thesis presents the stability analysis of the system at the DFE and the EE

by using the Routh-Hurwitz criterion and Lyapunov theory. The local stability of the

DFE is proved by Routh-Hurwitz criterion. The system is locally-asymptomatically-

stable if R, < 1 and unstable if R, > 1. The global stability of the DFE and EE are

proved by Lyapunov’s method. When R, < 1, the DFE is globally-asymptotically-

stable. If R, > 1 then the EE is globally-asymptotically-stable.

2.3

Basic Reproduction Number

Definition 2.8: The Jacobian matrix J is a matrix formed by the first-order partial

derivatives of scalar functions with respect to a set of independent variables. If all

partial derivatives of f: 2 c R"™ —» R™ exist at x € 2, then the Jacobian matrix of f at

X is
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df; . O0f1 _ ofi ]
a_xl(x) a_xz(x E(x)
f; —. 0fy _ f; —
J=(f) = a_xl(x) a_xz(x) E(x)
Of . Ofn . Ofm _
_a_xl(x) a_xz(x) E(x)-

(Gradshteyn and Ryzhik, 2000).

The Jacobian method used for an epidemic model yields a biologically
reasonable R,. However, for more complex compartmental models, especially those
with more infected compartments, the method is hard to apply as it relies on the
algebraic Routh-Hurwitz conditions for the stability of the system. R, can be derived
from the spectral radius of the next-generation matrix proposed by Diekmann et al.
(1990). It was also determined by using an ODE compartmental model from the next-
generation matrix proposed by van den Driessche and Watmough (2002).

Let x = (xq, x5, ..., x3)T be the number of individuals in each compartment,
where the first m < n compartments contain infected individuals. Assume that the
DFE x, exists and is stable in the absence of disease, and that the linearized equations

for x4, ..., x,,, at the DFE decouple from equations of other equilibrium points. Consider
these equations written in the form % = F;(x) = V;(x) fori =1,2,...,m. In this

splitting, F;(x) is the rate of appearance of new infections in compartment i, and V;(x)
is the rate of other transitions between compartment i and other infected compartments.
It is assumed that F; and V;(x) € C?,and F; = 0 if i € [m + 1,n].

oV;(xo)

Now definer[aZ"—ff")] andV=[ ]for1<i,j<m. From the
J

biology meaning, F and V are entrywise non-negative and are non-singular M-matrix
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(Berman and Plemmons, 1970), so V1 is entrywise non-negative. Let 1(0) be the
number of initially infected individuals. Then FV~14(0) is an entrywise non-negative
vector giving the expected number of new infections. Matrix FV~1 has (i, j) entry
equal to the expected number of secondary infections in compartment i produced by an
infected individual introduced in compartment j. Thus FV~1 is the next-generation
matrix and

RO i p(FV—l)a

where p denotes the spectral radius of a matrix FV~1. The R, is the dominant (or

maximum) eigenvalue of FV 1.

2.4  Stability Analysis of The System

2.4.1 Routh Hurwitz criterion
An equilibrium point can be classified by checking at the signs of
eigenvalues of linearization of the equations. By evaluating the Jacobian matrix at each
equilibrium point of the system, resulting eigenvalues and equilibrium point can be
categorized. The behavior of the system in the neighborhood of each equilibrium point
can be qualitatively determined by investigating eigenvectors associated with each

eigenvalue.

The equilibrium point is hyperbolic if none of eigenvalues have zero real
part. If all eigenvalues have negative real part, the equilibrium is stable. If at least one
has a positive real part, the equilibrium is unstable. If at least one eigenvalue has

negative real part and at least one has positive real part, the equilibrium is a saddle point.
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Important criteria that give necessary and sufficient conditions for all of
the roots of the characteristic polynomial (with real coefficients) to lie in the left half of
the complex plane are known as the Routh-Hurwitz criterion. The name refers to E. J.
Routh and A. Hurwitz, who contributed to the formulation of these criteria. In 1875,
Routh, a British mathematician, developed an algorithm to determine the number of
roots that lie in the right half of the complex plane (Gantmacher, 1964). In 1895,
Hurwitz, a German mathematician, verified the determinant criteria for roots to lie in
the left half of the complex plane. If the roots of the characteristic polynomial lie in the
left half of the complex plane, then any solution to the linear, homogeneous differential
equation converges to zero. The Routh-Hurwitz criteria for differential equations are
analogous to the Jury conditions for difference equations. The Routh-Hurwitz criteria
are used in Chapter Il to determine local asymptotic stability of an equilibrium for
nonlinear systems of differential equations.

Definition 2.9: Given the polynomial,
P(A) =1"+a A"+ +a, 1A+ ay,,
where the coefficients a; are real constants, i = 1, ..., n. Define the n Hurwitz matrices

using the coefficients a; of the characteristic polynomial:

a 1 aa 1 0
Hy = ay, H, = ( ! ), H; = <a3 a, a1),

and

aa 1 0 0 .. O
az a, a; 1 .. 0
H,=|as a, a3 a, .. 0],
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where a; = 0 if j > n. All of the roots of the polynomial P(1) are negative or have

negative real part if the determinants of all Hurwitz matrices are positive:

detH; >0, j=12,..,n

When n = 2, the Routh-Hurwitz criteria simplify to H; = a; > 0 and

a;

detH, = det(
as

1
2

For polynomials of degree n = 2, 3, 4 and 5, the Routh-Hurwitz criteria are summarized.

Routh-Hurwitz criteria forn = 2, 3, 4 and 5.
n=2.a;,>0anda, > 0.
n=3.a; >0andas; > 0,and a;a, > as.
n=4:a,>0,a;>0,a, >0,and a,aa; > az* + a,?a,.
n=>5:q;>0fori =12345, a;a,a; > a3*> + a,a,
and (a;a, — as)(a1aza; — az* — a,%ay) > as(aia; — az)® + a;as®

(Allen, 2007).

2.4.2 Lyapunov Theary
Aleksandr Mikhailovich Lyapunov was a Russian mathematician. He
developed the stability theory of the dynamical system, known as Lyapunov function,
which is an important to stability theory of dynamical systems and control theory. For
certain classes of ODEs, the existence of Lyapunov functions is a necessary and

sufficient condition for stability.
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The autonomous system (Equation (2.1)) is investigated the globally
asymptotically stable by using the Lyapunov function. Lyapunov functions are scalar
functions that used to prove the stability of an equilibrium of ODEs.

Definition 2.10: Let U be an open subset of R™ containing the origin. A real-valued
C~Y(U) function V, V:U - R, [x € U,V (x) € R] is said to be positive definite on the
set U if the following two conditions hold:

(1) V(&) =o.

2) V(x)> 0forall x € U with x # x.

The function V is said to be negative definite if —V is positive definite (Malisoff and

Mazenc, 2009).

Definition 2.11: A positive definite function IV in an open neighborhood of the origin

is said to be a Lyapunov function for the autonomous differential system,

YO <oforall x €U - X.

== f(2), if

If dv(x)

— =<0 for all x € U — x, the function V' is called a strict Lyapunov function

(Malisoff and Mazenc, 2009).

2.5 Optimal Control Theory

Optimal control theory is a powerful mathematical tool that can be used to make
decisions involving complex biological situations. For example, what percentage of the
population should be vaccinated as time evolves in a given epidemic model to minimize
the number of infected and the cost of implementing the vaccination strategy? The

desired outcome, or goal, depends on the particular situation.
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The behavior of the underlying dynamical system is described by state variables.
Assume that there is a way to steer the state by acting upon it with suitable control
functions. The control enters the system of ODEs and affects the dynamics of the state
system. The goal is to adjust the control in order to maximize (or minimize) a given
objective functional.

In the control of single ODE, denote the control variables as u(t) and the state
variable as x(t). Given a control function, u(t), the state, x(t), is defined as a solution

to an ODE

2 = g(tx(0),u®), (211)
with a given initial condition

x(0) = x,. (2.12)

Note the rate of change of the state is dependent on the control variable w(t). The goal

is expressed by the objective functional,

J@) = f,7 £(t,x(0),u(®))dt. (2.13)

The challenge is seeking to find u*(t) that achieves the maximum (or minimum)
of our objective function, i.e., J(u*) = max,¢, J (u), where u is the set of possible
control. Taking u to be a subset of piecewise-continuous functions. The objective
functional is subject to Equations (2.11) and (2.12). Both the state and control variables
usually affect the goal.

The control that maximizes or minimizes the objective function is denoted by
u*(t). Substituting u*(t) into the state differential equation (2.11) results in obtaining

the corresponding optimal state, x*(t). Thus (u*(t),x*(t)) is the optimal pair.
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If (u*(t),x*(t)) is an optimal pair, then these conditions hold. Pontryagin et
al. (1962) introduced the idea of adjoint functions to append the differential equations
to the objective function. These adjoint functions have a similar purpose as Lagrange
multiplies in multivariate calculus, which append constraints to the function of several
variables to be maximized or minimized. Refer to Lenhart and Workman (2007) for an
introduction into optimal control theory.

Assuming 4 and g are both continuously differentiable in their arguments, the
first order necessary conditions in the simplest form are given by Pontryagin’s
maximum principle (Pontryagin et al., 1962).

Definition 2.12: If u*(t) and x*(t) are optimal for problems (2.11) to (2.13), then there
exists a piecewise differentiable adjoint variable A(t) such that
H(t,x"(0),u(t), A()) < H(t,x"(£),u* (), A(1)),

for all u € u at each time t, where the Hamiltonian, H, is

H = h(t, x@®),u®)) + 20 g(t, x(), u(®)),

and
dA(t) _  9H(tx" () (0),A®))
at ox ’
Ats) =0

(Naidu, 2003).

Note the final time condition on the adjoint variable is called the transversality
condition. Pontryagin maximum principle changes the problem of finding the control

that maximizes the objective function subject to the state ODE and initial condition to
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the problem of optimizing the Hamiltonian pointwise. Another way to think of the
Hamiltonian is
H = h(t,x(0),u®)) + 1) g(t, x(®), u(®))

= (integrand)+(adjoint) x(right hand side of ODE).

The necessary conditions can be generated by maximizing  H with respect to

u(t) at u*(t). From Lenhart and Workman (2007), they can be described as follows:

OH _

Pl 0 =>h, +1g9, =0 (Optimality equation),

dA _ oH daa - .

Pl == —(hy + 95) (Adjoint equation), and
A(tr) =0 (Transversality condition).

Considering second order conditions. For each t € (0, tf), for a maximization

problem,

2
TH < 0atu(t)

ou?

must hold (from concavity), and for a minimization problem

2
TH S 0atu(t)

ou?

must hold (from convexity) (Lenhart and Workman, 2007).

Pontryagin maximum principle can be extended to multiple states and controls
and consequently corresponding adjoint variables are introduced. For example, if it had

n state variables,
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X1 (t) =01 (t, X1 (t)' ey xn(t)i 'U,(t))

X, () = gn(t, 2,0, o, 2, (), u(®))

with corresponding initial conditions, then adjoint functions, A,(t), ..., 1,,(t) were

introduced. Thus, the objective function becomes,

max fotfh(t, x1(£), e, 2 (6), u(t) )dt.

Similarly, the Hamiltonian is
H = h(t, x4 (1), ...,xn(t),u(t)) +Al(t)gl(t, x4 (1), ...,xn(t),u(t))

+14,()gn (t, X1 (t), ..., X, (1), u(t)).

According the appropriate optimality equations, adjoint equations, and

transversality conditions are generated. For example, the i -th adjoint ODE is

A=-24 (2.14)

6xi'

In short, for the simplest case it was started with two unknowns, u*(t) and
x*(t), and then introduced an adjoint variable, A(t). Thus, it must to solve for three

unknowns. Then the optimality equation was attained from setting

0H
ouly=y*

=0 (2.15)

and solving for u*(t), which will be characterized in terms of x*(t) and A(t). Note that

many real-world application problems require bounds on the control, like



31

a<u(t)<b

and that Pontryagin maximum principle still holds.
The optimality system is comprised of the state, the adjoint ODEs, and the
control characterization. Often solutions of optimality system cannot be solved

explicitly but can be approximated numerically.

2.6  Cost-Effectiveness Analysis

Cost-effectiveness analysis is one of important tools that is vital to examine both
costs and outcomes of one or more interventions. It compares an intervention to another
intervention by estimating how much it costs to gain outcomes, i.e., gained of yields or
incomes. There are three types of cost-effectiveness ratios.

2.6.1 Average cost-effectiveness ratio (ACER)

This deals with a single intervention and evaluates the intervention
against its baseline option. It is calculated by dividing the net cost of the intervention
by the total number of health outcomes prevented by the intervention. ACER formula
IS given by

Total cost of intervention

ACER = j (2.16)

Outcome gained

2.6.2 Marginal cost-effectiveness ratio (MCER)
This deals with assessment of the specific changes in cost and effect

when a program is expended or contracted. MCER formula is given by

Change in costs of intervention

MCER = (2.17)

Change in outcome gained
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2.6.3 Incremental cost-effectiveness ratio (ICER)
This provides the means of comparing the differences between costs and
health outcomes of two alternative intervention strategies that compete for the same
resources and it is generally described as additional cost per additional health outcome.

ICER formula is given by

Cost of intervention - cost of alternative intervention

ICER = (2.18)

Outcome of intervention - outcome of alternative intervention

2.7 Literature Review

An epidemic model has become an important tool for breaking down and
analyzing the spread of infectious diseases. It helps to develop a better understanding
and facilitate predictions. The model is also used to test the plausibility of epidemiology
explanations. Another application is forecasting the possible effects of changes system
dynamics, and to predict structural changes through early warning signals. Thereby
making it possible to control an emerging disease outbreak. In this section, previous
epidemic models are reviewed.

2.7.1 Models and Notation

In this section, the basic definition and notation of CMD outbreak
mathematical models are established. The five different compartments of a cassava (or
host) population of CMD outbreak models are Susceptible tolerant cassava (St),
Susceptible cassava (Sy), Exposed cassava (Ey), and Infected (Iy). The two
compartments of a whitefly (or vector) population of CMD outbreak models are
Uninfected whitefly (S) and Infected whitefly (/). State variables are differentiable

functions in time t > 0. The definitions of state variables are
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Susceptible tolerant cassava (in a cassava population is denoted S;):
Tolerant cassava in the cassava population that has not been infected.
Although it is cassava tolerant varieties, it is at risk of becoming
infected. When it has contracted the infected whitefly, it will transfer
to exposed cassava.

Susceptible cassava (in a cassava population is denoted Sy ):
Susceptible cassava in the cassava population that has not been
infected. When it has contacted infected whiteflies. It becomes
exposed cassava.

Exposed cassava (in a cassava population is denoted Ey): Exposed
cassava in the cassava population that has been infected but not show
symptomatic. It can spread a disease to the uninfected whitefly. It
becomes infected state (show symptomatic) in next period time.
Infected cassava (in a cassava population is denoted I): Infected
cassava in the cassava population that has been infected and show
symptomatic. It can spread a CMD virus to uninfected whitefly.
Uninfected whitefly (in a whitefly population is denoted Sy ):
Uninfected whitefly in the whitefly population. It becomes to an
infected whitefly after it received CMD virus from exposed or
infected cassavas.

Infected whitefly (in a whitefly population is denoted I/): Infected
whitefly in the whitefly population. It can spread a CMD virus to

tolerant and susceptible cassavas.
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Parameter values and ranges that used in this research are defined based

on the previous works due to the lack of data collection system in Thailand. Parameters

are listed in Table 2.1.

Table 2.1 Parameters of CMD outbreak

Parameter Description Reference
h harvesting rate of cassavas '&%g%t al.
B CMD latent rate \(/gg%g;) aetal.
y rouging rate of symptomatic cassava Kinene et al.
(2015)
Ty replanting rate of non-tolerant cassava é‘gfgf etal.
rr replanting rate of tolerant cassava ?ggggg’o etal.
K maximum plant of non-tolerant cuttings capacity Magoyo et al.
1 (m?) (2019)
K maximum plant of tolerant cuttings capacity Magoyo et al.
2 (m?) (2019)
Average number of cassava plants visited b Jittamai et al.
a g p y
uninfected whitefly (2021)
A birth rate of whitefly (vector-day™?) 22882;3 tal.
u natural death rate of whitefly (vector-day™) ég‘fgf etal.
L maximum whitefly density (m) (Bz%g)a al.
probability of susceptible cassava plants receiving Bokil et al.
P1 virus from infected whitefly (2019)
probability of tolerant cassava plants receiving virus | Magoyo et al.
P2 from infected whitefly (2019)
- . . Holt et al.
D3 probability of planting infected cassava cuttings (1997)
probability of uninfected whitefly receiving virus Bokil et al.
Pa from exposed (latent) or symptomatic (2019)
2.7.2 Holtetal.’s model

Most models of CMD are extended from the work of Holt et al. SI model

for an outbreak of African cassava mosaic virus (ACMV) was developed to describe
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the dynamics of infected cassava and infected whitefly, which is driven by whitefly
transmission. Authors derived a strategy in which cassava yields are maximized by
reducing whitefly population. However, this approach is not cost-effective, so farmers
are advised to select uninfected cuttings for planting to prevent a collapse of healthy
cassava population. This is an economical strategy that is capable of controlling an
outbreak.

Epidemic model of ACMV was developed in which the dynamics within
a locality, of susceptible and infected cassava, and of infected and uninfected whitefly
vectors, were specified. Infections of ACMV of Holt et al.’s model are driven either by
contact between infected cassava or uninfected vectors and between infected vectors
and susceptible cassava.

Let Sy and I be the abundances (m™) of healthy and diseased plants,
respectively, S, and I, be the abundances (m?) of uninfected and infected vectors,

respectively. The dynamics of ACMV is illustrated in Figure 2.4.
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Figure 2.4 State diagram of Holt et al. model. Source: Holt et al., 1997

ODEs of the model are

‘%” =1rySy (1 - SH:H) — P1Suly — hSy, (2.19)
%1 = p1Suly = hly —vly, (2.20)
d_;tl =A(Sy + Iy) (1 5 L(i:;_IIVH)) — PaSvly — Uy, (2.21)
% = PaSvly — ply. (2.22)

Parameters of cassava population are described as follows. k; is the
maximum plant density (m), r is the rate of replanting healthy plants, # is the rate at
which cassava plants are removed and harvested for their tuberous roots, assumed to
occur at a constant rate (day™), y is the loss rate of plants due to the effects of ACMV
infection but can also represent the rate of removal of diseased plants in rouging

operations (day™).
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Parameters of whitefly population are described as follows. L is the
maximum abundance of vectors (plant™?), A is the vector birth rate, and p is the death
rate of vectors.

Pathogen parameters are described as follows. p; is the rate of
inoculation of susceptible plants (vector-day?) and p, is the rate of virus acquisition
by uninfected vectors (plant™-day™).

2.7.3 Evolution of CMD outbreak model

The dynamics of CMD is driven by both whitefly transmission and
planting of infected cuttings. The works that using a single factor (whitefly
transmission) as are as the following:

(1) Zhang et al. (2001) developed SI model in which two viruses,
ACMYV and east African cassava mosaic virus (EACMV), are carried by whitefly into
the plantation area. They used a simulation technique to clarify the relationship between
cassava production and the severity of outbreak from two viruses. They summarized
that by this mechanism, a virus that was nonviable alone could invade and persist in a
chronic epidemic of another virus.

(2) Jeger et al. (2004) developed SEI model based on Holt et el.’s work
by adding a latent state. They improved a better understanding of the severity of ACMV
outbreak and the use of rouging strategy. Numerical simulation suggested that rouging
would usually only be needed for propagative viruses at very high population densities.

(3) Lawrence et al. (2010) adapted SI model of Holt et al.’s model by
modifying it to incorporate the spatial dynamics of the spread of the disease. This means
the whitefly vector can be equally likely to fly in any direction. This movement, the

characteristic short distance flight patterns of whiteflies, can be represented
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mathematically by diffusion. They used numerical simulation to study the effectiveness
of using tolerant varieties and windbreaks to control the disease spread. The model
suggested that the use of windbreaks and ACMD tolerant strains of cassava will have
the most beneficial impact on cassava yield.

(4) Hebert (2014) developed SEI model of an outbreak of cassava
mosaic virus (CMV) to study the effect of whitefly transmission on cassava vyield.
Numerical simulation suggested that with whitefly aggregation, increasing complexity
of whitefly movement, and using tolerant varieties, there is a reduction in the probability
that the disease becomes established in the host plant.

(5) Kinene et al. (2015) developed SEI model including a latent state
into the model to study the dynamics of cassava brown streak disease (CBSD)
outbreaks. The model is used to determine the most cost-effectiveness from killing
whitefly and rouging infected cassava policies by applying the optimal control theory
and Pontryagin maximum principle. The model suggested that rouging method is the

most cost-effective policy.

The models that took account of whitefly transmission and disease
cuttings are as the following:

(1) Bokil et al. (2019) developed SI model of ACMV outbreaks.
Infections in the model are driven both by virus cuttings and whitefly transmission.
They then applied an optimal control theory and Pontryagin maximum principle to
investigate the effect of rouging and spraying to maximize uninfected plants. The
model suggested that a strategy combining rouging and spraying performed better than

those that apply a single control mechanism.
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(2) Magoyo et al. (2019) developed SI model of CMV outbreak took
account of tolerant cassava state. The objective of Magoyo et al.’s work is to investigate
the effect of spraying, rouging, selecting non-virus cuttings, and promoting tolerant
cuttings on disease control.

As can be observed, a latent stage is missing from works of Bokil et al.
and Magoyo et al. Since the symptoms take 2 - 3 weeks to appear (Fargette et al., 1994),
then during this period the asymptomatic cassava may spread the disease. Thus, this
gap should be fulfilled.

This thesis aspires to fill the gap from works of Kinene et al., Bokil et
al., and Magoyo et al. The mathematical model of this research is developed by adding
the latent stage into Magoyo et al.’s model. Next, the review presents the mathematical
model of three works.

2.7.4 Kinene et al.’s model

Kinene et al. developed the SEIR model for the dynamics of the disease
in the cassava plants and Sl for the dynamics in whitefly vectors. The total cassava
population N is subdivided into the following sub-populations: cassava plants that are
susceptible to infection with CBSD Sy, those exposed to CBSD Ej,, and cassava plants
with CBSD symptoms I. The total whitefly vector population Ny, is sub-divided into
susceptible whitefly vector population S, and infectious whitefly vector population I;,.
Namely, N, = Sy + I, the transmission dynamics of CBSD is summarized in the

compartmental diagram shown in Figure 2.5.
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Figure 2.5 State diagram of Kinene et al. model. Source: Kinene et al., 2015

ODEs of the model are

ddifer (1—%)—ap1%lv—hSH, (2.23)
T = ap, 21, — BEy — hEp, (2.24)
‘%’ = BE, — yly — hly, (2.25)
dditV = A= ap,Sy =8 — uSy, (2.26)
% = ap,Sy EH;IH — uly, (2.27)

It is assumed that healthy cassava plants are planted or replanted at a
rate 1. They are either harvested at a rate # or move to the exposed class after acquiring
CBSD through contact with the infectious whitefly vector at a rate ap,, where p, is the
probability that a healthy plant will be inoculated by the virus during a single visit by
an infected whitefly vector, a is the number of plants visited either by an infected

whitefly or uninfected whitefly per day. Exposed cassava plants are either harvested at
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a rate 4 or move to the infectious class at a rate . Infected cassava plants are assumed
to be harvested or removed from the garden and burnt at a rate y.

Susceptible whitefly vectors are recruited at a rate A. They either die
naturally at a rate u or move to the infectious class after acquiring CBSD from the
infected cassava plants at a rate ap,, where p, is the probability that a non-infectious
vector will acquire the virus from an infected cassava plant during a single visit. The
infected whitefly vectors also die naturally at a rate u. Kinene et al. assumed that
farmers plant only healthy varieties of cassava in a garden of carrying capacity k;, no
death of cassava plants before harvesting and the vectors are assumed to remain
infectious once they acquire the virus.

They took account of latent stage into the model, however, the
transmission by disease cuttings was not establish to study the dynamics of disease
outbreak.

2.7.5 Bokil et al.’s model

The model was developed to study the dynamics of ACMV. The
infection of this system is driven both by planting or replanting by infected cuttings and
whitefly transmission. Let S, and I be the healthy and infected plants, respectively.
The total plant population is denoted as N = Sy + Iy. The vector population is divided
into uninfected S, and infected vectors I, with no latent period. The total vector
population is denoted N, = S, + I,

Growth rates of healthy and infected plants are occurred by logistic
. N N . .
growth equations, 4 Sy (1 — k—) and rypsly (1 — k—), respectively. The planting rate
1 1

is density-dependent to ensure that plant density does not exceed the carrying capacity

of the field, k;. The growth rate of the vector population is also density-dependent.
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The vector population density depends on plant density with maximum vector density
per plant given by L(Sy + Iy). Infected and healthy plants are harvested at the same
per capita rate 4. Additionally, infected plants may be removed from the field at a rate
y (rouging). Uninfected and infected vectors die at the same per capita rate of u, where
u is natural mortality. The inoculation rate of healthy plants by infective vectors is
p1Sy Iy and the acquisition rate of uninfected vectors feeding on infected plants p,Sy I,.

The dynamics of ACMV is illustrated in Figure 2.6.
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Figure 2.6 State diagram of Bokil et al. model. Source: Bokil et al., 2019

The ODEs of the model are

ds Sy+I

B — 15 (1- u 2) — p1Suly — hSp, (2.28)
dl N

d_f = TuP3ly (1 - k_l) + p1Suly — (A + )1, (2.29)
asy _ Sy+ly

= Ay + 1) (1= 72555) = PaSl — Sy, (2.30)
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ddI: = PaSvly — uly. (2.31)
However, a tolerant state was missing from this model. Magoyo et al.
extended the model by adding tolerant cassava state.
2.7.6 Magoyo et al.’s model
The model was developed for an outbreak of CMV. The population of
cassava is divided into three states: tolerant cassava (S;) and susceptible cassava (Sy),
and infected cassava (Iy). The population of whitefly is divided into two states:
uninfected whitefly (S,) and infected whitefly (). The dynamics of CMV is illustrated

in Figure 2.7.

Uninfected whitefly [ Infected whitefly

”4(

S -'-f J y e

l,u;’

Figure 2.7 State diagram of Magoyo et al. model. Source: Magoyo et al., 2019

Tolerant cassava is replanted at rate rr and susceptible cassava is

replanted at rate r. Infections of cassava from whitefly are given by p, S I, (Sr to Iy)
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and by p;Syly, (Sy to I,). Tolerant, susceptible, and infected cassava are harvested at
rates 4. Iy decrease due to the effect of CMV at rate y. k, represents the maximum
plants for tolerant cassava which can be planted. k; represents the maximum plants for
non-tolerant cassavas (Sy and I;) which can be planted.

Uninfected vector is recruited by birth at a rate A and catch infection
following contact with infected cassava at a rate p,. L is the maximum number of
vectors in a plantation area. Infected vector is recruited when susceptible vector catch

infection following contact with I, at a rate p, and p is a death rate of whitefly.

ODEs of the model are

% = 1St (1 3 %) — p2Srly — hSr, (2.32)
O =1y (1= 12) = paSuly — hSu, (2.33)
UZ_ZI = p1Suly + p2Srly — hly —yly, (2.34)
V= AGy + 1) (1= 25) — puSylyy — Sy, (2.35)
% = PaSyly — ply. (2.36)

2.8  Gap of Literatures

Mathematical model of this thesis is developed for an outbreak of CMD caused
by whitefly transmission and disease cuttings, following works of Bokil et al. The
model added latent cassava state, which was missing from Magoyo et al. work to
investigate the comparative contribution of using of four control methods (spraying,

rouging, selecting non-infected cuttings, and promoting tolerant cuttings).
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Growth rates of cassava and whitefly populations using the logistic growth
equations. Cassava population assumes four states of cassava: tolerant, susceptible,
exposed, and infected. Whitefly population assumed two states: uninfected and
infected. The difference among the model of this research and other models are listed
in Table 2.2.

Parameter values and ranges that used in this research are defined based on the
previous works due to the lack of data collection system in Thailand. Table 2.3 lists the
related works that used the parameters in the same values, while parameter values and
ranges of this thesis are listed in Chapter Il1.

The model admits two equilibrium points: the DFE and EE points. Locally and
globally asymptotically stable of the system are analyzed using basic reproduction
number (R,) and calculated using next-generation method. If R, < 1, the DFE point is
locally-asymptotically-stable, proved by the Routh-Hurwitz criteria. If Ry < 1, the
DFE point is globally-asymptotically-stable, while R, > 1, the EE point is globally-
asymptotically-stable, proved by Lyapunov’s method.

Finally, optimal control theory and cost-effectiveness analysis are applied to
investigate the cost-effectiveness of control policy. Optimal control theory may help
stakeholders, including cassava farmers and government agencies, develop optimal

policies for control of CMD outbreaks. This should increase yields, income, and profits.
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Table 2.3 List of parameters used to study from related works

(in the same values and ranges)
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Parameters
Related works
p Ty |Tr | ky (k| a | A p P1 | P2 | D3| Pa
This research v ViV Vv |V VR ViIivI|vi]v
Holt et al. (1997) v v V|V v v
Jeger et al.
v v v IV v v
(2004)
Lawrence et al.
v v v IV v v
(2010)
Hebert (2014) v v v v
Kinene et al.
v v v v ivI|v v v
(2015)
Bokil et al.
v v v |V v v
(2019)
Magoyo et al.
Vi ivI|iv |V v IV v | v v
(2019)
Jittamai et al.
v v v VERVAIve v v | Vv
(2021)




CHAPTER 11l

CMD OUTBREAK MODEL FORMULATION -WITH

TOLERANT AND LATENT

3.1 Infection and Control Factors

The model development can be first done by defining infection and control
factors from previous literature that are related to CMD outbreaks. Cassava (Manihot
esculenta, Crantz) is grown as a staple food crop in many parts of the Africa and the
Southeast Asia. The main disease affecting the crop is cassava mosaic disease (CMD),
caused by cassava mosaic begomoviruses (CMBS) that are transmitted by the whitefly
(Bemisia tabaci, Gennadius) (Dubern, 1994) and planting with infected cuttings (Bock,
1994).

There are four approaches that are commonly used to control CMD, spraying
pesticide, rouging infected cassavas, planting with non-virus cuttings and tolerant
varieties. Kinene et al. (2015) and Bokil et al. (2019) applied spraying pesticide and
rouging infected plant methods to control disease in their models. Magoyo et al. (2019)
studied the dynamics of CMD outbreaks by using tolerant varieties.

Survey from the literature to determine major factors that cause and approach to

control disease can be summarized in Figure 3.1.
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Figure 3.1 Survey of causes and approaches to control CMD

Table 3.1 Relationship between infection and control factors of CMD outbreak

Infection factors Control factors
. Selecting | Promoting
Transmission Whitefly Infe_cted Spraying | Rouging | uninfected | tolerant
cuttings . .
cuttings cuttings
Whitefly- v v v
cassava
Cassava- v v v v v v
whitefly

Table 3.1 lists the relationship between infection and control factors. Whitefly
is the major caused of disease transmission. To reduce severity of CMD spreads from
the whitefly can be done by insecticide spraying and rouging infected plants from a

plantation area. In addition, cassava-whitefly transmission is also caused by planting
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with infected cuttings. Severity of cassava-whitefly transmission outbreak can be
reduced by using at least these four approaches: spraying, rouging, selecting uninfected
cuttings to plant, and promoting tolerant cuttings. An optimal policy is established by
identifying crucial parameters that contribute to severity of CMD spread and determine
control policy that is cost-effective. This can be done by sensitivity analysis and

optimal control theory.

3.2 Mathematical Model Formulation

The CMD outbreak model is driven by virus cuttings and by transmission of
whitefly. The model tracks the dynamics of the cassava population and the whitefly

population. A state diagram of the CMD control system is shown in Figure 3.2.

[ Tolerant cassava )

Figure 3.2 State diagram of the CMD outbreak system
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The model tracks the dynamics of the cassava population and the whitefly
population.

e Total non-tolerant cassava population at time t, denoted by N, where
Ny =Sy + Ey + 1.

e Tolerant population at time ¢, denoted by Ny, where N = Sy.

e Total cassava population at time t, denoted by N, where
N =Ny + Ny =Sp+ Sy + Ey + 1.

e Total population of whitefly at time ¢, denoted by N, , where

NV :Sv‘l'lv.

The transmission of CMD from an initial state to a next state are governed by
parameters in Table 3.2. The dynamics of CMD outbreak is driven by
e  Whitefly transmission. An infection by infected whitefly, given by p,SyI,
(whitefly-non-tolerant cassava transmission), p,Srl, (cassava-whitefly
transmission), and p,Sy, (Ey + I;) (whitefly-tolerant cassava transmission).

e Promote infected cuttings. Virus infection by planting of infected cuttings,

Sy+Epg+iy

denoted by r (1 5 )p3EH.

The size of the cassava population in a CMD outbreak is increased by
replanting into the plantation area. Let ry be the replating rate of non-tolerant cassava

Sy, Ey, and I;. The non-tolerant cassava growth of this model is governed by logistic

SHtEg+ig

growth terms ry (1 )SH and ry (1 — SHH;—”H”) p3Ey, which is inspired
1

1

from the work of Bokil et al. Let r be the replating rate of tolerant cassava Sy, the

growth of this state is increased by ry (1 —i—T) S, where k; is the maximum non-
2
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tolerant cassava plants capacity and k, is the maximum tolerant cassava plant. They
are removed from the system by constant harvesting / and rouging y.

The change from S; to Ey and from Sy to Ey reflect the number of plants
infected after planting. The change from Ey to I reflects the number of infected
cuttings that begin to show CMD symptoms.

The whitefly population is driven by two factors: birth rate A and death rate u.

Sy+ly

) (Sy + Iy)

The number of the whitefly population is increased by /1(1

Transmission within the population is reflected in a change from S, state to I, state, as

whitefly visit and acquire the virus from infected plants.

Values and ranges of the parameters were set with reference to previous studies
or estimations of CMD outbreaks. Parameters in CMD outbreaks represented disease

spread factors are listed in Table 3.2.

Table 3.2 Parameter values and ranges to analyze the outbreak

Parameter | Value Range Reference
h 0.003 | [0.002,0.004] | Holt et al. (1997)
B 0.008 [0.008,0.05] | Wagaba et al. (2013)
Y 0.03 [0,0.033] Kinene et al. (2015)
Ty 0.05 [0.025,0.1] Kinene et al. (2015)
Tr 0.025 [0.025,0.2] Magoyo et al. (2019)
ky 0.2 O, 1] Magoyo et al. (2019)
k, 0.5 O, 1] Magoyo et al. (2019)
A 0.2 [0.1,0.3] Jeger et al. (2004)
0.0142 | [0.0142,0.0166] | Kinene et al. (2015)
L 200 (0, 2500] Bokil et al. (2019)
p1 0.008 [0,1.0] Bokil et al. (2019)
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Table 3.2 Parameter values and ranges to analyze the outbreak (Continued)

Parameter | Value Range Reference
P2 0.001 [0,1.0] Magoyo et al. (2019)
Da 0.1 [0,1.0] Holt et al. (1997)
Da 0.008 [0,1.0] Bokil et al. (2019)

3.2.1 Ordinary differential equations
Ordinary differential equations (ODEs) are constructed by parameters

and values that are given in Table 3.3

=1 (1 =) Sy — paSrly = kS, (3.1)
‘f—:’ =1y (1 — %ﬂ) St = P1Suly — hSy, (3:2)
T =y (1 - 2 pyEy + puSuly + poSely — B+ WEw,  (39)
S8 = BEy — (v + Wy, (34)
% =/ (1 - SV:IV) (Sv + Iv) = PaSv(En + Iy) — 1Sy, (3.5)
% = paSy (Eg + Iy) — uly, (3.6)
with the initial conditions
S7(0),55(0), Ey(0), 15(0), Sy (0), I, (0) > 0. (3.7)

Equations (3.8) and (3.9) give the total cassava population and the total

whitefly population:

dN Sy+Ey+I S
D=y (1 - %ﬁ’*”) (Sy + psEy) + 17 (1 - k_:) Sy — AN, (3.8)
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dNy

at A (1 - M) Sy +1Iy) —ulSy + Iy). (3.9

L

3.2.2 Basic assumptions of the model
The following are assumptions for mathematical model.
e All model parameters are positive.
e Agrowth rate of the cassava population is positive, i.e., 7y —h >0
and rr —h > 0, where ry and r are the replanting rate of non-
tolerant and tolerant cassava, respectively, and h is harvesting rate.

e The increase of cassava population is calculated by the logistic

Sy+Eg+iyg
ky

Sy+Ey+iy

growth equations, 1y (1 — )SH, Ty (1 — k—l) psEy,

and rp (1 — i—i) St

e A growth rate of the whitefly population is positive, i.e., A —u >
0, where A is the whitefly birth rate and p is the natural whitefly
death rate.

e The increase of whitefly population is calculated by the logistic
growth equation, A (1 < W) Sy +1y).

e The growth rate of the whitefly density is greater than the growth
rate of the cassava, (A — u) > (ry — h).
3.2.3 Basic properties of the model
To confirm the biological validity of the model, it must prove that
solutions to ODEs are positive and bounded for all time values. Furthermore, the

cassava population and the whitefly population must remain finite since they are
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bounded by the plantation area. In this section, the positivity and boundedness of these

solutions are discussed.

3.2.3.1 Positivity

Theorem 3.1: In the model, if the initial conditions satisfy with Equation (3.7) then for

all t > 0, all solutions of ODEs in Equations (3.1) to (3.6) will remain positive in RS.

Proof: Since all of parameters used in the system are positive. Theorem 3.1 can be

proved by placing lower bounds on each of equations given in the model.

e Positivity of S;(t) forall t > 0

From Equation (3.1),

dsr
dt

The integration of the inequality is

Sr(t) = Sr (O)e_ht_fotpzlv(S)ds,

Thus, S;(t) > 0forall t = 0.
e Positivity of Sy(t) forallt = 0

From Equation (3.2),

dt k1

The integration of the inequality is

() = Sy (0)e~"t-JoPriv(s)as

This means that S, (t) > 0 forall t > 0.

S
- = TT (1 - k_Z) ST 2 pZSTIV » hST = _pZSTIV - hST

forall t = 0. (3.10)

dﬁ =T (1 —_ M) SH —_ plsHIV —_ hSH 2 —pl.S'HIV —_ hSH

forallt > 0. (3.11)



e Positivity of E,(t) forallt > 0
From Equation (3.3),

dEy ( Sy +Ey + 1y
T k,

> —(B + h)Ey.

The integration of the inequality is

Ey(t) = E;(0)eB+mt forall t > 0.

Hence, E;(t) > 0 forall t > 0.
e Positivity of Iy (t) forallt = 0

From Equation (3.4),

dl,

It then follows that

Iy(t) = I;(0)e™ > 0, forall t > 0.

Therefore, 1,(t;) > 0 forall t = 0.
e Positivity of S, (t) forall t = 0

From Equation (3.5),

a4

ds Sy + 1
- (1 - V) Sv + Iy) = paSv(En + 1) — uSy

> —pySy(Ey + Iy) — uSy.

A comparison argument shows that

Sy () = S, (0)e~H=Jo Pa(En(s)+1n()ds forall t > 0.

)P3EH + p1Suly + p2Srly — (B + hEy
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(3.12)

(3.13)

(3.14)
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Hence, S, (t) > 0 forall t > 0.
e Positivity of I}, (¢t) forall t = 0

From Equation (3.6),

dly

ar p4Sy (Ey + 1y) — uly = —uly,

It then follows that

Iy (t) = I,(0)e # > 0, forall t > 0. (3.15)
Therefore, I;,(t) > 0 forall t > 0.

This can be concluded that the solutions of the model are positive inR$. o

3.2.3.2 Boundedness
The boundedness of the system is showed with the initial
condition (3.7). Let 2 =, x 2y, € RY x R2 be any solution of the system with

positive initial condition, where

0c = {Sr@), Sy (), Ey (t), 1y (¢) € Ri}and 0, = {Sy(8), Iy (t) € R},

Therefore, all the solutions of the system start in

fort > 0.

S+(0) > 0,54(0) > 0,E,(0) > 0,
RS ={ST,SH,EH,IH,SV,IV T H H }

1,(0) > 0,5,(0) > 0,1,(0) > 0

Theorem 3.2: All solutions of the ODEs in Equations (3.1) to (3.6) with positive initial

conditions (3.7) are ultimately bounded.



58

Proof: From Theorem 3.1, the solutions to these ODEs are positive for all t > 0.
e Boundedness of N(t) forallt > 0

Since N = Ny + N, we have

dN _ dNpg dNT

dt dt dt '

First, we consider Ny for all t = 0. From Equation (3.8),

dN Sy+Ey+I N
Eer(l_Hk—i“{)(SH+p3EH)+rT(1_k_Z)ST_hN

As can be observed, the solution is bounded by logistic growth

dNy Ny
TSTH (1 _E)NH'
The integration of the inequality is

Ny (0)kq
Ny (0) + (k1 — NH(O))e_rHt

Ny(t) <

(assuming Ny (0) > 0), which implies that lim,_,., Ny (t) < k;.
Next, we consider Ny for all t = 0. From Equation (3.8), the solution is also

bounded by logistic growth

dNt ( NT)
—_—< —_—
L < (1= Ny,

The integration of the inequality is

Nr(0)k,

Nr(e) < N7(0) + (k, — Np(0))eTrt

(assuming N;(0) > 0), which implies that lim;_,,, Ny (t) < k.
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This gives the feasible solution set of the cassava entering the region:

Q¢ ={St,Su, En, Iy € REIN() < kq + ky} forall t > 0.

e Boundedness of Ny, (t) forallt > 0

Let Ny = Sy + I,. From Equation (3.9),

¥ = A (1) Ny — uNy.

As can be observed, the solution is bounded by logistic growth

Zv<a(1-"2)N,.

The integration of the inequality is

Ny (0)L

Ny (£) = Ny (0)+(L-Ny(0))e=4¢’

(assuming Ny, (0) > 0), which implies that lim,_., Ny (t) < L. Thus, the feasible

solution set for the CMD system is given by

2y ={8,, I, e RZ|N, < L} forall t > 0.

The solutions of the system in R$ are confined to the region 2. Here

2 ={Sr, Sy, Eq, 1n, Sy, Iy ERSIN < k1 + kN, <L} forall t = 0.

Hence, all solutions of the system (3.1) to (3.6) with initial conditions (3.7)

remain positive invariant in the region 2 for all t > 0. m
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3.3 Stability Analysis of the System
In this section, local and global stability of the feasible equilibrium of CMD
system is established.
3.3.1 Disease-free equilibrium point
In the absence of CMD in the cassava population, the system in
Equations (3.1) to (3.6) admits a trivial equilibrium also known as the disease-free

equilibrium (DFE), denoted by E, = (S7, S, Efy, 155, Sy, ;) and given by

Eo = (57, iy Epp I, Sy, 1) = (=2, =l g0, oL o) (3.16)

rr TH

3.3.2 Endemic equilibrium point

The endemic equilibrium point (EE) of the system is denoted by

Equations (3.1) to (3.6) to zero. Therefore,

o _ (rr=h=paly)ks

Sp =,
T = (y+h)(ru—h-p1ly)—rHEH(B+y+h)

H ra(y+h) '
E_ . (V'I'h)ﬁ(erlkl(rH—h_plﬂ/-)‘*'erZkZ(rT_h_pZE))

B rpry(W+h(B+y+paTy (1-p3)—psh) + (B+y (1-p))pa Ty +¥ (B-psh))’
— _ i_
Iy = y+h H?
- _  uly+hly

V' DiEa(B+y+h)

T, = A=W Bty thpslEy
VT (A +pER By D))
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3.3.3 Reproduction number

R, is one of the most useful threshold parameters in epidemiology. Itis
defined as the expected number of secondary cases produced by a single infection in a
completely susceptible population. It is used as an indicator of the stability of E, and
E;, where E; is the symbol of the EE. The DFE E, is asymptotically stable if R, <
1, as the disease cannot invade the population and unstable if Ry > 1. E; is
asymptotically stable if R, > 1. R, is calculated by using the next-generation method,
which is similar to the works of Tumwiine et al. (2008) and Bhunu and Garira (2009).

The appearance of new infections is represented by vector F and the
transfer of existing infections by vector V. Let x; be an infection state for j = 1,2,3,
I.e., x; = Ey, x, = Iy, x3 = I,. F describes new infection arising in state x; and V
represents the transfer of existing infection to state x;.

The Jacobian matrices generated by differentiating F and V with
respect to the relevant subset of variables are calculated at E,. This yields the matrices
Fand V. The (j, k) entry of the matrix F is the rate at which infected individuals in
compartment k produce new infections in compartment j. The (j, k) entry of the
matrix V represents the transfer of existing infection. R, is computed from the spectral
radius of F¥~1 at DFE. FV~1 is called the next generation matrix and is set as follows:

Ry = p(FV™h),

where p(M) denotes the spectral radius of a matrix M. The spectral radius of FV~1 is
equal to the dominant (or maximum) eigenvalue of FV 1,
In this model, the vectors Fand V can be derived from Equations (3.1)

to (3.6):
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Sy+Ep+1
p1Suly + p2S7ly + 1y (1 - Hk—fH) psEy (B + h)Ey
F= 0 and V= |(y+h)ly— BEy|.
paSy(Ey + 1y) wly

The Jacobians of Fand VV with respect to the infectious classes are

defined by F = [ag"—iEO)] andV = [a‘;j—iE‘))],
k k
S* * *
i (1=2)ps 0 piSis +paSi B+h 0 0
PaSy PaSy 0 K
respectively.
Therefore, the next generation matrix FV =1 is
p3h 0 p1k1(ru—h) + p2k2 (rr—h)
B+h THH TTU
FV-Y(E,) = 0 0 0 (3.17)
P4L(A—p)(B+y+h)  paL(A-p) 0
AP+ (y+h) Ay+h)

Hence, R, is the dominant eigenvalue of Matrix (3.17).

_ p3h psh \% | paL(A—)(B+y+h) (Dyks(ru—h) | poky(rp—h)
Ry = max (2(B+h)i\[(2(ﬁ+h)) + Ap(B+h)(y+h) ( Ty + rr ))

_ _psh psh \? | pal(A=w)(B+y+h) (piki(ru—h) | Paka(rr—h)

- 2(B+h) \/(2(ﬁ+h)) Au(B+h)(y+h) ( Ty + rr ) (3'18)
3.3.4 Local stability analysis of disease-free equilibrium point

Theorem 3.3: The DFE point, E,, of Equations (3.1) to (3.6) is locally-asymptotically-

stable in 2 if R, < 1 and unstable if R, > 1.
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Proof: The local stability is determined based on the eigenvalue A of the Jacobian. The
E, is locally-asymptotically-stable if the real parts of A are all negative. The Jacobian

matrix at E is given by

[ - _ D2ka(rr—h)
(T'T h) 0 0 0 0 -
0 —(rgy —h) —(ry —h) —(ry —h) 0 _ P1k1iTH—h)
H
— piki(ru=h) | paka(rr—h)
JE=| ° 0 ph=G+m 0 0 . (3.19)
0 0 B —(y+h 0 0
L(A- L(A—
0 0 SISO e A2
0 0 paL(A—p) paL(A—p) 0 —u
A A

The characteristic equation of (3.19) is
A+ =m)A+ 0y —h)A+ U= W)X +a;22 +aA+a3) =0,  (3.20)
where

a; =F+y+u+h2-—ps3),

p4L(A—p) (P1k1(rH—h) + pzkz(rT_h)) (3 21)

A Ty rr

a=@F+h—psh)y+h+u+F+hu—

L(A-w)(B+y+h) ki(rg—h) ky(ro—h)
a3=[l()/+h)(ﬁ+h—p3h)—p4 wB+y (Pl 10 =h) | Poka(rr )

A Ty rr

The eigenvalues are calculated under the model assumptions rp > h, ry > h
and A > u. It is clear that the first three eigenvalues of this system are negative:
—(rr —h), —=(ry — h) and —(4 — ).

The polynomial from (3.21) is considered

/13 +a1/12 + a2/1+a3 = 0

As 0 < p3 <1, vyields

a,=F+y+u+h2—-p3)>0.



_ psh psh \2 | DaLl(A—p)(B+y+h) (p1ks(ry—h)
IT Ro _z(ﬁ+h)+\/(z(3+h)) Au(B+h) (y+h) ( TH

It can be rewritten as

+ kaZ(rT_h)) <1,

rr

+ (2(ﬁ+h)—p3h)2

2(B+h)

2(p+h)

pal(A—w)(B+y+h) <P1k1(7'1-1 —h) + D2k (rr — h)) < B+ h—psh

Au(B +h)(y + h) Ty rr

Therefore,

p+h

az = u(y + W) (B +h —psh) — PaL(A—p)(B+y+h) (mh(m—h) n pzkz(rr—h)) > 0.

A TH

Finally, a;a, — a; > 0 is considered

rr

a1a2_a3=(,3+V+M+h(2—P3))<(ﬂ+h—P3h)(V+h+M)+()’+h)ll

A

. PaL(A — ) (p1ky Gy — ) i P2k (rr — 1)
Ty rr

+ paLl(A—w)(B+vy +h) <P1k1(TH —h) ' D2k, (rr — h))
rr

A Ty

It can be rewritten as

aa;—az=y+h+p)y+hu+

A Ty

paLl(A — )

pal(A—p)(B +y +h) <P1k1 (ry — h) + D2k, (rr — h))
Tt

piki(ry — h) " p2ky (rp — )

+(B+V+u+h(2—103))<(ﬁ+h—p3h)(y+h+u)— 7

=Gl+Gz+a3,

(

T r
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)) —uly +h)(B +h—ps3h)

)
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where

_ B+y+h
B+y+u+h(2—ps3)

Gy

paLl(A—p)(B +y +h) (prk Gy — h) + P2k (ry — h)
A Tn T

((V+h+u)(y+h)u+

G, = (v + B +y+h)+uB)B +h—psh).

Itisclear G; > 0,G, > 0,and a; > 0since Ry < 1,1y > h, 1y > h, A > u, and

This means that a,a, — a; > 0. Using the Routh-Hurwitz criteria for the polynomial
of degree three (a; > 0, a; > 0, and a,;a, — az > 0), the remaining A of the disease-
free equilibrium system have negative real parts.

Therefore, E, will be locally-asymptotically-stable if R, < 1. When Ry > 1,

E, is unstable and the disease will persist. m

3.3.5 Global stability analysis of disease-free equilibrium point
The global stability of DFE is discussed using the Lyapunov’s method
and Lasalle theorem to obtain the control condition under which disease can be

eradicated.

Theorem 3.4: If R, < 1 then E,is globally-asymptotically-stable, by assuming that:

U =Dp1Sh + D25t (3.22)

Proof: Let V be the Lyapunov function, where

V:{(St, S, Enq, I, Sy, Iy) € 02:Sg, Sy, Sy > 0} - RE.

The Lyapunov function V for Equations (3.1) to (3.6) is defined as
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1y S
V(Sr, Sy, Ex, I, Sy, I,) = <ST — Si—Siin 5_T> + <5H — S5 —Shin 5_H> +Ey+ 1y
T H

Sy
+(S, =Sy —Spin==) +1,.
SV

When V is C1, a proper positive definite function, and E, is the global minimum of V

on (2, yields

V(S7,Sh,En 1, Sy, Iy) = 0.

The time derivative of V computed along solutions of Equations (3.1) to (3.6) is

v _ _5_?)& (_ﬁ)d_sd dEy | dlH (_E)dﬂ dly
dt_(l St dt+ Sy dt+dt+dt+ 1 Sy dt+dt (3.23)

Substituting the ODEs (3.1) to (3.6) into Equation (3.23) yields

v S Sy S; Sy +Ey + 1y
YT (1 - é) (rT (1 - E) St — p2Stly — hST) + (1 - ﬁ) (TH (1 - T) Sy = P1Sulv — hSH)

# (1 (1= ) s + paSily + paSely — (B + 1By ) + (BB — (v + Wy
1

+ ( - %) (A (1 - SV:IV) Sv +Iy) = paSy (Ey + Iy) — #SV) + (PaSy (Ey + 1y) — ply),

this simplifies to

a = (r (1= sr=hse) (1 =)+ (o (1= S ) (1-32)

try (1—%)p3EH—hEH—(y+h)IH+A(1—%)S{;(1—%)+us;(1—z—‘f)

v

+p4Sy(Ey + 1y) — (p1Sg + 025t — Wy, (3.24)
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(ra—h)k,
TH

Since Ey + 1y = Ny — Sy, Ny = Sj; = (TT‘h)kz’ Ny = S; = (A—AH)L and

Sp =

the conditions (3.22) where Ny =Sy + Ey + 1y is the non-tolerant cassava

population, Equation (3.24) can be rewritten as

av _

Sy Sy
dat ;

s = hEy = (r + Dy + 187 (2= £ 2) 1 Gy(55 - Sw), (329)

Sy

where G; = p,Sy,. Therefore, Equation (3.25) becomes

av (Sy—Sy)? *

All terms in Equation (3.26) are always non-positive since lim;_., Sy (t) = S;
(Equation 3.11) and 0 < p; < 1 (Table 2.4). Note that % = 0 ifand only if S; = Sy,
Sy =Sy Ey=E} Iy =1 andS, =S;.

Therefore, the  largest invariant compact invariant set in
{(Sr, S, By 1, Sy, 1) € 0:5% = 0} is the singleton, i.e., Eq = (7, 7, By, 1, 57, 15).

Thus, 2—: < 0. By LaSalle’s theorem, any solution approaches to E, ast — . This

implies that E, is globally-asymptotically-stable in 2. m

3.3.6 Global stability analysis of endemic equilibrium point

Theorem 3.5: If R, > 1 then E; is globally-asymptotically-stable.

Proof: Theorem 3.5 can be proved by the Lyapunov functions of Cai and Li (2010)
and Chen and Junyuan (2016). Let W be the Lyapunov function, where

W:{(Sr,Su, Ex, I, Sy, Iy) € 2:S7, Sy, Ey, Iy, Sy, Iy > 0} > R



and

fi(0,0)2w->w—-—1-Ilnw.

As can be observed, f(w) = 0and f(w) =0 ifandonly if w = 1.

The Lyapunov function W for Equations (3.1) to (3.6) is defined as

W(St,Sy, Ey, Iy, Sy, Iy) = ciW1(St) + ¢, WL (Sy) + csW3(Ey)

+eaWy(ly) + csWs(Sy) + csWe(Iy),

where

Ey

W, (S7) = f(izi) Wo(Sy) = f (§=:)' W5(Ey) = f(ﬁ),

Wall) = f (), Ws(S0) = £ (), Welt) = £ (£),

Cci = ! c, = ¥ Cy = E
1 p2ly’ 2 paly’ 2 (mﬁﬂuﬁ)ﬁ’
Iy 1 Iy

Cp=—, Ce=E——7—— Cp = —/———.
* 7 BEn 0 T pa(En+Tn) ® " paSv(Em+Tn)
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(3.27)

When W is C1, a proper positive definite function, and E; is the global minimum of

Won 2, we obtain

WSz, 84, Ef I, Sy, Iy) = 0.

For simplicity of notations, we denote

x = St _ SH Iy Sy Iy __ P1SytDP2ST

_ Eyg+iy

En
_—yy_=!Z:=yq=_r==!u==yW_ = = !
St SH Eh P1SH+D2ST

~ Egtly

For clarity, we first calculate the derivatives of W;, W,, W5, W,, Ws, and W, one by

one (Equations (3.28) to (3.33)).
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We first consider the derivative of W;

= %( — g) (e (1 - ’Z—:) St = paSely — hSr).

Since 7 (1 — IZ—ZT) =p,l, +hand¢; = ﬁ, we have

% - %(1 - z_:) (pZSTE + hSr — p2Srly — hST)
1/S I
=L F-1)0-3)
=C—11(x— 1— xu + ). (3.28)

Next, we consider the derivative of W,

D= = (1= 2) (s (1 - 22) Sy — paSuly — hSi).

Since ry (1 — N—H) = pyI, + hand ¢, = —, we have
k1 pllV

% = %(1 =< ::_:) (plsHE + hSH —_ plsHIV — hSH)
1/(S I
-2G-1)(0-%)
=C—12(y— 1—yu+u). (3.29)

We next consider the derivative of W;

dw;s 1( Ey
dt  Ey

Ey

) (TH (1 - IZ_T) p3Ey + p1Suly + p2Srly — (B + h)EH)-

En

——H ____ we have
(p1Su+Dp2ST)Iy

Since (8 + h)Ey =1y (1 - ’;’(—i’) psEy + p1Suly + p2Srly and ¢ =
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— Z:Z (T‘H (1 - IZ_[I) p3Ey + p1Suly + Pz%))

_1 (1 _ @) ((PZS_T+P1S_H) Iy E_H)
c3 Ey (P25T+P15H)E Ey
1 wu
—gOmr";—z+1) (3.30)

—q+ 1). (3.31)

We then consider % , since uS, =4 (1 — %) Ny — 04Sy(Ey +1y) and

1

= —, We obtain
P4(Eg+1n)

Cs

Y= L(1-2) (11 -2 S CEa+ ) =,

(1 - S—V) (A (1 - %) Ny — paSy(Ey + Iy)

14

=5 (=)A= -+ @-1)(-EP)

Y O 1 Y i ) M P
= /1(1 L)NV > +Cs(r 1—rv+v). (3.32)

Y (/1 (1 - %) Ny — paSy(Ex + E)))
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Next, we consider the derivative of W

aw, 1 Iy
d—te = ﬁ(l — %) (paSy(Ey + Iy) — uly).

Since ul, = pySy(Ey + Iy) and ¢ = m, we have

% = é(1 - ;_Z) <p4SV(EH +1y) — %mS_v(E + E))

1 ( E) (sV(EHHH) IV)
= — 1 _— el ——
Cg Iy Sv(EH-I-IH) Iy

— (- ous1), (3.33)

Ce

Lyapunov-Lasalle’s Theorem indicates that the E; is globally-asymptotically-
stable in 2 when ‘Z—V: < 0. The time derivative of W computed along solutions of

Equations (3.1) to (3.6) is

aw aw, aw, aws aw, Aws AW,
— = —+c—=+0—+c,—=+cc—+c,— 34
dt 1dt+2dt+3dt+4dt+5dt+6dt (3.34)

Finally, Equation (3.34) is substituted by Equations (3.28) to (3.33). Therefore,

the derivative of W becomes

— 2
dW__(SV+SV) ( _&) Ny
dt SvSy L) py(Ey + 1)

+(r+u+v+wu+x+y—q—xu—yu—i—g—w—u)

u V4

< 0. (3.35)
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The equality of Equation (3.35) satisfies if and only if S; = Sy, Sy = Sy, Ey = Ex,
Iy =1y,S, =Sy, and I, = I,. By Lyapunov-Lasalle’s Theorem, any solution tends

to E; ast — oo. This implies that E; is globally-asymptotically-stable in 2. mi

3.4 Summary

So far, the DFE point is globally-asymptotically-stable and that the disease can
be controlled as long as the threshold R, <1 and the EE point is globally-
asymptotically-stable when R, > 1 and the disease will persist. ~From an
epidemiological view, the goal of policy is to control CMD outbreaks by maintaining
R, <1 and maximizing the uninfected population. However, an agricultural
viewpoint would instead focus on maximizing the economic returns. Therefore, it
needs to identify the strategy that is the most cost-effectiveness.

In Chapter IV, optimal control policy is established. Sensitivity analysis is used
to identify the parameters that is the most significant to maintain the stability of the

CMD system.



CHAPTER IV

OPTIMAL CONTROL POLICY

41 CMD Outbreak Model - With Control Methods

This chapter aims to determine the optimal policy that maximizes economic
benefit by including control variables to CMD outbreak model. Currently, there are
four strategies to control the spread of disease (Thresh and Otim-Nape, 1994; Rabbi et

al., 2014) as listed in Table 4.1.

Table 4.1 Control strategies and related variables

Control strategy Variable or term
Spraying pesticide to damage whiteflies Uy
Rouging infected cassava plants Uy
Selecting non-infected cuttings to plant Us
Promoting tolerant cuttings rr (1 — i—i) Sr

41.1 CMD control model

Figure 4.1 shows a state diagram of CMD control model
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S,

ry [1_5%45'*‘5{]%151{,( (1-uy)

1

\ T l
VN
N ut EH +7 I Susceptible cassava \ Exposed cassava ( Infected cassava
— L Sy : : PE, T
> S —

=3 H

£ &

71 +

hS,,
J(ss 2,

il +eud, uS, +euS,

Figure 4.1 State diagram of CMD outbreak model — with four control

methods

State diagram with control methods become Equations (4.1) to (4.6):

as S

d_: =Tr (1 N k—Z) ST N pZSTIV e hST, (41)
as SH+Ep+I

< i3 - S22, -1, 02

dE,, Sy + Ey+ Iy
=Ty ( - —) p3(1 —uz)Ey + p1Syly + paSrly

dt k;
—(B + hEy, (4.3)
dly
a BEy — (Yup, + h)ly, (4.4)
ddi: =A (1 — SV:IV) (SV + Iv) - p4SV(EH + IH) — (Eul + ‘U)SV, (45)
dﬂ = p4SV(EH + IH) — (Eul + ‘Ll)IV (46)

act
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In this model, CMD spread can be controlled by reducing the following
four infection terms:
(1) p1Syly represents infection number of non-tolerant cassavas by
whitefly.

(2) p,Sr1y represents infection number of tolerant cassavas by whitefly.

(3) my (l—sf’Jri—HHH)pS,EH represents infection number by
1

replanting of infected cuttings.
(4) paSy(Ey + Iy) represents infection number of the whitefly after

acquiring CMD from infected cassavas.

As can be observed, these infection terms can be controlled and

increased yields by decreasing the number of Ey, I, Sy, and I;,. Thus, control factors
Uq, Uy, Uz and rp (1 — i—T) Sr play important role in controlling disease spreads.
2

Spraying of insecticide is represented in term of eu,, where € is an
efficiency rate of pesticide spray and u, € [0,1] is a control variable of spraying. The
goal of this method is to decrease the whitefly population (S, and I;) in terms p; Sy I,
p.Stly, and p, S, (Ey + Iy), leading to the decrease of exposed cassava (Ey).

Uprooting of infected cuttings is represented in term of yu,, where y is
an efficiency rate of rouging and u, € [0,1] is a control variable of rouging. The
infected cassava (I;) will be reduced by directly removing infected plants out of a
plantation area, leading to the decrease of cassava-whitefly transmission as shown in

the term of p, Sy (Ey + Iy).
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Selecting non-infected cuttings is represented in term of p;(1 — u3),

where u; € [0,1] is a control variable of selecting non-infected cuttings. This method

Sy+Ey+iy

reduces the number of E}; in terms of ry (1 . ) psEy and p, Sy (Ey + Iy).

Planting with tolerant cuttings is represented in term of r (1 — i—T) Sr.
2

This method reduces cassava-whitefly transmission (term p, Sy, (Ey + Iy)) by using the

same technique as the herd immunity effect (p, < p;).

4.2  Sensitivity Analysis

Sensitivity analysis plays an important role to study variation of the CMD
spread severity caused by CMD outbreak parameters as descried in Table 3.2. Result
of sensitivity analysis leads to the source of CMD spread, where the parameter with the
highest value of R, is the cause of the outbreak. Hence, prevention strategies could be
designed to cope the spread of the outbreak. The sensitivity analysis is the normalized
forward sensitivity index of R, as defined in Equation (4.7).

Definition 4.1: The normalized forward sensitivity index of R, which is differentiable

with respect to a given parameter, is defined by

dR parameter
0 (parameter) Ro

Sensitivity index (S.1.) = 4.7

(Wang et al. 2019).

Results of S.1. can be done by substituting parameter values appear in Table 3.2

into Equation (4.7). Table 4.2 lists the S.1. of R,,.



Table 4.2 Sensitivity indices of R,

Parameter | Sensitivity index
h -0.1770
B -0.2670
Y -0.0890
Ty +0.0304
Tr +0.0030
ky +0.4767
k, +0.0223
A +0.0381

-0.5371
L +0.4990
s +0.4767
P, +0.0223
Ps +0.0020
P +0.4990
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Table 4.2 shows sensitivity indices of R, where the natural whitefly death rate,

u, has the highest sensitive value (S.1. =-0.5371). One simple approach that contributes

to an increase of whitefly death rate is spraying pesticide. This strategy is effective in

controlling the whitefly but it has high costs of pesticide and operation. According to

Kinene et al. (2016), massive spraying gives farmers more yields but it is not cost-

effective. Bokil et al. (2019) suggested that combined strategy of rouging and spraying

performs better than applying a single method. Therefore, the aim of this study is to

determine which combination of these four controlling methods, as described in Table

4.1, is the most cost-effectiveness. Eight policies are proposed in this study for optimal

control are listed in Table 4.3.
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Table 4.3 Policies and related control variable for optimal control

Policies Description Control variables
Sp(®) | ur | uy | us
A-1 | Tolerant cuttings and spraying insecticide vV
A-2 | Tolerant, spraying and rouging infected plants v v v
A-3 | Tolerant, spraying and selecting non-virus cuttings | v v v
A-4 | Tolerant, spraying, rouging, and selecting v ViV V
B-1 | Spraying v
B-2 | Spraying and rouging VI v
B-3 | Spraying and selecting v 4
B-4 | Spraying, rouging, and selecting vViivv

4.3  Optimal Control Theory

The mathematical formulation for optimal control is constructed to minimize
the operation costs of each control method.

4.3.1 Objective function

The objective function is given by

J(uy, ug,u3) = fotf(AOIH + Aguf + Ayuj + Ajui)dt, (4.8)

where t; is a final time, subjected to Equations (4.1) to (4.6). A, represents the weight
constant of the infected cassava I;. The quantities of A, A,, and A5 represent the cost
per unit of each control variable u,, u,, and us, respectively. The costs of control
methods are described below.
(1) A,u,? represents control cost by spraying pesticide to the whitefly.
(2) A,u,? represents control cost by uprooting infected plants.

(3) Azus? represents control cost by selecting non-virus cuttings.
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4.3.2 The existence of optimal control
The Lagrangian for the optimal control of Equations (4.1) to (4.6) is

L(IH, ul, uz, ug) = (A()IH + Alu% + Azu% + Agug), (49)

Theorem 4.1: There exists an optimal control uj, u3, and u3 so that

J(ui, uz,uz) = minimize{J (uy, uy, uz), (Ug, Uy, u3z) € ul. (4.10)

Proof: Theorem 4.1 can be proved by checking the following conditions:
(1) The corresponding set of controls and the state variables are nonempty.
(2) The control set u is convex and closed.
(3) The right-hand side of state system is bounded by the linear function in
state and control variables.
(4) The integrand of the objective function is convex on u.
(5) There exist nonnegative constants ¢, and ¢, and 8 > 1 satisfying the

following expression:

6
L(x,uy,up,U3) 2 ¢y + 1 (Jug|? + |up|® + [uzl?)z,
where x is any state variables of the CMD model.

Checking the following conditions:

According to theorem of Lukes (1982), the existence of system in Equations
(4.1) to (4.6) are defined by bounded coefficients, which are nonempty. Thus, the
control set is convex and closed.

Note that the state system is linear in u,, u,, and us. Therefore, the right-hand

side of the system is bounded by the linear function.
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Since the solutions to the system of Equations (4.1) to (4.6) are bounded, the
control function is convex in u.

Let ¢, = min (Iy) and ¢, = min(A,, 4,, A3) and 6 = 2, then the Lagrangian L
can be rewritten as

L(x, Uq, Uy, U3) = A()IH +A1u% +A2u% + A3u§
e 2 2 2 2
= Aoz + d1(Jusl® + |uz|* + lusl?)?

0
= ¢, + 1 (lug|* + uz|® + uszl?)z.

All conditions are satisfied and consequently there exists an optimal control for the

system of Equations (4.1) to (4.6). i

4.3.3 Characterization of the optimal control
The optimal control of CMD outbreaks can be derived through the use
of Pontryagin maximum principle (Pontryagin et al., 1962).
Theorem 4.2: There exist the adjoint variables 4;, i =1, 2, 3, 4, 5, 6, under the control

of CMD outbreaks that satisfy the following:

di oOH 25
d_tl = ~ %5 =-1 (TT (1 — k_zT) — (paly + h)) — A3paly (4.11)
di,  OH _ 2Sy + Ey + Iy
o= es, T 2<rH (1 k—1) (Palv +R)
2 (w —p, Iv) (4.12)

d/13 aH rHSH SH + ZEH + IH
= - 13 Ty (1 -

. AL - )ps(l—us)—(ﬂ+h)>

=B + (As — A6)DaSy (4.13)

% = — ;TH = -4y + 4, TP;SH + A3 —er(r%)EH + . (yuz + h) + (As — Ae)paSy  (4.14)
H 1 1
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dd_ls = —s </1 (1 - M) — (Pa(Ey + Iy) + euy + #)) — Aspa(Ey + Iy) (4.15)
t Sy L

da OH 2(Sy +1
—== = (A2 = A3)p1Su + (A1 — A3)p2Sr — A5/ (1 - (VTW) +2g(euy + 1) (4.16)

with the transversality conditions

2:(tr) =0, i=1,223475,86. (4.17)

Furthermore, the optimal control variables uj, u;, and uz are given by

u; = maximize {O,minimize {1, %52":1—6]")}} (4.18)
1
u; = maximize {O,minimize {1%}} (4.19)
2
u3 = maximize {O,minimize {1,;733@ (1 — S”—Hii’;l”) ngH}} (4.20)

Proof: The Hamiltonian for the optimal control of CMD outbreaks is defined as
follows:
H = L(x,uy,uy,uz)
+2q (rr (1= i_Z) St — p2Srly — hSr)

Sy+Ep+iy

+2z (r (1 - k—l) S = P1Suly — hSy)
_ Su+Ep+ly

+13 (7'1-1 (1 k—1) p3(1 —uz)Ey + p1Suly + p2Srly — (B + h)EH)

+A4(BEy — (Yuy + R)1y)

+1s (/1 (1 - SV:IV) Sy + Iy) —psSy(Ey + Iy) — (euy + #)SV)

+6(02Sy (Ey + Iy) — (euy + wly)

The adjoint system is obtained as follows:
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i,

AT
rral M| (1 - k_z) = (p2ly + h) | — A3p2ly

9 2<TH<1_k—1)_(Pllv+h) + 13 k. —pily

%: rHSH_/,l (r (1_SH+2EH+IH
3 H kl

= )pg(l—ug)—(mh))—m

+(As — A6)P4Sy

da oS T, 1—u3)E
dt4 =—Ap+ 1, I-]I(H+A3 P k 2 L4 As(yuy + 1) + (As — Ag)paSy
1 1

y) 2(Sy + 1)
d_ts =—1s </1 <1 - %) — (pa(Ey + 1y) + euy + H)) — Aepa(Ey + Iy)

da
d_t6 = (A2 = 23)p1Su + (A1 — A3)p2St — AsA (1 N\ W) + Ag(eus + 1),

with transversality conditions (4.17).
The optimal condition characterization given by (4.18) to (4.20) is determined

by solving the following partial differential equations:

OH

E = 2A1u1 - E(Assv + )l6IV) =0 for u;,
1
O_H = 2A2U2 - Aél-VIH f0r u;,
6u2
0H Sy+Ey+I %
@ = 2A3U3 - A3T‘H (1 - i#) p3EH f0r u3.

By standard control arguments involving bounds on the control, then
0 ifum <0,

wh, = {us iful, <1,
1 ifuy, =1,

form =1, 2, 3 and where



83

+ _ €@AsSy+aely)
uj = e

— Aayly
24,

A ( Sy+E +I)
* 3 H HTIH
Uy = —7 1] ——"= p Ey.

3 245 H ky 3~%H

This completes the proof. m|

4.4 Numerical Simulation

The optimal policy is determined using data obtained from Holt et al. (1997),
Jeger et al. (2004), Wagaba et al. (2013), Kinene et al. (2015), Bokil et al. (2019), and
Magoyo et al. (2019). The solutions in this system are calculated using MATLAB.
4.4.1 Data settings
The units of all parameters are per day. The parameters used for all

simulations are described below.

Weight constant 1Ay = 1.000,

Costs :A; =$0.003, 4, = $0.001, and A; = $0.001,
Efficiency parameters y=0.03ande =0.2,

Range of time :t € [0,300],

Initial conditions
(With tolerant cuttings) : S7(0) = 0.20, S5 (0) = 0.20, E4(0) = 0.10,

1,(0) =0, S,(0) = 100, and I,(0) = 50,
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Initial conditions
(Without tolerant cuttings)  : S;(0) = 0, S4(0) = 0.20, E5(0) = 0.10,

I;(0) = 0, S,(0) = 100, and I,(0) = 50,
and the rest of all parameters used in this study is shown in Table 3.2.

4.4.2 Algorithm of optimal control
The number of cassava population and the control costs are determined

using the fourth-order Runge-Kutta method as defined in Definition 4.2.
Definition 4.2: Let x be states of ODEs and [to, tf] be any time interval in T. Optimal

control values are determined using the following iterations.
(1) Setting all variables. Let X = x(t) be state variables at different
time t, u_;n = u,, (t) be control parameters for t € [t,,, t,,4+1], and A = A(t) be adjoint

parameters for t € [t,4q,t,], wheren =0,1,...,T-land m =1, 2, 3.

(2) Calculating state variables.  Use initial conditions x = x(t,)
and values of 1, to solve x forward in time [t, t;].

(3) Calculating adjoint variables. Use the adjoint condition Ay, =
A(t) = 0 and values of x and u,, to solve 7 backward in time [t7, to)-

4) Calculating control variables. Update values of u_;n by using
new values of x and Z into the characterization Equations (4.18) to (4.20).

(5) Checking convergence of control variables. If u:,l € [0,1], the

optimal control variables are converged, otherwise repeat to the whole iteration.
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4.4.3 The cost-effectiveness analysis
According to Okosun et al. (2011) and Okosun et al. (2013), the most
cost-effective policy is calculated using the average cost-effectiveness ratio (ACER).
ACER is a ratio of total control cost to the increase number of healthy cassava tubers
and is a measurement of economic value of an intervention as shown in Equation

(4.21).

The total cost produced by the intervention

ACER = (4.21)

The increase number of healthy cassava per population’

45 Results

This section determines which policy is the most cost-effective one. This can
be done by calculating the number of cassava tubers and the total control costs
according to Equations (4.1) to (4.6) in order to compute ACER values of eight policies.

45.1 Policy A: Promoting of tolerant cassava cuttings

In this scenario, tolerant (S;) and susceptible (S) cuttings are initially
planted at 40% of the maximum plantation capacity. Initial conditions were
Sr(0) = 0.20, Sy(0) = 0.20, Ez(0) = 0.10, I4(0) = 0, S,(0) = 100, and

1,(0) = 50.



86

0.40

0.35

o
W
o

e
)
(]

Cassava population
=] =]
- N
(3] (=]

ST
Syl
........ E,
———l | ]
150 200 250 300
Time (days)

Figure 4.2

Cassava population with promoting of tolerant cassava cuttings

Figure 4.2 shows the number of cassava population when using only promoting

tolerant cuttings method. Namely, no control method is applied in this policy (uy, u,,

and u; = 0). Exposed and infected cassava plants outnumbered healthy cassava plants

(tolerant and susceptible) at day 3. This is due to the fact that the infected cassavas

were still in the plantation and the infected whitefly were not killed. At the end of

numerical simulation, the number of healthy cassavas remaining at the harvest time is

approximately 5% of the initial planting assuming that a daily harvest rate, h, equals to

0.003.



(1) Policy A-1: spraying and promoting tolerant cuttings
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In this scenario, spraying and promoting tolerant cuttings were applied.

Therefore, control variable for spraying method, u, € [0,1] and the rest of control

variables were not applied (u, and u; = 0).
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Figure 4.3 Cassava population with promoting of tolerant cassava cuttings and

spraying insecticide (Policy A-1)
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Figure 4.4  Control profile for Policy A-1 u; € [0,1],uy,u3 =0

Figure 4.3 shows dynamics of cassava population using tolerant cuttings
and spraying methods. Infected cassavas (exposed and infected) outnumbered healthy
plants on day 3. This is because infected cassavas were not removed from the
plantation. There were only 14.50% healthy tubers remaining in the plantation at the
harvest time, on day 300. Figure 4.4 shows that u, remains at the upper bound for 285
consecutive days and then decreases to the lower bound on the harvest day. This means
that spraying was done continuously for the whole planting period to prevent the

spread. Therefore, this method was the least cost-effective one.
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(2) Policy A-2: spraying, rouging, and promoting tolerant cuttings

In this scenario, spraying, rouging and promoting tolerant cuttings were
applied. Therefore, control variables for spraying method, u, € [0,1] and for rouging
method, u, € [0,1]. Selecting non-infected cuttings method was not applied in this

policy hence, uz = 0.
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Figure 4.5 Cassava population with promoting of tolerant cassava cuttings,

spraying insecticide, and rouging infected cassavas (Policy A-2)
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Figure 4.5 shows numerical results of dynamics of cassava population
when Policy A-2 was applied. Removing infected cassavas by rouging method
together with spraying method helped increasing healthy cassava yields to 17.49%.
Figure 4.6 shows control variables u; and u, of Policy A-2. u, remains at the upper
bound for 287 consecutive days and then reduces to lower bound on the harvest day.
u, raises to the upper bound on the day 2 and remains at the upper bound for 296

consecutive days and then decreases to the lower bound on the harvest day.
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(3) Policy A-3: spraying, selecting, and promoting tolerant cuttings

In this scenario, spraying, selecting and promoting tolerant cuttings
were applied. Therefore, control variables for spraying method, u, € [0,1] and for
selecting method, u; € [0,1]. Rouging method was not applied in this policy hence,

u, =0.
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Figure 4.7 Cassava population with promoting of tolerant cassava cuttings,

spraying insecticide, and selecting non-infected cuttings (Policy A-3)
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Figure 4.8 Control profile for Policy A-3 u,, u; € [0,1],u, =0

Figure 4.7 shows dynamics of cassava population when Policy A-3 was

applied. There were only 14.68% healthy cassava tubers remaining in the plantation

on day 300 because infected cassavas were not removed from the plantation. Figure
4.8 shows control variables u; and u;.

u, remains at the upper bound for 284
consecutive days and then reduces to the lower bound on the harvest day. u; remains

at the upper bound for 237 consecutive days and then decreases to the lower bound on
day 300.
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(4) Policy A-4: spraying, rouging, selecting, and promoting tolerant

In this scenario, all control methods were applied. Therefore, control

variables for spraying, rouging, and selecting methods, u,, u,, and u; € [0,1].
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Figure 4.9 Cassava population with promoting of tolerant cassava cuttings,

spraying insecticide, rouging infected cassavas, and

selecting non-infected cuttings (Policy A-4)



94
1.00 . 1
| : I
0-90 |- —u1 : -
| u . |
== Uyl
w 080} : i
[4h] weessaan ] -
3 l : |
g 0.70 i
° H
o 060} 3 1
o] :
5 H I
3 050 Lo
o .

= 040! 2 i
& :

o .

O 0.30 ) .
020! e
010 Y

50 100 150 200 250 300
Time (days)

Figure 4.10 Control profile for Policy A-4 uy, u,, u; € [0,1]

Figure 4.9 shows dynamics of cassava population when all methods

were applied. Controlling the number of infected cassavas by rouging and selecting

methods together with spraying helped increasing healthy cassava yields to 18.77%.

Spraying pesticide while removing infected cassavas by rouging method was proved to

be an effective approach to improve yields.

However, this policy is still not cost-

effective one. Figure 4.10 shows control variables u,, u,, and us of Policy A-4. u,

remains at the upper bound for 283 consecutive days and then decreases to the lower

bound on the harvest day. u, remains at the upper bound from day 2 to 298 and then
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decreases to lower bound on day 300. wu; remains at the upper bound for 244

consecutive days and then decreases to the lower bound on the harvest day.

4.5.2 Policy B: Without tolerant cassava cuttings
In this scenario, susceptible (Sy) cuttings were initially planted at 20%
of the maximum plantation capacity and tolerant (S;) cuttings were not used.
Therefore, initial conditions were S;:(0) = 0, S;(0) = 0.20, E4(0) = 0.10, I,(0) =

0, S, (0) = 100, and I, (0) = 50.
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Figure 4.11 Cassava population with no control strategy
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Figure 4.11 shows dynamics of cassava population (Sy, Ey, and Iy)
when promoting tolerant cuttings method was not applied (S; = 0). By the time of
harvest on day 300, 16.99% of infected cassava tubers remained in the plantation. The
number of healthy cassavas remaining at the harvest day was approximately 0.13%.

(1) Policy B-1: spraying

In this scenario, spraying method was applied. Therefore, control
variable for spraying method, u, € [0,1] and the rest of control variables were not

applied, u, and u; = 0.
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Figure 4.12 Cassava population with spraying insecticide method (Policy B-1)
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Figure 4.13 Control profile for Policy B-1 u; € [0,1],u,,u3 =0

Figures 4.12 and 4.13 show dynamics of cassava population and control
variable u; when Policy B-1 was applied. At the harvest day, 1.97% of healthy cassava
tubers remained in the plantation. u; remains at the upper bound for 284 consecutive

days and then reduces to the lower bound at the lower bound.
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(2) Policy B-2: spraying, rouging

In this scenario, spraying and rouging methods were applied. Therefore,

control variables for spraying method, u, € [0,1] and for rouging method, u, € [0,1].

Selecting non-infected method was not applied thus u; = 0.
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Figure 4.14 Cassava population with spraying insecticide and rouging infected

cassavas (Policy B-2)
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Figure 4.14 shows dynamics of cassava population when Policy B-2
was applied. Removing infected cassavas by rouging method together with spraying
method helped increasing healthy cassava tubers to 6.92% on the harvest day. Figure
4.15 shows control variables, u, and u, of Policy B-1. u, remains at the upper bound
for 285 consecutive days and then reduces to the lower bound on the harvest day. u,
remains at the upper bound from day 2 to 298 and then decreases to the lower bound

on the harvest day.
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(3) Policy B-3: spraying, selecting
In this scenario, spraying and selecting methods were applied. Thus,
control variables for spraying method, u; € [0,1] and for selecting method, u; € [0,1].

Rouging method was not applied thus u, = 0.
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Figure 4.16 Cassava population with spraying insecticide, and selecting non-

infected cuttings methods (Policy B-3)
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Figure 4.17 Control profile for Policy B-3 u;,u; € [0,1],u, =0

Figure 4.16 shows dynamics of cassava population when Policy B-3

was applied, 2.70% of healthy cassava tubers and 21.55% of infected cassava tubers

remained in the plantation area on the harvest day. Figure 4.17 shows control variables
when Policy B-3 was applied. u,; remains at the upper bound for 285 consecutive days
and then reduces to the lower bound on the harvest day. u; remains at the upper bound

for 235 consecutive days and then decreases to the lower bound on the harvest day.
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(4) Policy B-4: spraying, rouging, and selecting

In this scenario, spraying, rouging, and selecting methods were applied.

Therefore, control variables for spraying method, u, € [0,1], rouging method,

u, € [0,1], and selecting method, u; € [0,1].
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Figure 4.18 Cassava population with spraying insecticide, rouging infected

cassavas, and selecting non-infected cuttings methods (Policy B-4)
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Figure 4.19 Control profile for Policy B-4 u,, u,,u; € [0,1]

Figure 4.18 shows dynamics of cassava population when Policy B-4 was
applied. By the time of harvest on day 300, 8.39% of healthy cassava yields remained
in the plantation. Figure 4.19 shows dynamics of control variables u,, u,, and us. u,
remains at the upper bound for 285 consecutive days and then decreases to the lower
bound on the harvest day. u, remains at the upper bound from day 2 to 298 and then
decreases to the lower bound on the harvest day. u; remains at the upper bound for

233 consecutive days and then decreases to the lower bound on the harvest day.



4.5.3 Cost-effectiveness analysis

ACER values of eight policies are listed in Table 4.4.

Table 4.4 ACER of control policies

Policies | Total costs | Healthy cassava ratios | ACER values | Ranking
A-2 $1.156 0.703 1.643 1
A-4 $1.410 0.746 1.888 2
B-2 $1.157 0.600 1.929 3
B-4 $1.402 0.633 2.216 4
A-1 $0.859 0.384 2.235 5
A-3 $1.108 0.412 2.686 6
B-3 $1.106 0.288 3.836 7
B-1 $0.858 0.211 4.064 8
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Table 4.4 ranks all eight policies according to ACER values. It

can be seen from the above table that Policy A-2 is the most cost-effective policy.

Controlling the increase of infected cassavas by tolerant cuttings and rouging methods

together with spraying pesticide helped reducing the number of infected plants and the

number of whitefly simultaneously. Policy B-1 is the least cost-effective one. Spraying

pesticide without removing infected plants was proved to be both the most expensive

and the least effective method.
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4.6 Discussion

Sensitivity analysis results show that R, was the most sensitive to the existence
of whitefly. Spraying pesticide is the most effective method. The more spraying
applied in the plantation, the more effective it is to reduce the number of whitefly.
However, it leads to high costs of labor and pesticide as shown by ACER value of
Policy B-1 equals to 4.064 in Table 4.4, which is the highest value and not cost-
effective.

The existence of infected cassavas was another factor to spread CMD virus.
Thus, the combined method of rouging and spraying, Policy B-2 performs better than
using a single control, Policy B-1. ACER value of Policy B-2 equals 1.929, which is
much lower than that of Policy B-1.

Using three methods simultaneously shows improvement in increased yields.
Policy A-2, which combines spraying, rouging, and tolerant cuttings, gives the lowest
ACER value of 1.643, which is more cost-effectiveness than Policy B-2.

However, when applying four methods altogether in Policy A-4, its yield is only
5.75% higher than that of Policy A-2, however, the increased control cost of Policy A-
4 is 18% higher than that of Policy A-2. Hence, the use of spraying, rouging, and
tolerant cuttings is sufficient to control CMD outbreak with optimal cost-effectiveness

goal.



CHAPTER V

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

This research developed CMD outbreak model caused by whitefly transmission
and infected cuttings. The severity of CMD outbreak is increased when infected
cassavas are not uprooted out of the plantation. Infected cassavas can be categorized
in two forms, symptomatic and asymptomatic. Asymptomatic or latent cassavas are
infected but it takes a couple weeks to show the symptom. Without a clear
understanding of this state, it could lead to serious outbreak that is difficult to control.
There is no study of latent state in the literature. The proposed model is extended from
models of Bokil et al. and Magoyo et al. by adding a latent state to study the relationship
between latent cassavas and the severity of CMD spread. The model is used to indicate
factors that affect CMD outbreak the most by using sensitivity analysis. Testing model
with sensitivity analysis suggests that the existence of whitefly is the most crucial factor
that affects the severity of CMD outbreak.

Currently, disease spread can be controlled by four methods: spraying pesticide,
rouging infected cassavas, selecting non-infected cuttings to plant, and promoting
tolerant cuttings. Spraying pesticide is the most effective method to reduce the number
of whitefly but this approach requires high labor costs. Using all four methods
simultaneously are proved to be the most effective way to control the outbreak giving
higher yields of healthy cassavas than applying only three control approaches but this

policy requires high investment costs. The optimal control policy in terms of maximum
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number of healthy cassava yields and minimum costs is Policy A-2 that applies

spraying, rouging, and tolerant cuttings

5.2 Recommendation for Future Works

This study used principles of epidemiology, systems engineering, and systems
engineering to develop a model that represented dynamics of CMD. The model was
developed based on CMD outbreak and cultivation system in Nakhon Ratchasima
province, Thailand, which has the largest cassava growing plantation in Thailand. The
model was used to determine the optimal policy to control this disease spread, which
should increase cassava production and profits.

Since CMD was detected in Thailand in 2018, which was the emerging
infectious disease. There are no data collection for CMD outbreak in Thailand.
Therefore, parameters values and ranges are assumed from the previous work to
construct the model. In order to represent the real outbreak scenario in Thailand, it is
recommended to collect the data of CMD outbreak and cassava cultivation. This could

lead to optimal policy determination that fits to solve outbreak in the real case.
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Abstract: We develop a mathematical model for the dynamics of Cassava Mosaic Disease (CMD),
which is driven by both planting of infected cuttings and whitefly transmission. We use the model to
analyze the dynamics of a CMD outbreak and to identify the most cost-effective policy for controlling
it. The model uses the reproduction number ¢, as a threshold, calculated using the Next-Generation
Method. A locally-asymptotically-stable disease-free equilibrium is established when %, < 1,
proved by the Routh-Hurwitz criterion. The globally-asymptotically-stable disease-free and endemic-
equilibrium points are obtained using Lyapunov’s method and LaSalle’s invariance principle. Our
results indicate that the disease-free equilibrium point is globally-asymptotically-stable when %, < 1,
while the endemic-equilibrium point is globally-asymptotically-stable when %, > 1. Our sensitivity
analysis shows that %, is most sensitive to the density of whitefly. Numerical simulations confirmed
the effectiveness of whitefly control for limiting an outbreak while minimizing costs.

Keywords: cassava mosaic disease (CMD): reproduction number; local stability; global stability;
sensitivity analysis

1. Introduction

Cassava Mosaic Disease (CMD) is a plant disease that reduces tuber size and starch percentage
upstream in the cassava supply chain, reducing sales of the cassava crop [1]. This leads to downstream
economic impacts since cassava is a major industrial raw material. The financial losses due to CMD
in the African continent were estimated at $1.2-2.3 billion in 1997 [2], increasing to $1.9-2.7 billion
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in 2009 [3]. A CMD outbreak can be controlled in four ways: (1) by removing infected cassava from
the plantation, (2) by promoting the use of virus-free cuttings, (3) by using resistant varieties, or (4)
by killing infected whitefly in the plantation area [4-6]. These methods incur huge planning effort
and expense. However, there is no clear approach to mapping the major spread factors for appropriate
control planning. In this study, we analyzed the CMD spread factors and proposed an epidemic model
to isolate those factors that have a major impact in an outbreak. The output may be used to formulate
optimal strategies for outbreak control.

Using such an epidemic model, the authors of [7] showed how tomato yields in India suffered from
whitefly-vectored Tomato Leaf Curl Geminivirus (TLCV). The most effective disease-control strategy
was to distribute netting treated with persistent insecticide. This significantly controlled spread by
decreasing vector immigration to the plantation and increasing vector mortality. The authors of [8]
studied the outbreak of Huanglongbing disease (HLB) caused by psyllid bacteria, which seriously
impacts citrus greening. They tested different intervention strategies over a short time-frame and
showed that the best insecticide intervention was to spray over an optimal number of days.

Most epidemic models in the literature are based on the pioneering work in [9]. The models identify
the major factors that contribute to the outbreak by applying differential equations. This yields the basic
reproduction number (%), used to indicate the severity of spread [10-12]. Analysis of the sensitivity
of 9, determines which parameters have the greatest impact on disease control and should be targeted
by prevention policies [13,14].

Most viral crop plant diseases radiate in vectors [15, 16]. The models must therefore represent the
dynamics of plant-virus epidemics in order to reveal relationships between vectors and infected plant
numbers [17-19]. In 1994, African cassava mosaic virus (ACMV) caused widespread loss of
production. The authors in [20] incorporated vector-population dynamics into their statistical model
to empirically derive plant-virus relationships. In [21], an epidemiological model of ACMV was
introduced to describe the dynamics of infected cassava and infective whitefly. The authors derived a
strategy in which cassava yields are maximized by reducing the whitefly population. However, this
approach is not cost-effective, so farmers are advised to select uninfected cuttings for planting to
prevent a collapse of the healthy cassava population. This is an economical strategy that is capable of
controlling an outbreak. The authors [22] developed a mathematical model for the spread of Cassava
Brown Streak Disease (CBSD) caused by whitefly, using an approach similar to that in [21]. They
simulated two control policies: uprooting and burning of infected cassava, and killing of whitefly in
the plantation, They concluded that the optimal policy was uprooting and burning.

In previous works [21, 22], the same authors formulated a mathematical model for vector-host
dynamics using a single spread factor (whitefly). However, CMD infection requires both whitefly
(Bemisia tabaci) transmission and the presence of virus-infected cuttings [23,24]. Outbreaks have
spread beyond the African continent to countries in Asia including India and Sri Lanka following
imports of virus-infected cuttings. The CMD model must incorporate this route when devising
optimal strategies for outbreak control. The mathematical model developed in [25] for an outbreak of
ACMV took account of diseased cuttings, following [21]. The model suggested that a strategy
combining rouging and spraying performed better than those that apply a single control mechanism.

When infection levels are high, symptomatic cassava can be readily detected and removed from
the plantation. However, the symptoms take five weeks to appear [20], and during this period the
asymptomatic cassava may spread the disease. Our goal was to develop a better understanding of the

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5069-5093.
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relationship between asymptomatic plants and the severity of CMD spread. Our model added a latent
state to that in [25], in an effort to analyze the comparative contribution of whitefly transmission and
planting of infected cuttings. We applied sensitivity analysis to identify the most important parameters
in determining the severity of an outbreak.

The rest of this paper is organized as follows. Section 2 discusses CMD, the construction of our
model, and the most important parameters in CMD spread. In section 3 we introduce the positivity
and boundedness of solutions to initial conditions. Section 4 concerns the stability of the disease-free
and endemic-equilibrium points, and introduces the threshold parameter (%), obtained using the
Next-Generation method. The sensitivity analysis described in section 5 identified the most sensitive
parameter with respect to %, key to improving the design of CMD-control policies. We conducted
numerical simulations to explore the behavior of the system with and without control policies. The
simulation is introduced in section 6, and the results reported in section 7. Section 8 presents a
summary and our conclusions.

2. Construction of CMD outbreak model

Few mathematical models of viral cassava disease (East African Cassava Mosaic Virus (EACMV),
ACMY, or CBSD) [21,22,26] have analyzed how the disease spreads within a plantation. To understand
the dynamics of an outbreak, we used ordinary differential equations (ODEs).

The dynamics of ACMV spread were analyzed in [21] and [25], and the “SI-type epidemic model”
was developed, which categorizes plants as infected or uninfected. In [26], an epidemic model was
developed in which two viruses, ACMV and EACMYV, are carried by whitefly into the plantation.
The model was based on the “m-group Sl-type epidemic model™ of [27], which incorporates four
plant states: uninfected, infected by ACMY, infected by EACMYV, or infected by both. The authors
of [22] developed an epidemic model based on the SEIR-type model of [28], and used it to explore
the dynamics of CBSD. It assumed four states: healthy, latent, exposed, and rouging. The latent
stage, which was missing from earlier models, increases the transmission rate from infected plants to
whitefly and vice versa. Our proposed model takes account of the spread of CMD by both by planting
and whitefly transmission. The design process is comprised of three steps:

(1) The dynamics are based on infection by transplanting and by whitefly transmission [23, 24].
Defining these factors as parameters yields the ODEs, which we use to calculate equilibrium
points and to establish the stability of the outbreak. The Next-Generation method is used to
construct .

(2) The local stability of the disease-free equilibrium is proved by the Routh-Hurwitz criterion. The
system is locally asymptotically stable if %, < | and unstable if #, > 1. Global stability of the
disease-free equilibrium and the endemic equilibrium point are proved by Lyapunov’s method and
LaSalle’s invariance principle. When %, < 1, the disease-free equilibrium is globally
asymptotically stable. If %, > 1 then the endemic equilibrium is globally asymptotically stable.

(3) The use of sensitivity analysis to determine the parameters that most strongly affect the outbreak,
and the use of these parameters to simulate outbreak control by addressing risk factors.

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5069-5093.
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2.1, Parameters

In our model, the parameters in the CMD outbreak represent disease spread factors. The values and
ranges of the parameters were set with reference to previous studies or by analysis of CMD outbreaks.
The parameters are listed in Table 1.

Table 1. Parameters for outbreak analysis.

Symbol Description Value Range Source

h harvesting rate of cassava plants 0.003  [0.002, 0.004] [21]

B CMD latent rate 0.008  [0.008, 0.05] [29]

b4 rouging rate of symptomatic cassava 0.03 [0.03,0.1] [22]

K “maximum plantation capacity (m*) 15,000 [10,000, 20,000] estimated

r replanting rate of cassava 0.025  [0.025,0.1] [21]

a average number of cassava plants
visited by uninfected whitefly 200 [50, 300] estimated

A constant birth rate of whitefly 0.2 [0.1,0.3] [30]

H natural death rate of whitefly 0.0142  [0.0142, 0.06] [22]

P probability of transmission to healthy 0.0033 [0, 1.0] [22])
cassava plants from infected whitefly

22 probability of transmission to uninfected 0.0033 [0, 1.0] [22]
whitefly from latent or symptomatic cassava

3 probability of planting infected cassava cuttings 0.1 [0, 1.0] [21]

*Note: “assuming 1 plant per m>, The unit of h, 3, ¥, r and a is per day, and the unit of A is #vector per day and j is per
day.

2.2, Ordinary differential equations

The model tracks the dynamics of the cassava and whitefly populations. Cassava may be uninfected
X, latent ¥ (infected but asymptomatic), or infected and symptomatic Z. Whitefly may be infected R
or uninfected Q. The total cassava population N is therefore N = X + ¥ + Z at time ¢. Similarly, the
total whitefly population Ny is Ny = Q + R.

The transmission dynamics of CMD from an initial state to a second state are governed by the
parameters in Table 1. Infection by whitefly is given by ap, %R, Infection of whitefly from infected

plants is given by ap,Q r{;z_ CMD infection by planting of infected cuttings is r(l - %) p3Y. This term

was not used in previous works.,

%:r(l—%]x—am%f(’—-hx (2.1)
%ﬂ(l -%]p_;nap]%fe-wmw, 22)
% =pBY - (y + hZ, (2.3)
© A -ap0 - ne 2.4)
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dR Y+2
— = f-‘PzQ—+ —p‘R. (2.5)

dt N

The size of the cassava population is increased by replanting into the plantation area. r(] - %JX
in Eq (2.1) and r[] - %) paY in Eq (2.2) represent the replanting terms of healthy and latent cassavas.
Cassavas are removed from the system by constant harvesting (/) and rouging (y). The change from
state X (non-infected) to ¥ reflects the plants that become infected after planting. The change from V¥
to Z reflects the number of infected cuttings that begin to show CMD symptoms during the period.

The whitefly population is driven by two factors: birth rate (A) and death rate (u). Transmission
within the population causes a change from state Q to state R, as whitefly visit infected plants and

acquire the virus. Equations (2.6) and (2.7) give the total cassava and whitefly populations:

dN N

_—= = - —yZ -} 2.
7 :(1 K){X+p_\}’} ¥Z — hN, (2.6)

Ny _ ALy, @7
dr

The model makes the following assumptions:
(1) All model parameters are positive.

(2) The growth rate of the cassava population is positive, i.e., r = i = 0, where r is the replanting rate
and h is the harvesting rate.

(3) The cassava population increases by one of the logistic growth equations, r(l —%)X or
r(l - %)p;}’.

(4) The whitefly birth rate (A) is constant.
3. Basic properties of the model

To confirm the biological validity of the model, we must prove that solutions to the ODEs are
positive and bounded for all time values. Furthermore, the cassava and whitefly populations must
remain finite since they are bounded by the plantation area. In the next section we analyze our model
and demonstrate the positivity and boundedness of the system of ODEs.

3.1. Positivity
Theorem 3.1. Let 1 = 0. In the model, if the initial conditions satisfy
X(0), Y(0), Z(0), Q(0), R(0) >0, 3.1
then X(1), Y(1), Z(1), Q(1), and R(r) will remain positive in Ri,
Proof. Let us consider ¥(r) for all 7 = 0.
From Eq (2.2), we have
dY N
= r(l

o —E)p_;}’+ap|§]\’—(ﬁ+h)Y2r(l—%)p}}’—(ﬂ+h)lﬂ
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The integration of the inequality is
Y(r) 2 Y(O)e G- 5 00 forallr > 0. (32)

From the initial conditions (3.1), we have ¥(r) > O forall r = 0.
Next, we consider Z(z) for all r = 0. From Eq (2.3),
(:;—f =pY - (y+hZz-(y+hZ

A comparison argument shows that

Z(0) = Z(0)e™ "™ >0, forallr>0. (3.3)

Since Z(0) > 0, we conclude that Z(1) is always positive for all r = 0.
We prove that Q(r) > 0 for all r = 0 by contradiction. Let r; be the first point that satisfies Q(r;) = 0.
Equation (2.4) yields
dQ
E =iy
This means that Q(r) < 0 fort € (t, = 0,1,), where £ is an arbitrarily small positive constant. This leads
to a contradiction. Hence, Q(r) > 0 for all 1 = 0.
Next, we prove that R(r) is positive for all r = 0. From Eq (2.5),

=A>0. (3.4)

dR Y+Z
i apQ N —uR =z —uR,
it then follows that
R(1) = R(0)e ™™ = 0, forall r = 0. (3.5)

Since R(0) > 0, we know that R(r) remains positive for all = 0.
Finally, we prove that X(r) > 0 for all 1 = (0. From Eq (2.1), we have

dX N X X

- - =X - —R -1 —ap,—R - hX.
T r(l K]X amNR 1X = (:plNR X,
The integration of the inequality is

apy iz}
s >0

X(1) = X(0)e " h . forall0<r<1. (3.6)

From the initial conditions (3.1), we have X(t) > 0 for all t = 0.
We conclude that the solutions of the model are positive in B2, n]

3.2. Boundedness
We show the boundedness of the system with the initial conditions (3.1).

Theorem 3.2. All solutions of the system (2.1) to (2.5) with positive initial conditions (3.1) are
ultimately bounded.
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Proof. From Theorem 3.1, the solutions to the system are positive for all 1 = 0. Since N =X+ Y + Z.
From Eq (2.6), we have

N N
% =rX+ ,-'J_;Y){] - E) —yZ = hN.

As can be observed, the solution is bounded by logistic growth
dN N
=< r(l - —)N,
dt

The integration of the inequality is

NO)K

N < N() + (K — N(0))e "

(assuming N(0) > 0), and hence lim,_... N(r) < K. This gives the feasible solution set of the cassava
entering the region:
QH={X.Y.ZE_':':11|N£K} forall + > 0.

Next, note that Ny = Q + R. From Eq (2.7),

— = A - uNy.
dr HiYy

The integration of the equation is

A+ (Ny(O)p — A)e
M

Ny(t) =

(assuming Ny(0) > 0), which implies that lim,_,.. Ny(r) = T’\r Thus, the feasible solution set for the
CMD system is given by

QV:{Q.Re;ﬁmvg Q} foralls = 0.
H

The solutions of the system in & are confined to the region . Here
5 A .
Q= (X.Y.Z,Q,R)ER,rINEK,N‘»S-; forall r = 0.

Therefore, all solutions of the system (2.1) to (2.5) with initial conditions (3.1) remain positive
invariant in the region Q for all ¢ > 0. u]

4, Equilibrium points and stability analysis
To ensure that disease eradication is independent of the initial size of the susceptible population,
locally- and globally-stable disease-free equilibria and endemic equilibria are established when the

region £ is positivity invariant.

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5069-5093,




123

5076

4.1, Equilibrium points

Our model admits two equilibrium points: a disease-free equilibrium point (DFE) and an endemic
equilibrium point (EE). The notation of DFE is

- K A
Eo=(X'.V".2'.Q R = L2 ,0.0--»0)'
r 7

The EE is denoted E; = (X, Y, Z, O, R), where
rN(K(y + h) — (B+y + )Y) — K(y + h)(ap,R + hN)

X= r(y + h)N
7= apiKR(y + W)((r — h)N —ap,R)
rN((y + ) (B + h = hps)N + ap R(B +y + h — pa(y + 1))’
z=-L 7y,
y+h
- Aly + )N
0= apr(B+y+ MY +uly + N’
R= aApy(B+y + )Y

wlap2(B +y + WY + uly + N)'
4.2. Basic reproduction number

The basic reproduction number (%) is the one of the most useful threshold parameters in
epidemiology. It is defined as the expected number of secondary cases produced by a single infection
in a completely susceptible population. It is used as an indicator of the stability of Ey and E,. The
DFE E; is asymptotically stable if 2, < 1, as the disease cannot invade the population, but unstable if
4y > 1. E; is asymptotically stable if %; > 1. We use the Next-Generation method,
following [31,32], to determine ;.

The appearance of new infections is represented by the vector F and the transfer of existing
infections by the vector V. Let x; be an infection state for j = 1,2,3,ie..xy = Yoo =Zx3=R. F
describes new infections arising in state x; and V represents the transfer of existing infections to state
-\.j"

The Jacobian matrices generated by differentiating F and V with respect to the relevant subset of
variables are calculated at £y. This yields the matrices F and V. The (j, k) entry of the matrix F is the
rate at which infected individuals in compartment & produce new infections in compartment j. The
(j, k) entry of the matrix '/ represents the transfer of existing infection.

Ay is computed from the spectral radius of 7V~ at DFE. BV ! is called the Next Generation Matrix
[10] and is set as follows:

Hy = p(FV,
where p(.#) denotes the spectral radius of a matrix .4 . The spectral radius of FV~! is equal to the
dominant (or maximum) eigenvalue of FV i
In our model, the vectors F and V can be derived from Eqs (2.1)-(2.5):

r(l—%]p_;!’+ap.§.‘? B+mY
F= 0 and V= |(y+ h)Z-pBY|.
ap,05E uR
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The Jacobians of F and V with respect to the infectious classes are calculated as F = [’—'?f:—"’] and V
= [""J“"’”], for j=1,2,3 and k = 1,2,3. We then have

g

r(l—%)p; 0 ap B+h 0 0
F= 0 0 0| and V=|-8 y+h 0.
apafd” apa(”
:x‘ :X' 0 0 0 i
Therefore, the Next Generation Matrix FV ™! is
hips ap
- 0 o
FV~'(Ep) = 0 0 0. .1)
raApr(Bay+i) rap: 0

PR (r=I)(B+liiy+h)  pKir-iy+h)

Hence, %, is the dominant eigenvalue of Matrix (4.1).

o = max hps + hps + ,mg"\f’ 1B +y+h)
28+ h) 2B+ h) 2K - h)(y + B+ )

_ hps +J( hps )3+ ratApip2(B+y +h)

T 2B+ h) 28+h)) @K —h)y +h)(B+h) “.2)

4.3. Local stability analysis of disease-free equilibrium point

Theorem 4.1. Under the hypotheses r —h > 0 and 0 < py < 1, if %y < 1 then Ey is locally
asymptotically stable; otherwise it will be unstable.

Proof. The local asymptotic stability is determined based on the eigenvalue (1) of the Jacobian at Ej.
The Ej is locally asymptotically stable if the real parts of A are all negative. The Jacobian matrix at E,
is given by

—(r=nh) —(r=nh) —(r=h 0 -ap

0 hpy = (B+h) 0 0 ap
JEp=| 0 B —(y+h) 0 0 |, (4.3)
0 gl om0
0 = om0 H
The characteristic equation is given by
A+ @A+ (=) (X + a2 + ad +a3) =0, (4.4)

with coeflicients

ay=f+y+pu+h2-ps),

ApiIpa
a::(ﬁ+h—hpg)(y+h+;.1)+(y+h)‘u—%,
and )
ApipB+y+h
a;=p{y+h)(ﬁ+h—hp;)—%
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Under the model assumption r > h, it is clear that the first two eigenvalues of this system are
negative, —u and —(r — h), respectively.
We now consider the cubic equation from (4.4)

P ra P +ad+a;=0.

As 0 < p; £ |, we obtain
ay=f+y+pu+h2-p3)>0

2 2
. X at if G2 — hps J( hps )‘- ral A palfi+y+in
We can observe that if %, i+ + 2if+h) ] WK r=Iy+hWE+h) < 1, then

ra®Apypa(B+y + h)

h— hps.
K (r—h)(y +h) <pEh=hp:

Therefore, we obtain

ra*Ap p:(B +y + h)

0.
pK(r—h) -

as = ply + h)(B+h—hps) -

Finally, we consider

aay —ay =B +y+p+ 2= p) (B +h—hps)(y + h+p) + (y + - %)
ratAp pr(B+y + 1
— 1y + BB+ h - hps) + % (.5)
Under hypotheses %y < 1, r > h,and 0 < p3 < 1, we obtain
-a* » I
ayay —ay = (y+p+hy+hu+ ﬂ%ﬁ;r—w
g 21'\ 3
+(ﬁ+y+p+!1(2—p_:))({ﬁ+h—hpg)(y+h+p)—:T“p_'—':‘})

=0, +GZ + as,

with coeflicients

_ B+y+h
B+y+p+h(2-ps3)

Ga=(y+hB+y+h)+uB)B+h—hps;)=0.

& ra*Ap p2(B + h— hp_‘)] >0,

((r+,u+ )y + hp + LK (r—h)

This means that a,a, — ay > 0 whenever % < L.r > h,and 0 < p; < 1.

The Routh-Hurwitz criterion for the third order polynomial indicated that the remaining
eigenvalues of the disease-free equilibrium system have negative real parts when a; > 0,a; > 0, and
aaz = ds. m]

Therefore, E, will be locally asymptotically stable if %, < 1. When %, > 1, E,, is unstable and the
disease will persist.
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4.4. Global stability analysis

The global stability of the DFE and the EE are established using Lyapunov’s method and LaSalle’s
invariance principle to obtain the control condition under which disease can be eradicated.

Theorem 4.2, (1) If %y < 1, then the disease-free equilibrium point Ey is globally asymptotically
stable in Q. (2) If %y > 1, then the endemic equilibrium point E, is globally asymptotically stable in
Q.

Proof. Theorems 4.2 (1) and 4.2 (2) can be proved by using a Lyapunov function. We adopt the
Lyapunov function used in [33,34].
First, we prove Theorem 4.2 (1) by assuming that:

apy .
= —X". 4.6
L N @.6)

We define the Lyapunov function
L (XY Z Q. R)eQ|X.0 >0} —

by

X
Li(X,Y.Z,0.R) = (X— X - X'ln;) +Y+ Z+(Q— Q" -0'In §)+R. 4.7
When L, is C', a proper positive definite function, and Ey is the global minimum of L, on Q, we obtain
L](X.s Y‘;Z,! Q‘\ R‘) =0.

The time derivative of L, computed along solutions of Eqs (2.1)—(2.5) is

dL, dX X\ dY dZ dQ o'\ dR
i . P . P @ 48
di dr( X)+d:+d.'+dr( Q]+dr @.8)
Substituting the ODEs (2.1) to (2.5) into Eq (4.8) yields
dL N X X N X
- (,-(1 - E)X —ap]ﬁR—hX)(l - X)+ (r(l & E)p,:}’ +apigR - (ﬁ+h)}’)
+(BY —(y+ h)Z) + (A - ﬂpggu —pQ](l - g) + (a_r:rl(.)u —pR),
N 0 N
this simplifies to
dL, [ N X+ N
o _(;[1 K)x hx](] X)+r(| KJp3Y hY - (y + h)Z
al1-L) s po(1-2 +@Q'(Y+2)+(@X'—p)iz. (4.9)
0 o) N N
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Since Y+Z=N-X,N=X"= ﬂ Ny=Q" = j—: and observing the condition in Eq (4.6), Equation
(4.9) can be rewritten as
dL,

N _hy o _e .
— =hpsY —hY (*y+h)Z+A(] Q)+.-’\(I Q_)+03(x X), (4.10)

where G5 = ‘%Q’. Therefore, Eq (4.10) becomes

dL| _ Q. Q ~ .
- _A(Z—E—E)—(y+h)2+6_\()( - X)+hips - 1)Y
= —A% —(y+WZ+G3(X = X)+ hips = 1Y
< 0. (4.11)

All terms in Eq (4.11) are always non-positive since lim,_,.. X(1) = X" (Eq (3.6)) and 0 < p; < | (Table
1). Note that "j;' =0ifandonlyif X =X",0=0",Y=0,and Z = 0.

Therefore, the largest invariant compact invariant set in |(X. Y.Z.0.R)e Q| % =0; is the
singleton, ie., Ey = (X", V., Z2°,0".R"). Thus, ‘"ﬂ% < 0. This implies that E; is globally
asymptotically stable in Q.

We next prove Theorem 4.2 (2), We define the Lyapunov function

L (X, Y.Z,Q,ReEQ| X, Y. Z, QR > 0} — K5

by
Xy N vy ] ..z
(X, Y.Z,.0.R) = — (X - X - - — ¥ =¥ =-¥YIn= — | Z-Z-Zln=
o o.R) c.ip.XR( XI“X]+ap|XR( “Y)+ﬁY[ n‘]
N 4B N _ _ R
+asz(Y+z>(Q ¢ Q"Q)+«pze(r+2)( ng) @

When L, is C', a proper positive definite function, and Ej is the global minimum of L, on £, we obtain

LyX,Y,Z,0,R)=0.

The time derivative of L, computed along solutions of Eqs (2.1)—(2.5) is

dL, N (I_{)dx N (]_f)d_y L(l z)g
Z

= = — — + —
dt ap XR X/ dt  apXR Y/ do By dt
N 2\ dQ N R\ dR
+f(l_£ i*’f I*—]d— (4.13)
ap>0(Y + 2) Q) dt — ap,O(Y +Z) R} dt

Under Eqs (2.1)—~(2.5), if the system meets E|,

) Ny _apiR
'(1 K)_ R

- Ny o X
B+mY = r[] - ?]P.1Y+ap] NR"
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(¥ + ;'1)2 = ,8}_’,
] Ry
Ho = A-ap0—=,
i Yez
uR = ap 0~

We rewrite this to obtain
dL, N X X X N ¥ X XY
C2 = (1= 3 ) [ GR - ap GR) + —== (1= 5 ) [am R - RS
dr ﬂP|XR( X] apy N ap, N + ap.XR[ Y) (‘?Pl N ap N Y)
1 z Z N 4 Y+Z _¥Y+Z
+—(1—Z)(,SY—,BYE)+7(I—2)(/\—0;?3{2 h Q(A—ang h ))

,8}-" (.-ng(}-’+2) Q N _5 N
N R Y+2 _Y+ZR
—[1-= 2 = —. 4.14
+@§w+a( RN@Q NPy J @14
The derivative of L, then becomes
dL, N A(Q—Q)1+]+X+Q+Y+Z Z YZ XRY OQRY+Z)
dt ~ ap,0(Y+2) QO X O Y+7Z 7 YZ XRY OQORY+Z)
<0. (4.15)
Using the arithmetic—geometric means inequality, we can see that “:f < 0. Note that, ‘i’:f = 0 only if

X=X,Y=V,Z=Z 0=0,andR = R.
Therefore, the largest compact invariant set in [(X. Y.Z,Q.R) e Q| % = 0] is the singleton E, =
(X,¥,Z,Q,R). Thus, %2 < 0. This implies that E| is globally-asymptotically-stable in €. o

dr

We have established that the disease-free equilibrium point E; is globally asymptotically stable and
that the disease can be controlled as long as the threshold %, < 1. If %} > | the endemic equilibrium
point E; is globally-asymptotically-stable and the disease will persist. From an epidemiological point
of view the goal of policy is to control CMD outbreaks by reducing 4, to below one and maximizing
the uninfected population. However, an agricultural viewpoint would instead focus on maximizing the
economic returns. We therefore need to identify the strategy that maximizes profits. To do this we first
identify the parameter that plays the greatest role in the stability of 4.

5. Sensitivity analysis

Sensitivity analysis is used to assess the relative impact of different factors on the stability of a
model under data uncertainty. The analysis is also able to determine which parameters play critical
roles. We perform the analysis by calculating the sensitivity indices of the basic reproduction number,
g to the parameters in the model using both local and global methods.

5.1. Local sensitivity analysis

The local sensitivity analysis is based on the normalized forward sensitivity index %,. The
sensitivity index of %, with respect to the parameters in our model are derived as follows [35]:

’ 6%’0 P
%0 = - —_—. 5]
r =P X %, G
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Here, P is a parameter value from Table 2, while the value of % is computed from Eq (4.2). We

analyze the sensitivity of %, by substituting the parameter values into Eq (5.1). For example, the
sensitivity index %, with respect to h is

#y 83?(. h _

b =n %~

Table 2 lists the sensitivity indices of %, obtained using Maple.

-0.0713.

Table 2. Sensitivity Indices of %, (Definition from Table 1).

Parameter Parameter Value Sensitivity Index
h 0.003 -0.0713
B 0.008 -0.2693
¥ 0.03 -0.0881
K 15,000 -0.4965
r 0.025 -0.0677
a 200 +0.9929
A 0.2 +0.4965
H 0.0142 -0.9929
P 0.0033 +0,4965
P2 0.0033 +0.4965
L] 0.1 +0.0071

We first consider the pathogen parameters py, p» and ps;. Our model limits the severity of an
outbreak by controlling three infection terms:

(1) Transmission by whitefly, ap, ¥ R.
(2) Infection of whitefly by CMD virus from infected cassava, ap- Q’i%/
(3) CMD spread by replanting of infected cuttings, r(l - %) piY.

Whitefly-cassava transmission (p,) and cassava-whitefly transmission (p;) were given the same
probability, and these parameters had the highest sensitivity index magnitude of +0.4965 (Table 2).
This suggested that the most important determinants of the severity of a CMD outbreak are
transmission by whitefly to cassava and transmission to whitefly from infected plants.

The model also assigned a probability to CMD spread by planting of infected cuttings (ps). As can
be seen from Table 2, this was the parameter with the lowest sensitivity index magnitude of + 0.0071.
Replanting of infected cuttings does increase the number of plants exposed to the virus, but contributes
less to the spread than does whitefly transmission. Control of the whitefly population is therefore the
key policy goal.

We next analyzed the parameters that determine the whitefly population. The whitefly death rate
(g = —0.9929) and the average number of cassava plants visited (@ = +0.9929) turn out to be
significant. The birth rate of whitefly also affects the stability of the system (A = +0.4965). As p is
negative, the whitefly population will decrease as y increases. However, the sensitivity index values of
a and A are positive, so that %, will increase as these parameters increase. The significance of y, a
and A in determining %, (Table 2) suggests that whitefly elimination is the optimal approach.
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5.2, Uncertainty and global sensitivity analysis

Global sensitivity analysis is used to examine the model which responses to parameter variation
within a wider range in the parameter space. The parameter values and ranges are listed in Table
1. Partial rank correlation coefficient (PRCC) between the %) and each parameter for the model are
derived as in references [36-38]. We computed the PRCC by setting of input parameter values sampled
using the Latin Hypercube Sampling (LHS) method. Table 3 shows the results of PRCC and P-value
from 1000 independent simulations.

Table 3. PRCC between %, and each parameter.

Parameter " PRCCs P-values
h =0.0075 0.8136
B —0.1415 0.0000
¥ -0.0055 0.8624
K -0.1298 0.0000
r -0.0012 0.9704

“a +0.4684 0.0000
A +0.1449 0.0000
“u -0.4312 0.0000
P +0.4049 0.0000
“pa +0.4358 0.0000
s +0.0286 0.3671

Parameters with absolute maximum PRCC values as well as corresponding lowest P-values are the
most critical factor in disease spread. As shown in Table 3, we noticed that the parameter a has the
most effect on %, followed in decreasing order by p, (cassava-whitefly transmission), u (death rate
of whitefly), and p, (whitefly-cassava transmission). The most important parameters for %, from the
global sensitivity analysis match those from the local sensitivity analysis, i.e., a, pa, g, and py. These
results allow us to considerably reduce %, by decreasing the whitefly population.

Local and global sensitivity analysis are used to examine the impact of parameters on %,. We found
that killing whitefly is the optimal policy. In practice, whitefly density in plantation area is also a factor
that affects to the severity of CMD outbreaks. We therefore investigated the sensitivity of %, in Eq
(4.2) to vary the different sizes of the plantation area (K).

Figure la shows that the sensitivity of 2, (o @ increases as a increases and K decreases. Figure 1b
shows that the sensitivity of % to A increases as A increases and K decreases, which means that %,
is more sensitive to the whitefly birth rate if the plantation area is small. In contrast, the sensitivity
of % to p increases as g and K decrease. This means that CMD outbreaks are more severe when K
is small, and a whitefly elimination policy will fail to eliminate the disease. A cost-effective control
strategy must therefore take account of the plantation area. To determine the most cost-effective policy,
we conducted numerical simulations.

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5069-5093.




131

5084

Semnitiviny of the basie repeodiction msber 10 paraseser o
250 T ete

Sevmitinity of the Tusie prposhecticen il s patssertet g1

o1 [ " s

-
-

-
-

-
“a
-2 "
an a
a2 a1
a a1
s as

w000

e G0 T TR
K

(a) (b) (c)
Figure 1. (a) sensitivity of %, to a as K increases from 10,000 to 20,000 and a increases
from 150 to 250. (b) sensitivity of %, to A as K increases from 10,000 to 20,000 and A
increases from 0.1 to 0.3. (c) sensitivity of % to g as K increases from 10,000 to 20,000 and
pincreases from 0.0142 to (L0166,

6. Numerical simulations

To determine the effectiveness of a control policy, it is necessary to assess the number of whitefly in
the plantation. Equations (2.4) and (2.5) are modified by introducing two control parameters: € € [0, 1],
the efficacy of pesticide spray in controlling whitefly, and g, the resulting whitefly death rate. Adding
terms (4 + ge) to Egs (2.4) and (2.5) produces Eqs (6.1) and (6.2). These take account of deaths of
uninfected and infected whitefly from natural causes and from pesticide spraying.

@ _ L oY tZ_

i =A-ap:Q N (p+ge)Q, (6.1)
dR Y+7Z

E-“PzQ N = (u+geR. (6.2)

6.1. Simulation of CMD outbreak dynamics without control

We used Eqs (2.1)-(2.3), (6.1) and (6.2) to represent the dynamics of a CMD outbreak when no
control is applied (ge = 0) and to determine the resulting cassava yield. We used two plantation
capacity scenarios (K) to simulate the dynamics of such a CMD outbreak: (1) K = 15,000 and (2)
K = 10,000. The other parameters were given the values in Table 1. Figures 2-5 assume a 300 d
growing season, no control policy, and initial conditions X(0) = 9,000, Y(0) = 1,000, Z(0) = 0,
Q(0) = 900, and R(0) = 100.

6.1.1. Scenario 1: maximum plantation capacity 15,000 m®

Figure 2 shows the number of infected whitefly increasing to a maximum at D 17, then decreasing.
Figure 3 shows the numbers of healthy, latent, and symptomatic cassava. Latent and asymptomatic
plants outnumbered healthy plants at D 19, or 2 d after the whitefly infection peak. Comparing Figure
2 with 3, the number of infected plants tracked the whitefly population. The impact was mainly on the
rate of latent cassava, which exceeded the number of healthy cassava. The harvest of 1,173 tubers from
an initial planting of 9,000 gave a daily rate of 1 = 0.003.

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5069-5093.




132

5085

g

~ — Uninfected |
Infected

Number of whitefly
B 0 o -~ -]
g 8 8 8 8

w
3

0 . = — . . ]
o 50 100 150 200 250 300

Time (days)
Figure 2. Whitefly population without control, Scenario 1.
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Figure 3. Cassava population without control, Scenario 1.
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Figure 4. Whitefly population without control, Scenario 2.

6.1.2. Scenario 2: maximum plantation capacity 10,000 m*

The numerical results in Figure 5 show that latent and symptomatic plants outnumbered healthy
plants at D 17, lagging the trend in infected whitefly. Infected whitefly reached a maximum at D 17
(Figure 4), then decreased. By the time of harvest at D 300, 714 tubers out of 9,000 remained healthy.
In the smaller plantation, this increased whitefly density and CMD spread.
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Figure 5. Cassava population without control, Scenario 2.
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6.2. Simulations and cost-effectiveness analysis

Our sensitivity analysis showed that the rapidity of CMD spread was driven primarily by the
whitefly population. A simple approach to CMD control is to spray pesticide. However, this may not

be economical as more efficient pesticide is also more costly. It is therefore necessary to analyze the
cost-effectiveness of spraying as well as its effectiveness.

Table 4. Operating cost of spray pesticide policy.

Unit per week

Total cost per week

Operating cost Cost per unit per 15,000 m’ K = 15,000 K =10,000
(1) Labor $10/labor/7,500 m*> 2 labors $20 $13.333

(2) Pesticide spray

Type I e = 0.05 $10/ke. 2 kg. $20 $13.333

Type Il € = 0.10 $20/ke. 2 kg. 540 $26.667

Type Ill € = 0.15 $50/ke. 2 kg. $100 $66.667

We simulated the three control strategies shown in Table 4, representing pesticide sprays with
effectiveness of 5%, 10% and 15%. A whitefly control target (g) of 5% per day was set. We then
determined the cost-effectiveness of using each spray. Table 4 shows the operating costs. Two
kilograms of pesticide are sprayed once a week, requiring two laborers at a cost of $10 each per 7,500
m?. The operating costs are shown in the final column. The Cost-Effectiveness Ratio (CER) of [39] is
then applied. CER is the ratio of total control costs to yield loss averted, and is used to measure the
economic value of an intervention (Eq (6.3)).

total control costs

xS yield loss averted - ©3

The optimal policy minimizes the CER.

Number of whitefly
§ 8 8 8

g

o 50 "IJO !I50 200 ?30 300
Time (days)
Figure 6. Infected whitefly with control strategy in Scenario 1.
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Figure 7. Healthy cassava with control strategy in Scenario 1.

6.2.1. Scenario 1: maximum plantation capacity 15,000 m*

The simulation used the parameter values given in Table 1. The numerical results in Figures 6 and 7
show that, when the three control strategies were applied, the increase in the healthy cassava population
and decrease in the infected whitefly population tracked the efficiency of the pesticide spray. This gave
a yield of 1173 tubers when no control strategy was applied. Infection of 518, 1221 and 1851 tubers
were averted when Type [, II and III sprays were used. This represents a significant increase in profit.
We then used CER to compare the cost-effectiveness of the three control strategies.

The CERs were calculated from Eq (6.3):

CER(I) = % CER(II) = ?—% and CER(III) = %l)

Table 5 compares the cost-effectiveness. The sixth column gives the CER of each approach for
K = 15,000, where a smaller number represents a more desirable outcome. As can be seen, the Type
11 spray yielded the greatest overall economic benefit. This result provides policymakers with a useful
tool for optimizing their control strategies.

Table 5. CER of control policies for K of 15,000 m* (Sce.1) and 10,000 m? (Sce.2).

Yields infection averted Total cost CER
Pesticide spray Sce.l  Sce2  Scel Sce2 Scel Sce.2
Typel 518 154 $1600 $1067 3.088 6.942
Type 11 1,221 449 $2400 $1600 1.965 3.567
Type 111 1851 777 $4800 $3200 2.593 4,121

6.2.2. Scenario 2: maximum plantation capacity 10,000 m*
We next simulated the strategy with plantation capacity K = 10,000, using the same parameters.
The results are shown in Figures 8 and 9. The harvests of healthy tubers were 714 with no control, 868

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5069-5093.
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with Type I spray, 1163 with Type II, and 1491 with Type III. Equation (6.3) was used to identify the
most cost-effective policy.

800 + . —
= 0.08

700 | - = c=2010| |
|==== ¢=0.15|

Number of whitefly
§ 8 8

§

o 50 100 150 200 250 300
Time (days)

Figure 8. Infected whitefly with control strategy in Scenario 2.
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Time (days)
Figure 9. Healthy cassava with control strategy in Scenario 2.

The final column of Table 5 confirms that Type II spraying yielded the greatest economic benefit.
However, this strategy was less cost-effective when applied to the smaller plantation as the whitefly
density was higher.

7. Discussion

In this study, we modeled control of a CMD outbreak driven both by whitefly transmission and
planting of infected cuttings. From an epidemiological perspective, %, < 1 is a sufficient condition for
eradication of the disease from a cassava population. The Routh-Hurwitz criterion confirmed that E,

was locally-asymptotically-stable when %, < 1, becoming unstable when %, > 1. E, was globally-
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asymptotically-stable if %, = 1, while E; was globally-asymptotically-stable if %, > 1, as confirmed
by application of Lyapunov’s method and LaSalle’s invariance principle.

Our goal was to clarify the vectors that determine the severity of a CMD outbreak. To achieve this,
we modeled increases in latent cassava due to whitefly transmission and due to planting of infected
cuttings. By identifying the parameters that most affect the stability of the system, we hoped to
optimize policy design. A sensitivity analysis determined that the most critical factor in disease
spread was the presence of whitefly. We then sought to identify the most cost-effective pesticide for
whitefly elimination. Numerical simulations showed that an increase in the death rate of whitefly
through spraying was associated with a reduction in the CMD infection rate, and that the efficacy of
the pesticide was key to control of the whitefly population. However, the increase in yield had to be
offset against the cost of spraying.

We compared the cost-effectiveness of three pesticide sprays to determine the optimal balance
between input cost and yield. The CER showed that Type II spraying was the most cost-effective in
both scenarios, and particularly in Scenario 2. Whitefly population control was more costly in a
smaller plantation, where the whitefly density was higher and CMD spread more rapidly.

The effects of rouging of infected plants should be investigated further, as should the effect of
combining pesticide treatment with replanting. This may make spraying less efficient, thereby
encouraging spread of CMD. Development of resistant strains is an alternative approach. However, it
is typically costly and time consuming, and may also reduce the population of beneficial insects.
Mathematical models may be used to compare such strategies to identify those that are most
cost-effective in the real world.

8. Conclusions

We developed a mathematical model to clarify the dynamics of CMD spread. The normalized
forward sensitivity index of the reproduction number was used to compare the relative contribution
of different factors to a CMD outbreak. We found that the two most important were the death rate of
whitefly and the number of cassava plants visited. We also identified the most cost-effective policy for
reducing the whitefly population using numerical simulations. CER was used to compare the economic
effectiveness of three spraying strategies in farms of different sizes. The results may help stakeholders,
including cassava farmers and government agencies, develop optimal policies for control of CMD
outbreaks. This should increase yields, income, and profits.
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%The CMD outbreak model - With tolerant and latent

clc;

clear all;

test = -1;

#Step size
a=1;
a2 = af2;
T = 300;

t = linspace(®,T,T+1);

#State variables
S_T = zeros(1,T+1);
S H = zeros(1,T+1);
E_H = zeros(1,T+1);
IH = zeros(1,T+1);
S_V = zeros(1,T+1);
IV = zeros(1,T+1);

%Control variables
ul = zeros(1,T+1);
u2 = zeros(1,T+1);
u3 = zeros(1,T+1);

%Adjoint system
L1 = zeros(1,T+1);
L2 = zeros(1,T+1);
L3 = zeros(1,T+1);
L4 = zeros(1,T+1);
L5 = zeros(1,T+1);
L6 = zeros(1,T+1);

%Parameters of the model
*Host parameters
h = 8.883; beta = 8.808; r_H = ©.85; r_R = 8.0825;
k1=0.5 k2=g0.2;
%k_1 = 0.7; k_2 = 8.2; %(without tolerant cuttings)

%Vector parameters
Lambda = ©.2; mu = ©.0142; L = 200;

%Pathopenwparameters
pl = 9.088;
p2 = 9.001;
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p3 = 8.1;
p4 = 0.088;

%Efficiently parameters
gamma = 0.03;
epsilon = 0.2;

#%Controls variables
%ul=0;
®u2=0;
%u3=a;

#Control costs and Weight constant
AB = 1.800; Al = ©.803; A2 = 8.891; A3 = 0.801; A4 = 0.901;

%Initial values
%S_T(1) = @; %(without tolerant cuttings)
5_T(1) = @.2;
S_H(1) = @.2;
E_H(1) = @.1;

I_H(1) = e;
s V(1) = 100;
I V(1) = 50;

%Final conditions

L1(T+1) = @;
L2(T+1) = 8;
L3(T+1) = B;
L4(T+1) = @;
L5(T+1) = a;
L6(T+1) = 8;

while(test < @)

*%CDEs

£S_T = @(S_T,5_H,E_H,I_H,5_V,I_V,ul,u2,u3) r_R*(1 - S_T/k_2)*s_T -
p2*S_T*I_V - h*S_T;

FS_H = @(5_T,5_H,E_H,T_H,5_V,I_V,ul,u2,u3) r_H*(1-(5_H+E_H+I_H)/k_1)*S_H -
p1*S_H*I_V - h*S_H;

FE_H = @(5_T,5 H,E_H,I_H,5_V,I V,ul,u2,u3) r_H*(1-(S_H+E_H+I H)/k_1)*p3*(1-
u3)*E_H + p2*S_T*I V + pl*s H*I V - (beta + h)*E_H;

fI_H = @(5_T,5_H,E_H,I_H,5_V,I_V,ul,u2,u3) beta*E_H - (gamma*u2 + h)*I_H;

£S5V = @(5_T,5 H,E_H,I_H,5 V,I V,ul,u2,u3) Lambda*(1-(5_V+I_V)/L)*(5_V+I_V)
- pa*s_V*(E_H+I_H) - (epsilon*ul + mu)}*5_V;

fI_V = @(5_T,5_H,E.H,I_Hy5_V,I_V,ul,u2,u3) pa*s V*{(E_H+I_H) - (epsilon*ul +
mu)}*I_V;

%Adioint equations
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fL1 = @(S_T,S_H,E_H,I_H,S5_V,I_V,ul,u2,u3,L1,L2,L3,L4,L5,L6) -L1*(r_R*(1-
(2*S_T/k_2)) - (p2*I_V + h)) - L3*p2*I_V;

fL2 = @(S_T,S_H,E_H,I_H,5_V,I V,ul,u2,u3,L1,L2,L3,L4,L5,L6) -L2*(r_H*(1-
(2*S_H+E_H+I_H)/k_1) - (p1l*I_V + h)) + L3*({r_H*p3*{1-u3)*E_H/k_1) - pl*I_V);

fL3 = @(S_T,S_H,E_H,I_H,5_V,I V,ul,u2,u3,L1,L2,L3,L4,L5,L6) L2*r_H*S_H/k_1
- L3¥(r_H*(1-((S_H + 2*E_H + I_H)/k_1))*p3*(1-u3) - (beta + h)) - L4*beta + (L5-
L6)*pa*s_V;

fL4 = @(5_T,5_H,E_H,I_H,5_V,I_V,ul,u2,u3,L1,L2,L3,L4,L5,L6) -AD +
L2*¥(r_H*S_H/k_1) + L3*r_H*p3*(1-u3)*E_H/k_1 + L4*(gamma*u2 + h) + (L5-
L6)*pa*s_V;

fL5 = @(S_T,S_H,E_H,I_H,5_V,I_V,ul,u2,u3,L1,L2,L3,L4,L5,L6) -L5*(Lambda*(1-
(2*¥(S_V+I_V)/L)) - (pa4*(E_H+I_H) + epsilon*ul + mu)) - L6*pd*(E_H+I_H);

fL6 = @(5_T,S_H,E_H,I_H,5_V,I_V,ul,u2,u3,L1,L2,L3,L4,L5,L6) (L1 -
L3)*p2*5_T + (L2 - L3)*pl1*S_H - LS*Lambda*(1-(2*(S_V+I_V)/L)) + L6*(epsilon*ul +

mu) ;
for i = 1:T
Bkl
k15_T = 5_T(5_T({1) 25_H(1) JE_H(1)
»I_H(1) 25 V(1) SI_V(1) sul(i)
su2(i) Su3(i));
k1S_H = fS_H(S_T(i) LS_H(i) SE_H(1)
»I_H(1) ,5_V(1) »I_V(1) sul(i)
su2(i) JU3(i));
k1E_H = FE_H(5_T(i) 25_H(1) SE_H(1)
»I_H(1) »5_V(1) »I_V(i) yul(i)
su2(i) su3(i));
k1I_H = fI_H(S_T(i) »S_H(i) SE_H(1)
»I_H(1) 25_V(1) »I_V(1) sul(i)
su2(i) su3(i));
k1s_V = f5_V(S_T(i) ,SH(1) SE_H(1)
SI_H(i) S5 V(1) LI V(i) Lul(i)
suz(i) sud(i));
k1I_V = fI_V(5_T(i) ,5_H(1) LE_H(1)
»I_H(1) »S_V(1) »I_V(1) sul(i)
suz(i) Ju3(i));
%k2
k2s_T = fs_T(S_T(i)+a2*kis_T ,5_H(1)+az*k1s H ,E_H(1)+a2*k1E_H
oI H(i)+a2*k1lI H L5 V(i)+a2*k1s vV ,IV(i)+az2*kil v ,ul(i)+az
su2(i)+a2 Sud(i)+a2);
k2s°H = fs_H(S_T(i)+a2*kis_T ,5_H(i)+a2*k1s H ,E_H(i)+a2*k1E_H
LI _H(i)+a2*k1I_H ,5 V(i)+a2*k1s Vv LI V(i)+a2*k1I v sul(i)+az
,u2(ij+az Suld(i)+a2);
k2E H = fE H(5_T(i)+a2*k1s T ,5_H(1)+a2*k1S_H JE H(1)+a2*k1E_H
,I_H(i)+a2*k1I.H 45_V(1)+a2*k1s_V LI V(d)+a2*k1I_V ,ul(i)+a2

su2(i)+a2 Su3(i)+a2);
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K2I_H = FI_H(S_T(i)+a2*kis_T

,I_H(i)+a2*k1I_H ,S_V(i)+a2*k1s_V
,u2(i)+a2 ,u3(i)+a2);

k25_V = f5_V(S_T(i)+a2*kls_T
+I_H(1)+a2*k1I_H »S_V(i)+a2*kls_ Vv
Ssuz(i)+az Su3d(i)+az);

k2I_V = fI_V(S_T(i)+a2*kls_T
,I_H(i)+a2*k1I H ,5_V(i)+a2*k1s v
suz(i)+az Jud(i)+a2);

k3

k35_T = FS_T(S_T(i)+a2*k2s_T
,I_H(i)+a2*k2I_H ,S_V(i)+a2*k2s_V
Su2(i)+a2 Su3(i)+a2);

k3S_H = FS_H(S_T(i)+a2*k2s_T
,I_H(1)+a2*k2I_H ,S_V(1)+a2*k2s_V
Su2(i)+az Su3(i)+a2);

k3E_H = fE_H(S_T(i)+a2*k2s_T
LI_H(i)+a2*k2I_H ,5_V(i)+a2*k2s V
Su2(i)+az Su3(i)+a2);

k3I_H = fI_H(S_T(i)+a2*k2s_T
LI_H(i)+a2*k2I_H ,5_V(i)+a2*k2s5_V
Su2(i)+az Su3d(i)+a2);

k35_V = FS_V(S_T(i)+a2*k2s_T
,I_H(i)+a2*k2I_H ,S_V(i)+a2*k2s v
Su2(i)+a2 Su3(i)+a2);

K3I_V = FI_V(S_T(i)+a2*k2s_T
,I_H(1)+a2*k2I_H ,S_V(1)+a2*k25_V
Su2(i)+az Su3(i)+a2);

%hd

kas_T = fs_T(5_T(i)+a*k3s_T
SI_H(1)+a*k3I_H »S_V(i)+a*k3s_V
su2(i)+a Su3(i)+a);

kas_H = fs_H(S_T(i)+a*k3s_T
,I_H(i)+a*k3I_H ,S_V(i)+a*k3s_V
,u2(i)+a sud(ij+a);

k4E_H = FE_H(S_T(i)+a*k3s_T
LI_H(i)+a*k3I_H ,5_V(i)+a*k3s_v
,u2(i)+a ,ud(iy+a);

k4I_H = fI_H(S_T(1)+a*k3s_T
SI_H(1)+a*k3I_H sS_V(i)+a*k3s_ vV
Ju2(i)+a Suz(iy+a);

kas_V = fs_v(s_T(i)+a*k3s_T
SI_H(1)+a*k3I_H »S_V(i)+a*k3s_V

su2(i)+a sud{i)y+a);

,S_H(i)+a2*k1s_H
,I_V(1)+a2*k1I_V

,S_H(1)+a2*k15_H
,I_V(1)+a2*k1I_V

,5_H(1i)+a2*ki1s_H
,I_V(i)+a2*k1I_v

,S_H(1)+a2*k25_H
,I_V(i)+a2*k2I_V

,S_H(1)+a2*k2s_H
,I_V(1)+a2*k2I_V

,5_H(1i)+a2*k2s H
LI V(i)+a2*k2I_V

,S_H(i)+a2*k2s_H
,I_V(i)+a2*k2I_V

,S_H(1)+a2*k2s_H
,I_V(i)+a2*k2I_V

,S_H(i)+a2*k2s_H
,I_V(1)+a2*k2I_V
,S_H(i)+a*k3s_H
LI V(1)+a*k3I_V

,5_H(i)+a*k3s_H
SI_V(i)+a*k3I_V

2S5_H{i)+a*k3s_H
LI V(i)+a*k3I_V

,S_H(1)+a*k3s_H
,I_V(1)+a*k3I_ V

,5_H(i)+a*k3s_H
,I_V(1)+a*k3I_V

LE_H({i)+a2*k1E_H
sul(i)+a2

,E_H(1)+a2*k1E H
,ul(i)+a2

SE_H(1)+a2*k1E_H
sul(i)+a2

,E_H(i)+a2*k2E_H
sul(i)+a2

LE_H(i)+a2*k2E_H
,ul(i)+az2

JE_H(i)+a2*k2E_H
sul(i)+a2

LE_H(i)+a2*k2E_H
sul{i)+a2

LE_H(i)+a2*k2E_H
sul(i)+a2

LE_H(i)+a2*k2E_H
,ul(i)+az2

LE_H(i)+a*k3E_H
,ul(i)+a

LE_H(i)+a*k3E_H
,ul(i)+a

SE_H(i)+a*k3E_H
,ul(i)+a

,E_H(1)+a*k3E_H
Sul(i)+a

LE_H(i)+a*k3E_H
sul(i)+a
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k4I_V = fI_V(5_T(i)+a*k3s_T

,5_H(i)+a*k3s_H

JE_H(i)+a*k3E_H

oI H(i)+a*k3I H ,S_V(i)+a*k3s_v oI V(i)+a*k3I v ,ul(i)+a
Ju2(i)+a sud(ij+a);

%Update states

S_T(i+1) = S_T(i) + (a/6)*(k15_T + 2*k25_T + 2*k3s_T + k4s_T);

S _H(i+1) = 5_H(i) + (a/6)*(k15 _H + 2*k25 H + 2*k35 H + kd5_H);

E_H(i+1) = E_H(i) + (a/6)*(k1E_H + 2*k2E_H + 2*k3E_H + k4E_H);

I_H(i+1) = I_H(i) + (a/6)*(k1I_H + 2*k2I_H + 2*k3I_H + k4I_H);

S_V(i+1) = S_V(i) + (a/6)*(k15_V + 2*k25_V + 2*k35_V + kd5_V);

I_V(i+1) = I_V(i) + (a/6)*(k1I_V + 2*k2I_V + 2*k3I_V + k4I_V);
end
for 1 = 1:7

j=T+ 2 -i;

%Adjoint

%k1

kill = FL1(5_T(j) »S_H(T) >E_H(3) »I_H(J)
»5_V(3) »I_V(T) »ul(j) »uz(j) >u3(3) ,L1(3)
»L2(3) »L3(3) ,L4(3) »L5(3) sL6(3));

kiL2 = fL2(5_T(3) »S_H(3) »E_H(J) »I_H(3)
»5_V(J) »I_V(3) >ul(d) ,u2(3) »u3(3) ,L1(3)
>L2(7) »L3(3) »L4(3) »L5(3) ,L6(3));

kil3 = fL3(S_T(J) »S_H(3) SE_H(J) »I_H(J)
»5_V(3) »I_V(3) Sul(3) »u2(3) »u3(g) »L1(3)
sL2(3) »L3(3) ,L4(3) »L5(7) SL6(3));

kiLa = fL4(5_T(3) »S_H(J) >E_H(J) »I_H(3)
>S_V(3) »I_V(J) >ul(g) »u2(3) »u3(]) »L1(3)
>L2(7) »L3(3) 2L4(d) ,L5(3) ,L6(3));

kiLs = fL5(S_T(Jj) »S_H(3) »E_H(J) »I_H(T)
»S_V(J) »I_V(3) »ul(d) ,u2(3) »u3(d) »L1(3)
»L2(3) ,L3(3) »L4(3) »L5(3) ,L6(3));

kiLé = fL6(S_T(J) »S_H(J) »E_H(T) »I_H(J)
>S_V(3) »IV(J) >ul(]) ,u2(J) »u3(]) »L1(3)
»L2(7) »L3(7) ,L4(]) sL5(3) ,L6(1));

Hk2

k2L1 = fL1(S_T(j)+a2 »S_H(j)+a2 SE_H{j)+a2 ,I_H(j)+a2
#5_V(j)+a2 SJI_V(j)+a2 Sul(j)+a2 Ju2(j)+az su3(j)+az
,L1(3)+a2%kill  ,L2(j)+a2*kiL2  ,L3(j)+a2*kil3  ,L4(j)+a2*kiL4
,L5(7)#a2*k1l5 ,L&(j)+a2*k1LE);

k212 = fL2(5_T(j)+a2 ,S_H(7)+a2 LE_H(7)+a2 ,I_H(j)+a2
#5_V(i)+az LI V(i)+a2 Sul{i)+az Juz(j)+az Su3(q)+a2
,L1(3)+a2%kill ,L2(j)+a2*kil2  ,L3(j)+a2*kilL3  ,L4(j)+a2*kiL4
SLS(J)+a2*k1Ls  ,L6(j)+a2*kilL6);

k2L3 = fL3(S_T(j)+a2 LS_H(F)+a2 JE_H(7)+a2 ,I_H(j)+a2
JS5_V(i)+az SI_V(]j)+az Lul(j)+az SU2(j)+az Su3(j)+az
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,L1(j)+az*k1ll  ,L2(j)+a2*kiL2  ,L3(j)+a2*kllL3 ,L4(j)+a2*klL4
SL5(j)+a2*k1Ls  ,L6(j)+a2*klLe);

k2L4 = fLA(S_T(j)+a2 25_H(j)+a2 sE_H(j)+a2 SI_H(j)+a2
#S_V(])+az SI_V(j)+az sul{j)+az SU2(j)+az su3(j)+az
sL1(3)+a2*k1ll  ,L2(j)+a2*kiL2  ,L3(j)+a2*kiL3 ,L4(j)+a2*klL4
»L5(3)+a2*k1L5  ,L6(j)+a2*klLe);

k2L5 = fL5(S_T(j)+a2 ,5_H(j)+a2 JE_H(j)+a2 LI_H(j)+a2
S5 V(1)+az I V(j)+az sul{j)+a2 SU2(q)+a2 su3(i)+az
,L1(3)+a2*kill  ,L2(j)+a2*klL2  ,L3(j)+a2*kiL3 ,L4(j)+a2*klL4
,L5(j)+az*kll5  ,L6(j)+a2*k1L6);

k2L6 = fL6(S_T(j)+a2 ,5_H(j)+a2 JE_H(j)+az LI_H(j)+az
»S_V(j)+a2z LI_V(j)+a2 ,ul(j)+a2 Su2(j)+a2 sud(j)+a2
,L1(§)+az*k1ll  ,L2(j)+a2*kiL2  ,L3(j)+a2*kiL3 ,L4(j)+a2*k1L4
,L5(j)+az*kll5  ,L6(j)+az2*k1L6);

%k3
k3L1 = fL1(5_T(j)+a2 25_H(j)+a2 sE_H(j)+a2 2I_H(j)+a2
#5_V(j)+a2 SI_V(j)+a2 sul{j)+az Su2(j)+az su3(j)+az

,L1(9)+a2*k2L1  ,L2(j)+a2*k2L2  ,L3(j)+a2*k2L3 ,L4(j)+a2*k2L4
SLG5(J)+a2*k2L5  ,L6(j)+a2*k2L6);

k3L2 = fL2(5_T(j)+a2 25_H(j)+a2 sE_H(j)+a2 2I_H(j)+a2
SS_V(j)+az SI_V(j)+az sul{j)+az su2(j)+az su3(j)+az
sL1(3)+a2*k2L1l  ,L2(j)+a2*k2L2  ,L3(j)+a2*k2L3 ,L4(])+a2*k2L4
»L5(3)+a2*k2L5  ,L6(j)+a2*k2LE);

k3L3 = fL3(5_T(j)+a2 L5_H(j)+az LE_H(j)+az LI_H(j)+az
5 _V(1)+az I V(j)+az ,ul(i)+a2 Su2(i)+az su3(i)+az
,L1(d)+az*k2Ll  ,L2(f)+a2*k2L2  ,L3(j)+az*k2L3  ,L4(j)+az*kzL4
,L5(j)+az*k2L5  ,L6(j)+a2*k2L6);

k3L4 = fL4(S_T(j)+a2 ,5_H(j)+az JE_H(j)+az LI_H(j)+az
»S_V(j)+az2 LI_V(j)+a2 sul(j)+a2 Su2(j)+a2 sud(j)+a2
,L1(g)+a2*k2Ll  ,L2(j)+a2*k2L2 « ,L3(j)+a2*k2L3 ,L4(j)+a2*k2L4
,L5(j)+az*k2L5  ,L6(j)+az*k2L6);

k3L5 = fL5(S_T(j)+a2 ,S_H(j)+a2 LE_H(j)+a2 LI_H(j)+a2
#5_V(j)+a2 LI V(j)+a2 sul{j)+a2 su2(j)+a2 sU3(j)+a2
,L1(g)+a2*k2Ll  ,L2(j)+a2*k2L2  ,L3(j)+a2*k2L3 ,L4(j)+a2*k2L4
»L5(3)+a2*k2L5  ,L6(j)+a2*k2LE);

k3L6 = fL6(5_T(])+a2 5_H({)+az2 sE_H(])+a2 I _H(i)+az
#5_V(])+az SI_V(]j)+az2 Sul{j)+a2 SU2(j)+a2 sU3(j)+az
JLI(3)+a2%k2Ll  ,L2(d)+a2*k2L2  ,L3(j)+a2*k2L3  ,L4(])+a2*k2L4
sL5(3)+a2*k2L5  ,L6(j)+a2*k2L6E);

Hka
k4Ll = FLl(S_T(j)+a ’S_H(j)+a ’E_H(j)+a ,I_H(j)+a
S5 _V(j)+a I V(j)+a sul{j)+a Su2(j)+a sud(j)+a

,L1(§)+a*k3Ll sL2(3)+a*k3L2 ,L3(3)+a*k3L3 ,La(q)+a*k3La
,L5(3)+a*k3L5 sL6(J)+a*k3Le);

kaL2 = fL2(S_T(j)+a SS_H(j)+a LE_H{j)+a SI_H(j)+a
LS _V(j)+a ,I_V(j)+a S,ul(j)+a Su2(j)+a su3(j)+a
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,L1(3)+a*k3Ll  ,L2(j)+a*k3L2  ,L3(j)+a*k3L3  ,L4(j)+a*k3L4
,L5(3)+a*k3L5  ,L6(j)+a*k3L6);

kaL3 = fL3I(S_T(j)+a ,5_H(j)+a LE_H(j)+a sI_H(j)+a

L5 V(j)+a I V(j)+a Sul{j)+a su2(j)+a Sul(jl+a
,L1(3)+a*k3L1  ,L2(j)+a*k3L2  ,L3(j)+a*k3L3  ,L4(j)+a*k3L4
,L5(3)+a*k3L5  ,L6(j)+a*k3L6);

kaLa = fLA(S_T(j)+a 25_H(j)+a JE_H(j)+a I H(j)+a

L5 V(j)+a I V(j)+a Sul(j)+a su2(jl+a Sud(jl+a
,L1(3)+a*k3L1  ,L2(j)+a*k3L2  ,L3(j)+a*k3L3  ,L4(j)+a*k3L4
,L5(3)+a*k3L5  ,L6(j)+a*k3L6);

k4L5 = fL5(S_T(j)+a »S_H{(j)+a SE_H(j)+a ,I_H(j)+a

LS_V(j)+a LI V(j)+a Sul(j)+a ,u2(jl+a Lu3(j)+a
,L1(§)+a*k3L1 ,L2(3)+a*k3L2 ,L3(j)+a*k3L3 ,La(j)+a*k3La
,L5(j)+a*k3L5 ,L6(j)+a*k3L6);

k4Le = fL6(S_T(j)+a ,S_H(j)+a SE_H(j)+a ,I_H(j)+a

SS_V(j)+a LI V(j)+a Sul(j)+a su2(jl+a Su3d(j)+a
,L1(3)+a*k3L1 ,L2(j)+a*k3L2 LL3(3)+a*k3L3 ,La(j)+a*k3La
SL5(J)+a*k3Ls SLB(j)+a*k3Le);

#Update adjoint

L1(j-1) = L1(F) - (a/6)*(kIL1l + 2*k2L1 + 2*k3L1 + kall);
L2(3-1) = L2(J) - (a/6)*(kIL2 + 2*k2L2 + 2*k3L2 + k4L2);
L3(j-1) = L3(j) - (a/6)*(k1L3 + 2*k2L3 + 2*k3L3 + k4lL3);
L4(j-1) = L4(j) - (a/6)*(k1L4 + 2*k2L4 + 2*k3L4 + k4l4);
L5(j-1) = L5(J) - (a/6)*(kIL5 + 2*k2L5 + 2*k3L5 + k4L5);
L6(j-1) = L6(J) - (a/6)*(kIL6 + 2*k2L6 + 2*k3L6 + k4L6);

end

%Update ul u2 u3
ul = max{@,min{1,(L5.*S_V + LE.*I_V).*(epsilon/(2.*A1))));
u2 = max(@,min(1, (L4.*gamma.*I_H)/(2.*A2)));
u3 = max(@,min(1, (1-{(S_H+E_H+I_H)/k_1)).*(L3.*r_H.*p3.*E_H/(2

%0biective Function

H=AB0.*I_H + Al.*ul."”2 + A2.*u2.72 + A3.*u3."2;
test = min(H);

total = Al.*ul.”2 + A2.*u2.72 + A3.*u3.”2;

end

-*A3))));5
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