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CHAPTER I

INTRODUCTION

Ultrasound denotes sound waves of frequencies higher than the upper au-

dible limit of human hearing. It is considered as a mechanical disturbance that

moves as a pressure wave through a medium. Medical ultrasound imaging is an

ultrasound-based diagnostic imaging technique using a mechanical disturbance

that moves as a high frequency pressure wave through muscles and internal or-

gans and producing an image from the echoes. An image of soft tissue in a body

can be produced by transforming the ultrasound echo signals received to electric

voltage and then processing the detected voltage to the brightness at each point

of the image.

The ultrasonic wave encounters multiple interfaces that implies a masking

effect for those reflectors and scattering, which produce coherent and incoherent

(diffuse scattering) effects. The incoherent effect causes the degradation of a med-

ical image quality, which is called noise. To enhance the quality of the appearance

image one needs to understand the process of imaging. However, there are many

types of noise which contribute to the reduction of the quality of a medical ul-

trasound image. Generally, noise patterns in ultrasound images are considered as

noises generated from two sources. One arises from noise generated by electronic

devices (electrical noise). The other one arises from noise-like variation called

speckle (noise). In practice, speckle noise is the dominating disturbance which is

clearly noticeable on a medical ultrasound image.(Mamou and Oelze, 2013)

Speckle noise has specific characteristics which can be described by some
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probability distribution functions. The mathematical model of the speckle noise

probability distribution is derived from the envelope of the voltage signal received

from an ultrasound transducer. An understanding of the characteristics of ultra-

sound waves and their behavior in various media were studied (Destrempes and

Cloutier, 2010 and Cai, 2016, Jensakda and Tanthanuch, 2018, Seekot and Tan-

thanuch, 2008, Tanthanuch, Kaptsov and Meleshko, 2019, Tanthanuch, Seekot,

and Schulz, 2012). The probability distributions found in many researches explain-

ing the ultrasound noise characteristic are Gaussian distribution, Poisson distri-

bution, Rayleigh distribution, Rician distribution, K-distribution, homodyned K-

distribution, generalized K-distribution, ascending order K distribution, Nakagami

distribution, Nakagami-gamma distribution, Rician inverse Gaussian distribution

and Nakagami-generalized inverse Gaussian distribution.

In this research, many probability distributions related to ultrasound imag-

ing will be studied. Then the probability distribution properly being best describ-

ing image noise will be proposed.

1.1 Research objectives

1. To study about probability distributions related ultrasound noise imaging.

2. To proposed another probability distribution which gives a better explana-

tion for ultrasound image noise.

1.2 Scope and limitations

The research works on the ultrasound image of human tissue of class 1

scattering, which is composed of a large number of scattering cells, the scatterers

per resolution cell is 25 or higher. The backscattered ultrasound echoes from
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the cells, both the magnitudes and the phases, are statistically independent and

uniform.

The calculation in this thesis performed by

• Laptop HP ProBook computer with Intel CPU I5 6200U 12GB RAM;

• Operation System: Microsoft Windows 10 Pro;

• Programming Language: Python 3.7 with Jupyter Notebook Editor.

1.3 Research procedure

The research work will proceed as follows:

1. Study the theory and application of statistical distribution to ultrasound

image

2. Analyze and construct the probability distribution to explain ultrasound

image noise

3. Validate and verify the model obtained

1.4 Expected results

This research would be able to have a concept to find an appropriate and

effective distributions to explain ultrasound image noise.

 



CHAPTER II

LITERATURE REVIEW

In this chapter, the knowledge of basic mathematics and statistics related

with applications of probability distributions to ultrasound imaging is presented.

Most contents of probability and random variables comes from Grimmett and

Stirzaker (2001), Grimmett and Welsh (1986) and Destrempes and Cloutier (2010).

2.1 Probability

The mathematical theory of probability starts with the idea of an experi-

ment (or trial), being a course of action whose consequence is not predetermined;

this experiment is reformulated as a mathematical object called a random variable

in a probability space.

Definition 2.1. If A is some event, the occurrence or non-occurrence of A depends

upon the chain of circumstances involved. This chain is called an experiment or

trial; the result of an experiment is called its outcome. The set of all possible

outcomes of an experiment is called the sample space and is denoted by Ω.

Definition 2.2. A Bernoulli trial or binomial trial is a random experiment/trial

with exactly two possible outcomes, “success” and “failure”, i.e.

Ω = {success, failure} .

Definition 2.3. A non-empty collection F of subsets of the sample space Ω is

called an event space of F .
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Definition 2.4. A collection F of subsets of Ω is called a σ-field if it satisfies the

following conditions:

1. ∅ ∈ F ;

2. if A1, A2, . . . ∈ F then
∞
∪
i=1
Ai ∈ F ;

3. if A ∈ F then Ac ∈ F , where Ac is the complement of A.

Definition 2.5. A probability measure P on (Ω,F) is a function P : F → [0, 1]

satisfying

1. P(∅) = 0 and P(Ω) = 1;

2. if A1, A2, . . . is a collection of disjoint members of F , in that Ai ∩Aj = ∅ for

all pairs i, j satisfying i ̸= j, then

P
( ∞
∪
i=1
Ai

)
=

∞
Σ
i=1

P (Ai) .

The triple (Ω,F ,P), comprising a set Ω, a σ-field F of subsets of Ω, and a proba-

bility measure P on (Ω,F), is called a probability space.

The above definitions give more efficient tools to measure the likelihoods

of the occurrences of events. Compared to the classical concept, the experience

of most scientific experimentation is that the proportion of times that A occurs

settles down to some value as N becomes larger; that is, writing N(A) for the

number of occurrences of A in the N trials, the ratio N(A)/N appears to converge

to a constant limit as N increases. The ultimate value of this ratio as being the

probability P(A) that A occurs on any particular trial. In practice, N may be taken

to be large but finite, and the ratio N(A)/N may be taken as an approximation

to P(A). Some individuals refer informally to P as a probability distribution.
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Definition 2.6. Conditional Probability is a measure of the probability of one

event occurring with some relationship to one or more other events. The condi-

tional probability of A given B, or the probability of A under the condition B, is

usually written as P(A|B), or sometimes PB(A) or P(A/B), defined by

P(A|B) =
P(A ∩B)

P(B)
,

where P(A ∩B) is the probability that both events A and B occur.

2.2 Random Variables and their distribution

Quantities governed by randomness correspond to functions on the prob-

ability space called random variables. The value taken by a random variable is

subject to chance, and the associated likelihoods are described by a function called

the distribution function.

Definition 2.7. A random variable is a function X : Ω → R with the property

that

{ω ∈ Ω : X(ω) ≤ x} ∈ F

for each x ∈ R. Such a function is said to be F-measurable.

Distribution is a statistical concept used in data research. It is a listing or

function showing all the possible values of the statistical data and how often they

occur. Every random variable has a distribution function. Distribution functions

are very important and useful.

Definition 2.8. The distribution function of a random variable X is the function

F : R → [0, 1]

given by F (x) = P(X ≤ x).
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The distribution function satisfies the following conditions.

Theorem 2.1. A distribution function F has the following properties:

1. lim
x→−∞

F (x) = 0,

2. lim
x→∞

F (x) = 1,

3. F is nondecreasing, i.e. if x < y then F (x) ≤ F (y),

4. F is right-continuous, i.e. F (x+ h) → F (x) as h→ 0+.

Moreover, some conditions for the relation of the distribution function of a

random variable X and the probability measure P are as follows:

Theorem 2.2. Let F be the distribution function of X. Then

1. P(X > x) = 1− F (x),

2. P(x < X ≤ y) = F (y)− F (x),

3. P(X = x) = F (x)− lim
y→x−

F (y).

2.3 Discrete and continuous random variables

Random variables can be classified into two basic categories, discrete and

continuous.

Definition 2.9. The random variable X is called discrete if it takes values in

some countable subset {x1, x2, . . .}, only, of R. The discrete random variable X

has (probability) mass function f : R → [0, 1] given by f(x) = P(X = x).

Definition 2.10. The random variable X is called continuous if its distribution

function can be expressed as

F (x) =

∫ x

−∞
f(u)du x ∈ R,
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for some integrable function f : R → [0,∞) called the (probability) density function

of X.

2.4 Expectation

Let x1, x2, . . . , xN be the numerical outcomes of N repetitions of some ex-

periment. The average of this outcomes is

m =
1

N

∑
i

xi.

Consider the N discrete random variables with a common mass function f . For

each possible value x, about Nf(x) of the outcome Xi, i = 1, . . . , N , will take that

value x. So the average value is

m =
1

N

∑
x

xNf(x) =
∑
x

xf(x),

where the summation is over all possible values of the Xi. This average is called

the expectation or mean value of the underlying distribution with mass function

f .

Definition 2.11. The mean value, or expectation, or expected value of a discrete

random variable X with mass function f is defined to be

E(X) =
∑

x:f(x)>0

xf(x), (2.1)

whenever this summation is absolutely convergent.

The expectation (2.1) of a discrete variable X or an average of the possible

values of X may be written in form

E(X) =
∑
x

xP(X = x),

which means each value being weighted by its probability.
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Lemma 2.3. If X has a mass function f and g:R → R, then

E(g(X)) =
∑
x

g(x)f(x),

whenever this sum is absolutely convergent.

Definition 2.12. If k is a positive integer, the kth moment mk of X is defined to

be

mk = E(Xk) =
∑
x

xkP(X = x).

The kth central moment σk is

σk = E
[
(X −m1)

k
]
.

Definition 2.13. The two moments of most use are

• m1 = E(X), called the mean (or expectation) of X, and

• σ2 = E [(X − EX)2] = E(X2)− (m1)
2, called variance of X.

These two quantities are measures of the mean and dispersion of X; that is, m1 is

the average value of X, and σ2 measures the amount by which X tends to deviate

from the average. The term variance was first introduced in 1918 by Ronald Fisher

(Lovric, 2011). The mean m1 is often denoted µ, and the variance of X is often

denoted var(X). The positive square root σ =
√

var(X) is called the standard

deviation.

For continuous variables, expectations are defined as integrals.

Definition 2.14. The expectation of a continuous random variable X with density

function f is given by

E(X) =

∫ ∞

−∞
xf(x)dx,

whenever the integral converges absolutely.
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By the definition (2.12) of moment for a discrete random variable, we define

the kth moment of a continuous variable X as the following.

mk = E(Xk) =

∫ ∞

−∞
xkf(x)dx, (2.2)

whenever the integral exists.

Therefore, we can define mean and variance for a continuous random vari-

able similar to definition 2.13 as µ = E(X) and σ2 = E [(X − EX)2], respectively,

where the kth moment is defined by (2.2).

2.5 Skewness

Skewness describes which side of a distribution has a longer tail. It is a

measure of distributional asymmetry. If the long tail is on the right, then the

skewness is rightward or positive; if the long tail is on the left, then the skewness

is leftward or negative.

Skewness is measured by the third standardized moment

E

[(
X−µ
σ

)3
]
,

where X is a random variable with mean µ and standard deviation σ. However,

there are some alternative definitions. One may see the other definitions in Lovric

(2011).

2.6 Kurtosis

In 1905, Pearson mentioned the measure which can explain whether the

frequency towards the mean is emphasized more or less than that required by the

Gaussian law. He defined κ =
m4

(m2)
2 to compare other distributions to the normal

distribution and called κ − 3 the degree of kurtosis, (or sometimes called excess
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kurtosis). Kurtosis is a statistical measure that is used to describe the size of the

center and the tails on a distribution. High kurtosis is linked to high concentration

of mass in the center and/or the tails of the distribution (Lovric, 2011).

2.7 Harmonic Waves

2.7.1 One-Dimensional Waves and Harmonic Waves

The mathematical expression for wave motion and the harmonic wave can

be described as the follows.

Definition 2.15. Let ψ be an n-dimensional vector, say ψ = ψ(x1, x2, ..., xn).

The Laplacian ∇2ψ of ψ is defined by

∇2ψ =
∂2ψ

∂x21
+
∂2ψ

∂x22
+ ...+

∂2ψ

∂x2n
,

Note that

1. We may sometimes replace xn with variable t.

2. ∇2 is ∂2

∂x21
+

∂2

∂x22
+ . . .+

∂2

∂x2n
.

Definition 2.16. The differential wave equation which describes propagation

of waves with speed v respect to time t is given by

∇2ψ =
1

v2
∂2ψ

∂t2
.

In particular, if n = 1

∂2ψ

∂x2
=

1

v2
∂2ψ

∂t2
.

is called the one-dimensionl differential wave equation.
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Definition 2.17. A function y = f(x ± vt) is said to be a function of one-

dimensional wave which moves along the x-axis at speed v relative to coordinate

(x, y) if it satisfies the one-dimensional differential wave equation,

∂2y

∂x2
=

1

v2
∂2y

∂t2
. (2.3)

Definition 2.18. Harmonic wave is a particular wave which involves the sine

function

y = A sin[c(x± vt)]

or cosine function

y = A cos[c(x± vt)],

where A and c are constants, A is called the amplitude of the wave

The harmonic wave invdring sine function y = A sin[c(x± vt)] satisfies the

one-dimensional differential wave equation since

∂2y

∂x2
= −Ac2 sin[c(x± vt)]

and
∂2y

∂t2
= −Ac2v2 sin[c(x± vt)].

here, we can consider the proposed equation as a one-dimensional wave.

It is also similar for the case of y = A cos[c(x± vt)].

Denote ω = cv, which is called the angular frequency. With these rela-

tionships, one can show that the equivalence of the following general forms for

harmonic waves:

y = A sin[cx± ωt].

In the cosine function is also similar.
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2.7.2 Superposition of harmonic Waves of the Same Fre-

quency

For the case that two or more such waves arrive at the same point in

space or exist together along the same direction, several important cases of the

combined effects of two or more harmonic waves are called the superposition of

waves. The superposition principle says that the resultant displacement is the

sum of the separate displacements of the constituent waves. Here we consider the

superposition of harmonic waves of different amplitudes and phases but with the

same frequency. This case leads to an important difference between the irradiance

attainable from randomly phased and coherent harmonic waves.

The superposition of harmonic waves may be expressed in terms of equation

y = y1 + y2,

where y1 and y2 are the independent waves which exist together in the space.

The time variations of the harmonic waves at the given point (two harmonic

waves with different phases) can be expressed by

y1 = A1 sin(ωt+ α1),

y2 = A2 sin(ωt+ α2),

where A1, A2 are amplitudes of y1 and y2, α1, α2 are phases of y1 and y2 respec-

tively.

By the superposition principle, the resultant yR at the point is

yR = y1 + y2 = A1 sin(ωt+ α1) + A2 sin(ωt+ α2).

The proposed yR can be derived to

yR = (A1 cosα1 + A2 cosα2) sinωt+ (A1 sinα1 + A2 sinα2) cosωt.
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For the simplicity, we may consider the coefficients of sinωt and cosωt as terms

of cosine and sine with magnitude A and phase α, respectively.

The coefficients are

A cosα = A1 cosα1 + A2 cosα2

and

A sinα = A1 sinα1 + A2 sinα2.

The quantities A and α are defined by this technique, hence

yR = A cosα sinωt+ A sinα cosωt

or

yR = A sin(ωt+ α).

We claim that the wave yR is also harmonic wave of the same frequency ωt,

with amplitude A and phase α. Moreover, by mathematical induction, the sum

of N harmonic waves of identical frequency is again a harmonic wave of the same

frequency, with amplitude given by A and phase given by α.

2.7.3 Coherence and Incoherence

Before giving descriptions of coherence and incoherence, we first say about

monochromatic waves. Monochromatic wave is represented by a wave function

with harmonic time dependence, its amplitude and phase are generally position

dependent. The term coherence and incoherence are used to describe the correla-

tion between phases of monochromatic waves. In the mathematics point of view,

the wave function is a harmonic function of time with the same frequency at all

positions.
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Definition 2.19 (relative phase). Let

y1(x) = A1 sin(ωx+ α1) and

y2(x) = A2 sin(ωx+ α2)

be harmonic waves with the same frequency ω. The relative phase of y1 and y2

is given by α1 − α2.

Definition 2.20 (coherent). Waves are said to be coherent if they have a con-

stant relative phase, which also implies that they have the same frequency. In

the superposition of coherent waves, individual amplitudes add together. Waves

add constructively or subtract destructively, depending on their relative phase, as

shown in figure 2.1.

Figure 2.1 Waves add constructively or subtract destructively.
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Definition 2.21 (incoherent). Waves are said to be incoherent if they have

random relative phase. Which means that they are combined with a lots of

different phases, as an example in figure 2.2

Figure 2.2 The figure of waves that combine with lots of different phases nearly

cancel out and yield very low irradiance (incoherent).

Definition 2.22 (speckle). Speckle is a random pattern which has a negative

impact on coherent imaging, including ultrasound imaging. It is a result of the

superposition of many waves, which have different phases (incoherent).

Speckle occurs in an ultrasound image because the ultrasonic wave encoun-

ters rough surfaces that result in the scattering of waves. Each scattered wave

from a rough surface has a different phase which leads to the forming of speckles.

2.8 Distributions related Ultrasound Image

Well known distributions and distributions used in ultrasound image pro-

cessing are the following.
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2.8.1 Bernoulli distribution

The Bernoulli distribution admits only two possible outcomes, for example

Ω = {Yes,No} and Ω = {True,False}. It is usually considered as Ω = {0, 1},

where the event “1” is often called a success, the other “0”, a failure. Further

f(1) = p and f(0) = 1 − p, where p is the probability of the event occurring and

0 ≤ p ≤ 1. The mean and variance of a Bernoulli random variable are p and

p(1− p), respectively. The variance is maximum if p = 0.5. The probability mass

function is

f(k) = pk(1− p)1−k, k = 0, 1.

2.8.2 Binomial distribution

Let 0 ≤ k ≤ n, and consider f(k). Exactly
(
n
k

)
points in Ω give a total of

k wanted events; each of these points occurs with probability pk(1− p)n−k, and so

f(k) =

(
n

k

)
pk(1− p)n−k if 0 ≤ k ≤ n. (2.4)

The random variable X is said to have the binomial distribution with parameters

n and p. This distribution is the discrete probability distribution of the number of

successes in a sequence of n independent experiments. If there are n independent

Bernoulli random variables, each with success probability p, then the total number

of successes has the binomial distribution.

A binomial random variable is often transformed into a proportion by di-

viding by n. The resulting random variable k/n is called the binomial proportion

and the probability function (2.4) shifted on to 0, 1/n, 2/n, . . . , 1.

The binomial distribution is the basis for the popular binomial test of sta-

tistical significance, where the binomial test is an exact test of the statistical sig-

nificance of deviations from a theoretically expected distribution of observations
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into two categories.

2.8.3 Poisson distribution

If a random variable X takes values in the set {0, 1, 2, . . .} with mass func-

tion

f(k) =
λk

k!
e−λ, k = 0, 1, 2, . . . ,

where λ > 0, then X is said to have the Poisson distribution with parameter λ.

The Poisson distribution is a discrete probability distribution that expresses

the probability of a given number of events occurring in a fixed interval of time

or specified intervals such as distance, area, volume or space, if these events occur

with a known constant rate and independently of the time since the last event.

Suppose that in the binomial distribution, n becomes large while p becomes

small, by (2.4), let n→ ∞ and p→ 0 in such a way that np approaches a non-zero

constant λ. Then,(
n

k

)
pk(1− p)n−k ∼ 1

k!

(
np

1− p

)k

(1− p)n → λk

k!
e−λ, for k = 0, 1, 2, . . .

2.8.4 Negative binomial distribution

Let Xr be the waiting time for the rth success of Bernoulli trials of a

random variable Xr, which takes values 1 and 0 with probabilities p and q(= 1−p),

respectively. Check that Xr has mass function

P(Xr = k) =

(
k − 1

r − 1

)
pr(1− p)k−r, k = r, r + 1, ...;

it is said to have the negative binomial distribution with parameters r and p. The

random variable Xr is the sum of r independent geometric variables. Note that if

r = 1, it becomes the geometric distribution.
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The negative binomial distribution is a discrete probability distribution of

the number of successes in a sequence of independent and identically distributed

Bernoulli trials before a specified (non-random) number of failures r occurs, in

which the probability of success is the same every time the experiment is con-

ducted.

2.8.5 Continuous uniform distribution

A random variable X is uniform on [a, b] if it has distribution function

F (x) =


0 if x ≤ a,

x− a

b− a
if a < x ≤ b,

1 if x > b.

Roughly speaking, X takes any value between a and b with equal probability. The

continuous uniform distribution or rectangular distribution is a family of symmetric

probability distributions such that all members of the family are equally probable.

2.8.6 Exponential distribution

A random variable X is exponential with parameter λ > 0 if it has distri-

bution function

F (x) = 1− e−λx, x ≥ 0.

The exponential distribution is the probability distribution that describes the time

between events in a Poisson point process. The Poisson point process is a type

of random mathematical object that consists of points randomly located on a

mathematical space. The Poisson point process is often defnned on the real line,

where it can be considered as a stochastic process. This distribution proves to be

the cornerstone of the theory of Markov processes in continuous time.
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2.8.7 Normal distribution

The most important continuous distribution is the normal (or Gaussian)

distribution, which has two parameters µ and σ2 and density function

f(x) =
1√
2πσ2

exp
(
−(x− µ)2

2σ2

)
, −∞ < x <∞.

The normal distribution arises in many ways. In particular it can be obtained as

a continuous limit of the binomial distribution as n→ ∞.

Insurance companies use normal distributions to model certain average

cases.

2.8.8 Log-normal distribution

A log-normal distribution is a statistical distribution of logarithmic values

from a related normal distribution, i.e. for a variable x, y = ln(x) is normal

distributed,

f(x) =
1√
2πσ2

exp
(
−(lnx− µ)2

2σ2

)
, x > 0.

2.8.9 Gamma distribution

The random variable X has the gamma distribution with parameters λ, t >

0, if it has density

f(x) =
1

Γ(t)
λtxt−1e−λx, x ≥ 0.

Here Γ(t) is the gamma function

Γ(t) =

∫ ∞

0

xt−1e−xdx.

The gamma distribution is a two-parameter family of continuous probabil-

ity distributions. The exponential distribution can be considered as a special case

of the gamma distribution.

 



21

2.8.10 Inverse Gaussian distribution

The inverse Gaussian distribution (also known as Wald distribution) is a

two-parameter family of continuous probability distributions with density similar

to that of gamma distribution, i.e.

f(x) =
1√

2πσ2x3
exp

{
− 1

2x

(
x− µ

σµ

)2
}
, x > 0.

The inverse Gaussian is used in situations of extreme skewness.

2.8.11 Generalized Inverse Gaussian distribution

The generalized inverse Gaussian distribution (GIG) (also known as Sichel

distribution) is a three-parameter family of continuous probability distributions

with probability density function

f(x) =
(ψ/χ)(λ/2)

2Kλ(
√
χψ)

x(λ−1)e−(ψχ+χ/x)/2, x > 0.

where Kλ (·) stands for the modified Bessel function of the third kind, ψ > 0, χ

> 0 and λ is a real parameter (Embrechts, 1983). It is used in ruin problems,

geostatistics, statistical linguistics, finance, etc. The inverse Gaussian distribution

is a special case of the generalized inverse Gaussian distribution for λ = −1
2
.

2.8.12 Rayleigh distribution

The Rayleigh distribution is considered to describe laser speckle patterns

and speckle patterns in SAR images. In these cases, an echo is considered to be a

sum of a large number of small amplitudes of coherent and incoherent sine waves

which can be considered as independent, identically distributed (i.i.d.) random

variables. By the superposition principle, the result is also a sine wave whose

amplitude is the length of a two dimensional vector of two identical, zero mean
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Gaussian random variables. If these two components are uncorrelated (or inde-

pendent), then the distribution of the received envelope A of a signal is a Rayleigh

distribution.

Histogram of intensity values of tissues with high cell concentration per

resolution cell such as liver and blood, can be fitted by Rayleigh distribution.

This situation can be understood by assuming that the returned diffuse signal

is a linear summation of many small amplitude incoherent sine waves, or in the

other word, the returned diffuse signal is a random walk process of many small

amplitude, single frequency sine waves whose phases are uniform random variables,

i.e.,

EN(t) =
∑

k = 1NEk cos(ωt+ θk). (2.5)

In the ultrasound imaging process, it is assumed that the superposition

of received echo ultrasound is a linear summation. The envelope detection pro-

cess in B-scanning is a nonlinear step which yields essentially the magnitude of

the complex detected voltage. Wagner et. al. (1983) showed that the Rayleigh

distribution with PDF

PRa(x) =
x

σ2
e−x

2/(2σ2), (2.6)

where x > 0 and parameter σ2 is a variance, governs the fist-order behavior of the

magnitude.

2.8.13 Rician distribution

Specular reflection consists of sound interactions with smooth tissue inter-

faces where the surface features are much larger than the wavelength of ultrasound.

The ultrasound beam must strike the interface at a perpendicular angle to generate

these reflections. These specular echoes originate from high acoustic impedance

difference at boundaries such as fluid-tissue or bone-tissue interfaces, and produce
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a bright interface in the image. Thus shape geometry of organ in ultrasound image

is generated by specular echoes.

Assume that specular echo has a large amplitude (when compared to the

diffuse scattering echo) sine wave. Consider the sum of a specular echo and diffuse

echoes, the resulting amplitude is still considered as the length of a two dimensional

vector of two Gaussian random variables. However, only one of them has mean

zero. If the two components are independent, then distribution of amplitude x is

a Rician distribution,

P (x;x0, σ) =
x

σ2
e−(x20+x

2)/2σ2

I0

(
x0A

σ2

)
,

where x ≥ 0, x0 > 0 represent the amplitude of the specular echo, σ is a parameter,

and I0 is the modified Bessel functions of the first kind of zero order defined by

I0(s) =
1

π

∫ π

0

es cos θ dθ. (2.7)

2.8.14 K-distribution

Jakeman (1980) considered noise by the concept of a random walk. Then

the resultant of the received ultrasound signal at the transducer face is possible to

be non-Gaussian. He proposed that the modified Bessel function or K-distribution

with PDF

P (x;α, b) = 2
(x
2

)α bα+1

Γ(α)
Kα−1(bx), (2.8)

where x > 0 and Γ(·) is the gamma function, α and b =
√

4α

E{x2}
are parameters,

is more appropriate to model the amplitude statistics of the scattered radiation in

medical ultrasound images.

 



24

2.8.15 Homodyned-K distribution

The random variable x ≥ 0 has the Homodyned-K distribution with pa-

rameters α, b > 0, if it has p.d.f.

P (x;α, σ, s) = x

∞∫
0

tJ0(xt)J0(st)

(
1 +

t2σ2

2α

)−α

dt, (2.9)

where J0(·) is the zero-th order Bessel function of the first kind and α > 0.

2.8.16 Nakagami distribution

Koundal, Gupta and Singh (2015) mentioned that the Nakagami model is

more general than the Rayleigh distribution for statistical modeling of speckle in

ultrasound images. They presented the Nakagami-based noise removal method,

which is more efficient to enhance thyroid ultrasound images and to improve clin-

ical diagnosis. The statistics of log-compressed medical ultrasound images in that

research are derived from the Nakagami distribution. The PDF of the Nakagami

distribution is

P (x;m,σ2) =
2mm

Γ(m)(2σ2)m
x2m−1e−mx

2/(2σ2), (2.10)

where x > 0, Γ(·) is the gamma function, m ≥ 0.5 is the Nakagami shape param-

eter defined by E {x2}
Var {x2} and 2σ2 is the scaling parameter defined by E {x2}.

One can see that Rayleigh distribution is the limiting distribution of K-

distribution and it is a specific case of the Nakagami distribution when m = 1.

2.8.17 Compound probability distribution

The distribution H, which assumes that a random variable X is distributed

according to some parametrized distribution F with an unknown parameter θ that

is again distributed according to some other distribution G, is known as a mixed,

mixture or compound distribution.(Lovric, 2011)
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The resulting distribution H is said to be the distribution that results from

compounding F with G, which means the distribution F is compounded by the

distribution G and the parameter’s distribution G is known as the compound-

ing (mixing or latent) distribution. Technically, the unconditional distribution H

results from marginalizing over G, i.e., from integrating out the unknown param-

eter(s) θ. Its probability density function is given by:

PH(x) =

∫
PF (x|θ)PG(θ)dθ

2.9 Application of probability distribution to ultrasound

imaging

This section proposes the relation between the ultrasound image and sta-

tistical distributions.

2.9.1 B-Mode imaging

An ultrasound transducer converts electrical energy into ultrasound energy

and vice versa by arrays of piezoelectric crystals. An image of soft tissue in a body

can be produced by transforming the ultrasound echo signals received to electricity

voltage and processing the detected voltage to the brightness at each point of the

image defined by their x- and y-coordinates. To be precise, the gray-scale intensity

of each pixel of a B-mode or brightness mode image is obtained from the envelope

of the received voltage. The envelope of the signal can be derived by applying the

Hilbert transform to the signal.

In practice, not only the pure echo signals from the surface pass through

the piezoelectric receiver but there is signal contamination as well. The diffusion

scattering of ultrasound signals can be modeled by some probability distribution.
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The mathematics and statistical models related with the diffusion scattering of

ultrasound signals are presented in the following content.

2.9.2 Ultrasound scattering classes of biologic system

Note that contents in this section follows Greenleaf and Sehgal (1992).

The concentration or size of scattering centers relative to the resolution

ce1l of the imaging system is used to develop a hierarchy of scattering classes that

correlates with a hierarchy of biologic classes.

Class 0 scattering is associated with macromolecules (size: 104 -105 Å)

such as proteins and lipids, the most common molecule in the body. Class 0 scat-

tering causes absorption of sound in various degrees and variations in propagation

speed. Absorption of sound is related closely to the concentration of proteins in

water. This type of scattering is due to macromolecular effects, which produce

absorption and sound speed dispersion. (Szabo, 2014)

Class 1 scattering, or diffusion scattering, is associated with cells, de-

pending on their concentration. Class 1 scattering occurs when the concentration

of scatterers per resolution cell is high (25 or higher). This occurs in tissues such

as blood or liver and results in speckle, the fine-grained noise familiar from laser

light.

Class 2 scattering, or coherent/specular scattering, is associated with

tissues in which the structural architecture (connective tissue) or other components

such as lipids are scattered throughout the tissue in concentrations lower than 1

per resolution cell. These elements scatter independently and cause scattering

distinguishable from speckle produced by the cell components themselves.

Class 3 scattering is caused by the borders of the organs and vessels.

Class 3 scattering cause specular or mirror-like reflection.
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Class 4 scattering is caused by motion that produces a Doppler shift

which is associated with ultrasonic signals scattering from interfaces within blood,

heart, lung, and gut which move to accomplish their function. This class is not

considered in B-mode imaging.

In this thesis, we will scope on class 1 scattering only.

2.9.3 Some probability distribution functions of ultra-

sound echo envelope

Note that contents in this section follow Destrempes and Cloutier (2010).

Random walks are stochastic processes formed by successive summation of

independent, identically distributed random variables (Lawler and Limic, 2010).

An n-dimensional random walk is an object moving in the Euclidean space of

dimension n by discrete independent random steps according to a specific prob-

ability distribution. The accumulation of the random scattering can be modeled

by a random walk of component phasors.

The square of the amplitude of a random walk, which is the distance of the

moving object to the origin, corresponds to the the intensity of the received signal

from scatterers.

For two dimensional ultrasound imaging, the dimension of the correspond-

ing random walk is n = 2. In the case of no compression of filters, the amplitude

corresponds to the gray level of the B-mode image. The mean intensity according

to the intensity distribution is considered as the signal intensity averaged over

space.

Two examples of relation between probability distribution and random walk

are given as follows.
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If an n-dimensional random walk is defined as

A =
1√
N

N∑
j=1

aj, (2.11)

where N is the number of steps and aj is an independent random vector repre-

senting independent phase and amplitude, for j = 1, . . . , N .

Theorem 2.4 (Central Limit). Let N tend to infinity in the random walk of

equation (2.11). The distribution of the amplitude of the resulting random walk is

a Rayleigh distribution with parameter

σ2 =
a2

n
,

where a2 is the mean intensity of the random step aj before scaling by factor 1√
N

.

In the case that an n-dimensional random walk is defined as

A = −→ε +
1√
N

N∑
j=1

aj, (2.12)

where −→ε is a constant vector.

Theorem 2.5 (Central Limit). Let N tend to infinity in the random walk of

equation (2.12). The distribution of the amplitude of the resulting random walk is

a Rician distribution with parameter

ε = ∥−→ε ∥, σ2 =
a2

n
,

where a2 is the mean intensity of the random step aj before scaling by factor 1√
N

and ε represents coherent signal component.

2.10 Software related with statistical distributions

There are many softwares for helping in manipulation with statistical dis-

tributions, e.g. RStudio, SPSS, Microsoft Excel. However, for the software code

 



29

development, the programming language Python is very well-known in the present.

World-Class software companies employ Python for working in many projects

(Reynolds, ND). Python was first developed in the late 1980s. After decades of

development, Python is now version 3.8 which is available in mathematics, statis-

tics, science and data science works. It has many libraries which can be used in

the Android platform, for websites, hardware interface, image processing, sound

processing, artificial intelligence (AI), machine learning, network and database

(Chityala and Pudipeddi, 2014). In this thesis, the Python software code was

developed for implementing the analysis of statistical distributions appearing in

medical ultrasound images.

2.11 Related researches

Seekot and Tanthanuch (2008) and Tanthanuch, Seekot, and Schulz (2012)

considered speckle noise in ultrasound image to be explained by Rayleigh distribu-

tion. They considered the noise model as an additive one. Calculus of variational

approach was used to reduce noise in ultrasound image.

Tanthanuch, Kaptsov and Meleshko (2019) used group classification and

conservation laws in cylindrical coordinates to classify ultrasound Rayleigh noise

reduction model.

Jensakda and Tanthanuch (2018) considered ultrasound noise reduction

model via Rayleigh distribution, K-distribution and Nakagami distribution. The

comparison of noise reduction performances were presented

Destrempes and Cloutier (2010) presented an overview of the statistical

distributions based on their compound representation. The development of apply-

ing the probability distributions to describe the ultrasound scatterers distributed

were discussed as
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• Wagner et al. (1983, quoted in Destrempes and Cloutier, 2010) claimed that

Rayleigh distribution corresponds to the distribution of the gray level in an

unfiltered B-mode image.

• Insana et al. (1986, quoted in Destrempes and Cloutier, 2010) showed that

the Rician distribution corresponds to a high density of random scatterers

but combined with the presence of a coherent signal component of power

ε2. The Rayleigh distribution is the special case of the Rician distribution,

where ε = 0.

• Shankar et al. (1993, quoted in Destrempes and Cloutier, 2010) introduced

K-distribution which corresponds to a variable density α of random scatter-

ers, with no coherent signal component.

• Jakeman (1980, quoted in Destrempes and Cloutier, 2010) and Jakeman

and Tough (1987, quoted in Destrempes and Cloutier, 2010) studied the

homodyned K-distribution. The homodyned K-distribution corresponds to

the general case of a variable effective density of random scatterers with or

without a coherent signal component The K-distribution is a special case of

the homodyned K-distribution, and the Rayleigh and the Rice distributions

are limiting cases of the two mentioned distributions

• Barakat (1986, quoted in Destrempes and Cloutier, 2010) developed works

of Jakeman and Tough (1987, quoted in Destrempes and Cloutier, 2010).

The work was equivalent to modulate both the coherent signal component

ε and the diffuse signal power 2σ2 of the Rician distribution by a gamma

distribution. This gave rise to the generalized K-distribution.

• Eltoft (2005, quoted in Destrempes and Cloutier, 2010) introduced the Ri-

cian inverse Gaussian distribution. It corresponded to a model in which both
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the coherent signal component ε and the diffuse signal power 2σ2 of a Rician

distribution are modulated by an inverse Gaussian distribution, instead of a

gamma distribution.

• Shankar (2000, quoted in Destrempes and Cloutier, 2010) referred the Nak-

agami distribution in modeling the gray level of the speckle pattern in a

B-mode image. The Nakagami distribution was first introduced by Nak-

agami in 1943, which is a two-parameter distribution.

• Shankar (2003, quoted in Destrempes and Cloutier, 2010) also proposed

the Nakagami-gamma distribution, which can be viewed as the marginal

distribution of a model in which the Rician distribution is approximated by

a Nakagami distribution, and in which its total signal power Ω = ε2 + 2σ2

is modulated by a gamma distribution.

• Agrawal and Karmeshu (2006, quoted in Destrempes and Cloutier, 2010)

introduced the Nakagami-generalized inverse Gaussian distribution, which

corresponds to a model in which the approximating Nakagami distribution

has its total signal power Ω modulated by a generalized inverse Gaussian

distribution instead of a gamma distribution.

Cai (2016) characterized the Medical Ultrasound Echo Signals with the as-

cending order K distribution which manifests the feature that the greatest amount

of signal appears at the original point in the distribution function.

 



CHAPTER III

RESEARCH METHODOLOGY

This chapter presents the process used in this research. The process com-

prises of 3 parts as follows:

1. analysis of statistical distributions;

2. the development of the software code in statistical compound distribution

functions;

3. the interpretation of the obtained results.

3.1 Analysis of statistical distributions

Here, by the literature review, it was found that most used parameters of

the statistical distributions link with the statistical moments, i.e. raw moments

(sometimes called crude moments), central moments (or moments about the mean)

and standardized moments.

Definition 3.1 (moments). Here the definitions of three types of moments are as

follows:

1. The raw moments of a statistical distribution are defined as the expectation

values of a random variable X.

2. For a continuous random variable, the central moments are defined by

µn = E [(X − E(X))n] =

∫ ∞

−∞
(x− µ)n f(x)dx,

where f(x) is the density function of X.
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3. The standardized moment of degree k is σk
σk

where σk is the k-moment and

σ is the standard deviation.

Table 3.1 Significance of moments.

Moment

ordinal

Moment

Raw Central Standardized

1 Mean 0 0

2 - Variance 1

3 - - Skewness

4 - - Kurtosis

By the context mentioned above, the software code for finding moments

was considered to be developed.

3.2 The development of the software code in statistical

compound distribution functions

For the Python software, there are some statistical libraries, e.g.

scipy.stats. However, when applied scipy.stats.skewness and scipy.stats.kurtosis to

our considered statistical distributions, it presented the wrong values. There

were also some examples of error in using that commands in the inter-

net (https://stackoverflow.com/questions/45483890/how-to-correctly-use-scipys-

skew-and-kurtosis-functions), thus we developed the software code for finding the

skewness and the kurtosis. The Python software code for finding the skewness

and the kurtosis is presented in section A.2, Appendix A. Since the calculation

of statistical distributions deals with the mathematics functions and integrations,
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library numpy and library scipy.integrate were used. For more details of the coding

software code in this thesis, some libraries and commands are presented as follows.

3.2.1 Statistical distributions functions

In the scipy.stats (the Python statistical library), there are statis-

tical distribution functions used in this thesis, i.e. Normal distribution

(scipy.stats.norm), Rayleigh distribution (scipy.stats.rayleigh), Rician distribution

(scipy.stats.rice), Nakagami distribution (scipy.stats.nakagami),Gamma distribution

(scipy.stats.gamma), inverse Gaussian distribution (scipy.stats.invgauss) and gener-

alized inverse Gaussian distribution (scipy.stats.geninvgauss). For some other sta-

tistical distribution and compound distribution functions used in this thesis, we

thus needed to develop the software cood. The code was done for the following

distributions:

• K-distribution;

• homodyned-K distribution;

• Generalized K-distribution;

• Rician inverse Gaussian distribution;

• Nakagami gamma distribution;

• Nakagami generalized inverse Gaussian distribution.

The Python software code for the statistical compound distribution functions is

presented in A.1, Appendix A.
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3.2.2 The development of the software code in statistical

parameter analysis

For the statistical parameters statistical moments, central moments, stan-

dardized moments, expected value, variance, skewness and kurtosis of statistical

distributions functions in section 3.2.1, the software code of the mentioned param-

eter was developed. The Python software code is shown in section A.1, Appendix

A.

3.2.3 Graph display

Python has many libraries for plotting a graph. Here we employed mat-

plotlib.pyplot. Some examples of using matplotlib.pyplot to plot the statistical dis-

tribution curves are presented in section A.2, Appendix A.

3.3 The interpretation of the obtained results

In this section, the comparison of the statistical distributions dealing with

the medical ultrasound image is presented.

 



CHAPTER IV

RESULTS AND DISCUSSION

This chapter presents the results from the process proposed in Chapter III

Research Methodology. The main goal in this section is to discuss the output

from Python software developed in this thesis. For The code, is presented in the

Appendix.

4.1 Analysis and graphs of the statistical distributions re-

lated with medical ultrasound image

Analysis and graphs of the statistical distributions related with medical

ultrasound image obtained by Python are presented as follows. For the sake of

simplicity, some notations of statistical distribution presented in Chapter II are

changed according to the physical interpretation of ultrasound signal.

4.1.1 Rayleigh distribution

the Rayleigh distribution corresponds to the distribution of the gray level

of each pixel in the image (or an amplitude of the ultrasound signal before trans-

formed to the image) in the case of a high density of random scatterers with no

coherent signal component (Wagner et al., 1983). The probability density function

of the n-dimensional Rayleigh distribution is defined by

PRa
(
x|σ2

)
=

2

Γ(n/2)

(
1

σ2

)n/2

xn−1 exp
(
− x2

2σ2

)
,
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where x is the amplitude of the signal, σ > 0 is a shape parameter and n is the

dimension.

Figure 4.1 Graph of Rayleigh distribution with n = 2, variances σ2 = 1, 4 and 9.

4.1.2 Rician distribution

Similar to the Rayleigh distribution, the Rician distribution also corre-

sponds to the distribution of the amplitude. However, the Rician distribution has

a parameter which can be used for describing an appearing coherent signal com-

ponent. The probability density function of the n-dimensional Rician distribution

is defined by

PRi
(
x|ε, σ2

)
=

( ε

σ2

)(x
ε

)n/2
Bn/2−1

( ε

σ2
x
)

exp
(
−ε

2 + x2

2σ2

)
,

where x is the amplitude of the signal, σ > 0 is the shape parameter, ε ≥ 0 is a

real parameter, n is the dimension and Bp is the modified Bessel function of the

first kind of order p.

The particular case of Rician distribution, where ε = 0, becomes the

Rayleigh distribution.
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Figure 4.2 Graph of Rician distribution with n = 2, variances σ2 = 1 and

parameter ε = 0, 1 and 2.

4.1.3 K-distribution

Jakeman (1980) claimed that K-distribution corresponds to a variable

density α of random scatterers, without coherent signal component. The K-

distribution is defined by

PK
(
x|σ2, α

)
=

4xα−1+n/2

(2σ2)(α+n/2)/2 Γ(α)Γ(n/2)
,

where x is the amplitude of the signal, α > 0, σ > 0 are parameter, Kp is the

modified Bessel function of the second kind of order p and Γ is a gamma function.

One may consider that the received echo ultrasound wave is the superposi-

tion of k arrival signals, which each signal reflections from the surface according to

a Poisson process. The probability of the occurrence signal that we observe from

now until time t can be approximated as the cumulative distribution function of

the Poisson distribution, which implies the gamma distribution (Christou, ND).
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Then the K-distribution can be represented in the compound form of Rayleigh

distribution with modulated gamma distribution parameter:

Pk
(
x|σ2, α

)
=

∫ ∞

0

PRa
(
x|σ2w

)
G (w|α, 1) dw,

where G is the gamma distribution.

The parameter α can be viewed as the scatterers per resolution cell mul-

tiplied by a coefficient depending on the scanning geometry and parameters, and

the backscatter coefficient statistics (Destrempes and Cloutier, 2010).

Figure 4.3 Graph of K-distribution with n = 2, variances σ2 = 1 and parameter

α = 0.1, 3.0 and 9.0.

the Homodyned K-distribution corresponds to a variable density α of ran-

dom scatterers similar to K-distribution but it has a parameter which is able to de-

scribe an appearing coherent signal component ε. the Homodyned K-distribution

is defined by a Rician distribution with modulated gamma distribution parameter:

PHK
(
x|ε, σ2, α

)
=

∫ ∞

0

PRi
(
x|ε, σ2w

)
G (w|α, 1) dw.
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Figure 4.4 Graph of homodyned K-distribution with n = 2, variances σ2 = 1,

parameter ε = 0 and 1, and parameter α = 1 and 9.

4.1.4 Generalized K-distribution

By modulating both parameters of the Rician distribution, the coherent sig-

nal component ε and the variance σ2, one obtains the Generalized K-distribution,

PGK
(
x|ε, σ2, α

)
=

∫ ∞

0

PRi
(
x|εw, σ2w

)
G (w|α, 1) dw.

The generalized K-distribution can be represented as a Rician distribution

with both the mean-square noise component and the coherent amplitude varying

according to a gamma distribution.
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Figure 4.5 Graph of Generalized K-distribution with modulated gamma distri-

bution parameters, with n = 2, coherent parameter ε = 0 and 1 and variance

σ2 = 1, and shape parameter α = 1 and 9.

4.1.5 Rician distribution with modulated inverse Gaussian

distribution parameters

The Gaussian or normal distribution describes a Brownian motion’s level

at a considering time, the inverse Gaussian describes the distribution of the time

a Brownian motion with a fixed positive level (Folks and Chhikara, 1978). There-

fore, the inverse Gaussian distribution is more appropriate to describe the random

reflexive ultrasound signal phenomena than the Gaussian distribution. the Inverse

Gaussian distribution is a distribution with 2 parameters, mean µ and shape pa-

rameter λ. In the case that µ =
√
λ, the inverse Gaussian distribution has variance

√
λ also. on the other hand, the gamma distribution which has shape parameter

α and scale parameter equal to 1, its mean and variance are exact the same α.

That is an intuitive idea to assume that gamma distribution can be generalized
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to inverse Gaussian distribution. The Rician distribution with modulated inverse

Gaussian distribution parameters can be defined by

PRiIG
(
x|ε, σ2, λ

)
=

∫ ∞

0

PRi
(
x|εw, σ2w

)
IG

(
w|

√
λ, λ

)
dw,

where IG is an inverse Gaussian distribution function. The distribution proposed

is more general to describe the physical meaning of an ultrasound signal than

homodyned K-distribution. Homodyned K-distribution has an only one modulated

parameter, whereas this distribution has more modulated parameters, which are

the coherent signal component ε and variance σ2.

Figure 4.6 Graph of Rician distribution with modulated inverse Gaussian distri-

bution parameters, with n = 2, variance σ2 = 1 and 4, shape parameter α =
√
λ,

parameter ε = 0 and 1, and parameter λ = 1 and 9.

4.1.6 Nakagami distribution

the Nakagami distribution is defined by equation (2.10) (page 24). De-

strempes and Cloutier (2010) show that the Nakagami distribution can be ap-
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proximated to the Rayleigh distribution, Rician distribution and K-distribution,

which dependiy on the parameters Ω and m. Thus the Nakagami distribution

is claimed to be better in describing the ultrasound signal with coherent signal

component ε, which has a high density of random scatterers. It was found that

the total signal power Ω of the Nakagami distribution is equal to ε2 + 2σ2, where

ϵ is the coherent signal component and σ2 is the variance of the distribution.

Figure 4.7 Graph of Nakagami distribution with parameter Ω = 0.5 and param-

eter m = 0.5, 1.0 and 1.5.

4.1.7 Nakagami distribution with modulated gamma dis-

tribution parameter

In order to extend the concept using Nakagami distribution to be able to

specify a density α of random scatterers, Nakagami distribution with modulated

gamma distribution parameter was introduced (Shankar, 2003). The compound

representation of the distribution is
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PNG (A|m,Ω, α) =
∫ ∞

0

N (A|m,Ωw)G (w|α, 1) dw,

where N is the Nakagami distribution and G (w|α, 1) is the gamma distribution

with mean and variance α.

Figure 4.8 Graph of Nakagami distribution with modulated gamma distribution

parameter, m = 1, Ω = 2 and a density parameter α = 1, 2, 3.

4.1.8 Nakagami distribution with modulated generalized

inverse Gaussian parameters

For the sake of the simplicity, the generalized inverse Gaussian distribution

(GIG) is redefined in terms of 3 parameters θ, µ and λ as

GIG(w|θ, µ, λ) = 1

2µθKθ(λ/µ)
wθ−1 exp

[
−1

2

(
λ

w
+

λ

µ2
w

)]
,

where w is a random variable, Kθ is the modified Bessel function of second kind.
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The Nakagami distribution with modulated generalized inverse Gaussian

parameters is the distribution with 4 parameters, i.e. m,Ω, θ and λ, defined by

PNGIG (x|m,Ω, θ, λ) =
∫ ∞

0

N (x|m,Ωw)GIG
(
w|θ,

√
λ, λ

)
dw,

where N is Nakagami distribution and GIG
(
w|θ,

√
λ, λ

)
is the gamma distribu-

tion with mean µ =
√
λ.

Figure 4.9 Graph of Nakagami distribution with modulated generalized inverse

Gaussian parameters, m = 1, Ω = 2 and a density parameter α = 1, 2, 3.

4.2 Parameters of the statistical distributions related with

medical ultrasound image

Normally, mean, variance, skewness and kurtosis are main distribution pa-

rameters that we consider for each distribution. In this section, graphs of the

relation between a number of parameters, σ, ε, α, λ, m or Ω and the distribution

parameters mean, variance, skewness and kurtosis are presented.
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4.2.1 Gaussian distribution

Gaussian or normal distribution is the very well-known and standard dis-

tribution. The graphs of parameters of the distribution are presented as follows:

Figure 4.10 Graph of expectation value with standard deviation σ = 0.5, 1, 1.5

vary mean µ of the Gaussian distribution.

Figure 4.11 Graph of expectation value with mean µ = 0.5, 1, 1.5 and vary stan-

dard deviation σ of the Gaussian distribution.
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Figure 4.12 Graph of variance value with standard deviation σ = 0.5, 1, 1.5 and

vary mean σ of the Gaussian distribution.

Figure 4.13 Graph of variance value with mean µ = 0.5, 1, 1.5 and vary standard

deviation σ of the Gaussian distribution.
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Figure 4.14 Graph of skewness value with standard deviation σ = 0.5, 1, 1.5 and

vary mean σ of Gaussian distribution.

Figure 4.15 Graph of skewness value with mean µ = 0.5, 1, 1.5 and vary standard

deviation σ of Gaussian distribution.
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Figure 4.16 Graph of excess kurtosis value with standard deviation σ = 0.5, 1, 1.5

and vary mean σ of Gaussian distribution.

Figure 4.17 Graph of excess kurtosis value with mean µ = 0.5, 1, 1.5 and vary

standard deviation σ of Gaussian distribution.
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4.2.2 Rayleigh distribution

The graphs of parameters of the Rayleigh distribution are presented as

follows:

Figure 4.18 Graph of expectation value with varying variance σ2 of Rayleigh

distribution.

Figure 4.19 Graph of variance with varying variance σ2 of Rayleigh distribution.
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Figure 4.20 Graph of skewness with varying variance σ2 of Rayleigh distribution.

Figure 4.21 Graph of excess kurtosis with varying variance σ2 of Rayleigh distri-

bution.
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4.2.3 Rician distribution

The graphs of parameters of Rician distribution are presented as follows:

Figure 4.22 Graph of expectation value with σ2 = 0.5, 1, 2 and varying ϵ of Rician

distribution.

Figure 4.23 Graph of expectation value with ϵ = 0.5, 1, 2 and varying σ2 of Rician

distribution.
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Figure 4.24 Graph of variance value with σ2 = 0.5, 1, 2 and varying ϵ of Rician

distribution.

Figure 4.25 Graph of variance value with ϵ = 0.5, 1, 2 and varying σ2 of Rician

distribution.
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Figure 4.26 Graph of skewness value with σ2 = 0.5, 1, 2 and varying ϵ of Rician

distribution.

Figure 4.27 Graph of skewness value with ϵ = 0.5, 1, 2 and varying σ2 of Rician

distribution.
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Figure 4.28 Graph of excess kurtosis value with σ2 = 0.5, 1, 2 and varying ϵ of

Rician distribution.

Figure 4.29 Graph of excess kurtosis value with ϵ = 0.5, 1, 2 and varying σ2 of

Rician distribution.
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4.2.4 K-distribution

The graphs of parameters of K-distribution are presented as follows:

Figure 4.30 Graph of expectation value with α = 4, 6, 8 and varying σ2 of K-

distribution.

Figure 4.31 Graph of expectation value with σ2 = 4, 6, 8 and varying α of K-

distribution.
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Figure 4.32 Graph of variance value with α = 4, 6, 8 and varying σ2 of K-

distribution.

Figure 4.33 Graph of variance value with σ2 = 4, 6, 8 and varying α of K-

distribution.
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Figure 4.34 Graph of skewness value with α = 4, 6, 8 and varying σ2 of K-

distribution.

Figure 4.35 Graph of skewness value with σ2 = 4, 6, 8 and varying α of K-

distribution.
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Figure 4.36 Graph of excess kurtosis value with standard deviation α = 4, 6, 8

and varying σ2 of K-distribution.

Figure 4.37 Graph of excess kurtosis value with σ2 = 4, 6, 8 and varying α of

K-distribution.
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4.2.5 Homodyned K-distribution

The graphs of parameters of Homodyned K-distribution are presented as

follows:

Figure 4.38 Graph of expectation value with σ2 = 4, 9, α = 6, 7 and varying ϵ of

the Homodyned K-distribution.

Figure 4.39 Graph of expectation value with ϵ = 8, 12, α = 6, 7 and varying σ2

of the Homodyned K-distribution.
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Figure 4.40 Graph of expectation value with ϵ = 8, 12, σ2 = 4, 9 and varying α

of the Homodyned K-distribution.

Figure 4.41 Graph of variance value with σ2 = 4, 9, α = 6, 7 and varying ϵ of the

Homodyned K-distribution.
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Figure 4.42 Graph of variance value with ϵ = 8, 12, α = 6, 7 and varying σ2 of

the Homodyned K-distribution.

Figure 4.43 Graph of variance value with ϵ = 8, 12, σ2 = 4, 9 and varying α of

the Homodyned K-distribution.
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Figure 4.44 Graph of skewness value with σ2 = 4, 9, α = 6, 7 and varying ϵ of the

Homodyned K-distribution.

Figure 4.45 Graph of skewness value with ϵ = 8, 12, α = 6, 7 and varying σ2 of

the Homodyned K-distribution.
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Figure 4.46 Graph of skewness value with ϵ = 8, 12, σ2 = 4, 9 and varying α of

the Homodyned K-distribution.

Figure 4.47 Graph of excess kurtosis value with σ2 = 4, 9, α = 6, 7 and varying ϵ

of the Homodyned K-distribution.
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Figure 4.48 Graph of excess kurtosis value with ϵ = 8, 12, α = 6, 7 and varying

σ2 of the Homodyned K-distribution.

Figure 4.49 Graph of excess kurtosis value with ϵ = 8, 12, σ2 = 4, 9 and varying

α of the Homodyned K-distribution.
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4.2.6 Generalized K-distribution

The graphs of parameters of Generalized K-distribution are presented as

follows:

Figure 4.50 Graph of expectation value with σ2 = 4, 9, α = 6, 9 and varying ϵ of

the Generalized K-distribution.

Figure 4.51 Graph of expectation value with ϵ = 8, 12, α = 6, 9 and varying σ2

of the Generalized K-distribution.
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Figure 4.52 Graph of expectation value with ϵ = 8, 12, σ2 = 4, 9 and varying α

of the Generalized K-distribution.

Figure 4.53 Graph of variance value with σ2 = 4, 9, α = 6, 9 and varying ϵ of the

Generalized K-distribution.

 



68

Figure 4.54 Graph of variance value with ϵ = 8, 12, α = 6, 9 and varying σ2 of

the Generalized K-distribution.

Figure 4.55 Graph of variance value with ϵ = 8, 12, σ2 = 4, 9 and varying α of

the Generalized K-distribution.
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Figure 4.56 Graph of skewness value with σ2 = 4, 9, α = 6, 9 and varying ϵ of the

Generalized K-distribution.

Figure 4.57 Graph of skewness value with ϵ = 8, 12, α = 6, 9 and varying σ2 of

the Generalized K-distribution.
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Figure 4.58 Graph of skewness value with ϵ = 8, 12, σ2 = 4, 9 and varying α of

the Generalized K-distribution.

Figure 4.59 Graph of excess kurtosis value with σ2 = 4, 9, α = 6, 9 and varying ϵ

of the Generalized K-distribution.
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Figure 4.60 Graph of excess kurtosis value with ϵ = 8, 12, α = 6, 9 and varying

σ2 of the Generalized K-distribution.

Figure 4.61 Graph of excess kurtosis value with ϵ = 8, 12, σ2 = 4, 9 and varying

α of the Generalized K-distribution.
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4.2.7 Rician distribution with modulated inverse Gaussian

distribution parameters

The graphs of parameters of the Rician distribution with modulated inverse

Gaussian distribution parameters are presented as follows:

Figure 4.62 Graph of expectation value with σ2 = 4, 9, λ = 6, 9 and varying ϵ of

the Rician distribution with modulated inverse Gaussian distribution parameters.

Figure 4.63 Graph of expectation value with ϵ = 8, 12, λ = 6, 9 and varying σ2 of

the Rician distribution with modulated inverse Gaussian distribution parameters.
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Figure 4.64 Graph of expectation value with ϵ = 4, 9, σ2 = 4, 9 and varying λ of

the Rician distribution with modulated inverse Gaussian distribution parameters.

Figure 4.65 Graph of variance value with σ2 = 4, 9, λ = 6, 9 and varying ϵ of the

Rician distribution with modulated inverse Gaussian distribution parameters.
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Figure 4.66 Graph of variance value with ϵ = 4, 9, λ = 6, 9 and varying σ2 of the

Rician distribution with modulated inverse Gaussian distribution parameters.

Figure 4.67 Graph of variance value with ϵ = 4, 9, σ2 = 4, 9 and varying λ of the

Rician distribution with modulated inverse Gaussian distribution parameters.

 



75

Figure 4.68 Graph of skewness value with σ2 = 4, 9, λ = 6, 9 and varying ϵ of the

Rician distribution with modulated inverse Gaussian distribution parameters.

Figure 4.69 Graph of skewness value with ϵ = 4, 9, λ = 6, 9 and varying σ2 of the

Rician distribution with modulated inverse Gaussian distribution parameters.
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Figure 4.70 Graph of skewness value with ϵ = 4, 9, σ2 = 4, 9 and varying λ of the

Rician distribution with modulated inverse Gaussian distribution parameters.

Figure 4.71 Graph of excess kurtosis value with σ2 = 4, 9, λ = 6, 9 and varying ϵ of

the Rician distribution with modulated inverse Gaussian distribution parameters.
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Figure 4.72 Graph of excess kurtosis value with ϵ = 4, 9, λ = 6, 9 and varying σ2 of

the Rician distribution with modulated inverse Gaussian distribution parameters.

Figure 4.73 Graph of excess kurtosis value with ϵ = 4, 9, σ2 = 4, 9 and varying λ of

the Rician distribution with modulated inverse Gaussian distribution parameters.
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4.2.8 Nakagami distribution

The graphs of parameters of Nakagami distribution are presented as follows:

Figure 4.74 Graph of expectation value with Ω = 0.5, 1, 1.5 and varying m of the

Nakagami distribution.

Figure 4.75 Graph of expectation value with Ω = 0.5, 1, 1.5 and varying m of the

Nakagami distribution.
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Figure 4.76 Graph of variance value with Ω = 0.5, 1, 1.5 and varying m of the

Nakagami distribution.

Figure 4.77 Graph of variance value with m = 0.5, 1, 1.5 and varying Ω of the

Nakagami distribution.
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Figure 4.78 Graph of skewness value with Ω = 0.5, 1, 1.5 and varying m of the

Nakagami distribution.

Figure 4.79 Graph of skewness value with m = 0.5, 1, 1.5 and varying Ω of the

Nakagami distribution.
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Figure 4.80 Graph of excess kurtosis value with Ω = 0.5, 1, 1.5 and varying m of

the Nakagami distribution.

Figure 4.81 Graph of excess kurtosis value with m = 0.5, 1, 1.5 and varying Ω of

the Nakagami distribution.
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4.2.9 Nakagami distribution with modulated gamma dis-

tribution parameter

The graphs of parameters of Nakagami distribution with modulated gamma

distribution parameter are presented as follows:

Figure 4.82 Graph of expectation value with Ω = 0.5, 1.5, α = 4, 9 and varying

m of the Nakagami distribution with modulated gamma distribution parameter.

Figure 4.83 Graph of expectation value with m = 0.5, 1.5, α = 4, 9 and varying

Ω of the Nakagami distribution with modulated gamma distribution parameter.
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Figure 4.84 Graph of expectation value with m = 0.5, 1.5,Ω = 0.5, 1.5 and

varying α of the Nakagami distribution with modulated gamma distribution pa-

rameter.

Figure 4.87 Graph of variance value with m = 0.5, 1.5,Ω = 0.5, 1.5 and varying

α of the Nakagami distribution with modulated gamma distribution parameter.
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Figure 4.85 Graph of variance value with Ω = 0.5, 1.5, α = 4, 9 and varying m of

the Nakagami distribution with modulated gamma distribution parameter.

Figure 4.86 Graph of variance value with m = 0.5, 1, 5, α = 4, 9 and varying Ω

of the Nakagami distribution with modulated gamma distribution parameter.
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Figure 4.88 Graph of skewness value with Ω = 0.5, 1.5, α = 4, 9 and varying m

of the Nakagami distribution with modulated gamma distribution parameter.

Figure 4.89 Graph of skewness value with m = 0.5, 1.5, α = 4, 9 and varying Ω

of the Nakagami distribution with modulated gamma distribution parameter.
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Figure 4.90 Graph of skewness value with m = 0.5, 1.5,Ω = 0.5, 1.5 and varying

α of the Nakagami distribution with modulated gamma distribution parameter.

Figure 4.91 Graph of excess kurtosis value with Ω = 0.5, 1.5, α = 4, 9 and varying

m of the Nakagami distribution with modulated gamma distribution parameter.
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Figure 4.92 Graph of excess kurtosis value with m = 0.5, 1.5, α = 4, 9 and varying

Ω of the Nakagami distribution with modulated gamma distribution parameter.

Figure 4.93 Graph of excess kurtosis value with m = 0.5, 1.5,Ω = 0.5, 1.5 and

varying α of the Nakagami distribution with modulated gamma distribution pa-

rameter.
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4.2.10 Nakagami distribution with modulated generalized

inverse Gaussian parameters

The graphs of parameters of Nakagami distribution with modulated gener-

alized inverse Gaussian parameters are presented as follows:

Figure 4.94 Graph of expectation value with Ω = 0.5, 1.5, λ = 4, 9 and vary-

ing m of the Nakagami distribution with modulated generalized inverse Gaussian

parameters.

Figure 4.95 Graph of expectation value with m = 0.5, 1.5, λ = 4, 9 and vary-

ing Ω of the Nakagami distribution with modulated generalized inverse Gaussian

parameters.
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Figure 4.96 Graph of expectation value with m = 0.5, 1.0,Ω = 0.5, 1.0 and vary-

ing λ of the Nakagami distribution with modulated generalized inverse Gaussian

parameters.

Figure 4.97 Graph of variance value with Ω = 0.5, 1.5, λ = 4, 9 and varying m of

the Nakagami distribution with modulated generalized inverse Gaussian parame-

ters.
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Figure 4.98 Graph of variance value with m = 0.5, 1, 5, λ = 4, 9 and varying Ω of

the Nakagami distribution with modulated generalized inverse Gaussian parame-

ters.

Figure 4.99 Graph of variance value with m = 0.5, 1.0,Ω = 0.5, 1.0 and vary-

ing λ of the Nakagami distribution with modulated generalized inverse Gaussian

parameters.
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Figure 4.100 Graph of skewness value with Ω = 0.5, 1.5, λ = 4, 9 and varying ̉ of

the Nakagami distribution with modulated generalized inverse Gaussian parame-

ters.

Figure 4.101 Graph of skewness value with m = 0.5, 1.5, λ = 4, 9 and vary-

ing Ω of the Nakagami distribution with modulated generalized inverse Gaussian

parameters.
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Figure 4.102 Graph of skewness value with m = 0.5, 1.0,Ω = 0.5, 1.0 and vary-

ing λ of the Nakagami distribution with modulated generalized inverse Gaussian

parameters.

Figure 4.103 Graph of excess kurtosis value with Ω = 0.5, 1.5, λ = 4, 9 and vary-

ing m of the Nakagami distribution with modulated generalized inverse Gaussian

parameters.
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Figure 4.104 Graph of excess kurtosis value with m = 0.5, 1.5, λ = 4, 9 and vary-

ing Ω of the Nakagami distribution with modulated generalized inverse Gaussian

parameters.

Figure 4.105 Graph of excess kurtosis value with m = 0.5, 1.0,Ω = 0.5, 1.0

and varying λ of the Nakagami distribution with modulated generalized inverse

Gaussian parameters.
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The following table briefly presents how the observed distributions relate

to the medical ultrasound signal model.

Table 4.1 The summarized analysis of statistical distributions appearing in med-

ical ultrasound images.

Distribution
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Rayleigh X

Rician X X

K X

HK X X X

GK X X X

RiIG X X X

Nakagami X X

NG X X X

NGIG X X X

Remark: The words mentioned in table 4.1 mean

• K means K-distribution;

• HK means Homodyned K-distribution;

• GK means Generalized K-distribution;
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• IG means inverse Gaussian distribution;

• GIG means generalized inverse Gaussian distribution;

• RiIG means Rician distribution with modulated inverse Gaussian distribu-

tion parameters;

• NG means Nakagami distribution with modulated gamma distribution pa-

rameter;

• NGIG means Nakagami distribution with modulated generalized inverse

Gaussian parameters.

 



CHAPTER V

CONCLUSION

In this thesis, we performed an analysis of the statistical distributions ap-

pearing in medical ultrasound images. For the case of high density of random

scatterers, Rayleigh, Rician and Nakagami distributions were proposed for mod-

elling the ultrasound wave. However, just Rician and Nakagami distributions are

able to explain in the part of coherent component. If one want to specific density

of random scatterers, K-distribution and Homodyned K-distributions can perform

modelling an ultrasound wave, whereas Homodyned K-distributions is extended to

be able to explain in the part of coherent component. However, some distributions

modulated parameters with some other distributions are proposed for modelling,

i.e. Homodyned K-distributions, Generalized K-distribution, Rician distribution

with modulated inverse Gaussian distribution parameters, Nakagami distribution

with modulated gamma distribution parameter and Nakagami distribution with

modulated generalized inverse Gaussian parameters. The mentioned distributions

are able to describe an ultrasound wave model in the case of specific density of

random scatterers with coherent component.

The graphs of the relation between number parameters, σ, ε, α, λ, m

or Ω and distribution parameters mean, variance, skewness and kurtosis of the

considered distributions (presented in Chapter IV) perform that we can adjust the

number parameters of some distribution to make its structure similar to another

one’s structure.

In our research, Nakagami distribution with modulated generalized inverse
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Gaussian parameters is the most generalized distribution which relates to medical

ultrasound image. The mentioned distribution is able to explain physical phe-

nomenon with the specification of the density of random scatterers and coherent

component. Also its parameters are modulated by more generalized distribution,

generalized inverse Gaussian distribution, which is an extend concept of gamma

distribution and inverse Gaussian distribution.
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This chapter presents some Python commands using in this thesis.

A.1 Graph of distributions by Python

A.1.1 Loading library

In order to use some commands of Python for plotting graph, these libraries

should be loaded, matplotlib.pyplot, cycler, numpy, scipy.stats, scipy.integrate.

The code is as follows.

import mathplotlib.pyplot as plt

from cycler import cycler

import numpy as np

from scipy.stats import geninvgauss as gig

from scipy.integrate import quad

from scipy.stats import nakagami as nak

A.1.2 Configuration of graph plotting

In order to configure the line style in graph plotting the command is as

follows.

plt.rc(’axes’, prop_cycle=(cycler(linestyle=[’-’, ’–’, ’:’, ’-.’]) +

cycler(color=[’k’,’k’,’k’,’k’])))

A.1.3 Function defining

The pdf functions of the Nakagami distribution, Generalized inverse

Gaussian distribution and Nakagami distribution with modulated generalized

inverse Gaussian parameters are defined as follows.

 



105

• Nakagami distribution

def N(x, m, ome):

omesqrt = np.sqrt(ome)

return nak.pdf(x, m, scale=omesqrt)

• Generalized inverse Gaussian distribution

def GIG(w,lam):

mu = np.sqrt(lam)

b = np.divide(lam, mu)

return gig.pdf(w, -.5, b, scale=mu) #\theta=-.5

• Nakagami distribution with modulated generalized inverse Gaus-

sian parameters

def f(w, A, m, ome, lam):

return np.multiply(N(A, m, np.multiply(ome, w)), GIG(w, lam))

def NGIG(A, m, ome, lam):

return quad(f, 0, np.inf, args=(A, m, ome, lam))[0]

A.1.4 Initiate variables

Variables of the considered distribution can be defined as follows.

A = np.linspace(0.01, 10, 100)

mu = np.array([1])

ome = np.array([2])

lam = np.array([1, 2, 3])

car = np.vstack(np.meshgrid(mu, ome, lam)).reshape(3,-1).T

y_pdf = np.zeros((car.shape[0], A.size))
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A.1.5 Assign values to variables

To assign values calculated from the considered distribution, we can code

as follows.

for i, j in zip(car, np.arange(car.shape[0])):

for k, l in zip(A, np.arange(A.size)):

y_pdf[j][l] = NGIG(k, i[0], i[1], i[2])

A.1.6 Graph display

To display graph of each distribution, the code is as follows.

plt.figure(dpi=150)

for i, j in zip(car, np.arange(car.shape[0])):

plt.plot(A, np.round(y_pdf[j], 6),

label=r”m=, $\Omega={}$,$\lambda={ }$”.format(i[0], i[1], i[2]))

plt.title(r”GRAPH TITLE”)

plt.ylabel(”Probability density”)

plt.xlabel(”Amplitude $A$”)

plt.ylim(0, 0.8)

plt.xlim(A.min(), A.max())

plt.minorticks_on()

plt.legend();

plt.savefig(’PixName.png’)
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A.2 Graph of parameters of distributions by Python

A.2.1 Moment functions defining

In order to define moment functions of the distribution, the code is as

follows.

def f0(A, m, ome, the, lam):

return NGIG(A, m, ome, the, lam)

def g0(A, m, ome, the, lam, c, k):

return np.multiply(np.power(np.subtract(A, c), k), f0(A, m, ome, the, lam))

def mo(m, ome, the, lam, c, k):

return quad(g0, 0, 100, args=(m, ome, the, lam, c, k))[0]

A.2.2 Expected functions defining

In order to define expected functions of the distribution, the code is as

follows.

def expe(m, ome, lam):

return mo(m, ome, -.5, lam, 0, 1)

A.2.3 Initiate parameters

Parameters m,Ω and λ of the considered distribution can be defined as

follows.

x_m = np.linspace(0.5, 1.5, 20)

ome1 = np.array([0.5, 1.5])

lam1 = np.array([4, 9])

car1 = np.array(np.meshgrid(ome1, lam1)).T.reshape(-1,2)
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x_ome = np.linspace(0.5, 1.5, 20)

m2 = np.array([0.5, 1.5])

lam2 = np.array([4, 9])

car2 = np.array(np.meshgrid(m2, lam2)).T.reshape(-1,2)

x_lam = np.linspace(4, 9, 20)

m3 = np.array([0.5, 1])

ome3 = np.array([0.5, 1])

car3 = np.array(np.meshgrid(m3, ome3)).T.reshape(-1,2)

y_m_exp = np.zeros((car1.shape[0], x_m.size))

y_ome_exp = np.zeros((car2.shape[0], x_ome.size))

y_lam_exp = np.zeros((car3.shape[0], x_lam.size))

A.2.4 Expected calculation

In order to calculate parameters m,Ω and λ of the considered distribution,

the code is as follow.

1. m:

for i, j in zip(car1, np.arange(car1.shape[0])):

for k, l in zip(x_m, np.arange(x_m.size)):

y_m_exp[j][l] = expe(k, i[0], i[1])

2. Ω:

for i, j in zip(car2, np.arange(car2.shape[0])):

for k, l in zip(x_ome, np.arange(x_ome.size)):

y_ome_exp[j][l] = expe(i[0], k, i[1])
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3. λ:

for i, j in zip(car3, np.arange(car3.shape[0])):

for k, l in zip(x_lam, np.arange(x_lam.size)):

y_lam_exp[j][l] = expe(i[0], i[1], sk )

A.2.5 Expected value graph display

To display graph of expected value of each distribution, the code is as

follows.

1. m:

plt.figure(dpi=150)

for i, j in zip(car1, np.arange(car1.shape[0])):

plt.plot(x_m, np.round(y_m_exp[j], 6),

label=r”$\Omega={:.2f}, \lambda={:.2f}$”.format(i[0], i[1]))

plt.title(r”GRAPH TITLE”)

plt.ylabel(r’Expected’)

plt.xlabel(r’m’)

plt.ylim(0, 2)

plt.xlim(x_m.min(), x_m.max())

plt.minorticks_on()

plt.legend();

plt.savefig(’GRAPHNAME.png’)

2. Ω:

plt.figure(dpi=150)

for i, j in zip(car2, np.arange(car2.shape[0])):

plt.plot(x_ome, np.round(y_ome_exp[j], 6),

label=r”$m={:.2f}, \lambda={:.2f}$”.format(i[0], i[1]))
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plt.title(r”GRAPH TITLE”)

plt.ylabel(r’Expected’)

plt.xlabel(r’\Omega’)

plt.ylim(0, 2)

plt.xlim(x_ome.min(), x_ome.max())

plt.minorticks_on()

plt.legend();

plt.savefig(’GRAPHNAME.png’)

3. λ:

plt.figure(dpi=150)

for i, j in zip(car3, np.arange(car3.shape[0])):

plt.plot(x_lam, np.round(y_lam_exp[j], 6),

label=r”$m={:.2f}, \Omega={:.2f}$”.format(i[0], i[1]))

plt.title(r”GRAPH TITLE”)

plt.ylabel(r’Expected’)

plt.xlabel(r’\lambda’)

plt.ylim(0, 2)

plt.xlim(x_lam.min(), x_lam.max())

plt.minorticks_on()

plt.legend();

plt.savefig(’GRAPHNAME.png’)
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A.2.6 k-th central moment function defining

For k-th central moment of a distribution with parameter m, Ω or λ, one

can find by:

1. m:

def mo_me_m(m, ome, lam, k, m_n, car_n):

return mo(m, ome, -.5, lam, y_m_exp[car_n][m_n], k)

2. Ω:

def mo_me_ome(m, ome, lam, k, ome_n, car_n):

return mo(m, ome, -.5, lam, y_ome_exp[car_n][ome_n], k)

3. λ:

def mo_me_lam(m, ome, lam, k, lam_n, car_n):

return mo(m, ome, -.5, lam, y_lam_exp[car_n][lam_n], k)

A.2.7 Variance function defining

For defining variance function of each parameter m, Ω and λ, one can find

by:

1. m:

def var_m(m, ome, lam, m_n, car_n):

return mo_me_m(m, ome, lam, 2, m_n, car_n)

2. Ω:

def var_ome(m, ome, lam, ome_n, car_n):

return mo_me_ome(m, ome, lam, 2, ome_n, car_n)
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3. λ:

def var_lam(m, ome, lam, lam_n, car_n):

return mo_me_lam(m, ome, lam, 2, lam_n, car_n)

A.2.8 Variance calculation

In order to calculate variance, then the code is as follows.

1. m:

y_m_var = np.zeros((car1.shape[0], x_m.size))

for i, j in zip(car1, np.arange(car1.shape[0])):

for k, l in zip(x_m, np.arange(x_m.size)):

y_m_var[j][l] = var_m(k, i[0], i[1], l, j)

2. Ω:

y_ome_var = np.zeros((car1.shape[0], x_ome.size))

for i, j in zip(car2, np.arange(car2.shape[0])):

for k, l in zip(x_ome, np.arange(x_ome.size)):

y_ome_var[j][l] = var_ome(i[0], k, i[1], l, j)

3. λ:

y_lam_var = np.zeros((car1.shape[0], x_lam.size))

for i, j in zip(car3, np.arange(car3.shape[0])):

for k, l in zip(x_lam, np.arange(x_lam.size)):

y_lam_var[j][l] = var_lam(i[0], i[1], k, l, j)
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A.2.9 Variance value graph display

To display graph of Variance value of each distribution, the code is as

follows.

1. m:

plt.figure(dpi=150)

for i, j in zip(car1, np.arange(car1.shape[0])):

plt.plot(x_m, np.round(y_m_var[j], 6),

label=r”$\Omega={:.2f}, \lambda={:.2f}$”.format(i[0], i[1]))

plt.title(r”GRAPH TITLE”)

plt.ylabel(r’variance’)

plt.xlabel(r’m’)

plt.ylim(0, 2)

plt.xlim(x_m.min(), x_m.max())

plt.minorticks_on()

plt.legend();

plt.savefig(’GRAPHNAME.png’)

2. Ω:

plt.figure(dpi=150)

for i, j in zip(car2, np.arange(car2.shape[0])):

plt.plot(x_ome, np.round(y_ome_var[j], 6),

label=r”$m={:.2f}, \lambda={:.2f}$”.format(i[0], i[1]))

plt.title(r”GRAPH TITLE”)

plt.ylabel(r’variance’)

plt.xlabel(r’\Omega’)

plt.ylim(0, 2)
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plt.xlim(x_ome.min(), x_ome.max())

plt.minorticks_on()

plt.legend();

plt.savefig(’GRAPHNAME.png’)

3. λ:

plt.figure(dpi=150)

for i, j in zip(car3, np.arange(car3.shape[0])):

plt.plot(x_lam, np.round(y_lam_var[j], 6),

label=r”$m={:.2f}, \Omega={:.2f}$”.format(i[0], i[1]))

plt.title(r”GRAPH TITLE”)

plt.ylabel(r’variance’)

plt.xlabel(r’\lambda’)

plt.ylim(0, 2)

plt.xlim(x_lam.min(), x_lam.max())

plt.minorticks_on()

plt.legend();

plt.savefig(’GRAPHNAME.png’)

A.2.10 Standardized moment function defining

For Standardized moment of a distribution with parameter m, Ω or λ, one

can find by:

1. m:

std_m = np.sqrt(y_m_var.copy())

def std_mo_m(m, ome, lam, k, m_n, car_n):

return np.divide(mo_me_m(m, ome, lam, k, m_n, car_n),

np.power(std_m[car_n][m_n], k))
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2. Ω:

std_ome = np.sqrt(y_ome_var.copy())

def std_mo_ome(m, ome, lam, k, ome_n, car_n):

return np.divide(mo_me_ome(m, ome, lam, k, ome_n, car_n),

np.power(std_ome[car_n][ome_n], k))

3. λ:

std_lam = np.sqrt(y_lam_var.copy())

def std_mo_lam(m, ome, lam, k, lam_n, car_n):

return np.divide(mo_me_lam(m, ome, lam, k, lam_n, car_n),

np.power(std_lam[car_n][lam_n], k))

A.2.11 Skewness function defining

For Skewness of a distribution with parameter m, Ω or λ, one can find by:

1. m:

def skew_m(m, ome, lam, m_n, car_n):

return std_mo_m(m, ome, lam, 3, m_n, car_n)

2. Ω:

def skew_ome(m, ome, lam, ome_n, car_n):

return std_mo_ome(m, ome, lam, 3, ome_n, car_n)

3. λ:

def skew_lam(m, ome, lam, lam_n, car_n):

return std_mo_lam(m, ome, lam, 3, lam_n, car_n)
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A.2.12 Skewness calculation

In order to calculate Skewness, then the code is as follows.

1. m:

y_m_skew = np.zeros((car1.shape[0], x_m.size))

for i, j in zip(car1, np.arange(car1.shape[0])):

for k, l in zip(x_m, np.arange(x_m.size)):

y_m_skew[j][l] = skew_m(k, i[0], i[1], l, j)

2. Ω:

y_ome_skew = np.zeros((car1.shape[0], x_ome.size))

for i, j in zip(car2, np.arange(car2.shape[0])):

for k, l in zip(x_ome, np.arange(x_ome.size)):

y_ome_skew[j][l] = skew_ome(i[0], k, i[1], l, j)

3. λ:

y_lam_skew = np.zeros((car1.shape[0], x_lam.size))

for i, j in zip(car3, np.arange(car3.shape[0])):

for k, l in zip(x_lam, np.arange(x_lam.size)):

y_lam_skew[j][l] = skew_lam(i[0], i[1], k, l, j)

A.2.13 Skewness value graph display

To display graph of Skewness value of each distribution, the code is as

follows.

1. m:

plt.figure(dpi=150)

for i, j in zip(car1, np.arange(car1.shape[0])):

plt.plot(x_m, np.round(y_m_skew[j], 6),
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label=r”$\Omega={:.2f}, \lambda={:.2f}$”.format(i[0], i[1]))

plt.title(r”GRAPH TITLE”)

plt.ylabel(r’skewness’)

plt.xlabel(r’m’)

plt.ylim(0, 2)

plt.xlim(x_m.min(), x_m.max())

plt.minorticks_on()

plt.legend();

plt.savefig(’GRAPHNAME.png’)

2. Ω:

plt.figure(dpi=150)

for i, j in zip(car2, np.arange(car2.shape[0])):

plt.plot(x_ome, np.round(y_ome_skew[j], 6),

label=r”$m={:.2f}, \lambda={:.2f}$”.format(i[0], i[1]))

plt.title(r”GRAPH TITLE”)

plt.ylabel(r’skewness’)

plt.xlabel(r’\Omega’)

plt.ylim(0, 2)

plt.xlim(x_ome.min(), x_ome.max())

plt.minorticks_on()

plt.legend();

plt.savefig(’GRAPHNAME.png’)

3. λ:

plt.figure(dpi=150)

for i, j in zip(car3, np.arange(car3.shape[0])):
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plt.plot(x_lam, np.round(y_lam_skew[j], 6),

label=r”$m={:.2f}, \Omega={:.2f}$”.format(i[0], i[1]))

plt.title(r”GRAPH TITLE”)

plt.ylabel(r’skewness’)

plt.xlabel(r’\lambda’)

plt.ylim(0, 2)

plt.xlim(x_lam.min(), x_lam.max())

plt.minorticks_on()

plt.legend();

plt.savefig(’GRAPHNAME.png’)

A.2.14 Kurtosis function defining

For Kurtosis of a distribution with parameter m, Ω or λ, one can find by:

1. m:

def kur_m(m, ome, lam, m_n, car_n):

return std_mo_m(m, ome, lam, 4, m_n, car_n)

2. Ω:

def kur_ome(m, ome, lam, ome_n, car_n):

return std_mo_ome(m, ome, lam, 4, ome_n, car_n)

3. λ:

def kur_lam(m, ome, lam, lam_n, car_n):

return std_mo_lam(m, ome, lam, 4, lam_n, car_n)
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A.2.15 Kurtosis calculation

In order to calculate Kurtosis, then the code is as follows.

1. m:

y_m_kur = np.zeros((car1.shape[0], x_m.size))

for i, j in zip(car1, np.arange(car1.shape[0])):

for k, l in zip(x_m, np.arange(x_m.size)):

y_m_kur[j][l] = kur_m(k, i[0], i[1], l, j)

2. Ω:

y_ome_kur = np.zeros((car1.shape[0], x_ome.size))

for i, j in zip(car2, np.arange(car2.shape[0])):

for k, l in zip(x_ome, np.arange(x_ome.size)):

y_ome_kur[j][l] = kur_ome(i[0], k, i[1], l, j)

3. λ:

y_lam_kur = np.zeros((car1.shape[0], x_lam.size))

for i, j in zip(car3, np.arange(car3.shape[0])):

for k, l in zip(x_lam, np.arange(x_lam.size)):

y_lam_kur[j][l] = kur_lam(i[0], i[1], k, l, j)

A.2.16 Kurtosis value graph display

To display graph of Kurtosis value of each distribution, the code is as

follows.

1. m:

plt.figure(dpi=150)

for i, j in zip(car1, np.arange(car1.shape[0])):

plt.plot(x_m, np.round(y_m_kur[j], 6),
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label=r”$\Omega={:.2f}, \lambda={:.2f}$”.format(i[0], i[1]))

plt.title(r”GRAPH TITLE”)

plt.ylabel(r’kurtosis’)

plt.xlabel(r’m’)

plt.ylim(0, 2)

plt.xlim(x_m.min(), x_m.max())

plt.minorticks_on()

plt.legend();

plt.savefig(’GRAPHNAME.png’)

2. Ω:

plt.figure(dpi=150)

for i, j in zip(car2, np.arange(car2.shape[0])):

plt.plot(x_ome, np.round(y_ome_kur[j], 6),

label=r”$m={:.2f}, \lambda={:.2f}$”.format(i[0], i[1]))

plt.title(r”GRAPH TITLE”)

plt.ylabel(r’kurtosis’)

plt.xlabel(r’\Omega’)

plt.ylim(0, 2)

plt.xlim(x_ome.min(), x_ome.max())

plt.minorticks_on()

plt.legend();

plt.savefig(’GRAPHNAME.png’)

3. λ:

plt.figure(dpi=150)

for i, j in zip(car3, np.arange(car3.shape[0])):

plt.plot(x_lam, np.round(y_lam_kur[j], 6),
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label=r”$m={:.2f}, \Omega={:.2f}$”.format(i[0], i[1]))

plt.title(r”GRAPH TITLE”)

plt.ylabel(r’kurtosis’)

plt.xlabel(r’\lambda’)

plt.ylim(0, 2)

plt.xlim(x_lam.min(), x_lam.max())

plt.minorticks_on()

plt.legend();

plt.savefig(’GRAPHNAME.png’)

A.2.17 Excess kurtosis calculation

In order to calculate Excess kurtosis, then the code is as follows.

1. m:

y_m_ex_kur = y_m_kur - 3

2. Ω:

y_ome_ex_kur = y_ome_kur - 3

3. λ:

y_lam_ex_kur = y_lam_kur - 3

A.2.18 Excess kurtosis value graph display

To display graph of Excess kurtosis value of each distribution, the code is

as follows.

1. m:

plt.figure(dpi=150)

for i, j in zip(car1, np.arange(car1.shape[0])):
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plt.plot(x_m, np.round(y_m_ex_kur[j], 6),

label=r”$\Omega={:.2f}, \lambda={:.2f}$”.format(i[0], i[1]))

plt.title(r”GRAPH TITLE”)

plt.ylabel(r’Ex.kurtosis’)

plt.xlabel(r’m’)

plt.ylim(0, 2)

plt.xlim(x_m.min(), x_m.max())

plt.minorticks_on()

plt.legend();

plt.savefig(’GRAPHNAME.png’)

2. Ω:

plt.figure(dpi=150)

for i, j in zip(car2, np.arange(car2.shape[0])):

plt.plot(x_ome, np.round(y_ome_ex_kur[j], 6),

label=r”$m={:.2f}, \lambda={:.2f}$”.format(i[0], i[1]))

plt.title(r”GRAPH TITLE”)

plt.ylabel(r’Ex.kurtosis’)

plt.xlabel(r’\Omega’)

plt.ylim(0, 2)

plt.xlim(x_ome.min(), x_ome.max())

plt.minorticks_on()

plt.legend();

plt.savefig(’GRAPHNAME.png’)

3. λ:

plt.figure(dpi=150)

for i, j in zip(car3, np.arange(car3.shape[0])):
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plt.plot(x_lam, np.round(y_lam_ex_kur[j], 6),

label=r”$m={:.2f}, \Omega={:.2f}$”.format(i[0], i[1]))

plt.title(r”GRAPH TITLE”)

plt.ylabel(r’Ex.kurtosis’)

plt.xlabel(r’\lambda’)

plt.ylim(0, 2)

plt.xlim(x_lam.min(), x_lam.max())

plt.minorticks_on()

plt.legend();

plt.savefig(’GRAPHNAME.png’)

Remark The proposed code can be adjusted for finding expected value, variance,

skewness and kurtosis for other distributions by replacing the distribution function.
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