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CHAPTER I

INTRODUCTION

A mixed economy is an economy that uses both market signals and gov-

ernment directives to allocate goods and resources (Schiller and Gebhardt, 2016).

Most countries have mixed economies with varying degrees of private enterprise

and state intervention. The list of government spending (share as a percent of

GDP) of some countries is shown in Table 1.1 (Pettinger, 2011).

Table 1.1 The list of government spending (share as a percentage of GDP) of

some countries.

Country Share (%)

Sweden 52.5

United Kingdom 47.3

Germany 43.7

United States 38.9

Japan 37.1

Russia 34.1

China 20.8

Thailand 17.7

The goodness of a mixed economy is that the economy is largely driven

by private investment and enterprise, but government can intervene to reduce

fluctuations in the economic cycle, for example, reduce inflation, boost economic
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growth (fiscal policy) and have money exchange controls. Exchange controls are

government-imposed limitations on the purchase and/or sale of currencies. These

controls allow countries to better stabilize their economies by limiting in-flows and

out-flows of currency, which can create exchange rate volatility (Kenton, 2019).

Exchange rate is the price of one country’s currency expressed in terms of another’s

(the domestic price of a foreign currency) (Schiller and Gebhardt, 2016). In the

foreign exchange market and international finance, a world currency, or global

currency, is accepted for trade throughout the world. The most popular are the

U.S. Dollar, the Euro, the British Pound and the Japanese Yen. However, because

of the U.S. economic crisis in 2008 and the Eurozone debt crisis in 2010, the Inter-

national Monetary Fund (IMF) awarded the Chinese yuan the status of a reserve

currency on November 30, 2015 and later added the yuan to its Special Draw-

ing Rights basket on October 1, 2016. (“How the Yuan Could Become a Global

Currency”, n.d). The Renminbi (RMB) is the official currency of China, whereas

the yuan is the basic unit of the renminbi. The Chinese authorities announced

the RMB internationalization policy in 2009 to promote the use of RMB as an

international currency (Bank of Thailand, n.d.). China exports a lot of commodi-

ties which makes China have more economic clout in relation to many countries.

The IMF has claimed that China has been the world’s second largest economic by

nominal GDP since 2010-2018 (Congressional Research Service, 2019). Trading

Economics (2019) claimed that China is the main trading partner of Thailand (12

percent of total exports and 15 percent of total imports-updated on October of

2019). Thus, the currency fluctuations of the yuan have a very high impact an

trade and investment. An understanding of the currency exchange rate of Thai

bath (THB) against Chinese yuan (CNY) provides a good opportunity in inter-

national business planning.
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This research focuses on the study of the forecasting model for THB-CNY

exchange rate. Many models of the exchange rate forecasting are reviewed. The

applications of support vector machine are considered and applied to analyze the

historical THB-CNY exchange rate. The model obtained is examined and com-

pared to the existing forecasting models. The results can be used in the real-life

business and be extended to other forecasting model.

1.1 Research Objective

1) To study the facters that affect the exchange rate of the Thai Baht against

the Chinese Yuan by Multiple Linear Regression.

2) To find an appropriate model for forecasting the exchange rate of Thai Baht

against Chinese Yuan by using Support Vector Machine.

1.2 Scope Limitations

1) The dependent variable is the exchange rate of the Thai Baht against the

Chinese Yuan, available on https://www.bot.or.th/Thai/Statistics/

Pages/default.aspx.

2) The independent variable factors in this study consist of the Foreign

Exchange Reserves(FER), the Policy Interest Rate (PR), the Nom-

inal Effective Exchange Rate (NEER), the Value of Imports from

China(IM) and the Value of Exports from China(EV), available on

https://www.bot.or.th/-Thai/Statistics/Pages/default.aspx,

http://www2.ops3.moc.go.th/.

3) The secondary data series(Time Series Data) used in this study are the
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monthly data from January 2009 until December 2018, a total of 120 months.

4) Statistical calculations are based on Program R Version 3.6.3, working on

Microsoft Window 10.

1.3 Research Procedure

The research work proceeded as follows:

1) Study the application of Multiple Linear regression.

2) Study the application of Support Vector Machine.

3) Study the program R software(Version3.6.3).

4) Collect the Training data, and descriptive statistics.

5) Analyze the independent factors that affect the exchange rate of theThai

Baht against the Chinese Yuan by using Multiple Linear Regression.

6) Construct the model for forecasting the exchange rate of the Thai Baht

against the Chinese Yuan by using Support Vector Machine.

7) Use the obtained model to predict the exchange rate of the Thai Baht against

the Chinese Yuan from January 2019 until June 2019.

8) Measure the accuracy for the predictive model by using Root Mean Square

Error.

 



CHAPTER II

LITERATURE REVIEW

In this chapter, the knowledge of primary mathematics regarding Multiple

Linear Regression, Support Vector Machines, and related research works are re-

viewed.

For the content of Multiple Linear Regression, we follow from Douglas C.

Montgomery, Elizabeth A. Peck, G. Geoffrey Vining(2012).

2.1 Multiple Linear Regression Analysis

Regression analysis is a statistical technique for investigating and modelling

the relationship between variables. Multiple linear regression is a type of a linear

regression model with one dependent variable and two or more independent vari-

ables. The general from of the multiple linear regression with k predictor variables

is as the follows:

Y = β0 + β1X1 + β2X2 + . . .+ βkXk + ε (2.1)

where Y is the response(or dependent) variable, Xi are the predictor(or indepen-

dent) variable, βj for j = 1, 2, 3, . . . , k are the regression coefficients(or parameters)

and ε is the random error component.

2.1.1 The Assumption of the Classical Linear Regression

We now make some basic assumption on the model

Yi = β0 + β1Xi1 + β2Xi2 + . . .+ βkXik + εi ; i = 1, 2, 3, . . . , n (2.2)
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1) εi is a random variable with zero mean and variance σ2 (unknow), that is

E(εi) = 0, Var(εi) = σ2.

2) εi and εj are uncorrelated for i 6= j and i, j ∈ {1, 2, 3, . . . , n}, that is

Cov[εi, εj] = 0.

3) εi is a normally distributed random variable with mean zero and variance

σ2, that is εi ∼ N(0, σ2).

4) There is no a perfect linear relationship between the independent variables.

That is, there is no multicollinearity.

2.1.2 Estimation of the Model Parameters

Consider the linear model in equation (2.2), we can rewrite it in the matrix

form as follows;

Y1

Y2

...

Yn


=



1 X11 X12 · · · X1k

1 X21 X22 · · · X2k

... ... ... . . . ...

1 Xn1 Xn2 · · · Xnk





β0

β1

...

βk


+



ε1

ε2

...

εn


It can be rewritten as;

Y = Xβ + ε (2.3)

where Y is an n× 1 column vector of observations.

X is an n× (k + 1) matrix of the levels of the regressor variables.

β is an (k + 1)× 1 vector of the regression coefficients.

ε is an n× 1 vector of random errors.

Definition 2.1 [Residual] The difference between the observed value Yi and the

corresponding fitted value Ŷi is the residual.

εi = Yi − Ŷi (2.4)
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Least - Square Estimation of the Regression Coefficient

The method of least squares is used to estimate the regression coeffi-

cient in equation (2.1). Now, we assume b0, b1, b2, . . . , bk are the estimators of

β0, β1, β2, . . . , βk, respectively, and suppose that n > k. The least squares function

is

S(β0, β1, . . . , βk) =
n∑

i=1

ε2i =
n∑

i=1

[Yi − β0 −
k∑

j=1

βjXij]
2 (2.5)

The function S must be minimized with respect to β0, β1, . . . , βk. The least -

squares estimators of β0, β1, . . . , βk must satisfy

∂S

∂β0

∣∣∣∣
b0,b1,...,bk

= −2
n∑

i=1

[
Yi − b0 −

k∑
j=1

bjXij

]
= 0 (2.6)

and

∂S

∂βj

∣∣∣∣
b0,b1,...,bk

= −2
n∑

i=1

[
Yi − b0 −

k∑
j=1

bjXij

]
Xij = 0, j = 0, 1, 2, . . . , k (2.7)

From equation (2.6) and (2.7), we obtain the least square normal equations

nb0 + b1

n∑
i=1

Xi1 + b2

n∑
i=1

Xi2 + b3

n∑
i=1

Xi3 + . . .+ bk

n∑
i=1

Xik =
n∑

i=1

Yi

b0

n∑
i=1

Xi1 + b1

n∑
i=1

X2
i1 + b2

n∑
i=1

Xi1Xi2 + . . .+ bk

n∑
i=1

Xi1Xik =
n∑

i=1

Xi1Yi (2.8)

... ...

b0

n∑
i=1

Xik + b1

n∑
i=1

XikXi1 + b2

n∑
i=1

XikXi2 + . . .+ bk

n∑
i=1

X2
ik =

n∑
i=1

XikYi

Therefore, there are k + 1 normal equations, one for each of the unknown regres-

sion coefficients, and the solution to the normal equation will be the least square

estimators b0, b1, b2, . . . , bk.
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From the least square normal equations (2.8) as follows;



1 1 · · · 1

X11 x21 · · · Xn1

X12 X22 · · · Xn2

... ... . . . ...

X1k X2k · · · Xnk





Y1

Y2

Y3

...

Yn


=



n
n∑

i=1

Xi1 · · ·
n∑

i=1

Xik

n∑
i=1

Xi1

n∑
i=1

X2
i1 · · ·

n∑
i=1

Xi1Xik

n∑
i=1

Xi2

n∑
i=1

Xi1Xi2 · · ·
n∑

i=1

Xi2Xik

... ... . . . ...
n∑

i=1

Xik

n∑
i=1

Xi1Xik · · ·
n∑

i=1

X2
ik





b0

b1

b2

...

bk



It can be rewritten as;

XTY = (XTX)b (2.9)

where b = [b0 b1 b2 · · · bk]
T

Multiplying both sides of equation (2.9) by (XTX)−1, we get

(XTX)−1XTY = (XTX)−1(XTX)b

(XTX)−1XTY = Ib

where I is (k + 1)× (k + 1) identity matrix.

Therefore, b = (XTX)−1XTY .

Theorem 2.2 The estimator b = (XTX)−1XTY is an unbiased estimator of β.

In addition,

Var[b] = (XTX)−1σ2

Proof In the first step, we will show that b is an unbiased estimator;

E[b] = E[(XTX)−1XTY ]

= (XTX)−1XTE[Y ]

= (XTX)−1XTE[Xβ + ε]

 



9

from the assumption of the Classical Linear Regression, we have E[ε] = 0.

Therefore, E[b] = (XTX)−1XTXβ = β. This completes the proof of the unbiasness

of b.

Next, the variance of b can be computed directly:

Var[b] = Var[(XTX)−1XTY ]

= (XTX)−1XTVar[b]((XTX)−1XT )T

= (XTX)−1XTX(XTX)−1σ2

= (XTX)−1σ2

Theorem 2.3 The unbiased estimator of the variance in the multiple linear re-

gression is given by

σ2 =
Y T (I −X(XTX)−1XT )Y

n− p
=

1

n− p

n∑
i=1

(Yi − Ŷi)
2.

where p = k + 1

2.1.3 Test for Significance of Regression

The test for Significance of regression is a test to determine if there is

a linear relationship between the response Y and any of the regressor variables

X1, X2, X3, . . . , Xn.

Assume that the estimator parameter β0, β1, . . . , βk are b0, b1, . . . , bk, respectively.

The statement for the hypotheses are:

H0 : β1 = β2 = β3 = . . . = βk = 0

H1 : βi 6= 0 for at least one i

The statistic that can be used for testing H0 versus H1 is the t test statistic

in the following form:

t⋆ =
bi

se(bi)
∼ tα

2
, n−(k+1) ∀i = 1, 2, 3, . . . , k
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where se(bi) =
√
σ2Cii, Cii is an element on the main diagonal of (XTX)−1 and

we reject H0 if tα
2
, n−(k+1) < |t⋆|.

2.2 Linear Classification Problem

For the content of Support Vector Machine, we follow Deng, Tain, and

Zhang(2013).

2.2.1 Classification Problem

Classification Problem: Given a training set

T = {(x1, y1), (x2, y2), . . . , (xm, ym)}

where xi ∈ Rn, yi ∈ Y = {−1, 1}, i = 1, 2, 3, . . . ,m, find a real function g(x) in Rn,

to derive the value of y for any x by the decision function

yi = sgn(g(xi)).

Thus the solving of a classification problem is to find a criterion to separate the

Rn space into two regions according to the training set T .

Note that in the training set T , (xi, yi) ∈ Rn×Y is called training point for

all i = 1, 2, 3, . . . ,m. The vector xi ∈ Rn is called input, its components are called

features and yi ∈ Y is the label or output.

2.2.2 Support Vector Classification (SVC) for Linearly

Separable Problems

The linear classification problem is the problem whether the training set

can be separated by a hyperplane correctly. The definition is follows.
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A hyperplane H in Rn is the set of points that satisfy a linear equation

a1x1 + a2x2 + · · ·+ anxn = b

where the vector u = (a1, a2, . . . , an) is not zero.

Definition 2.4 (Linearly separable problem)

Consider the training set T = {(x1, y1), (x2, y2), . . . , (xm, ym)} ∈ (Rn×Y)m,

where xi ∈ Rn, yi ∈ Y = {−1, 1}, i = 1, 2, 3, . . . ,m. If there exist w ∈ Rn, b ∈ R

and a positive number ε such that for any subscripts i with yi = 1, we have

(w · xi) + b ≥ ε, and for any subscripts i with yi = −1, we have (w · xi) + b ≤ −ε,

we say the training set and its corresponding classification problem are linearly

separable.

2.2.3 Maximal Margin Method

Derivation of the maximal margin method

Figure 2.1 Linearly separable problem.

Consider the separable problem in R2 shown in the Figure 2.1, and try to

find a suitable straight line to separate the R2 space into two regions. We want to

select the best separating line among the straight lines which is able to separate

all of the positive inputs “+”and negative inputs “◦” correctly.
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Figure 2.2 Optimal separating line with fixed normal direction.

In Figure 2.2, L1 is one of the straight lines with the given w (w is normal

vector), separating all of the positive and negative inputs correctly. However such

a line is not unique, any line obtained parallel moving L1 before approaching any

input is a candidates. The two lines L2, L3 in the extreme cases are called support

lines. The straight line between L2 and L3 is the best separating line.

Figure 2.3 Separating line with maximal margin.

We focus on how the best normal direction w is select In Figure 2.3. The

distance between the two support lines is called “margin”. Thus we select the

normal direction which makes the margin maximal.

The idea of maximal margin leads to the following optimization problem

for w and b;

max
w,b

2

‖w‖
, (2.10)
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subject to

(w · xi) + b ≥ 1, ∀i : yi = 1, (2.11)

(w · xi) + b ≤ −1, ∀i : yi = −1, (2.12)

or

min
w,b

1

2
‖w‖2, (2.13)

subject to

yi((w · xi) + b) ≥ 1, i = 1, 2, 3, . . . ,m. (2.14)

The above optimization problem is derived from maximizing the margin

between the two support lines in two-dimensional space R2. For solving classifica-

tion problem in n-dimensional space Rn, we should maximize the margin between

the two support hyperplanes. It is called the principle of maximal margin.

2.2.4 Properties of the Maximal Margin Method in Linear

Classification

Theorem 2.5 For a linearly separable problem, there exist a solution (w∗, b∗) to

the optimization problem (2.13) ∼ (2.14) and the solution satisfies:

1) w∗ 6= 0;

2) there exist a j ∈ {i | yi = 1} such that

(w∗ · xj) + b∗ = 1; (2.15)

3) there exist a k ∈ {i | yi = −1} such that

(w∗ · xk) + b∗ = −1. (2.16)
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Theorem 2.6 For a linearly separable problem, the solution to the optimization

problem (2.13) ∼ (2.14) is unique.

2.3 The Dual Problem in Linear Classification

By the theory of Lagrange multipliers, one can formulate a related opti-

mization problem, called the dual problem.

To derive the dual problem of the primal problem (2.13) ∼ (2.14), we

introduce the Lagrange function;

L(w, b, α) =
1

2
‖w‖2 −

m∑
i=1

αi(yi((w · xi) + b)− 1),

where α = (α1, α2, . . . , αm)
T is the Lagrange multiplier vector.

Theorem 2.7 (Optimization problem)

max
α

− 1

2

m∑
i=1

m∑
j=1

yiyj(xi · xj)αiαj +
m∑
j=1

αj , (2.17)

subject to
m∑
i=1

yiαi = 0 , (2.18)

αi ≥ 0, i = 1, 2, 3, . . . ,m , (2.19)

or

min
α

1

2

m∑
i=1

m∑
j=1

yiyj(xi · xj)αiαj −
m∑
j=1

αj , (2.20)

subject to
m∑
i=1

yiαi = 0 , (2.21)

αi ≥ 0, i = 1, 2, 3, . . . ,m , (2.22)
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is the dual problem of the primal problem (2.13) ∼ (2.14).

Theorem 2.8 For a linearly separable problem, the dual problem (2.17) ∼ (2.19)

or (2.20) ∼ (2.22) has a solution.

Theorem 2.9 Consider the linearly separable problem. For any solution to the

dual problem (2.20) ∼ (2.22), α∗ = (α∗
1, α

∗
2, . . . , α

∗
m)

T , there must be a nonzero

component α∗
j . Furthermore, given arbitrary nonzero component α∗

j of α∗ , the

unique solution to the primal problem (2.13) ∼ (2.14) can be obtained by

w∗ =
m∑
i=1

α∗
i yixi ,

b∗ = yj −
m∑
i=1

α∗
i yi(xi · xj).

Algorithm 2.10 (Linear separable support vector classification)

Step 1) Input the training set T = {(x1, y1), (x2, y2), . . . , (xm, ym)}, where xi ∈ Rn,

yi ∈ Y = {−1, 1}, i = 1, 2, 3, . . . ,m;

Step 2) Construct and solve the convex quadratic programming (2.20) ∼ (2.22),

to obtain a solution α∗ = (α∗
1, α

∗
2, . . . , α

∗
1)

T ;

Step 3) Compute w∗ =
∑m

i=1 α
∗
i yixi. Choose a positive component of α∗, α∗

j ,

then compute b∗

b∗ = yj −
m∑
i=1

α∗
i yi(xi · xj);

Step 4) Construct the separating hyperplane (w∗ · x) + b∗ = 0, obtaining the

decision function

f(x) = sgn(g(x)) ,

where

g(x) = (w∗ · x) + b∗ =
m∑
i=1

yiα
∗
i (xi · x) + b∗. (2.23)
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2.4 Support Vector

Definition 2.11 (Support vector)

Suppose that α∗ = (α∗
1, α

∗
2, . . . , α

∗
m)

T is a solution to the dual problem obtained

using Algorithm (2.10). The input xi, associated with the training point (xi, yi),

is said to be a support vector if the corresponding component α∗
i of α∗ is nonzero

and otherwise it is a nonsupport vector.

The next theorem characterizes the support vectors.

Theorem 2.12 Suppose that the linearly separable problems are solved using

Algorithm (2.10) and that the g(x) defined by (2.23). Then

1) support vector xi satisfies yig(xi) = yi((w
∗ · xi) + b∗) = 1.

2) nonsupport vector xi satisfies yig(xi) = yi((w
∗ · xi) + b∗) > 1.

Figure 2.4 Geometric interpretation of Theorem 2.12.

2.5 Linear C-Support Vector Clasification

2.5.1 Maximal Margin Method

For a general classification problem, which may be linearly nonseparable

problem, it is possible that any hyperplane is unable to separate all of the positive

 



17

and negative input correctly. If we still want to use a hyperplane as a separator,

we need to adopt the following two strategies: On one hand, in order to relax the

requirement to separate all of the inputs correctly, allow the existence of training

points that violate the constrains yi((w · xi) + b) ≥ 1 by the introducing slack

variables

ξi ≥ 0, i = 1, 2, 3, . . . ,m ,

then yielding constraints

yi((w · xi) + b) ≥ 1− ξi , i = 1, 2, 3, . . . ,m.

On the other hand in order to make the above violation as small as possible

and avoid making ξ too large, one superimposes a penalty upon them in the

objective function, For instance, we can add a term
m∑
i

ξi

to the objective function. We obtain the primal problem (2.13) ∼ (2.14) as

min
w,b,ξ

1

2
‖w‖2 + C

m∑
i=1

ξi , (2.24)

subject to

yi((w · xi) + b) ≥ 1− ξi , i = 1, 2, 3, . . . ,m , (2.25)

ξi ≥ 0 , i = 1, 2, 3, . . . ,m , (2.26)

where ξ = (ξ1, ξ2, . . . , ξm)
T , and C > 0 is a penalty parameter.

Algorithm 2.13 (Linear maximal margin method)

Solve the primal problem (2.24) ∼ (2.26), obtaining a solution (w∗, b∗, ξ∗). Then

construct the separating hyperplane and the corresponding decision function

f(x) = sgn(g(x)), where g(x) = (w∗ · x) + b∗.
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2.5.2 Properties of the Maximal Margin Method in Linear

C-Support Vector Classification

Theorem 2.14 There exists a solution to the primal problem (2.24) ∼ (2.26),

with respect to (w, b).

Theorem 2.15 The solution w∗ of the primal problem (2.24) ∼ (2.26) with respect

to w is unique.

2.6 The Dual Problem in Linear C–Support Vector Clas-

sification

To derive the dual problem of the primal problem (2.24) ∼ (2.26), we

introduce the Lagrange function;

L(w, b, ξ, α, β) =
1

2
‖w‖2 + C

m∑
i=1

ξi −
m∑
i=1

αi(yi((w · xi) + b)− 1 + ξi)−
m∑
i=1

βiξi,

where α = (α1, α2, . . . , αm)
T and β = (β1, β2, . . . , βm)

T are Lagrange multiplier

vectors.

Then we have the following theorem.

Theorem 2.16 (Optimization problem in Linear C–support vector)

max
α,β

− 1

2

m∑
i=1

m∑
j=1

yiyjαiαj(xi · xj) +
m∑
j=1

αj , (2.27)

subject to
m∑
i=1

yiαi = 0 , (2.28)

C − αi − βi = 0, i = 1, 2, 3, . . . ,m , (2.29)

αi ≥ 0, i = 1, 2, 3, . . . ,m , (2.30)

βi ≥ 0, i = 1, 2, 3, . . . ,m , (2.31)
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is the dual problem of the primal problem (2.24) ∼ (2.26).

Theorem 2.17 The dual problem (2.27) ∼ (2.31) has a solutions.

The dual problem (2.27) ∼ (2.31) can be simplified to a problem only for a

single variable α by eliminating the variable β and then rewriting as a minimization

problem:

min
α

1

2

m∑
i=1

m∑
j=1

yiyj(xi · xj)αiαj −
m∑
j=1

αj , (2.32)

subject to

m∑
i=1

yiαi = 0 , (2.33)

0 ≤ αi ≤ C , i = 1, 2, 3, . . . ,m. (2.34)

Theorem 2.18 Suppose that α∗ = (α∗
1, α

∗
2, . . . , α

∗
m)

T is any solution to the convex

quadratic program (2.32) ∼ (2.34). If there exist a component of α∗, α∗
j , such that

α∗
j ∈ (0, C), then a solution (w∗, b∗) to the primal problem (2.24) ∼ (2.26) with

respect to (w, b), can be obtained by

w∗ =
m∑
i=1

α∗
i yixi ,

b∗ = yj −
m∑
i=1

α∗
i yi(xi · xj).

Algorithm 2.19 ( Linear C-support vector classification )

Step 1) Input the training set T = {(x1, y1), (x2, y2), . . . , (xm, ym)}, where xi ∈ Rn,

yi ∈ Y = {−1, 1}, i = 1, 2, 3, . . . ,m;

Step 2) Choose an appropriate penalty parameter C > 0;

Step 3) Construct and solve the convex quadratic program (2.32) ∼ (2.34) and we

obtain a solution α∗ = (α∗
1, α

∗
2, . . . , α

∗
m)

T ;
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Step 4) Compute b∗: Choose a positive component of α∗, α∗
j ∈ (0, C), and compute

b∗ = yj −
m∑
i=1

α∗
i yi(xi · xj);

Step 5) Construct the decision function

f(x) = sgn(
m∑
i=1

yiα
∗
i (xi · x) + b∗).

2.7 Linear Regression

2.7.1 Regression Problem

Given a training set

T̃ = {(x1, y1), (x2, y2), . . . , (xm, ym)},

where xi ∈ Rn, yi ∈ Y = R, i = 1, 2, 3, . . . ,m,the regression problem consists of

finding g(x) : Rn → R in Rn, to derive the value of y for any xi by the function:

yi = g(xi).

Particularly, when the function g(x) is restricted to be a linear function

y = g(x) = (w · x) + b,

the corresponding problem is defined as the linear regression problem.
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Figure 2.5 A regression problem in R.

Figure 2.6 A linear regression problem in R.

2.7.2 Hard ε̄-Band Hyperplane

In order to solve the regression problem, firstly we will introduce the defi-

nitions of ε̄-band and hard ε̄-band hyperplane.

Definition 2.20 (ε̄-band of a hyperplane)

For given ε̄ > 0, the ε̄-band of a hyperplane y = (w · x) + b is the set

{(x, y)|(w · x) + b− ε̄ < y < (w · x) + b+ ε̄}

.

Definition 2.21 (Hard ε̄-band of a hyperplane)

For given ε̄ > 0 and a training set T̃ , we say that a hyperplane y = (w · x) + b is

the hard ε̄-band hyperplane for a training set T̃ , if all the training points are inside
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its ε̄-band, i.e. the hyperplane y = (w · x) + b satisfies that

− ε̄ < yi − ((w · xi) + b) < ε̄, i = 1, 2, . . . ,m.

Figure 2.7 A hard ε̄-band hyperplane (line) in R.

Consider the hard ε̄-band hyperplane for any training set T̃ . When ε̄ is

large enough, there always exists a hard ε̄-band hyperplane, since the number of

the training points is finite. And the value of ε̄ corresponding to a hard ε̄-band

hyperplane should be not too small, it should be larger than the optimal value εinf

of the following optimization problem:

min
w,b,ε̄

ε̄ , (2.35)

subject to

− ε̄ ≤ yi − ((w · xi) + b) ≤ ε̄, i = 1, 2, . . . ,m. (2.36)

2.7.3 Hard ε̄-Band Hyperplane and Linear Classification

In this section, we construct a hard ε̄ - band hyperplane using the classifi-

cation method. We construct two classes based on the training set T̃ by adding
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and subtracting ε̄ to y of every training points, then we obtain two sets of the

positive and negative points respectively:

D+ = {(xT
i , yi + ε̄)T , i = 1, 2, 3, . . . ,m} , (2.37)

D− = {(xT
i , yi − ε̄)T , i = 1, 2, 3, . . . ,m} . (2.38)

Then, the training set for classification is

{((xT
1 , y1 + ε̄)T , 1), . . . , ((xT

m, ym + ε̄)T , 1), ((xT
1 , y1 − ε̄)T ,−1), . . . , ((xT

m, ym − ε̄)T ,−1)},

where (xT
i , yi+ε̄)T or (xT

i , yi−ε̄)T represents the input, and the last component, 1 or

−1, represents the output. The problem of constructing a hard ε̄-band hyperplane

is equivalent to linearly separating the above training sets .

Theorem 2.22 For a given training set T̃ and ε̄ > 0, a hyperplane y = (w·x)+b is a

hard ε̄-band hyperplane if and only if the set D+ and D− defined by (2.37) ∼ (2.38)

are located on different sides of this hyperplane respectively, and neither D+ nor

D− touch this hyperplane.

2.7.4 Optimization Problem of Constructing a Hard ε̄-

Band Hyperplane

In this section, we try to construct a hard ε̄−band hyperplane. For the

case ε̄ > εinf, where εinf is the optimal value of the problem (2.35) ∼ (2.36). We

can derive the optimization problem of constructing a hard ε̄-band hyperplane,

according to the maximal margin method for a linearly separable problem.

The classification problem is in Rn+1. Assume that the hyperplane is (w ·

x) + ηy + b = 0, where the normal vector is (wT , η)T , w ∈ Rn corresponds to x,

η ∈ R corresponds to y.
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Similar to the classification problem (2.10) ∼ (2.12), we get following pro-

gramming problem with respect to (w, η, b)

min
w,η,b

1

2
‖w‖2 + 1

2
η2 , (2.39)

subject to

(w · xi) + η(yi + ε̄) + b ≥ 1 ; i = 1, 2, . . . ,m , (2.40)

(w · xi) + η(yi − ε̄) + b ≤ −1 ; i = 1, 2, . . . ,m . (2.41)

Then the separating hyperplane is

(w̄ · x) + η̄y + b̄ = 0 , (2.42)

where (w̄, η̄, b̄) is the solution to the problem (2.40) ∼ (2.42), the regression prob-

lem is

y = (w∗ · x) + b∗ , (2.43)

where

w∗ = −w̄

η̄
, b∗ = − b̄

η̄
. (2.44)

Theorem 2.23 Suppose that (w̄, η̄, b̄) is the solution to the problem (2.40) ∼

(2.42) then η̄ 6= 0. Furthermore, let

ε = ε̄− 1

η̄
,

then

1) ε satisfies

εinf ≤ ε < ε̄i ,

where εinf is the optimal value of the problem (2.35) ∼ (2.36);
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2) (w∗, b∗) = (− w̄
η̄
,− b̄

η̄
) is the solution to the following problem:

min
w,b

1

2
‖w‖2 , (2.45)

subject to

(w · xi) + b− yi ≤ ε ; i = 1, 2, . . . ,m , (2.46)

yi − (w · xi)− b ≤ ε ; i = 1, 2, . . . ,m . (2.47)

2.8 Linear Hard ε-Band Support Vector Regression

2.8.1 Primal Problem

The Primal problem is the problem (2.45) ∼ (2.47)

Theorem 2.24 Suppose that εinf, is the optimal value of the following problem

min
w,b,ε

ε , (2.48)

subject to

− ε ≤ yi − ((w · xi) + b) ≤ ε, i = 1, 2, 3, . . . ,m , (2.49)

If ε > εinf, then the primal problem (2.45) ∼ (2.47) has solution, and the solution

with respect to w is unique.

2.8.2 Relationship between the Primal and Dual Problems

In order to derive the dual problem, we introduce the Lagrange function

L(w, b, α(∗)) =
1

2
‖w‖2 −

m∑
i=1

αi(ε+ yi − (w · xi)− b)−
m∑
i=1

α∗
i (ε− yi + (w · xi) + b),

where α(∗) = (α1, α
∗
1, α2, α

∗
2, . . . , αm, α

∗
m)

T ∈ R2m is the Lagrange multiplier vector,

and (∗) is a shorthand implying both the vector with and without asterisks.
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Theorem 2.25

max
α(∗)∈R2m

− 1

2

m∑
i,j=1

(α∗
i − αi)(α

∗
j − αj)(xi · xj)− ε

m∑
i=1

(α∗
i + αi) +

m∑
i=1

yi(α
∗
i − αi) ,

(2.50)

subject to

m∑
i=1

(α∗
i − αi) = 0 , (2.51)

α
(∗)
i ≥ 0, i = 1, 2, . . . ,m , (2.52)

is the dual problem of the primal problem (2.45) ∼ (2.47).

Theorem 2.26 If ε > εinf, then the dual problem (2.50) ∼ (2.52) has a solution,

where εinf is the optimal value of the problem (2.48) ∼ (2.49).

Algorithm 2.27 (Linear hard ε̄-band support vector regression)

Step 1) Input the training set T̃ ;

Step 2) Choose the parameter ε > 0;

Step 3) Construct and solve the convex quadratic programming

min
α(∗)∈R2m

1

2

m∑
i,j=1

(α∗
i − αi)(α

∗
j − αj)(xi · xj) + ε

m∑
i=1

(α∗
i + αi)−

m∑
i=1

yi(α
∗
i − αi) ,

(2.53)

subject to

m∑
i=1

(α∗
i − αi) = 0 , (2.54)

α
(∗)
i ≥ 0, i = 1, 2, . . . ,m , (2.55)

and we obtain the solution ᾱ(∗) = (ᾱ1, ᾱ1
∗, ᾱ2, ᾱ2

∗, . . . , ᾱm, ᾱm
∗)T ;

Step 4) Compute

w̄ =
m∑
i=1

(ᾱi
∗ − ᾱi)xi .
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Choose a positive component of ᾱ(∗), ᾱj > 0, then compute b̄ = yj − (w̄ · xj) + ε ;

or choose a positive component of ᾱ(∗), ᾱk
∗ > 0, then compute b̄ = yk− (w̄ ·xk)− ε

;

Step 5) Construct the regression function

y = g(x) = (w̄ · x) + b̄ =
m∑
i=1

(ᾱi
∗ − ᾱi)(xi · x) + b̄.

Definition 2.28 Suppose that ᾱ(∗) = (ᾱ1, ᾱ1
∗, ᾱ2, ᾱ2

∗, . . . , ᾱm, ᾱm
∗)T is a solution

to the dual problem (2.53) ∼ (2.55) obtain by Algorithm 2.8.1 The input (xi, yi)

is said to be a support vector if the corresponding component ᾱi or ᾱi
∗ is nonzero,

otherwise it is the nonsupport vector.

Theorem 2.29 Suppose that ᾱ(∗) = (ᾱ1, ᾱ1
∗, ᾱ2, ᾱ2

∗, . . . , ᾱm, ᾱm
∗)T is the solution

to problem (2.53) ∼ (2.55) for i = 1, 2, 3, . . . ,m, there exists only one nonzero

component between ᾱi and ᾱi
∗.

Theorem 2.30 Suppose that ᾱ(∗) = (ᾱ1, ᾱ1
∗, ᾱ2, ᾱ2

∗, . . . , ᾱm, ᾱm
∗)T is a solution

to problem (2.53) ∼ (2.55) solved by Algorithm 2.4.5.2.3 and y = (w̄ ·x)+ b̄ is the

regression function obtained by Algorithm 2.4.5.2.3. If ε > εinf, where εinf is the

optimal value of the problem (2.48) ∼ (2.49), then

1) All support vector are on the boundary of the ε - band of hyperplane y =

(w̄ · x) + b̄;

2) All nonsupport vector are inside or on the boundary of the ε - band of

hyperplane y = (w̄ · x) + b̄.
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2.9 Linear ε-Support Vector Regression

2.9.1 Primal Problem

Similar to support vector classification, the primal problem of slack variable

ξ(∗) = (ξ1, ξ
∗
1 , ξ2, ξ

∗
2 , . . . , ξm, ξ

∗
m)

T and penalty parameter C, the primal problem of

linear ε-support vector regression can be written as:

min
w,b,ξ(∗)

1

2
‖w‖2 + C

m∑
i=1

(ξi + ξ∗i ) , (2.56)

subject to

((w · xi) + b)− yi ≤ ε+ ξi , i = 1, 2, 3, . . . ,m , (2.57)

yi − ((w · xi) + b) ≤ ε+ ξ∗i , i = 1, 2, 3, . . . ,m , (2.58)

ξ
(∗)
i ≥ 0, i = 1, 2, 3, . . . ,m , (2.59)

where (∗) is a shorthand implying both the vector with and without asterisks.

This problem is a convex quadratic programming.

After obtaining the solution to the primal problem (2.56) ∼ (2.59),

(w̄, b̄, ξ̄(∗)), then construct the regression function:

y = g(x) = (w̄ · x) + b̄.

Theorem 2.31 There exist solution to the primal problem (2.56) ∼ (2.59) with

respect to (w, b) and the solution with respect to w is unique.
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2.9.2 Relationship between Dual Problem and Primal

Problem

In order to derive the dual problem of the primal problem (2.56) ∼ (2.59),

we introduce the Lagrange function

L(w, b, ξ(∗), α(∗), η(∗)) =
1

2
‖w‖2 + C

m∑
i=1

(ξi + ξ∗i )−
m∑
i=1

(ηiξi + η∗i ξ
∗
i )

−
m∑
i=1

αi(ε+ ξi + yi − (w · xi)− b)−
m∑
i=1

α∗
i (ε+ ξ∗i − yi + (w · xi) + b) ,

where α(∗) = (α1, α
∗
1, α2, α

∗
2, . . . , αm, α

∗
m)

T , η(∗) = (η1, η
∗
1, η2, η

∗
2, . . . , ηm, η

∗
m)

T are

the Lagrange multiplier vectors.

Theorem 2.32

max
α(∗),η(∗)∈R2m

− 1

2

m∑
i,j=1

(α∗
i − αi)(α

∗
j − αj)(xi · xj)− ε

m∑
i=1

(α∗
i + αi) +

m∑
i=1

yi(α
∗
i − αi) ,

(2.60)

subject to

m∑
i=1

(α∗
i − αi) = 0 , (2.61)

C − α
(∗)
i − η

(∗)
i = 0, i = 1, 2, 3, . . . ,m , (2.62)

α
(∗)
i ≥ 0, η

(∗)
i ≥ 0, i = 1, 2, . . . ,m , (2.63)

is the dual problem of the primal problem (2.56) ∼ (2.59).

Theorem 2.33 Dual problem (2.60) ∼ (2.63) has solutions.

Theorem 2.34 Suppose that ᾱ(∗) = (ᾱ1, ᾱ1
∗, ᾱ2, ᾱ2

∗, . . . , ᾱm, ᾱm
∗)T is any solu-

tion to the problem
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min
α(∗)∈R2m

1

2

m∑
i,j=1

(α∗
i − αi)(α

∗
j − αj)(xi · xj) + ε

m∑
i=1

(α∗
i + αi)−

m∑
i=1

yi(α
∗
i − αi) ,

(2.64)

subject to
m∑
i=1

(α∗
i − αi) = 0 , (2.65)

0 ≤ α
(∗)
i ≤ C, i = 1, 2, . . . ,m , (2.66)

If there exists a component of ᾱ(∗), ᾱj ∈ (0, C) or ᾱk
∗ ∈ (O,C), then a solution

(w̄, b̄) to the primal problem (48) ∼ (51) with respect to (w, b) can be obtained by

w̄ =
m∑
i=1

(ᾱi
∗ − ᾱi)xi ,

b̄ = yj −
m∑
i=1

(ᾱi
∗ − ᾱi)(xi · xj) + ε ,

or

b̄ = yk −
m∑
i=1

(ᾱi
∗ − ᾱi)(xi · xk)− ε .

Algorithm 2.35 (Linear ε - support vector regression )

Step 1) Input the training set T̃ ;

Step 2) Choose an appropriate parameter ε the penalty parameter C > 0;

Step 3) Construct and solve the convex quadratics programming (2.64) ∼ (2.66);

Step 4) Compute b̄: choose a component of ᾱ(∗) in the interval (0, C).

If the component ᾱj ∈ (0, C), compute

b̄ = yj −
m∑
i=1

(α∗
i − αi)(xi · xj) + ε ;

If the component ᾱk
∗ ∈ (0, C), compute

b̄ = yk −
m∑
i=1

(α∗
i − αi)(xi · xk)− ε ;
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Step 5) Construct the decision function

y = g(x) =
m∑
i=1

(α∗
j − αj)(xi · x) + b̄.

2.10 Kernel

In case of nonlinear problem, we can use the kernel function to solve prob-

lems.

Definition 2.36 (Kernel function)

A function K(x, y) is called a kernel on Rn ×Rn if there exists a map Φ from the

space Rn to Hilbert space H,

Φ :
Rn → H

x 7→ Φ(x)

such that

K(x, y) = (Φ(x) · Φ(y))

where (·) denotes the inner product of space H.

2.10.1 Commonly Used Kernels

• Polynomial kernel

K(x, y) = ((x · y) + 1)d (2.67)

where d is the degree of the polynomial.

• Gaussian kernel

K(x, y) = e−
∥x−y∥2

2σ2 . (2.68)
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• Gaussian radial basis function kernel

K(x, y) = e−γ∥x−y∥2 . (2.69)

2.11 Root Mean Square Error

Root Mean Square Error is a commonly used measure of the difference

between the observed value Yi and the corresponding fitted value Ŷi,

RMSE =

√√√√√√
N∑
i=1

ε2i

N
(2.70)

where εi is the residual and N is a number of observations.

2.12 Related Researches

Boonyanam and Mungmaiphol (2019) analyzed the factors that affect the

exchange rate between the Thai Baht and Japanese Yen. They found that, in

the long term, the inflation differential between Thailand and Japan (DINF), the

monthly import of Thailand (RXM)and the Thai Business Sentiment (BSI), Cor-

relate positively with the exchange rate (Yen v.s. Bath). On the other hand,

the real effective exchange rate (REER) and the manufacturing production in-

dex(MPI)corrolate negatively.

Chanaim, Rungruang, Srichaikul and Sriboonchitta (2019) used support

vector machine to investigate the predictability of stock index movement direc-

tion with SVM by forecasting the daily movement direction of the SET 50 index

over the period 5 April, 2000 to 22 August, 2018. The experiment a results show
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that SVM with autoregressive lag p = 10 and training data equal 37 have accu-

racy(ACC) 92.56%.

Grigoryan (2016) studied the financial time series prediction problem to

predict stock market, by support vector machines (SVM) with independent com-

ponent analysis (ICA) method (or SVM-ICA) and SVM method. He used the root

mean square error (RMSE) measure to evaluate the performance of the model and

found that the SVM-ICA method is better than the SVM method for nonstation-

ary time series.

Chih-Feng Chao and Ming-Huwi Horng (2015) used the firefly-based SVM

(firefly-SVM) for exploring binary and multiclass classification. Based on the re-

sult of the current experiments on the binary classification of ten data sets of the

UCI database and multiclass classification of ultrasonic supaspinatus images, the

experimental results advocate the use of fireflySVM to classify the pattern classif-

cations for maximum accuracy.

Madge (2015) studied forecasting the stock price, using the daily closing

prices for 34 technology stocks to calculate price volatility and momentum for in-

dividual stocks and for the overall sector. The result shows that SVM model is

better suitable for the long-run than the short-run.

B.Yu, Han, Yan and Ning (2014) used the support vector machine for fore-

casting Dry Bulk Freight Index. The BDI data for 2005 to 2012 are presented to

test the model. The result shows that the proposed method has higher accuracy

and can be used to forecast the short-term trend of the BDI.

K. Okasha (2014) used the support vector machines in financial time se-

ries , the autoregressive integrated moving average (ARIMA), the artificial neural

networks (ANN) to forecast the A1-Quds index of the Palestinian stock exchange

market time series data. The result shows that the SVM model is better than the

 



34

ARIMA and ANN models.

Mu, Wu and Zhang (2014) used the support vector machine (SVM), least

squares support vector machine (LSSVM) and partial least squares (PLS) method,

to predict house prices in a Boston suburb. The result shows that the SVM method

is better in prediction than LSSVM and PLS method.

 



CHAPTER III

RESEARCH METHODOLOGY

This chapter presents the process used in this research. The process consists

of 6 parts, as follows:

3.1 Collect Training Data and Analyze Descriptive Statis-

tics

This research used monthly data (secondary time series data) from January

2009 until December 2018, a total of 120 months. This section will analyze the

descriptive statistics of the training data.

Table 3.1 Shows Training data.

variables Type Unit

Exchange Rate of the Thai Baht Dependent Baht/Yuan

against the Chinese Yuan

Policy Interest rate independent Percent/Year

Value of Imports from China independent Billion Baht

Value of Exports to China independent Billion Baht

Foreign Exchange Reserves independent Ten Billion Dollar

Nominal Effective Exchange Rate independent -

The data in Table 3.1 was saved in the CSV file (data.csv), CSV file is

available for working with program R, the detail of data.csv will be imported and
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program R will analyze descriptive statistics shown in Appendix A.

3.2 Program R and Packages Installation

Program R is a free software environment for statistical computing and

graphics. This research installed program R (Version 3.6.3) and installed its pack-

ages. The complete installed package in program R shown in Appendix A.

3.3 Analyzing Independent Factors that Affect the Ex-

change Rate

This research used the Multiple Linear Regression to analyze the indepen-

dent factors that affect the exchange rate of the Thai Baht against the Chinese

Yuan. This section divided into 3 parts, as follows:

3.3.1 Study Relationship between Dependent and Inde-

pendent Variables

To construct the Multiple Linear Regression Model. The model will be

obtained for analyzing the independent factors that affect the exchange rate is the

following:

EXC = β0 + β1(IV) + β2(EV) + β3(PR) + β4(FER) + β5(NEER) (3.1)

Where

EXC is the exchange rate of the Thai Baht against the Chinese Yuan.

IV is Value of Import from China.

EV is Value of Exports to China.

PR is Policy Interest Rate.
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FER is Foreign Exchange Reserves.

NEER is Nominal Effective Exchange Reserves.

β0, β1, . . . , β5 are parameters or regression coefficient.

3.3.2 Estimating Parameter of Model

This research used the least square method to estimate the parameters in

the model (3.1).

3.3.3 Test for Significance of Regression

The test for Significance of regression is a test to determine if there is

a linear relationship between the dependent and any of the regressor variables

X1, X2, X3, . . . , Xn.

Assume that the estimator parameter β0, β1, . . . , β5 are b0, b1, . . . , b5 respectively.

The statement for the hypotheses are:

H0 : β1 = β2 = β3 = . . . = β5 = 0

H1 : βi 6= 0 for at least one i

The statistic that can be used for testing H0 versus H1 is the t test statistic in the

following form:

t⋆ =
bi

se(bi)
∼ tα

2
, n−(k+1) ∀i = 1, 2, 3, 4, 5

where se(bi) =
√
σ2Cii, Cii is an element on the main diagonal of (XTX)−1 and

we reject H0 if tα
2
, n−(k+1) < |t⋆|.

This research used 5% of a significant level (α = 0.05), and number of

training data equal to 120(n=120). Since α

2
= 0.025 and n− (k + 1) = 116 from

the t-Distribution table, then the value of t0.0025, 116 is approximately 1.980.
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3.4 Creating a Forecasting Model

The purpose of this research was to use the factors, obtained from the

regression analysis, to construct an appropriate model for forecasting the exchange

rate by using Support Vector Machine (SVM).

Support Vector Machine is the most popular tool for classification and

regression and for predicting problem in SVM. We use Support Vector Regression

(SVR) to solve this problem; SVM can efficiently perform a non-linear classification

and regression by using the kernel function.

Four kernel functions are commonly used.

� The linear kernel

� The polynomial kernel

� The radial basis function kernel

3.5 Predicting

Use the obtained model predicting the exchange rate of the Thai Baht

against the Chinese Yuan from January 2019 until June 2019, a total of 6 months.

3.6 Accuracy Measurement of Predicting Model

In data mining, when developing a predictive model, as in linear regression,

SVM, SVR, etc, it is important to quantify how well the model is suited to future

observations.

The frequently used accuracy measure of forecasting model are:

� Root Mean Square Error (RMSE)
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� Mean Absolute Error (MAE)

� Mean Square Error (MSE)

This research use the Root Mean Square Error (RMSE) to measure the

efficiency of predicting model.

 



CHAPTER IV

RESULTS AND DISCUSSION

This chapter presents the results from the process in Chapter III Research

Methodology. The aim is to show the consequence computed in program R (Version

3.6.3), the independent factors that affect the exchange rate, the best model, and

the predicted values of the exchange rate of the Thai Baht against the Chinese

Yuan from January 2019 until June 2019, a total of 6 months.

4.1 Descriptive Statistics of Training Data

Descriptive statistics is a summary statistic that quantitatively describes

or summarizes features from the collection of data and help to understand the

training data that is essential in part of Machine Learning. This part shows the

result of some descriptive statistics of the training data (data.csv).

Table 4.1 Training data Descriptive statistics.

variables Scale Max Min Mean Range Variance

EXC ratio 5.6483 4.4938 5.03307583 1.1545 0.07102295

PR ratio 3.50 1.25 1.94791667 2.25 0.41060487

IV ratio 16.0832168 3.2892282 10.4436373 12.7939886 8.6547762

FER ratio 2.15614700 1.107222 1.71045380 1.048925 0.05149714

EV ratio 13.5195499 4.9475996 9.9501433 8.5719503 2.5706560
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Table 4.1 (Continued)Training data Descriptive statistics.

variables Scale Max Min Mean Range Variance

NEER ratio 17.32 9.255 10.50624 2.477 3.304180

4.2 Factors that Affect the Exchange Rate

The next step is on analysis of those factors that affect the Thai Baht

versus Chinese Yuan exchange rate. Each of the above data were modeled, either

individually or on groups, by using Multiple Linear Regression. Those factors

that resulted in the lowest root mean square error where singled out to be used

in the model. The result showed that Policy Interest Rate, Value of Imports from

China, and Foreign Exchange Reserves affect the exchange rate at a larger than

5% statistically significant level. The estimation coefficients by the least square

method are shown in Table 4.2 and the root mean square errors of all models

shown in Appendix(B).

Table 4.2 Coefficient, t-statistic values(t⋆), and standard error of independent

variables (5% of a significant level).

variables coefficient Std.Error t-statistic(t⋆)

Intercept 5.5927 0.1250 47.6050

PR 0.0596 0.0286 2.0840

IV 0.1020 0.0085 12.0040

FER -1.2280 0.1124 -10.9230

Then the obtained model is the following:

EXC = 5.5927 + 0.0596(PR) + 0.1020(IV)− 1.2280(FER) (4.1)
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Where

EXC is the exchange rate of the Thai Baht against the Chinese Yuan.

PR is Policy Interest Rate.

IV is Value of Imports from China.

FER is Foreign Exchange Reserves.

Finally, from Table 4.2, it is concluded that Policy Interest Rate and Value

of Import s from China effected the exchange rate of the Thai Baht against the

Chinese Yuan in the same direction. Whereas, Foreign Exchange Reserves effected

in the opposite direction.

4.3 Creating a Forecasting Model

Use factors that affected the exchange rate from regression analysis to con-

struct a predicting model. The new training data consists of:

Output Data

• The exchange rate of the Thai Baht against the Chinese Yuan

Input Data

• Policy Interest Rate

• Value of Imports from China

• Foreign Exchange Reserves

After that, we used the new training data to construct a predicting model

by using the Support Vector Machine Calculated with program R and use the

“e107” package.

The penalty parameter(or C parameter) in program R is written as Cost.

The gamma parameter is set to the default value equal to 1

m
, m is the dimen-

sion in Euclidian space of the input data vector. The Linear-ε-support vector
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Table 4.3 Parameter, SVM Type, and Kernel Type of a predicting model.

Parameter

SVM-Type Eps-regression

SVM-kernel Radial basis function

Cost 1

gamma 0.33

epsilon 0.1

regression is one type in SVR, such that works with the epsilon insensitive loss

function.

From Table 4.3, the obtained predicting model is a Support Vector Re-

gression(SVR) with radial basis function. Afterward, creating the best model by

using program R to compute the proper epsilon and the penalty parameters are

commonly used intervals [0, 1] and [0, 100], respectively.

In this research, we used 100 values of the penalty parameters(i.e., C =

1, 2, 3, . . . , 100) and 10 values of the epsilon parameters(i.e., ε = 0, 0.1, 0.2, . . . , 1.0)

to find the proper parameter for predicting model.

Table 4.4 The appropriate parameter of predicting model.

Parameter

Cost 17

epsilon 0.1
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Figure 4.1 Showing the root mean square error depending on epsilon and penalty

parameters.

Figure 4.2 The actual and predicted value of training data.

Therefore, the suitable model for predicting the exchange rate is Support

Vector Regression with a radial basis function; the gamma parameter is 0.33; the

epsilon parameter is 0.1; the penalty parameter is 17 and has Root Mean Square

Error equal to 0.0861, the obtained appropriate model in this study is called SVR-

THC model.
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4.4 Predicting

The result predicts the value of the exchange rate of the Thai Baht against

the Chinese Yuan from January 2019 until June 2019 by using the SVR-THC

model shown in Table 4.5.

Table 4.5 Predicted values from the SVR-THC and the MLR models.

Month Actual Value Predicted Value Predicted Value

of SVR-THC model of MLR model

Jan.2019 4.6807 4.7392 5.1314

Feb.2019 4.6411 4.6065 4.5411

Mar.2019 4.7231 4.7434 4.7270

Apr.2019 4.7390 4.7934 4.9027

May.2019 4.6292 4.7894 4.9382

Jun.2019 4.5066 4.8056 4.7798

Where MLR is Multiple Linear Regression.

4.5 Accuracy Measurement of Predicting Model

Computing the root mean square error of the above 6 months predictions

shows an error of 0.1435 of the SVR-THC Model. Onthe other hand the Multiple

Linear Regression Model shows a substantially larger than error of 0.2614.

 



CHAPTER V

CONCLUSION AND RECOMMENDATION

The proposes of this research were to study the factors that affected the

exchange rate of the Thai Baht against the Chinese Yuan by using Multiple Linear

Regression, and find an appropriate model for forecasting the exchange rate of the

Thai Baht against the Chinese Yuan by using Support Vector Machine(SVM)

calculated by Program R software version 3.6.3. The analysis was divided into

two steps. The first step analyzes the factors that affect the exchange rate and

the result showed that Policy Interest Rate and Value of Imports from China

affected the exchange rate of the Thai Baht against the Chinese Yuan in the same

direction, whereas Foreign Exchange Reserves in the opposite direction, which

were both calculated by 5% statistically significant level. The second step used

the factors in the first step to construct an appropriate model for predicting the

exchange rate by using Support Vector Machine and the result found that the

proper model is Support Vector Regression(SVR) with radial basis function; the

gamma parameter is 0.33; the epsilon parameter is 0.1; the penalty parameter is

17. The obtained appropriate model in this study is called the SVR-THC model.

The SVR-THC model predicted the exchange rate of the Thai Baht against

the Chinese Yuan from January 2019 until June 2019 with Root Mean Square Error

of 0.1435 only. Whereas, the general forecasting of the exchange rate by using

Multiple Linear Regression model on the same data has a Root Mean Square Error

equal to 0.2614. Therefore, the SVR-THC model is more accurate predictions than

the Multiple Linear Regression model.
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ANALYZING DATA BY USING PROGRAM R
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The appendix A shown R commands using in this thesis.

A.1 Import Data and Install Packages.

In this step, load and install program R, install packages, and load Training

data into program R are following:

- Download and Install Program R

Download Program R Version 3.6.3 available on https://cran.r-

project.org/src/base/R-3/

- Installation Packages

> install.packages( “e1071”) ( for Support Vector Machine)

> install.packages( “pastecs”) ( for Descriptive Statistics)

> install.package( “CARS”) ( for Regression Analysis)

- Reading a CSV file in R

> Trainingdata = read.csv(file= “data.csv”)

A.2 Analyzing Descriptive Statistics

Descriptive Statistics of training data used library “pastec”, as follows:

> library( “pastec”)

> descriptivestatistic = stat.desc(Trainingdata)

> descriptivestatistic

A.3 Multiple Linear Regression Analysis

Analyzing the independent factors that affected the exchange rate of the

Thai Baht against the Chinese Yuan is the following:

> library( “CARS”)

 



54

> model = lm(EXC ∼ PR + IV + FER + NEER + EV, data = Trainingdata)

A.4 Support Vector Machine

The first step used the new training data to construct a model by using

Support Vector Machine is following:

> library( “e1071”)

> newtrainingdata = read.csv(file= “newdata.csv”)

> modelsvm = svm(EXC ∼ PR + IV + FER, data = newtrainingdata)

> print(modelsvm)

The second step is to find the proper parameter of the svm model, using

100 values of the penalty parameter(i.e., 1, 2, 3, …, 100) and 10 values of the

epsilon parameter(i.e., 0, 0.1, 0.2, …, 1.0) by setting Cross-Validiation = 3.

> bestmodel = tune(svm, EXC ∼ PR+IV+FER, data = newtrainingdata,

ranges=list(epsilon=seq(0,1,0.1),

cost=1:100), tunecontrol = tune.control( “croos”, cross=3))

> print(bestmodel)

> plot(bestmodel)

The obtained model(bestmodel) is called the SVR-THC model.

> SVR-THC = svm(EXC ∼ PR+IV+FER, data = newtrainingdata, kernel =

“radial”, epsilon = “0.1”, gamma = “0.33”, cost = “17”)
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A.5 Predicting

Used independent data that affect the exchange rate to predict the exchange

rate of the Thai Baht against the Chinese Yuan from January 2019 until June 2019,

a total of 6 months (datapredict.csv).

> predictexc = predict(bestmodel,newdata = datapredict)

A.6 Performance of model

Used Root Mean Square Error to measure the efficiency of predicting model.

> actualvalue = c(4.6807, 4.6411, 4.7231, 4.7390, 4.6292, 4.5066)

> residual = predictexc - actualvalue

> sumsquare = sum(residual2)

> meansumsquare = sumsquare/6

> rmse = sqrt(meansumsquare)

 



APPENDIX B

ROOT MEAN SQUARE ERROR VALUES OF

MODEL BY USING REGRESSION ANALYSIS
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This part shows the Root Mean Square Error of all models from Regression

Analysis.

List of Symbols

x1 is Value of Imports from China.

x2 is Value of Exports to China.

x3 is Policy Interest Rate.

x4 is Foreign Exchange Rate.

x5 is Nominal Effective Exchange Reserves.

RMSE is Root Mean Square Error.

The bold letter is an independent variable that does not affect the exchange rate

of the Thai Baht against the Chinese Yuan.

B.1 Choose one independent variable from 5 variables.

Table B.1 One independent variable.

Independent Variable RMSE

x1 0.259

x2 0.272

x3 0.260

x4 0.267

x5 0.272
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B.2 Choose two independent variables from 5 variables.

Table B.2 Two independent variables.

Independent Variable RMSE

x1x2 0.248

x1x3 0.250

x1x4 0.180

x1x5 0.253

x2x3 0.261

x2x4 0.249

x2x5 0.273

x3x4 0.260

x3x5 0.262

x4x5 0.252

B.3 Choose three independent variables from 5 variables.

Table B.3 Three independent variables.

Independent Variable RMSE

x1x2x3 0.243

x1x2x3 0.180
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B.3 (Continued) Three independent variables.

Independent Variable RMSE

x1x2x5 0.242

x1x3x4 0.179

x1x3x5 0.236

x1x3x5 0.236

x1x4x5 0.178

x2x3x4 0.248

x2x3x5 0.262

x2x4x5 0.240

x3x4x5 0.254

B.4 Choose four independent variables from 5 variables.

Table B.4 Four independent variables.

Independent Variable RMSE

x1x2x3x4 0.180

x1x2x3x5 0.230

x1x2x4x5 0.179

x1x3x4x5 0.179
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B.4 (Continued) Four independent variables.

Independent Variable RMSE

x1x2x3x5 0.242

B.5 Choose five independent variables from 5 variables.

Table B.5 Five independent variables.

Independent Variable RMSE

x1x2x3x4x5 0.180
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