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CHAPTER I 

INTRODUCTION 

 

1.1  Background 

 The study of long-term care system is crucial, because elderly people have 

grown continually in both national and international levels.  Recent medical technology 

makes people live longer in which the life expectancy rate increases and the mortality 

rate decreases.  Furthermore, the fertility rate and the birth rate tend to decline due to 

social and cultural changes. People nowadays have longer life expectancy than those 

lives decades ago. These factors are main reasons for an increase of the number of 

elderly population.  This demographic change transforms the society to be an “Aging 

Society”, namely, there are more than 20% of the population age more than 60 years 

old.  The increasing of the elderly population leads to an increase in the aging 

dependency ratio, which impacts the economic, the social and the health situations.  

Considering the elderly gender ratio, statistics show that the female is about 55.1% of 

the total population in 2010 and it is likely to increase to 56.8% in 2040 because the 

female generally live longer than the male.  

The rapid-growing share of the older population is mainly driven by a reduction 

in the fertility level, which became evident in 1980, after the declaration of the 

population policy aiming to promote voluntary family planning. The fertility decline 

has reduced the proportion of the children and thereby increased the proportion of the 

older-aged population. (Vipan Prachuabmoh,ed., 2013)    
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The change of population aging tends to increase both in Thailand, and in other 

countries. The patient mortality rate and the birth rate have been decreased because the 

medical technology has been developed continually. These two factors have affected 

demographic structure for the past decade. There are various studies on the impact of 

the population changing on the aging society that affects the medical care, the social 

security system, and the national government budget.  In previous research, Lee (2004) 

presented a framework of stochastic population forecast associated with fertility and 

mortality which are components of the stochastic population forecast model as shown 

in Figure 1.1.  The amount of population changes from a forecast model can be used for 

annual budget planning for various types of projects, including Stochastic Medicare, 

Stochastic Social Security, Stochastic National, Government Budget. 
 

 

 

 

 

        Figure 1.1   The development of demographic stochastic and fiscal stochastic    

                             forecasting framework,  Source : Lee (2004) 

 

 

Cornwall and Davey (2004) proposed a changing population age structure in 

New Zealand that has direct effect on the healthcare demand and the increase of the 

disability people who need healthcare service in the future.  Therefore, long-term care 

is vital for preparing resources to prepare for the population change.  Strunk, Ginsburg, 

and Banker (2006)  studied the demographic changes of the Baby-Boom population in 

Stochastic 
Population

Stochastic Medicare/ 
Social Security 

Stochastic 
Budgets/Resources 

Stochastic Fertility 

Mortality 
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the United States. These changes have affected inpatient demands in the hospitals.  The 

demographic changed were conducted using various factors including fertility rate, 

mortality rate, and immigration rate.  This study yields healthcare demand forecasts for 

the years 2005-2015 for people in different age groups in order to manage manpower 

and service planning.  There are other numerous studies in the literature that determine 

the population change model in order to conduct healthcare demand forecasts for 

manpower and service planning, for example Ehara (2011), Jim, Owens, Sanchez, and 

Rubin (2012) , Pallin, Espinola and Camargo (2014). 

In Thailand, there is a growing trend of the elderly over the past ten years.  The 

rapid increase of the proportion of the elderly from 2010 has changed the structure of 

the Thai population, which has become similar to the population structure in many 

developed countries. Such change has affected the social, the economic, the 

employment, and the resource allocation in the long run.  Hence, it is necessary to 

provide a framework to develop a long-term care system for the elderly in Thailand.  

This research aims to explore relevant factors in order to develop the framework of the 

elderly long-term care system, by focusing on managing the resource capacity for the 

healthcare system in Thailand. 

According to the aforementioned reasons, it is essential for any nation to have a 

strategy to manage and allocate resources for the elderly long-term care.  In Thailand, 

the demographic change and the challenging issues posed by an aging society have led 

to the issuing of the National Plan for Elderly.  The country issued the first 20-year plan 

for elderly care in 1982.  Currently, Thailand has undergone the elderly care plan 

according to the 2002-2021 blueprint. 



4 
 

 
 

The 2nd National Plan for Elderly (2002-2021) is a long-term plan that adds to 

the first plan a conceptual change from a separated management system for each aspect 

to an integrated one.  The plan comprises of five strategies, which are 1) Strategy for 

preparing the population for old age. 2) Strategy for promoting the elderly. 3) Strategy 

for a social protection system for the elderly. 4) Strategy for management of national 

development and personnel development for the elderly, and 5) Strategy for compiling 

and developing geriatric knowledge as well as monitoring and assessing the National 

Plan for Elderly. (Vipan Prachuabmoh, ed.,2013) 

This research follows guidelines of the 2002-2021 National Plan for Elderly in 

Thailand as a foundation to develop a framework for the capacity and the resource 

planning for elderly long-term care system by incorporating quantitative method as a 

principal tool to propose a model and recommendation. 

Population change into aging society associated with a changing body and 

affecting health change. Therefore, the demand for care services in hospitals and the 

demand of care from family and community are likely to increase. The health of the 

elderly can be divided into three groups according to the characteristics of activity in 

their daily lives: 

1. Well Elderly - The elderly who are healthy and can help themselves.  They 

are active and tend to participate in social events. 

2. Home Bound Elderly - The elderly who have chronic diseases or 

unmanageable complications from many diseases. They can help themselves or need 

some help.  They have limited participation in social activities.  

3. Bed Bound Elderly – The elderly who have multiple chronic diseases and 

complications. They cannot help themselves in the daily routine. 
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Changes in the health of the population in each age group, especially the elderly, 

affect the demand for hospital services and the needs of continued care by families and 

communities.  In particular, patients with chronic diseases also require care continually.  

The emerging to the aging society will increase the number of patients with different 

levels of chronic diseases.  This will unavoidably increase the demand for healthcare 

services, especially at the hospitals. 

Most research in healthcare focus mostly on planning and scheduling.  There are 

not many studies in the literature exploring the long term care planning using operations 

research methodology. However, there are few studies in capacity and resource 

planning for long-term care by using operations research.  For instance, the 

methodology of demand planning for long-term care by a simulation Model based on a 

Markov cycle tree is proposed by Cardoso, Oliveira, Barbosa-Póvoa, and Nickel (2012) 

to predict the needs of each service and resource requirement.  In addition, Lin, Kong, 

and Lawley (2012) have developed compartment model to simulate the flow of 

population, with the goal of reducing the cost of long-term care plan to minimize.  It is 

found that the Markov process is appropriate to solve the long-term care problem 

because of the uncertainty of the demand.   

 

1.2  Problem Definition  

Past research shows that healthcare demand in hospitals and elderly long-term 

care were studied separately, which may not reflect realistic outlook for holistic 

resource planning.  Therefore, this study incorporated the number of population, the 

annual inpatient demand for all age groups and the elderly long-term care demand into 

the study model as shown in Figure 1.2 
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 The component of population structure consists of current population in each 

age, gender group, birth rate, mortality rate and net-migration.   The inpatient demands 

are separated by age groups, gender and chronic, non-chronic and ambulatory care 

sensitive conditions (ACSC) when population structure changes to the elderly.    

Relevant factors for the study of elderly population for long-term care are age, gender, 

chronic/non-chronic, level of dependency and household composition.   The inpatient 

demand affects length of stay (LOS) and annual inpatient days which are important data 

to providing hospital beds and healthcare staff.  The community long-term care demand 

use to evaluate number of staff especially caregiver in community or patient homes.  

 

 

 

Figure 1.2 The combine of population structure and inpatient demands 

 

 The change of population is an uncertain situation so it is necessary to develop 

a stochastic model in this research.  This study applies the multi-states non-

homogeneous Markov model from aggregate data for population model and combine 

with semi-Markov model for inpatient length of stay model.  The elderly population 

from population model also use to evaluate community long-term care demand.  The 

length-of stay result and community long-term care demand used to allocate resources 

such as the number of beds, the number of medical staffs and formal/informal 
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caregivers.  The statistical method analyzes multinomial logit model of Markov chain 

(Anderson and Goodman, 1957).  The asymptotic covariance matrix of weighted least 

square estimation uses to calculate transition probability of each state for population 

model.   

 

1.3  Research Objectives 

 In this research the following objectives will be fulfilled: 

1. To propose a stochastic model for population aging with healthcare service 

demand incorporated. 

2.  To evaluate the trends of population in each age group and their impacts on 

the resource planning in the long-run 

 

1.4  Scope of the Study 

To accomplish these objectives, the following issues will be considered.  

1. The study focuses on the changes of population structure, inpatient demand 

and long-term care demand for the next 10 years, from 2015-2025 using 

population data in Nakhon Ratchasima, Thailand as a case study.  The 

forecasted demands will be used to assess the capacity and resource planning 

for the elderly long-term care. 

2. All relevant data used in this study were collected from the healthcare 

facilities in Nakhon Ratchasima, Thailand. 

3. The aggregate historical population information was used to evaluate 

transition probability function for population model. A sample of individual 

information from individual database was investigate length-of stay demand 

of the inpatient model. 
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4. The resources focus on this research compose of beds and medical staff for 

inpatient model and informal/formal caregiver for community long-term care 

 

1.5 Basic Assumptions  

 The basic assumptions of this research are:  

1. The change of population structure consists of the following factors birth, 

morality, net migration, current population 

2. The population compose of 5 age groups:  (i) ages 0-15 years (child), (ii) ages 

16-59 years (working-age), (iii) ages 60-69 years (beginning elderly), (iv) 

ages 70-79 years (middle elderly) and (v) ages 80 or more (oldest elderly).  

The gender factor is also the component for each age group. 

3. The population change annually.  Some of population transfer to next age 

group by using the transition probability between groups.   

4. The change of population can transfer to three inpatient groups by type of 

chronic disease : (i) chronic (ii) non-chronic (iii) ACSC.   

5. The population can be categorized into four age groups ; (i) childhood, (ii) 

working-age group, (iii) beginning elderly group, (iv) middle elderly group 

at the beginning of each year can transfer to 9 states as lists below; 

(1)-(3) The population in the each age group in previous year transfer to 

population in the same age group, the next age group and death in next year   

(4)-(6) The population in the each age group in previous year transfer to 3 

inpatient group in the same age group in next year.   

(7)-(9) The population in the each age group in previous year transfer to 3 

inpatient groups in the next age group in next year.    
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6. The population in the oldest elderly group at the beginning of year n can 

transfer to 5 states as  

(1)-(2) The population in the oldest elderly group in previous year transfer to 

population in the same age group and death in next year.  

(3)-(5) The population in the oldest elderly group in previous year transfer to 

3 inpatient group in the same age group.  

7. The inpatient model change within 1 year between 2 stages as alive and death 

without changing of age group. 

8. The causes of inpatient demands occur by many factors.  However, due to the 

limitation of information, this research use aggregate population information 

and consider the change of each transition using time period and population 

covariate factors. 

 

1.6 Organization of Dissertation 

 In this research is organized as follows.  Chapter 1 illustrates the significance of 

the problem and research objectives. In Chapter 2, the relevant literature for long-term 

care problem and the stochastic Markov Model are discussed. Chapter 3, provides data 

analysis, Markov model for the multi-states nonhomogeneous Markov population 

model, the semi-Markov inpatient model, community long-term care model and 

sensitivity analysis to evaluate resources for long term elderly.  The computational 

results and discussions are proposed in Chapter 4. Finally, in Chapter 5, summary, 

conclusion, and directions for future research are provided.
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CHAPTER II 

LITERATURE REVIEW 

 

2.1 Stochastic Markov Model  

The demographic change is associated with various uncertainty factors so the 

stochastic method is an appropriate tool for population change over the future time 

period.  Markov chain is generally used as a tool to predict changes in health status and 

resource needs.  Markov chain has been widely applied to different problems.  The 

review is focused only three approaches that are related to healthcare study : (i) 

generating Markov model from individual data ; (ii) generating Markov model from 

aggregated data ; (iii) semi-Markov model. 

 

2.1.1 Markov Model from individual data 

A review of non-homogeneous Markov systems presented by Vassiliou 

(1997), shows that the methodology can be used to solve several problems such as 

manpower planning, ecological modeling, and social mobility processes.  Craig and 

Newton (1997), generated Markov chain model from non-homogeneous discrete-time 

data for diabetic retinopathy patients.  The model is used to investigate incidence, 

prevalence, and progression of diabetic retinopathy. The Bayesian estimation is applied 

to estimate parameters of Markov model.   Craig and Sandi (1998) proposed discrete 

time Homogeneous Markov chain for chronic diseases.  They applied maximum 

likelihood technique to investigate transition matrix.  Pérez-Ocón, Ruiz-Castro, and
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 Gámiz-Pérez (2000) presented nonhomogeneous Markov process to analyze the status 

of women breast cancer patients.  Maximum likelihood Estimation is used to estimate 

parameters of three state Markov chain, including no relapse, relapse, and death.  

Erkanli, Soyer, and Angold (2001), conducted non-homogenous Markov regression 

models for psychiatric disorders and substance abuse problem of American Indian 

children.  Bayesian via Gibbs Sampling is applied to estimate the transition.  Another 

discrete time Markov chain was proposed by Craig and Sendi (2002). This Markov 

Model is used to evaluate the treatment and care of chronic patients.  Transition 

probabilities are estimated by Maximum Likelihood.  It is also found that Mixed effect 

Markov model, studied by Bizzotto et al. (2011), is applied to sleep architecture problem 

in insomniac patients.  Covariate effects of multinomial Markov chain model consist of 

age, gender, and BMI.  Another research focusing on multi-state continuous time 

stationary Markov chain was proposed by Eslahchi and Movahedi (2012).  This study 

applied birth-death Markov process to describe the spread of disease in the community.  

The results of the model can be used as the information to prevent and control the spread 

of infections in the community.  Another Markov model presented by Chao et al. (2014), 

is used to access diabetes patients in the elderly.  The results of the model can be used 

as the information for health budget planning. 

 

2.1.2  Markov Chain from aggregated data 

Generally, maximum likelihood method is used to obtain transition 

probability for generating Markov model from individual data.  However, most data are 

in aggregated form.  Hence, it is necessary to review the tools used to generate Markov 

model from aggregated data. 
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Lee, Judge, and Zellner (1968) generated a discrete stationary Markov 

chain problem from aggregated data.  Maximum likelihood estimation and bayesian 

method were used to estimate transition probabilities.  Aggregated root mean square 

errors were used to measure deviations of each estimation method.  MacRae (1977) 

presented time-varying Markov process for perfect aggregate data of stocks and 

imperfect aggregate data of stocks.  Maximum likelihood estimation and nonlinear least 

square estimation were used to estimate parameters of perfect observation and imperfect 

observation, respectively.  Kelton (1981) suggested quadratic programming method to 

estimate parameters for time-independent Markov process with aggregate data.   Result 

shows that this quadratic programming method is not suitable for calculating non-

stationary transition probabilities.  Kalbfleisch, Lawless, and Vollmer (1983) developed 

condition least square and approximate maximum-likelihood-estimation to estimate 

transition probability.  This research proposed time-homogeneous Markov model for 

the biological and sociological problem and extends the model by adding the 

immigration to the model.  Van Der Plas (1983) used conditional least square estimate 

to generate homogeneous Markov model from macro data.  Kalbfleisch and Lawless 

(1984), Lawless and McLeish (1984), and McLeish (1984) also conducted their studies 

by using aggregate data to construct time-homogeneous Markov models.  They 

proposed least-square method including weighted least squares, generalized least 

squares, and ordinary least squares to estimate transition probabilities of Markov 

models.  Another research conducted by Kelton and Kelton (1984), presented 

hypothesis testing non-stationary Markov Process and stationary Markov Process.  They 

generated hypothesis testing procedure to develop three test stationary models. They 

applied F-distribution as the test statistics and found the assumptions for the F-
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distribution by using Monte Carlo study.  The extension of generalized linear model 

was proposed by Liang and Zeger (1986) to analyze the longitudinal data. Asymptotic 

theory was presented for the general class of estimators in this research. The method 

from this research assumes a functional form by applying the marginal distribution 

instead of the joint distribution due to the limitation of longitudinal data.  After that, 

there are other similar research which proposed non-homogeneous Markov model to 

apply for health expectancies with cross-sectional data such as Davis, Heathcote, and 

O'Neill (2001); Heathcote, Davis, Puza, and O’Neill (2003).  Another similar model 

conducted by Davis, Heathcote, and O'Neill (2002), applied Markov model to estimate 

population change and health status. The transition probabilities are obtained in log 

(odds) function and estimate parameter by weighted least square method.  

 

2.1.3 Semi-Markov model  

The assumption of Markov models shows that the transition probabilities 

from one state to each other states depend on the current state of Markov models.  In 

case of Markov assumptions are relaxed, semi-Markov is applied to adapt sojourn times 

in any states of various problems. Semi-Markov models have an assumption similar to 

Markov models.  The difference between Markov models and semi-Markov models is 

that time interval between state changes of semi-Markov models is random variables.  

The relationship between Markov and Semi-Markov Model is shown in Figure 2.1. 
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Figures 2.1  The relationship between Markov and Semi-Markov Model 

Source : Williamson and Suen (2012) 

 

 The application of a semi-Markov model for recovery of coronary 

patients was proposed by Kao (1972).  This model estimates length-of-stay in each state 

and in the whole system and calculates the distribution of recovery population to use 

for resource planning.   The proposed model has the potential to allocate services and 

resources, planning, utilization to support the study the dynamics of the coronary care 

system.  After that, Kao (1973) applied model from Kao (1972) to study patient 

movement in the health system in term of semi-Markovian population model shown in 

Figure 2.2. The model is used to describe patient movements of recovery progress of 

patients within the system.  The developed model is used for short-term forecasting 

during the period of interest based on available information reported to management. 
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Figures 2.2   The Patient Care System  

Source : Kao (1973) 

 

 

Valliant and Milkovich (1977) presented the development semi-Markov 

model to forecast manpower and compare with Markov model. Generally, the semi-

Markov seems to be more preferable than the Markov model because the semi-Markov 

process relaxes the Markov assumptions by allowing the time interval between state 

changes of semi-Markov models to be random variables.  Results did not conclude that 

the semi-Markov models is more superior to the Markov models due to the limitation 

of the information.  Another of semi-Markov model is presented by Côté and Stein 

(2007). This research represents an application of semi-Markov processes in outpatient 

healthcare (patient-care visits in a family practice clinic.).  The empirical data were used 

to develop the model.  The performance measure consisted of sojourn time in each state. 
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The model was used to assist operational decision in the clinic.  Next, Gillaizeau, 

Dantan, Giral, and Foucher (2015) proposed a semi-Markov model to investigate the 

relationship between the explicative variables and the times-to-events such as disease 

progression or death.  This research investigates the relationship between the variables 

and the progression of chronic disease, especially to the mortality associated with the 

disease.  The model in this research is semi-Markov additive relative survival (SMRS) 

model that combines the multistate and the relative survival. 

 

2.2  Long-Term Care problems 

The component of long-term care system consists of institutional care and 

community-based care.  Long-term care services need work co-operation among the 

medical staff, the society and the community.  Medical care staff includes nurses, 

physical therapists, and other non-physicians.  Home care service is one of activities to 

support long-term care elderly to reduce the number of elderly people at the institutional 

care.  There are various topics of long-term care system in the literature as shown in the 

following details. 

 

2.2.1 Demand Forecasting for Long-Term Care  

The initial management of long-term care is concerned about the 

demand, which is uncertain.  It is necessary to study from the previous research to 

understand the methodology to predict demand.  

First of all, Sharma (1980) reviewed the techniques for forecasting needs 

for home healthcare including Health Systems Agency of Southwestern Pennsylvania, 

(HSA/SP) model, Florida model, Rhode Island model and a utilization approach. Then, 

the conclusion is that each approach should be examined empirically to improve the 
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forecasting process.  However, these methods are still not suitable for resource and 

capacity planning in long-term care.  Another research about forecasting methodology 

for the transition of long-term care clients is investigated by Lane D. et al. (1985). This 

study analyzes three methods of long-term care forecasting, which are State-by-state 

moving average growth, State-by-state regression analysis and First-order Markov 

chain with stationary transition probabilities.  The study consists of many home and 

facility placements and care levels.  The results show that the Markov method should 

be suitable as resource planning and allocation tool in long-term care. 

Another research relates to the future of informal care in the next thirty 

years and the result of changes in the demand of informal care to formal services.  This 

research is purposed by Pickard, Wittenberg, Comas-Herrera, Davies, and Darton 

(2000).  A Personal Social Services Research Unit (PSSRU) computer simulation model 

is applied in this research.  The simulation model has produced projections to 2031 for 

long-term care for England.  The PSSRU model is a cell-based (or macro-simulation) 

model, which has been developed to forecast for long-term care demand for elderly 

people in England to 2031 under different scenarios.  Sensitivity analyses have been 

analyzed based on the specific assumptions about future trends, including scenarios in 

which the supply of informal care is seriously restricted.  The results of the scenarios 

have proved of the best for policy by using the PSSRU model.  Next, another interesting 

study is a framework for estimating the future gross cost.  It is built around a survival 

model by Pelletier, Chaussalet, and Xie (2005a).  This framework aims to forecast the 

cost over a period, of each maintaining a group in residential and nursing care which is 

funded by the local authority.  The formulation of the costing structure takes into 



18 
 

 
 

account survival and cost, and is flexible enough to allow customization to reflect local 

characteristics.  

After that, the estimation of future demand for LTC is conducted by 

Batljan and Lagergren (2005).  This paper presents how projected demographic 

development may influence future demand for human resources for LTC for older 

people in Sweden 2000–2030.  The analysis of different scenarios is used in the model.  

The methodology uses information, which divided by age and gender on utilization of 

current services, number of older people and assumptions on health status changes.  

There are many changes in demography and health status among the older people.  

Afterwards, another research is to investigate the long run of the UK system for the 

provision of long-term care (LTC) conducted by Karlsson, Mayhew, Plumb, and 

Rickayzen (2006).  This study considers demand for LTC and sufficient supply to meet 

demand.  The public budgets are estimating the requirement for formal care.  In addition, 

it involves estimating enough caretakers with current patterns for informal care.  The 

results show long-term care demand for 10 years from now and to the year 2040.  In 

addition, Comas‐Herrera, Wittenberg, Pickard, and Knapp (2007) propose the future 

numbers of elderly with cognitive impairment (CI) in England, the long-term care 

(LTC) demand and future costs of the care.  A macro-simulation (or cell-based) model 

is developed to produce the projections that are built on an earlier PSSRU model.  The 

future numbers of elderly, future CI rates and functional disability affect the demand 

for long-term care as testing by sensitivity analysis.  

There is another methodology to investigate future demand from older 

people. Desai, Penn, Brailsford, and Chipulu (2008) conducted system dynamics (SD) 

to explore ageing population within the budget limitations.  SD combines qualitative 
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and quantitative aspects and aims to enhance understanding of the system and the 

relationships among different system components.  The results show that, over the next 

five years, the number of care requirements will increase continually.   

 Grey forecasting models is studied by Hsu and Yan (2008) to forecast 

the disability rate of the aged and the number of aged in the total population.  There is 

another research that applies grey model to analyze the performance of a grey inspired 

approach, compared with established industrial techniques and highlight the issues 

raised by the use of grey modeling in regional LTC planning.  This research is proposed 

by Worrall and Chaussalet (2012).  However, grey model is still difficult to solve long-

term care demand with demographic and health information. 

 

2.2.2 Length of Stay problem for Long-Term Care 

 Long-term care problems in institutional care are about length of stay of 

each patient due to the limitation of resources. Marazzi, Paccaud, Ruffieux, and Beguin  

(1998) studied the development of the statistical analysis of length of stay (LOS) 

distributions or other consumption variables in health services.  The aim of the paper is 

to assess the adequacy of three widely used models - Lognormal, Weibull, and Gamma 

- for describing the distribution of length of stay (LOS).  The results show the fit of the 

distributions with one of these models.  In the conclusion, statistical methods for case 

mix description should be improved by more flexible families of models.  El‐Darzi, 

Vasilakis, Chaussalet, and Millard (1998) studied the benefits and limitations of flow 

modeling.  The goal of this paper is to build tool for hospital planners to make more 

efficient for a geriatric department than before.  The model is experimented with 

different policy parameters including emptiness level, bed availability for each 

compartment, conversion rates, length of stay and admissions.  The study develops a 
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simulation model of a queuing system which gives the interaction between emptiness 

in long-stay care and acute care.  Discrete event simulation is used to model the system.  

Then, what-if analysis is used to allow a greater understanding of bed requirements and 

effective utilization of resources.  The length of stay and the number of clients in each 

state are estimated the average.  The results show that the flow model and the 

unconstrained simulation are equally viable tools to measure bed occupancy in a 

geriatric department.  However, this research needs more work on the simulation model 

to experiment with different arrival and admission methods and data from other 

hospitals. 

 In addition, McClean and Millard (1998) study a three compartment 

model consisting of acute care, rehabilitation and long-stay care.  The Markov model is 

used to explain the movements of elderly patients within the hospital system (as shonw 

in Figure 2.3).  By assigning costs to the acute, rehabilitative and long-stay states of the 

model, this paper determines the costs involved in treating cohorts of patients.  Different 

costs have been attached to each of the three compartments.  The result from using the 

model found that a geriatric medical service to improve the acute management of in-

patients became more cost-efficient.  This model is useful for Health Care and Social 

Services planners who require cost information in order to plan their budgets. 

 

                      

 

Figure 2.3 Patient flows within a three-compartment geriatric department  

Source: McClean and Millard (1998) 
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 Afterwards, length of stay of elderly problem is still crucial to improve 

long-term care service.  Thus, Taylor, McClean, and Millard (2000) considers a census 

approach to the modeling of the time that elderly patients spend in hospital and then, in 

the community by using a stochastic Markov model with six compartments.  The 

maximum likelihood estimation is used to fit the model to daily census data.  The model 

is proposed to the hospital administrator to manage bed requirement and resource for 

elderly.  However, the model does still not cover the effect of demographic factors.  

Therefore, the model to represent the flow of elderly patients is studied by 

Christodoulou and Taylor (2001).  This research uses the continuous time hidden 

Markov models including the effect of covariates, age and sex.  The data are modeled, 

using a compartmental model, in order to represent the time that the patient has spent in 

care.  Using a hidden Markov model in continuous time, with discrete states, it has been 

able to show the effects that the covariates age and sex have on the parameter estimates 

for the mixed exponential fit. However, the model considers only length of stay in the 

institutional care.  Therefore, it is necessity to study more to cover length of stay in 

community based care.  

The problem of elderly patient duration of stay in hospital is still 

continual study as found by Marshall, McClean, Shapcott, and Millard (2002).  This 

research presents a model to predict the duration of stay distribution of patients in 

hospital.  The paper is to develop such a model to help healthcare managers in the future 

and facilitate better management of resources.  The paper introduces a conditional 

phase-type model to represent the survival distribution of elderly patients based on the 

interaction of various patient details recorded on admission to hospital.  From model, 

the anticipated cost of the care of these elderly can also be estimated and allowances for 
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these taken into consideration in the hospital budget.  Previous developed bed usage 

measures do not adequately represent the actual activity or situation in the hospital ward.  

Therefore, it is necessary to consider new models.  After that, Marshall, Vasilakis, and  

El-Darzi (2005) focused on modeling length of stay and flow of patients.  The models 

were developed from the previous study by using the C-Ph model to represent a 

continuous distribution.  An overview of such modeling techniques is provided to 

impact and suitability in managing a hospital service.  The statistical methodologies 

build Markov model to measuring and modeling flow. 

  Another research which focuses on the length of stay of elderly in 

institutional long-term care is proposed by Xie, Chaussalet, and Millard (2005).  The 

development of a Markov continuous model in this paper is to study the length of stay 

for elderly moving within and between two compartments, which are residential home 

care and nursing home care.  Maximum likelihood is used to estimate parameter of the 

model.  The model developing in this paper could help planning authorities to 

understand the overall pattern of usage of resources for elderly people in their catchment 

area.  Other similar research to improve length of stay problem are studied by Pelletier, 

Chaussalet, and Xie (2005b) and Xie, Chaussalet, and Millard (2006).  The paper 

presents a model-based approach with high-level length-of-stay patterns of residents in 

long-term care.  Two applications are presented to show the potential use of this 

approach.  In addition, the model has been extended to incorporate residents’ features, 

and is able to provide additional insights into the behavior of the flow of residents in 

institutional long-term care (ILTC) system.  There is software, which is presented by 

Xie, Chaussalet, Toffa, and Crowther (2006) to implementation of a forecasting 

framework.  The software is used to provide useful information to local authority budget 
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planners involved in long term care.  Feedback shows that the tool can help care planner 

and manager to gain more understanding in terms of length-of-stay of residents under 

their care, and provides quantitative inputs into their decision making on budget 

planning for long-term care. 

 

2.2.3 Community -Based Care problem in Long-Term Care 

 Greene, Lovely, Miller, and Ondrich (1995) studied the capability of 

community long-term care (CLTC) services to reduce nursing home use when services 

are allocated strategically.  This paper uses data from the National Long-Term Care 

Channeling Demonstration to determine the performance associated with the use of 

nursing home in the types of community service.  The problem applies a large-scale 

nonlinear programming (NLP) problem and use a logistic transition-probability model 

(TPM) to determine the relationship between use of community services and nursing 

home use.  Then, the mathematical optimization model is applied to minimize total 

population nursing home, which used as a function of community service under the total 

expenditure constraint.  The result shows that reductions in nursing home use can be 

produced without increasing community expenditures.  

 

2.2.4 Long-Term Care Capacity Planning 

 This part consists of all topics including demand forecasting, length-of 

stay and community care for long-term care to plan for capacity and resource in long 

run. Initially, Katsaliaki, Brailsford, Browning, and Knight (2005) studied a project 

carried out within Hampshire Social Services.  The study aims to investigate possible 

care pathways for older people after discharge from hospitals. This problem is very 

important because many elderly patients experience delayed discharge from acute beds, 

because post-acute care services such as home care are insufficient.  A discrete-event 
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simulation is used to analyze the system capacities and to estimate the associated 

reimbursement costs.  “Intermediate Care” has been introduced to offer as an alternative 

option for elderly patients to overcome the “bed-blocking” problem.  The services are 

examined in terms of capacity and appropriateness.  This paper fulfils the need to record 

and evaluate the new post-acute packages which are introduced by the Social Services.  

Another model determines the resources that will be demanded for provision of long-

term care of the frail elderly.  Lagergren (2005) developed a new model to estimate the 

future needs of publicly financed long-term care of frail elderly.  Applying the ASIM 

III-model aims to solve problems.  The model provides estimations on the amount of 

public long-term care services per age group, gender, marital status and degree of 

disability both retrospectively for the period 1985–2000 and prospectively according to 

the same terms for the period 2000–2030.  

 In addition, Hare, Alimadad, Dodd, Ferguson, and Rutherford (2009) 

developed a deterministic multistate Markov model of the Home and Community Care 

(HCC) system.  The model validates and predicts for future client counts for various 

HCC client groupings.  The model makes several steps forward in terms of research and 

modeling of HCC.  First, the models of HCC appear to be only concerned with publicly 

funded residential care environments but this model study including home care and non-

public fund care.  Second, the model predicts both the changes in the age demographics 

and the changes in the relationship between age and health status.  

 The development policies were proposed to ensure optimal allocation of 

scarce healthcare resources conducted by Garg, McClean, Meenan, and Millard (2010).  

This approach can efficiently be used to forecast resource requirement and resource 

allocation within the demand or resource constraints.  The patient flow was modeled 
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through the care system as a discrete time Markov chain.  A discrete time 

nonhomogeneous Markov models can be efficiently used in more sophisticated 

admission scheduling and resource requirement forecasting and allocation.  

 The system dynamic model is also used to development of long-term 

care facilities in Taiwan.  The improvement structure of long-term care facilities in 

Taiwan is composed of the four levels including satisfaction, service quality, the 

administrative skill and medical care personnel and facility hardware resources.  The 

model of causal relationships in this research can also increase the understanding of the 

developmental process of LTC facilities in other developing countries (Hsiao and 

Huang, 2012).  Another dynamic system model is proposed by Brailsford et al. (2012).  

They developed a system dynamics model for both supply and demand in health and 

social care with formal and informal.  System dynamics is an ideal tool to explore the 

variable, which is clearly a crucial factor in the provision of informal care and may 

potentially have a significant impact on the entire social care system, but is very difficult 

to estimate accurately. Similar study by system dynamic is found in recent year as 

Ansah et al. (2014). 

 In addition, the optimal control problem is proposed by Lin, Kong, and 

Lawley (2012) to determine the optimal level of the infrastructure capacity for a 

publicly funded home and community-based services (HCBS) program.  This research 

develops a compartmental model (as Figure 2.4) to simulate the population flows 

through the publicly funded LTC system with a systematic analysis.  The objective of 

the optimal control problem is to minimize the total spending on LTC and potential 

acute care for LTC patients over an extended period. 
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Figure 2.4 The compartmental model for HCBS capacity planning. 

Source: Lin, Kong, and Lawley (2012) 

 

Another simulation model is presented by Ragab, Abo-Hamad, and 

Arisha (2012).  This paper describes a project aiming to present modeling and 

simulation to specify elderly care pathways within healthcare.  The frail patients who 

are admitted to acute care and a new intermediate care beds are introduced as alternative 

interventions.  The healthcare executives are interested in simulating to evaluate the 

impact on the performance of the new elderly care system.  The simulation model with 

the statistical analysis is developed to enable the management to assess the current 

system within the critical financial and performance issues.  One of simulation model 

is presented by Zhang, Puterman, Nelson, and Atkins (2012).  The model applies a 

methodology to set long-term care capacity levels over a multi-year planning.  The 

approach integrates demographic and survival analysis, discrete event simulation, and 

optimization to solve the problem.  Cardoso et al. (2012) proposed a simulation model 

which is based on a Markov cycle tree structure to predict demand for LTC services 

annually.  The objective of the study is to inform the planning of the services at the 

small-area level in the recent years.  The simulation model is multiservice to predict the 

annual number of each long-term care service (including formal care and informal 
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home-based care, ambulatory services and institutional services), the resources or 

services that are required to satisfy the need (including informal caregivers, domiciliary 

visits, consultations and beds) and the costs.  The model is validated by using past data 

and is applied to Portugal at the Lisbon borough level to forecast the 2010–2015 period.  

Due to data imperfection and uncertainty related to predicting future LTC demand, the 

scenario was analyzed with probabilistic sensitivity analysis using Monte Carlo 

simulation.  The results show that the model provides information critical for informing 

the planning and financing of long-term care networks.  

2.2.5 Utilization improvement for Long-Term Care  

 Medicare's Prospective Payment System (PPS) for hospital services in 

the United States has increased both using nursing home care and resource, since earlier 

hospital discharge some convalescent care from the hospital to homes and nursing 

homes.  Garber (1989) presented the background of a study of the factors of long-term 

care utilization by the disabled elderly and analyzes utilization of hospital, home 

healthcare, and nursing home.  Another paper by Doyle and Masland (1997) proposed 

the development process over the traditional fragmented care along with financing 

methods through integrating patient administration responsibilities into one particular 

provider organization.  This paper reviews new program to maintain elders with 

physical and mental disabilities in home and community-based programs, and to 

minimize the use of acute and long-term institutional care.  All services are not 

integrated into each program.  It means that some obtain only primary and acute care 

but some others obtain only the continuum of long-term care.  However, the key focus 

is full of services, which consist of primary care, acute care and long-term care services.  

The result describes in terms of improving care and cost saving. 
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 The improvement of utilization for long-term care system is developed 

by Xie, Chaussalet, Thompson, and Millard (2002).  This research studies modeling of 

a multidisciplinary review panel which match long-term care levels to elderly 

requirements (as shown in Figure 2.5).  The objectives of the review panel are to assess 

an older person’s needs, and to achieve a placement decision that best meets those 

needs, thus ensuring that resources are used efficiently.  

 

  

 

 

Figure 2.5 Operation of the review panel in London Borough of Merton 

Source: Xie, Chaussalet, Thompson, and Millard (2002) 

 

 

This paper proposes the decision process of review panel and estimate 

decisions of each applicant’s attributes by applying logistics regression for the 

prediction model.  A two-stage approach is used  as a decision model to determine 

whether an applicant should be placed in each compartment and to check the 

consistency of the review panel’s decisions.  Graphical decision model is also used to 

solve this problem by Xie, Chaussalet, Thompson, and Millard (2007).  The research 

proposes an aid to the placement of elderly in institutional long-term care in a London 

borough, in the UK.  The prediction model uses a combination of syndromic decision 

rules and hierarchical logistic regression to fulfill some of the difficulties encountered 
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in an earlier study (H. Xie et al., 2002).  This model can be a useful decision-aid to staff 

in long-term care, such as social workers, geriatricians and nurses, in providing 

continuous monitoring and on-going assessment of the appropriateness of placements 

in order to match the resident requirements, as well as providing an independent 

assessment and recommendation. 

 In addition to wealth and utilization planning, long-term care insurance 

is another vital requirement which should prepare for elderly.  Robinson (1996) 

presented a health status transition model to develop as some part of LTC insurance 

pricing model.  Model features, estimation, and applications are discussed.  This paper 

applies a Continuous-Time Markov Chains (CTMC) to solve problem.  The model 

provides transition rates to alter with the sex and age of each person.  The long-term 

care transition model discussed in this paper is used to simulate monthly insured health 

status histories.  Then, second-stage model is applied that simulated long-term care 

service utilization and policy benefit payments for individual health status. 

 An integral part of retirement planning is studied by Gupta and Li 

(2004).  The research divided retirement planning into two phases including pre-

retirement and post-retirement.  On the basis of four interrelated models which are 

health evolution, wealth evolution, LTC insurance premium and coverage, and LTC 

cost structure.  The study develops a framework for optimal long-term care insurance 

purchase decision in the pre-retirement phase. To develop the optimal decisions, Post-

retirement LTC costs and LTC insurance premiums and coverage are tested.  A dynamic 

programming problem is used to formulate the problem.  Sensitivity analysis of the 

optimal decisions is performed for the retirement age and dependence of premiums on 

the health condition of the planner. 
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2.3  Ambulatory Care Sensitive Conditions (ACSC) 

Ambulatory care sensitive conditions (ACSCs) are health conditions of 

potentially preventable inpatient admissions to help reduce hospital resources and 

expenses. If there is a good and effective healthcare management system, ACSC 

patients can be treated by primary care.  Sanmartin, Khan, and Team (2011) proposed 

the study of ambulatory care sensitive conditions (ACSC).  The ACSC is an indirect 

indicator of the efficacy of primary care and of the ability of the system to manage 

chronic diseases such as diabetes, heart failure, chronic obstructive pulmonary disease 

(COPD), and asthma. ACSC hospital admissions are often referred  as avoidable 

hospitalizations and used as a measure of the effectiveness of primary care and 

community care. This study is the first national assessment of many of the hospital-

related factors associated with ACSC. The specific characteristics of this study are to 

focus on patients with at least one ACS condition. This study is based on a linkage 

survey and hospital information that provides comprehensive information about the 

patient's characteristics, access to primary care and hospitalization related to the ACSC. 

Understanding the role these factors may play in primary care may reduce the risk of 

hospital admissions from ACSC. 

Additionally, Freund et al. (2013) studied hospitalizations with ambulatory 

care–sensitive conditions (ACSCs).  The primary care can help to prevent the need for 

hospital admission from ACSCs. This research investigates the complex causes of 

hospitalization from the perspective of primary care physicians by interviewing 12 

primary care physicians in Germany.  In summary, the cause of hospitalization are 

categorized into 5 main reasons : system-related, physician-related, medical, patient-

related, and social. Primary care physicians have suggested that strategies to avoid 
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hospitalization may focus on after-hours care, optimal use of ambulatory services, high-

risk patient monitoring, and initiatives to improve patient intentions, ability to seek 

timely help and patient adherence to medication. 

Another research of ambulatory care sensitive conditions (ACSCs) is proposed 

by Galarraga, Mutter, and Pines (2015). The ACSCs are acute care diagnoses to improve 

primary care. The objective of this research is to study the cost differences for ACSC 

visits differ among three hospital-based settings (outpatient, emergency department 

[ED], and inpatient) and differences in physician and facility costs. The methodology 

of this research analyzes secondary analysis of data (2005 through 2010) from the 

Medical Expenditure Panel Survey and apply linear regression models. The results show 

that ACSC visits as inpatients are the most expensive.  Expanding outpatient care 

resources and improving the health management of chronic patients to avoid inpatient 

conditions that affect the most expensive expenses.  After that, Longman, Passey, 

Ewald, Rix, and Morgan (2015) proposed the demographic indicators of ambulatory 

care sensitive conditions (ACSCs).  The objective of the indicators is to be used as a 

representative for the feasibility of accessing services in Australia with chronic ACSCs 

patients to reduce preventable admissions.   

Ambulatory care sensitive hospitalizations (ACSH) is widely used to study the 

quality and effectiveness of primary care, presented by Lugo-Palacios and Cairns 

(2015). The data from 248 general hospitals in Mexico during 2001 to 2011 use to 

estimate a fixed impact model to explain the relationship between ACSH rates to 

patients and community factors. This study found a strong association of ACSH rates 

with economic and social conditions, health provision and health insurance, even after 

the latent control of the potential for launching insurance. 
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2.4  Chapter Summary 

From previous studies, the demographic structure consists mainly of birth, 

death, and migration. However, there are not many studies of migration on population 

change affecting the healthcare demand. The change of population to elderly society 

affects health status of population, especially chronic diseases and the healthcare 

demand in the hospitals. In addition, the use of hospital services is also essential to 

prepare to support inpatient demand in aging society.  Therefore, this research study on 

demographic changes to aging society and relate to inpatient demand and long-term 

care demand. The change of population includes birth, death and migration factor. The 

population groups are specified by age and gender.  The population transfer into 3 

groups of diseases consisting of chronic, non-chronic diseases and Ambulatory Care 

Sensitive Conditions (ACSC) or the disease in case of inpatients who can be controlled 

with outpatient services.  The length-of stays of patients in each year are investigated 

by semi-Markov Model.  The annual elderly from population model use to investigate 

type of elderly by household situations, level of dependency and chronic/nonchronic  

factors in order to allocate of staff  for long-term care. 
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CHAPTER III 

RESEARCH METHODOLOGY 

 

3.1    Research Framework 

 It is clear from Chapter I that the population change has impact on managing 

resources especially to accommodate the increasing of elderly.  According to the  

literature review in Chapter II, Markov chain is suitable tool to predict the number of 

population in the study.  The framework of this study is put into three models.  Model 

1 is a Markov chain model to determine the number of population and inpatients 

annually according to age groups and genders.  Model 2 is a semi-Markov chain model 

to determine the length of stay (LOS) of the population when require hospital service.  

The forecast data from model 1 are used as input information for model 2.  Model 3 also 

uses the result from model 1 to determine the number of caregivers required each year 

to provide long term care service.  The framework is shown in Figure 3.1. 

 Data used in this study can be categorized into two types, aggregate population 

data and sample of individual data.  Aggregate data used for model 1 compose of annual 

population data, annual new born data, annual death data, and annual inpatient data.  

Individual data used to analyze the number of daily admission for model 2.  
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Figure 3.1 Research Framework 

 

3.2 Model I : Markov Population Model 

The study is to develop non-homogeneous Markov model to predict population 

and an annual demand of all hospitals in a certain area.  The objective of this research 

aims to predict annual population and annual inpatient demands separated by Chronic, 

Non-chronic and Ambulatory Care Sensitive Conditions (ACSC) when population 

structure change to the elderly.  The study examines both the changes in the age and 

gender demography together with the factors of birth, death and net migration. 

Ambulatory Care Sensitive Conditions (ACSC) are one of the key factors of 

quality and effectiveness of primary care services (Lugo-Palacios and Cairns, 2015).  

The ACSC inpatients can be reduced by effective treatment in primary care. 
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Identification of ACSC patients is separated by a primary diagnosis of ICD-10 

and secondary diagnosis and procedure of ICD-9 CM ( Supol Limwattananont, 2011) 

as lists below.  

i. Epilepsy ICD-10: [G40 and G41] 

ii. COPD ICD-10: [J41-J44, J47]  

iii. [J10.0, J11.0, J12-J16, J18, J20, J21, J22] which secondary diagnosis is 

ICD-9 CM: J44 

iv. Asthma ICD-10: [J45 and J46] 

v. HF-PE  ICD-10 : [I50 และ J81] without procedure of ICD-9 CM[ 33.6, 35, 

36, 37.3, 37.5, 37.7, 37.8, 37.94 and 37.98] 

vi. Diabetes ICD-10 : [E10.0, E10.1, E10.6, E10.9, E11.0, E11.1, E11.6, 

E11.9, E13.0, E13.1, E13.6, E13.9, E14.0, E14.1, E14.6 and E14.9 ] 

vii. HT  ICD-10 : [ I10 and I11] without procedure of ICD-9 CM[ 33.6, 35, 36, 

37.3, 37.5, 37.7, 37.8, 37.94 and 37.98] 

Assumptions 

1) The change of population structure on each gender consists of the following 

factors birth, morality, net migration, current population 

2) The population compose of 5 age groups:  (i) ages 0-15 years (child), (ii) ages 

16-59 years (working-age), (iii) ages 60-69 years (beginning elderly), (iv) ages 

70-79 years (middle elderly) and (v) ages 80 or more (oldest elderly).  The 

gender factor is also the component for each age group. 

3) The population change by annually.  Some of population transfer to next age 

group by using the transition probability between groups.   
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4) The change of population can transfer to three inpatient groups by type of 

chronic diseases : (i) chronic (ii) non-chronic (iii) ACSC. 

Data analysis 

The data flow of model I is shown in Figure 3.2 

 

 

 

Figure 3.2 Data flow of model I 

Sets 

Let A – Set of age group; A={[0,15],[16-59],[60-69],[70-79],[80+]} 

T – Set of year; T={2015,…,2025} 

IP - Set of inpatient types; IP ={Chronic, Non-Chronic, ACSC} 
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S1 – Set of state transition, S1={ [Pop(a)  Pop(a)], [Pop(a)  Pop(a+1),], [Pop(a) 

 Inp(k,a)], [Pop(a) Inp(k,a+1)], [Pop(a) Death]} 

G – Set of gender ; G={Male, Female} 

Indices 

 i , j: the ith state and the jth state of the population state i, j S 

t: the tth   year , t T 

g: the gth gender ,  g G 

a: the ath age group  , a A 

k: the kth inpatient group  , k IP 

Variables  

Let  Pop(g,a,t) – Population gender g, in age group a at year t  

)(tpagij  - the probability of the transition of population age group a, gender g 

transfer from state i at time t-1 to state j at time t. 

)(tnagij  - the number of individuals of population age group a, gender g transfer 

from state i at time t-1 to state j at time t. 

Inp(g,a,k,t) – the number of inpatient gender g, age group a, disease k at time t 

1) Birth rate – Calculate newborn rate per population gender (g) per year (t) from 

2007-2014 as equation (3.1) and calculate linear regression of birth rate and time. 
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2) Net migration – Calculate net migration by applying cohort component method 

(Smith, Tayman, and Swanson, 2006) and vital statistic (VI, 1970) to 5 age groups 

and each gender. Using equations (3.2) and (3.3), then estimate net-migration rate 

function with population covariate 

 

Net-migration(g,a,t) = NewBorn (g,t) + Pop (g,a,t-1) - Pop (g,aa+1,t-1t)  – Death(g,a,t)            

- Pop (g,a,t)             ; for age(a) = 1      (3.2)   

 

Net-migration(g,a,t) = Pop (g,a,t-1) - Pop (g,aa+1,t) + Pop (g,a-1a,t-1t) – Death(g,a,t)                  

-   Pop (g,a,t)   ; for age(a) > 1              (3.3) 

 

 

3.2.1  Model  

 The calculation begins with analyzing historical data to estimate birth 

rates, transition probability rates between age groups, transition probability rates to 

hospitals, net-migration rate and mortality rate.  These transition rates are the 

composition of one-year transition matrix for each gender.  The transition matrices are 

used to estimate annual population changes and annual demand in hospitals during 

period 2007-2025.  The result shows inpatient demand separated by chronic, non-

chronic and ACSC types. 

The model consists of two sub-Markov models from Figure 3.3 The 

models are population transfer model and inpatient transfer model by gender .  The 

process of sub model-1 (population transfer model) comprise of states as following 

details. 
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Figure 3.3 Transition probability states of each gender 

 

1) population age (a) at the end of year (t) transfer to population who are not 

inpatients in year (t+1) in age group (a)          ; (a = 1..5) 

2) population age (a) at the end of year (t) transfer to population who are not 

inpatients in year (t+1) in age group (a+1)      ;(a = 1..4) 

3) population age (a) at the end of year (t) transfer to inpatients group disease 

(k) in year (t+1) in age group (a)          ;(a = 1..5, k=1..3) 

4) population age (a) at the end of year (t) transfer to inpatients group disease 

(k) in year (t+1) in age group(a+1)                  ;(a = 1..4, k=1..3) 

5) population age (a) at the end of year (t) transfer to dead population outside 

hospital in year (t+1)                     ;(a = 1..5) 

6) New born (t+1) add to population age (1) at year (t+1)      ;(a = 1) 
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7) Net migration age (a) at year (t+1) ± population age (a) at year (t+1)         

                                                               ;(a = 1..5) 

The process of sub model-2 (inpatient transfer model) comprise of states as lists below. 

8) Inpatient age (a) group disease (k) at year (t+1) transfer back to population 

age (a) at year(t+1)                                        ;(a = 1..5,k=1..3) 

9) Inpatient age (a) group disease (k) at year (t+1) transfer to death state (in 

hospital) at year(t+1)                                        ;(a = 1..5,k=1..3) 

Annual population change shows the transfer flow of each state due to the changing age 

and illness situation, as shown in Figure 3.4. As follow the step of Markov model in 

Figure 3.3 and 3.4, the end population of each gender at year (t+1) can calculate as 

equations (3.4, 3.5 and 3.6). 

 

pop (g,a,t+1) = [pop(g,a,t) - pop(g,a,t)  pop (g,a+1,t+1) + Newborn (g,t+1) ± 

Net migration(g,a,t+1) - death outside hospital (g,a,t+1) – pop(g,a,t)  

∑ inp ሺg, a, k, t ൅ 1ሻ௞ – pop(g,a,t) ∑ inp ሺg, a ൅ 1, k, t ൅ 1ሻ௞ ] +        

[∑ inp ሺg, a, k, t ൅ 1ሻ௞  - dead inpatient in hospital (g,a,t+1)]                                                        

; for g,=1,2 , a=1                             (3.4) 

 

pop (g,a,t+1) = [pop(g,a,t) - pop(g,a,t)  pop (g,a+1,t+1) + pop(g,a-1,t)  pop 

(g,a,t+1) ± Net migration (g,a,t) - death outside hospital (g,a,t+1) – pop(g,a,t)  

∑ inp ሺg, a, k, t ൅ 1ሻ௞ – pop(g,a,t) ∑ inp ሺg, a ൅ 1, k, t ൅ 1ሻ௞ ] + 

[∑ inp ሺg, a, k, t ൅ 1ሻ௞  - dead inpatient in hospital (g,a,t+1)]            

 ; for g,=1,2 , a=2..4                 (3.5) 
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pop (g,a,t+1) = [pop(g,a,t) + pop(g,a-1,t)  pop (g,a,t+1) ± Net migration (g,a,t) 

- death outside hospital (g,a,t+1) – pop(g,a,t)  ∑ inp ሺg, a, k, t ൅ 1ሻ௞ ] + 

[∑ inp ሺg, a, k, t ൅ 1ሻ௞  - dead inpatient in hospital (g,a,t+1)] 

             ; for g,=1,2 , a=5                                   (3.6) 

 

 

 

Figure 3.4 State transition between age groups 

3.2.2  Markov Chains 

In this section, we present non-homogeneous discrete time Markov 

model base multinomial logit formulation from MacRae, (1977). 

Death Death Death

Death Death Death

Death Death Death

Death Death Death

Death Death Death

T T+1 T+2

P80+

P80+

P16-59

In16-59

P60-69

In60-69

P70-79

In70-79

P80+

P16-59

In16-59

P60-69

In60-69

P70-79

In70-79

P80+

P80+

P16-59

In16-59

P60-69

In60-69

P70-79

P80+

In70-79

In0-15 In0-15 In0-15

Birth Birth BirthNet Mig Net Mig Net Mig

P0-15 P0-15 P0-15

Death

Death

Death

Death

Death

Death

Death

Death

Death

Death

Death

Death

Death

Death

Death



42 
 

 
 

Let )(tpagij  be the probability of the transition of population age group 

a, gender g transfer from state i at time t-1 to state j at time t.   

 

 

 iXjXPtp tagagtagij   )1(|)(  for i,j =1,2,.,m, a=1..5,g=1,2,t=0,1..T   (3.7)  

                           

From the previous study, Anderson and Goodman (1957) presented that 

Markov model from count data was estimated by using multinomial distribution for 

both homogeneous and non-homogeneous Markov chains. 

Let  )(tnagij  be number of population age group a, gender g transfer from 

state i at time t-1 to state j at time t.  

 





m

j
agijagi tntn

1

)()1(    for i =1,2,…,m , a=1..5, g=1,2, t=0,1..T                (3.8) 

And 



m

j
agij tp

1

1)(  for i =1,2,…,m , a=1..5, g=1,2, t=0,1..T                  (3.9)  

Calculate maximum likelihood estimation for )(tpagij  is 

 

)1(

)(
)(ˆ




tn

tn
tp

agi

agij
agij  for i,j =1,2,…,m , a=1..5, g=1,2, t=0,1..T                (3.10) 

The condition distribution of )(tnagij  given )1( tnagi has the same distribution 

formulation of the multinomial distribution.  

The parameterization process of non-homogeneous Markov chains in 

this research transforms multinomial distribution into a linear function by multinomial 

logit transformation.  The multinomial logit function shows the relationship between 
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transition probability and time-dependent covariates. Due to lack of data availability, 

covariate or independent variable in this research use only time calendar and all 

population of each age at time t-1.   

The transition probability show in odds function which is the relation of 

)(tpagij  state i to state j and )(tpagii is reference state of odds as equation (3.10) and logit 

function in equation (3.12). 

 

)(

)(
)(

tp

tp
t

agii

agij
agij    for i,j =1,2,…,m, j≠i , a=1..5, g=1,2, t=0,1..T          (3.11) 

  

);())(())(ln( xftpt agijagij   , for i,j =1,2,…,m , j≠i, a=1..5, g=1,2, 

t=0,1..T                 (3.12) 

When   are vectors of parameters and x  are vectors of covariates or 

variable of logit function and rewrite equation (3.11) to probability function of 

parameter and covariate vectors as equations (3.13) and (3.14) 
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 for i,j =1,2,…,m , a=1..5, g=1,2, t=0,1..T         (3.13) 
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for i,j =1,2,…,m ,a=1..5, g=1,2, t=0,1..T       (3.14)                       

Let )0(agin  be number of individuals of population age group a, gender 

g at state i at time t=0 , and the moment of multinomial distribution show as equations 

(3.15), (3.16), (3.17), and (3.18) 
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Mean 

  )()0()( tpntn agijagiagij                             (3.15) 

Variance 

   ))(1()()0()( tptpntnVar agijagijagiagij   for i=j          (3.16) 

Covariance 

   )()()0()(cov tptpntn agiiagijagiagij    for i≠j          (3.17) 

Variance - Covariance Matrix , ))(( tnVagi , of ni =(ni1 , ni2 ,…, nim)’ is given by 
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From equation (3.10) 
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  (3.19)        

 3.2.3  Weighted Least Square Estimation 

The parameterization for Markov multinomial logit model in this 

research are applied by using weighted least square estimation (WLS).  From the 
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previous study, we found that the weighted least square method in one of the most 

popular algorithms applying for Markov chain from aggregate data.  Therefore, in this 

research, we use WLS to estimate parameters of multinomial logit Markov model for 

demographic change. 

Weighted least squares (WLS) is a parameter estimation technique which 

extends from ordinary least square due to non-constant variance.  Agresti and Kateri 

(2011) show the advantage of WLS for parameter estimation as following details.  

Firstly, WLS has a standard form to apply for various models easily.  Secondly, WLS 

is one of the parts of Maximum likelihood estimation technique by using iterative WLS. 

Finally, when WLS and ML estimators are asymptotically equivalent.  The estimation 

algorithm from both is in group of best asymptotically normal (BAN).  

Asymptotic Covariance Matrix 

 Logit response function equations (3.11) and (3.12) assume to normal 

distribution  

Let ))((
~

tp nagi  be a vector of logit response function on sample size n 

from state i  and ))((
~

tp nagi =[ ))]((
~

)),...((
~

)),((
~

21 tptptp nagimnaginagi   for age group a 

and gender g. 

For large sample, suppose that the cdf of  ))(())((
~

tptpn aginagi    

converse to a ),0(  agiVN cdf. 

 

  ),0())(())((
~

  agi
d

aginagi VNtptpn                 (3.20) 

 

From equations (3.11) and (3.12), ))(( tpagij  show as equation (3.21). 
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   )(ln)(ln))(( tptptp agiiagijagij    for i,j =1,2,…,m , a=1..5, g=1,2, t=0,1..T     

         (3.21) 

 

 From delta method (Agresti & Kateri, 2011)  

Let i  be the Jacobian (m-1)m matrix.  

 

    
)(

1

)(

1
)(ln)(ln

)(

))((

tptp
tptp

ptp

tp

iiij
iiij

ij
i 











   for i,j=1..m 

and i≠j  









































11

1

1

1
3

1

1
2

1

0000

0:000

00:00

0000

0000

imii

ii

ii

iii

iii

i

pp

p

p

pp

pp

              (3.22) 

Thus, asymptotic covariance Matrix ( )(tV F
) of log odds is 

 

)(tV F
  =  i   )(tVagi  i                (3.23) 

From minimizes the quadratic loss function form of  WLS  

 

 

   ))(;())(())(;())(( 1 txftpVtxftp agiFagi  


              (3.24) 

and );( xf  = x  

Where 

    - Set of parameters 

 x  - Set of covariates 
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Calculate parameter of logit when ib  is vector of parameter ij   from 

equation (3.25) and x is matrix of known constants of covariates. 

 

   iFiFi xfVxxVxb );(111                                (3.25) 

 

From equation (3.20), the weighted least square estimator has an asymptotic normal 

distribution, with estimated covariance matrix in equation (3.25)  

 

  11)(  iFi xVxbCov      (3.26) 

Goodness of fit test 

The hypothesis test show null hypotheses as equation (3.27) 

onLossFuncti   0))(;())((  txftpagi               (3.27) 

Hypothesis test 

The null hypothesis of homogeneity is as  

H0: 0                             (3.28) 

The lists of models to compare types of covariates ( x ) in the same form of equation 

(3.24) are shown below. 

Model A : none of covariate of matrix x or accept null hypothesis 0  

Model B : covariate of matrix x ; x is Number of population  

Model C : covariate of matrix x ; x is Year  

Model D :  covariate of matrix x ; x is Number of population  and Year 
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Use F distribution with (q,v) degree of freedom to test hypothesis  

vSSR

qSSRSSR
F

u

ur
vq /

/)(
,


                (3.29) 

SSRr – Residual of loss function equation (3.27) for null hypothesis or Model A with q 

degree of freedom and SSRu for the other test (Model B ,C , and D) with v degree of 

freedom. 

3.3 Model II : Inpatient semi-Markov model 

From previous section, two sub Markov models are in population model 

including population age transfer model and inpatient transfer model in a year.  The 

inpatient transfer model consists of two state transition as shown in Figure 3.5. The state 

of inpatient to discharge and inpatient to death.   Times between discharge and death 

are called length of stay (LOS).  In this model, LOS will be investigated by semi-

Markov model for five age groups, gender and three types of diseases.  

 

 

 

 

 

 

Figure 3.5 Inpatient transfer model 

Assumptions 

1) Transition occurs within one year so no any age groups change between 

states. 

T  T+1 

Discharge (t) 

Death (t)

Inpatient (t)
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2) All inpatients will be discharged in a year. 

3) Length of stay are in daily unit. 

4) Semi-Markov model in this study is a discrete model. 

5) Holding time proportions do not change for each year based on inpatients 

individual sample data from 43 files health data center database 

Data analysis 

The data flow of model 2 is shown in Figure 3.6 

 

 

 

Figure 3.6 Data flow of model II 

 

1)  Inpatients disaggregated by gender, age group 5 groups and 3 diseases 

groups – Total inpatients by gender in 298 main cause of illness from 2007-

2014 are disaggregates by age proportion from sample inpatients of each 

disease group. 

Individual Sample Data

- Daily inpatient admission 

Distribution estimation

- Frequency of hospiatal 
visits of the population                                 
- Length of stay

Model 1
Multistate Markov 
Population model

Model 2
Semi-Markov 
LOS model

- Annual number 
of Inpatients

- Number of 
Population

- Number of Bed 
Requirement
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2) A number of time visit hospitals – fit distribution of the number of time visit 

hospitals of inpatients by age groups, diseases, and gender from sample 

inpatient individual data.  

3) The length of stay in hospitals – fit the distribution of length of stay in 

hospitals of inpatients by age groups, diseases, and gender from sample 

inpatient individual data. 

Sets 

Let S2 – Set of state transition, S2={ [Inp(a)  Pop(a)], [Inp(a) Death]}  

G = {Male, Female}; set of each gender 

A = {[0-15],[16-59],[60-69],[70-79],[80+]} ; set of age groups 

I = {Chronic, Non-chronic, ACSC} ; set of inpatient types 

D = {1,..,d} for set of time day(s) in a year 

Indices 

i , j: the ith state and the jth state of the inpatient state i, j S2 

n :  the n-th  - state transition number n  

d: the dth   day , d D 

g: the gth gender ,  g G 

a: the ath age group  , a A 

k: the kth inpatient group  , k IP 

Variables  
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ijp  - The transition probability of the semi-Markov chain of inpatients moving 

from state i to j (i,j = 1,..s2) 

hij (d)-  The holding time (sojourn time) mass function - propability that 

inpatients in state i will spend d days in state i before go to state j destination, 

when dij is discrete. 

)(kij -   The probability that inpatients will be in state j on day t from state i on 

day 0 

3.3.1 Discrete time semi-Markov model 

The semi-Markov models in this study consist of state space and set of 

information as the following. State space S2 = {1, 2}; set of inpatients as 1 for inpatients 

discharge to survive population and 2 for inpatients to dead in hospital population. 

 

The sojourn time distribution in state i is defined as 

 

ℎ௜ሺ𝑑ሻ ൌ 𝑃ሺ𝑋௡ାଵ ൌ 𝑑|𝐽௡ ൌ 𝑖ሻ, 𝑖 ∈ 𝑆ଶ, 𝑛, 𝑑 ∈ 𝐷                      (3.30) 

 

The sojourn time cumulative distribution in state i is defined as 

 

            𝐻௜ሺ𝑑ሻ ൌ 𝑃ሺ𝑋௡ାଵ ൌ 𝑑|𝐽௡ ൌ 𝑖ሻ ൌ ∑ ℎ௜ሺ𝑙ሻ௧
௟ୀ଴ , 𝑖 ∈ 𝑆ଶ, 𝑛, 𝑙, 𝑑 ∈ 𝐷         (3.31) 

 

    Applying discrete semi-Markov model to predict the length of stay, the 

interval transition probability that inpatients will stay in state j (survive population or 

pass away) on day d from state i (hospitals) on day 0 is defined as 

 

௜௝ሺ𝑑ሻ ൌ 𝛿௜௝ሾ1 െ 𝐻௜ሺ𝑑ሻሿ ∑ 𝑝௜௥ ൅ ∑ 𝑝௜௥ ∑ ℎ௜௥ሺ𝑙ሻ𝜑௥௝ሺ𝑑 െ 𝑙ሻ௧
௟ୀଵ௥∈ௌଶ௥∈ௌଶ       

Where ij - the Kronecker symbol , 1)0( ij  for i=j otherwise 0)0( ij  

(d) 
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and 





0

1
ij   

ji

ji




    ;  𝑖, 𝑗, 𝑟 ∈ 𝑆ଶ,  𝑙, 𝑑 ∈ 𝐷                                                 (3.32) 

 

 From Markov population model, the results show number of population 

for each age and gender groups and number of acute care as inpatients for each types of 

diseases by annually. Calculate number of hospital visits (NHV) per year t of inpatients 

(IPD) as following details. 

        NHVa,k,g,t  =  IPDa,k,g,t   (proportion of NHV)a,k,g   (NHV of each proportion) a,k,g 

           for,     Ttg  , 2,1 ,   ,...,1 Kk                 (3.33) 

The number of hospital visits (NHV) from Markov population model are 

used to calculate total length of stay per year as following details. 

 

LOS = NHV  Pij  Hij                (3.34) 

 

Calculate total patient days (TPD)  from equation 3.35 

 

 TPD t =       ∑ ∑ ∑ 𝐿𝑂𝑆௚,௔,௞ሺ𝑡ሻ௞௔௚   for, Tt                     (3.35) 

 

Calculate number of annual bed requirement as following details. 

 

BedRequirement t =  
365

TPD t   for, Tt               (3.36) 

 

Bed Occupancy Ratet  =    365_

TPD

t

t

CapacityBed
 for, Tt            (3.37) 

 

3.4 Long-term care model 

From previous section, the study investigate population structure change from 

2015 to 2025 which combine demand of inpatient care.  The population who are 
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transferred to inpatient states are defined as acute care patients.  In this section, the study 

will focus on elderly population.  Elderly people need more intensive care than other 

group due to their personal health problems.  Long term care systems for elderly are 

divided by level of elderly health.  In this study, the factors that impact to level of long 

term care are level of dependency and household situation.  The data flow of Model 3 

is shown as Figure 3.7 

 

 

 

Figure 3.7 Data flow of model III 

 

The details of factors need to consider as following details.   

1) Levels of dependency mean level of practice daily activity by themselves as 3 

levels  

a) Level 1 no dependency - elderly who can do all activities of daily living 

(ADL) without assistance. 

Model 1
Multistate Markov 
Population model

Model 3
Long Term Care 

Forecast

- Number of 
Inpatients

- Number of 
Population

- Number of 
Caregivers

Elderly
- Levels of dependency 

proportion

- Household situation 
proportion
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b) Level 2 light dependency – elderly who need assistance to do activities 

of daily living for one activity.  

c) Level 3 heavy dependency – elderly who need assistance to do activities 

of daily living more than one activities. 

2) Household situation concern about elderly who live alone (LA) or live with 

family (LF). 

 

 

 

Figure 3.8 Level of long term care diagram and Staffing 

 

Level of care in this research can be classified as lists. 

 The elderly who live alone (LA) and heavy dependency need more care from 

medical care staff at primary care unit. 

 The elderly who live alone (LA) and light dependency need more care from care 

staff at primary care unit. 

Level of dependency Household

LA
Selfcare

no dependency LF
Selfcare/Family

LA
Community care/Volunteer

light dependency LF
- Family
- Community care/Volunteer

LA - Community care/Volunteer
- Primary care staff for home visit

heavy dependency LF
- Family
- Primary care staff for home visit
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 The elderly who live with family (LF) and heavy dependency need care from 

family. 

Data Analysis 

The information of level dependency and household situation for each elderly 

group is based on data survey from National health survey. 

 

Table 3.1 Level of Elderly dependency 

 

Remark : 1- no dependency, 2- light dependency, 3- heavy dependency 

 

Table 3.2 Household composition – percent of elderly who live alone 

Year 1994 2002 2007 2011 2014 

% 3.6% 6.3% 7.7% 8.6% 8.7% 
 

The analysis number of long-term care demand will be applied monte-carlo 

simulation to investigate proportion of long-term care factors due to the lack of 

information of joint probability of household composition and level of dependency.   

Assumptions: 

1) Proportions of level of Elderly dependency distribution are based on uniform 

distribution of each age and gender. 

2) Proportion of household composition are based on uniform distribution as last 

three survey data.  

3) The standard level of all elderly per community care staff is 7 elderly per 1 

staff   

1 2 3 1 2 3 1 2 3 1 2 3
[60-69] 0.887 0.106 0.007 0.855 0.139 0.006 0.829 0.150 0.021 0.792 0.186 0.022
[70-70] 0.858 0.125 0.017 0.786 0.202 0.012 0.766 0.195 0.039 0.630 0.307 0.063
[80+] 0.790 0.168 0.042 0.686 0.246 0.068 0.671 0.268 0.061 0.510 0.375 0.115

2009 2014
Age Male Female Male Female
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4) The standard level of elderly who is in dependency level 2and 3 and elderly 

who live alone per home care staff is 7 elderly per 1 staff. 

5) The standard of elderly who is in dependency level 3 per home visit medical 

staff is 200 elderly per 1 staff.  

 The number of long-term care demand will be analyzed by simulation of each 

level of household composition.  The trend of level of dependency and household by 

live alone grow continually therefore, sensitivity analysis will be proposed in the next 

section. 

 

3.5  Data sources 

The information input to the model consists of population data and inpatient 

data. 

1) Population data disaggregated by gender and age from 2007-2014 

comprises of  

 Annual newborn data and annual population data  (The bureau of 

registration administration [BORA] ,2014) 

 Annual death data (National Statistical Office [NSO], 2014) and the 

number of death disaggregated by age, gender from (Nakhon Ratchasima 

Provincial Public Health Office, 2014) and (Health Information System 

Development Office [HISO], 2014) 

 Total number of death in hospitals (Bureau of Policy and Strategy [BPS], 

2014) 

2) Inpatient data consists of aggregate data and individual sample data 
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 Annual inpatient data from 2004 – 2014 from: ( Bureau of Policy and 

Strategy, 2011, 2012, 2013, 2014) 

 Total inpatient data disaggregated by gender and the main causes of 

illness 298 groups from (BPS, 2014) 

 Inpatients Individual sample data from 43 files health data center 

database from Nakhon Ratchasima Provincial Public Health Office, total 

235,362 records from 2012-2014 

Inpatient data are disaggregated by chronic, non-chronic and ACSC groups by 

using ICD-10 and lists of chronic diseases ICD-10 codes from 43 files health data center 

database. 

  

3.6 Sensitivity Analysis 

Many factors impact to the system, in this research, the uncertainty analysis will 

study the change of level net-migration in Markov population model, the change of  

level length of stay in semi-Markov model and the change of ACSC inpatients decrease 

from Markov population Model based on assumption that if the primary care unit serve 

ACSC patients continually, the acute care of ACSC patients to hospital will be decrease. 

The elderly inpatients who stay in hospitals more than 1 months decrease to long term 

care model.  The assumption on this case is based on the long-term care system can help 

to decrease the acute care for the heavy dependent elderly. The levels of uncertainty 

analysis for each model are proposed to evaluated level of resource requirement. 
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Table 3.3 Lists of scenario test 

------------------------------------------------------------------------------------------------------- 
Scenarios     Details 
------------------------------------------------------------------------------------------------------- 
 1  - Net migration -30%, and +30% 

 2   - Number of ACSC inpatients , -25%, -40%,+25%, +40% 

 3  - 25% of elderly inpatients who stay in hospitals more than 1 

months decrease to long term care.   

 4   - Household composition increase 1% by annually  

------------------------------------------------------------------------------------------------------- 
 

3.7 Chapter Summary 

 In this chapter, the research methodology is presented including research 

framework, research procedure, data analysis, models and sensitivity analysis.  The 

research framework consists of combining the stochastic method including 

nonhomogeneous Markov model and semi-Markov model.  The multistate 

nonhomogeneous model analyze demographic population change from aggregate data.   

The population model transfer from each age group and gender to next states including 

inpatient state, population state and death state by annually.  The research procedure 

present the study of the change of population structure impact to healthcare demand and 

long-term care from previous research.  The data analysis using in this research consists 

of aggregate data and individual data.  The analysis of aggregate data use to estimate 

transition probabilities of each states of non-homogeneous multistate Markov 

population model.   

 The models consist of Markov population model, inpatient semi-Markov model 

and long-term care estimation model. The result from Markov population model 
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compose of number of population and inpatient demand during 2015-2025.  The 

inpatient demand from previous model and holding time distribution from individual 

data is used to analyze length of stay (LOS) using semi-Markov model and estimate 

number of bed requirement from LOS.  The long-term care requirement are estimated 

by the data from Markov population model and semi-Markov model.  After that, test 

sensitivity analysis to evaluate result due to uncertainty situation.  Finally, analyze 

result, conclusion and future suggestion. 
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CHAPTER IV  

RESULTS AND DISCUSSIONS 

This chapter provided the information related to the parameters of Markov 

model.  The results of Markov model, semi-Markov model and long term care are 

shown in this chapter.  The sensitivity aim to analyze the effect of uncertainty situation 

impacting the resource requirement of the model. 

 

 

4.1  Markov population model 

4.1.1  Parameter estimation 

1) Birthrate Function  

There are different parameters relating to the newborn rates of each 

gender.  The parameters of birthrate function from equation (3.1) and new born data in 

Table A1 by gender are shown in Table 4.1 (based on time-dependent with year 

covariate).   

Let    

)(_ tf ratebirth be the function of birth rate per population gender. It can be defined as  

 

)()(_ tytf ratebirth                    (4.1) 

 

 



61 
 

 
 

Table 4.1  Parameters of Birthrate by population gender 
 

Parameters Male Female 

Constant( ) 0.223673 0.368025 

Year )(ty  -0.00011 -1.78E-04 
 

2) Net Migration 

The net migration rates per population in this research are calculated 

from aggregate population data by cohort component method from equations (3.2) and 

(3.3).  We fit the distributions by graphical and use fourier distribution for all net 

migration rate distributions.  The equation of distribution function of net-migration rate 

per total population by gender is shown in equation (4.2) and the parameters are shown 

in table 4.2 

 

   wxbwxaatf onratenetmigrati  sincos)( 110   

             wxbwxa  2sin2cos 22
               (4.2) 

 

Table 4.2  Parameters of net migration rate by population genders 

Parameter        a0         a1         b1         w         a2         b2  

Male 

[0-15] 0.00136 0.00006 0.00001 0.00018 -0.00007 0.00024 

[16-59] 0.00014 -0.00257 0.00107 0.00018 0.00272 0.00108 

[60-69] 0.00006 0.00015 0.00009 0.00018 -0.00030 -0.00002 

[70-79] -0.00008 -0.00002 0.00006 0.00019 0.00013 0.00012 

[80+] -0.00004 0.00003 0.00017 0.00013 0.00013 0.00017 

Female 

[0-15] 0.00105 0.00018 -0.00017 0.00017 - - 

[16-59] -0.00162 0.00111 0.00153 0.00009 - - 

[60-69] 0.00000 0.00004 0.00017 0.00012 0.00006 -0.00003 

[70-79] 0.00014 0.00021 0.00024 0.00008 -0.00001 0.00017 

[80+] -0.00006 -0.00015 -0.00017 0.00019 0.00012 -0.00012 
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3) Markov Transition Probability 

The logit functions are parameterized as polynomial in year calendar and 

total population of each age group covariates.  The comparisons of F-distribution test 

from equation (3.29) for hypothesis test equation (3.28) are shown in Appendix D.  In 

Table D1 and D2, we compare F-distribution test of models B, C and D with null 

hypothesis to discover which factors affect transition.   In case of rejecting the null 

hypothesis and accepting the other hypothesis of model B, the number of population 

can be used as covariate of logit transition probability function.  In case of rejecting the 

null hypothesis and accepting the other hypothesis of model C, the year calendar can be 

used as covariate of logit transition probability function.  In case of rejecting the null 

hypothesis and accepting the other hypothesis of model D, the number of population 

and the year calendar can be used as covariates of logit transition probability function.  

In case of accepting the null hypothesis of model B and C, covariate matrices of logit 

transition probability function are constant.  In case of rejecting the null hypothesis of 

all models, compare F-test value and choose the most of F-test value. 

The result of selected parameters of logit function are shown in Table 4.3 

for male and Table 4.4 for female.  Parameters of logit function from equation (3.11) of 

each state for male and female are calculated by using equation (3.24).  

 

Table 4.3  Parameters of the logit function of male for each state 

States Covariates [0-15] [16-59] [60-69] [70-79] [80-+] 

12 (Pop1_-->Pop2) 

Constant -457.58 -15.229 102.838 -3.0744 0 

pop 4.8E-05 1.3E-05 0 0 0 

year 0.21972 0 -0.0525 0 0 

13 (Pop1_-->Death) Constant -203.84 -15.708 -2.9479 -0.112 580.157 



63 
 

 
 

States Covariates [0-15] [16-59] [60-69] [70-79] [80-+] 

pop 0 1.2E-05 -2E-05 -8E-05 0 

year 0.09804 0 0 0 -0.2896 

14 (Pop1_-->ACSC1) 

Constant -1.3765 -68.483 -2.8093 -1.8237 307.122 

pop -1E-05 0 0 0 0 

year 0 0.03155 0 0 -0.1531 

15 (Pop1_-->Chronic1) 

Constant -1.7734 -72.375 -2.7173 -1.7877 266.385 

pop -1E-05 0 0 0 0 

year 0 0.03394 0 0 -0.1329 

16 
(Pop1_--
>NonChronic1) 

Constant 1.08282 -2.8173 -0.7923 -0.8153 310.551 

pop -9E-06 0 -1E-05 0 0 

year 0 0 0 0 -0.1544 

17 (Pop1_-->ACSC2) 

Constant -268.16 -161.3 -4.5312 -300.03 0 

pop 0 0 0 0 0 

year 0.12966 0.07651 0 0.147 0 

18 (Pop1_-->Chronic2) 

Constant -3.2544 -7.2587 -4.545 -4.1243 0 

pop -1E-05 0 0 0 0 

year 0 0 0 0 0 

19 
(Pop1_--
>NonChronic2) 

Constant -68.747 -6.1984 -2.4195 -3.0348 0 

pop 0 0 -1E-05 0 0 

year 0.03158 0 0 0 0 
 

 
Table 4.4  Parameters of logit function of female for each state 
 

States Covariates [0-15] [16-59] [60-69] [70-79] [80-+] 

12 (Pop1_-->Pop2) 

Constant -443.259 -119.907 94.40829 -146.642 0 

pop 4.99E-05 0 0 0 0 

year 0.212718 0.05744 -0.0483 0.071458 0 

13 
(Pop1_--
>Death) 

Constant -186.789 -7.31793 90.67852 127.1182 0.41318 

pop 0 0 0 0 -9.6E-05 

year 0.089336 0 -0.04748 -0.06496 0 

14 
(Pop1_--
>ACSC1) 

Constant -2.50532 -4.97077 -2.83943 -2.17238 203.9115 

pop -1.2E-05 0 0 0 0 

year 0 0 0 0 -0.10222 

15 
(Pop1_--
>Chronic1) 

Constant -2.49002 -4.31315 -2.70374 -1.90739 204.9811 

pop -1.2E-05 0 0 0 0 

year 0 0 0 0 -0.10254 

16 
(Pop1_--
>NonChronic1) 

Constant -51.1771 -2.31673 -0.35778 70.67384 251.9695 

pop 0 0 -1.4E-05 0 0 

year 0.024583 0 0 -0.0356 -0.12542 
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States Covariates [0-15] [16-59] [60-69] [70-79] [80-+] 

17 
(Pop1_--
>ACSC2) 

Constant -4.95686 -7.26305 -3.7695 -4.52864 0 

pop -9.7E-06 0 -1.2E-05 0 0 

year 0 0 0 0 0 

18 
(Pop1_--
>Chronic2) 

Constant -4.28946 -7.12719 -3.50575 -4.09963 0 

pop -9.7E-06 0 -1.2E-05 0 0 

year 0 0 0 0 0 

19 
(Pop1_--
>NonChronic2) 

Constant -4.83056 -6.04055 -1.93664 106.1879 0 

pop 0 0 -1.8E-05 0 0 

year 0 0 0 -0.05437 0 
  

 

The transition probabilities from equations (3.13) and (3.14) are 

calculated by logit functions from parameters in Tables 4.3 and 4.4.  The observed and 

fitted transition probabilities of each state are shown in Figures 4.1- 4.18.  The trends 

of probability rate of population in year(t) age (a) of male transfer to the same age group 

(a) in year t+1 are shown in Figure 4.1.  The probability rates of “childhood” age group 

and “working age” age group slightly decrease, on the other hand, the probability rates 

of “beginning elderly” and “middle elderly” age groups slightly increase and highly 

increase in “eldest elderly” age group.   
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Figure 4.1  Comparison of fitted values and observed values of transition 

probabilities (pij) (Male)  [ State i - population current age in year(t) to 

State j - population at current age group in year (t+1)] ;  (a) [0-15] (b) 

[16-59] (c) [60-69] (d) [70-79] (e) [80+] 

The probability rates of male population in year(t) age (a) transfer to the 

next age group (a+1) in year t+1 are shown in Figure 4.2.  The trends show that transfer 

rates slightly increase in childhood group to working age and working age to beginning 

elderly while, beginning elderly group transfer to middle elderly increasing rapidly. 

The transition probability function of male population age [70-79] in 

year(t) transfer to population age [80+] in year t+1 ,shown in Figure 4.2 (d), are constant 

meaning that there are no factors that have any effect on transition probability of models 

B and C as shown in table D1.  
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Figure 4.2  Comparison of fitted values and observed values of transition 

probabilities  (pij) (Male)  [ State i - population current age in year(t) to 

State j -  population at next age group in year (t+1)] ; (a) [0-15]  [16-

60] (b) [16-59]  [60-69] (c) [60-69]  [70-79] (d) [70-79]  [80+] 

    

 The transition rates of population male age (a) to ACSC in-patients age 

(a) are shown in Figure 4.3.  The transition rate to ACSC in-patients childhood age tends 

to increase while the transition rates of working age, beginning elderly age and middle 

elderly age are rather stable and the transition rate to ACSC in-patients oldest elderly 

age tend to decrease.  The transition rates of population male age (a) to ACSC in-

patients age (a+1) are shown in Figure 4.4.  The transition rates of working age 

population to beginning elderly age ACSC highly increases and others are rather 

constant rates. 
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Figure 4.3   Comparison of fitted values and observed values of transition 

probabilities (pij) (Male)  [ State i - population current age group in 

year(t) to State j    ACSC inpatient current age group in year(t+1)] ; (a) 

[0-15] (b) [16-59] (c) [60-69] (d) [70-79] (e) [80+] 
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Figure 4.4  Comparison of fitted values and observed values of transition 

probabilities (pij) (Male)  [ State i - population current age group in 

year(t) to State j - ACSC  inpatient next age group in year(t+1)] ;  (a) [0-

15][16-60] (b) [16-59][60-69] (c) [60-69][70-79] (d) [70-

79][80+] 

 

 The transition rates of population male age (a) to chronic inpatients age 

(a) are shown in Figure 4.5.  The transition rates to chronic inpatients childhood age 

tends to highly increase while, the transition rates of working age, beginning elderly age 

and middle elderly age are rather stable and the transition rate to chronic inpatients 

oldest elderly age tend to decrease.  The transition rates of population male age (a) to 

chronic inpatients age (a+1) are shown in Figure 4.6.  The transition rates of childhood 

population to working age slightly increase and other rates are rather constant. 
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Figure 4.5  Comparison of fitted values and observed values of transition 

probabilities (pij) (Male)  [ State i - population current age group in 

year(t) to State j – Chronic inpatient current age group in year(t+1)] ; (a) 

[0-15] (b) [16-59] (c) [60-69] (d) [70-79] (e) [80+] 
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Figure 4.6  Comparison of fitted values and observed values of transition 

probabilities (pij) (Male)  [ State i - population current age group in 

year(t) to State j - Chronic  inpatient next age group in year(t+1)] ;  (a) 

[0-15][16-60] (b) [16-59][60-69] (c) [60-69][70-79] (d) [70-

79][80+] 

 

The transition rates of population male age (a) to non-chronic in-patients 

age (a) are shown in Figure 4.7.  The transition rates to non-chronic in-patients 

childhood age tends to increase while, the transition rates of working age and beginning 

elderly are rather stable and the transition rates to non-chronic in-patients of middle 

elderly age and oldest elderly age tend to slightly decrease.  The transition rates of 

population male age (a) to non-chronic in-patients age (a+1) are shown in Figure 4.8.  

The transition rates of childhood population to working age slightly increase.  The 
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transfer rates between male population beginning elderly age(a) to non-chronic 

inpatients age(a+1) slightly decrease and other rates are rather constant. 

 

 

 

Figure 4.7  Comparison of fitted values and observed values of transition 

probabilities (pij) (Male)  [ State i - population current age group in 

year(t) to State j – Non-chronic inpatient current age group in year(t+1)] 

; (a) [0-15] (b) [16-59] (c) [60-69] (d) [70-79] (e) [80+] 
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Figure 4.8  Comparison of fitted values and observed values of transition 

probabilities (pij) (Male)  [ State i - population current age group in 

year(t) to State j – Non-chronic  inpatient next age group in year(t+1)] ;  

(a) [0-15][16-60] (b) [16-59][60-69] (c) [60-69][70-79] (d) [70-

79][80+] 

   

The trend of transition rates of male population to death outside hospitals 

propose in Figure 4.9.  The transition rates to death of state childhood and working age 

are continual growth.  However, the transition rates to death of other elderly states tend 

to decrease. 
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Figure 4.9  Comparison of fitted values and observed values of transition 

probabilities (pij) (Male)  [ State i - population current age group in 

year(t) to State j – death all outside hospitals in year(t+1)] ;  (a) [0-15] 

(b) [16-59] (c) [60-69] (d) [70-79] (e) [80+] (Male) 

 
The trend of probability rates of population in year(t) age(a) of female 

transfer to the same age group (a) in year t+1 are shown in Figure 4.10.  The probability 

rates of age group childhood and working age slightly decrease while the probability 

rates of age group beginning elderly, middle age elderly and eldest elderly age tend to 

increase.   

The probability rates of female population in year(t) age (a) transfer to 

the next age group (a+1) in year t+1 are shown in Figure 4.11.  The trends show that 

transfer rates slightly increase in childhood group to working age and working age to 

beginning elderly and middle elderly age to oldest elderly age while beginning elderly 

group transfer to middle elderly tend to decrease. 
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Figure 4.10  Comparison of fitted values and observed values of transition 

probabilities (pij) (Female)  [ State i - population current age in year(t) to 

State j - population at current age group in year (t+1)] ;  (a) [0-15] (b) 

[16-59] (c) [60-69] (d) [70-79] (e) [80+] 
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Figure 4.11  Comparison of fitted values and observed values of transition 

probabilities (pij) (Female)  [ State i - population current age in year(t) to 

State j - population at next age group in year (t+1)] ; (a) [0-15]  [16-

60] (b) [16-59]  [60-69] (c) [60-69]  [70-79] (d) [70-79]  [80+] 

 

The transition rates of population female age (a) to ACSC in-patients age 

(a) are shown in Figure 4.12.  The transition rates to ACSC in-patients childhood age 

tend to increase while the transition rates of working age, beginning elderly age and 

middle elderly age are rather stable. The transition rates to ACSC in-patients oldest 

elderly age tend to decrease.  The transition rates of population female age (a) to ACSC 
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in-patients age (a+1) are shown in Figure 4.13.  The transition rates of beginning elderly 

age to middle elderly age ACSC slightly decrease and others are rather constant rates. 

 

 

Figure 4.12  Comparison of fitted values and observed values of transition 

probabilities (pij) (Female)  [ State i - population current age in year(t) to 

State j – ACSC inpatient at current age group in year (t+1)] ;  (a) [0-15] 

(b) [16-59] (c) [60-69] (d) [70-79] (e) [80+] 
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Figure 4.13  Comparison of fitted values and observed values of transition 

probabilities (pij) (Female)  [ State i - population current age in year(t) to 

State j – ACSC inpatient at next age group in year (t+1)] ; (a) [0-15]  

[16-60] (b) [16-59]  [60-69] (c) [60-69]  [70-79] (d) [70-79]  

[80+] 

The transition rates of population female age (a) to chronic inpatients age 

(a) are shown in Figure 4.14.  The transition rates to chronic inpatients childhood age 

tend to highly increase and beginning elderly age and middle elderly age tend to slightly 

increase. While the transition rates of working age are rather stable and the transition 

rate to chronic inpatients oldest elderly age tend to decrease.   
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The transition rates of population female age (a) to chronic inpatients age 

(a+1) are shown in Figure 4.15.  The transition rates of childhood population to working 

age slightly increase and beginning elderly to middle elderly tend to decrease.  Other 

rates are rather constant. 

 

 

 

Figure 4.14  Comparison of fitted values and observed values of transition probabilities 

(pij) (Female)  [ State i - population current age in year(t) to State j – 

Chronic inpatient at current age group in year (t+1)] ;  (a) [0-15] (b) [16-

59] (c) [60-69] (d) [70-79] (e) [80+] 
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Figure 4.15  Comparison of fitted values and observed values of transition probabilities 

(pij) (Female)  [ State i - population current age in year(t) to State j – 

Chronic inpatient at next age group in year (t+1)] ; (a) [0-15]  [16-60] 

(b) [16-59]  [60-69] (c) [60-69]  [70-79] (d) [70-79]  [80+] 

 

The transition rates of population female age (a) to non-chronic in-

patients age (a) are shown in Figure 4.16.  The transition rates to non-chronic in-patients 

childhood age tend to increase while, the transition rates of working age are rather 

stable. The transition rates of beginning elderly, middle elderly age and oldest elderly 

age tend to decrease. 

The transition rates of population female age (a) to non-chronic in-
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population to working age and working age to beginning elderly age (a) non-chronic 

inpatients age(a+1) are rather constant.  The other rates are rather decease. 

 

 

 

Figure 4.16  Comparison of fitted values and observed values of transition probabilities 

(pij) (Female)  [ State i - population current age in year(t) to State j – Non-

chronic inpatient at current age group in year (t+1)] ;  (a) [0-15] (b) [16-

59] (c) [60-69] (d) [70-79] (e) [80+] 
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Figure 4.17  Comparison of fitted values and observed values of transition probabilities 

(pij) (Female)  [ State i - population current age in year(t) to State j – Non-

chronic inpatient at next age group in year (t+1)] ; (a) [0-15]  [16-60] 

(b) [16-59]  [60-69] (c) [60-69]  [70-79] (d) [70-79]  [80+] 

 

The trend of transition rates of female population to death outside hospitals are 

proposed in Figure 4.18.  The transition rates to death of state childhood are continual 

increasing and the transition rates of working age are constant.  However, the transition 

rates to death of other elderly states tend to decrease. 
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Figure 4.18  Comparison of fitted values and observed values of transition 

probabilities (pij) (Female)  [ State i - population current age group in 

year(t) to State j – death all outside hospitals in year(t+1)] ;  (a) [0-15] 

(b) [16-59] (c) [60-69] (d) [70-79] (e) [80+] (Male) 
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using the Mean Absolute Percent Error (MAPE).  The historical data from 2007 to 2014 
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compare all data during 2007-2016.  The comparison, in Table 4.5, shows that the 

predictions of population have less difference from the real data.  When compare 

between age groups and genders, it can be found that the predictions of population for 
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from 1-4% in male and 1-5% in female.  The difference of each age group is due to 

uncertainty factors such as mortality rate by chronic and net-migration.  Thus, the future 

study should consider the transition rate by considering other impact factors such as 

type of chronic disease and factor for migration etc.  However, the difference or MAPE 

of total population is less than 1%.  Therefore, the predicted population and demand 

from model can be used to estimate resource requirement. 

 

Table 4.5   Mean Absolute Percent Error (MAPE) between real and predicted values for 

population during 2010-2016  

MAPE 

Male Female 

Total

[0
-1

5]
 

[1
6-

59
] 

[6
0-

69
] 

[7
0-

79
] 

[8
0+

] 

[0
-1

5]
 

[1
6-

59
] 

[6
0-

69
] 

[7
0-

79
] 

[8
0+

] 

2007 0% 0% 0% 1% 2% 0% 1% 0% 1% 0% 0% 
2008 0% 0% 0% 1% 2% 0% 0% 1% 1% 5% 0% 
2009 0% 0% 0% 0% 1% 0% 0% 1% 1% 5% 0% 
2010 0% 0% 1% 1% 0% 0% 0% 0% 0% 6% 0% 
2011 0% 0% 1% 2% 5% 0% 0% 0% 0% 2% 0% 
2012 0% 0% 1% 3% 4% 0% 0% 0% 1% 1% 0% 
2013 0% 1% 4% 3% 8% 0% 1% 2% 2% 9% 0% 
2014 0% 1% 2% 3% 5% 0% 1% 2% 2% 9% 0% 
2015 0% 0% 0% 4% 2% 1% 1% 1% 3% 7% 0% 
2016 0% 0% 1% 6% 3% 1% 0% 4% 4% 3% 0% 
Avg 0% 0% 1% 2% 0% 0% 0% 0% 1% 5% 0% 

 

 

4.1.3  Number of Population  

 The transition probability rates of Markov population are applied to 

calculate number of population and number of inpatients from 2007-2025.  The 

beginning state is population by age and gender group in 2006.  The results show the 

number of population and the number of inpatients by five age groups and each gender 
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in appendix A, Table A1-A8.  The summary of all results are shown in Figures 4.19-

4.21. 

 The number of male population Figure 4.19 in group childhood 

decreases from 288,125 in 2007 to 211,999 in 2025 or decreases 26.4% and population 

in group working age slightly increase from 831,657 in 2007 to 838,091 in 2025, or 

increase 0.77%.  However, the change of total male population in all elderly age group 

increase from 123,580 in 2007 to 225,177 in 2025, or increase 45.11%.  The number of 

population of beginning age elderly highly increase from 71,123 in 2007 to 131,615 in 

2015 or 85.05% increase.  The number of population of middle age elderly increase 

from 39,515 in 2007 to 47,402 in 2015, or 19.96% increase.  The number of population 

of the oldest age elderly increase from 12,941 in 2007 to 46,161 in 2015, or 256.71% 

increase.  The proportion of total elderly per all male population increase from 9.94% 

in 2007 to 17.65% in 2025.   

The male ACSC patients tend to increase from 2007 to 2015.  The 

number of male elderly ACSC inpatients increases from 9,083 in 2007 to 16,343 in 

2025, or increases 44.42%.  The number of male elderly chronic inpatients increase 

from 9,405 in 2007 to 14,629 in 2025, or increase 35.71%.   The number of male elderly 

non-chronic inpatients increases from 27,966 in 2007 to 30,254 in 2025, or increase 

7.56%.    

The number of female population shown in Figure 4.20(a) in group 

childhood decreases from 271,778 in 2007 to 198,826 in 2025, or decreases 26.84% and 

population in group working age decrease from 848,606 in 2007 to 785,227 in 2025, or 

decrease 7.47%.  However, the change of total female population in all elderly age group 

increase from 152,914 in 2007 to 355,244 in 2025, or increase 131%.  The number of 
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population of beginning age elderly highly increases from 80,617 in 2007 to 216,091 in 

2015 or 168.05% increase.  The number of population of middle age elderly increases 

from 51,454 in 2007 to 63,467 in 2015, or 23.35% increase.  The number of population 

of oldest age elderly increases from 20,843 in 2007 to 75,686 in 2015, or 263.12% 

increase. The proportion of total elderly per all female population increase from 12.0% 

in 2007 to 26.5% in 2025. 

 

 

 

 

Figure 4.19  Number of Population and Inpatients from Markov models (Male) (a) 

Number of population, (b) ACSC inpatients, (c) Chronic inpatients and 

(d) Non-chronic inpatients 
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Figure 4.20  Number of Population and Inpatients from Markov models (Female) (a) 

Total number of population, (b) ACSC inpatients, (c) Chronic inpatients 

and (d) Non-chronic inpatients 

 

The female ACSC patients tend to increase from 2007 to 2015.  The 

number of female elderly ACSC inpatients increase from 9,090 in 2007 to 17,916 in 

2025, or increase 49.26%.  The number of female elderly chronic inpatients increase 

from 11,759 in 2007 to 22,404 in 2025, or increase 47.51%.   The number of female 

elderly non-chronic inpatients (Figure 4.20 (d)) decreases from 37,101 in 2007 to 

26,621 in 2025, or decrease 39.34%.   The number of female elderly non-chronic 
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inpatients tends to decrease as follow transition probability change in Figures 4.16 (c-

e) and Figures 4.17 (b-d) 

The number of total population Figure 4.21(a) in group childhood 

decreases from 559,903 in 2007 to 410,825 in 2025, or decreases 26.6% and population 

in working age group decrease from 1,680,263 in 2007 to 1,623,318 in 2025, or decrease 

3.39%.  However, the change of total population in all elderly age group increase from 

276,494 in 2007 to 580,421 in 2025, or increase 52.36%. 

 

 

 

Figure 4.21  Total Number of Population and Inpatients from Markov models (a) 

Total number of population, (b) ACSC inpatients, (c) Chronic inpatients 

and (d) Non-chronic inpatients 
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  The number of population of beginning age elderly highly increases 

from 151,740 in 2007 to 347,706 in 2015, or 129.15% increase.  The number of 

population of middle age elderly increases from 90,970 in 2007 to 110,868 in 2015, or 

21.87% increase.  The number of population of oldest age elderly increases from 33,784 

in 2007 to 121,847 in 2015 or 260.66% increases.  The proportion of total elderly per 

all population increase from 11.0% in 2007 to 22.1% in 2025.  

All ACSC patients tend to increase from 2007 to 2015.  The number of 

all elderly ACSC inpatients increases from 18,174 in 2007 to 34,259 in 2025, or 

increases 46.95%.  The number of all elderly chronic inpatients increases from 21,164 

in 2007 to 37,033 in 2025 or increases 42.85%.   The number of all elderly non-chronic 

inpatients (fig 4.21 (d)) decreases from 65,068 in 2007 to 56,876 in 2025 or decreases 

14.40% because the number of female elderly non-chronic inpatients tends to decrease. 

The changes of population for both male and female in childhood group 

decrease from 2007 to 2025. However, the changes of working age population for male 

from 2007 to 2025 are still stable but the changes of working age population for female 

decrease from 2007 to 2025.   The proportions of total elderly per all population tend to 

increase for both male and female.  The elderly proportions of ACSC patient and chronic 

patient are also increase for both male and female.  Nonetheless, the female elderly 

proportions of non-chronic patient decrease from 2007 to 2015 but the male elderly 

proportions of non-chronic patient slightly increase.  

4.1.4  Number of hospital visits  

The number of inpatients for each type of diseases from Markov 

population model is used to calculate number of hospitals visits using equation (3.30).  

The calculation of number of hospitals visits incorporate individual sample data from 
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43 files, health data center database.  The proportion of number of hospitals visits in 

one year disaggregated by gender, five age groups and three type of inpatients are shown 

Tables B1-B6 of appendix B.  The summary of number of hospitals visits are shown in 

Figures 4.22-4.23. 

 

 

 

Figure 4.22  Proportion of number of hospital visits (Male) (a) ACSC patients (b) 

Chronic patients and (c) Non-chronic patients ; by 1-3 times/year , 3-5 

times/year and more than 5 times/year 
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Figure 4.23  Proportion of Number of hospital visits (Female) (a) ACSC patients (b) 

Chronic patients and (c) Non-chronic patients ; by 1-3 times/year , 3-5 

times/year and more than 5 times/year 

  

The proportions of a number of hospital visits show that elderly patients 

have the frequency to visit hospital more than other age groups in every gender and 

every type of diseases. The oldest elderly age groups have the most frequency to visit 

hospitals.  The number of inpatients from Markov population and the number of hospital 

visits is used to investigate an annual incident in patients. 
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4.2  Semi-Markov Model 

4.2.1  Holding Time distribution 

The holding time distributions were investigated from individual sample 

information from 43 files, health data center database are shown in Figure C1-C12 of 

appendix C.  The summary proportions of holding times between states are show in 

Table 4.6.  The proportions of the holding times show that elderly patients have the 

length of stay or hold in hospitals more than other age groups in every gender and every 

type of diseases. 

 

Table 4.6  Summary proportion of holding time between states in four groups (1)  5-10 days 

(2) 6-10 days (3) 11-30 days (4) > 30 days 

Gender Patients Ages 
Holding times (days/time) 

0-5 6-10 11-30 >30 

Male ACSC [0-15] 0.9303 0.0663 0.0034 0.0000
   [16-59] 0.8403 0.1238 0.0307 0.0053
   [60-69] 0.8549 0.1162 0.0278 0.0010
   [70-79] 0.8515 0.1170 0.0305 0.0009
    [80+] 0.8349 0.1260 0.0369 0.0023

  Chronic [0-15] 0.8782 0.0660 0.0508 0.0051
   [16-59] 0.7686 0.1399 0.0863 0.0052
   [60-69] 0.7965 0.1318 0.0678 0.0038
   [70-79] 0.8101 0.1213 0.0641 0.0046
    [80+] 0.7957 0.1234 0.0723 0.0085

  Non Chronic [0-15] 0.9256 0.0683 0.0057 0.0004
   [16-59] 0.8717 0.0924 0.0331 0.0028
   [60-69] 0.8387 0.1141 0.0428 0.0044
   [70-79] 0.8271 0.1196 0.0498 0.0036
    [80+] 0.7827 0.1510 0.0616 0.0046

Female ACSC [0-15] 0.9097 0.0831 0.0048 0.0024
   [16-59] 0.8865 0.0924 0.0208 0.0004
   [60-69] 0.8752 0.1067 0.0161 0.0010
   [70-79] 0.8634 0.1088 0.0273 0.0005
    [80+] 0.8235 0.1394 0.0353 0.0018

  Chronic [0-15] 0.9393 0.0491 0.0093 0.0023
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4.2.2  Transition probability 

The transition rates of inpatients transfer to discharge/alive population 

and inpatients transfer to death are calculated by logit function.  The parameters of logit 

function are shown in Table 4.7 

 

Table 4.7   Parameter of logit function for inpatients to discharge 

Gender 
Patients 

type 
Parameters 

Inpatients to discharge 

[0-15] [16-59] [60-69] [70-79] [80+] 
Male 

ACSC 
constant -17.756 -0.320 7.404 20.252 39.072

year 0.011 0.002 -0.002 -0.009 -0.018

Chronic 
constant 0.633 -0.172 7.027 20.835 37.407

year 0.001 0.002 -0.002 -0.009 -0.017

Non-
chronic 

constant 36.431 38.718 46.976 60.927 81.744

year -0.015 -0.017 -0.022 -0.029 -0.040
Female 

ACSC 
constant 34.746 16.687 23.781 31.483 47.223

year -0.015 -0.007 -0.010 -0.014 -0.022

Chronic 
constant 6.522 16.240 21.857 31.226 44.048

year -0.001 -0.007 -0.009 -0.014 -0.020

Non-
chronic 

constant 62.435 61.514 66.881 76.788 93.253

year -0.028 -0.028 -0.031 -0.036 -0.045

 

 The length of stay or total patient day in one year are calculated by 

equation (3.34) and bed requirement are calculate by equation (3.35). The results are 

   [16-59] 0.8001 0.1307 0.0637 0.0055
Gender Patients Age Holding time (days/time) 
   0-5 6-10 11-30 >30 

Female Chronic [70-79] 0.8327 0.1081 0.0562 0.0030
    [80+] 0.8413 0.1099 0.0469 0.0019

 Non Chronic [0-15] 0.9400 0.0543 0.0054 0.0003
   [16-59] 0.9346 0.0519 0.0125 0.0011
   [60-69] 0.8617 0.1020 0.0340 0.0022
   [70-79] 0.8440 0.1103 0.0423 0.0035
    [80+] 0.7908 0.1438 0.0605 0.0049
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shown in Tables 4.8-4.9.  The trend of bed requirement shows that male inpatients need 

more beds than female inpatients from 2016-2025  

 

Table 4.8  Total patient days before discharged and total patient days before death 

(Male) 

Year 
Patient days before discharged Patient days before death All 

Total 
No of 
Beds 0-15 16-59 60+ Total 0-15 16-59 60+ Total 

2007 145812 257072 254532 657416 6 675 2232 2913 660329 1809 

2008 148661 260267 260801 669729 6 697 2398 3101 672830 1843 

2009 151499 263441 267023 681963 7 719 2576 3302 685264 1877 

2010 154244 267176 274242 695662 7 743 2785 3535 699197 1916 

2011 157010 271478 281471 709959 7 769 2995 3772 713731 1955 

2012 159669 276071 290094 725835 7 797 3244 4048 729883 2000 

2013 162533 280818 296918 740269 8 825 3466 4299 744568 2040 

2014 164869 287021 304152 756042 8 859 3679 4546 760589 2084 

2015 167284 290285 313910 771479 8 884 3987 4879 776358 2127 

2016 169811 293139 320329 783278 9 909 4249 5166 788444 2160 

2017 172331 295962 325916 794209 9 933 4515 5457 799666 2191 

2018 174753 299341 330033 804127 9 960 4761 5730 809857 2219 

2019 177095 303064 333196 813354 9 989 4994 5992 819346 2245 

2020 179358 306922 335551 821831 10 1018 5216 6244 828075 2269 

2021 181528 310989 337138 829655 10 1049 5425 6484 836139 2291 

2022 183601 315218 338020 836840 10 1081 5621 6712 843552 2311 

2023 185568 319633 338253 843454 11 1113 5800 6924 850378 2330 

2024 187423 324215 337886 849523 11 1147 5963 7122 856645 2347 

2025 189156 328975 336967 855098 11 1183 6108 7302 862399 2363 

 

Table 4.9  Total patient days before discharged and total patient days before death 

(Female) 

Year 
Patient days before discharged Patient days before death All 

Total 
No of 
Beds 0-15 16-59 60+ Total 0-15 16-59 60+ Total 

2007 114229 306423 287063 707715 7 315 670 992 708707 1942 

2008 115003 307164 292328 714495 7 322 722 1051 715546 1960 

2009 115750 307917 295775 719441 7 330 770 1106 720548 1974 

2010 116466 308379 299177 724022 7 337 820 1165 725187 1987 

2011 117155 308971 302432 728557 8 345 874 1226 729783 1999 
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Year 
Patient days before discharged Patient days before death All 

Total 
No of 
Beds 0-15 16-59 60+ Total 0-15 16-59 60+ Total 

2012 117812 309864 307959 735635 8 354 942 1304 736939 2019 

2013 118431 310857 312207 741495 8 363 1010 1380 742876 2035 

2014 119011 311412 316136 746558 8 372 1080 1460 748018 2049 

2015 119557 311171 318755 749483 9 380 1146 1534 751017 2058 

2016 120067 310340 322142 752549 9 387 1221 1617 754167 2066 

2017 120540 308855 326881 756276 9 395 1311 1714 757990 2077 

2018 120970 306799 331540 759309 9 401 1406 1817 761126 2085 

2019 121351 304265 335526 761143 10 407 1502 1920 763062 2091 

2020 121682 301307 339005 761995 10 413 1602 2025 764020 2093 

2021 121961 297956 342010 761927 10 419 1703 2132 764060 2093 

2022 122186 294233 344410 760829 11 424 1806 2240 763069 2091 

2023 122354 290160 346093 758608 11 429 1906 2345 760953 2085 

2024 122467 285750 347098 755314 11 433 2002 2446 757760 2076 

2025 122520 281007 347594 751121 12 437 2093 2542 753663 2065 

 

4.2.3  Resource requirement 

The number of beds required is shown in Figures 4.24-4.25.  The elderly 

need more patient days and beds than other age groups.  The male patients tend to need 

more patient day than female since 2016.  The maximum capacity of beds can support 

all bed requirement.  However, we cannot utilize all beds for all patients because all 

available information is not sufficient to categorize the bed type to each patient in each 

area.  Hence, we assume three levels of beds utilization at 80%, 85%, and 90% 

according to bed types and hospital areas. The results show that the number of bed need 

are more than bed support level factor at 80%, 85% and 90%. 



95 
 

 
 

 

 

 

Figure 4.24 Beds requirement by gender 

 

 

 

 

Figure 4.25 Beds requirement by age group 

 

 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

N
o 

of
 b

ed
s

Year
Male Female Max Cap

85%Cap 80%Cap 90%Cap

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

N
o 

of
 b

ed
s

Year
0-15 16-59 60+
Max Cap 85%Cap 80%Cap
90%Cap



96 
 

 
 

4.3  Long-Term Care Model 

4.3.1  Number of long-term care demand 

 The community care staff are calculated by standard level of community 

care based on the assumption that one staff can take care of seven elderly as shown in 

Table 4.10.  The trend of elderly who live alone grows continually from 2007-2025. 

The same trend is for the community care staff requirement. 

 
Table 4.10  Total elderly disaggregated by household type and level of dependency 

and Community care staff requirement 

Household Live Alone Live with Family Community
care staff Dependency 1 2 3 Total 1 2 3 Total 

2007 17856 4171 632 22660 200001 46706 7081 253788 39493 

2008 18422 4310 654 23386 206333 48260 7328 261921 40758 

2009 19053 4463 679 24195 213402 49973 7604 270979 42168 

2010 19772 4631 705 25108 221457 51848 7895 281200 43758 

2011 20639 4839 740 26219 231170 54185 8287 293643 45694 

2012 21514 5043 773 27331 240973 56470 8656 306099 47633 

2013 22504 5267 808 28580 252061 58971 9052 320084 49809 

2014 23607 5512 847 29966 264408 61717 9482 335608 52225 

2015 24666 5758 887 31311 276275 64475 9928 350679 54570 

2016 25770 6030 933 32734 288638 67518 10453 366609 57049 

2017 26888 6312 983 34182 301159 70669 11004 382832 59573 

2018 28034 6602 1033 35670 314002 73915 11573 399491 62166 

2019 29222 6904 1087 37213 327300 77305 12175 416780 64856 

2020 30452 7221 1144 38818 341081 80852 12815 434748 67652 

2021 31723 7551 1205 40478 355317 84539 13489 453345 70546 

2022 33029 7889 1267 42186 369948 88331 14187 472466 73522 

2023 34368 8236 1331 43935 384943 92210 14901 492054 76570 

2024 35741 8590 1396 45727 400316 96174 15631 512122 79693 

2025 37150 8953 1463 47566 416105 100235 16379 532719 82898 
 

 

The number of live alone elderly with dependency is shown in Table 

4.11.  This group is elderly who live alone and need assistance to do activities of daily 
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living (ADL) more than or equal one activity.  The standard of home care level is one 

staff per seven dependency elderly. 

 

Table 4.11  Live alone and dependency elderly and home care requirement 

Household Live Alone Home 
Care Dependency 2 3 Total 

2007 4171 632 4804 686 
2008 4310 654 4965 709 
2009 4463 679 5142 735 
2010 4631 705 5336 762 
2011 4839 740 5579 797 
2012 5043 773 5816 831 
2013 5267 808 6075 868 
2014 5512 847 6359 908 
2015 5758 887 6645 949 
2016 6030 933 6964 995 
2017 6312 983 7294 1042 
2018 6602 1033 7635 1091 
2019 6904 1087 7992 1142 
2020 7221 1144 8366 1195 
2021 7551 1205 8755 1251 
2022 7889 1267 9156 1308 
2023 8236 1331 9567 1367 
2024 8590 1396 9986 1427 
2025 8953 1463 10415 1488 

 

 Home visit care by medical staff provides primary care unit to support 

elderly who live alone and need assistance to do activities of daily living (ADL) more 

than or equal two activities.  In general, it is assumed that there should be at least one 

home care staff per two hundred dependent elderly.  The trend of home visit requirement 

by medical staff are increasing as shown in Table 4.12 
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Table 4.12  Live alone and dependency elderly and Home visit requirement 

Year 
Non acute care 

Home visit 
LA,LF &Dep =3 

2007 3988 20 
2008 4177 21 
2009 4429 22 
2010 4690 23 
2011 5070 25 
2012 5380 27 
2013 5754 29 
2014 6173 31 
2015 6612 33 
2016 7144 36 
2017 7687 39 
2018 8261 42 
2019 8887 46 
2020 9567 50 
2021 10296 54 
2022 11064 58 
2023 11866 63 
2024 12702 68 
2025 13572 72 

 

 

4.4  Sensitivity Analysis 

4.4.1  The impact of net migration 

To test the change of population model by migration, scenario  1 

analyzed the change of population in case that net migration +30% and -30%.  The result 

is shown in Figure 4.26.  The trend of  population increases when net migration increase 

30% from 0.96% in 2015 to 2.41% in 2025.  The trend of bed requirement increase 

when net migration increase 30% from 0.96% in 2015 to 2.50% in 2025.  In case of net 

migration decrease to 30%, both population and bed requirement also decrease.  The 

trend of  population decrease when net migration decrease 30% from -0.96% in 2015 to 
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-2.42% in 2025.  The trend of bed requirement decrease when net –migration decrease 

30% from -0.95% in 2015 to -2.51% in 2025.   

   

      
                                           

          (a)  Population    

 

 
 

                              (b) Bed requirement 

 

Figure 4.26  The trend of population in case that net migration +30% and -30% for 

(a) Population and (b) Bed requirement      

2540000

2560000

2580000

2600000

2620000

2640000

2660000

2680000

2700000

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Mig+30% Mig-30% Base line

4100

4200

4300

4400

4500

4600

4700

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Mig+30% Mig‐30% Base line



100 
 

 
 

4.4.2  The impact of ACSC elderly inpatient               

  The changes of number ACSC elderly inpatient in 4 levels are shown in 

Figure 4.27 and 4.28.  The sensitivity analysis is shown as following details. The trend 

of bed requirement decreases when ACSC decrease 25% from 2.64% in 2015 to 3.56% 

in 2025.  The trend of bed requirement decreases when ACSC decrease 40% from 

4.22% in 2015 to 5.69% in 2025.    The trend of bed requirement increases when ACSC 

increase 25% from 2.43% in 2015 to 3.99% in 2025.  The trend of bed requirement 

increases when ACSC increase 40% from 4.28% in 2015 to 6.53% in 2025.   

 

  

 
 

Figure 4.27  Percent of bed requirement change when level of ACSC elderly 

patients are -25%, -40%, +25% and +40%   

 

 
 

Figure 4.28  No bed requirement when level of ACSC elderly patients are -25%, -

40%, +25% and +40%    

-10.00%
-8.00%
-6.00%
-4.00%
-2.00%
0.00%
2.00%
4.00%
6.00%
8.00%

10.00%

2 0 0 7 2 0 0 9 2 0 11 2 0 1 3 2 0 1 5 2 0 1 7 2 0 1 9 2 0 2 1 2 0 2 3 2 0 2 5

%
C

H
A

N
G

E

YEAR

-25% -40% +25% +40%

3000

3500

4000

4500

5000

2 0 1 5 2 0 1 6 2 0 1 7 2 0 1 8 2 0 1 9 2 0 2 0 2 0 2 1 2 0 2 2 2 0 2 3 2 0 2 4 2 0 2 5

N
O

 O
F

 B
E

D
S

YEAR

Baseline -25% -40% +25% +40% 85%Cap



101 
 

 
 

4.4.3  The impact of LOS level 

 The study of the impact of elderly patients who live more than one month 

in hospitals.  In this case, we assume that elderly patients who live more than one month 

need long term care at home. They are treated by medical care staff at home. The study 

is 75% of elderly who stay in hospital more than one month decrease to long term care 

as home visit by medical staff.  The need of bed requirement slightly decrease as shown 

in Figure 4.29 and the home visit demand increase in Table 4.13 

 

 

 

Figure 4.29  The change of elderly who need length of stay more than one month 

decrease -75% vs  bed requirement in one year 
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Table 4.13  Home visit demand increase from decrease -75% of elderly who need 

length of stay more than 1 month 

Year 
Non acute care   Home 

visit LA,LF &Dep =3 From Inpatients 

2007 3988 185 21 
2008 4177 189 22 
2009 4429 192 23 
2010 4690 196 24 
2011 5070 199 26 
2012 5380 204 28 
2013 5754 208 30 
2014 6173 211 32 
2015 6612 215 34 
2016 7144 218 37 
2017 7687 221 40 
2018 8261 223 42 
2019 8887 225 46 
2020 9567 226 49 
2021 10296 226 53 
2022 11064 226 56 
2023 11866 225 60 
2024 12702 224 65 
2025 13572 222 69 

 

4.4.4  The impact of household level 

 In this case, household level of live alone are increase by annually 1 %.  

The result shows that number of elderly who live alone and home care requirement 

increase from 2015 to 2025 as shown in Figures 4.30 and 4.31 
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Figure 4.30  The change number of live alone when household rate increase 1% by 

annually 

 

 

 

Figure 4.31  The change home care requirement when household rate increase 1% 

by annually 
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4.5  Chapter Summary 

 This chapter discusses the result of purposed model consisting of birthrate 

function, net migration function, transition probability function, the prediction of 

population for five age groups and each gender by consider the migration of the 

population in the proposed model. The demands for hospital services using Markov 

model show three type of inpatient demand based on disease type as ACSC patient, 

chronic patient and non-chronic patient.  The prediction of long-term care demand for 

elderly and the analysis of sensitivity are also investigated in this chapter. 
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 CHAPTER V 

CONCLUSIONS 

 

5.1  Conclusion 

The research combines the Markov population model and the semi-Markov 

inpatient model.  The results from Markov population show the prediction of population 

for five age groups and each gender by considering the migration of the population in 

the proposed model. The demands for hospital services using Markov model show three 

types of inpatient demand based on disease type as (i) ACSC patient, (ii) chronic patient 

and (iii) non-chronic patient.   The results from Markov model show that the proportion 

of total elderly per all population increase from 11.0% in 2007 to 22.1% in 2025. The 

all ACSC patients tend to increase from 2007 to 2015.  The elderly proportion of all 

ACSC inpatients increase from 60.6% in 2007 to 72% in 2025.  The elderly proportion 

of all chronic inpatients increase from 47% in 2007 to 60.6% in 2025.  The elderly 

proportion of all non-chronic inpatients decrease from 24.6% in 2007 to 22.5% in 2025. 

 The changes of population for both male and female in childhood group 

decrease from 2007 to 2025. However, the changes of working age population for male 

from 2007 to 2025 are still stable but the changes of working age population for female 

decrease from 2007 to 2025.   The proportion of total elderly per all population tend to 

increase for both male and female.  The elderly proportions of ACSC patient and chronic 

patient are also increase for both male and female.  Nonetheless, the female elderly 

proportions of non-chronic patient decrease from 2007 to 2015 but the male elderly 

proportions of non-chronic patient slightly increase. 
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The average daily demand for beds is growing, especially for those used by the 

elderly.  The male patients tend to need more patient day than the female since 2016.  

The maximum capacity of beds can support all bed requirement.  

The analysis of sensitivity analysis shows that the trend of population and bed 

requirement will increase when net migration increase.  The trend of bed requirement 

will decrease when the number of ACSC patients decreases.  The elderly who live alone 

and home care requirement increase when household level of live alone increases by 

annually. 

The information from the predicted model can be used as preliminary data to 

study long-term care system in the future research. 

 

5.2  Limitation of the Study 

This research has several limitations in terms of the data availability and the 

analysis of factors related to the services in the hospitals. In future study, to better reflect 

the real situation appropriately, the determining of transition probability between states 

should depend on time changes.  In addition, the other factors related to demand services 

in hospitals should be considered such as type of diseases, patient service areas and 

other socio-economic factors. 

 

5.3  Applications of the Work 

The objective of this research is to develop a framework for demand and 

resource planning to manage of the elderly long-term care.  The study model consists 

of the three sub models including Markov population model, semi-Markov inpatient 
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model and long term care model.  The Markov population model predict demographic 

and inpatient demand, semi Markov model is used to investigate length of stay of elderly 

inpatients and long-term care use to evaluate type of care for elderly.  It is aimed that 

this research can use as quantitative tool to predict demands for resources and capacity 

planning for the elderly long-term care. 

 

5.4  Recommendation for Future Work 

1) Markov population model considers more factors that impact of personal 

health such as BMI, cholesterol level etc. of population to evaluate demands of 

inpatients when demographic change. 

2) Semi-Markov inpatient model considers more activities during stay in 

hospitals to evaluate the utility of resources and time duration between activity before 

discharge or death 

3) To evaluate long-term care insurance for long term care elderly, the future 

research should consider time between each state change from each type of elderly and 

others factor of the taking care elderly.   
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Table A1   Total population, new born and birth rate for male / female 
 

Year 
Male Female 

Population NewBorn BirthRate Population NewBorn BirthRate
2003 1232029 15129 0.012280 1255037 14359 0.011441
2004 1235643 15202 0.012303 1260206 14316 0.011360
2005 1240121 14624 0.011792 1265404 13992 0.011057
2006 1242780 14101 0.011346 1269093 13203 0.010403
2007 1240176 14454 0.011655 1268285 13481 0.010629
2008 1245732 14391 0.011552 1274444 13960 0.010954
2009 1250383 14237 0.011386 1280768 13480 0.010525
2010 1256268 13677 0.010887 1286965 13056 0.010145
2011 1262987 14757 0.011684 1294668 13916 0.010749
2012 1270365 14833 0.011676 1302629 13790 0.010586
2013 1274216 13741 0.010784 1307847 13181 0.010078
2014 1278788 13623 0.010653 1313013 13146 0.010012
2015 1281296 12,928 0.010090 1317544 12,249 0.009297
2016 1282326 12,214 0.009525 1321621 11,834 0.008954

 

Table A2   Total population age(a),year(t)  (Male) 
 

Year [0-15] [16-59] [60-69] [70-79] [80+] Total 
2006 292424 830413 69394 38123 12426 1242780
2007 288370 828832 71102 39180 12692 1240176
2008 283780 834524 73151 40458 13819 1245732
2009 279774 838595 75444 42242 14328 1250383
2010 275779 842696 78530 43901 15362 1256268
2011 271963 847576 82069 45502 15877 1262987
2012 267914 852136 86070 47214 17031 1270365
2013 262220 849914 93305 48658 20119 1274216
2014 258359 851740 97360 49832 21497 1278788
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Table A3   Population age(a),year(t+1) from Population age(a),year(t) (Male) 

Year [0-15] [16-59] [60-69] [70-79] [80+] Total 
2007 230771 764108 48149 20101 3128 1066257
2008 222426 756730 47743 18973 2719 1048591
2009 219556 762677 49685 20614 3522 1056054
2010 210820 760364 50594 20962 3715 1046455
2011 207475 764777 54044 22751 4419 1053466
2012 201923 767008 56901 24016 5418 1055266
2013 202706 777930 63696 26944 7485 1078761
2014 193659 765918 66529 25220 8938 1060264

 

Table A4   ACSC inpatient age(a),year(t+1) from Population age(a),year(t) (Male) 

Year [0-15] [16-59] [60-69] [70-79] [80+] Total 
2007 847 4056 2746 3089 1963 12701 
2008 968 4568 3138 3530 2245 14449 
2009 1016 4855 3318 3728 2368 15285 
2010 1038 4858 3254 3505 2200 14855 
2011 1085 5084 3424 3751 2286 15630 
2012 1079 5066 3382 3598 2227 15352 
2013 969 4554 3050 3371 2071 14015 
2014 1247 5865 3917 4271 2578 17878 

 

Table A5   Chronic inpatient age(a),year(t+1) from Population age(a),year(t) (Male) 

Year [0-15] [16-59] [60-69] [70-79] [80+] Total 
2007 568 9941 2950 3067 1563 18089 
2008 649 11359 3385 3475 1716 20584 
2009 681 11924 3551 3663 1880 21699 
2010 696 12187 3591 3734 1883 22091 
2011 728 12744 3790 3984 2048 23294 
2012 724 12672 3737 3921 1985 23039 
2013 650 11373 3410 3552 1777 20762 
2014 836 14668 4364 4531 2304 26703 
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Table A6   Non-chronic inpatient age(a),year(t+1) from Population age(a),year(t) 

(Male) 

Year [0-15] [16-59] [60-69] [70-79] [80+] Total 
2007 40254 40855 9304 8860 5048 104321 
2008 44021 44666 10211 9604 5302 113804 
2009 42696 43352 9907 9361 5371 110687 
2010 47539 48283 10915 10399 5865 123001 
2011 46528 47248 10782 10385 5967 120910 
2012 47836 48562 10989 10563 5980 123930 
2013 43143 43792 10075 9615 5379 112004 
2014 47574 48384 11045 10508 5972 123483 

 

Table A7   Population age (a+1),year(t+1) from Population age(a),year(t) (Male)  

Year [0-15][16-59] [16-59]  [60-69] [60-69]  [70-79] [70-79]  [80+] Total 
2007 18476 7288 3251 782 29797
2008 18625 7056 3306 977 29964
2009 18236 7367 3460 889 29952
2010 17906 7948 3254 816 29924
2011 18169 7960 3042 635 29806
2012 18462 8946 3369 954 31731
2013 18651 9500 2646 1462 32259
2014 17016 9591 3621 1579 31807

 

Table A8   ACSC inpatient age (a+1),year(t+1) from Population age(a),year(t) (Male)  

Year [0-15][16-59] [16-59]  [60-69] [60-69]  [70-79] [70-79]  [80+] Total 
2007 33 305 343 94 775
2008 106 349 392 107 954
2009 48 340 387 99 874
2010 152 484 699 321 1656
2011 156 485 646 350 1637
2012 146 506 776 395 1823
2013 124 440 555 283 1402
2014 156 576 782 452 1966
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Table A9   Chronic inpatient age (a+1),year(t+1) from Population age(a),year(t) 

(Male)  

Year [0-15][16-59] [16-59]  [60-69] [60-69]  [70-79] [70-79]  [80+] Total 
2007 242 444 479 288 1453
2008 280 495 578 400 1753
2009 286 519 589 340 1734
2010 289 568 610 385 1852
2011 304 559 559 324 1746
2012 306 589 598 374 1867
2013 276 473 504 340 1593
2014 327 634 690 422 2073

 

Table A10   Non-chronic inpatient age (a+1),year(t+1) from Population age(a),year(t) 

(Male)  

Year [0-15][16-59] [16-59]  [60-69] [60-69]  [70-79] [70-79]  [80+] Total 
2007 996 1400 1384 931 4711
2008 1102 1495 1599 1237 5433
2009 1039 1447 1505 971 4962
2010 1144 1727 1699 1197 5767
2011 1127 1591 1456 944 5118
2012 1172 1732 1611 1126 5641
2013 1063 1398 1365 1030 4856
2014 1078 1606 1599 1095 5378

 

Table A11   Death outside-hospital,year(t+1) from Population age(a),year(t) (Male) 

Year [0-15] [16-59] [60-69] [70-79] [80+] Total 
2007 235 2015 787 912 723 4672
2008 194 2111 749 879 709 4642
2009 221 2044 750 795 678 4488
2010 190 2175 828 922 665 4780
2011 207 2249 789 776 641 4662
2012 314 2496 706 555 266 4337
2013 331 2676 768 616 320 4711
2014 325 2672 759 580 328 4664
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Table A12   Total population age(a),year(t)  (Female) 

Year [0-15] [16-59] [60-69] [70-79] [80+] Total 
2006 275767 845451 78824 49270 19781 1269093 
2007 271504 844339 80553 51091 20798 1268285 
2008 267349 849243 82578 52599 22675 1274444 
2009 263501 853703 85481 54513 23570 1280768 
2010 259927 856389 89302 56492 24855 1286965 
2011 256448 860645 93581 58094 25900 1294668 
2012 252186 864695 98526 59874 27348 1302629 
2013 247259 860682 106804 61335 31767 1307847 
2014 243770 861419 112030 62599 33195 1313013 

 

Table A13   Population age(a),year(t+1) from Population age(a),year(t) (Female) 

Year [0-15] [16-59] [60-69] [70-79] [80+] Total 
2007 222759 753122 53669 27266 6802 1063618
2008 215079 744115 52850 26107 6796 1044947
2009 212076 750101 55453 28377 8200 1054207
2010 206354 747995 57148 28971 8613 1049081
2011 202342 751117 61306 30777 9599 1055141
2012 198755 754306 65215 32353 11079 1061708
2013 197202 764393 72447 35094 13649 1082785
2014 192578 755088 77483 34290 16678 1076117

 

Table A14   ACSC inpatient age(a),year(t+1) from Population age(a),year(t) (Female) 

Year [0-15] [16-59] [60-69] [70-79] [80+] Total 
2007 654 4375 3037 2892 1652 12610 
2008 772 5164 3595 3388 1898 14817 
2009 770 5157 3577 3418 1966 14888 
2010 779 5219 3570 3430 1955 14953 
2011 793 5306 3669 3551 2026 15345 
2012 809 5413 3728 3613 2067 15630 
2013 734 4914 3440 3284 1853 14225 
2014 905 6067 4213 4038 2307 17530 
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Table A15   Chronic inpatient age(a),year(t+1) from Population age(a),year(t) 

(Female) 

Year [0-15] [16-59] [60-69] [70-79] [80+] Total 
2007 667 8446 3479 3770 2539 18901 
2008 788 9969 4118 4418 2915 22208 
2009 786 9954 4097 4456 3022 22315 
2010 795 10073 4090 4472 3004 22434 
2011 809 10242 4202 4628 3112 22993 
2012 825 10448 4270 4711 3176 23430 
2013 749 9486 3940 4280 2845 21300 
2014 923 11711 4825 5265 3545 26269 

 

Table A16   Non-chronic inpatient age(a),year(t+1) from Population age(a),year(t) 

(Female) 

Year [0-15] [16-59] [60-69] [70-79] [80+] Total 
2007 33001 68723 11381 11431 7451 131987
2008 35757 74438 12361 12291 7851 142698
2009 35008 72916 12065 12160 7981 140130
2010 37285 77699 12682 12852 8354 148872
2011 37169 77418 12770 13035 8482 148874
2012 36901 76847 12627 12909 8423 147707
2013 34500 71848 11998 12081 7772 138199
2014 35110 73232 12130 12265 7994 140731

 

Table A17   Population age (a+1),year(t+1) from Population age(a),year(t) (Female)  

Year [0-15][16-59] [16-59]  [60-69] [60-69]  [70-79] [70-79]  [80+] Total 
2007 16703 7684 4028 1067 29482
2008 16915 7423 4002 1312 29652
2009 16637 7936 4039 1237 29849
2010 16162 9057 4333 1445 30997
2011 16653 9020 4036 1420 31129
2012 16886 9906 4361 1625 32778
2013 16862 10783 3491 2153 33289
2014 15637 10938 4634 2457 33666



 

128 
 

 
 

Table A18   ACSC inpatient age (a+1),year(t+1) from Population age(a),year(t) 

(Female)  

Year [0-15][16-59] [16-59]  [60-69] [60-69]  [70-79] [70-79]  [80+] Total 
2007 98 436 426 275 1235
2008 118 506 529 378 1531
2009 115 517 492 305 1429
2010 113 570 524 342 1549
2011 118 543 472 311 1444
2012 121 569 491 317 1498
2013 110 461 442 312 1325
2014 126 596 555 361 1638

 

 

Table A19   Chronic inpatient age (a+1),year(t+1) from Population age(a),year(t) 

(Female)  

Year [0-15][16-59] [16-59]  [60-69] [60-69]  [70-79] [70-79]  [80+] Total 
2007 189 500 555 422 1666
2008 227 580 689 581 2077
2009 222 592 641 468 1923
2010 219 652 683 525 2079
2011 228 622 616 478 1944
2012 234 652 639 487 2012
2013 212 528 577 480 1797
2014 243 683 723 554 2203

 

 

 

Table A20   Non-chronic inpatient age (a+1),year(t+1) from Population age(a),year(t) 

(Female)  

Year [0-15][16-59] [16-59]  [60-69] [60-69]  [70-79] [70-79]  [80+] Total 
2007 1542 1635 1682 1238 6097
2008 1694 1741 1917 1563 6915
2009 1623 1742 1750 1236 6351
2010 1686 2023 1963 1462 7134
2011 1722 1890 1734 1304 6650
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Year [0-15][16-59] [16-59]  [60-69] [60-69]  [70-79] [70-79]  [80+] Total 
2012 1723 1927 1753 1293 6696
2013 1607 1609 1627 1311 6154
2014 1523 1717 1685 1250 6175

 

Table A21   Death outside-hospital,year(t+1) from Population age(a),year(t) (Female) 

Year [0-15] [16-59] [60-69] [70-79] [80+] Total 
2007 153 530 568 909 1337 3497 
2008 153 403 491 1052 1337 3436 
2009 111 329 464 941 1506 3351 
2010 108 415 487 1013 1645 3668 
2011 92 231 499 989 1636 3447 
2012 194 578 497 785 1155 3209 
2013 211 672 564 880 1228 3555 
2014 213 648 555 855 1242 3513 
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NUMBER OF HOSPITAL VISIT DISTRIBUTION 
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Table B1   Number of time visit hospital distribution of ACSC patients (Male) 

No of  
time 
visit 

ACSC         

[0-15] [16-59] [60-69] [70-79] [80+]

1 0.61719 0.66283 0.56300 0.53452 0.50877
2 0.20573 0.17468 0.19977 0.18931 0.22105
3 0.06771 0.06297 0.09421 0.09354 0.11053
4 0.05990 0.03318 0.05108 0.06347 0.05439
5 0.02865 0.02437 0.03178 0.04120 0.02982
6 0.00521 0.00880 0.01816 0.02116 0.02281
7 0.00260 0.00812 0.00908 0.02339 0.01228
8 0 0.00609 0.00908 0.00445 0.00702
9 0.00521 0.00406 0.00568 0.00780 0.00877
10 0.00260 0.00203 0.00681 0.00111 0.01053
11 0.00260 0.00271 0.00341 0.00111 0.00351
12 0 0.00135 0 0.00557 0
13 0.00260 0.00068 0.00114 0.00334 0.00175
14 0 0.00339 0.00114 0.00111 0.00351
15 0 0.00068 0.00114 0.00111 0.00175
16 0 0.00135 0.00114 0.00445 0
17 0 0.00068 0 0 0
18 0 0 0 0.00111 0.00175
19 0 0 0 0.00111 0
20 0 0 0 0 0
21 0 0 0 0 0
22 0 0 0 0.00111 0.00175
24 0 0.00135 0.00114 0 0
26 0 0.00068 0.00114 0 0
29 0 0 0.00114 0 0
30 0 0 0 0 0
47 0 0 0 0 0
53 0 0 0 0 0
69 0 0 0 0 0
361 0 0 0 0 0

Total 1 1 1 1 1
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Table B2   Number of time visit hospital distribution of Chronic patients (Male) 

No of  
time 
visit 

Chronic 

[0-15] [16-59] [60-69] [70-79] [80+]

1 0.62791 0.69482 0.66518 0.59608 0.56671
2 0.22326 0.17726 0.19599 0.20196 0.21234
3 0.05581 0.06482 0.06236 0.08831 0.10187
4 0.06512 0.02823 0.03267 0.04988 0.05882
5 0.00465 0.01620 0.01930 0.02044 0.02726
6 0.01860 0.00565 0.00965 0.01390 0.01291
7 0.00465 0.00417 0.00594 0.00736 0.00717
8 0 0.00221 0.00445 0.00736 0.00574
9 0 0.00221 0 0.00654 0
10 0 0.00074 0.00074 0.00245 0.00430
11 0 0.00098 0.00223 0.00082 0
12 0 0.00098 0.00074 0.00164 0.00143
13 0 0.00025 0 0 0
14 0 0.00025 0.000742 0 0
15 0 0 0 0 0.00143
16 0 0.00025 0 0.00082 0
17 0 0 0 0 0
18 0 0.00049 0 0.00082 0
19 0 0 0 0 0
20 0 0 0 0 0
21 0 0.00025 0 0.00082 0
22 0 0 0 0 0
24 0 0 0 0 0
26 0 0 0 0 0
29 0 0 0 0 0
30 0 0.00025 0 0 0
47 0 0 0 0 0
53 0 0 0 0.00082 0
69 0 0 0 0 0
361 0 0 0 0 0

Total 1 1 1 1 1
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Table B3    Number of time visit hospital distribution of non-chronic patients (Male) 

No of  
time 
visit 

NonChronic 

[0-15] [16-59] [60-69] [70-79] [80+]

1 0.83157 0.85849 0.77484 0.73538 0.66655
2 0.12296 0.09846 0.14786 0.16379 0.19232
3 0.02857 0.02356 0.04655 0.05135 0.07264
4 0.01022 0.00962 0.01464 0.02155 0.03390
5 0.00334 0.00358 0.00806 0.01218 0.01453
6 0.00153 0.00258 0.00247 0.00675 0.00796
7 0.00087 0.00133 0.00164 0.00356 0.00484
8 0.00037 0.00093 0.00148 0.00281 0.00138
9 0.00016 0.00044 0.00099 0.00037 0.00138
10 0.00012 0.00020 0.00049 0.00019 0.00173
11 0.00008 0.00016 0.00016 0.00037 0.00035
12 4.1E-05 1.2E-04 0 5.6E-04 1.0E-03
13 8.2E-05 8.1E-05 4.9E-04 3.7E-04 3.5E-04
14 0 8.1E-05 1.6E-04 1.9E-04 3.5E-04
15 4.1E-05 1.2E-04 0 1.9E-04 0
16 0 0 0 0 0
17 0 0 1.6E-04 1.9E-04 3.5E-04
18 0 8.1E-05 0 0 0
19 0 0 0 0 3.5E-04
20 0 4.0E-05 0 0 0
21 0 0 0 1.9E-04 0
22 4.1E-05 0 0 0 0
24 0 0 0 0 0
26 0 0 0 0 0
29 0 0 0 0 0
30 0 0 0 0 0
47 0 4.0E-05 0 0 0
53 0 0 0 0 0
69 0 4.0E-05 0 0 0
361 0 4.0E-05 0 0 0

Total 1 1 1 1 1
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Table B4    Number of time visit hospital distribution of ACSC patients (Female) 

No of  
time 
visit 

ACSC 

[0-15] [16-59] [60-69] [70-79] [80+] 
1 0.595331 0.694132 0.621918 0.610778 0.579216
2 0.217899 0.173681 0.192694 0.202595 0.218058
3 0.097276 0.057499 0.077626 0.086826 0.098807
4 0.031128 0.023118 0.045662 0.032934 0.042589
5 0.019455 0.017783 0.019178 0.030938 0.020443
6 0.019455 0.008299 0.017352 0.008982 0.011925
7 0.015564 0.005928 0.005479 0.006986 0.008518
8 0 0.003557 0.009132 0.008982 0.001704
9 0 0.003557 0.003653 0.003992 0.010221
10 0 0.002371 0.002740 0.001996 0.005111
11 0.003891 0.002964 0.000913 0.000998 0
12 0 0.001778 0 0 0.001704
13 0 0.001778 0 0 0.001704
14 0 0.000593 0 0.001996 0
15 0 0 0.000913 0.000998 0
16 0 0.000593 0 0 0
17 0 0 0 0 0
18 0 0 0.000913 0 0
19 0 0 0 0 0
20 0 0 0.000913 0 0
21 0 0.000593 0 0 0
22 0 0.000593 0 0 0
24 0 0 0 0 0
26 0 0.000593 0 0.00100 0
29 0 0.000593 0 0 0
30 0 0 0.000913 0 0
47 0 0 0 0 0

Total 1 1 1 1 1
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Table B5   Number of time visit hospital distribution of chronic patients (Female) 

No of  
time 
visit 

Chronic 

[0-15] [16-59] [60-69] [70-79] [80+]
1 0.6050 0.66689 0.595258 0.585484 0.549843
2 0.1950 0.17287 0.201524 0.197581 0.237146
3 0.0800 0.08029 0.094835 0.092742 0.101784
4 0.0400 0.03246 0.047417 0.044355 0.055614
5 0.0150 0.01606 0.023709 0.034677 0.023085
6 0.0150 0.01093 0.015241 0.016935 0.012592
7 0 0.00854 0.006774 0.008871 0.007345
8 0.0200 0.00478 0.005927 0.008871 0.003148
9 0.0100 0.00205 0.002540 0.003226 0.003148
10 0.0100 0.00205 0.002540 0.002419 0.003148
11 0 0.00102 0 0.000806 0.001049
12 0.0050 0.00102 0.000847 0.001613 0.001049
13 0 0 0.000847 0.000806 0
14 0 0.00102 0.001693 0 0
15 0 0 0.000847 0.0016129 0
16 0 0 0 0 0
17 0 0 0 0 0.0010493
18 0.0050 0 0 0 0
19 0 0 0 0 0
20 0 0 0 0 0
21 0 0 0 0 0
22 0 0 0 0 0
24 0 0 0 0 0
26 0 0 0 0 0
29 0 0 0 0 0
30 0 0 0 0 0
47 0 0 0 0 0

Total 1 1 1 1 1
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Table B6    Number of time visit hospital distribution of non-chronic patients 
(Female)  

No of  
time 
visit 

NonChronic 

[0-15] [16-59] [60-69] [70-79] [80+]
1 0.859766 0.850934 0.7882762 0.7400919 0.6946862
2 0.106564 0.112932 0.1369111 0.1603963 0.1855245
3 0.022462 0.023646 0.0385439 0.051838 0.0652771
4 0.006498 0.005996 0.0172645 0.0203906 0.0254237
5 0.002166 0.003066 0.0077623 0.0136416 0.0132845
6 0.001271 0.001510 0.0044165 0.0045951 0.0073294
7 0.000377 0.000789 0.0021413 0.0038771 0.0025195
8 0.000283 0.000338 0.001606 0.0010052 0.0025195
9 0.000141 0.000316 0.0010707 0.0020103 0.0018323
10 0.000047 0.000135 0.0005353 0.0004308 0.0004581
11 0.000094 0.000090 0.0004015 0.0001436 0
12 0.000141 0.000068 0.0004015 0.0002872 0.000229
13 0.000047 0.000068 0.0002677 0.0004308 0.0006871
14 0.000047 0.000023 0 0 0
15 0 0 0 0.0001436 0
16 0 2.254E-05 0.0002677 0.0004308 0
17 4.709E-05 2.254E-05 0.0001338 0.0001436 0
18 4.709E-05 0 0 0 0.000229
19 0 0 0 0.0001436 0
20 0 0 0 0 0
21 0 0 0 0 0
22 0 0 0 0 0
24 0 2.254E-05 0 0 0
26 0 0 0 0 0
29 0 0 0 0 0
30 0 0 0 0 0
47 0 2.254E-05 0 0 0

Total 1 1 1 1 1
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APPENDIX C 

HOLDING TIME DISTRIBUTION 
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Figure C1 Holding time distribution ACSC inpatient to discharge (Male) 

 

 

 

Figure C2 Holding time distribution chronic inpatient to discharge (Male) 
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Figure C3 Holding time distribution non-chronic inpatient to discharge (Male) 

 

 

 

Figure C4 Holding time distribution ACSC inpatient to dead (Male) 
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Figure C5 Holding time distribution chronic inpatient to dead (Male) 

 

 

 

Figure C6 Holding time distribution non-chronic inpatient to dead (Male) 
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Figure C7 Holding time distribution ACSC inpatient to discharge (Female) 

 

 

 

Figure C8 Holding time distribution chronic inpatient to discharge (Female) 
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Figure C9 Holding time distribution non-chronic inpatient to discharge (Female) 

 

 

 

Figure C10 Holding time distribution ACSC inpatient to dead (Female) 
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Figure C11 Holding time distribution chronic inpatient to dead (Female) 

 

 
 

Figure C12 Holding time distribution non-chronic inpatient to dead (Female) 
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APPENDIX D 

F-TEST FOR PARAMETER 
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Table D1  F-test comparison of other hypothesis test of model B, C and D for transition probability logit function of Male 

State F -Test Fcritical0.05,q,v

[0-15] [16-59] [60-69] [70-79] [80-+] 

F-test 
Sig. at 
p<0.05 

F-test 
Sig. at 
p<0.05 

F-test 
Sig. at 
p<0.05 

F-test 
Sig. at 
p<0.05 

F-test 
Sig. at 
p<0.05 

12 (Pop1Pop2) 

Fmodel_B F0.05,1,6 16.531 reject 95.960 reject 7.695 reject 2.597 accept - - 

Fmodel_C F0.05,1,6 20.106 reject 84.205 reject 9.847 reject 2.559 accept - - 

Fmodel_D F0.05,2,5 100.481 reject 50.133 reject 4.213 accept - - - - 

13 (Pop1Death) 

Fmodel_B F0.05,1,6 17.902 reject 47.179 reject 41.562 reject 34.325 reject 34.925 reject 

Fmodel_C F0.05,1,6 19.022 reject 68.036 reject 28.558 reject 30.133 reject 36.812 reject 

Fmodel_D F0.05,2,5 8.545 reject 29.488 reject 17.320 reject 16.108 reject 17.114 reject 

14 (Pop1ACSC1) 

Fmodel_B F0.05,1,6 23.614 reject 2.683 accept 1.944 accept 1.598 accept 27.154 reject 

Fmodel_C F0.05,1,6 20.416 reject 6.355 reject 1.806 accept 1.329 accept 37.823 reject 

Fmodel_D F0.05,2,5 17.408 reject - - - - - - 16.299 reject 

15 (Pop1Chronic1) 

Fmodel_B F0.05,1,6 23.717 reject 3.024 accept 1.087 accept 0.321 accept 21.568 reject 

Fmodel_C F0.05,1,6 20.515 reject 7.101 reject 0.938 accept 0.228 accept 25.251 reject 

Fmodel_D F0.05,2,5 17.355 reject - - - - - - 11.109 reject 

16 (Pop1NonChronic1) 

Fmodel_B F0.05,1,6 16.598 reject 1.385 accept 10.451 reject 4.524 accept 41.394 reject 

Fmodel_C F0.05,1,6 16.170 reject 2.519 accept 6.834 reject 3.965 accept 37.450 reject 

Fmodel_D F0.05,2,5 6.993 reject - - 5.205 accept - - 20.025 reject 

17 (Pop1ACSC2) 

Fmodel_B F0.05,1,6 7.802 reject 9.936 reject 1.507 accept 9.804 reject - - 

Fmodel_C F0.05,1,6 7.928 reject 16.594 reject 2.467 accept 10.267 reject - - 

Fmodel_D F0.05,2,5 3.338 accept 7.967 reject 2.122 accept 5.028 accept - - 

18 (Pop1_Chronic2) 
Fmodel_B F0.05,1,6 22.689 reject 1.942 accept 1.970 accept 1.232 accept - - 

Fmodel_C F0.05,1,6 20.705 reject 3.865 accept 1.998 accept 1.056 accept - - 
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State F -Test Fcritical0.05,q,v

[0-15] [16-59] [60-69] [70-79] [80-+] 

F-test 
Sig. at 
p<0.05 

F-test 
Sig. at 
p<0.05 

F-test 
Sig. at 
p<0.05 

F-test 
Sig. at 
p<0.05 

F-test 
Sig. at 
p<0.05 

Fmodel_D F0.05,2,5 11.353 reject - - 0.842 accept - - - - 

19 (Pop1NonChronic2) 

Fmodel_B F0.05,1,6 10.002 reject 0.404 accept 8.839 reject 3.980 accept - - 

Fmodel_C F0.05,1,6 10.485 reject 0.641 accept 7.168 reject 3.607 accept - - 

Fmodel_D F0.05,2,5 4.726 accept - - 3.737 accept - - - - 
 

Table D2 F-test comparison of other hypothesis test of model B, C and D for transition probability logit function of Female 

State F -Test Fcritical0.05,q,v

[0-15] [16-59] [60-69] [70-79] [80-+] 

F-test 
Sig. at 
p<0.05 

F-test 
Sig. at 
p<0.05 

F-test 
Sig. at 
p<0.05

F-test 
Sig. at 
p<0.05

F-test 
Sig. at 
p<0.05

12 (Pop1Pop2) 

Fmodel_B F0.05,1,6 11.262 reject 78.381 reject 9.509 reject 18.992 reject - - 

Fmodel_C F0.05,1,6 12.993 reject 123.737 reject 9.897 reject 20.399 reject - - 

Fmodel_D F0.05,2,5 18.959 reject 78.760 reject 4.210 accept 11.367 reject - - 

13 (Pop1Death) 

Fmodel_B F0.05,1,6 6.302 reject 3.443 accept 19.763 reject 14.715 reject 29.350 reject 

Fmodel_C F0.05,1,6 6.539 reject 3.195 accept 46.428 reject 15.076 reject 26.736 reject 

Fmodel_D F0.05,2,5 2.975 accept - - 26.363 reject 6.468 reject 12.848 reject 

14 (Pop1ACSC1) 

Fmodel_B F0.05,1,6 18.298 reject 1.289 accept 5.695 accept 0.889 accept 30.510 reject 

Fmodel_C F0.05,1,6 16.432 reject 4.418 accept 4.959 accept 0.833 accept 38.253 reject 

Fmodel_D F0.05,2,5 11.370 reject - - - - - - 16.393 reject 

15 (Pop1Chronic1) 
Fmodel_B F0.05,1,6 18.206 reject 1.287 accept 5.704 accept 0.887 accept 30.344 reject 

Fmodel_C F0.05,1,6 16.346 reject 4.415 accept 4.967 accept 0.831 accept 38.646 reject 
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State F -Test Fcritical0.05,q,v

[0-15] [16-59] [60-69] [70-79] [80-+] 

F-test 
Sig. at 
p<0.05 

F-test 
Sig. at 
p<0.05 

F-test 
Sig. at 
p<0.05

F-test 
Sig. at 
p<0.05

F-test 
Sig. at 
p<0.05

Fmodel_D F0.05,2,5 11.349 reject - - - - - - 16.509 reject 

16 (Pop1NonChronic1) 

Fmodel_B F0.05,1,6 9.489 reject 0.078 accept 45.155 reject 11.362 reject 81.244 reject 

Fmodel_C F0.05,1,6 9.669 reject 0.134 accept 18.755 reject 11.700 reject 51.784 reject 

Fmodel_D F0.05,2,5 4.073 accept - - 26.989 reject 5.153 accept 35.424 reject 

17 (Pop1ACSC2) 

Fmodel_B F0.05,1,6 13.896 reject 0.766 accept 7.507 reject 2.638 accept - - 

Fmodel_C F0.05,1,6 13.142 reject 1.932 accept 7.182 reject 2.587 accept - - 

Fmodel_D F0.05,2,5 6.438 reject - - 3.169 accept - - - - 

18 (Pop1Chronic2) 

Fmodel_B F0.05,1,6 13.967 reject 0.765 accept 7.559 reject 2.624 accept - - 

Fmodel_C F0.05,1,6 13.225 reject 1.939 accept 7.211 reject 2.575 accept - - 

Fmodel_D F0.05,2,5 6.435 reject - - 3.189 accept - - - - 

19 (Pop1NonChronic2) 

Fmodel_B F0.05,1,6 3.733 accept 0.039 accept 33.249 reject 8.963 reject - - 

Fmodel_C F0.05,1,6 4.016 accept 0.035 accept 19.528 reject 9.227 reject - - 

Fmodel_D F0.05,2,5 - - - - 14.637 reject 4.123 accept - - 
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APPENDIX E 

MARKOV POPULATION RESULTS 
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Table E1 Number of Population (Male) from Markov model 

Year 
Male 

Total 
[0-15] [16-59] [60-69] [70-79] [80+] 

2007 288125 831657 71123 39515 12941 1243362

2008 283825 832449 73008 40775 13589 1243647

2009 279591 834910 75182 42038 14526 1246247

2010 275319 839010 77960 43369 15406 1251063

2011 271114 843722 81356 44725 16648 1257565

2012 266708 848522 85072 45824 17672 1263799

2013 262713 858166 89827 47130 18532 1276368

2014 258612 856608 95193 48271 20445 1279130

2015 254377 853206 99751 48989 22141 1278463

2016 250098 849374 103745 49652 24049 1276918

2017 245848 847113 107274 50175 25941 1276352

2018 241605 845618 110582 50550 27921 1276276

2019 237363 844152 113748 50741 30048 1276051

2020 233126 842935 116811 50738 32315 1275924

2021 228893 841799 119808 50524 34739 1275763

2022 224665 840792 122767 50091 37326 1275641

2023 220439 839839 125709 49430 40088 1275506

2024 216218 838954 128654 48535 43031 1275391

2025 211999 838091 131615 47402 46161 1275267
 

Table E2 Number of ACSC inpatients (Male) from Markov model 

Year 
ACSC(Male) 

Total 
[0-15] [16-59] [60-69] [70-79] [80+] 

2007 906 4398 3150 3681 2252 14388

2008 942 4549 3265 3819 2308 14883

2009 979 4703 3388 3946 2375 15391

2010 1016 4871 3530 4076 2475 15967

2011 1055 5053 3704 4216 2552 16579

2012 1093 5246 3912 4362 2668 17282

2013 1135 5447 4141 4488 2737 17948

2014 1172 5682 4429 4641 2776 18700

2015 1212 5864 4748 4784 2930 19537

2016 1254 6042 5031 4882 3036 20244

2017 1297 6223 5290 4969 3150 20929

2018 1340 6421 5532 5038 3249 21580

2019 1385 6630 5769 5090 3347 22221

2020 1429 6848 6003 5124 3452 22856
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Year 
ACSC(Male) 

Total 
[0-15] [16-59] [60-69] [70-79] [80+] 

2021 1474 7076 6238 5138 3564 23490

2022 1519 7312 6476 5131 3688 24127

2023 1565 7560 6718 5103 3825 24770

2024 1611 7817 6965 5053 3976 25422

2025 1657 8085 7220 4981 4142 26084
 

 

Table E3 Number of Chronic inpatients (Male) from Markov model 

Year 
Chronic(Male) 

Total 
[0-15] [16-59] [60-69] [70-79] [80+] 

2007 608 10916 3630 3790 1986 20929

2008 632 11300 3726 3933 2055 21646

2009 657 11690 3831 4064 2131 22372

2010 681 12115 3953 4197 2230 23176

2011 707 12575 4108 4341 2309 24039

2012 733 13059 4298 4491 2415 24996

2013 761 13563 4506 4620 2473 25923

2014 786 14148 4776 4776 2494 26981

2015 813 14600 5076 4922 2611 28021

2016 841 15039 5333 5021 2672 28906

2017 870 15484 5561 5109 2726 29750

2018 899 15965 5765 5179 2751 30559

2019 929 16472 5959 5232 2755 31346

2020 959 16995 6145 5265 2744 32108

2021 989 17539 6326 5278 2718 32850

2022 1019 18100 6505 5270 2677 33571

2023 1050 18680 6682 5239 2624 34275

2024 1081 19279 6858 5186 2559 34963

2025 1112 19898 7035 5110 2484 35638
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Table E4 Number of Non-Chronic inpatients (Male) from Markov model 
 

Year 
Non-Chronic(Male) 

Total 
[0-15] [16-59] [60-69] [70-79] [80+] 

2007 42402 46395 11485 10221 6260 116764

2008 43193 46436 11604 10565 6363 118161

2009 43978 46454 11723 10875 6478 119508

2010 44735 46550 11851 11182 6660 120978

2011 45495 46722 11996 11502 6770 122486

2012 46223 46919 12150 11823 6955 124071

2013 47006 47115 12294 12075 6995 125485

2014 47638 47528 12444 12368 6933 126911

2015 48290 47427 12552 12611 7126 128005

2016 48969 47239 12611 12746 7163 128729

2017 49645 47028 12641 12864 7180 129358

2018 50290 46887 12654 12945 7116 129892

2019 50909 46779 12655 12985 7003 130332

2020 51504 46670 12645 12976 6855 130650

2021 52069 46570 12626 12915 6673 130853

2022 52604 46471 12598 12797 6463 130934

2023 53107 46376 12562 12622 6227 130894

2024 53575 46281 12518 12386 5972 130731

2025 54006 46187 12467 12088 5700 130446

 

Table E5 Number of population (Female) from Markov model 

Year 
Female 

Total 
[0-15] [16-59] [60-69] [70-79] [80+] 

2007 271778 848606 80617 51454 20843 1273298

2008 267796 851831 83023 53364 21595 1277609

2009 263721 854270 85922 55047 22508 1281469

2010 259846 857127 89564 56594 23466 1286598

2011 256012 860887 93904 58022 25259 1294084

2012 251872 864968 98765 59200 26954 1301759

2013 247578 867849 104210 60204 28822 1308662

2014 243511 868526 110078 61293 30357 1313764

2015 239562 867571 116390 62400 32388 1318311

2016 235703 864796 123157 63575 35237 1322468

2017 231806 860433 130539 64710 38451 1325939

2018 227804 854734 138655 65664 41872 1328729

2019 223715 847856 147532 66340 45674 1331117
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Year 
Female 

Total 
[0-15] [16-59] [60-69] [70-79] [80+] 

2020 219576 839878 157163 66690 49946 1333252

2021 215413 830865 167529 66692 54634 1335133

2022 211246 820871 178614 66345 59618 1336695

2023 207090 809930 190406 65669 64805 1337899

2024 202950 798050 202899 64697 70160 1338756

2025 198826 785227 216091 63467 75686 1339297

 

Table E6 Number of ACSC Inpatients (Female) from Markov model 

Year 
ACSC(Female) 

Total 
[0-15] [16-59] [60-69] [70-79] [80+] 

2007 706 5283 3590 3455 2045 15079

2008 726 5302 3685 3622 2112 15447

2009 746 5321 3811 3775 2138 15790

2010 767 5335 3962 3913 2170 16147

2011 787 5352 4150 4044 2196 16530

2012 807 5373 4377 4167 2286 17011

2013 830 5397 4632 4273 2352 17484

2014 855 5413 4919 4365 2416 17968

2015 878 5415 5231 4459 2440 18423

2016 900 5407 5568 4552 2487 18913

2017 921 5388 5931 4645 2574 19459

2018 943 5359 6329 4731 2661 20024

2019 966 5321 6769 4801 2735 20593

2020 990 5277 7251 4847 2804 21170

2021 1015 5225 7776 4867 2869 21752

2022 1040 5167 8342 4857 2925 22331

2023 1066 5103 8947 4819 2964 22898

2024 1091 5033 9590 4753 2983 23450

2025 1116 4957 10270 4664 2983 23989 
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Table E7 Number of Chronic Inpatients (Female) from Markov model 

Year 
Chronic(Female) 

Total 
[0-15] [16-59] [60-69] [70-79] [80+] 

2007 720 10198 4112 4503 3144 22677

2008 740 10234 4221 4721 3245 23162

2009 761 10271 4365 4920 3284 23601

2010 783 10298 4537 5101 3332 24052

2011 803 10330 4754 5271 3372 24530

2012 823 10371 5013 5431 3510 25149

2013 847 10417 5305 5569 3610 25748

2014 872 10449 5634 5689 3707 26351

2015 895 10453 5991 5812 3742 26894

2016 918 10438 6377 5933 3813 27478

2017 939 10400 6793 6054 3946 28133

2018 962 10344 7249 6167 4079 28800

2019 985 10272 7752 6258 4191 29458

2020 1010 10185 8305 6318 4295 30114

2021 1035 10086 8906 6344 4394 30764

2022 1061 9974 9554 6331 4477 31397

2023 1087 9850 10247 6281 4536 32001

2024 1112 9715 10984 6196 4564 32571

2025 1138 9568 11762 6079 4562 33109

 

Table E8 Number of Non-Chronic Inpatients (Female) from Markov model 

Year 
Non-Chronic(Female) 

Total 
[0-15] [16-59] [60-69] [70-79] [80+] 

2007 34985 75312 13934 13945 9223 147399

2008 35185 75516 14001 14157 9263 148122

2009 35375 75724 14066 14275 9121 148561

2010 35553 75861 14117 14315 9004 148849

2011 35725 76031 14147 14299 8863 149066

2012 35888 76277 14145 14233 8974 149517

2013 36031 76548 14099 14091 8980 149749

2014 36156 76711 13996 13893 8975 149731

2015 36276 76680 13832 13695 8814 149297

2016 36386 76505 13603 13483 8740 148717

2017 36486 76170 13307 13267 8805 148036

2018 36571 75694 12937 13027 8863 147093

2019 36638 75100 12486 12737 8870 145832

2020 36685 74402 11956 12387 8856 144286
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Year 
Non-Chronic(Female) 

Total 
[0-15] [16-59] [60-69] [70-79] [80+] 

2021 36714 73606 11353 11977 8828 142477

2022 36724 72718 10688 11510 8769 140408

2023 36716 71743 9975 10995 8661 138091

2024 36691 70684 9231 10443 8498 135547

2025 36646 69543 8470 9867 8284 132811
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%calculate transition probability 

%transition probability of population age g at y(t) to age i at year t(+1) 

p11 = PopAll.\Pop1_Pop1;   

%transition probability of population age g at y(t) to age i+1 at year t(+1) 

p12 = PopAll(:,1:4).\Pop1_Pop2; 

%transition probability of population age g at y(t) to death all at year t(+1) 

p14 = PopAll.\Pop1_Death; 

%transition probability of population age g at y(t) to ACSC IPD age i at year t(+1) 

p15=PopAll.\Pop1_IPD1_ ACSC; 

%transition probability of population age g at y(t) to Chronic IPD age i at year t(+1) 

p16=PopAll.\Pop1_IPD1_Chro; 

%transition probability of population age g at y(t) to non-chronic IPD age i at year 
t(+1) 

p18=PopAll.\Pop1_IPD1_NonChro; 

%transition probability of population age g at y(t) to ACSC IPD age i+1 at year t(+1) 

p19=PopAll.\Pop1_IPD2_ ACSC; 

%transition probability of population age g at y(t) to Chronic IPD age i+1 at year t(+1) 

p20=PopAll.\Pop1_IPD2_Chro; 

%transition probability of population age g at y(t) to non-Chronic IPD age i+1 at year 
t(+1) 

p22=PopAll.\Pop1_IPD1_NonChro; 

%Calculate log Odds 

lnP1_P2=log(p11.\p12); 

lnP1_Death=log(p11.\p14); 

lnP1_ACSC1=log(p11.\p15); 

lnP1_Chronic1=log(p11.\p16); 

lnP1_nonChronic1=log(p11.\p18); 

lnP1_ACSC2=log(p11(:,1:4).\p19); 

lnP1_Chronic2= log(p11(:,1:4).\p20); 

lnP1_nonChronic2= log(p11(:,1:4).\p22);  

y12= lnP1_P2; 
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y14= lnP1_Death; 

y15= lnP1_ACSC1; 

y16= lnP1_Chronic1; 

y18= lnP1_nonChronic1; 

y19= lnP1_ACSC2; 

y20= lnP1_Chronic2; 

y22= lnP1_nonChronic2; 

%--------------- 

% Model_1   x3=blkdiag([1 PopAll(n,g)] ); 

% Model_2   x3=blkdiag([1 Year(n,1)] ); 

% Model_3   x3=blkdiag([1 PopAll(n,g) Year(n,1)] ); 

%---------------- 
%Example for parameter estimation  Model_3 
%---------------- 
% if numstate = 9 states-population age group (1)-(4)------------------------------------------- 

%p_all=[p12(:,1:4),p14(:,1:4),p15(:,1:4),p16(:,1:4),p18(:,1:4),p19(:,1:4),p20(:,1:4),p22(:,1:4)]; 

% y_all=[y12(:,1:4), y14(:,1:4), y15(:,1:4), y16(:,1:4), y18(:,1:4) y19(:,1:4) y20(:,1:4)  

y22(:,1:4)]; 

% for  g=1:r-1 

%        j=4*(h-1)+g; 

%------------------------------------------------------------------------------------------------------ 

% if numstate = 5 states- population age group (5)------------------------------------------- 

% p_all=[p14(:,5),p15(:,5),p16(:,5),p18(:,5)]; 

% y_all=[y14(:,5), y15(:,5), y16(:,5), y18(:,5) ];  y22(:,1:4)]; 

% for g=5 

%         j=h; 

%------------------------------------------------------------------------------------------------------ 
[m r]=size(PopAll); 

numstate=9; 

p_all=[p12(:,1:4),p14(:,1:4),p15(:,1:4),p16(:,1:4),p18(:,1:4),p19(:,1:4),p20(:,1:4),p22(:,1:4)]; 
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y_all=[y12(:,1:4), y14(:,1:4), y15(:,1:4), y16(:,1:4), y18(:,1:4) y19(:,1:4) y20(:,1:4)  

y22(:,1:4)]; 

for h=1:numstate-1  

for g=1:r-1 

j=4*(h-1)+g; 

>> for n=1:m  

x3=blkdiag([1 PopAll(n,g) Year(n,1)] );  

cov3=[ p11(n,g)*(1-p11(n,g)),  -p11(n,g)*p_all(n,j), 

 -p11(n,g)*p_all(n,j) p_all(n,j)*(1-p_all(n,j)),];  

A_data3=[-1/p11(n,g), 1/p_all(n,j)];  

varW3=A_data3*(1/PopAll(n,g)*cov3)*A_data3';  

var3=varW3;  

w3=inv(var3);  

y3=[y_all(n,j)];  

pd3=x3'*w3*x3;  

pd4=x3'*w3*y3;  

if n<=1  

sum3=pd3;  

sum4=pd4;  

varWtable3=varW3;  

covtable3=cov3;  

A_datatable3=A_data3;  

Invvarwtable3=w3;  

pd1table3=pd3;  

pd1table4=pd4;  

else  
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sum3=sum3+pd3;  

sum4=sum4+pd4;  

varWtable3=[varWtable3,varW3];  

covtable3=[covtable3,cov3];  

A_datatable3=[A_datatable3,A_data3];  

Invvarwtable3=[Invvarwtable3;,w3];  

pd1table3=[pd1table3;,pd3];  

pd1table4=[pd1table4;,pd4];  

end  

end  

para3=inv(sum3)*sum4;  

>> for n=1:m  

x3=blkdiag([1 PopAll(n,g) Year(n,1)] );  

cov3=[ p11(n,g)*(1-p11(n,g)),  -p11(n,g)*p_all(n,j), 

 -p11(n,g)*p_all(n,j) p_all(n,j)*(1-p_all(n,j)),];  

A_data3=[ -1/p11(n,g), 1/p_all(n,j)];  

varW3=A_data3*(1/PopAll(n,g)*cov3)*A_data3';  

var3=varW3;  

w3=inv(var3);  

y3=[y_all(n,j)];  

sse3=(y3-x3*para3)'*w3*(y3-x3*para3);  

sst3=(y3-mean(y_all(:,j)))'*w3*(y3-mean(y_all(:,j)));  

if n<=1  

sum_sse3=sse3;  

sum_sst3=sst3;  

else  
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sum_sse3=sum_sse3+sse3;  

sum_sst3=sum_sst3+sst3;  

end  

end  

covM3=inv(sum3);  

std95inv3=diag(sqrt(sum_sse3*covM3));  

SE3=diag(sqrt(covM3));  

if g<=1  

paratable3=para3;  

sumssetable3=sum_sse3;  

sumssttable3=sum_sst3;  

varWtable3table=varWtable3;  

covtable3table=covtable3;  

A_datatable3table=A_datatable3;  

Invvarwtable3table=Invvarwtable3;  

pd1table3table=pd1table3;  

pd1table4table=pd1table4;  

sum1table3=sum3;  

sum2table4=sum4;  

covM3table=[covM3];  

std95inv3table=std95inv3;  

SE3table=SE3;  

else  

paratable3=[paratable3,para3];  

sumssetable3=[sumssetable3,sum_sse3];  

sumssttable3=[sumssttable3,sum_sst3];  
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varWtable3table=[varWtable3table,varWtable3];  

covtable3table=[covtable3table,covtable3];  

A_datatable3table=[A_datatable3table,A_datatable3];  

Invvarwtable3table=[Invvarwtable3table,Invvarwtable3];  

pd1table3table=[pd1table3table,pd1table3];  

pd1table4table=[pd1table4table,pd1table4];  

sum1table3=[sum1table3,sum3];   

sum2table4=[sum2table4,sum4];  

covM3table=[covM3table,covM3];  

std95inv3table=[std95inv3table,std95inv3];  

SE3table=[SE3table,SE3];  
end  

end  

if h<=1  

paratableall=paratable3;  

sumssetableAll=sumssetable3;  

sumssttableAll=sumssttable3;  

varWtable3tableAll=blkdiag([varWtable3table]);  

covtable3tableAll=blkdiag([covtable3table]);  

A_datatable3tableAll=blkdiag([A_datatable3table]);  

Invvarwtable3tableAll=blkdiag([Invvarwtable3table]);  

pd1table3tableAll=blkdiag([pd1table3table]);  

pd1table4tableAll=blkdiag([pd1table4table]);  

sum1table3tableAll=blkdiag([sum1table3]);  

sum2table4tableAll=blkdiag([sum2table4]);  

covM3tableAll=[covM3table];  

std95inv3tableAll=[std95inv3table];  

SE3tableAll=[SE3table];  
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else  

paratableall=[paratableall;,paratable3];  

sumssetableAll=[sumssetableAll;,sumssetable3];  

sumssttableAll=[sumssttableAll;,sumssttable3];  

varWtable3tableAll=blkdiag([varWtable3tableAll,varWtable3table]);  

covtable3tableAll=blkdiag([covtable3tableAll,covtable3table]);  

A_datatable3tableAll=blkdiag([A_datatable3tableAll,A_datatable3table]);  

Invvarwtable3tableAll=blkdiag([Invvarwtable3tableAll,Invvarwtable3table]);  

pd1table3tableAll=blkdiag([pd1table3tableAll,pd1table3table]);  

pd1table4tableAll=blkdiag([pd1table4tableAll,pd1table4table]);  

sum1table3tableAll=blkdiag([sum1table3tableAll,sum1table3]);  

sum2table4tableAll=blkdiag([sum2table4tableAll,sum2table4]);  

covM3tableAll=[covM3tableAll,covM3table];  

std95inv3tableAll=[std95inv3tableAll;,std95inv3table];  

SE3tableAll=[SE3tableAll;,SE3table];  

end  

end  

Rsquare3=(1-sumssttableAll.\sumssetableAll);  

radj=1-(1-Rsquare3)*(m-1)/(m-1-1);  

ssr3=sumssttableAll-sumssetableAll;  

[rx,cx]=size(x3);  

msr3=ssr3/(cx-1);  

mse3=sumssetableAll/(m-cx);  

Ftest=mse3.\msr3;   
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