การก่อเกิดเชิงพลวัตของเขตศูนย์กลางในควาร์กกลูออนพลาสมา

วิทยานิพนซ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาฟิสิกส์ มหาวิทยาลัยเทคโนโลยีสุรนารี ปีการศึกษา 2557

DYNAMICAL FORMATION OF CENTER DOMAINS IN QUARK-GLUON PLASMA

A Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Physics

Suranaree University of Technology

Academic Year 2014

DYNAMICAL FORMATION OF CENTER DOMAINS

IN QUARK-GLUON PLASMA

Suranaree University of Technology has approved this thesis submitted in partial

fulfillment of the requirements for a Master's Degree.

(Asst. Prof. Dr. Chinorat Kobdaj)

Member

(Prof. Dr. Sukit Limpijumnong)

Vice Rector for Academic Affairs

(Prof. Dr. Santi Maensiri)

Dean of Institute of Science

and Innovation

จักรภัทร กรรณิกา : การก่อเกิดเชิงพลวัตของเขตศูนย์กลางในควาร์กกลูออนพลาสมา (DYNAMICAL FORMATION OF CENTER DOMAINS IN QUARK-GLUON PLASMA) อาจารย์ที่ปรึกษา : ผู้ช่วยศาสตราจารย์ คร.อายุทธ ลิ้มพิรัตน์, 64 หน้า

เขตศูนย์กลาง คือ โครงสร้างซึ่งเกิดจากการเสียสมมาตรของศูนย์กลางในควาร์กกลู-้ออนพลาสมา ซึ่งได้ถูกกาดการณ์โดยการกำนวณแบบแลตทิซกิวซีดี โดยแต่ละเขตของเขต ้ศูนย์กลางถูกจำแนกโดยค่าจำกัดของโพลีย<mark>าก</mark>อฟลูป ซึ่งในที่นี้มีบทบาทสำคัญในการแยกแยะ ระหว่างกอนไฟน์และคีกอนไฟน์เฟส เขต<mark>ศูน</mark>ย์กลางยังอาจเกิดขึ้นได้ในการชนกันของไอออน หนัก และมีอิทธิพลต่อความหนืดและการใหลเชิงรี ซึ่งเป็นปริมาณที่บ่งถึงการเกิดควาร์ก-กลูออนพลาสมาในการชนของไอออน<mark>ห</mark>นัก งา<mark>น</mark>วิจัยนี้ได้พัฒนาแบบจำลองพลศาสตร์สำหรับ ้โพลียาคอฟลูป บนพื้นฐานของแอ<mark>ฟเ</mark>ฟ็กทีฟโ<mark>พเท</mark>นเชียลและฟิโนมีโนโลจิคอลไคเนติกเทอม การศึกษาวิวัฒนาการของโพลียาค<mark>อฟลู</mark>ป ทำ<mark>ให้</mark>สามารถศึกษาการก่อตัวและการสลายของ เขตศูนย์กลางในควาร์กกลูออน<mark>พล</mark>าสมาได้ โดยผลก<mark>ารจ</mark>ำลองในวิทยานิพนธ์นี้ทำให้เกิดความ เข้าใจอย่างลึกซึ้ง เกี่ยวกับกระบวนการก่อตัวของเขตศูนย์กลางในระหว่างการชนของไอออน หนัก และช่วยในการทำความเข้าใจเกี่ยวกับงนาดของเงตศูนย์กลาง ซึ่งได้รับอิทธิผลมาจาก อุณหภูมิและสัมประสิ<mark>ทธิ์จ</mark>ลน์ในแบบจำลองที่สร้างขึ้น จากงานวิจัย พบว่าการขยายตัวของ เขตศูนย์กลางนั้นเกิดขึ้<mark>นเนื่องมาจากสัมประสิทธิ์จลน์ และผ</mark>ลจากการคำนวณแบบแลตทิซ-้คิวซีดียังบ่งให้เห็นว่า <mark>งนาคของเขตศูนย์กลางนั้นขึ้นกับค่า</mark>ของอุณหภูมิด้วย เช่นเดียวกับ ผลการกำนวนแบบแลตทิซคิวซีดี ซึ่งสามารถกำหนดค่าของสัมประสิทธิ์จลน์ให้อยู่ในรูปของ อุณหภูมิ โดยท้ายสุดพบว่า การก่อตัวของเขตศูนย์กลางนั้นอยู่ในช่วงชีวิตของควาร์กกลูออน-พลาสมาที่พลังงานของแอลเอชซี โดยการคำนวนที่เกี่ยวข้องกับผลกระทบของเขตศูนย์กลาง จะถูกพิจารณาในงานวิจัยในอนาคต

ลายมือชื่อนักศึกษา	
ลายมือชื่ออาจารย์ที่ปรึกษา	
ลายมือชื่ออาจารย์ที่ปรึกษาร่วม _	

สาขาวิชาฟิสิกส์ ปีการศึกษา 2557

JAKAPAT KANNIKA : DYNAMICAL FORMATION OF CENTER DOMAINS IN QUARK-GLUON PLASMA. THESIS ADVISOR : ASST. PROF. AYUT LIMPHIRAT, Ph.D. 64 PP.

QUARK-GLUON PLASMA/CENTER DOMAINS/HEAVY-ION COLLISIONS/ DY-NAMIC SYMMETRY BREAKING

Center domains are structures based on spontaneous breakdown of center symmetry as expected in quark-gluon plasma (QGP) from lattice QCD calculations. Each domain is characterized by a finite value of the Polyakov loop, which here serves as an order parameter to distinguish between confined and deconfined phase. Center domains might possibly occur in heavy-ion collision and may have influence on observable like viscosity or elliptic flow. In this work, we develop a fully dynamical model for the Polyakov loop based on an effective potential and a phenomenological kinetic term. Studying the time evolution of the Polyakov loop allows us to study formation and decay of center domains in the QGP. The results of this simulation give us insight into the formation procedure during a heavy-ion collision and help us understand how the domain size is influenced by temperature and the kinetic coefficient in our model. We find that the domain size grows with this coefficient, together with recent data from lattice QCD, where the domain size was calculated as a function of temperature, we can fix the value of the kinetic coefficient as a function of temperature. Finally, we determine the formation time of domains and find it within the lifetime of a QGP at LHC energies, therefore making the formation of center domains a relevant effect that needs to be considered in future calculations.

Student's Signature	

Academic Year 2014

Advisor's Signature _____

Co-Advisor's Signature

ACKNOWLEDGEMENTS

Firstly, I would like to express my gratitude to all people who have supported, assisted and tought me which later influenced me to complete my thesis.

I would like to thank Prof. Dr. Yupeng Yan for giving me a chance to join the Nuclear and Particle Physics group and teaching me several courses involving particle physics. And I would like to thank Asst. Prof. Dr. Chinorat Kobdaj for encouraging me to keep studying and doing research in the field of particle physics, without you, I would not have finished my master degree in physics. Thank you Asst. Prof. Dr. Ayut Limpirat for supporting me all along and for being my thesis advisor who always gave me very useful advice. And thank you Dr. Christoph Herold for teaching me physics and training me to do research.

Finally, I would like to express my deepest gratitude to my parents for giving me the freedom to think, to work and even to play.

Jakapat Kannika

CONTENTS

Page

ABSTRACT IN THAI		 Ι
ABSTRACT IN ENGLISH	.	 II
ACKNOWLEDGEMENTS		 IV
CONTENTS		 V
LIST OF TABLES		 VII
LIST OF FIGURES	 .	 VIII
CHAPTER		
I INTRODUCTION		 1
II POLYAKOV LOOP POTENTIAL		 6
2.1 Polyakov loop potential		 6
2.2 Thermodynamic properties		 8
III EQUATIONS OF MOTION		 13
IV SIMULATION METHOD		 18
4.1 Numerical implementation		 18
4.2 Numerical parameters		 20
4.3 Initial conditions		 20
4.4 Fixing sigma		 21
4.5 Tracking evolution of center domains		 24

CONTENTS (Continued)

		Page
V	RESULTS	. 25
	5.1 Sigma coefficient	. 25
	5.2 Formation of center domains	. 28
	5.3 Decay of center domains	. 34
VI	CONCLUSIONS AND DICUSSIONS	. 43
REFE	RENCES	45
APPE	NDICES	
	APPENDIX A RESEARCH WORKFLOW	. 51
	APPENDIX B NATURAL UNITS	. 52
	APPENDIX C CODE IMPLEMENTATIONS	. 54
CURR	RICULUM VITAE	64

LIST OF TABLES

Table	Page
4.1	Numerical parameters
B.1	Natural units in particle physics

LIST OF FIGURES

Figure	e P	age
1.1	Illustrations of atoms and molecules from John Dalton's book, "A New	
	System of Chemical Philosophy (1808)"	2
1.2	Standard model of elementary particles shows various particles that have	
	been observed so far, figure by MissMJ, used under CC BY 3.0	3
1.3	Schematic of center domains where $\nu = 0$, $\nu = 1$ and $\nu = 2$ are different	
	in types of domains, from (Asakawa et al., 2013).	5
2.1	Contour plot of Polyakov loop potential at $T = 100$ MeV	7
2.2	Contour plot of Polyakov loop potential at $T = 300$ MeV	8
2.3	Contour plot of Polyakov loop potential at $T = 500$ MeV	8
2.4	Minimum point of the Polyakov loop potential as a function of T	10
2.5	Absolute value of the Polyakov loop in the equilibrium as a function of T .	10
2.6	Pressure of the Polyakov loop potential as a function of T	11
2.7	Entropy of the Polyakov loop potential as a function of T	11
2.8	Free energy of a heavy static quark as a function of T	12
2.9	Energy density of the Polyakov loop potential as a function of T	12
4.1	Small fluctuations in Polyakov loop at $z = 0$ fm and time $t = 0.005$ fm/c.	21
4.2	Space-time lattices with a different sigma values.	22

LIST OF FIGURES (Continued)

Figur	e I	Page
4.3	Average diameter of domains for two resolution scales, (Borsanyi et al.,	
	2011)	23
5.1	Exponential fit of the correlation function for $T = 283.5$ MeV	25
5.2	Exponential fit of the correlation function for $T = 297.0$ MeV	26
5.3	Exponential fit of the correlation function for $T = 310.5$ MeV	27
5.4	Sigma as a function of temperature.	27
5.5	Evolution of standard deviation from time 0 - 25 fm/c with T_1	28
5.6	Evolution of standard deviation from time 0 - 25 fm/c with T_2	29
5.7	Evolution of standard deviation from time 0 - 25 fm/c with T_3	29
5.8	Evolution of standard deviation from time 0 - 25 fm/c with T_1 , T_2 and T_3 .	30
5.9	Plan plot of l_2 from time 0 - 25 fm/c with T_1	31
5.10	Plan plot of l_2 from time 0 - 25 fm/c with T_2	32
5.11	Plan plot of l_2 from time 0 - 25 fm/c with T_3	33
5.12	Evolution of standard deviation from time 26 - 50 fm/c with T_1	34
5.13	Evolution of standard deviation from time 26 - 50 fm/c with T_2	35
5.14	Evolution of standard deviation from time 26 - 50 fm/c with T_3	35
5.15	Evolution of standard deviation from time 26 - 50 fm/c with T_1 , T_2 and T_3	36
5.16	Plan plot of l_2 from time 26 - 50 fm/c with T_1	37
5.17	Plan plot of l_2 from time 26 - 50 fm/c with T_1	38
5.18	Plan plot of l_2 from time 26 - 50 fm/c with T_2	39

LIST OF FIGURES (Continued)

Figure		Pa	ige
5.19	Plan plot of l_2 from time 26 - 50 fm/c with T_2		40
5.20	Plan plot of l_2 from time 26 - 50 fm/c with T_3	•	41
5.21	Plan plot of l_2 from time 26 - 50 fm/c with T_3		42
6.1	Heavy-ion collision rates at LHC energy.	•	44

CHAPTER I

INTRODUCTION

In the past, people believed that all elements in nature were composed of indivisible particles called *atoms*. The first group of people who considered the concept of an atom were ancient Greek and Indian philosophers, studying so-called *Atomism*. Atomism comprises the idea that all elements in nature consist of atoms and voids. However, the crucial problem of Atomism was the lack of experimental evidence. Note that, in modern science, any theory requires experimental support to be verified. In the 19th century, the study of atoms became famous again under the name of *Atomic Theory*. This Atomic Theory was developed by John Dalton, an English chemist, physicist and meteorologist, see figure 1.1. The origin of the theory was not well understood. However, the theory was later verified by many experimental results from other works. The idea of his theory can be summarized in four statements:

1. All elements in nature are made of atoms where one atom is indivisible and indestructible,

2. Any single element is composed of atoms which are identical in size, mass and other properties, different elements have different types of atoms,

3. Any two or more elements can form chemical compounds with an integer ratio,

4. A chemical reaction is a rearrangement of atoms.

Figure 1.1 Illustrations of atoms and molecules from John Dalton's book, "A New System of Chemical Philosophy (1808)".

This was the first time when scientists had gained an empirical understanding about matter. So, with this success, the Atomic Theory of Dalton is considered as a foundation of particle physics and another related fields in a few centuries later.

Later, contrary to some ideas of the Atomic Theory of Dalton, physicists found that atoms are not indivisible, but contain smaller particles such as electrons, protons and neutrons. Moreover, from modern particle physics, we know that even protons and neutrons are composed of smaller particles called quarks, see figure 1.2 for a table of elementary particles as they are known today.

After the Big Bang, our universe started to expand and cool, resulting in several phases and phase changes to the contained matter. All those phases have different thermodynamic properties. In this work, we focus on one of the early phases called *quark-gluon plasma (QGP)*. The QGP is a primordial state of matter created at about

Figure 1.2 Standard model of elementary particles shows various particles that have been observed so far, figure by MissMJ, used under CC BY 3.0.

 10^{-5} s after the Big Bang, The term of QGP denotes matter composed of two elementary particles:

Quarks, which are considered as fundamental constituents of matter.

Gluons, which act as carriers of the strong nuclear force between quarks.

From the QGP phase, hadrons emerged after further cooling, later atomic nuclei, atoms, and finally gravitating large-scale structures such as stars and galaxies. In the QGP phase, quarks and gluons are in no bound state under the extremely hot and dense conditions. The theory describing the interaction of quarks and gluons due to so called color charges (red (R), green (G) and blue (B)) is *Quantum Chromodynamics (QCD)* which was first proposed by Nambu in 1966. One remarkable feature of QCD which distinguishes hadronic matter from a QGP is called *confinement*. In confinement, quarks are bound together in color-neutral particles such as baryons and mesons. Baryons are composite particles made up of three quarks e.g. protons (p), neutrons (n). Mesons are

composite particles made up of one quark and one antiquark e.g. pions (π), kaons (K). In contrast to that, in QGP the relevant degrees of freedom carry color charge, matter is deconfined. Nevertheless, isolated color charges have never been observed experimentally. Another characteristic property that distinguishes the QGP from the hadron gas is the restoration of chiral symmetry at high temperatures. The QGP can be found or created in 1) The early universe at about 10^{-5} s after the Big Bang, 2) Superdense stars such as neutron stars or quark stars, 3) Heavy-ion collisions.

Nowadays, heavy-ion collisions are done by colliding two heavy nuclei at ultrarelativistic energies using large accelerator facilities. At the moment such experiments are performed at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory and the Large Hadron Collider (LHC) at CERN. At RHIC, scientists found evidence for the formation of a strongly interacting quark-gluon plasma (sQGP) (Arsene et al., 2005; Adcox et al., 2005; Back et al., 2005; Adams et al., 2005; Gyulassy and McLerran, 2005; Müller and Nagle, 2006), based on the discoveries of 1) Elliptic Flow 2) Low ratio of shear viscosity to entropy density η/s 3) Jet quenching. These evidences show that the sQGP behaves rather like an ideal fluid than a gas of non-interacting particles.

From lattice QCD studies (Danzer et al., 2010; Borsanyi et al., 2011), the existence of so called *center domains* was confirmed. Center domains are structures that have recently claimed to be responsible for some crucial properties of QGP (Asakawa et al., 2013). In (Asakawa et al., 2013), the authors argue that two important properties of QGP, low shear viscosity and jet quenching can be explained by the formation of center domains in the QGP. This was our motivation to study the behavior and dynamics

Figure 1.3 Schematic of center domains where $\nu = 0$, $\nu = 1$ and $\nu = 2$ are different in types of domains, from (Asakawa et al., 2013).

of center domains in QGP. In (Asakawa et al., 2013), it is argued that domain walls act as potential barriers for in-medium particles, thus limiting their free wavelength, which accounts for a small value of η/s . On the other hand, jets may rapidly lose their energy in the medium via interaction with the walls and subsequent radiation of soft gluons, see figure 1.3.

Our research here focuses on developing a dynamical model for an effective Polyakov loop field in a QGP. We use a phenomenological Lagrangian from a Polyakov loop potential and a phenomenological kinetic term. Then we study the evolution of the Polyakov loop field in (3+1) dimensions. We hereby restrict ourselves to the case of a medium with a homogeneous temperature. We expect to be able to observe the formation of center domains after changing the global temperature from below to above the critical temperature T_c . Our goal is to give estimates for the formation and decay time of domains to better understand their possible role in heavy-ion collisions.

CHAPTER II

POLYAKOV LOOP POTENTIAL

Center domains occur due to the spontaneous breakdown of center symmetry $Z(3) \subset SU(3)$ at high temperatures. Therefore, the existence of center domains is expected in a QGP phase. In QCD, one way to distinguish between QGP phase and hadronic phase is using confinement. Confinement can be mathematically described by the *Polykov loop* potential. The Polyakov loop arises from pure SU(3) gauge theory, where it serves as an order parameter which distinguishes between a center symmetric confined phase and a deconfined phase where this symmetry is broken.

2.1 Polyakov loop potential

The fundamental Polyakov loop is defined as

$$L(\vec{x}) = \frac{1}{3} \operatorname{tr} \operatorname{P} \exp\left[ig \int_{0}^{1/T} A_{4}(\tau, \vec{z}) d\tau\right], \qquad (2.1)$$

100

where P denotes the path-ordering operator, g is the strong coupling constant, T is the temperature and A_4 is the temporal component of a static gluon background field in Euclidean space-time. From fits of lattice QCD data (Boyd et al., 1996) in the pure gluon sector, we obtain a potential for the Polyakov loop (Roessner et al., 2007)

$$U(L) = -bT[54e^{-a/T} |L|^2 + \ln P(L, L^{\dagger})], \qquad (2.2)$$

where L is the Polyakov loop, T is the temperature, a = 0.664 GeV, b = 0.0075 GeV³ and $P(z, \bar{z}) = 1 - 6 |z|^2 - 3 |z|^4 + 4(z^3 + \bar{z}^3)$. Figures 2.1 to 2.3 show plots of the Polyakov loop potential in the complex plane $L = l_1 + il_2$ with temperatures T = 100 MeV, T = 300 MeV and T = 500 MeV respectively. The equilibrium point of the potential is shifted from one point in figure 2.1 to three points in figure 2.3, due to the spontaneous breakdown of center symmetry Z(3) at the critical temperature of $T = T_c = 270$ MeV. Effective potentials for the Polyakov loop are often used in low-energy models such as the Polyakov loop Nambu-Jona-Lasinio (PNJL) model (Fukushima, 2004) or the Polyakov-Quark-Meson (PQM) model (Schaefer et al., 2007; Herbst et al., 2011). In pure gauge theory, the Polyakov loop is related to the free energy of an infinitely heavy static quark $F_Q(T)$ by

$$F_Q(\vec{x}, T) = -T \ln |\langle L(\vec{x}, T) \rangle|, \qquad (2.3)$$

where

In confinement: F_Q is infinite, $\langle L \rangle = 0$, In deconfinement: F_Q is finite, $\langle L \rangle > 0$.

Figure 2.1 Contour plot of Polyakov loop potential at T = 100 MeV.

Figure 2.2 Contour plot of Polyakov loop potential at T = 300 MeV.

Figure 2.3 Contour plot of Polyakov loop potential at T = 500 MeV.

2.2 Thermodynamic properties

From equations (2.2) and (2.3), we can study thermodynamic properties of pure gluon QCD, such as pressure, energy density, entropy density and free energy density of

test quarks as a function of temperature. By this, we can understand the consistency of the Polyakov loop potential with pure gauge QCD. We will therefore also see that there is a first-order phase transition from the Polyakov loop potential. However, from lattice QCD we know that there is no phase transition for zero chemical potential, but rather an analytic crossover (Aoki et al., 2006). We might expect a first-order phase transition for high density or chemical potential (Scavenius et al., 2001; Schaefer and Wambach, 2005).

In figure 2.4, we track a minimum point of the Polyakov loop potential under the transition from T = 0 MeV to T = 500 MeV. Above the critical temperature T_c , there are three degenerate ground states according to three minima in the potential. The absolute value of the Polyakov loop in figure 2.5 is able to identify the phase of our system, where in the confined phase L equals 0 and in the deconfined phase ranges from about 0.5 to 1.0. From the data in figures 2.4 and 2.5, we can further find the pressure as the negative value of the potential, see figure 2.6, the entropy density which is the derivative of the pressure with respect to temperature, see figure 2.7, the free energy of a heavy static quark according to equation (2.3), see figure 2.8 and finally, the energy density which can be found from the relation e = Ts - p, see figure 2.9.

From these plots we can clearly identify T_c at 270 MeV from the kink in the pressure and the discontinuity in L, s and e as functions of T.

Figure 2.4 Minimum point of the Polyakov loop potential as a function of T.

Figure 2.5 Absolute value of the Polyakov loop in the equilibrium as a function of T.

Figure 2.6 Pressure of the Polyakov loop potential as a function of T.

Figure 2.7 Entropy of the Polyakov loop potential as a function of T.

Figure 2.8 Free energy of a heavy static quark as a function of T.

Figure 2.9 Energy density of the Polyakov loop potential as a function of T.

CHAPTER III

EQUATIONS OF MOTION

Our goal is to study the dynamics of center domains in QGP via the Polyakov loop. As the Polyakov loop has no explicit time dependence, we have to pursue a phenomenological ansatz similar to what has been proposed in (Dumitru and Pisarski, 2001; Herold et al., 2013; Fraga et al., 2007) to study its dynamics. We write down the Lagrangian density as

$$\mathcal{L} = \frac{\sigma}{2} T^2 \partial_{\mu} L \partial^{\mu} \bar{L} - U(L, \bar{L}), \qquad (3.1)$$

where σ is a dimensionless parameter playing the role of a surface tension that we have to determine later by comparison with the domain size from lattice QCD data (Borsanyi et al., 2011). Splitting the complex-valued Polyakov loop into its imaginary and real part $L = l_1 + il_2$ and $\bar{L} = l_1 - il_2$, equation (2.2) becomes

$$U(l_1 + il_2) = -bT[54e^{-a/T} |l_1 + il_2|^2 + \ln P(l_1 + il_2, (l_1 + il_2)^{\dagger})]$$

= $-bT[54e^{-a/T}(l_1^2 + il_2^2) + \ln P(l_1 + il_2, l_1 - il_2)].$ (3.2)

For the polynomial function P we obtain

$$P(l_1 + il_2, l_1 - il_2) = 1 - 6 |l_1 + il_2|^2 - 3 |l_1 + il_2|^4 + 4((l_1 + il_2)^3 + (l_1 - il_2)^3)$$

= 1 - 6(l_1^2 + il_2^2) - 3(l_1^2 + il_2^2)^2 + 4(l_1^3 + 3il_1^2l_2 - 3l_1l_2^2 + l_2^3)
+ 4(l_1^3 - 3il_1^2l_2 - 3l_1l_2^2 - l_2^3)
= 1 - 6(l_1^2 + l_2^2) - 3(l_1^2 + l_2^2)^2 + 4(2l_1^3 - 6l_1l_2^2).

$$\partial_{\mu}L\partial^{\mu}L = \partial_{\mu}(l_1 + il_2)\partial^{\mu}(l_1 - il_2)$$
$$= (\partial_{\mu}l_1 + i\partial_{\mu}l_2)(\partial^{\mu}l_1 - i\partial^{\mu}l_2)$$
$$= \partial_{\mu}l_1\partial^{\mu}l_1 + \partial_{\mu}l_2\partial^{\mu}l_2.$$
(3.3)

From the general Euler-Lagrange equation:

$$\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} \right) - \frac{\partial \mathcal{L}}{\partial\phi} = 0,$$
 (3.4)

and equation (3.3), we have the first Euler–Lagrange equation for the real part of the Polyakov loop

$$\frac{\partial}{\partial x^{\mu}}\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}l_{1})} = \frac{\partial \mathcal{L}}{\partial l_{1}},$$
(3.5)

and the second Euler-Lagrange equation for the imaginary-part of the Polyakov loop

$$\frac{\partial}{\partial x^{\mu}} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} l_2)} = \frac{\partial \mathcal{L}}{\partial l_2}.$$
(3.6)

From the Euler-Lagrange equations (3.5) and (3.6), the phenomenological Lagrangian (3.1) and the complex valued Polyakov loop potential (3.2), we can now find the equations of motion. We begin with the equation of motion for the real part of the Polyakov loop l_1

$$\begin{split} \frac{\partial \mathcal{L}}{\partial l_1} &= \frac{\partial}{\partial l_1} \left[\frac{\sigma}{2} T^2 (\partial_\mu l_1 \partial^\mu l_1 + \partial_\mu l_2 \partial^\mu l_2) - U(l_1, l_2) \right] \\ &= \frac{\partial}{\partial l_1} U(l_1, l_2) \\ &= \frac{\partial}{\partial l_1} \left[-bT [54e^{-a/T} (l_1^2 + il_2^2) + \ln P(l_1 + il_2, l_1 - il_2)] \right] \\ &= -108bT e^{-a/T} l_1 + \left[\frac{1}{P(l_1 + il_2, l_1 - il_2)} \frac{\partial}{\partial l_1} P(l_1 + il_2, l_1 - il_2) \right] \\ &= -108bT e^{-a/T} l_1 + \left[\frac{1}{P(l_1 + il_2, l_1 - il_2)} \frac{\partial}{\partial l_1} (1 - 6(l_1^2 + l_2^2) \right] \\ &= -108bT e^{-a/T} l_1 + \left[\frac{(-12l_1 - 12l_1(l_1^2 + l_2^2) + 24l_1^2 - 24l_2^2)}{P(l_1 + il_2, l_1 - il_2)} \right] \\ &= -108bT e^{-a/T} l_1 + \frac{(-12l_1 - 12l_1(l_1^2 + l_2^2) + 24l_1^2 - 24l_2^2)}{P(l_1 + il_2, l_1 - il_2)} \\ &= -108bT e^{-a/T} l_1 + \frac{(-12l_1 + 24l_1^2 - 12l_1^3 - 12l_1l_2^2 - 24l_2^2)}{P(l_1 + il_2, l_1 - il_2)} , \end{split}$$

$$\frac{\partial}{\partial x^{\mu}} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} l_{1})} = \frac{\partial}{\partial x^{\mu}} \frac{\partial}{\partial (\partial_{\mu} l_{1})} \left[\frac{\sigma}{2} T^{2} (\partial_{\mu} l_{1} \partial^{\mu} l_{1} + \partial_{\mu} l_{2} \partial^{\mu} l_{2}) - U(l_{1}, l_{2}) \right]$$
$$= \frac{\partial}{\partial x^{\mu}} \sigma T^{2} \partial^{\mu} l_{1}.$$

From $\frac{\partial l_1}{\partial x^{\mu}} = \partial_{\mu} l_1$ and assuming that *T* does not depend on x^{μ} , we get

$$\frac{\partial}{\partial x^{\mu}}\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}l_{1})} = \sigma T^{2}\partial^{\mu}\partial_{\mu}l_{1}.$$

Thus, for the equation of motion for the real part of the Polyakov loop we get

$$\sigma T^2 \partial_\mu \partial^\mu l_1 + \frac{\partial}{\partial l_1} U(l_1, l_2) = 0.$$
(3.7)

The equation of motion for the imaginary part of the Polyakov loop l_2 can be derived in the same way as for l_1

$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial l_2} &= \frac{\partial}{\partial l_2} \left[\frac{\sigma}{2} T^2 (\partial_\mu l_1 \partial^\mu l_1 + \partial_\mu l_2 \partial^\mu l_2) - U(l_1, l_2) \right] \\ &= \frac{\partial}{\partial l_2} U(l_1, l_2) \\ &= \frac{\partial}{\partial l_2} \left[-bT [54e^{-a/T} (l_1^2 + il_2^2) + \ln P(l_1 + il_2, l_1 - il_2)] \right] \\ &= -108bT e^{-a/T} l_2 + \left[\frac{1}{P(l_1 + il_2, l_1 - il_2)} \frac{\partial}{\partial l_2} P(l_1 + il_2, l_1 - il_2) \right] \\ &= -108bT e^{-a/T} l_2 + \left[\frac{1}{P(l_1 + il_2, l_1 - il_2)} \frac{\partial}{\partial l_2} (1 - 6(l_1^2 + l_2^2) - 3(l_1^2 + l_2^2)^2 + 4(2l_1^3 - 6l_1l_2^2)) \right] \\ &= -108bT e^{-a/T} l_2 + \frac{(-12l_2 - 12(l_1^2 + l_2^2)l_2 - 48l_1l_2)}{P(l_1 + il_2, l_1 - il_2)} \\ &= -108bT e^{-a/T} l_2 + \frac{(-12l_2 - 12l_1^2l_2 + 12l_1l_2^2 - 48l_1l_2)}{P(l_1 + il_2, l_1 - il_2)}, \end{aligned}$$

$$\frac{\partial}{\partial x^{\mu}} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} l_{2})} = \frac{\partial}{\partial x^{\mu}} \frac{\partial}{\partial (\partial_{\mu} l_{2})} \left[\frac{\sigma}{2} T^{2} (\partial_{\mu} l_{1} \partial^{\mu} l_{1} + \partial_{\mu} l_{2} \partial^{\mu} l_{2}) - U(l_{1}, l_{2}) \right]$$
$$= \frac{\partial}{\partial x^{\mu}} \sigma T^{2} \partial^{\mu} l_{2}.$$

From
$$\frac{\partial l_2}{\partial x^{\mu}} = \partial_{\mu} l_2$$
 where *T* again does not depend on x^{μ} , we get
$$\frac{\partial}{\partial x^{\mu}} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} l_2)} = \sigma T^2 \partial^{\mu} \partial_{\mu} l_2.$$

Thus, for the equation of motion for the real part of the Polyakov loop we get

$$\sigma T^2 \partial_\mu \partial^\mu l_2 + \frac{\partial}{\partial l_2} U(l_1, l_2) = 0.$$
(3.8)

Equations (3.7) and (3.8), will later be used to simulate the dynamics of the Polyakov loop solved by some numerical method in chapter IV. Note that, considering figures 2.1 to 2.3, we can see that l_1 is fit for distinguishing between confined and

deconfined phase similar to $|\langle L \rangle|$, whereas l_2 is fit for distinguishing between three types of center domains in the deconfined phase.

CHAPTER IV

SIMULATION METHOD

Studying the evolution of the center domains can be done by a *time-dependent Polyakov loop simulation* which numerically solves the equations of motion (3.7) and (3.8) in (3+1)-dimensions. The given space-time lattices are 1) space-time lattice for the real part of the Polyakov loop l_1 , 2) space-time lattice for the imaginary part of the Polyakov loop l_2 . Note again, confined and deconfined state of the system can be distinguished by |< L > |, on the other hand types of the center domains cannot be distinguished by |< L > | but rather l_2 , see section 2.1.

4.1 Numerical implementation

Solving equations (3.7) and (3.8) requires some numerical method. In (Cassol-Seewald et al., 2012), a useful method for solving partial differential equations is provided, to apply that method to our problem, we start from writing equations (3.7) and (3.8) into a discrete form

$$\sigma T^2 \left(\frac{\partial^2 l_{n-1}}{\partial t^2} - \vec{\nabla}^2 l_{n-1} \right) + \frac{\partial}{\partial l_{n-1}} U(l_1, l_2) = 0, \tag{4.1}$$

 l_n here corresponds to either the real part of the Polyakov loop l_1 or the imaginary part of the Polyakov loop l_2 at time interval n where time $t = n\Delta t$ with n = 1, 2, 3, ... We can write the time derivatives as

$$\begin{split} \frac{\partial l_{n-1}}{\partial t} &= \dot{l}_{n-1} = \ \frac{1}{2}(\dot{l}_{n-1/2} + \dot{l}_{n-3/2}),\\ \dot{l}_{n-1/2} &= \frac{1}{\Delta t}(l_n - l_{n-1}),\\ \dot{l}_{n-3/2} &= \frac{1}{\Delta t}(l_{n-1} - l_{n-2}),\\ \frac{\partial^2 l_{n-1}}{\partial t^2} &= \ddot{l}_{n-1} = \ \frac{1}{\Delta t}(\dot{l}_{n-1/2} - \dot{l}_{n-3/2}). \end{split}$$

Equation (4.1) becomes

$$\sigma T^{2} \left(\frac{1}{\Delta t^{2}} (l_{n} - 2l_{n-1} + l_{n-2}) - \vec{\nabla}^{2} l_{n-1} \right) + \frac{\partial}{\partial l_{n-1}} U(l_{1}, l_{2}) = 0,$$

$$l_{n} = 2l_{n-1} - l_{n-2} + \Delta t^{2} \left(\vec{\nabla}^{2} l_{n-1} - \frac{1}{\sigma T^{2}} \frac{\partial}{\partial l_{n-1}} U(l_{1}, l_{2}) \right).$$
(4.2)
the Laplacian operator

Consider the Laplacian operator

$$\begin{split} \vec{\nabla}^2 l_{ijk}^{n-1} &= \frac{\partial^2 l_{ijk}^{n-1}}{\partial^2 x} + \frac{\partial^2 l_{ijk}^{n-1}}{\partial^2 y} + \frac{\partial^2 l_{ijk}^{n-1}}{\partial^2 z} \\ &= \frac{1}{\Delta x} \left[\begin{pmatrix} l_{i+1jk}^{n-1} - l_{ijk}^{n-1} \\ \Delta x \end{pmatrix} - \begin{pmatrix} l_{ijk}^{n-1} - l_{i-1jk}^{n-1} \\ \Delta x \end{pmatrix} \\ &+ \begin{pmatrix} l_{ij+1k}^{n-1} - l_{ijk}^{n-1} \\ \Delta x \end{pmatrix} - \begin{pmatrix} l_{ijk}^{n-1} - l_{ij-1k}^{n-1} \\ \Delta x \end{pmatrix} \\ &+ \begin{pmatrix} l_{ijk+1}^{n-1} - l_{ijk}^{n-1} \\ \Delta x \end{pmatrix} - \begin{pmatrix} l_{ijk}^{n-1} - l_{ijk-1}^{n-1} \\ \Delta x \end{pmatrix} \right] \\ &= \frac{1}{\Delta x^2} [l_{i+1jk}^{n-1} + l_{ij+1k}^{n-1} + l_{ijk+1}^{n-1} - 6l_{ijk}^{n-1} + l_{i-1jk}^{n-1} + l_{ij-1k}^{n-1} + l_{ijk-1}^{n-1}], \end{split}$$

where i,j and k are positions on the Cartesian grid and Δx is the lattice spacing. We apply periodic boundary conditions for the spatial coordinates

$$i = \begin{cases} N+i, & \text{if } i < 1.\\ i-N, & \text{if } i > N.\\ i, & \text{otherwise.} \end{cases}$$
(4.3)

where *i* is a position on the x-, y- or z-axis and *N* is the maximum size of the spacetime lattice in one dimension. In the equations of motion (4.2), the value of the Polyakov loop at any time *t* can be calculated from its previous values at times n-1 and n-2.

4.2 Numerical parameters

Variable	Meaning	Value
Δt	time step	0.005 (fm/c)
Δx	lattice spacing	0.5 (fm)
N	size of lattice in one	100
	dimension	

 Table 4.1 Numerical parameters.

Note that the values of Δt and Δx are determined according to the Courant– Friedrichs–Lewy condition where the ratio of $\Delta t/\Delta x$ is supposed to be small enough to ensure numerical stability. N has to be chosen large enough for the lattice to be able to contain several larger domains. However, our choice of these numerical parameters is also based on several test runs.

4.3 Initial conditions

At times t = 0.005 fm/c and t = 0.01 fm/c, both real and imaginary part of the Polyakov loop are initialized with Gaussian distributions of mean zero, corresponding to their vacuum expectation value, and standard deviation 0.1. From figure 4.1, we can see small fluctuations of the Polyakov loop correlated over a typical hadron-sized volume of 1 fm³. This corresponds to the initial state in a heavy-ion collision before the creation of the QGP. We can then change the temperature on our lattice to some value above T_c and follow the evolution of the system in the deconfined phase, where the initial fluctuations can amplify and form center domains.

Figure 4.1 Small fluctuations in Polyakov loop at z = 0 fm and time t = 0.005 fm/c.

4.4 Fixing sigma Agrasuno fulation

According to the equations of motion (3.7) and (3.8), there is one unknown variable called *sigma* (σ), a coefficient playing the role of a surface tension which influences the domain size, a large value of sigma gives a large domain size, by contrast, a small value of sigma gives a small domain size, see figure 4.2. In order to develop a realistic model, we need to fix the value of sigma. In figure 4.3 from (Borsanyi et al., 2011), some useful information about the domain size as function of *T* is provided. The domain size is defined as a physical diameter D_{phy} which is obtained from fitting the two-point correlation function $C(\vec{x} - \vec{y})$ of l_2 to the exponential function

$$C(\vec{x} - \vec{y}) \propto \exp\left(-\left|\vec{x} - \vec{y}\right| / D_{phy}\right). \tag{4.4}$$

Unfortunately, (Borsanyi et al., 2011) does not give us more data for higher temperatures, so we can only make predictions for these given values and give a rough estimate for sigma as a function of temperature in the regime near T_c . Thus in this work we consider only the temperatures $T_1 = 1.05 T_c = 283.5 \text{ MeV}, T_2 = 1.1 T_c = 297.0 \text{ MeV}$ and $T_3 = 1.15 T_c = 310.5 \text{ MeV}.$

We fix the coefficient σ using the following procedure:

- 1. Fix value of T according to information in figure 4.3,
- 2. Heuristically fix value of σ ,
- 3. Run a simulation,
- 4. Calculate D_{phy} ,
- 5. Compare given D_{phy} to figure 4.3,
- 6. If D_{phy} does not equal its value in figure 4.3, go back to step 2.

Figure 4.2 Space-time lattices with a different sigma values.

Figure 4.3 Average diameter of domains for two resolution scales, (Borsanyi et al., 2011).

Fast fixing of sigma can be done by a following *binary search strategy*

Searching procedure:

- 1. Find value of *middle* from list *l*,
- 2. Compare target to middle,
- 3. If *target* less than *middle* then:

remove *middle* and its right-hand side values from list *l* then go to 1;

10

else if target greater than middle then:

remove *middle* and its left-hand side values from list *l* then go to 1;

else: stop.

where *l* is list of values, *middle* is a value at middle of list *l*, *target* is a value that we want to find.

Example:
Problem: find a target value *target* = 8 in a sorted list l = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

Define <i>middle</i> as a value at middle of l , <i>middle</i> = 5.	$(1^{st} \text{ procedure})$
Is <i>target</i> = 8 equal to <i>middle</i> = 5?	(2 nd procedure)
False, then let $l = [6, 7, 8, 9, 10]$.	(3 rd procedure)
Define <i>middle</i> as a value at middle of l , <i>middle</i> = 8.	$(1^{st} \text{ procedure})$
Is <i>target</i> = 8 equal to <i>middle</i> = 8?	(2 nd procedure)
True, stop.	(3 rd procedure)

After finishing the iterative process of fixing sigma, we will obtain a reliable coefficient to study the dynamics of domain formation in the range from 1 T_c to 1.2 T_c .

4.5 Tracking evolution of center domains

Since l_1 distinguishes between confined and deconfined phase, l_2 identifies the type of minimum points in center domains. Both l_1 and l_2 are evolve from confined to deconfined phase. In the deconfined phase, the existence of center domains is expected. This leads to the question how to determine the time when center domains are formed. Our solution proposes to solve this problem by using the *standard deviation (SD)*. The standard deviation at time t is defined as

$$SD = \sqrt{\frac{1}{N^3} \sum_{i,j,k} (l_{2ijk} - \bar{l_2})^2},$$
(4.5)

where $\bar{l_2}$ is volume-averaged value of l_2 . If SD has reached a stable maximum value as a function of time, we can conclude that the domain formation process is finished. Note that, in our research, the standard deviation is then averaged over 100 events with different initial conditions for each time t to ensure reliable results.

CHAPTER V

RESULTS

5.1 Sigma coefficient

Applying the iterative method introduced in section 4.4, we can obtain a reliable value of sigma. In figure 5.1, we show the result of sigma for temperature T_1 where the dots indicate the two-point correlation function of l_2 and the solid line is the fitted exponential function (5.1) which is evaluated as

$$C(\vec{x} - \vec{y}) \propto \exp(-|\vec{x} - \vec{y}|/2.55 \text{ fm}).$$
 (5.1)

The exponential function for temperature T_2 is

Figure 5.1 Exponential fit of the correlation function for T = 283.5 MeV.

$$C(\vec{x} - \vec{y}) \propto \exp\left(-|\vec{x} - \vec{y}|/3.75 \text{ fm}\right),$$
 (5.2)

see figure 5.2 for the corresponding graph. For T_3 we obtain

$$C(\vec{x} - \vec{y}) \propto \exp\left(-\left|\vec{x} - \vec{y}\right|/4.75 \text{ fm}\right).$$
 (5.3)

The fitted correlation function of sigma for temperature T_3 , is shown in figure 5.3. Finally, we put all results of sigma to one graph in figure 5.4 and show sigma as function of T and fit it to a third order polynomial:

Figure 5.2 Exponential fit of the correlation function for T = 297.0 MeV.

Figure 5.3 Exponential fit of the correlation function for T = 310.5 MeV.

Figure 5.4 Sigma as a function of temperature.

5.2 Formation of center domains

We study the time evolution of center domains via the average value of the standard deviation of l_2 . Note again, in our simulation, there are only three distinct temperatures that we will consider according to the information in figure 5.4, that are $T_1 = 1.05 T_c = 283.5 \text{ MeV}, T_2 = 1.1 T_c = 297.0 \text{ MeV}$ and $T_3 = 1.15 T_c = 310.5 \text{ MeV}$. From the simulation, we obtain three graphs of the standard deviation as a function of time, see figures 5.5, 5.6 and 5.7.

Figure 5.5 Evolution of standard deviation from time 0 - 25 fm/c with T_1 .

Figure 5.6 Evolution of standard deviation from time 0 - 25 fm/c with T_2 .

Figure 5.7 Evolution of standard deviation from time 0 - 25 fm/c with T_3 .

Finally, we put those three graphs into a comparing graph

Figure 5.8 Evolution of standard deviation from time 0 - 25 fm/c with T_1 , T_2 and T_3 .

We can clearly identify the center domains by plotting l_2 as a function of x and y for a constant z which is shown in figures 5.9 to 5.11. From the plots in figures 5.9 to 5.11, we can follow the formation of the center domains over time starting from small fluctuations at the initial state to the final state where we can clearly see the pattern of the center domains at time t = 25 fm/c. When the center domains are fully developed, the border lines between them are more sharp, the expansion of domains has stopped, and only very small fluctuations occur. From figures 5.9 to 5.11, we can also see that size of center domains is influenced by sigma, a higher sigma value of sigma results in a larger size of center domains.

Figure 5.9 Plan plot of l_2 from time 0 - 25 fm/c with T_1 .

Figure 5.10 Plan plot of l_2 from time 0 - 25 fm/c with T_2 .

Figure 5.11 Plan plot of l_2 from time 0 - 25 fm/c with T_3 .

5.3 Decay of center domains

We now study the decay of center domains via the average value of the standard deviation of l_2 . Here, the standard deviation is defined again as in equation (4.5). After finishing the formation of center domains at t = 25 fm/c, we suddenly decrease all temperatures to a new value $T_1 = T_2 = T_3 = 200$ MeV. With this temperature below T_c , the center domains will start to decay. Investigation of decay of center domains here is started from t = 26 to 50 fm/c. Thus, from the simulation we obtain three graphs of standard deviation versus time, see figures 5.12, 5.13 and 5.14.

Figure 5.12 Evolution of standard deviation from time 26 - 50 fm/c with T_1 .

Figure 5.13 Evolution of standard deviation from time 26 - 50 fm/c with T_2 .

Figure 5.14 Evolution of standard deviation from time 26 - 50 fm/c with T_3 .

Finally, we put those three graphs into a comparing graph

Figure 5.15 Evolution of standard deviation from time 26 - 50 fm/c with T_1 , T_2 and T_3

We can clearly identify center domains by plotting l_2 as a function of x and y for constant z which is shown in figures 5.16 to 5.21. To investigate the decay of center domains, we focus on times when upper and lower peaks in standard deviations occur. Considering times at upper peaks, the center domains slowly decay to some small fluctuation state which looks similar to an initial state of our simulation. These final states have some unique values of the standard deviation depending on temperature. Focusing on lower peaks, center domains decay extremely fast to a fluctuation state which has a value of standard deviation lower than the final state. However, these standard deviation will be increased from peak to peak until the final state is reached.

Figure 5.16 Plan plot of l_2 from time 26 - 50 fm/c with T_1 .

Figure 5.17 Plan plot of l_2 from time 26 - 50 fm/c with T_1 .

Figure 5.18 Plan plot of l_2 from time 26 - 50 fm/c with T_2 .

Figure 5.19 Plan plot of l_2 from time 26 - 50 fm/c with T_2 .

Figure 5.20 Plan plot of l_2 from time 26 - 50 fm/c with T_3 .

Figure 5.21 Plan plot of l_2 from time 26 - 50 fm/c with T_3 .

CHAPTER VI

CONCLUSIONS AND DICUSSIONS

In pure gauge theory, the Polyakov loop has the ability to distinguish between By constructing an effective Lagrangian from the confined and deconfined phase. Polyakov loop potential and a phenomenological kinetic term we can obtain equations of motion (3.7) and (3.8). Studying the evolution of the center domains in QGP can be done by a time-dependent Polyakov loop simulation which solves the equations of motion for the Polyakov loop value in (3+1) dimensions. In (Borsanyi et al., 2011), the domain size is shown to be dependent on temperature, furthermore, in our work, the domains size is also influenced by the surface tension (σ) which is a coefficient in the equations of motion (3.7) and (3.8). At high temperature or sigma, the domain size is big while at low temperature or sigma, the domain size is small, see figures 4.3 and 5.4. From our simulation, the result shows that, during the formation, small fluctuations around zero in the initial state evolve into domain structures with three different types of domains according to local breakdown of Z_3 symmetry. From our simulation, the estimated formation time of center domains is about 3-7 fm/c, see figure 5.8, significantly smaller than the estimated QGP lifetime in heavy-ion collision from (Bass and Dumitru, 2000) which is about 13 fm/c, see figure 6.1. The model that used in (Bass and Dumitru, 2000) is Hydro + UrQMD model. Here, open symbols show distributions for a purely hydrodynamical calculation, solid symbols show the

Figure 6.1 Heavy-ion collision rates at LHC energy.

full calculation with hadronic rescattering. The given formation time is short enough to make center domains possible and necessary to consider in a QGP state. We can see fluctuations in the deviation during the decay of center domains, which takes about 7-20 fm/c before returning to a state with small fluctuations at temperatures below T_c .

REFERENCES

- Adams, J., Aggarwal, M., Ahammed, Z., Amonett, J., Anderson, B., Arkhipkin, D., Averichev, G., Badyal, S., Bai, Y., Balewski, J., Barannikova, O., Barnby, L., Baudot, J., Bekele, S., Belaga, V., Bellingeri-Laurikainen, A., Bellwied, R., Berger, J., Bezverkhny, B., Bharadwaj, S., et al. (2005). Experimental and theoretical challenges in the search for the quark–gluon plasma: The star collaboration's critical assessment of the evidence from rhic collisions. Nuclear Physics A. 757(1-2): 102-183. First Three Years of Operation of RHIC.
- Adcox, K., Adler, S., Afanasiev, S., Aidala, C., Ajitanand, N., Akiba, Y., Al-Jamel, A., Alexander, J., Amirikas, R., Aoki, K., Aphecetche, L., Arai, Y., Armendariz, R., Aronson, S., Averbeck, R., Awes, T., Azmoun, R., Babintsev, V., Baldisseri, A., Barish, K., et al. (2005). Formation of dense partonic matter in relativistic nucleus–nucleus collisions at rhic: Experimental evaluation by the phenix collaboration. Nuclear Physics A. 757(1-2): 184-283. First Three Years of Operation of RHIC.
- Aoki, Y., Endrodi, G., Fodor, Z., Katz, S., and Szabo, K. (2006). The order of the quantum chromodynamics transition predicted by the standard model of particle physics. **Nature.** 443: 675-678.
- Arsene, I., Bearden, I., Beavis, D., Besliu, C., Budick, B., Bøggild, H., Chasman, C., Christensen, C., Christiansen, P., Cibor, J., Debbe, R., Enger, E., Gaardhøje, J., Germinario, M., Hansen, O., Holm, A., Holme, A., Hagel, K., Ito, H., Jakobsen, E.,

et al. (2005). Quark–gluon plasma and color glass condensate at rhic the perspective from the brahms experiment. **Nuclear Physics A.** 757(1-2): 1-27. First Three Years of Operation of RHIC.

- Asakawa, M., Bass, S., and Müller, B. (2013). Center domains and their phenomenological consequences. **Physical Review Letter.** 110(20): 202301.
- Back, B., Baker, M., Ballintijn, M., Barton, D., Becker, B., Betts, R., Bickley, A., Bindel, R., Budzanowski, A., Busza, W., Carroll, A., Chai, Z., Decowski, M., García, E., Gburek, T., George, N., Gulbrandsen, K., Gushue, S., Halliwell, C., Hamblen, J., et al. (2005). The phobos perspective on discoveries at rhic. Nuclear Physics A. 757(1-2): 28-101. First Three Years of Operation of RHIC.
- Bass, S. and Dumitru, A. (2000). Dynamics of hot bulk qcd matter: From the quarkgluon plasma to hadronic freeze-out. **Physical Review C.** 61: 064909.
- Borsanyi, S., Danzer, J., Fodor, Z., Gattringer, C., and Schmidt, A. (2011). Coherent center domains from local polyakov loops. Journal of Physics: Conference Series.
 312: 012005.
- Boyd, G., Engels, J., Karsch, F., Laermann, E., Legeland, C., Lutgemeier, M., and Petersson, B. (1996). Thermodynamics of su(3) lattice gauge theory. Nuclear Physics. B469: 419-444.
- Cassol-Seewald, N., Farias, R., Fraga, E., Krein, G., and Ramos, R. (2012). Langevin simulation of scalar fields: Additive and multiplicative noises and lattice renormalization. Physica A: Statistical Mechanics and its Applications. 391(16): 4088-4099.

- Danzer, J., Gattringer, C., Borsanyi, S., and Fodor, Z. (2010). Center clusters and their percolation properties in lattice qcd. **Proceedings of Science.** LATTICE2010: 176.
- Dumitru, A. and Pisarski, R. (2001). Event-by-event fluctuations from decay of a polyakov loop condensate. **Physics Letters.** B504: 282-290.
- Fraga, E., Krein, G., and Mizher, A. (2007). Langevin dynamics of the pure su(2) deconfining transition. Physical Review. D76: 034501.
- Fukushima, K. (2004). Chiral effective model with the polyakov loop. Physics LettersB. 591(3-4): 277-284.
- Gyulassy, M. and McLerran, L. (2005). New forms of qcd matter discovered at rhic.
 Nuclear Physics A. 750(1): 30-63. Quark–Gluon Plasma. New Discoveries at RHIC: Case for the Strongly Interacting Quark–Gluon Plasma. Contributions from the RBRC Workshop held May 14–15, 2004.
- Herbst, T., Pawlowski, J., and Schaefer, B. (2011). The phase structure of the polyakovquark-meson model beyond mean field. **Physics Letters.** B696: 58-67.
- Herold, C., Nahrgang, M., Mishustin, I., and Bleicher, M. (2013). Chiral fluid dynamics with explicit propagation of the polyakov loop. **Physical Review.** C87: 014907.
- Müller, B. and Nagle, J. L. (2006). Results from the relativistic heavy ion collider. Annual Review of Nuclear and Particle Science. 56(1): 93-135.
- Roessner, S., Ratti, C., and Weise, W. (2007). Polyakov loop, diquarks and the twoflavour phase diagram. **Physics Review.** D75: 034007.

Scavenius, O., Mocsy, A., Mishustin, I., and Rischke, D. (2001). Chiral phase transition

within effective models with constituent quarks. Physical Review. C64: 045202.

- Schaefer, B., Pawlowski, J., and Wambach, J. (2007). The phase structure of the polyakov-quark-meson model. **Physical Review.** D76: 074023.
- Schaefer, B. and Wambach, J. (2005). The phase diagram of the quark meson model. Nuclear Physics. A757: 479-492.

APPENDIX A

RESEARCH WORKFLOW

APPENDIX B

NATURAL UNITS

In natural units $\hbar = c = k_B = 1$, we have

$$\hbar = \frac{h}{2\pi} = 6.5821 \times 10^{-25} \,\text{GeV} \cdot \text{s} = 1, \tag{0.1}$$

and

$$c = 2.9979 \times 10^8 \text{ m} \cdot \text{s}^{-1} = 1,$$
 (0.2)

where h is the Planck constant, \hbar is the reduced Planck constant, c is the speed of light, k_B is the Boltzmann constant. From equations 0.1 and 0.2, we obtain a useful relation

$$\hbar c = 1 = (6.5821 \times 10^{-22} \text{ MeV} \cdot \text{s})(2.9979 \times 10^{23} \text{ fm} \cdot \text{s}^{-1}) = 197.3 \text{ MeV} \cdot \text{fm} (0.3)$$

where 1 fm (femtometer or fermi) = 1×10^{-15} m. In high energy physics, energy and mass are frequently measured in a unit of GeV (giga electronvolt), meanwhile length and time are measured in a GeV⁻¹ or fm. Note that to make a difference between units of length and time, we can write unit of time as fm/c. Due to the relation in equation 0.3, we can easily convert between GeV⁻¹ and fm. In high energy physics, electromagnetic unit can be measured either in Lorentz–Heaviside units or Gaussian units, see table B.1.

	Unit	Metric value
Length	1 eV^{-1}	$1.97\times 10^{-7}~{\rm m}$
Time	1 eV^{-1}	$6.58\times10^{-16}~{\rm s}$
Mass	1 eV	$1.78\times 10^{-36}~\rm kg$
Temperature	1 eV	$1.16 \times 10^4 \ \mathrm{K}$
Electric charge	1 unit of electric charge	$5.29\times10^{-19}~{\rm C}$
(L-H unit)		
Electric charge	1 unit of electric charge	$1.88\times10^{-18}~{\rm C}$
(Gaussian unit)	H	
Ethisne	รรร เกิดของ เกิด เกิด เกิด เกิด เกิด เกิด เกิด เกิด	100

 Table B.1 Natural units in particle physics.

APPENDIX C

CODE IMPLEMENTATIONS

Code: Global variables

1	module global_vars
2	use, intrinsic :: iso_fortran_env
3	implicit none
4	
5	! variables for Polyakov loop potential
6	real, parameter, public :: $a = 664.0 ! [MeV]$
7	real, parameter, public :: $b = 0.0075e9 ! [MeV^3]$
8	real, parameter, public :: hc = 197.3 ! [MeV*fm]
9	
10	! sigma and temperatures
11	real, public :: Temp = 283.5 ! [MeV]
12	real, public :: sigma = $0.08 ! []$
13	!
14	! real, public :: Temp = 297 ! [MeV]
15	! real, public :: sigma = 0.3 ! []
16	
17	! real, public :: Temp = 310.5 ! [MeV]
18	! real, public :: sigma = 0.7 ! []
19	
20	! variables for time-dependent Polyakov loop simulation
21	integer, parameter, public :: t_size = 10000 ! [] number of time step
22	integer, parameter, public :: lattice_size = 101 ! [] size of lattice
23	real, parameter, public :: delta_t = 0.005 ! [fm] time interval
24	real, parameter, public :: delta_lattice = 0.5 ! [fm]
25	integer, parameter, public :: x_size = lattice_size ! [] size of x
26	integer, parameter, public :: y size = lattice size ! size of y

```
27
       integer, parameter, public :: z_size = lattice_size ! [] size of z
28
       ! constants representing time at 1st, 2nd and 3rd time step
29
       integer, parameter, public :: t at 3 = 3 ! [] constant
30
       integer, parameter, public :: t_at_2 = 2 ! [] constant
31
       integer, parameter, public :: t_at_1 = 1 ! [] constant
32
33
34
       ! declare array 11 which contains real part Polyakov loop values
       ! and array 12 contains imaginary part Polyakov loop values
35
       real, dimension (:,:,:,:) , allocatable , public :: 11, 12
36
37
38
       ! array of standard deviations
39
       real, dimension(t size), public :: deviation
40
       ! output array of correlation function
41
       real, dimension(t size, int ( lattice size -1)/2), public :: r list
42
43
       ! dummy variables for handling index shifting
44
45
       integer, public :: x_plus_1, y_plus_1, z_plus_1
46
       integer, public :: x_min_1, y_min_1, z_min_1
                                                         jasu1
47
48
    end module global_vars
```

Code: Differentiating Potential Function

1	module misc_func
2	use global_vars
3	implicit none
4	
5	contains
6	! periodic boundary conditions
7	integer function period_bound_conds(n)
8	implicit none

Code (Cont.): Differentiating potential function

9	integer, intent (in) :: n	
10		
11	if $(n < 1)$ then	
12	period_bound_conds = lattice_size + n	
13	else if $(n > lattice_size)$ then	
14	$period_bound_conds = n - lattice_size$	
15	else	
16	period_bound_conds = n	
17	end if	
18		
19	return	
20	end function period_bound_conds	
21		
22	! apply PBCs	
23	subroutine apply_period_bound_conds(z, y, x)	
24	implicit none	
25	integer, intent (in) :: z, y, x	
26		
27	$x_min_1 = period_bound_conds(x - 1)$	
28	$y_{min_1} = period_{bound_{conds}(y - 1)}$	
29	$z_{min_1} = period_bound_conds(z - 1)$	
30	$x_plus_1 = period_bound_conds(x + 1)$	
31	$y_plus_1 = period_bound_conds(y + 1)$	
32	$z_plus_1 = period_bound_conds(z + 1)$	
33		
34	end subroutine apply_period_bound_conds	
35		
36	! function for finding standard deviation	
37	real function find_deviation (1)	
38	implicit none	
39	real, dimension(z_size, y_size, x_size), intent (in) :: 1	
40	integer :: z, y, x	
41	real :: 1_avg	

Code (Cont.): Differentiating potential function

```
42
           real :: sum_val
43
          l_avg = 0.0
44
          sum_val = 0.0
45
46
          do z = 1, z_{size}
47
             do y = 1, y_{size}
48
49
                do x = 1, x_size
                   l_avg = l_avg + l(z, y, x)
50
                end do
51
             end do
52
53
          end do
54
55
          l_avg = l_avg/( real (z_size*y_size*x_size))
56
          do z = 1, z size
57
             do y = 1, y_size
58
                do x = 1, x size
59
                   sum_val = sum_val + (l(z, y, x) - l_avg)^{*2}
60
                end do
                                                        ยัสรมาว
61
             end do
62
63
          end do
64
65
           find_deviation = sqrt(sum_val/real((z_size*y_size*x_size)))
66
67
           return
       end function find_deviation
68
69
70
    end module misc_func
```

Code: Differentiating Potential Function

```
module diff_U
 1
 2
       use global_vars
 3
        implicit none
 4
 5
        contains
 6
       ! function for differentiating ln(P) by 11 or 12
 7
        real function diff ln P func (diff by, 11, 12)
 8
           implicit none
 9
           character (len=2), intent (in) :: diff by
10
           real, intent (in) :: 11, 12
11
           real :: P, diff P, diff ln P
12
          \mathbf{P} = (1.0 - 6.0^{*}(11^{**2} + 12^{**2}) \&
13
                -3.0*(11**2+12**2)**2 &
14
               + 4.0*(2.0*11**3 - 6.0*11*12**2))
15
16
           diff ln P = 1.0/P
17
18
19
           if (diff by .eq. "11") then
20
              diff P = (-12.0*11 - 12.0*(11**2 + 12**2)*11 \&
21
                        + 24.0*11**2 - 24.0*12**2)
22
           else ! or else if (diff by .eq. "12") then
              diff P = (-12.0*12 - 12.0*(11**2 + 12**2)*12 - 48.0*11*12)
23
          end if
24
                                                     โลยีสุรมา
25
           diff_ln_P_func = diff_ln_P*diff_
26
27
28
           return
29
       end function diff ln P func
30
       ! function for differentiating potential by 11 or 12
31
        real function diff U func(diff by, 1, 11, 12)
32
33
           implicit none
34
           character (len=2), intent (in) :: diff by
           real, intent (in) :: 1, 11, 12
35
```

36

Code (Cont.): Differentiating potential function


```
22
                       + l(t, z, y, x_min_1) &
                       + 1(t, z, y \min 1, x) \&
23
                       + l(t, z_min_1, y, x) &
24
                      )/ delta lattice **2 ! [1/\text{fm}^2]
25
26
27
          return
28
       end function laplace_l
29
       ! function for solving diff equation to find Polyakov loop value
30
       real function find_1(diff_by, 1, t, z, y, x)
31
          implicit none
32
33
          character (len=2), intent (in) :: diff_by
34
          real, dimension(t_at_3, z_size, y_size, x_size), intent(in) :: 1
          integer, intent (in) :: t, z, y, x
35
36
          find 1 = (\&
37
                    2.0*1(t-1, z, y, x) - l(t-2, z, y, x) \&
38
                    + laplace_1 (1, t-1, z, y, x) & 1 [1/fm^2]
39
40
                    * delta_t **2 &
                                                          ! [fm^2]
                   ) &
41
                    - ( &
42
                    diff_U_func(diff_by, l(t-1, z, y, x), \& ! [MeV/fm^3]
43
                    11(t-1, z, y, x), & manuala
44
45
                    l2(t-1, z, y, x)) &
                    *hc &
                                                            ! [MeV*fm]
46
                    * delta t **2 &
47
                                                            ! [fm^2]
                   )/(sigma*270.0**2)
48
                                                            ! [MeV^2]
49
50
          return
51
       end function find_l
52
53
    end module solve_partial_diff
```

Code: Two-point correlation function

```
module two_point_corr
 1
 2
       use global_vars
 3
       use misc_func
 4
        implicit none
 5
        integer, parameter :: num_round = 1000
        integer :: center_x, center_y, center_z
 6
 7
        integer :: start_z , start_y , start_x
 8
 9
        contains
10
       ! function for generating arbitrary center points.
        subroutine rand_center(t)
11
12
           implicit none
           integer, intent (in) :: t
13
14
           real :: rand_z, rand_y, rand_x
15
           integer, dimension(12):: date_time
16
           integer, dimension(12):: seed
17
           call date and time(values=date time)
18
           call random seed
19
          seed = date_time(6) * date_time(7) + date_time(8)
20
21
           call random seed(put = seed)
22
                                                      ลยีสุรมา
           call random number(rand z)
23
           center_z = int ( ceiling (rand_z* lattice_size ))
24
25
           call random number(rand y)
26
          center_y = int ( ceiling (rand_y* lattice_size ))
27
           call random_number(rand_x)
          center_x = int ( ceiling (rand_x* lattice_size ))
28
29
30
           return
31
       end subroutine rand center
32
33
       ! function for finding output of correlation function
34
        function find r(t)
35
           implicit none
```

36	integer, intent (in) :: t
37	integer :: x, y, z, x_index, y_index, z_index
38	integer :: start_x , start_y , start_z
39	integer :: end_x, end_y, end_z
40	integer :: r, i, j, k, round_loop
41	integer :: count_num
42	real , dimension(num_round, int(lattice_size -1)/2) :: r_list
43	real, dimension(int(lattice_size - 1)/2) :: find_r
44	
45	
46	do round_loop = 1, num_round
47	call rand_center(t)
48	do $r = 1$, (lattice_size -1)/2
49	
50	count_num = 0
51	r_{list} (round_loop, $r) = 0$
52	
53	$start_z = center_z - r$
54	start_y = center_y $- r$
55	$start_x = center_x - r$
56	$end_z = center_z + r$
57	$end_y = center_y + r$
58	$end_x = center_x + r Sinalula 8 Ca$
59	
60	do $z = start_z$, end_z
61	do $y = start_y$, end_y
62	do $x = start_x$, end_x
63	
64	if $((x - center_x)^{*2} + (y - center_y)^{*2} + \&$
65	$(z - center_z)^{**2} \ge (r - 0.5)^{**2}$ and &
66	$(x - center_x)^{*2} + (y - center_y)^{*2} + \&$
67	$(z - center_z)^{*2} < (r + 0.5)^{*2}$ then
68	

```
69
                              z_index = period_bound_conds(z)
70
                              y index = period bound conds(y)
                              x_index = period_bound_conds(x)
71
72
73
                               r_list (round_loop, r) = r_list (round_loop, r) +&
                              (l2(t, center_z, center_y, center_x) &
74
75
                              *l2(t, z_index, y_index, x_index))
76
                              count_num = count_num + 1
77
                           end if
78
                       end do
79
80
                    end do
                 end do
81
                  r_list (round_loop, r) = r_list (round_loop, r)/count_num
82
83
              end do
           end do
84
85
           do r = 1, (lattice_size -1)/2
86
87
              find_r(r) = 0
              do round_loop = 1, num_round
88
                 find_r(r) = find_r(r) + r_list (round_loop, r)

d do

d_r(r) = find_r(r)/num_round
89
90
              end do
              find r(r) = find r(r)/num round
91
92
           end do
93
94
           return
95
       end function find r
96
97
    end module two_point_corr
```

CURRICULUM VITAE

NAME: Jakapat Kannika GENDER: Male

NATIONALITY: Thai **DATE OF BIRTH:** October 7, 1990

EDUCATIONS: B.Eng. (Computer Engineering), Suranaree university of Technology,

Thailand, 2013

PUBLICATIONS: -

