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การเพิ่มปฏิกิริยาทรานสไกลโคซิเลชนัของเอนไซมใ์นกลุ่มไกลโคไซด์ ไฮโดรเลส ไม่ไดท้  าให้
ผลิตน ้าตาลโอลิโกแซคคาไรดส์ายยาวไดเ้สมอไป เพราะวา่ผลิตภณัฑ์จากทรานสไกลโคซิเลชนัมกัจะถูก
ย่อยสลายกลายเป็นน ้ าตาลโอลิโกแซคคาไรด์สายสั้ น ในคร้ังน้ี เราได้ท าการตรวจสอบถึงกลยุทธ์การ 
กลายพนัธ์ุ เพื่อใหไ้ดน้ ้าตาลโอลิโกแซคคาไรดส์ายยาวดว้ยวิธีของปฏิกิรยาทรานสไกลโคซิเลชนั โดยใช ้
เอนไซม์ไคติเนส เอ ท่ีอยู่ในกลุ่มแฟมิลีไกลโคไซด์ ไฮโดรเลส 18 จากเช้ือ Vibrio harveyi (VhChiA)        
ผลการวิเคราะห์ผลิตภณัฑ์จากปฏิกิริยาทรานสไกลโคซิเลชันโดยใช้เคร่ือง HPLC หลงัจากท าการบ่ม
น ้าตาลโอลิโกแซคคาไรด ์(GlcNAcn  ) กบัเอนไซมห์ลายตวัท่ีกลายพนัธ์ุ ไดช้ี้ใหเ้ห็นวา่ เอนไซมก์ลายพนัธ์ุ 
W570G (การกลายพนัธ์ุท่ีต าแหน่งกรดอะมิโน Trp570 ไปเป็น Gly) และเอนไซมก์ลายพนัธ์ุ D392N (การ
กลายพนัธ์ุท่ีต าแหน่งกรดอะมิโน Asp392 ไปเป็น Asn) ช่วยเพิ่มปฏิกิริยาการเกิดทรานสไกลโคซิเลชนั 
แต่ผลิตภณัฑ์ท่ีได ้ไดถู้กยอ่ยสลายต่อเป็นน ้ าตาลโอลิโกแซคคาไรด์สายสั้นในทนัที ในทางตรงกนัขา้ม 
ผลิตภณัฑ์จากปฏิกิริยาทรานสไกลโคซิเลชนั ท่ีไดรั้บจากเอนไซมก์ลายพนัธ์ุ D313A และ D313N (การ
กลายพนัธ์ุท่ีต าแหน่งกรดอะมิโน Asp313 ไปเป็น Ala และ Asn ตามล าดบั) ไม่ไดถู้กยอ่ยสลายต่อ ท าให้
เกิดการสะสมของน ้ าตาลโอลิโกแซคคาไรด์สายยาว โดยขอ้มูลท่ีไดจ้ากเอนไซมไ์คติเนส เอ กลายพนัธ์ุ 
แสดงใหเ้ห็นวา่ การกลายพนัธ์ุของกรดอะมิโนท่ีต าแหน่ง Asp313 ซ่ึงเป็นต าแหน่งตรงกลางของ DxDxE 
catalytic motif ไปเป็น Ala และ Asn มีประสิทธิภาพมากท่ีสุดส าหรับการผลิตน ้ าตาลโอลิโกแซคคาไรด์
สายยาว  
 เอนไซมไ์คติเนส เอ จาก เช้ือ Vibrio harveyi (VhChiA) ท าหนา้ท่ียอ่ยไคตินผา่นกลไกท่ีเรียกวา่ 
substrate assisted-retaining ในการศึกษาคร้ังน้ีมีเป้าหมายเพื่อตรวจสอบถึงผลกระทบของเกลือโซเดียม  
ต่อปฏิกิริยาการย่อยสลายของเอนไซม์ไคติเนส โดยการหาค่า IC50 และ TLC ได้ช้ีให้เห็นว่า โซเดียม        
เอไซด์ มีผลต่อการยบัย ั้งการท างานของเอนไซม์ท่ีเป็น wild-type มากท่ีสุด และจากการหาค่าคงท่ีทาง    
จลนพลศาสน์ของกราฟ Michaelis-Menten พบวา่ค่า Km และ kcat ลดลงเม่ือความเขม้ขน้โซเดียม เอไซด์
เพิ่มข้ึน แสดงใหเ้ห็นวา่ โซเดียม เอไซด ์แสดงการยบัย ั้งแบบผสมต่อ pNP-GlcNAc2 โดยการยบัย ั้งน้ีไดถู้ก
ยืนยนัดว้ยกราฟจาก Lineweaver-Burk plots ซ่ึงเป็นกราฟส่วนกลบัระหวา่ง 1/v0 ต่อ 1/[S] ท่ีความเขม้ขน้
ต่างๆ ของโซเดียม เอไซด์ โดยค่า Ki ของ EI complex มีค่าเท่ากบั 1.50+ 0.10 M และ ค่า αKi ของ ESI 
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complex มีค่าเท่ากบั 0.40 + 0.02 M  ซ่ึงค่าท่ีไดแ้สดงให้เห็นวา่ โซเดียม เอไซด์จบักบัเอนไซมใ์นรูป ES 
complex ไดดี้กวา่ในรูปเอนไซมอิ์สระ และขอ้มูลท่ีไดใ้นการศึกคร้ังน้ี สามารถน าเสนอไดว้่า เอไซด ์ 
แอนไออน จะเขา้ไปแยง่โปรตอนจากหมู่คาร์บอกซิลของ Glu315 ซ่ึงเป็นกรดอะมิโนท่ีท าหนา้ท่ีในการ
ให้โปรตอนกบัสับสเตรตเพื่อย่อยสลายพนัธะไกลโคซิดิคเกิดเป็นผลิตภณัฑ์ ดงันั้นเม่ือเอนไซม์ให้
โปรตอนกบั เอไซด ์แอนไออนแลว้ มนัจึงไม่สามารถใหโ้ปรตอนกบัสับสเตรต และเกิดการยอ่ยได ้
 เอนไซม์กลุคแนคเอสจากเช้ือ Vibrio harveyi (VhGlcNAcase)  ซ่ึงจดัอยู่ในกลุ่มไกลโคไซ          
ไฮโดรเลสแฟมิลี 20 (GH-20) ท าหน้าท่ีย่อยสลายน ้ าตาลโอลิโกแซคคาไรด์สายสั้ นจากทางด้าน            
non-reducing end ผ่านกลไกท่ีเรียกวา่ substrate-assisted retaining โดยผลการทดลองของผลกระทบของ      
เกลือโซเดียมต่อปฏิกิริยาการย่อยสลายของเอนไซม์กลุคแนคเอส พบว่า โซเดียม เอไซด์ และ          
โซเดียม ไนเตรต แสดงการยบัย ั้งการท างานของเอนไซมก์ลุคแนคเอสไดดี้ท่ีสุด โดยผลการทดลองน้ีถูก
ยนืยนัดว้ยการหาค่า IC50 และ TLC และจากค่าคงท่ีทางจลนพลศาสน์ของกราฟ Michaelis-Menten พบวา่
ค่า Km เพิ่มข้ึนและ kcat คงท่ี เม่ือความเขม้ขน้โซเดียม เอไซด ์และโซเดียม ไนเตรต เพิ่มข้ึน แสดงให้เห็นวา่ 
โซเดียม เอไซด์ และ โซเดียม ไนเตรต แสดงการยบัย ั้งแบบแข่งขนัต่อ pNP-GlcNAc  โดยการยบัย ั้งน้ีได้
ถูกยืนยนัด้วยกราฟจาก Lineweaver-Burk plots ซ่ึงเป็นกราฟส่วนกลบัระหว่าง 1/v0 ต่อ 1/[S] ท่ีความ
เขม้ขน้ต่างๆ ของโซเดียม เอไซด์ และโซเดียม ไนเตรต โดยค่า Ki ของ โซเดียม เอไซด์ มีค่าเท่ากบั         
0.20 ± 0.03 M และ ของ โซเดียม ไนเตรต มีค่าเท่ากบั 0.20 ± 0.05 M  
 
 
 
 
 
 
 
 
 
 
 
 
สาขาวชิาชีวเคมี                ลายมือช่ือนกัศึกษา                                             
ปีการศึกษา 2557                ลายมือช่ืออาจารยท่ี์ปรึกษา 
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 Enhancing the transglycosylation activity of glycoside hydrolases does not always 

result in the production of oligosaccharides with longer chains, because the TG products are 

often decomposed into shorter oligosaccharides. Here, we investigated mutation strategies for 

obtaining chitooligosaccharides with longer chains by means of TG reaction catalyzed by 

family GH18 chitinase A from Vibrio harveyi (VhChiA). HPLC analysis of the TG products 

from incubation of chitooligosaccharide substrates (GlcNAcn) with several mutant VhChiAs 

suggested that the mutation W570G (mutation of Trp570 to Gly) and the mutation D392N 

(mutation of Asp392 to Asn) significantly enhanced TG activity, but the TG products were 

immediately hydrolyzed into shorter GlcNAcn. On the other hand, the TG products obtained 

from the mutants D313A and D313N (mutations of Asp313 to Ala and Asn, respectively) 

were not further hydrolyzed, leading to the accumulation of oligosaccharides with longer 

chains. The data obtained from the mutant VhChiAs suggested that mutations of Asp313, the 

middle aspartic acid residue of the DxDxE catalytic motif, to Ala and Asn are most effective 

for obtaining chitooligosaccharides with longer chains.  

 Vibrio harveyi chitinase A (VhChiA) catalyzes chitin degradation through the 

substrate-assisted retaining mechanism. This research aims to investigate the effects of 
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sodium salts on the hydrolytic activities of the chitinase variants. Determination of IC50 and 

TLC suggests that the compound was most active against the wild-type enzyme. Michaelis-

Menten plots yield decreasing Km and kcat upon increasing concentrations of sodium azide, 

providing an idea that sodium azide acts mixed-type inhibition towards pNP-GlcNAc2. 

Lineweaver-Burk plots between 1/v0 versus 1/[S] with different sodium azide concentrations 

also confirm mixed-type inhibition. The value of the Ki of the EI complex was found to be 1.5 

+ 0.1 M and that of αK of the ESI complex to be 0.4 + 0.02 M. The results suggested that 

sodium azide reacted much more efficiently to the ES complex than the free enzyme. Based 

on the data obtained from this study, it has been proposed that the azide anion abstracts the 

proton from the γ-COOH side chain of the catalytic residue Glu315, thereby preventing bond 

cleaving. 

 Family GH20 GlcNAcase from Vibrio harveyi (VhGlcNAcase) sequentially degrades 

chitooligosaccharides from the non-reducing end through the substrate-assisted retaining 

mechanism. The results of the effects of sodium salts on the GlcNAcase activity showed that 

sodium azide and sodium nitrate considerably inhibited the activity of VhGlcNAcase. The 

inhibitory effects of both compounds were also comfirm by IC50 and TLC. Michaelis-Menten 

plots yield increasing Km with fairly steady kcat upon increasing concentrations of sodium 

azide and sodium nitrate, providing an idea that sodium azide and sodium nitrate act 

competitively. Lineweaver-Burk plots between 1/v0 versus 1/[S] with different sodium azide 

and sodium nitrate concentrations also confirm competitive inhibition with the apparent Ki of 

0.2 ± 0.03 M and 0.2 ± 0.05 M, respectively.  
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CHAPTER I 

INTRODUCTION 

 

1.1 Chitin and applications 

Chitin, the second most abundant biopolymer in nature after cellulose, is an 

insoluble polysaccharide consisting of β-(1,4)-linked N-acetylglucosamine (GlcNAc) 

units (Figure 1.1). Chitin is generally found in the shells of crustaceans, such as crabs 

and shrimps, the exoskeletons of insects, and the cell walls of fungi (Kadokura, 

Rokutani, Yamamoto, Ikegami, Sugita, Itoi, Hakamata, Oku, and Nishio, 2007; 

Kubota, Miyamoto, Yasuda, Inamori, and Tsujibo, 2004; Rinaudo, 2006). 

      

                                         

 

Figure 1.1 Chemical structure of chitin, poly (β-(1-4)-N-acetyl-D-glucosamine) 

repeat units (http://en.wikipedia.org/wiki/Chitin).  
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Chitin is hydrolyzed into chitooligosaccharide fragments and GlcNAc residues 

by chemical or enzymatic methods (Ilankovan, Hein, Ng, Trung, and Stevens, 2006). 

The chemical method can be performed through hydrolysis using a strong acid, such 

as HCl. However, there appears to be several problems in producing GlcNAcn by the 

limited acid hydrolysis of chitin, including high cost, low yield, and acidic waste 

created by the use of HCl. On the other hand, the enzymatic method occurs under 

mild conditions, in which the selectivity of the end products depending on the 

substrate specificity of chitinolytic enzymes. In addition, the enzymatic reaction 

occurs quickly and completely with less time consuming, lower cost, and no 

pollutants released to nearby environment (Chen, Shen, and Liu, 2010; Sashiwa, 

Fujishima, Yamano, Kawasakia, Nakayama, Murakia, Sukwattanasinitt, 

Pichyangkura, and Aiba, 2003). 

A complete enzymatic degradation of chitin involves endochitinases (EC 

3.2.1.14), exochitinases (EC 3.2.1.14) and β-N-acetylglucosaminidases or 

GlcNAcases (EC 3.2.1.52) (Dı´ez, Rodrı´guez-Sa´iz, de la Fuente, Moreno, and 

Barredo, 2005). The reactions usually take place in two successive steps. In the first 

step, chitinases catalyze the insoluble chitin by cleaving the glycosidic bonds between 

GlcNAc residues, yielding chitooligosaccharide fragments with GlcNAc2 as the major 

product (Cohen-Kupiec and Chet, 1998). Endochitinases cleave chitin randomly at 

internal sites, whereas exochitinases release GlcNAc2 or GlcNAc3 units from the non-

reducing end of chitin chain. In the second step, the resultant chitooligosaccharides 

are further hydrolyzed from the terminal, non-reducing end to produce GlcNAc 

residues by GlcNAcases (Cohen-Kupiec and Chet, 1998; Matsuo, Kurita, Park, 

Tanaka, Nakagawa, Kawamukai, and Matsuda, 1999; Nogawa, Takahashi, 
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Kashiwagi, Ohshima, Okada, and Morikawa, 1998; Ueda, Fujita, Kawaguchi, and 

Araai, 2000). 

Chitinases and GlcNAcases are widely distributed in various organisms, 

including bacteria, fungi, insects, plants, animals and humans (Kim, Matsuo, Ajisaka, 

Nakajima, and Kitamoto, 2002; Li, Morimoto, Katagiri, Kimura, Sakka, Lun, and 

Ohmiya, 2002). Bacteria produce chitinases and GlcNAcases that hydrolyze chitin 

into GlcNAc, which is finally metabolized intracellularly to produce nutrition and 

energy required for bacterial growth (Tews, Perrakis, Oppenheim, Dauter, Wilson, 

and Vorgias, 1996).  Fungal chitinases and GlcNAcases seem to play important roles 

in many biological processes, including cell wall digestion, germination, hyphal 

growth, hyphal branching and hyphal autolysis (Kim et al., 2002). The cuticles of 

insects are hydrolyzed during the molting process by chitinases and GlcNAcases 

(Ikegami, Okada, Hashimoto, Seino, Watanabe, and Shirakawa, 2000). Plants use 

chitinases and GlcNAcases to act against pathogenic fungi (Ikegami et al., 2000). In 

animals, chitinases and GlcNAcases are involved in the digestive system (Rinaudo, 

2006). In human, chitinases and GlcNAcases are found to be highly expressed in 

macrophages that are involved in inflammatory and lysosomal disease (Kanneganti, 

Kamba, and Mizoguchi, 2013; Kim et al., 2002; Kzhyshkowska, Gratchev, and 

Goerdt, 2007; Rosa, Malaguarnera, Gregorio, Drago, and Malaguarnera, 2012).  Both 

human chitinases and GlcNAcases have been detected at high levels in patients 

infected with Plasmodium falciparum. This suggests that the enzyme’s induction may 

reflect an immunological response to malarial infection (Patil, Ghormade, and 

Deshpande, 2000). Recently, human chitinases have been reported to be particularly 

associated with anti-inflammatory effect against the T helper-2 driven diseases, such 
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as allergic asthma (Donnelly and Barnes, 2004; Wills-Karp and Karp, 2004; Zhu, 

Zheng, Homer, Kim, Chen, Cohn, Hamid, and Elias, 2004). 

Chitin and its degradation derivatives are important for biomedical, 

pharmacological, agricultural, and biotechnological applications (Rinaudo, 2006). For 

examples, chitooligosaccharides are potentially used for fatty acid absorption, 

decreasing LDL and increasing HDL cholesterols, decreasing blood sugar level, and 

enhancing calcium absorption (Koide, 1998). Chitin degradation products can 

stimulate the immune system to respond to microbial infections (Kumar, Varadaraj, 

Gowda, and Tharanathan, 2005; Patil et al., 2000). Chitooligosaccharides and 

GlcNAc residues have been reported for their anti-inflammatory activity and are used 

for treatment of ulcerative colitis and gastrointestinal inflammation disorders. GlcNAc 

residues have also been used as a nutritional substrate for pediatric chronic 

inflammatory bowel disease and pharmaceutical therapy of osteoarthritis (Park, Kim, 

and Park, 2010). Chitin derivatives are used for food and drink supplements to 

improve the function of connective tissues and joints (Qin, Li, Xiao, Liu, Zhu, Du, 

2006). The abundance of chitin in nature has stimulated research on isolation and 

characterization of chitinolytic enzymes from different sources. 

 

1.2 Classification of chitinases and GlcNAcases 

Chitinases (EC 3.2.1.14) are classified into glycoside hydrolases family 18 

(GH-18) and family 19 (GH-19), depending on the amino acid sequence identity of 

their catalytic domains and the mode of enzyme action (http://www.cazy.org/; 

Brameld and Goddard, 1998; Fukamizo, Miyake, Tamura, Ohnuma, Skriver, 

Pursiainen, and Juffer, 2009; Funkhouser and Aronson, 2006; Hoell, Dalhus, Heggset, 
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Aspmo, and Eijsink, 2006; Kawase, Saito, Sato, Kanai, Fujii, Nikaidou, Miyashita, 

and Watanabe, 2004; Suginta, Songsiriritthigul, Kobdaj, Opassiri, and Svasti, 2007; 

van Aalten, Komander, Synstad, Gåseidnes, Peter, and Eijsink, 2001; van Scheltinga, 

Hennig, and Dijkstra, 1996). Family 18 chitinases are found in a variety of 

prokaryotic and eukaryotic organisms, such as viruses, bacteria, fungi, plants, insects 

and mammals, whereas family 19 chitinases are mainly found in higher plants and in 

the gram-positive bacterium Streptomyces (Brameld et al., 1998; Iseli, Armand, 

Boller, Neuhaus, and Henrissat, 1996; Sasaki, Yokoyama, Itoh, Hashimoto, 

Watanabe, and Fukamizo, 2002). The catalytic domain of family 18 chitinases has a 

long deep substrate-binding groove located at the top of the (β/α)8 TIM 

(triosephosphate isomerase) barrel fold with a conserved DxDxE motif on the β4-

strand (Figure 1.2) (Aronson, Halloran, Alexyev, Amable, Madura, Pasupulati, 

Worth, and Roey, 2003; Papanikolau, Prag, Tavlas, Vorgias, Oppenheim, and 

Petratos, 2001; Papanikolau, Prag, Tavlas, Vorgias, and Petratos,  2003; Perrakis, 

Tews, Dauter, Oppenheim, Chet, Wilson, and Vorgias, 1994; van Aalten et al., 2001). 

On the other hand, the catalytic domain of family 19 chitinases comprises of two 

lobes, each of which is rich in α-helical structure. The substrate binding cleft of the 

enzymes is positioned between the two lobes (Figure 1.2) (Davies and Henrissat, 

1995; Hart, Pfluger, Monzingo, Hollis, and Robertus, 1995; Henrissat and Davies, 

2000).  
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Figure 1.2 A ribbon representation of the main characteristics of the catalytic 

domains of GH- 18 (PDB code: 1NH6) and GH- 19 (PDB code: 3CQL) chitinases.  

 

The mode of enzyme action of family 18 chitinases has been proposed to be 

the substrate-assisted retaining mechanism, which contains a catalytic acid/base 

residue and the N-acetyl group of the sugar in the -1 subsite acts as a nucleophile. The 

hydrolytic products of this mechanism are in the β-anomeric form (Armand, Tomita, 

Heyraud, Gey, Watanabe, and Henrissat, 1994; Aronson et al., 2003; Brameld et al., 

1998; Fukamizo, Sasaki, Schelp, Bortone, and Robertus, 2001; Hollis, Honda, 

Fukamizo, Marcotte, Day, and Robertus, 1997; Vuong and Wilson, 2010). In contrast, 

the mode of enzyme action of family 19 chitinases employs the single displacement 

inverting mechanism. The hydrolytic reaction requires a catalytic acid residue and a 

catalytic base residue, which yields an inversion of anomeric configuration with a 

predominant α-anomeric product (Fukamizo, Koga, and Goto, 1995; Hollis et al., 

1997).  

Family 19 Family 18  
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GlcNAcases are classified into glycoside hydrolase family 3 (GH-3) and 

family 20 (GH-20) based on the amino acid sequence similarity of their catalytic 

domains and the mode of enzyme action (http://www.cazy.org/; Henrissat and 

Bairoch, 1993; Henrissat and Daviest 1997; Li et al., 2002). Family 3 glycoside 

hydrolases include β-D-glucosidases (EC 3.2.1.21), β-D-xylopyranosidases (EC 

3.2.1.37), β-N-acetylglucosaminidases (GlcNAcases) (EC 3.2.1.52), and α-L-

arabinofuranosidases (EC 3.2.1.55) (Harvey, Hrmova, De Gori, Varghese, and 

Fincher, 2000). Family 20 glycoside hydrolases include β-N-acetylglucosaminidases 

(GlcNAcases) (EC 3.2.1.52) and β-hexosaminidases (β-N-acetylhexosaminidases) 

(EC 3.2.1.52). While, GlcNAcases hydrolyze β-1,4 linkages N-acetylglucosamine 

oligomers, β-hexosaminidases also hydrolyze β-1,4 linkages between N- 

acetylgalactosamine and galactosamine  moieties (Tews et al., 1996). Most of 

bacterial GlcNAcases are grouped into family 20 GlcNAcases, such as chitobiase 

from Serratia marcescense (Tews et al., 1996), β-hexosaminidase from Streptomyces 

plicatus (Mark, Vocadlo, Knapp, Triggs-Raine, Withers, and James, 2001), disperin B 

(β-1,6-N-acetylglucosaminidase) from Actinobacillus actinomycetemcomitans 

(Ramasubbu, Thomas, Ragunath, and Kaplan, 2005), N-acetyl-β-D-glucosaminidase 

from Streptococcus gordonii (Langley, Harty, Jacques, Hunter, Guss, and Collyer, 

2008), β-N-acetylhexosaminidase from Paenibacillus sp. (Sumida, Ishii, Yanagisawa, 

Yokoyama, and Ito, 2009), and β-N-acetylglucosaminidases from Vibrio harveyi 650 

(Suginta, Chuenark, Mizuhara, and Fukamizo, 2010). While, only five bacterial GH-3 

GlcNAcases have been characterized, including ExoII or NagZ from Vibrio furnissii 

(Chitlaru and Roseman, 1996), Nag3A from Clostridium paraputrificum M-21 (Li et 

al., 2002), NagA from Streptomyces thermoviolaceus OPV-520 (Kubota et al., 2004), 
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NagA from Thermotoga maritime, and CbsA from T. neapolitana (Choi, Seo, Park, 

Park, and Cha, 2009). The mode of enzyme action of family 3 GlcNAcases has been 

proposed to be the double displacement retaining mechanism, while the mode of 

enzyme action of family 20 GlcNAcases employs the substrate-assisted retaining 

mechanism which is similar to family 18 chitinases (Vocadlo and Withers, 2005). 

 

1.3 Catalytic mechanisms of family 18 chitinases and family 20 

GlcNAcases 

 Family 18 chitinases catalyze the hydrolytic reaction through the substrate-

assisted retaining mechanism that the nucleophilic attack is carried out by the N-

acetamido group of the sugar bound to the -1 subsite to form an oxazolinium ion. The 

position and nucleophilicity of the acetamido group are affected by certain acidic 

residues located within the conserved DxDxE motif. These residues include the 

catalytic acid/base (Glu144 and Asp140 and Asp142 in SmChiB) that are buried in the 

core of the (β/α)8 fold. According to this mechanism, the catalytic residue Glu acts as 

a proton donor, and its position, is in the vicinity to donate a proton to the oxygen O4 

of +1 sugar unit. Subsequent cleavage of the glycosidic C1(-1)-O4(+1) bond leads to 

the formation of an oxazolinium ion intermediate that is stabilized by hydrogen 

bonding interaction with the protonated Asp142 in SmChiB (Figure 1.3A-B). Then, a 

proton from a water molecule was taken up by the γ-carboxylate of Glu144 in 

SmChiB, and the remaining hydroxide anion was taken up by the C1 carbon of -1 

sugar, yields the hydrolytic product, which retains the initial anomeric configuration 

(Figure 1.3C). The rotation of Asp142 is not only for stabilizing the oxazolinium ion 

intermediate, but also for donating a proton. The rotation of Asp142 also causes 
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lowering pKa of Glu144, which triggers the hydrolysis of the O-glycosidic linkage at 

the cleavage site (Papanikolau et al., 2001; Perrakis et al., 1994; van Aalten et al., 

2001). In addition, the study recently found that the enzyme-substrate interactions of 

VhChiA revealed two conformations of Asp313 and (-1) sugar unit. The first 

conformation, likely to be the initial conformation, showed that the β-COOH of 

Asp313 detaches from Asp311 and rotates to form hydrogen-bond only with the –

C=O of the N-acetamido group of the (-1) sugar unit (Figure 1.4A-B). The second 

conformation, formed from the first by concerted bond rotations, demonstrated 

hydrogen bonds between the Asp313 side chain and the –NH of the N-acetyl group 

and the γ-COOH of Glu315. Then, the glycosidic bond of the substrate is cleaved by 

nucleophilic attack on C-1 by the –C=O of the N-acetamido group, with protonation 

of the glycosidic oxygen by Glu315, generating an oxazolinium ion intermediate, 

which is stabilized by Asp313 (Figure 1.4C). The cycle is completed after the second 

nucleophilic attack on the intermediate by –OH group of a water molecule (Figure 

1.4D) (Suginta and Sritho, 2012).  
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Figure 1.3 The catalytic mechanism of family 18 chitinases B from Serratia 

marcescens (SmChiB). (A) Resting enzyme. (B) Substrate binding and rotation of Asp 

142 toward Glu 144, enabling hydrogen bond interactions between the hydrogen of 

the acetamido group, Asp 142 and Glu 144. (C) Hydrolysis of the oxazolinium ion 

intermediate leads to protonation of Glu 144 and rotation of Asp 142 to its original 

position where it shares a proton with Asp 140 (van Aalten et al., 2001). 
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Figure 1.4 The refined catalytic cycle of chitin degradation of family 18 Vibrio 

harveyi chitinase A (VhChiA). (A) Pre-priming, (B) Substrate binding, (C) Bond 

cleavage, and (D) Formation of reaction intermediate (Suginta and Sritho, 2012). 

    

The catalytic mechanism of family 3 GlcNAcases catalyzes the hydrolytic 

reaction through the double displacement mechanism, involving the formation and 

breakdown of a covalent α-glycosyl enzyme intermediate formed on an aspartate 

residue (Figure 1.4A) (Vocadlo et al., 2005). In the first step of the reaction, the 

formation of the intermediate, departure of the aglycon leaving group is typically 

facilitated by a general acid/base catalytic residue, which donates a hydrogen atom to 

the glycosyl oxygen atom while the nucleophile forms the glycosyl-enzyme 

intermediate. In the second step of the reaction, the breakdown of the intermediate, 
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the same catalytic residue acts as a general base, enhancing the nucleophilicity of a 

water molecule poised near the anomeric center. The water molecule attacks the 

anomeric center with the net result being the formation of the hemiacetal product with 

retained stereochemistry (Vocadlo et al., 2005). In contrast, the catalytic mechanism 

of family 20 GlcNAcases employs the substrate-assisted retaining mechanism, 

involving the carbonyl of the 2-acetamido group that acts as a nucleophile to displace 

the aglycon leaving group with the net result being the formation of an oxazolinium 

ion intermediate. Afterwards, a water molecule attacks the anomeric center, breaking 

down the oxazolinium ring to generate the hemiacetal product with retained 

stereochemistry (Figure 1.4B) (Vocadlo et al., 2005). The two key catalytic residues 

of family 20 glycoside hydrolases were identified previously by both structural and 

kinetic studies. The catalytic cycle employs an Asp-Glu catalytic pair, where the 

aspartate and glutamate residues are immediately adjacent to each other in the 

sequence (Centinbas, Macauley, Stubbs, Drapala, and Vocadlo, 2006). For family 20 

GlcNAcases, an alternative mechanism has been proposed, involving the formation of 

an oxocarbenium ion intermediate stabilized by the acetamido group that protects the 

bottom face of the saccharide ring (Figure 1.4C) (Vocadlo et al., 2005). 
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Figure 1.5 The catalytic mechanisms of the two classes of GlcNAcases. (A) Family 3 

GlcNAcases use an anionic enzymic carboxylate group as the nucleophile to form a 

covalent glycosyl enzyme intermediate. (B) Family 20 GlcNAcases use the 2-

acetamido group of the substrate acts as nucleophile to form an oxazolinium ion 

intermediate. (C) An alternative mechanism has been proposed for Family 20 

GlcNAcases involving the formation of an oxocarbenium ion intermediate stabilized 

by the acetamido group (Vocadlo et al., 2005). 
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1.4 Studies of the effect of sodium azide on the catalytic activity of the 

retaining enzymes 

Several reports employed sodium azide as a chemical rescue to probe the 

catalytic acid/base and the catalytic nucleophile residues of the retaining glycoside 

hydrolases, such as Cellulomas fimi GH-85 exoglucanase/xylanase (MacLeod, 

Lindhorst, Withers, and Warrent, 1994), Bacillus licheniformis 1,3-1,4-β-glucanase 

(Viladot, Ramon, Durany, and Planas, 1998), Streptomyces sp. GH-1 β-glucosidase 

(Vallmitjana, Ferrer-Navarro, Planell, Abel, Ausı´n, Querol, Planas, and Pe´rez-Pons, 

2001), Geobacillus stearothermophilus T-6 GH-51 α-L-arabinofuranosidase 

(Shallom, Belakhov, Solomon, Shoham, Baasov, and Shoham, 2002), Streptomyces 

plicatus GH-20 hexoxaminidase (SpHex) (Williams, Mark, Vocadlo, James, and 

Withers, 2002), Sulfolobus solfataricus GH-29 α-L-fucosidase (Cobucci-Ponzano, 

Trincone, Giordano, Rossi, and Moracci, 2003), Paenibacillus sp. TS12 

glucosylceraminidase (Paal, Ito, and Withers, 2004), and Arthrobactor protophormiae 

GH-85 endo-β-N-acetylglucosaminidase (Endo A) (Fujita, Sato, Toma, Kitahara, 

Suganuma, Yamamoto, and Takegawa, 2007). All of those studies demonstrated that 

sodium azide significantly recovered the glycoside hydrolase activity of the inactive 

mutant, in which one residue in the catalytic D-E pair was mutated. The results 

proposed that the azide anion acts as an alternative nucleophile to form α-glycosyl 

azide in the glycosylation step or β-glycosyl azide in the deglycosylation step of the 

retaining glycosidase mechanism (MacLeod et al., 1994; Viladot et al., 1998). For 

example, the activity of Arthrobactor protophormiae endo-β-N-

acetylglucosaminidase (Endo A) inactive mutant E173A was increased by 127-fold 

when 2 M sodium azide was added in the assayed reaction (Fujita et al., 2007). The 
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role of the key catalytic residues Glu134 and Glu138 of Bacillus licheniformis 1,3-

1,4-β-glucanase is probed by a chemical rescue methodology, based on enzyme 

activation of inactive mutants by the action of added sodium azide that acts as an 

exogenous nucleophile. The inactive mutants E138A and E134A were produced by 

site-directed mutagenesis. Addition of sodium azide re-activates the mutants. The 

chemical rescue operates by a different mechanism, depending on the mutant as 

deduced from 
1
H NMR monitoring and kinetic analysis of enzyme reactivation. 

E138A yields the β-glycosyl azide product arising from nucleophilic attack of azide 

anion on the glycosyl-enzyme intermediate in the deglycosylation step suggested that 

Glu138 is the general acid-base residue. In contrast, azide anion reactivates E134A 

mutant through a single inverting displacement to give the α-glycosyl azide product in 

the glycosylation step suggested that Glu134 is the catalytic nucleophile (Viladot et 

al., 1998). In contrast, sodium azide was found to inhibit the wild-type Bacillus 

licheniformis 1,3-1,4-β-glucanase activity using mixed type and competitive mode 

when G4G3G-MU and G4G3G-2,4DNP as the substrates, respectively (Viladot et al., 

1998). 

The most relevant case to family 18 chitinases and family 20 GlcNAcases are 

a report on SpHex, a retaining family 20 glycosidase from Streptomyces plicatus 

(Williams et al., 2002). SpHex catalyzes the hydrolysis of N-acetyl-β-hexosaminides. 

An acidic pair (Asp313-Glu314) is identified to be the most essential resides in the 

catalysis. Functional roles of Asp313 are predicted to aid the 2-acetamido group of -1 

GlcNAc to act as a powerful nucleophile and to stabilize the oxazolinium ion 

intermediate. On the other hand, Glu314 acts as the catalytic residue that directly 

attacks the β-1,4-glycosidic bond at the cleavage site. Single mutation of Asp313 of 
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SpHex to Ala or Asn (mutant D313A or D313N) almost abolished the hydrolytic 

activity of SpHex. However, kcat of mutant D313A was increased up to 16 fold of the 

original rate when sodium azide was added in the assayed reaction. It has been 

concluded that the azide ion acts as an alternative nucleophile to water and open the 

oxazolinium ion intermediate formed after acid catalysis by Glu314 (Williams et al., 

2002). The activation of sodium azide on the inactive mutant may occur in 2 ways: i) 

Azide anion could provide charge stabilization of the transition state that flanks the 

oxazolinium ion intermediate, instead of the mutant D313A that the acidic side chain 

has been removed. Alternatively, azide anion may reactivate the mutant by acting as a 

nucleophile that competes with the hydroxyl group from the water to interact the 

oxazolinium ion intermediate to give the β-glycosyl azide product in the 

deglycosylation step (Figure 1.5) (Williams et al., 2002).  

 

            

 

Figure 1.6 Proposed mechanism of azide anion rescues the SpHex D313A variant 

activity. Azide as an alternative nucleophile to water acts to open the oxazolinium ion 

intermediate (Williams et al., 2002). 
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1.5 Studies of transglycosylation reaction of family 18 chitinases 

In nature, degradation of insoluble chitin polymer by chitinases generates 

water-soluble chitooligosaccharide fragments (Rinaudo, 2006). Chitooligosaccharides 

have various biological functions. For example, they can stimulate plant immune 

system to respond to microbial infections, so as they can be used as antimicrobial 

agents (Kaku, Nishizawa, Ishii-Minami, Akimoto-Tomiyama, Dohmae, Takio, 

Minami, and Shibuya, 2006; Miya, Albert, Shinya, Desaki, Ichimura, Shirasu, 

Narusaka, Kawakami, Kaku, and Shibuya, 2007; Kumar et al., 2005; Yamaguchi, 

Yamada, Ishikawa, Yoshimura, Hayashi, Uchihashi, Ishihama, Kishi-Kaboshi, 

Takahashi, Tsuge, Ochiai, Tada, Shimamoto, Yoshioka, and Kawasaki, 2013). 

However, the biological activities of chitooligosaccharides are most efficient, when 

the chain lengths are more than five or six (Kumar et al., 2005; Petutschnig, Jones, 

Serazetdinova, Lipka, and Lipka, 2010). Usually, chemical synthesis of 

chitooligosaccharides with such longer chains is cumbersome and costly due to the 

selective protection and subsequent manipulation of various monosaccharide donors 

and acceptors (Aly, Ibrahim, Ashry, and Schmidt, 2001; Kanie, Ito, and Ogawa, 

1994). Therefore, enzymatic synthesis employing the transglycosylation activity of 

chitinases may serve as a better biological tool for a large-scale production of such 

biologically-active compounds. 

Transglycosylation (TG) catalyzed by family 18 chitinases usually takes place 

through two steps (Aronson, Halloran, Alexeyev, Zhou, Wang, Meehan, and Chen, 

2006; Fukamizo, Sasaki, Schelp, Bortone, and Robertus, 2001; Zakariassen, Hansen, 

Jøranli, Eijsink, and Sørlie, 2011). In the first step, the glycosidic oxygen is 

protonated by a catalytic acid to cleave the β-1,4-glycosidic linkage and to form the 
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oxazolinium ion intermediate, in which the C1 carbon of the -1 sugar is stabilized by 

anchimeric assistance of the sugar N acetamido group. In the second step, the 

oxazolinium ion intermediate is attacked by a water molecule from the β-side, leading 

to hydrolysis with net retention of anomeric form. When a water molecule is 

outcompeted by another acceptor, such as carbohydrates, TG reaction takes place, 

resulting in formation of a glycosidic linkage and yielding longer-chain 

chitooligosaccharides instead.  

Chitinases from various sources have been reported to potentially catalyze TG 

reaction. For examples, a chitinase from Nocardia orientalis was reported to convert 

GlcNAc4 substrate to GlcNAc6 under high ammonium sulfate concentration (Nanjo, 

Sakai, Ishikawa, Isobe, and Usui, 1989). Recently, Serratia proteamaculans chitinase 

D (SpChiD) showed high TG activity with GlcNAc3-6 substrates, generating GlcNAc7-

13 products, which were hydrolyzed into smaller GlcNAcn after 90 min of the reaction 

(Purushotham and Podile, 2012). Mutations of some amino acids located close to the 

catalytic cleft were found to enhance TG activity in various family 18 chitinases. For 

examples, Serratia marcescens chitinase A (SmChiA) showed that mutation of 

Trp167 at the -3 subsite to Ala (mutant W167A) enhanced TG activity producing 

GlcNAcn, of which the polymerization degree is higher than that of GlcNAc4 and 

GlcNAc5 substrates (Aronson et al., 2006). Additionally, two mutants from different 

chitinase homologs (SmChiA D313N and SmChiB D142N) were found to improve 

TG activity, especially the double mutant D313N/F396W at the +2 subsite in SmChiA 

showed two-fold increase in the TG rate as compared to the single mutant D313N 

(Zakariassen et al., 2011). Another report on mutants D200A and D202A of Bacillus 

circulans WL-12 chitinase A1 and on mutants D170N and D170A of Trichoderma 
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harzanium chitinase 42 displayed higher TG activity, whereas their hydrolytic activity 

was dramatically diminished (Martinez, Boer, Koivula, Samain, Driguez, Armand, 

and Cottaz, 2012). On the other hands, mutants M226A, Y228A, R284A, F64W, 

F125A, G119S, S116G and W247A of SpChiD displayed the TG products that were 

stable for an extended period of up to 6 h (Madhuprakash, Tanneeru, Purushotham, 

Guruprasad, and Podile, 2012). 

 

1.6 Studies of Vibrio harveyi chitinase A  

The marine bacterium, Vibrio harveyi (formerly V. carchariae), chitinase A 

(VhChiA) is a member of family 18 glycoside hydrolases (GH-18) that is mainly 

responsible for the hydrolysis of β-1,4 glycosidic linkages of chitin biomaterials in the 

marine ecosystem (Suginta, Robertson, Austin, Fry, and Fothergill-Gilmore, 2000). 

VhChiA is active as a monomer of Mr 63,000 (Suginta et al., 2000). Analysis of chitin 

hydrolysis using HPLC/ESI-MS suggested that this enzyme acts as an endochitinase 

(Suginta, Vongsuwan, Songsiriritthigul, Prinz, Estibeiro, Duncan, Svasti, and 

Fothergill-Gilmore, 2004). The enzyme primarily generated β-anomeric products 

indicating that it catalyzed the hydrolysis through the substrate assisted retaining 

mechanism (Suginta, Vongsuwan, Songsiriritthigul, Svasti, and Prinz, 2005). The 

hydrolytic activity of mutants VhChiA E315M, E315Q and D392N towards glycol 

chitin showed that the mutant D392N retained significant chitinase activity in the gel 

activity assay, while the mutants E315M and E314Q showed the complete loss of 

substrate utilization suggested that Glu315 is an essential residue in the enzyme 

catalysis (Suginta et al., 2005). In addition, all chitinases also exhibited 

transglycosylation activity towards chitooligosaccharides and pNP-glycosides, 
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especially the mutant D392N that showed strikingly greater efficiency in 

oligosaccharide synthesis than the wild-type enzyme (Suginta et al., 2005).  

The effects of point mutation of the residues Trp168, Tyr171, Trp275, Trp397 

and Trp570 were studied. All the mutant residues located in the substrate binding cleft 

of the modeled 3D structure of VhChiA. Mutations of Trp168, Tyr171 and Trp570 

completely abolished the hydrolyzing activity against colloidal chitin, and greatly 

reduced the hydrolyzing activity against the pNP substrate (Suginta et al., 2007). 

Mutant W570G showed the most severe effects on the hydrolyzing activity, having no 

activity against colloidal chitin and least activity against pNP-GlcNAc2 (Suginta et al., 

2007). In the modeled 3D structure, Trp570 was closest to the sugar ring at subsite -1 

that is likely to be responsible for holding the GlcNAc ring at this position in place so 

that cleavage of the glycosidic bond between subsites -1 and +1 can occur (Suginta et 

al., 2007). The time course study of G4-G6 hydrolysis by thin layer chromatography 

(TLC) showed higher efficiency of the mutants W275G and W397F over the wild-

type enzyme. Although the time course of colloidal chitin hydrolysis displayed no 

difference in the cleavage behavior of the chitinase variants, the time course of G6 

hydrolysis exhibited distinct hydrolytic patterns between the wild-type and the 

mutants W275G and W397F. The results suggested that residues Trp275 and Trp397 

are involved in defining the binding selectivity of the enzyme to soluble substrates 

(Suginta et al., 2007). 

The X-ray structure of wild-type VhChiA showed that the overall structure of 

VhChiA consists of three distinct domains, which are the N-terminal chitin-binding 

domain, the main catalytic (α/β)8 TIM-barrel domain and the small (α+β) insertion 

domain. The structure of the catalytic cleft of the inactive mutant VhChiA (E315M) 
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complexes with GlcNAc6 has a long, deep groove, which contains six substrate 

binding sites (-4)(-3)(-2)(-1)(+1)(+2) where subsites -4 to -1 are the glycone sites and 

subsites +1 and +2 are the aglycone sites. The cleavage site is located between 

subsites -1 and +1 (Figure 1.6) (Songsiriritthigul, Pantoom, Aguda, Robinson, and 

Suginta, 2008). Recently, the roles of Asp313, which lies at the bottom of the binding 

cleft catalytic residue 315, in the catalytic cycle of chitin degradation by VhChiA were 

investigated. The kinetic and structural evidence suggest that Asp313 in the highly 

conserved DXDXE sequence motif plays several important roles in the catalytic cycle 

of VhChiA. Asp313 contributes to the ability of VhChiA to bind the chitin substrates. 

Asp313 participates in the catalytic process by lowering the pKa of catalytic residue 

315, promoting bond cleavage, and stabilizes the oxazolinium ion intermediate 

(Suginta and Sritho, 2012) 
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Figure 1.7 The crystal structure of the VhChiA E315M inactive mutant complexed 

with GlcNAc6 is that of a typical family 18 glycoside hydrolases comprising three 

distinct domains. The N-terminal chitin-binding domain (ChBD) is in blue, the 

catalytic (α/β)8 TIM-barrel domain is in magenta and the small (α+β) insertion domain 

is in green. The catalytic cleft of chitinase A contains six chitooligosaccharide ring-

binding subsites (-4)(-3)(-2)(-1)(+1)(+2) (Songsiriritthigul et al., 2008). 

 

1.7 Studies of Vibrio harveyi GlcNAcases  

 The genes encoding two GlcNAcases (VhNag1 and VhNag2) from V. harveyi 

are classified as new members of family 20 glycoside hydrolases (Suginta et al., 

2010). These enzymes were successfully cloned and expressed in E. coli M15 host 

cells. VhNag1 has a molecular mass of 89 kDa and an optimum pH of 7.5, while 

VhNag2 has a molecular mass of 73 kDa and an optimum pH of 7.0. The recombinant 

GlcNAcases were found to hydrolyze all the natural substrates, VhNag2 being more 
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active than VhNag1. Product analysis by TLC and quantitative HPLC suggested that 

VhNag2 degrades chitooligosaccharides in an exo manner releasing GlcNAc as the 

end product and it has the highest activity toward chitotetraose. Kinetic modeling of 

the enzymatic reaction revealed that the binding pocket of VhNag2 contains four 

substrate binding subsites, designated (-1), (+1), (+2), and (+3). 

In living cells, these intracellular enzymes may work after endolytic chitinases 

to complete chitin degradation (Suginta et al., 2010). 

 

1.8 Research objectives  

 Vibrio harveyi is a marine bacterium responsible for a rapid turnover of chitin 

biomaterials in the marine enviroment. The bacterium initially secretes chitinase A 

(VhChiA), which is a member of family 18 glycoside hydrolases, to degrade chitin 

polymer, yielding chitooligosaccharide fragments, which can be taken up by the cell 

through chitoporin. In the periplasm, GlcNAcase (VhGlcNAcase), which is a member 

of family 20 glycoside hydrolases, is sequentially degrades the transported 

chitooligosaccharides into GlcNAc monomers that are further metabolized inside the 

cells. Although VhChiA and VhGlcNAcase are different classes of glycoside 

hydrolases, both catalyze the hydrolytic reaction through the substrate-assisted 

retaining mechanism.  

From the studies of transglycosylation (TG) reaction catalyzed by family 18 

chitinases, it is obvious that enhancing the TG activity of chitinases does not always 

result in the production of chitooligosaccharides with longer chains, because the TG 

products are often decomposed into shorter oligosaccharides. In the first part of this 

research, we investigated the mutation strategies for obtaining chitooligosaccharides 
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with longer chains by means of enzymatic TG reaction using family 18 chitinase A 

from Vibrio harveyi (VhChiA). 

Several reports have employed sodium azide as a chemical rescue to probe the 

catalytic acid-base residues of the catalytically inactive mutant glycoside hydrolases. 

However, the effects of sodium azide and sodium salts of small nucleophiles on the 

wild-type and mutants VhChiA and VhGlcNAcase activities have not been thoroughly 

investigated. Therefore, the second part of this research aims to investigate the effects 

of sodium azide and sodium salts on the hydrolytic activity of the two enzymes 

against pNP-glycosides and natural substrates. 

The objectives of this research include: 

1. To express and purify the wild-type and mutants of VhChiA and VhGlcNAcase 

2. To evaluate the transglycosylation activity of the VhChiA wild-type and the 

mutants, including W570G, D392N, D313A and D313N by a quantitative HPLC 

technique. 

3. To investigate the effects of sodium azide and other sodium salts on the hydrolytic 

activities of the VhChiA and VhGlcNAcase. 

 

 

 

 

 

 

 

 

 

 



25 

 

CHAPTER II 

MATERIALS AND METHODS 

 

2.1 Bacterial strains and expression plasmids  

The genes encoding chitinase A (VhChiA) and N-acetylglucosaminidase from 

the marine bacterium Vibrio harveyi were previously isolated, cloned into the pQE60 

expression vector, and expressed in E. coli M15 (pREP) type strain, as described 

elsewhere (Suginta et al., 2004; Suginta et al., 2010). Both genes were designated 

VhChiA and VhGlcNAcase, respectively. In this study, the chitinase constructs used 

were: pQE-60 vector, harboring wild-type and mutants D392N, W570G, D313A and 

D313N chitinase A gene fragments (Suginta et al., 2004; Suginta et al., 2005; Suginta 

et al., 2007; Suginta et al., 2012). pQE-60 expression vector harboring β-N-acetyl-

glucosaminidase gene fragment (Suginta et al., 2010) was used to express 

VhGlcNAcase. Escherichia coli strain DH5α was used as a routine host for 

amplification of recombinant plasmids. E. coli strain M15 (Qiagen, Valencia, CA, 

USA) was used for high-level expression of the recombinant chitinase A (VhChiA) 

and β-N-acetyl-glucosaminidase (VhGlcNAcase).  

 

2.2 Chemicals and reagents 

Chemicals and reagents used for protein expression, purification and 

characterization of VhChiA and VhGlcNAcase were analytical grade unless otherwise
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stated. Acetone, aniline, ammonia solution 30%, buthanol, calcium chloride, ethanol,  

glacial acetic acid, hydrochloric acid, magnesium chloride, methanol, nickel (II) 

sulphate, orthophosphoric acid 85%, potassium acetate, potassium dihydrogen 

phosphate, dipotassium hydrogen phosphate, potassium sodium tartrate, sodium 

acetate, sodium carbonate, sodium chloride, sodium dihydrogen phosphate, disodium 

hydrogen phosphate, sodium formate, sodium hydroxide, sodium nitrate, sodium 

sulphate, Tris-(hydroxymethyl)-aminomethane, sodium dodecyl sulfate (SDS) and 

water (HPLC grade) were purchased from Carlo Erba (Rodano, Milano, Italy). 

Acrylamide, ammonium persulfate, bis-N, N"-methylenebisacrylamide, 2-β-

mercaptoethanol, bromophenol blue, coomassie brilliant blue R250, ethylenediamine 

tetra-acetic acid (EDTA), glycerol and N, N', N", N"'-tetramethylethylenediamine 

(TEMED) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Ampicillin, 

kanamycin, phenylmethyl sulfonyl fluoride (PMSF), imidazole, hen egg white 

lysozyme and triton X-100 were purchased from USB Corporation (Cleveland, OH, 

USA). Tryptone, yeast extract powder and agar powder were purchased from Himedia 

Laboratories (Marg, Mumbai, India). Diphenylamine was from Acros Organics 

(Morris Plains, NJ, USA). DNase I was from Bio basic (Markham, Ontario, Canada). 

Glycine was from Vivantis (Oceanside, CA, USA). Isopropyl thio-β-D-galactoside 

(IPTG) was from Merck Millipore (Billerica, MA, USA). BCA protein assay kit was a 

product of EMD Chemicals (San Diego, CA, USA).  

N-acetyl-chitooligosaccharides (N-acetyl-glucosamine, di-N-acetyl-chitobiose, 

tri-N-acetylchitotriose, tetra-N-acetyl-chitotetraose, penta-N-acetyl-chitopentaose and 

hexa-N-acetylchitohexaose) were produced by acid hydrolysis of chitin (Rupley et al., 

1964) and purified by gel-filtration column of Gcl-25m (JNC Co., Tokyo, Japan) and 
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also were purchased from Seikagaku Corporation (Chiyoda-ku, Tokyo, Japan). Chitin 

from crab shells was purchased from Seikagaku Corporation (Tokyo, Japan) and 

colloidal chitin was prepared from crab chitin by the method of Hsu and Lockwood 

(1975). p-nitrophenol (pNP) and p-nitrophenyl-N-acetyl-glucosaminide (pNP-

GlcNAc) were purchased from Sigma-Aldrich (St. Louis, MO, USA).  p-nitrophenyl-

di-N-acetyl-chitobioside (pNP-GlcNAc2) was purchased from Toronto research 

chemicals (Ontario, Canada). 

Ni-nitrilotriacetic acid (Ni-NTA) agarose resins were purchased from Qiagen 

(Valencia, CA, USA) and Bio-Rad Laboratories (Hercules, CA, USA). Ni-NTA 

agarose columns (1x5 ml) were purchased from Qiagen GmbH (Qiagen, Hilden, 

Germany). HiPrep 16/60 Sephacryl S-100 HR and S-200 HR columns were products 

of GE Healthcare (Munich, Germany). Vivaspin-20 ultrafiltration membrane 

concentrators (Mr 10,000 cut-off) were products of Vivascience (AG, Hannover, 

Germany). A 96-well microtiter plate was from Nunc (Roskilde, Denmark). A TCL 

Silica gel 60 F254 Aluminum sheet (10 cm x 10 cm) and a TLC developing tank were 

from Merck (Berlin, Germany).  

 

2.3 Instrumentation 

The instruments required for protein expression, purification and 

characterization are located at the Biochemistry-Electrochemistry Research Unit at 

the Center for Scientific and Technology Equipment (F9 building), Suranaree 

University of Technology, Nakhon Ratchasima, Thailand. These instruments included 

a Mini-PROTEAN
®
 3 Cell (Bio-Rad, Hercules, CA, USA), a Biochrom Anthos 

Multiread 400 Microplate Reader (Biochrom, Cambridge, UK), a Multi Read 400 
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Microplate Reader (Becthai Bangkok Equipment & Chemical Co., Ltd., Bangkok, 

Thailand), a Shaking incubator (MRC, Holon, Israel), a Thermomixer comfort 

(Eppendorf AG, Hamburg, Germany), a microcentrifuge Denville 26OD (Denville 

Scientific, Metuchen, NJ, USA), a High-speed microentrifuge CF16RX II (Hitachi, 

Tokyo, Japan), a LS-55 fluorescence spectrometer (Perkin-Elmer, Bangkok, Thailand) 

and an ÄKTA purifier system (Amersham Bioscience, Piscataway, NJ, USA). 

 The instruments used for transglycosylation reaction that located at Kinki 

University, Nara, Japan were an FPLC purifier system (GE Healthcare, Munich, 

Germany) and a gel filtration column of TSK-1 GEL G2000PW (7.5 mm × 600 mm) 

connected with a Hitachi L-7000 HPLC system (Hitachi Koki Co., Ltd, Tokyo, 

Japan). 

 

2.4 Recombinant expression of VhChiA and VhGlcNAcase variants  

For recombinant protein expression, the recombinant plasmids were 

transformed into E. coli M15 competent cells. Then, the ampicillin/kanamycin 

resistant colonies were picked from single colonies, and grown overnight at 37 
o
C in 

Luria-Bertani (LB) broth containing 100 μg/mL ampicillin and 25 μg/mL kanamycin 

with shaking at 200 rpm. The freshly inoculated culture was diluted to a ratio of 1:100 

with LB broth, containing the same concentrations of ampicillin and kanamycin, and 

further grown at 37 
o
C until the OD600 reaches 0.4-0.6. To induce protein expression, 

isopropyl thio-β-D-galactoside (IPTG) was added to a final concentration of 0.5 mM, 

and the culture was further incubated overnight at 25 
o
C for VhChiA or 20 

o
C for 

VhGlcNAcase for an additional 18 hr with shaking at 200 rpm. The IPTG-induced 

cells were harvested by centrifugation at 4,500 rpm at 4 
o
C for 30 min, and the cell 
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pellet was kept at -80 
o
C for 60 min or longer until used. The cell pellet was re-

suspended in lysis buffer (1 mg/mL lysozyme, 1 mM phenylmethyl sulfonyl fluoride 

(PMSF), 1% (v/v) Triton X-100, 2 mM MgCl2, DNase I, 5 mM Imidazole and 20 mM 

Tris-HCl buffer, pH 8.0 containing 150 mM NaCl), and further incubated at room 

temperature for 30 min. Cell debris was removed by centrifugation at 12,000 rpm at 4 

o
C for 1 hr, while supernatant containing recombinant proteins was collected for 

purification. 

 

2.5 Purification of VhChiA and VhGlcNAcase variants 

Both VhChiA and VhGlcNAcase were expressed in E. coli M15 cells with 

hexahistidine tag attached at their C-terminal ends to aid purification by affinity 

chromatography. Purification of the recombinant proteins was carried out initially 

using Ni-NTA agarose resin (Qiagen, CA, USA) at 4 
o
C. The supernatant containing 

soluble proteins prepared as described in Section 2.4 was gravitationally applied onto 

a Ni-NTA agarose affinity column (1x5 ml, Qiagen GmbH, Hilden, Germany). The 

Ni-NTA agarose column was equilibrated with the equilibration buffer (20 mM Tris-

HCl, pH 8.0 containing 150 mM NaCl). After sample loading, the column was 

washed thoroughly with the equilibration buffer, followed by the equilibration buffer 

containing 5 mM and 20 mM imidazole, and then eluted with 250 mM imidazole. The 

eluted fractions were concentrated to 5 ml using a Vivaspin-20 membrane 

concentrator (Mr 10,000 cut-off, Vivascience AG, Hannover, Germany). The 

concentrated protein was further purified by gel filtration chromatography on a 

HiPrep 16/60 Sephacryl S-200 HR column connected to an ÄKTA purifier system 

(Amersham Bioscience, NJ, USA). Fractions of 2 mL were collected and analyzed by 

 

 

 

 

 

 

 

 



30 

 

SDS-PAGE on a 12% acrylamide gel for purity verification. The protein-containing 

fractions were pooled and concentrated to a small volume with the same type of the 

Vivaspin membrane concentrator. The final protein concentration was determined by 

BCA protein assay kit (EMD Chemicals, CA, USA).   

The protocol for purification of VhChiA variants for transglycosylation study 

was modified slightly, since this part of research was carried out abroad. After the 

recombinant proteins were highly expressed in E. coli M15 cells as described in 

Section 2.4, the IPTG-induced cells were collected by centrifugation, re-suspended in 

30 ml of 20 mM Tris-HCl, pH 8.0 containing 150 mM NaCl, and then lysed on ice 

using an Ultrasonic disruptor with a 1.5-cm-diameter probe. The supernatant obtained 

after centrifugation at 12,000 rpm for 60 min was applied to a Ni-NTA agarose 

affinity column (Bio-Rad Laboratories, CA, USA), washed thoroughly with 5 mM 

and 20 mM imidazole, and then eluted with 250 mM imidazole prepared in 20 mM 

Tris-HCl, pH 8.0 containing 150 mM NaCl. Then, the eluted fractions were 

concentrated to 5 ml using a Vivaspin-20 membrane concentrator (Mr 10,000 cut-off, 

Vivascience AG, Hannover, Germany). The concentrated proteins were further 

purified by gel filtration chromatography on a HiPrep 16/60 Sephacryl S-100 HR 

column connected to an FPLC purifier system (GE Healthcare, Munich, Germany). 

Fractions of 2 ml were collected and analyzed on SDS-PAGE for purity verification. 

The chitinase-containing fractions were pooled, then dialyzed with 20 mM phosphate 

buffer, pH 7.0, and concentrated to a small volume with the same type of the 

Vivaspin-20 membrane concentrator. A final protein concentration was determined by 

UV absorbance at 280 nm. 
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2.6 Time-course study of transglycosylation reaction by quantitative 

HPLC 

A reaction mixture (100 μl) contained chitooligosaccharide substrate (6.8 mM 

GlcNAc4, 5.5 mM GlcNAc5, or 4.6 mM GlcNAc6) and VhChiA (5 μM of wild-type, 

W570G, or D392N, 16 μM of D313A, or 8 μM of D313N) in 20 mM sodium 

phosphate buffer, pH 7.0. The reaction mixture was incubated at 40 
o
C, and then an 

aliquot of 10 μL was transferred to a new microcentrifuge tube containing 10 μl of 0.1 

M NaOH to terminate the enzymatic reaction at various times of incubation. To 

determine the enzymatic products, the resultant solution was immediately applied 

onto a gel filtration column of TSK-1 GEL G2000PW (7.5 mm × 600 mm) connected 

with a Hitachi L-7000 HPLC system (Hitachi Koki Co., Ltd, Tokyo, Japan). Elution 

was conducted with Milli-Q water at a constant flow rate of 0.3 ml/min. The 

oligosaccharide products in the effluent were monitored by UV absorption at 220 nm. 

Peak area of each GlcNAcn obtained from the elution profile was then converted into 

molar concentration using the standard calibration curve of the GlcNAcn (n=1-6) 

mixture with known concentrations. 

 

2.7 Study of effects of azide salts on VhChiA and VhGlcNAcase 

activity 

2.7.1 Effects of sodium salts on specific hydrolyzing activity of VhChiA 

and VhGlcNAcase 

Sodium derivatives including sodium azide, sodium formate, sodium 

chloride, sodium acetate, and sodium nitrate were used to investigate the effects of 
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several salts on VhChiA and VhGlcNAcase in hydrolyzing pNP-GlcNAc2 and pNP-

GlcNAc glycosides, respectively. The activity towards pNP-glycosides was 

determined in a 96-well microtiter plate. A 100-µl assay mixture contained 500 µM 

pNP-GlcNAc2 or pNP-GlcNAc, 1 µg VhChiA or 3 µg VhGlcNAcase and 2 M sodium 

derivatives in 100 mM potassium acetate, pH 5.5 or 100 mM potassium phosphate, 

pH 7.5. The reaction mixture was incubated at 37 
o
C for 10 min with constant 

agitating, and then the enzymatic reaction was terminated by the addition of 100 µl of 

3 M Na2CO3. The amount of p-nitrophenol (pNP) released was determined 

spectrophotometrically at 405 nm in a Biochrom Anthos Multiread 400 Microplate 

Reader (Biochrom, Cambridge, UK). The molar concentrations of pNP were 

calculated from a calibration curve constructed with pNP standard varying from 0-20 

nmol. One unit of enzyme is defined as 1 nmol of pNP released in 1 min at 37 
o
C. 

The effect of sodium azide on the hydrolytic activity of VhChiA mutants 

D313A and D313N was measured using synthetic glycoside. The activity towards 

pNP-GlcNAc2 was determined in a 96-well microtiter plate. A 100-µl assay mixture 

contained 500 µM pNP-GlcNac2, 1 µg wild-type, 20 µg D313A or 10 µg D313N and 

0, 0.1, 0.2, 0.5, 1.0, 1.5 or 2.0 M sodium azide in 100 mM sodium phosphate buffer, 

pH 7.5. The reaction mixture was incubated at 37 
o
C for 10 min with constant 

agitating, and then the enzymatic reaction was terminated by the addition of 100 µl 3 

M Na2CO3. The amount of pNP released was calculated as described in the previous 

section. 
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2.7.2 Time-courses analysis of sodium azide and potassium azide on 

VhChiA and VhGlcNAcase activities 

The effects of cations on the hydrolytic activities of VhChiA and 

VhGlcNAcase were investigated using pNP-GlcNAc2 and pNP-GlcNAc as substrates, 

respectively. The activity towards pNP-glycosides was determined in a 96-well 

microtiter plate. A 100-µl assay mixture contained 500 µM pNP-GlcNAc2 or pNP-

GlcNAc, 1 µg VhChiA or 3 µg VhGlcNAcase and 0.1, 0.5, 1.0 or 2.0 M sodium azide 

or potassium azide in 100 mM potassium phosphate, pH 7.5. The reaction mixture 

was incubated at 37 
o
C for various times of 0, 2.5, 5, 10, 30, and 60 min with constant 

agitating, and then the enzymatic reaction was terminated by the addition of 100 µL 

of 3 M Na2CO3. The amount of pNP released was calculated as described in Section 

2.7.1. 

 

2.7.3 Study of buffer concentrations on VhChiA and VhGlcNAcase 

activities 

The concentrations of sodium and potassium phosphate buffers, pH 7.5 

were varied to investigate the effects of different buffer concentrations on VhChiA 

and VhGlcNAcase in hydrolyzing pNP-GlcNAc2 and pNP-GlcNAc glycosides, 

respectively. The activity towards pNP-glycosides was determined in a 96-well 

microtiter plate. A 100-µL assay mixture contained 500 µM pNP-GlcNAc2 or pNP-

GlcNAc, 1 µg VhChiA or 3 µg VhGlcNAcase in various concentrations (0.1, 0.5, 1.0, 

and 2.0 M) of sodium or potassium phosphate buffer, pH 7.5. The reaction mixture 

was incubated at 37 
o
C for 10 min with constant agitating, and then the enzymatic 
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reaction was terminated by the addition of 100 µl of 3M Na2CO3. The amount of pNP 

released was calculated as described in Section 2.7.1. 

 

2.8 Time-course analysis of reversible inhibition of sodium azide on 

VhChiA activity 

 A reaction mixture (500 µl) contained 250 µg VhChiA and 2 M sodium azide 

in 20 mM Tris-HCl, pH 8.0, was incubated at 37 
o
C with shaking. After 10 min, the 

enzyme containing sodium azide was dialyzed with 20 mM Tris-HCl, pH 8.0 to 

remove sodium azide, and then the enzymatic activity was determined in a 96-well 

microtiter plate. The reaction mixture contained 500 µM pNP-GlcNAc2 and 1 µg 

VhChiA (after dialysis) in 100 mM sodium phosphate buffer, pH 7.5, was incubated at 

37 
o
C for various times of 0, 2.5, 5, 10, 30 and 60 min with constant agitating, and 

then terminated by the addition of 100 µl 3M Na2CO3. The amount of pNP released 

was estimated as described in Section 2.7.1. To determine whether the inhibition by 

azide ions was reversible or non-reversible, the enzyme containing sodium azide in 

1.5 ml tube was covered with dialysis membrane, and then dialyzed in 500 ml of 20 

mM Tris-HCl, pH 8.0 for 1 hr with 3 times. The enzyme activity after dialysis was 

compared with the enzyme activity before dialysis. 

 

2.9 Study of sodium azide on structural integrity of VhChiA and 

VhGlcNAcase by fluorescence spectrophotometry 

 The purified wild-type enzymes: VhChiA and VhGlcNAcase, were 

investigated with different concentrations of sodium azide and sodium nitrate to see 
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the effects of sodium salts on the structural integrity of both enzymes. A reaction 

mixture (500 µl) contained 2 µg of VhChiA or 4 µg of VhGlcNAcase and 0, 0.2, 0.5, 

1.0, 1.5, or 3.0 M sodium azide or sodium nitrate in 20 mM Tris-HCl, pH 8.0, was 

pre-incubated at 25 
o
C for 1 min with constant agitating, and then the reaction was 

further measured by fluorescence spectrophotometry. For the control reactions, the 

enzymes were heated at 100 
o
C for 10 min or dissolved in 8 M urea in 20 mM Tris-

HCl, pH 8.0 to denature the protein structures. The reactions were measured as 

described in previously. 

The changes in intrinsic tryptophan fluorescence were directly monitored on a 

LS-55 fluorescence spectrometer (Perkin-Elmer, Bangkok, Thailand). The 

measurements were conducted at 25 °C. The excitation wavelength was 295 nm and 

emission intensities were collected over 300-500 nm with the excitation and emission 

slit widths being kept at 5 nm. Each protein spectrum was corrected for the buffer 

spectrum. The fluorescence intensity data were analyzed by a nonlinear regression 

function available in GraphPad Prism version 5.0 (GraphPad Software, California, 

USA). 

The protein spectrum of each reaction was subtracted with the buffer that 

contained each sodium azide or sodium nitrate concentration.   

 

2.10 Steady-state kinetics of inhibition 

2.10.1 Kinetics of sodium azide inhibition on the hydrolytic activity of 

VhChiA 

Inhibitory effects on kinetic properties of VhChiA were investigated 

using pNP-GlcNAc2 as the substrate. A reaction mixture (100 µl) prepared in a 96-
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well microtiter plate and contained 0-800 µM pNP-GlcNAc2, 1 µg VhChiA and 

different concentrations of sodium azide (0, 0.5, 1.0, 1.5 and 2.0 M) in 100 mM 

sodium phosphate buffer, pH 7.5. The reaction mixture was incubated at 37 
o
C for 10 

min with constant agitating, and then terminated by the addition of 100 µl of 3 M 

Na2CO3. The amount of pNP released was estimated as described in Section 2.6.1. 

The kinetic parameters (Vmax, Km and kcat) were evaluated from the experiments 

carried out in triplicate using the nonlinear regression function available in GraphPad 

Prism version 5.0 (GraphPad Software, California, USA). Type of inhibition was 

assessed from Lineweaver-Burk plots (also available in GraphPad Prism version 5.0). 

For Ki and αKi values were determined from Dixon plot of sodium azide 

concentrations against slope of Lineweaver-Burk plots and inverse Vmax apparent of 

Michaelis-Menten plots, respectively. The Ki suggests the affinity between inhibitor 

and free enzyme whereas the αKi suggests the affinity between inhibitor and enzyme-

substrate complex. 

 

2.10.2 Kinetics of sodium azide and sodium nitrate inhibitions on the 

hydrolytic activity of VhGlcNAcase 

Inhibitory effects on kinetic properties of VhGlcNAcase were 

investigated using pNP-GlcNAc as the substrate. A reaction mixture (100 µl) prepared 

in a 96-well microtiter plate and contained 0-800 µM of pNP-GlcNAc, 3 µg of 

VhGlcNAcase and different concentrations of sodium azide or sodium nitrate (0, 0.3, 

0.4, 0.5 and 0.6 M) in 100 mM sodium phosphate buffer, pH 7.5. The reaction 

mixture was incubated at 37 
o
C for 10 min with constant agitating, and then 

terminated by the addition of 100 µl 3 M Na2CO3. The amount of pNP released was 
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estimated as described in Section 2.10.1. The kinetic parameters (Vmax, Km and kcat) 

were obtained from the nonlinear regression function and types of inhibition were 

assessed from Lineweaver-Burk plots available in GraphPad Prism version 5.0 

(GraphPad Software, California, USA). The Ki values of sodium azide and sodium 

nitrate were determined as described in Section 2.7.1. 

 

2.11 Determination of IC50 values 

Dose-response curves representing sodium azide inhibition on the hydrolytic 

activity of VhChiA were determined using pNP-GlcNAc2 as substrate. A reaction 

mixture (100 µL) prepared in a 96-well microtiter plate contained 500 µM pNP-

GlcNAc2, 1 µg VhChiA and varied concentrations of sodium azide with a two-fold 

dilution series to obtain a concentration range of 0-4 M in 100 mM sodium phosphate 

buffer, pH 7.5. The reaction mixture was incubated at 37 
o
C for 10 min with constant 

agitating, and then terminated by the addition of 100 µl 3 M Na2CO3. The enzyme 

activity was estimated from the liberated pNP, which is quantitated as described in 

Section 2.6.1. The IC50 value of sodium azide was obtained from the plot of 

logarithmic values of sodium azide concentrations versus the ratio of the initial 

velocity of the enzyme in the presence of sodium azide at concentration and the initial 

velocity of the enzyme in the absence of sodium azide in GraphPad Prism version 5.0. 

(GraphPad Software, California, USA).  

Dose-response curves representing sodium azide and sodium nitrate 

inhibitions on the hydrolytic activity of VhGlcNAcase were carried out using pNP-

GlcNAc as substrate. The reaction mixture (100 µl) prepared in a 96-well microtiter 

plate contained 500 µM pNP-GlcNAc, 3 µg VhGlcNAcase and varied concentrations 
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of sodium azide or sodium nitrate with a two-fold dilution series to obtain a 

concentration range of 0-4 M in 100 mM sodium phosphate buffer, pH 7.5. The 

reaction mixture was incubated at 37 
o
C for 10 min with constant agitating, and then 

terminated by the addition of 100 µl 3 M Na2CO3. The amount of pNP released was 

estimated as described in Section 2.7.1 and the IC50 values of sodium azide and 

sodium nitrate were obtained as described in previously. 

 

2.12 Time-course analysis of the hydrolytic products of VhChiA and 

VhGlcNAcase by TLC (thin-layer chromatography) 

The inhibition of sodium azide on hydrolysis of GlcNAc6 by VhChiA was 

carried out in a 20 µL reaction mixture that contained 2.5 mM GlcNAc6, 1 µg 

VhChiA and 2 M sodium azide in 100 mM phosphate buffer, pH 7.5. The reaction 

mixture was incubated at 37 
o
C for various times of 2, 5, 10, 15, 30, 60 and 180 min 

before termination by boiling at 100 
o
C for 5 min. For product analysis, each reaction 

mixture was applied five times (1 μl each) to a TCL Silica gel 60 F254 Aluminum 

sheet (10 cm x 10 cm) (Merck, Berlin, Germany), and then chromatographed three 

times (1 h each) in a mobile phase containing n-butanol: methanol: 28% ammonia 

solution: H2O (10:8:4:2) (v/v), followed by spraying with aniline-diphenylamine 

reagent and baking at 180 
o
C for 3 min. The inhibitions of sodium azide and sodium 

nitrate on hydrolysis of GlcNAc2 and GlcNAc4 by VhGlcNAcase were further studied 

under the same condition with varied time points of 2, 5, 10, 15, 30, 60, 180 min and 

18 h. 

For time-course of colloidal chitin hydrolysis, the reaction mixture (400 µL) 

contained 5% (w/v) colloidal chitin, 10 µg VhChiA and 2 M sodium azide in 100 mM 
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phosphate buffer, pH 7.5. After incubation at 37 
o
C with shaking at 350 rpm for 

variable times of 2, 5, 10, 15, 30, 60, 180 min and 18 h, the reaction mixture was 

centrifuged to precipitate the remaining chitin. Then, the degradation products were 

analyzed by TLC as described for GlcNAc2-6 hydrolysis. 
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CHAPTER III 

RESULTS  

 

3.1 Mutation strategies for obtaining chitooligosaccharides with 

longer chains by transglycosylation reaction of a family GH18 

chitinase A from Vibrio harveyi 

3.1.1 Mutation targets 

    To enhance the transglycosylation (TG) activity, two strategies were 

proposed: (1) enhancing the acceptor binding ability (Umemoto, Ohnuma, Mizuhara, 

Sato, Skriver, and Fukamizo, 2013) and (2) suppressing the attack of a nucleophilic 

water molecule to the transition state (Hurtado-Guerrero, Schuttelkopf, Mouyna, 

Ibrahim, Shepherd, Fontaine, Latge, and van Aalten, 2009; Zakariassen et al., 2011). 

Since the acceptor binding site (+1 and +2) of wild type enzymes are evolutionarily 

optimized for efficiently accepting their natural substrates, the mutations introduced 

into the acceptor binding site usually reduce the acceptor binding ability. Thus, 

mutations for enhancing the binding ability are quite difficult. In the former studies, 

mutations were introduced into the glycon-binding site (-2 and -1) to suppress the 

sugar binding ability of the negatively-numbered subsites. The suppression of the 

sugar-binding to the negatively numbered subsites may relatively enhance the binding 

ability toward the positively-numbered subsites (acceptor-binding site) (Aronson et

 

 

 

 

 

 

 

 



41 

 

 

al., 2006; Fukamizo, Goto, Torikata, and Araki, 1989). In fact, mutation of Trp168 

(subsite -3) of Serratia marcescens chitinase A enhanced the TG activity (Aronson et 

al., 2006). Here, we tried to mutate Trp570, which is responsible for the sugar-residue 

binding at subsites -1 and -2 (Figure 3.1.1) to glycine (Songsiriritthigul et al., 2008; 

Suginta et al., 2007). Asp392, which is supposed to be responsible for the acceptor-

binding at subsites +1 and +2 (Figure 3.1.1), was also mutated to asparagine, which 

may facilitate hydrogen binding interaction with the sugar residue (Songsiriritthigul et 

al., 2008). In addition to these mutations, we also mutated the middle aspartic acid 

residue (Asp313) in the DxDxE catalytic motif (Figure 3.1.1), because this mutation 

was reported to significantly enhance the TG activity of S. marcescens chitinases 

(Martinez et al., 2012; Zakariassen et al., 2011). 
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Figure 3.1.1 Superimposition of the active site structure of ligand-free wild-type 

VhChiA and VhChiA E315M mutant complexed with GlcNAc6 (only GlcNAc6 shown 

as green; PDB code, 3B9A). GlcNAc-binding subsites are indicated by integers based 

on the nomenclature suggested by Davies et al., 1997 (Davies, Wilson, and Henrissat, 

1997). The amino acid residues presented as the stick model are important for 

chitooligosaccharide binding. The structure of ligand-free wild-type VhChiA was 

obtained from the PDB database (PDB code, 3B8S) (Songsiriritthigul et al., 2008) 

and displayed by the program PyMol (http://www.pymol.org/). The arrows indicate 

the mutation targets. 
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3.1.2 Time-courses of chitooligosaccharide degradation catalyzed by wild-

type VhChiA 

We first evaluated TG activity of the wild-type VhChiA (WT). 

Incubation of WT with the GlcNAc4 substrate produced GlcNAc2 as the major 

hydrolytic product after 3 h of reaction (Figure 3.1.2A). A small but significant 

amount of GlcNAc3 was also produced after 3 h, but no GlcNAc was detected at all. 

From the GlcNAc5 substrate, GlcNAc2 and GlcNAc3 were formed as the major 

hydrolytic products, and a trivial amount of GlcNAc4 was also formed at 2 h (Figure 

3.1.2B). The GlcNAc4 formation from GlcNAc5 was not accompanied by GlcNAc 

formation. The GlcNAc3 product from GlcNAc4 and the GlcNAc4 product from 

GlcNAc5 were not derived from a simple hydrolysis of the initial substrates. Aronson 

et al., 2006 reported a similar hydrolytic profile obtained by Serratia marcescens 

chitinase A. Plant class V chitinase from cycad also exhibited a similar reaction 

profile (Taira, Fujiwara, Dennhart, Hayashi, Onaga, Ohnuma, Letzel, Sakuda, and 

Fukamizo, 2010). Both reports explained that GlcNAc3 is produced from initial 

substrate GlcNAc4 through the TG product GlcNAc6, as shown in Figure 3.1.3 

GlcNAc4 was first hydrolyzed into GlcNAc2 + GlcNAc2 (Step I). After the latter 

GlcNAc2 is released from the enzyme, the acceptor GlcNAc4 binds to the acceptor-

binding site (the positively-numbered subsites) (Step IIb), and then attacks the 

oxazolinium ion intermediate at subsite -1, producing GlcNAc6 as the TG product 

(Step III). The GlcNAc6 produced is relocated to the more stable binding mode (-3, -

2, -1, +1, +2) (Step IV), and hydrolyzed into GlcNAc3 + GlcNAc3 (Step V). In the 

case of the initial substrate GlcNAc5, WT produced GlcNAc2 and GlcNAc3 and a 

small amount of GlcNAc4 at 2 hr. Since GlcNAc5 is assumed to act as an acceptor 
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molecule as well as a substrate in the mechanism shown in Figure 3.1.3, GlcNAc4 is 

most likely produced through the TG product GlcNAc7. Thus, we concluded that the 

WT enzyme has a very low TG activity. From the initial substrate GlcNAc6, WT 

produced GlcNAc2, GlcNAc3, and GlcNAc4 (Figure 3.1.2C). No evidence for TG 

reaction was obtained from the reaction toward GlcNAc6. The result suggested that 

WT not only catalyzes the hydrolysis of the chitooligosaccharide substrates, but also 

catalyzes TG reaction much less efficiently with the substrates GlcNAc4 and 

GlcNAc5. 
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Figure 3.1.2 Reaction time courses of the wild-type and mutated VhChiA toward 

chitooligosaccharide substrates GlcNAc4-6. The wild-type VhChiA (5 μM) was 

incubated with 6.8 mM GlcNAc4 (A), 5.5 mM GlcNAc5 (B), or 4.6 mM GlcNAc6 (C), 

W570G VhChiA (5 μM) was incubated with 6.8 mM GlcNAc4 (D), 5.5 mM GlcNAc5 

(E), or 4.6 mM GlcNAc6 (F). D392N VhChiA (5 μM) was incubated with 6.8 mM 

GlcNAc4 (G), 5.5 mM GlcNAc5 (H), or 4.6 mM GlcNAc6 (I). Individual reactions 

were conducted in 20 mM phosphate buffer, pH 7.0 at 40 
o
C. The products were 

analyzed by gel-filtration HPLC at various times of incubation. Numbers represent the 

degree of polymerization. Symbols are open squares, GlcNAc2; black squares, 

GlcNAc3; open circles, GlcNAc4; black triangles, GlcNAc5; o, GlcNAc6. 
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Figure 3.1.3 The reaction scheme for hydrolysis/TG catalyzed by VhChiA with 

GlcNAc4 substrate. Step I: Bond cleavage; GlcNAc4 binds to the −2 to +2 subsites 

and the glycosidic linkage located between the −1 and +1 subsites is cleaved by the 

action of Glu315 to form GlcNAc2 with an oxazolinium ion intermediate at subsites 

−2 and –1 and the intact GlcNAc2 product at subsites +1 and +2, which will diffuse 

away. Step IIa: Hydration; a water molecule attacks the C1 carbon of the oxazolinium 

ion intermediate to release the product of GlcNAc2. Steps IIb and III: Acceptor 

binding and formation of glycosidic linkage; an incoming GlcNAc4 attacks the 

intermediate instead of a water molecule to form a new glycosidic linkage, producing 

the TG product of GlcNAc6. Step IV: Shifting the binding mode of GlcNAc6 to 

subsites -3 to +2. Step V: the newly formed GlcNAc6 is then hydrolyzed to form two 
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molecules of GlcNAc3. GlcNAc residues are represented by open circles, an incoming 

of GlcNAc4 molecule is represented by grey circles, the oxazolinium ion intermediate 

is represented by positive signs in open circles and the binding subsites of the enzyme 

given as integers based on the nomenclature suggested by Davies et al., 1997. 

Formation of the TG products by the mutants VhChiA D313A and D313N is 

represented from Step I to Step III, while the additional steps (Step IV and Step V) 

should be introduced for the reactions catalyzed by the mutants W570G and D392N. 

 

3.1.3 Time courses of chitooligosaccharide degradation catalyzed by the 

W570G mutant 

The hydrolytic activities of mutant W570G toward the substrates 

GlcNAc4-6 were much less than those of WT (Figures 3.1.2D, 3.1.2E, and 3.1.2F), and 

the results were consistent with the specific activity data reported previously (Suginta 

et al., 2007). However, a considerable amount of GlcNAc3 was produced in addition 

to GlcNAc2 from the initial substrate GlcNAc4 (Figure 3.1.2D). The GlcNAc3 

produced was clearly derived from the mechanism shown in Figure 3.1.3, because no 

GlcNAc was found in the products. GlcNAc5, which may be derived from the TG 

reaction between the donor GlcNAc2 and the acceptor GlcNAc3, was also detected in 

the early stage of the reaction. The productions of GlcNAc3 and GlcNAc5 indicate that 

TG activity was significantly enhanced in W570G. The time-course profiles of mutant 

W570G with GlcNAc5 substrate (Figure 3.1.2E) showed that GlcNAc2 and GlcNAc3 

were the major hydrolytic products. GlcNAc4 was also produced without formation of 

GlcNAc, and the maximum level of GlcNAc4 was approximately 2 mM at 16 h of 

incubation. GlcNAc4 was then gradually degraded to GlcNAc2, and only 0.5 mM 
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remained at 48 h. The GlcNAc4 product may be derived from the mechanism shown 

in Figure 3.1.3, where the substrate and the acceptor molecules should be replaced 

with GlcNAc5. Mutant W570G hydrolyzed GlcNAc6 substrate to GlcNAc2, along 

with GlcNAc3 and GlcNAc4 (Figure 3.1.2F). GlcNAc5 was also detected, but GlcNAc 

was not. Thus, the GlcNAc5 product may be produced through the TG product 

GlcNAc8 as shown in Figure 3.1.3, where the substrate and the acceptor molecules 

should be replaced with GlcNAc6. The results obtained from this set of experiments 

suggested that mutation of Trp570 located in between subsites -2 and -1 strongly 

enhanced TG activity, but the TG products obtained from the mutant W570G were 

only temporarily formed, and then further degraded.  

 

3.1.4 Time-courses of chitooligosaccharide degradation catalyzed by the 

D392N mutant 

 The D392N mutant produced GlcNAc2 as a major product from 

GlcNAc4 substrate, while a small amount of GlcNAc3 was produced as shown in 

Figure 3.1.2G, probably through the mechanism shown in Figure 3.1.3. The GlcNAc3 

production was slightly enhanced in the D392N mutant, when compared with that in 

WT (Figure 3.1.2A). The D392N mutant hydrolyzed GlcNAc5 substrate, yielding 

GlcNAc2 and GlcNAc3 as the major end products (Figure 3.1.2H). The enhanced 

formation of GlcNAc4 was found in the reaction catalyzed by D392N. Since the 

GlcNAc4 formation was not accompanied by GlcNAc formation, the tetramer was 

most likely derived from the mechanism shown in Figure 3.1.3, where the substrate 

and the acceptor molecules should be replaced with GlcNAc5. With GlcNAc6 

substrate, GlcNAc2 and GlcNAc4 were the major hydrolytic products (Figure 3.1.2I), 
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while no other products was detected. These results suggested that mutation of 

Asp392, which is involved in sugar residue binding at subsites +1 and +2 (Figure 

3.1.1), to asparagine enhanced the TG activity of VhChiA with the substrates 

GlcNAc4 and GlcNAc5, but not with the substrate GlcNAc6.  

 

3.1.5 Mutation of Asp313 is the most effective for obtaining 

chitooligosaccharides with longer chains 

 Asp313 is an essential residue located at the middle of the catalytic 

DxDxE motif (Asp311-x-Asp313-x-Glu315), and plays multiple roles in the catalytic 

cycle of chitin degradation by VhChiA (Suginta et al., 2012). Mutation of Asp313 to 

alanine (D313A) abolished the hydrolytic activity of the enzyme almost completely, 

while mutation of Asp313 to asparagine (D313N) retained slight hydrolytic activity. 

HPLC profiles of the products from incubation of the mutant D313A or D313N with 

GlcNAc4 substrate indicated that a significant amount of GlcNAc6 as the TG product 

was generated in addition to the major hydrolytic product GlcNAc2 after 120 h of 

incubation, as shown in Figure 3.1.4B and 3.1.4C. In contrast, no GlcNAc6 was found 

in the chromatogram for WT (Figure 3.1.4A). In the reactions catalyzed by D313A 

and D313N, the TG product GlcNAc6 was not hydrolyzed into GlcNAc3. Similarly, 

when GlcNAc6 was incubated with the Asp313 mutants, a significant amount of 

GlcNAc8, which was produced by the TG reaction between the donor GlcNAc2 and 

the acceptor GlcNAc6, was detected by HPLC (Figure 3.1.5B and 3.1.5C). WT did 

not produce GlcNAc8 at all (Figure 3.1.5A). The chain length of the TG product, 

GlcNAc8, was confirmed based on the theoretical retention time obtained by the 

simulation of the gel-filtration profile (Fukamizo et al., 1989). The donor for the TG 
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reaction appears to be GlcNAc2, because VhChiA hydrolyzes most frequently the 

second β-1,4-glycosidic linkage from the non-reducing end of chitooligosaccharide 

substrates (Suginta, Pantoom, and Prinz, 2009). Thus, from the substrate GlcNAc5, the 

Asp313 mutants may produce GlcNAc7 by the TG reaction between the donor 

GlcNAc2 and the acceptor GlcNAc5.  
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Figure 3.1.4 HPLC profiles showing the reaction of the wild type (A) and the mutants 

D313A (B) and D313N (C) VhChiA. A reaction mixture containing 6.8 mM GlcNAc4 

and the enzyme (5 μM wild type, 16 μM D313A, or 8 μM D313N) in 20 mM 

phosphate buffer, pH 7.0, was incubated at various times at 40 
o
C. The reaction 

products were analyzed by gel-filtration HPLC. The TG product GlcNAc6 is 

designated by arrow. 
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Figure 3.1.5 HPLC profiles showing the reaction of the wild type (A) and the mutants 

D313A (B) and D313N (C) VhChiA. A reaction mixture containing 4.6 mM GlcNAc6 

and the enzyme (5 μM wild type, 16 μM D313A, or 8 μM D313N) in 20 mM 

phosphate buffer, pH 7.0, was incubated at various times at 40 
o
C. The reaction 

products were analyzed by gel-filtration HPLC. The TG product GlcNAc8 is indicated 

by arrow. 
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3.2 Kinetics of inhibition of family-18 chitinase A from Vibrio harveyi 

by sodium azide 

3.2.1 Effects of sodium salts on the hydrolytic activity of wild-type 

VhChiA 

Sodium salts of azide, formate, acetate, nitrate, and chloride (Figure 

3.2.1) were used to investigate the effects of sodium salts on the enzyme activity of 

WT VhChiA against pNP-GlcNAc2 substrate at pH 5.5 and 7.5. The reactions were 

monitored at 37 
o
C for 10 min. All sodium salts significantly decreased the specific 

activity of the enzyme, with the inhibitory effects being greater when the reaction was 

set at pH 7.5, compared to pH 5.5. At 5.5, sodium formate showed the greatest 

inhibition on the enzyme activity, while sodium azide the greatest inhibition at 7.5. 

Effects of sodium salts on chitinase activity are summarized in Table 3.2.1. For 

further study, we chose sodium azide at pH 7.5 to study the kinetics of inhibition on 

WT VhChiA, since sodium azide showed the most strong inhibition effect. 
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Figure 3.2.1 Chemical structures of sodium azide, sodium formate, sodium acetate, 

sodium nitrate, and sodium chloride. 
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Table 3.2.1 Specific activity of wild-type VhChiA with 2 M sodium salts against 

pNP-GlcNAc2 substrate 

 

Sodium derivatives 

Specific activity (nmol/min/µg) 

pH 5.5 pH 7.5 

No sodium salts 1.60 + 0.03 (100) 1.60 + 0.02 (100) 

NaN3 1.40 + 0.02 (88) 0.50 + 0.02 (31) 

HCOONa 0.90 + 0.03 (56) 0.80 + 0.02 (50) 

CH3COONa 1.70 + 0.06 (106) 1.10 + 0.04 (69) 

NaCl 1.30 + 0.08 (81) 1.00 + 0.06 (63) 

NaNO3 2.40 + 0.09 (150) 1.30 + 0.02 (81) 

 

 

3.2.2 Effects of sodium and potassium cations on the hydrolytic activity of 

wild-type VhChiA 

            To investigate the effects of cations (Na
+
 and K

+
) of azide compounds on 

the hydrolytic activity of WT VhChiA, time courses of pNP-GlcNAc2 hydrolysis with 

2 M sodium azide, 2 M potassium azide, and without the azide compounds were 

performed in 100 mM potassium phosphate buffer, pH 7.5 (Figure 3.2.2). The 

hydrolytic activity of WT VhChiA was shown to be significantly decreased in the 

reactions, containing sodium azide and potassium azide, compared to the reaction 

without azide compounds. Potassium ion was shown to have slightly stronger 

inhibitory effect than sodium ion at 2 M. 
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Figure 3.2.2 Time courses of wild-type VhChiA with and without sodium azide and 

potassium azide were investigated using pNP-GlcNAc2 substrate. A reaction mixture 

(100 μl), containing 1 µg of VhChiA and 500 µM of pNP-GlcNAc2 without sodium 

cation (filled squares), with 2 M sodium azide (open squares), or with 2 M potassium 

azide (filled circles) and 100 mM potassium phosphate buffer, pH 7.5, was incubated 

at 37 
o
C for 0, 2.5, 5, 10, 30, and 60 min. The reaction was terminated with 100 μl of 

3 M Na2CO3. Release of pNP, monitored at A405, was converted to molar quantities 

using a calibration curve of pNP (0-20 nmol).  
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3.2.3 Effects of sodium and potassium phosphate buffer, pH 7.5 on the 

hydrolytic activity of wild-type VhChiA 

From the results of the previous section suggested that sodium and 

potassium cations inhibited the enzyme activity of WT VhChiA. In this experiment, 

we investigated the effects of rate of sodium and potassium phosphate buffer, pH 7.5 

on the WT VhChiA activity against pNP-GlcNAc2 substrate. The reactions were 

measured at 37 
o
C for 10 min. The specific activity of the enzyme in sodium 

phosphate buffer was slightly higher than that in potassium phosphate buffer (Table 

3.2.2). For the buffer concentrations, the reactions in 2 M phosphate buffer displayed 

lower specific activity of the enzyme than 0.1, 0.5, and 1.0 M phosphate buffer 

whereas the reactions in 0.1 M sodium and potassium phosphate buffers showed the 

highest activity of WT VhChiA (Table 3.2.2). The results suggested that 0.1 M 

sodium and potassium phosphate buffers, pH 7.5 showed the maximum activity. So, 

we chose this concentration to study the kinetics of inhibition on WT VhChiA.  
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Table 3.2.2 Specific activity of wild-type VhChiA against pNP-GlcNAc2 substrate in 

various concentrations of sodium and potassium phosphate buffers, pH 7.5. 

 

 

Concentration of 

phosphate buffer, pH 7.5 

(M) 

Specific activity (nmol/min/µg) 

Sodium phosphate 

buffer, pH 7.5 

Potassium phosphate 

buffer, pH 7.5 

0.1 1.80 + 0.04 1.60 + 0.10  

0.5 1.60 + 0.10  1.40 + 0.10  

1.0 1.50 + 0.04  1.40 + 0.02  

2.0 0.90 + 0.04  0.60 + 0.10 

 

 

3.2.4 Effect of sodium azide on reversible inhibition of wild-type VhChiA  

The effect of sodium azide on reversible inhibition of WT VhChiA was 

evaluated. After 2 M sodium azide was added to the reaction mixture, the remaining 

VhChiA activity was determined before dialysis and after dialysis. The results as 

shown in Figure 3.2.3, the chitinase activity was higher after dialysis than that before 

dialysis. In contrast, the enzyme without sodium azide that used as a control showed 

that the pNP product obtained from pNP-GlcNAc2 degradation by VhChiA before and 

after dialysis were similar. The results suggested that dialysis did not cause a loss of 

the chitinase activity and sodium azide acted as reversible inhibitor (Figure 3.2.3). 
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Figure 3.2.3 Reversible inhibition of wild-type VhChiA against pNP-GlcNAc2 by 

sodium azide. Reaction time-courses of VhChiA without sodium azide before dialysis 

(black squares) and after dialysis (open squares) and VhChiA with 2 M sodium azide 

before dialysis (black circles) and after dialysis (open circles), a reaction mixture 

contained 1 µg VhChiA with or without sodium azide before and after dialysis, 500 

μM pNP-GlcNAc2 in 100 mM sodium phosphate buffer, pH 7.5. The initial rates (v0) 

of the reactions were shown in an inset. 

 

3.2.5 Effect of sodium azide on molecular structure of wild-type VhChiA 

To investigate the effect of sodium azide on the molecular structure of 

WT VhChiA, fluorescence spectra were obtained in the presence of sodium azide, and 

the changes in the fluorescence intensity, as well as the shift in the maximum 

emission wavelength were monitored. The emission spectra were collected from 300-
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500 nm upon excitation at 295 nm. The fluorescence intensity of VhChiA decreased 

with increasing concentrations of sodium azide from 0 to 3 M but no shift in the 

maximum emission wavelength were observed (Figure 3.2.4). On the other hand, the 

enzymes that were denatured by 8 M urea and heat at 100 
o
C for 10 min showed 

increases in fluorescence intensity, as compared to that of the non-denatured enzyme 

(Figure 3.2.4). The results suggested that sodium azide has effect to partially unfold 

the secondaly structure of VhChiA. 

 

         

 

Figure 3.2.4 Effect of sodium azide on structural integrity of wild-type VhChiA. The 

VhChiA was investigated using fluorescence spectroscopy. The emission spectra were 

collected from 300-500 nm upon excitation at 295 nm.  
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3.2.6 Kinetics of inhibition of sodium azide on the hydrolytic activity of 

wild-type VhChiA 

Kinetic experiments were carried out to define the inhibition type. pNP-

GlcNAc2 hydrolysis with or without 2 M sodium azide (Figure 3.2.5A) were 

performed to determine the initial rates (v0) of WT VhChiA within the incubation 

period of 10 min. Figure 3.2.5B presents the non-linear (Michaelis-Menten) plots 

between v0 and pNP-GlcNAc2 concentrations. Different curve fits were obtained in 

various concentrations of sodium azide (0, 0.5, 1.0, 1.5 and 2.0 M), yielding the 

kinetic parameters, the apparant values of kcat, Km, and kcat/Km as presented in Table 

3.2.3. The kinetic parameters were obtained by data-fitting based on the Michaelis-

Menten equation or the substrate inhibition equation (Equation 3.2.1). 

 

                                                                                       (3.2.1)                                      

 

Where I is sodium azide and S is pNP-GlcNAc2 substrate 

 

 The catalytic rate constant (kcat) of the enzyme decreased with increase 

in the concentrations of sodium azide (2.4, 1.9, 1.2, 0.8 and 0.6 s
-1

 kcat at 0, 0.5, 1.0, 

1.5 and 2.0 M sodium azide, respectively). Likewise, the apparent Km was found to be 

decrease from 196 to 83 μM, with increase in the concentration of sodium azide 

(Table 3.2.3). kcat and Km obtained from the data agrees with the mixed-type 

inhibition. This appears later. 

  

𝑣0 = 
𝑉max S 

𝐾m  1+ 
 I 
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Figure 3.2.5 Kinetic properties of wild-type VhChiA were investigated using pNP-

GlcNAc2 substrate. 

(A) Time-course of pNP-GlcNAc2 hydrolysis by VhChiA. A reaction mixture (100 

μl), containing 1 µg VhChiA and 500 µM pNP-GlcNAc2 without sodium azide (filled 

squares) or with 2 M sodium azide (open squares) in 100 mM sodium phosphate 

buffer, pH 7.5, was incubated at 0, 2.5, 5, 10, 30 and 60 min at 37 
o
C, and then the 

reaction was terminated with 100 μl of 3 M Na2CO3. Release of pNP, monitored at 

A405, was converted to molar quantities using a calibration curve of pNP (0-20 nmol). 

The linear regression of the reactions was shown in an inset. (B) The Michaelis-

Menten plots between v0 and varied concentrations of pNP-GlcNAc2 (0-800 µM) and 

sodium azide 0 M (filled squares), 0.5 M (open squares), 1 M (filled circles), 1.5 M 

(open circles), and 2 M (filled triangles). 
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Table 3.2.3 Effects of sodium azide on the kinetic parameters of wild-type VhChiA.  

 

[NaN3] (M) Km (µM) kcat (s
-1

) kcat/Km (s
-1

 mM
-1

) 

0 196 + 25  2.40 + 0.08  12.50 + 0.30  

0.5 164 + 19  1.90 + 0.08  11.70 + 0.10  

1.0 112 + 15  1.20 + 0.05  11.20 + 0.70  

1.5 92 + 13  0.80 + 0.02  9.20 + 0.03 

2.0 83 + 12  0.60 + 0.02  6.80 + 0.20  

 

 

To further confirm the inhibition type, a linear transformation of the non-

linear progression curves (shown in Figure 3.2.5B) was performed using equation 

3.2.2.  

 

                                                                                             (3.2.2) 

 

Where I is sodium azide and S is pNP-GlcNAc2 substrate 

 

Figure 3.2.6A is the Lineweaver-Burk plot between 1/v0 versus 1/[S]. As 

seen, all the double-reciprocal lines produced at different concentrations of sodium 

azide are found to intersect below the x and y axes, at negative values of 1/[S] and 

1/v0. This pattern of lines indicated a typical mixed-type inhibition that sodium azide 

can bind reversibly to either free E or ES complex or both free E and ES complex. To 

obtain the values of Ki and αKi, dixon plots (Copeland, 2000) were constructed 

1
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(Figures 3.2.6B and C). Figure 3.2.6B is the dixon plot of the slope of the primary 

plot (from the Lineweaver-Burk plot shown in Figure 3.2.6A) against sodium azide 

concentrations, while Figure 3.2.6C is the plot of 1/Vmax
app

 at different sodium azide 

concentrations. The data showed that sodium azide inhibited the enzyme, with Ki for 

the EI complex of 1.50 ± 0.10 M (Figure 3.2.6B) and αKi for the ESI complex of 0.40 

± 0.02 M (Figure 3.2.6C). The results suggested that sodium azide reacted more 

efficiently on the ES complex than the free E. 
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Figure 3.2.6 Determinaton of the inhibition constant for sodium azide acting on the 

wild-type VhChiA, using the linear transformation of the MM plot shown in Figure 

3.2.5B. (A), sodium azide concentrations of 0, 0.5, 1.0, 1.5 and 2.0 M are shown as 

filled squares, open squares, filled circles, open circles, and filled triangles, 

respectively. Ki and αKi values were derived from Dixon plots (B and C). 

 

3.2.7 Dose-response of wild-type VhChiA on inhibition by sodium azide 

The inhibitory effect of sodium azide on WT VhChiA activity was 

further examined. IC50 value of the enzyme was determined from the dose-response 

curve plotted between the fractional activity (vi/v0) versus a logarithmic scale of 

sodium azide concentrations (Figure 3.2.7). The plots showed sodium azide inhibitor 
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against WT VhChiA with IC50 of 0.40 + 0.02 M. To confirm the accuracy of the Ki 

value from Dixon plot (Ki = 1.50 ± 0.10 M), the IC50 value was used to estimate the Ki 

using Equation 3.2.3 (Cheng and Prusoff, 1973).  

 

                                                            (3.2.3) 

 

Where S is pNP-GlcNAc2 substrate 

 

The data showed Ki of sodium azide on the enzyme activity is 1.40 ± 

0.07 M. The results suggest that the Ki values estimated from two methods are similar 

to each other. 

 

 

 

IC50 = 
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Figure 3.2.7 Dose-response plot of wild-type VhChiA fractional activity as a function 

of various sodium azide concentrations. The value of IC50 for sodium azide was 

determined from this graph. The mathematical equation used of logarithmic scale of 

sodium azide concentrations fit is y = (ymax-ymin/1+[I]/IC50)+ymin; where y is the 

fractional activity of the enzyme in the presence of inhibitor at concentration [I], ymax 

is the maximum value of y that is observed at zero inhibitor concentration (for 

fraction activity, this is 1.0), and ymin is the minimum value of y that can be obtained 

at high inhibitor concentration (Copeland, 2000). A reaction mixture (100 µl), 

containing 500 µM of pNP-GlcNAc2, 1 µg of VhChiA and varied concentrations of 

sodium azide from 0-4 M in 100 mM sodium phosphate buffer, pH 7.5, was incubated 

at 37 
o
C for 10 min, and then the reaction was terminated as described elsewhere. 
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3.2.8 TLC analysis of the hydrolytic products of sodium azide inhibition 

on wild-type VhChiA 

To confirm that sodium azide inhibited the hydrolytic activity of WT 

VhChiA, time courses of colloidal chitin hydrolysis were performed and the 

hydrolytic products analyzed on TLC. The hydrolysis of colloidal chitin produced 

GlcNAc1-3 as the hydrolytic products (Figure 3.2.8A). When 2 M sodium azide was 

added in the same reaction, faint spots of the hydrolytic products (GlcNAc2 and 

GlcNAc3) were observed at longer incubation time (18 hr) (Figure 3.2.8B). Product 

analysis by TLC suggested that sodium azide significantly inhibited the enzyme 

activity of WT VhChiA with the natural substrates. 
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Figure 3.2.8 TLC analysis of colloidal chitin hydrolysis of wild-type VhChiA with 2 

M sodium azide. Time-course of colloidal chitin hydrolysis by WT VhChiA, a 

reaction mixture (400 μl), containing 10 μg of VhChiA and 5% (w/v) colloidal chitin 

without sodium azide (A) or with 2 M sodium azide (B) in 100 mM phosphate buffer, 

pH 7.5, was incubated at various times at 37 
o
C, and then analyzed by TLC. Sugar 

products were detected with aniline-diphenylamine reagent. Lanes: std, a standard 

mix of GlcNAc1-6; 1-8, incubation at 2, 5, 10, 15, 30, 60,180 and 1018 min, 

respectively; and C, substrate control. 

 

3.2.9 Effect of sodium azide on the enzyme activity of wild-type and 

D313A and D313N mutants VhChiA 

Sodium azide has been reported to act as an alternative nucleophile in 

the enzyme-catalyzed hydrolysis of various glycoside hydrolases (Cobucci-Ponzano 

et al., 2003; Fujita et al., 2007; MacLeod et al., 1994; Paal et al., 2004; Shallom et al., 

2002; Vallmitjana et al., 1998; Viladot et al., 1998; Williams et al., 2002). Since we 

know that sodium azide presumably acts as a chemical rescue for the enzyme. Here, 

we set out the experiments to prove this hypothesis. The results showed that the 
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specific activity of WT and mutants D313A and D313N was decreased when sodium 

azide (0-2 M) was added in the reaction mixture (Figure 3.2.9). However, when 2 M 

sodium azide was added, the activity loss against pNP-GlcNAc2 substrate was most 

intensive in WT followed by the mutants D313N and D313A, respectively.  

 

 

 

Figure 3.2.9 Specific activity of wild-type and mutants D313A and D313N VhChiA 

with various concentrations of sodium azide against pNP-GlcNAc2. Sodium azide (0-

2 M) was used to investigate the effect of sodium azide on the wild-type and both 

mutants D313A and D313N in hydrolyzing pNP-GlcNAc2 in 100 mM sodium 

phosphate buffer, pH 7.5. The chitinase assay was carried out as described previously. 
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3.3 Kinetics of inhibition of sodium salts on a family-20 β-N-acetyl-

glucosaminidase from Vibrio harveyi  

3.3.1 Effects of sodium salts on the hydrolytic activity of wild-type 

VhGlcNAcase 

Sodium salts including sodium azide, sodium formate, sodium acetate, 

sodium nitrate and sodium chloride (Figure 3.2.1) were used to investigate the 

inhibitory activity toward the hydrolytic activity of WT VhGlcNAcase against pNP-

GlcNAc substrate at pH 5.5 and 7.5. The results showed that the enzyme activity was 

strongly inhibited by sodium azide and sodium nitrate at pH 7.5, while sodium 

formate, sodium acetate and sodium chloride decreased the enzyme activity with 

different values (Table 3.3.1). In addition, we found that the reaction mixtures with or 

without sodium salts at pH 5.5 showed the lower enzyme activity, since this pH value 

was not optimal for GlcNAcase acitivty. Therefore, we chose sodium azide and 

sodium nitrate for further kinetic studies of the inhibition of this enzyme at pH 7.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



72 

 

 

Table 3.3.1 Specific activity of wild-type VhGlcNAcase against pNP-GlcNAc in the 

presence of 2 M sodium derivatives. 

 

Sodium derivatives 

Specific activity (nmol/min/µg) 

pH 5.5 pH 7.5 

No sodium derivative 0.040 + 0.004 (100) 
a
 0.400 + 0.002 (100) 

NaN3 0.020 + 0.002 (50) 0.020 + 0.001 (5) 

HCOONa 0.020 + 0.001 (50) 0.200 + 0.010 (50) 

CH3COONa 0.010 + 0.001 (25) 0.200 + 0.010 (50) 

NaCl 0.020 + 0.002 (50) 0.300 + 0.002 (75) 

NaNO3 0.020 + 0.002 (50) 0.030 + 0.002 (8) 

 

a 
Numbers in brackets reveal the % relative specific activities of VhGlcNAcase with 

each sodium derivative concentration by comparing with VhGlcNAcase without 

sodium derivative (set to 100). 

 

3.3.2 Effects of sodium and potassium cations on the hydrolytic activity of 

wild-type VhGlcNAcase 

To investigate the effect of cations (Na
+
 and K

+
) of azide compounds on 

the hydrolytic activity of WT VhGlcNAcase, time courses of pNP-GlcNAc hydrolysis 

with 2 M sodium azide, 2 M potassium azide, and without azides were performed in 

100 mM potassium phosphate buffer, pH 7.5 (Figure 3.3.1). The initial rates (v0) of 

the reactions were determined to be within 10 min as shown in an inset (Figure 3.3.1). 
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The results showed a strong inhibitory effect in the enzyme activity with sodium azide 

and potassium azide, compare to the reaction without azide compounds and the 

effects of both compounds were similar (Figure 3.3.1). 

 

    

 

Figure 3.3.1 Time courses of wild-type VhGlcNacase with and without sodium azide 

and potassium azide were investigated using pNP-GlcNAc substrate. A reaction 

mixture (100 μl), containing 3 µg of VhGlcNAcase and 500 µM of pNP-GlcNAc 

without sodium compounds (filled squares), with 2 M sodium azide (open squares), or 

with 2 M potassium azide (filled circles) in 100 mM potassium phosphate buffer, pH 

7.5, was incubated at 37 
o
C for 0, 2.5, 5, 10, 30, and 60 min, and then the reaction was 

terminated. 
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3.3.3 Effects of sodium and potassium phosphate buffers, pH 7.5 on the 

hydrolytic activity of wild-type VhGlcNAcase 

From the results of the previous section suggested that sodium and 

potassium cations may inhibit the enzyme activity. In this experiment, we investigated 

the effects of sodium and potassium phosphate buffers, pH 7.5 on WT VhGlcNAcase 

activity against pNP-GlcNAc substrate. As shown in Table 3.3.2, the specific activity 

of the enzyme in sodium phosphate buffer was slightly higher than that in potassium 

phosphate buffer. When concentrations of both buffers were varied, the reaction in 2.0 

M phosphate buffer displayed lower specific activity than in 0.1, 0.5, and 1.0 M 

phosphate buffers. The reactions in 0.1, 0.5, and 1.0 M sodium and potassium 

phosphate buffers showed that the specific activity of WT VhGlcNAcase was similar 

to each other (Table 3.3.2). The specific activity of the enzyme in the presence of 2 M 

sodium azide in 0.1 M potassium phosphate buffer, pH 7.5 (0.020 + 0.001 

nmol/min/μg) (Table 3.3.1), was much lower than that of the enzyme without sodium 

azide in 2 M potassium phosphate buffer, pH 7.5 (0.200 + 0.001 nmol/min/μg) (Table 

3.3.2). The results suggested that the azide anion displayed much higher inhibitory 

effect on the GlcNAcase activity than the sodium and potassium cations. 
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Table 3.3.2 Specific activity of wild-type VhGlcNAcase against pNP-GlcNAc 

substrate in various concentrations of sodium and potassium phosphate buffers, pH 

7.5. 

 

 

Concentrations of 

phosphate buffer, pH 7.5 

(M) 

Specific activity (nmol/min/µg) 

Sodium phosphate 

buffer, pH 7.5 

Potassium phosphate 

buffer, pH 7.5 

0.1 0.400 + 0.010 0.400 + 0.001  

0.5 0.400 + 0.010  0.400 + 0.003  

1.0 0.400 + 0.004  0.400 + 0.010  

2.0 0.300 + 0.010  0.200 + 0.001  

 

 

3.3.4 Effects of sodium azide and sodium nitrate on the molecular 

structure of wild-type VhGlcNAcase 

  To investigate the effects of sodium azide and sodium nitrate on the 

molecular structure of WT VhGlcNAcase, fluorescence spectra were obtained in the 

presence of sodium salts. The changes in the fluorescence intensity and the shift in the 

maximum emission wavelength that indicate the denaturation of the enzyme were 

monitored. The emission spectra were collected from 300-500 nm upon excitation at 

295 nm. Although, the fluorescence intensity of the enzyme decreased with increasing 

sodium azide and sodium nitrate concentrations, the shifting in the maximum 
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emission wavelength were not observed. On the other hand, the enzyme that was 

denatured by 8.0 M urea and heat at 100 
o
C for 10 min showed higher fluorescence 

intensity and shifting maximum emission wavelength, as compared to that of the non-

denatured enzyme (Figure 3.3.3). In addition, we found that the fluorescence intensity 

of the enzyme with sodium nitrate (Figure 3.3.3B) was lower than the enzyme titrated 

with sodium azide (Figure 3.3.3A). The results suggested that sodium azide has effect 

to partially unfold the secondaly structure of VhGlcNAcase whereas sodium nitrate 

strongly affect on the structural enzyme than sodium azide. 

 

 

 

Figure 3.3.2 Effect of 0-3 M sodium azide (A) and sodium nitrate (B) on structural 

integrity of wild-type VhGlcNAcase. The enzyme was investigated using fluorescence 

quenching spectroscopy. The emission spectra were collected from 300-500 nm upon 

excitation at 295 nm. Increasing the fluorescence intensity was resulted by enzyme 

denaturation.  
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3.3.5 Kinetics of inhibitions of sodium azide and sodium nitrate on the 

hydrolytic activity of wild-type VhGlcNAcase 

 Kinetic experiments were carried out with the attempt to define the 

inhibition type. pNP-GlcNAc hydrolysis with and without 2.0 M sodium azide or 

sodium nitrate (Figure 3.3.3A) were performed to determine the initial rate (v0) of the 

enzyme within the incubation period of 5 min. Figures 3.3.3B and C present the non-

linear (Michaelis-Menten) plots between v0 and the pNP-GlcNAc concentrations. 

Curve fittings were conducted for individual concentrations of sodium azide (Figure 

3.3.3B) or sodium nitrate (Figure 3.3.3C) (0, 0.3, 0.4, 0.5 and 0.6 M), yielding the 

kinetic parameters kcat and Km as presented in Table 3.3.3. The kinetic parameters 

were obtained by data-fitting based on the Michaelis-Menten equation or the substrate 

inhibition equation (Equation 3.3.1). The catalytic rate constants (kcat) of the enzyme 

at 0.3 M sodium azide and sodium nitrate (0.7 s
-1

) are equal to kcat without sodium 

azide or sodium nitrate. When higher concentrations of sodium azide or sodium 

nitrate were added, the value is slightly lower than that at 0 M sodium azide or 

sodium nitrate (0.6 s
-1

). On the other hand, the apparent Km was found to be elevating 

from 238 to 679 µM and 238 to 667 µM up with increasing sodium azide and sodium 

nitrate concentrations, respectively.  

 

                                                                                                                              (3.3.1) 

                                                                               

Where I is sodium azide or sodium nitrate and S is pNP-GlcNAc substrate 

 

𝑣0 = 
𝑉max S 

𝐾m  1+ 
 I 

𝐾i
 +  S 
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Figure 3.3.3 Kinetic properties of wild-type VhGlcNAcase were investigated using 

pNP-GlcNAc as the substrate. A reaction time-course of pNP-GlcNAc hydrolysis by 

WT VhGlcNAcase (A), Time course of pNP-GlcNAc hydrolysis by VhGlcNAcase 

without sodium azide (filled squares), with 2 M sodium azide (open squares), or with 

2 M sodium nitrate (filled circles). The enzyme assay was carried out as described in 

Section 2.7.1. The linear part of the reactions was shown in an inset. Kinetic 

parameters of the VhGlcNAcase with sodium azide and sodium nitrate were obtained 

from Michaelis-Menten plots (B) and (C), respectively. A reaction was investigated 

using pNP-GlcNAc (0-800 μM) as the substrate, 3 μg of VhGlcNAcase and 0 M 

(filled squares), 0.3 M (open squares), 0.4 M (filled circles), 0.5 M (open circles), or 

0.6 M (filled triangles) sodium azide or sodium nitrate. 
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       Table 3.3.3 Kinetic parameters of wild-type VhGlcNAcase with different NaN3 and NaNO3 concentrations. 

 

Kinetic parameters of inhibition of NaN3 and NaNO3 on the hydrolytic activity of wild-type VhGlcNAcase 

Concentration 

of NaN3 or 

NaNO3 (M) 

  NaN3   NaNO3 

  Km (µM) kcat (s
-1

) 
kcat/Km  

(s
-1

 mM
-1

) 
  Km (µM) kcat (s

-1
) 

kcat/Km  

(s
-1

 mM
-1

) 

0 
 

238 + 19  0.70 + 0.02  3.10 + 0.10  
 

238 + 19  0.70 + 0.02  3.10 + 0.10  

0.3 
 

438 + 51  0.70 + 0.02  1.60 + 0.04  
 

362 + 44  0.70 + 0.03  2.00 + 0.10  

0.4 
 

554 + 67  0.60 + 0.08  1.20 + 0.10  
 

411 + 44  0.60 + 0.02  1.60 + 0.20  

0.5 
 

608 + 76  0.60 + 0.01  1.00 + 0.02  
 

528 + 58  0.60 + 0.04  1.20 + 0.02  

0.6   679 + 92  0.60 + 0.02  0.80 + 0.02    667 + 77  0.60 + 0.01  0.80 + 0.03  

7
9
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To further confirm the inhibition type, linear transformation of the non-

linear regression function (shown in Figures 3.3.5B and C) was evaluated using 

equation 3.3.2.  

 

                                                                                                          (3.3.2)                  

 

Where I is sodium azide or sodium nitrate and S is pNP-GlcNAc substrate 

 

Figures 3.3.4A and B were Lineweaver-Burk plots between 1/v0 versus 

1/[S]. As seen from the figure, all the double-reciprocal lines generated at different 

concentrations of sodium azide (Figure 3.3.4A) or sodium nitrate (Figure 3.3.4B) 

were found to meet the y-intercept at a value close to 0.3 (nmol
-1

.min). Such pattern is 

a characteristic competitive inhibition that sodium azide and sodium nitrate bind only 

to free E. To obtain the values of Ki, Dixon plots were conducted as shown in Figures 

3.3.4C and D, in which the slope of the primary plot (from the Lineweaver-Burk 

plots) were plotted against sodium azide and sodium nitrate concentrations, 

respectively. The data showed that sodium azide and sodium nitrate inhibited WT 

VhGlcNAcase with Ki of 0.20 ± 0.03 M and 0.20 ± 0.05 M, respectively (Figures 

3.3.4C and 3.3.4D). The results suggested that sodium azide and sodium nitrate are 

not significantly different to inhibit the enzyme activity. 

 

1
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Figure 3.3.4 Kinetic properties of wild-type VhGlcNAcase were investigated using 

pNP-GlcNAc  (0-800 µM) as the substrate.  The reaction containing 3 µg 

VhGlcNAcase in 100 mM phosphate buffer, pH 7.5, was assayed at 37 
o
C for 10 min 

in the presence of various concentrations of sodium azide or sodium nitrate (0-0.6 M). 

Types of inhibition were assessed from Lineweaver-Burk plots (A) for sodium azide 

(B) for sodium nitrate. Sodium azide and sodium nitrate concentrations of 0, 0.3, 0.4, 

0.5 and 0.6 M are shown as filled squares, open squares, filled circles, open circles 

and filled triangles, respectively. Ki values of sodium azide and sodium nitrate were 

derived from Dixon plots (B and C, respectively). 
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3.3.6 The inhibitory effects of sodium azide and sodium nitrate on the 

hydrolytic activity of wild-type VhGlcNAcase 

 The inhibitory effects of sodium azide and sodium nitrate on 

VhGlcNAcase activity were further accessed. IC50 values were determined from dose-

response curve plotted between the fractional activity (vi/v0) versus the logarithmic 

scale of sodium azide or sodium nitrate concentration (Figure 3.3.5). The plots 

showed inhibition against WT VhGlcNAcase with IC50 of 0.30 + 0.03 M for sodium 

azide and 0.20 + 0.02 M for sodium nitrate. To confirm the accuracy of the Ki values 

obtained from Dixon plots (Ki of sodium azide = 0.20 ± 0.03 M and Ki of sodium 

nitrate = 0.20 ± 0.05 M), the IC50 values were used to define the Ki using equation 

3.3.3 (Cheng and Prusoff, 1973).  

 

                                                                                                                                       (3.3.3) 

 

Where S is pNP-GlcNAc substrate 

 

The data showed that Ki of sodium azide and sodium nitrate are equal to 

0.10 ± 0.02 M and 0.10 ± 0.01 M, respectively. The results suggest that the Ki values 

estimated from the two equations are not significantly different. 

 

𝐾i= 
IC50

1 + 
 S 

𝐾m
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Figure 3.3.5 Dose-response plot of wild-type VhGlcNAcase fractional activity as a 

function of sodium azide or sodium nitrate concentrations. The values of IC50 for 

sodium azide and sodium nitrate were determined from this graph. A reaction mixture 

(100 µl), contained 500 µM of pNP-GlcNAc, 3 µg of VhGlcNAcase, and varied 

concentrations of sodium azide or sodium nitrate from 0-4 M. The assay was carried 

out as described in Materials and Methods (Section 2.7.1). 
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3.3.7 TLC analysis of the hydrolytic products of sodium azide and sodium 

nitrate inhibitions on wild-type VhGlcNAcase 

 The effects of sodium azide and sodium nitrate on the inhibition of the 

hydrolytic activity of WT VhGlcNAcase against the natural glycoside substrate: 

GlcNAC4 was examined at various time points using TLC (Figure 3.3.6). Figure 

3.3.6A showed that the enzyme without sodium salts sequentially hydrolyzed 

GlcNAc4 to GlcNAc3, GlcNAc2, and GlcNAc as the final products. However, when 

the enzyme with sodium azide (Figure 3.3.6B) or sodium nitrate (Figure 3.3.6C) was 

incubated with GlcNAc4, the TLC results showed no detectable hydrolytic products 

observed even after 18 h of incubation. The obtained results suggested that sodium 

azide and sodium nitrate strongly inhibited the enzyme activity. 
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Figure 3.3.6 TLC analysis of the GlcNAc4 hydrolysis by wild-type VhGlcNAcase 

with 2 M sodium azide and sodium nitrate. Time-courses of the GlcNAc4 hydrolysis 

by WT VhGlcNAcase, a reaction mixture (20 μl), containing 1 µg of VhGlcNAcase 

and 2.5 mM of GlcNAc4 without sodium azide (A), with 2 M sodium azide (B), or 

with 2 M sodium nitrate (C) in 100 mM phosphate buffer, pH 7.5, was incubated at 

various times at 37 
o
C, and then analyzed by TLC. Sugar products were detected with 

aniline-diphenylamine reagent. Lanes: std, a standard mix of GlcNAc 1-6; 1-8, 

incubation at 2, 5, 10, 15, 30, 60,180 and 1080 min, respectively; and C, substrate 

control. 
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CHAPTER IV 

DISCUSSION 

 

4.1 Mutation strategies for obtaining chitooligosaccharides with 

longer chains by transglycosylation reaction of a family GH18 

chitinase A from Vibrio harveyi 

Vibrio harveyi chitinase A (VhChiA) is a bacterial GH18 chitinase that cleaves 

a chitin chain into various chitooligosaccharide fragments. Based on our previous 

studies (Songsiriritthigul et al., 2008; Suginta et al., 2009), VhChiA has structure and 

function similar to those of S. marcescens chitinase A, and it degrades GlcNAc4 

substrate mostly to GlcNAc2, GlcNAc5 substrate to GlcNAc2 and GlcNAc3, and 

GlcNAc6 to GlcNAc2, GlcNAc3 and GlcNAc4. In this study, we investigated the 

transglycosylation activity of various mutated enzymes derived from VhChiA, 

including W570G, D392N, D313A, and D313N. Trp570 is responsible for the 

GlcNAc residue binding at subsites -2 and -1 (Figure 3.1.1), so that cleavage of the 

glycosidic bond between subsites -1 and +1 takes place most efficiently. Substitution 

of the Trp570 side chain with glycine completely removed the aromatic surface area, 

thereby causing a dramatic decrease in the hydrolytic activity to about 5% of the WT 

activity, and decreased the binding affinity (increased Km) that affected sugar-enzyme 

interaction (Suginta et al., 2007). The reduction of the binding affinity
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at these two subsites, on the other hand, may relatively enhance the affinity at the 

acceptor-binding site (positively-numbered subsites), resulting in the enhanced TG 

activity. However, all of the TG products immediately hydrolyzed again into 

oligosaccharides with shorter chains. Our previous kinetic data showed that the 

mutated enzymes, D392N, has greater affinity towards pNP-GlcNAc2 and 

chitooligosaccharide substrates than those of WT (Songsiriritthigul et al., 2008). The 

greater affinity of D392N may facilitate the acceptor binding to subsites +1 and +2; 

hence, the TG reaction for the substrates GlcNAc4 and GlcNAc5 (Figures 3.1.2G and 

3.1.2H). However, also in this mutant, the TG products were immediately hydrolyzed 

into oligosaccharides with shorter chains. Mutations of Trp570 and Asp392 are 

unlikely effective for obtaining chitooligosaccharides with longer chains, even though 

the mutant enzymes exhibit the enhanced TG activity. 

GH18 chitinases have a catalytic motif specified by a sequence DxDxE, which 

correspond to Asp311-x-Asp313-x-Glu315 in VhChiA. Glu315 is a catalytic acid, 

which donates a proton to the β-1,4-glycosidic oxygen to cleave the linkage. Asp313 

is located at the bottom of the substrate binding cleft (Figure 3.1.1). This aspartic acid 

plays multiple roles in the catalytic cycle of chitin hydrolysis (Suginta et al., 2012; 

Synstad, Ga° seidnes, van Aalten, Vriend, Nielsen, and Eijsink, 2004). It interacts 

with the 2-acetamido group of the sugar residue at subsite -1 (the cleavage site) and 

helps to lower the pKa value of the catalytic residue Glu315 so that bond cleavage can 

be achieved more easily. Moreover, it helps to orient the 2-acetamido group in the 

correct position to stabilize the oxazolinium ion intermediate in the substrate assisted 

mechanism. Mutations of Asp313 to Ala and Asn abolished the hydrolytic activity 

almost completely by disrupting hydrogen-bond interactions with the sugar residue. 
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Instead, the mutations enhanced the TG activity. We tried to compare the efficiencies 

of TG reaction obtained by our D313A/N mutants with those obtained by the 

corresponding mutants of the two Serratia enzymes, SmChiA and SmChiB 

(Zakariassen et al., 2011). In the Serratia enzymes, the mutations of the middle Asp 

of the DxDxE motif to Asn were reported to enhance the TG reaction more strongly 

than the mutations to Ala. In our VhChiA mutants, however, no significant difference 

was found in the highest yields of the TG products (GlcNAc6 from the initial substrate 

GlcNAc4, Figure 3.1.4; or GlcNAc8 from the initial substrate GlcNAc6, Figure 3.1.5) 

between D313A and D313N. The TG efficiencies in the mutants from Serratia 

enzymes were evaluated from the GlcNAc3 production from the initial substrate 

GlcNAc4, indicating that the TG product GlcNAc6 was decomposed into GlcNAc3 as 

shown in Figure 3.1.3 (Zakariassen et al., 2011). The evaluation of TG efficiency 

based on the yield of GlcNAcn with longer chains (TG products) may be more 

informative for practical use of the transglycosylating chitinases. Thus, the mutants of 

the middle Asp of the DxDxE motif from VhChiA are likely more effective for 

obtaining GlcNAcn with longer chains than the corresponding mutants from the 

Serratia enzymes, SmChiA and SmChiB (Zakariassen et al., 2011). In the Asp313 

mutants from VhChiA, the Km values toward GlcNAc6 were 4-(D313N) or 6-fold 

(D313A) higher than that of the wild type (Suginta et al., 2012). The lower affinity 

may result in the spontaneous release of the TG product from the enzyme without 

relocation to the productive binding mode (process IV in Figure 3.1.3). This situation 

may bring about the accumulation of the TG products in the Asp313 mutants. In the 

other mutants W570G and D392N, however, the TG products may be immediately 

relocated to the productive binding mode spanning the catalytic center, due to the 
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affinity with Asp313, and subsequently broken down by the hydrolytic action of the 

enzyme. Zakariassen et al., 2011 who reported the hypertransglycosylating mutants 

obtained from the Serratia enzymes, explained that the mutation of Asp313 changes 

the electrostatics around the catalytic center, decreasing the probability of 

nucleophilic attack of a water molecule to the oxazolinium ion intermediate. Similar 

situation may possibly take place in the VhChiA mutants, D313A and D313N. 

Aronson et al., 2006 reported that the mutation of Trp167 of SmChiA to alanine 

(W167A) significantly enhances the TG reaction. In W167A, the side chain of 

Asp313 is oriented only toward Glu315, whereas in the wild type, the Asp313 side 

chain is equally distributed between two orientations, toward Asp311 or toward 

Glu315. They explained that the orientation of Asp313 toward Glu315 may interfere 

with the attack of a water molecule to the oxazolinium ion intermediate. Thus, the 

state of the side chain of Asp313 appears to be related to the efficiency of TG 

reaction. Crystal structure analysis of VhChiA D313N or D313A will afford valuable 

information on the structural factor for enhancing the TG reaction in VhChiA.  

 

4.2 Kinetics of inhibition of family-18 chitinase A from Vibrio harveyi 

by sodium azide 

Vibrio harveyi chitinase (VhChiA) is a member of family-18 chitinases that 

catalyzes chitin degradation via the substrate-assisted retaining mechanism 

(Songsiriritthigul et al., 2008; Suginta et al., 2005; Suginta et al., 2009). Like other 

family-18 chitinases, the catalytic cycle of VhChiA has been proposed to involve a 

concerted action of three acidic residues in the DXDXE sequence motif (Synstad et 

al., 2004; Tews, van Scheltinga, Perrakis, Wilson, and Dijkstra, 1997; van Aalten et 
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al., 2001). In VhChiA (Songsiriritthigul et al., 2008) and its close homolog SmChiA 

(Perrakis et al., 1994), such residues are identified as Asp311-Asp313-Glu315. 

Asp313, which is located at the center of this motif, has been suggested to play 

multiple essential roles for catalysis. One of its roles is to support the 2-acetamido 

group to act as a powerful, primary nucleophile that helps stabilization of the 

oxazolinium ion intermediate, which further undergoes the second nucleophilic attack 

by neighboring water, yielding the retention of the β-configuration of the anomeric 

products (Synstad et al., 2004; van Aalten et al., 2001). 

 Sodium azide has been routinely used to identify the catalytic nucleophile of 

several glycoside hydrolases that employ acid-base catalysis in the retaining 

mechanism (Cobucci-Ponzano et al., 2003; Fujita et al., 2007; MacLeod et al., 1994; 

Paal et al., 2004; Shallom et al., 2002; Vallmitjana et al., 1998; Viladot et al., 1998; 

Williams et al., 2002). For example, activity of Arthrobactor protophormiae endo-β-

N-acetylglucosaminidase (Endo A) inactive mutant E173A was increased by 127-fold 

when 2 M sodium azide was added in the assayed reaction (Fujita et al., 2007). The 

most relevant case to family-18 chitinases is a report on Streptomyces plicatus 

hexosaminidase (SpHex) (Williams et al., 2002). SpHex is a family-20 

exoglycosidase that removes GlcNAc moiety from the non-reducing end of 

glycoconjugates, oligosaccharides and polysaccharides. An acidic pair (Asp313-

Glu314) is identified to be most essential resides in catalysis. Functional roles of 

Asp313 are predicted to aid the 2-acetamido group of (-1)GlcNAc to act as a powerful 

nucleophile and to stabilize  the oxazolinium ion intermediate. On the other hand, 

Glu314 acts as the catalytic residue that directly attacks the β-1,4-glycosidic bond at 

the cleavage site. Single mutation of Asp313 of SpHex to Ala or Asn (mutant D313A 
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or D313N) almost abolished the hydrolytic activity of SpHex. However, rate of 

reaction of the D313A variant was enhanced up to 16 fold of the original rate when 

sodium azide was added. It has been concluded that the azide ion acts as an alternative 

nucleophile to water and open the oxazolinium ion intermediate formed after acid 

catalysis by Glu314. 

To examine the effect of sodium salts on wide-type VhChiA, we applied 

various sodium salts (sodium azide, sodium formate, sodium acetate, sodium nitrate, 

and sodium chloride) into the hydrolytic activity assay of WT VhChiA at pH 5.5 and 

7.5. All sodium salts should be in the ionized forms at both pH values (Cobucci-

Ponzano et al., 2003; Comfort, Bobrov, Ivanen, Shabalin, Harris, Kulminskaya, 

Brumer, and Kelly, 2007; Viladot et al., 1998; Williams et al., 2002). After we 

screened the effect of several salts, we found that all salts showed less effect at lower 

pH than higher pH. Since, lower pH (pH value below 7) means higher concentration 

of proton (H
+
) in the solution, so it may interfere the binding of the salts to chitinase 

by forming hydrogen bond with the derivative anions. Whereas, higher pH (pH value 

above 7) means lower concentration of proton in the solution, so the derivative anions 

are able to easily compete with the substrate to interact with the hydrogen atom of the 

catalytic carboxyl group of the enzyme and inhibit the enzyme activity. Moreover, the 

result showed that sodium azide is the strongest inhibitor for this enzyme that may be 

because the negatively charged azide ion (N3
-
) is more powerful nucleophile so that it 

could to compete with the substrate to react with the carboxyl group of the catalytic 

amino acid than the other derivatives. 

Since we know that sodium azide is the strongest inhibitor for WT VhChiA, so 

we chose this molecule to investigate the kinetics of inhibition on this enzyme. 
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However, the result of the effects of sodium derivatives on WT VhChiA showed the 

different inhibitory effects on the enzyme activity when several derivatives were 

added in the reactions (Figure 3.2.2). Therefore, we could not conclude that only 

azide anion or both azide anion and sodium cation affect to inhibit the enzyme 

activity, so we tried to investigate the effect of cations from sodium azide and 

potassium azide on the hydrolytic activity of WT VhChiA at pH 7.5. A time course 

study displayed a decrease in the enzyme activity with sodium azide and potassium 

azide, respectively, when compared to the enzyme without both compounds (Figure 

3.2.3).  The results obtained from this assay showed that potassium azide having 

larger effects inhibit the enzyme activity than sodium azide, but the difference was not 

so much when compare to the difference of the inhibitory effects of sodium 

derivatives on the enzyme activity (Figure 3.2.2), suggested that sodium cation may 

slightly also affect to inhibit the enzyme activity but the inhibitory effect on the 

enzyme activity was predominately derived from azide anion. 

The inhibition effect of cation may occur from sodium ion reacts with the 

deprotonated side chain of the carboxylate of Asp313, which is sharing the proton 

with the protonated side chain of the carboxyl group of Asp311 (Suginta et al., 2012) 

(Figure 4.1). If sodium ion was able to compete with the proton of the carboxyl group 

of Asp311 to interact with the carboxylate of Asp313, the Asp313 will be blocked and 

cannot be rotate to form H-bond with the side chain of the catalytic carboxyl group of 

Glu315, then preventing the glycosidic bond of the chitin substrate to be hydrolyzed 

by this residue. 
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Figure 4.1 Proposed mechanism of sodium cation inhibiting the activity of the wild-

type VhChiA (modified from Suginta et al., 2012). 

 

To confirm that sodium or potassium ion from 0.1 M phosphate buffer, pH 7.5 

that we used for this experiment will not interrupt the sodium azide inhibition study, 

the concentrations of sodium and potassium phosphate buffers (0.1, 0.5, 1.0, and 2.0 

M) were varies. From the enzyme activity assay, we found that 0.1 M sodium and 

potassium phosphate buffers showed high specific activity, when compared to other 

concentrations, whereas 2.0 M sodium and potassium phosphate buffers displayed a 

decrease in the specific activity. The results suggested that sodium or potassium 

phosphate buffer at high concentration (2.0 M) affected the enzyme activity, but 0.1 

M phosphate buffer did not interfere the kinetic study of enzyme inhibition (Figure 

3.2.4).  
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The kinetic analysis showed that sodium azide acted as a reversible inhibitor 

for WT VhChiA, with the pattern of mixed-type inhibition. The mechanism displayed 

lower αKi of ESI complex than Ki of EI complex, indicating that sodium azide acted 

more effectively on ES complex than on free E (Scheme 4.1). 

 

Scheme 4.1 (Copeland, 2000) 

 

             

  

Where Km, Ki, αKm and αKi represent the various equilibrium constants for enzyme-

substrate (ES), enzyme-inhibitor (EI), enzyme-substrate-inhibitor (ESI, forms when 

substrate binds to EI) and (ESI, forms when inhibitor binds to ES) 

 

The inhibitory effect of sodium azide on WT VhChiA was also confirmed by 

IC50 using pNP-GlcNAc2 as substrate and TLC using GlcNAc6 and colloidal chitin as 

substrates. The dose-response curve displayed IC50 of 0.40 + 0.02 M. This IC50 value 

was used to convert to Ki value using Equation 3.2.3 (Cheng and Prusoff, 1973), and 
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the Ki value estimated from dose response curve was compared with the value 

obtained from Dixon plot. The results showed Ki obtained from IC50 and Dixon plot 

are similar, which are around 1.50 M. Time-courses of hydrolysis of 

chitooligosaccharides were investigated by TLC. The results showed that the 

reactions with sodium azide increased as longer time of incubation, comparing with 

the reaction without sodium azide. The results suggested that sodium azide, indeed, 

inhibited the chitinase activity of WT VhChiA towards its natural substrates. 

We postulate that the azide anion interacts with the protonated side chain of 

the catalytic carboxyl group of Glu315, subsequently preventing the incoming 

substrate to be accessed by this residue. Figure 4.2 shows how sodium azide interrupts 

the catalytic cycle at the cleavage step of WT VhChiA. This simplified mechanism 

demonstrates that the azide anion competes with the chitin substrate by simply 

abstracting a proton from the γ-COOH group of Glu315. The products of this reaction 

are hydrogen azide (HN3) and the deprotonated form (γ-COO
-
) of Glu315, which is 

inactive to attack the glycosidic bond at the cleavage site. Basically, the azide anion 

might diminish the proportion of the effective proton essentially required for bond 

cleavage.  
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Figure 4.2 Proposed mechanism of azide anion inhibiting the hydrolytic activity of 

the wild-type VhChiA. 

 

Since Streptomyces plicatus hexosaminidase (SpHex) adopts the substrated-

assisted mechanism like all family-18 chitinases, sodium azide presumably acts as a 

chemical rescue for this enzyme. Here, we set out the kinetic experiments to see the 

effect of sodium azide on the hydrolytic activity of mutants D313A and D313N and 

also WT VhChiA. The results obtained in this study showed that sodium azide 

inhibited the activity of the three chitinase variants, instead (Figure 3.2.12). The 

activity loss against pNP-GlcNAc2 substrate is most seen with WT, followed by 

mutants D313N and D313A, comparing to the activity without sodium azide. 
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4.3 Kinetics of inhibition of family-20 β-N-acetyl-glucosaminidase 

from Vibrio harveyi by sodium azide and sodium nitrate 

VhGlcNAcase is a bacterial GH-20 β-N-acetylglucosaminidase or GlcNAcase 

that cleaves chitooligosaccharide fragments via the substrate-assisted retaining 

mechanism (Kim et al., 2007; Vocadlo et al., 2005). The catalytic mechanism usually 

takes place through two steps. In the first step, the glycosidic oxygen is protonated by 

a catalytic acid to cleave the β-(1,4)-glycosidic linkage and to form the oxazolinium 

ion intermediate, in which the C1 carbon of the -1 sugar is stabilized by anchimeric 

assistance of the sugar N-acetamido group. In the second step, the oxazolinium ion 

intermediate is attacked by a water molecule from the β-side, leading to hydrolysis 

with net retention of anomeric form (Aronson et al., 2006; Zakariassen et al., 2011).  

Here, we set out kinetic experiments to investigate the effects of sodium azide, 

formate, acetate, nitrate, and chloride (Figure 3.2.1) on the hydrolytic activity of WT 

VhGlcNAcase at pH 5.5 and pH 7.5. All sodium salts were found to decrease the 

specific activity of the enzyme, compared to the hydrolytic reaction without several 

salts. At higher pH value, especially sodium azide and sodium nitrate displayed the 

strongest inhibitory effect for this enzyme. However, we found that the GlcNAcase 

activity with and without sodium salts was decreased at lower pH value, suggesting 

that the optimal activity of WT VhGlcNAcase is approximately pH 7.5 (Suginta et al., 

2010), and also at this pH, all sodium salts should be in ionized form (Cobucci-

Ponzano et al., 2003; Comfort, Bobrov, Ivanen, Shabalin, Harris, Kulminskaya, 

Brumer, and Kelly, 2007; Viladot et al., 1998; Williams et al., 2002). In addition, the 

stronger effects of azide and nitrate anions on WT VhGlcNAcase activity than the 

other anions may be caused by the negatively charged azide and nitrate ions acting as 
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a more effective nucleophile to compete with the substrate to interact with the 

catalytic carboxyl group to inhibit the enzyme (Figure 3.2.1). 

To confirm that cation from sodium salts does not affect to WT VhGlcNAcase 

activity, time courses of the hydrolytic activity of the enzyme with and without 

cations from sodium azide and potassium azide were investigated at pH 7.5. The 

strong inhibitory effects of both compounds were observed from the first period of 

reaction time, compared to the enzyme activity without cation. In addition, sodium 

azide and potassium azide did not show significantly different into inhibiting the 

GlcNAcase activity (Figure 3.3.2). The result obtained from this assay suggested that 

sodium and potassium cations slightly affected the enzyme activity. As such, the 

inhibitory effects of of the enzyme activity were assumed to be predominated by the 

presence of the azide or nitrate anion. 

We additionally investigated the effect of sodium and potassium phosphate 

buffer concentrations (0.1, 0.5, 1.0, and 2.0 M) at pH7.5 on the hydrolytic activity of 

WT VhGlcNAcase. From these results, we found that 0.1 M sodium and potassium 

phosphate buffers showed the highest specific activity of the enzyme, when compared 

to the other concentration buffers, whereas 2.0 M sodium and potassium phosphate 

buffers showed a decrease in the specific activity. The results suggested that 0.1 M 

sodium and potassium phosphate buffer that we used in this experiment did not 

interfere the kinetic study of enzyme inhibition.  

The kinetic inhibitions on WT VhGlcNAcase activity showed that of sodium 

azide and sodium nitrate inhibited the enzyme against pNP-GlcNAc substrate by 

competitive inhibition. The mechanism displaying the inhibitor-enzyme complex (EI) 

is shown in scheme 4.2.  
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Scheme 4.2 

 

                                 

                      

Where Km and Ki represent the equilibrium constants for enzyme-substrate (ES) and 

enzyme-inhibitor (EI) complexes. 

 

The inhibitory effects of sodium azide and sodium nitrate on WT 

VhGlcNAcase were also confirmed by IC50 values using pNP-GlcNAc as substrate 

and TLC using GlcNAc2 and GlcNAc4 as substrates. The dose-response curve 

displayed IC50 for sodium azide of 0.30 + 0.03 M, whereas sodium nitrate showed 

slightly stronger effect with IC50 of 0.20 + 0.02 M against the activity of WT 

VhGlcNAcase. The IC50 values were used to convert to Ki values using Equation 3.3.3 

(Cheng and Prusoff, 1973) to compare with Ki values from Dixon plot and the values 

are not significantly different. Then, the time-courses of GlcNAc2 and GlcNAc4 

hydrolysis were investigated by TLC. The results confirmed that both sodium azide 

and sodium nitrate are strong inhibitors for this enzyme because no hydrolytic product 

was detected in the reactions with both compounds. 
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We postulate that azide and nitrate anions interact with the protonated side 

chain of the catalytic residue that acts as a catalytic acid in the catalytic mechanism, 

subsequently preventing the incoming substrate to be accessed by this residue. Figure 

4.3 shows how sodium azide/nitrate may interrupt the catalytic cycle at the cleavage 

step of VhGlcNAcase. This simplified mechanism demonstrates that azide/nitrate 

anion competes with the chitooligosaccharide substrate by simply abstracting a proton 

from the β-COOH group of Asp303 that acts as the catalytic residue (Meekrathok, 

unpublished data). The product of this reaction is the hydrogen azide (HN3) or the 

hydrogen nitrate (HNO3) and the deprotonated form (β-COO
-
) of Asp303, which is 

inactive to attack the glycosidic bond at the cleavage site. Basically, the azide and 

nitrate anions diminish the proportion of the effective proton essentially required for 

bond cleavage.  

 

         

   

Figure 4.3 Proposed mechanism of azide or nitrate anion inhibits the activity of the 

wild-type VhGlcNAcase (Meekrathok, unpublished data).  

 

 

 

 

 

 

 

 

 



101 

 

 

4.4 Comparison of kinetics of inhibition for GH-18 VhChiA and GH-

20 VhGlcNAcase 

Vibrio harveyi initially secretes chitinase A (VhChiA) to degrade chitin 

polymer, yielding chitooligosaccharide fragments, which can be taken up by the cell 

through chitoporin. In the periplasm, GlcNAcase (VhGlcNAcase) is sequentially 

degrades the transported chitooligosaccharides into GlcNAc monomers that are 

further metabolized inside the cells (Figure 4.4) (Suginta, Chumjan, Mahendran, 

Janning, Schulte, and Winterhalter, 2013).  

 

 

 

Figure 4.4 Model of the chitin degradation cascade of the marine bacterium Vibrio 

harveyi (Suginta et al., 2013). 
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Although VhChiA and VhGlcNAcase are different classes of glycoside 

hydrolases, both catalyze the hydrolytic reaction through the substrate-assisted 

retaining mechanism (Suginta et al., 2005; Suginta et al., 2010; Vocadlo et al., 2005; 

Williams et al., 2002). In this study, we investigated the effects of sodium salts on the 

hydrolytic activity of VhChiA and VhGlcNAcase against pNP-glycosides. The results 

showed that the specific activity of VhChiA was significantly decreased by sodium 

azide, whereas VhGlcNAcase was found to be considerably inhibited by sodium azide 

and sodium nitrate. In addition, the inhibitory effects of sodium azide and sodium 

nitrate on VhGlcNAcase activity were much effective than VhChiA. Especially, 

sodium azide that displayed the most effective inhibitor for both enzymes, it may be 

because the size and shape of this compound is suitable for the structure of the active 

site of VhChiA and VhGlcNAcase.  

The binding cleft of VhChiA has a long, deep groove, which contains six 

chitooligosaccharide ring-binding subsites (-4)(-3)(-2)(-1)(+1)(+2) (Songsiriritthigul 

et al., 2008). The kinetics of inhibition showed that sodium azide was found to more 

inhibit the enzyme activity in term of ES complex than the free enzyme that may be 

because azide anion not only able to react with the catalytic carboxyl group of the 

enzyme but also the substrate binding residues that located around the active site. In 

contrast, the binding pocket of VhGlcNAcase contains four substrate binding subsites, 

designated (-1)(+1)(+2)(+3) (Suginta et al., 2010), so it may allow azide or nitrate 

anion to react with the hydrogen of the catalytic carboxyl group to inhibit the free 

enzyme activity easily. 

 

 

 

 

 

 

 

 



103 

 

 

Kinetics of inhibition were further investigated using pNP-glycosides as 

substrates and the data showed that sodium azide inhibited VhChiA employing the 

mixed-type mode, whereas sodium azide and sodium nitrate were found to inhibit 

VhGlcNAcase activity using the competitive mode. The inhibitory effects of sodium 

derivatives on VhChiA and VhGlcNAcase suggested that both enzymes may adopt the 

substrate-assisted retaining mechanism in chitin degradation, but the mechanistic 

details of the catalysis (as accessed by the inhibition study) are not the same, owing to 

the dissimilar features in shape and molecular arrangement of the binding/catalytic 

residues that form the binding cleft of the two enzyme species.  
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CHAPTER IV 

CONCLUSION 

 

This research described transglycosylation reaction and kinetics of inhibitions 

of sodium salts of small nucleophiles on family-18 chitinase A and family-20 β-N-

acetylglucosaminidase from Vibrio harveyi. The studies are divided into three parts. 

The first part was focused on mutation strategies for obtaining chitooligosaccharides 

with longer chains by transglycosylation reactions. Mutations of Trp570 to Gly and 

Asp392 to Asn of VhChiA significantly enhanced the TG reaction, but the TG 

products were immediately hydrolyzed into chitooligosaccharides with shorter chains. 

In contrast, mutations of Asp313 to Ala and Asn strongly enhanced the TG reaction, 

and the products, chitooligosaccharides with longer chains, were not hydrolyzed but 

accumulated in the reaction mixture. The results obtained from this study may suggest 

a convenient, strategic design for new chitinase molecules with suitable property for 

producing the biologically-active chitooligosaccharides required for pharmaceutical 

and industrial uses. 

The second part of this study involved investigation of kinetics of inhibition of 

family-18 chitinase from Vibrio harveyi by sodium azide. VhChiA degrades chitin 

employing the substrate-assisted mechanism. Three acidic residues Asp311-Asp313-

Glu315 that align linearly at the bottom of the substrate binding cleft have been 

proposed to play a concerted role in chitin hydrolysis. In particular, Asp313 is thought

 

 

 

 

 

 

 

 



105 

 

 

to participate in various stages in the catalytic cycle of the VhChiA. This study 

investigates the effects of sodium azide, which is known to chemically rescue 

retaining glycoside hydrolases, on the chitinase activity of the wild-type, as well as 

the D313A and D313N mutants. The results obtained from this study consistently 

demonstrate that sodium azide did not recover the activity of the mutants but slightly 

inhibited the mutants D313A and D313N, respectively, compared to the wild-type, 

when 2 M sodium azide was added. Decreases in the apparent Km and kcat at 

increasing sodium azide concentrations suggest that sodium azide displays mixed-

type inhibition with the pNP-glycoside substrate. The mixed-type inhibition was 

further confirmed by the pattern of the lines in Lineweaver-Burk double-reciprocal 

plots. The mechanism describing the enzyme-azide ion interaction has proposed to 

involve proton withdrawal from of the side chain of Glu315, thereby preventing bond 

cleavage. 

The third part involved investigation of the kinetics of inhibition of a family-

20 β-N-acetylglucosaminidase from Vibrio harveyi by sodium azide and sodium 

nitrate. This study investigated the effects of sodium salts on the enzyme activity of 

GH-20 VhGlcNAcase. The results obtained from this study consistently demonstrate 

that VhGlcNAcase was strongly inhibited by sodium azide and sodium nitrate. An 

increase in the apparent Km and a fairly steady kcat at increasing sodium azide and 

sodium nitrate concentrations suggest that the two compounds react competitively 

towards VhGlcNAcase. The competitive inhibition was further confirmed by the 

pattern of the double-reciprocal lines in Lineweaver-Burk plots. The mechanism 

describing the enzyme-azide anion or the enzyme-nitrate anion interaction was 
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proposed to involve proton abstraction of the side chain of the catalytic residue, 

thereby preventing bond cleavage. 

GH-18 VhChiA and GH-20 VhGlcNAcase were inhibited strongly by sodium 

azide or sodium nitrate. Sodium azide inhibited VhChiA in a mixed type manner, 

whereas the two compounds reacted competitively towards VhGlcNAcase. The 

resulted suggested that the catalytic mechanisms of both enzymes are not identical, 

owing to the dissimilar features in shape and molecular arrangement within the 

enzyme’s binding clefts. It is proposed that azide or nitrate anion may abstract the 

proton from the carboxyl group of the glutamic acid that acts as a catalytic residue in 

the catalytic mechanism.  

The inhibitory effects of both compounds on both enzyme activities were also 

confirmed by the determination of IC50 values and the time courses of the hydrolytic 

products by TLC that supported the conclusion that azide and nitrate anions are more 

effective to inhibit the activity of VhGlcNAcase than VhChiA. 
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APPENDIX A 
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1. Stand curve of BSA by Bradford’s method 
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2. Standard curve of p-nitrophenol 
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