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The objective of this study is to determine rock mass strength and 

deformability in the laboratory by simulating joints in sandstone specimens.  The 

predictive capability of some commonly used strength and deformability criteria is 

assessed.  Results indicate that the larger numbers of the joint frequencies and joint sets 

show the lower strengths.  This is true for all confining pressures.  The increase of the 

rock mass model strength with the confining pressure tends to be non-linear, 

particularly for the three joint sets specimens.  For single joint set specimens, the 

strength of the specimens with joints normal to σ1 axis always yields greater strength 

than those with joints parallel to σ1 axis.  The lowest strengths are obtained when the 

joint planes make angles 45° with the major principal axis.  The Hoek-Brown, 

Sheorey, Yudhbir and Ramamurthy-Arora strength criteria give equally good 

correlation with the test results, showing R2 greater than 0.9.  The parameter s of the 

Hoek-Brown criterion is highly sensitive to the joint frequency while the parameter m 

tends to be insensitive to the joint frequency.  For one joint set specimens the 

deformation moduli that are parallel to the joint planes show highest values compared 

to those that are normal to the joints.  For three joint set specimens, the deformation 

moduli are similar for all principal directions.  The deformation modulus decreases 
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with increasing joint frequency, and tends to increase with the confining pressure.  

Goodman (1970) equation is modified here to determine the deformation modulus 

along three principal directions.  The proposed equation agrees well with the test 

results.   
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CHAPTER I 

INTRODUCTION 

1.1 Background and rationale 

The reliable strength estimation of a jointed rock mass is necessary to develop 

safe and economical designs for tunnels, open pits, dam foundations and underground 

chambers.  Rock mass is an inhomogeneous and anisotropic material with complex 

behavior, which contains random planes of discontinuities.  The effects of joints on 

the compressive strength and elastic modulus of rock mass have long been 

recognized.  One of the most common ways of estimating the rock mass strength is by 

using a failure criterion.  Several researchers have proposed rock mass strength 

criteria based on laboratory testing (Ramamurthy and Arora, 1994; Colak and Unlu, 

2004; Saroglou and Tsiambaos, 2008; Rafiai, 2011; Singh and Singh, 2012), case 

studies (Sheorey et al., 1989) and numerical analyses (Halakatevakis and Sofianos, 

2010) to determine the effects of joint frequency, joint orientation and joint set 

number on rock mass strengths.  It has been found that compressive strength of rock 

mass decreases with increasing joint frequency (Ramamurthy and Arora, 1994) and 

joint set number (Yang et al., 1998).  The effect of joint on strength depends on the 

orientation.  The lower strengths are obtained when the joint planes make angles 

between 30°- 40° with the major principal stress (Ramamurthy and Arora, 1994; 

Colak and Unlu, 2004; Goshtasbi et al., 2006).  The existing strength criteria for rock 

mass have been verified by comparing with the actual in-situ conditions (Edelbro, 
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2004).  Even though several rock mass strength criteria have been proposed, 

verification of their accuracy and limitations under large confinements has rarely been 

attempted. 

1.2 Research objectives 

 The objective of this study is to determine rock mass strength and 

deformability in the laboratory by simulating joints in sandstone specimens with one 

and three joint sets under various confining pressures and joint frequencies.  The 

results are used to assess the predictive capability of the strength criteria developed by 

Hoek and Brown (1980), Ramamurthy and Arora (1994), Yudhbir et al. (1983) and 

Sheorey et al. (1989).  Empirical criteria developed by Goodman (1970), Yoshinaka 

and Yamabe (1986) and Ramamurthy (2001) criteria are used to predict the 

deformation modulus of jointed rock specimens.  Triaxial compressive strength tests 

have been performed on cubical sandstone specimens with nominal dimensions of 

60×60×60 mm3 and 80×80×80 mm3 using a true triaxial load frame.  The confining 

pressures are varied from 0, 1, 3 5, 7 to 12 MPa.  The simulated joints are saw-cut 

surfaces and tension-induced fractures.  The evaluation of the existing rock mass 

failure criteria and their parameters are useful to appropriately apply in the design and 

stability analysis of geologic structures. 

1.3 Scope and limitations 

 The scope and limitations of the research include as follows. 

1. Laboratory testing is conducted on cubical specimens prepared from the 

Phra Wihan sandstone. 
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2.  Triaxial compression tests have been performed with confining pressures 

of 0, 1, 3, 5, 7 and 12 MPa.  

3. The specimens are prepared to have one and three joint sets with number 

of joint varies from 1, 2, 3, 4, 5 joints for each set. 

4. Up to 80 samples are tested, with the nominal dimensions of 60×60×60 

mm3 for one joint set and 80×80×80 mm3 for three joint sets. 

5. For one joint set specimen, the joint are parallel, inclined at 45° and 

perpendicular to the applied major principal stress. 

6. All tests are conducted under ambient temperature and dry condition. 

7. The tested joint is artificially made in the laboratory by saw cut device and 

tension induced method. 

1.4 Research methodology 

The research methodology shown in Figure 1.1 comprises 7 steps; including 1) 

literature review, 2) sample preparation, 3) laboratory testing, 4) strength criteria, 5) 

deformation modulus, 6) discussions and conclusions, and 7) thesis writing. 

1.4.1 Literature review 

Literature review is carried out to study the previous researches on the 

effect of jointed rock and deformation.  The sources of information are from text 

book, journals, technical reports and conference papers.  A summary of the literature 

review is given in chapter two. 

1.4.2 Sample preparation 

The rock samples used in this study are Phra Wihan sandstone.  This 

rock is classified as fine-grained quartz sandstones with highly uniform texture and 
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Figure 1.1 Research methodology. 
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density.  They are prepared to obtain cubic specimens with nominal dimensions of 

60×60×60 mm3 and 80×80×80 mm3.  The simulated joints are saw-cut surfaces and 

tension-induced fractures.  Specimens with one joint set and three mutually 

perpendicular joint sets are prepared.  There are 1, 2, 3, 4 and 5 joints for each set (13 

to 67 joints per meter).  For one joint set specimens, the joint are parallel, inclined at 

45° and perpendicular to the applied major principal stress. 

1.4.3 Laboratory test 

A true triaxial load frame is used to apply constant confining pressures 

at 0, 1, 3, 5, 7 and 12 MPa.  Neoprene sheets are used to minimize the friction at all 

interfaces between the loading platens and the rock surface.  The tests are performed 

by increasing the axial stress until failure occurs.  The confining pressure is controlled 

constant by four lateral hydraulic pumps.  The digital displacement gages are installed 

to measure the axial and lateral deformations until failure occurs.  The maximum load 

at failure and failure modes are recorded.  They are used to calculate the strength and 

deformation modulus of the specimen. 

1.4.4 Strength criteria  

Four criteria that are commonly used to determine rock mass strength 

are fit to the triaxial strength data.  They include the Hoek and Brown (1980), Sheorey 

et al. (1989), Yudhbir et al. (1983) and Ramamurthy and Arora (1994) criteria.  

Exhaustive reviews of these criteria have been given elsewhere (Edelbro et al., 2007; 

Sheorey, 1997), and hence will not be repeated here.  They are all formulated in the 

terms of σ1 and σ3.  The predictive capability of these strength criteria is determined 

and compared using the coefficient of correlation (R2) as an indicator.  The higher R2 

value indicates the better predictability of the criterion. 
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1.4.5 Deformation modulus  

Three empirical criteria are used to estimate rock mass deformation 

modulus (Em).  They include the Goodman (1970), Yoshinaka and Yamabe (1986) 

and Ramamurthy criteria (2001).  The deformation modulus calculated from the 

triaxial compression test results are compared with the rock mass deformability 

criteria.  RMR classification is also studied.  The results show that the values of RMR 

do not change with joint frequency because the spacing (s) of specimen is less than 60 

mm. 

1.4.6 Discussions, conclusions and thesis writing. 

All study activities, methods, and results are documented and complied 

in the thesis. 

1.5  Thesis contents 

 This research thesis is divided into eight chapters.  The first chapter includes 

background and rationale, research objectives, scope and limitations and research 

methodology.  Chapter II presents results of the literature review to improve an 

understanding of the strength and deformation of rock mass, the existing strength 

criteria and the previous relevant testing.  Chapter III describes sample preparation.  

Chapter IV describes the test method.  Chapter V presents the experimental results.  

Chapter VI assesses the predictive capability of some rock mass strength criteria.  

Chapter VII determine the effects of joint frequency, orientation and set numbers on 

the deformation modulus of rock mass model and to assess the predictive capability of 

the deformability criteria.  Chapter VIII presents discussions, conclusions and 

recommendation for future studies.  

 

 

 

 

 

 

 

 



CHAPTER II 

LITERATURE REVIEW 

2.1 Introduction 

Relevant topics and previous research results are reviewed to improve an 

understanding of the strength and deformation of rock mass, the existing strength 

criteria and the previous relevant testing.  These include the effects of joint set on rock 

mass, effects of joint orientation, rock mass strength criterion, strength comparison 

and elastic modulus of rock mass.  Initial review results are summarized below.  

2.2 Effects of joint set on rock mass 

Yang et al. (1998) perform uniaxial tests on prismatic jointed models with two 

joint sets (type A) and three joint sets (type B) with different surface roughness and 

configurations (Figure 2.1).  The failure mode, failure strength and deformation 

behavior were investigated for each test in order to analyze the fracture mechanism of 

jointed rock.  The model material is a mixture of plaster, sand and water in the 

proportions of 1:0.25:0.92 by weight.  The fundamental properties of the model 

material are: σc = 7.63 MPa, σt = 1.05 MPa, E = 4554 MPa, ν = 0.19, γ= 1.05 g/cm3, 

φb = 31°.  From the experimental results it is found that the influence of joint 

configuration on the strength and failure modes of jointed models is distinct.  From 

the axial stress-stress curves of type A mass, it is observed a highly nonlinear and 

joint orientation dependent behavior representing jointed rocks.  To design two 
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Figure 2.1 Two types of rock mass model: type A with two joint sets (left); and type 

B with three joint sets (right) (Yang et al., 1998). 

identical strengths of joint sets in a mass, the first and third joint sets in model B was 

arranged symmetrically with respect to the axial loading.  In this circumstance, the 

shear strength of joints in each set is the same.  The steeper set demonstrates a lower 

shear strength as shown in Figure 2.2.  However, the strengths in some cases of type 

B are smaller than that in type A.  Thus, the difference between types B and A is 

primarily due to the interaction of the first and third sets. 

 

Figure 2.2 Anisotropic strength of rock masses with different dip angle: (a) type 

A; and (b) type B (Yang et al., 1998).
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2.3 Effects of joint orientation  

 Ramamurthy and Arora (1994) study the jointed rock mass strength to predict 

strength from joint factor (Jf).  The joint factors consist of joint frequency, joint 

orientation (n) and shear strength along the joint (r) (Tables 2.1 and 2.2).  

Table 2.1 Joint inclination factor n for different joint orientation angles β 

(Ramamurthy and Arora, 1994). 

β (degrees) 
Values of n 

Type of anisotropy 
U-shaped Shoulder-shaped 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

0.82 
0.46 
0.11 
0.05 
0.09 
0.30 
0.46 
0.64 
0.82 
0.95 

0.85 
0.60 
0.20 
0.06 
0.12 
0.45 
0.80 
0.90 
0.95 
0.98 

 

Table 2.2 Suggested parameter r of different ranges of σci (Ramamurthy and Arora, 

1994). 

Uniaxial compressive 
strength of intact rock, 

σci (MPa) 

Joint strength parameter, 
r Remarks 

2.5 
5.0 
15.0 
25.0 
45.0 
65.0 
100.0 

0.30 
0.45 
0.60 
0.70 
0.80 
0.90 
1.00 

Fine-grained micaceous 
to coarse-grained 
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The objective was achieved by simulating joints in intact isotropic rock cores in 

laboratory.  Anisotropy was induced into the intact specimens by developing a 

number of clean and rough-broken joints at β=0, 30, 40, 50, 60, 70, 80, 90° (β is the 

angle between the joint orientation and vertical axis through the specimen).  The types 

of joints studied are shown in Figure 2.3.  The strength of a jointed rock mainly 

depends on the orientation of the joint with respect to the direction of axial loading.  

The study revealed that rocks exhibit a minimum value of strength when the joints 

  

Figure 2.3 Types of joints studied (Ramamurthy and Arora, 1994).
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are oriented at β=30-40°.  Similar behavior was also observed in earlier studies.  The 

joint which is closer to (45-φ/2)° with the major principal stress is the most probable 

sliding joint and should be considered in estimating the value of Jf. 

Colak and Unlu (2004) study the influence of joint orientation (mi value) for 

the strength anisotropy.  The testing is performed in sandstone (possessing low degree 

of anisotropy) and siltstone, claystone (medium degree of anisotropy).  The rock 

samples have orientations (β) at 0, 30, 45, 60 and 90° (orientated constant named 

mi(β)).  Tests were conducted according to the ISRM suggested standards.  It has been 

noted that values of mi(β) vary with the orientation angle, and this is considered an 

indication of the strength anisotropy.  A suitable function that may be used to define 

the normalized value of mi(β) has been derived from a similar expression given by 

Hoek and Brown (1980).  Utilizing this equation, the following expression is 

obtained:  

 



















β+

−β
−−=β

4

)90(i

)(i

DC
BexpA1

m
m

  (2.1) 

where  mi(90) is the reference value of mi, B is the value of β (in degrees) at which mi(β) 

is minimum, and A, C and D are statistical parameters given in Table 2.3.  Finally, a 

generalized curve is obtained for all the sedimentary rocks considered (Figure 2.4).  In 

summary, when transversely isotropic intact rock specimens exhibit strength 

anisotropy, the H-B strength envelope is variable, and it is influenced by the 

orientation angle. Using the results of basic strength tests on oriented samples, the 

values of the H-B strength parameter mi are calculated for different orientation angles  
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Table 2.3 Results of statistical analyses involving non-linear least squares estimation 

method (Colak and Unlu, 2004). 

 

by conventional statistical analysis. Then, employing the expression given by 

Equation (2.1) as a model for non-linear statistical regression, the parameter mi(β) can  

 

Figure 2.4 Variation of the normalized mi parameter with the orientation angle for all 

sedimentary rock type considered (Colak and Unlu, 2004). 
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be obtained as a function of the orientation angle (β).  Finally normalized H-B 

strength envelopes are obtained according to Equation (2.2), and they also depend on 

the orientation angle.   

 ( ) 5.0
)(ci3)(i)(ci3)(ci)(1 1/m// +σσ+σσ=σσ βββββ   (2.2) 

In addition, it should be emphasized that this approach is applicable to two-

dimensional transverse isotropy problems involving intact rocks.  Although this 

approach is applicable only to plane anisotropy problems related to intact rocks, it is 

anticipated that it will be possible to extend it to include rock masses. 

2.4 Rock mass strength criterion 

Ramamurthy (2001) studies the shear strength response of some geological 

materials in triaxial compression by proposing a non-linear shear strength failure 

criterion.  This criterion has been verified with the experimental data of 41 different 

soils from clay to rockfill and with the data of a number of intact rocks, jointed rocks 

and rock-like materials tested in the axisymmetric triaxial compression exhibiting 

either brittle or ductile response.  Various types of joints introduced into the test 

specimens by the researchers are shown in Figure 2.5 and the corresponding test data 

are included in Figure 2.6.  It is found that the compressive strength of a jointed rock 

can be linked to that of the intact rock through a joint factor, Jf.  The strength criterion 

on jointed rocks is thus 

 
j

,
3
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,
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Figure 2.5 Joint systems adopted in the test specimens by some researchers 

(Ramamurthy, 2001).  

where σ1
′ and σ3

′ are major and minor effective principal stresses, respectively, σcj
′ the 

uniaxial compressive strength of jointed specimen obtained from, Bj and αj are 

strength parameters of the jointed rock.  The values of αj and Bj are obtained from the 

following expressions: 
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5.0

ci

cj
ij / 








σ

σ
=αα   (2.4) 

 [ ]ijji /04.2exp13.0B/B αα=   (2.5) 

αi and Bi are the values of the strength parameters obtained from triaxial tests on intact 

specimens of the rock.   

 Since, the weakness introduced into an intact rock is essentially due to the 

combined effect of the joints, their inclination/orientation and the strength long these 

joints, represented by Jf, both compressive strength and modulus are influenced.   

 

 

Figure 2.6 Relationship between compressive strength of jointed specimens and joint 

factor (Ramamurthy, 2001).  
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Kulatilake et al. (2006) propose a new rock mass failure criterion for biaxial 

loading conditions (Equation 2.6).  To simulate brittle rocks, a mixture of glastone, 

sand and water was used as a model material.  To investigate the failure modes and 

strength, both the intact material blocks as well as jointed model material blocks of 

size 35.6×17.8×2.5 cm having different joint geometry configurations were subjected 

to uniaxial and biaxial compressive loadings.  The results exhibited three different 

failure modes under different joint geometry configurations:  Orientation of joint sets 

and the level of intermediate principal stress play major roles with respect to the mode 

of failure.  A new intact rock failure criterion is proposed at the 3-D level.  Results 

obtained from both the intact and jointed model material blocks are used to develop a 

strongly non-linear new rock mass failure criterion for biaxial loading.  The criterion 

incorporates the fracture tensor component and covers the strengths resulting from all 

the three failure modes observed in the investigation.  Equation (2.8) shows the 

fracture tensor of a jointed mass has the capability of integrating the effects of number 

of fracture sets (N), fracture density (ρ), and distributions for size (r) and orientation 

(θ) of the fracture sets.  The fracture tensor component in a certain direction quantifies 

the directional effect of fracture geometry.   

 ( )220
I,u

b,u Fexp ω−=
σ

σ
  (2.6)  
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22
22 sinrF   (2.8) 

Saroglou and Tsiambaos (2008) propose the modified Hoek-Brown criterion 

by incorporating a new parameter (kβ) to account for the effect of strength anisotropy, 

thus being able to determine the strength of intact anisotropic rock under loading in 

different orientations of the plane of anisotropy.  The uniaxial and triaxial 

compression tests were performed on gneiss, schist and marble specimens in which 

the planes of anisotropy were oriented at angles β equal to 0°, 15°, 30°, 45°, 60°, 75° 

and 90°.  The specimen diameter was 54mm (NX size) with a height/diameter ratio 

between 2.0 and 2.5. The range of confining pressures used for the triaxial tests was 

0˂σ3˂σci/2.  From the present study were fitted to the proposed failure criterion in 

Equation (2.9).  Where σcβ is the uniaxial compressive strength at an angle of loading, 

β, and kβ is the parameter describing the anisotropy effect (Table 2.4).  In verification 

of proposed criterion, plotting the uniaxial compressive strength, determined by tests 

for different loading directions, σcβ-lab, against that predicted from the failure criterion 

for anisotropic intact rock, can also assess the accuracy of the proposed criterion.  

When loading is performed perpendicular to the planes of ‘‘inherent’’ anisotropy of 

the intact rock, the parameter kβ is equal to unity (k90 = 1) and the strength (σcβ) is 

equal to the uniaxial compressive strength σci.  The minimum value of this parameter, 

kβ = k30, occurs when loading is performed at the angle of minimum strength which 
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Table 2.4The range of the parameter (kβ) for the rocks tested has been analytically 

investigated by carrying out triaxial tests, in different orientations of the 

foliation plane (Saroglou and Tsiambaos, 2008). 

 

usually is when the angle β between the major principal stress (σ1) and the foliation 

planes is between 30° and 45°.  The prediction of uniaxial strength by the proposed 

criterion is quite good as the majority of the data plot on the diagonal line, shown in 

Figure 2.7.  Although the proposed modification was studied for metamorphic rocks 

(gneiss, schist, marble), but could also be applied to other rock types exhibiting 

‘‘inherent’’ anisotropy, e.g. sedimentary as well as igneous rocks.  The proposed 

modified criterion is intended for use for prediction of strength of intact rock, but can 

also be extended to rock masses. 

Rafiai (2011) proposes a new polyaxial criterion (Equation 2.10) and triaxial 

criterion (Equation 2.11) for brittle and ductile failure of intact rock and rock 

masses.  A comprehensive database of the results of uniaxial, triaxial, and polyaxial  
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Figure 2.7 Plot of predicted uniaxial compressive strength, σcβ-crit, against that 

determined in the laboratory, σcβ-lab for tested specimens (Saroglou and 

Tsiambaos, 2008).  

tests on intact rock was utilized for evaluation of the new criterion and comparison 

of its accuracy with the most accurate and frequently used criteria. 
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where C and D are constants and trx
1σ is the rock strength in triaxial state of stresses   

( 32 σσ = ) that can be calculated as  
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where cσ is the uniaxial compressive strength of intact rock, A and B are 

dimensionless constants that depend on the properties of rock (A≥B≥0).  The 

parameter r is a strength reduction factor indicating the extent to which, the rock  

mass has been fractured.  For intact rock r=0 and for heavily jointed rock masses r=1. 

It showed that the new criterion can maintain its accuracy over a wider range 

of stresses.  In the absence of rock mass strength data, applicability of the new 

criterion for rock mass was verified by fitting it to typical Hoek–Brown failure 

envelopes.  Regression analysis of the polyaxial strength data in the form of (σ3, σ2, 

σ1) for six rock types showed that the new criterion predict the strength more 

accurately than the Modified Wiebols–Cook (Zhou, 1994) and You criteria (You, 

2009) in all cases. 

Singh and Singh (2012) state that the Mohr–Coulomb shear strength criterion 

is the most widely used criterion for jointed rocks. In its present form there are two 

major limitations of this criterion; firstly it considers the strength response to be 

linear, and, secondly the effect of the intermediate principal stress on the strength 

behavior is ignored.  A modified non-linear form of Mohr–Coulomb strength 

criterion has been suggested in this study to overcome these limitations by following 

equations:  
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Equations (2.12) and (2.13) were used to predict σ1 value for all the triaxial tests 

with inputting only σci, σcj and φio. Where σci is the UCS of the intact rock and φio is 

the friction angle of the intact rock.  On lines similar to intact rock criterion (Singh 

and Singh, 2011) the strength criterion for jointed rocks in Equation (2.12) is 

extended to polyaxial stress condition purely on trial basis. The criterion for 

polyaxial strength is expresses as:  

( ) ( ) 
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32
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;for0≤σ3≤σ2≤σci (2.14) 

where σcj is the anistropic strength of the rock mass under uniaxial loading condition 

(σ3=σ2=0) in the direction of σ1, which will depend on the characteristics of the joints 

(frequency, orientation and surface roughness) and the properties of the intact rock; 

φjo is the anisotropic friction angle of the rock mass at low confining stress level and 

may be obtained as a function of SRF and φjo using Equation (2.13).  The criterion has 

been found to work well for those failure patterns where assumption of equivalent 

continuum is valid and the equivalent properties are function of intact rock properties 

and joint characteristics.  It is suggested that the simple polyaxial strength criterion 

(Equation 2.14) may be used in the non- linear stress analysis of underground 

openings in natural rock masses.  The applicability of the proposed criterion has been 

verified by applying it to extensive experimental data on triaxial and polyaxial test 

results on jointed rocks available from literature. 

Hashemnejad (2013) reviews a strength criterion must be capable to deal with 

different conditions of a certain type of rock having different properties.  A new 

empirical criterion (Equation 2.15) is introduced and compared to the Hoek-Brown 
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(1988) criteria, Bieniawski (1974) criteria, Ramamurthy (1989) criteria and as a 

result.   
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Where β is rock material constant; function of rock type and quality and α is slope of 

plot between (σ1/ σ3) and ((3 σc-0.5 σ3)/σ3) on log-log plot.  The above expression is 

applicable for all values of σ3 > 0.  For a discussion and comparison of the forms and 

the new form presented in this study, triaxial data of 80 samples were collected from 

different sources.  These data are homogeneous and on specimens of almost the same 

size.  In the new criterion defined, failure is as the failure strength and a failure 

criterion is not associated with the strain.  Analysis of individual data sets revealed 

that none of the existing criteria shows perfect agreement with experimental values of 

stone strength.  The analysis was carried out for different rock types, namely, 

limestone, granite, granodiorite, shale, sandstone, claystone and liparite.  For each 

particular rock type there found to be a correlation between B in the Bieniawski 

criterion and m in the Hoek-Brown criterion with σc.  The result show that the triaxial 

strength can be made by means of the Bieniawski criterion with a variable B 

dependent upon σc and α certain constant σ for each particular material.  The only 

parameter required for this criterion is the unconfined compressive strength which can 

be determined simply.  In Figure 2.8, the results of the regression of this criterion are 

shown.  Finally in Figure 2.9, which compares the results, obtained from the four 

criterions actual values obtained from triaxial tests on samples, it is better visible. 
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Figure 2.8 Plot of proposed criterion for types of rocks (Hashemnejad, 2013). 

 

Figure 2.9 Comparison between predicted and measured strength of marble, 

quartzite, granite and tuff (Hashemnejad, 2013).
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2.5 Strength comparison 

Sridevi and Sitharam (2000) study the strength and moduli of jointed rock to 

develop a rapid and exact technique based on equivalent continuum approach in 

which the properties of jointed rock masses are represented as a function of the intact 

rock properties and the properties of the rock joints, and comparison of empirical 

strength criteria of joint rock mass.  In the analysis shear strength criteria proposed by 

Hoek and Brown (1980), Yudhbir (1983), Ramamurthy (1994) and the conventional 

Mohr-Coulomb criteria are used to determine the failure stress.  The four empirical 

strength criteria are incorporated in a finite element code to determine the major 

principal stress at failure.  The results have been presented in the form of principal 

stresses at failure based on the strength criteria used for different joint orientations 

and material properties.  The results are plotted for different strength criteria and 

compared with the experimental results of Yaji (1984) and Brown and Trollope 

(1970).  The results compare well within the limit of empirical relations of different 

strength criteria and experimental framework.  From a comparison of empirical 

strength criteria it can be concluded that at higher confining pressures one can use any 

strength criteria whereas the choice of strength criteria is much more important at 

lower confining pressures.  For jointed rocks the Mohr–Coulomb criterion gives a 

high estimate of failure stress for single jointed rock but gives a fair estimate of 

failure stress for block-jointed systems. The Hoek-Brown, Yudhbir and Ramamurthy 

criteria give a fair estimate of the major principal stress at failure for almost all cases 

although the value given by Ramamurthy’s criterion is the best.  This analysis, when 

extended to specimens with filled joints and also to an axisymmetric case, would 
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throw some light on the validity of these criteria in general and also help in arriving at 

a conclusion at which one is best for a given jointed rock mass. 

Edelbro et al. (2006) presents a review of existing methods to estimate the 

rock mass strength using empirical failure criteria and classification/characterisation 

systems.  To investigate the robustness and quantitatively compare the different 

selected estimation methods, they were used in three case studies.  This paper is 

concerned with rocks whose failure mechanisms primarily are spalling and/or shear 

failure.  Furthermore, the rock mass must be possible to approximate as a continuum 

material.  For consideration, the methods had to: (i) present a numerical result that 

corresponds to the strength, (ii) have been used after the first publication, and (iii) be 

applicable to underground rock masses.  All methods comprise an expression for the 

uniaxial rock mass compressive strength, see Table 2.5.  The results from all methods 

and all case studies have also been summarized with respect to the span between 

estimated maximum and minimum values.  The results from the Round Robin tests 

showed that the Hoek–Brown- and Sheorey-RMR76, RMS, and MRMR strength 

estimation methods gave results that were in poor agreement with the measured 

strengths.  The use of the N, Yudhbir-RMR76, RMi, Q-, and Hoek–Brown-GSI 

methods, presented in Table 2.6, yielded reasonable agreement with the measured 

strengths.  These methods are thus considered the best candidates for realistic strength 

estimation.  However, the issue of ‘‘user-friendliness’’ must first be considered.  Of 

these five methods, RMi seems to be least user-friendly, primarily due to the 

difficulties of accurately determining block size.  The tables used for Hoek–Brown-

GSI, are basic, but may be experienced as inaccurate by the user.  In conclusion, the 

selected five estimation methods appear to be applicable for hard rock masses,  
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Table 2.5 Expressions of the uniaxial compressive strength of the rock mass for the elected estimation methods (Edelbro et al., 2006). 
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Table 2.6 Methods with reasonable agreement with the measured strengths (Edelbro 

et al., 2006). 

 

Notations: Q the rock mass Quality system (rock mass classification, NGI-index); Jr, 
jR the joint roughness number; Ja, jA the joint alteration number; N the rock mass 
number (rock mass classification); B the tunnel span or diameter (parameter in the N-
system); RMi the rock mass index (rock mass classification); Vb the block volume, jL 
the joint size factor; m, s and a the material constants in Hoek-Brown criterion; GSI 
the geological strength index (rock mass classification).  

provided that care is taken when choosing values for each of the included parameters 

in each method.  However, the agreement with measured strengths is still relatively 

poor, implying that precise estimates cannot be expected with any method.  This study 

has shown that the block volume was difficult to estimate; hence, a better method for 

block size estimation is warranted.  The joint strength is included in most of the 

methods, where the joint alteration and joint roughness parameters (in Q, RMi and N) 

covers more possible geological situations and, according to this study, are better 

described than the joint condition parameter in RMR.  The physical scale is not 
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included in any of the existing methods.  The N method considers the tunnel span or 

diameter (B), but not related to the scale of the rock mass. 

Goshashi et al. (2006) evaluate the most suitable criterion for predicting the 

anisotropic strength of rocks in uniaxial and triaxial compression.  Uniaxial and 

triaxial tests were conducted on specimens having orientation angles (β) of 0, 30, 45, 

60, 75 and 90 degrees.  The triaxial tests were done at confining pressures of 3, 5 and 

10 MPa.  Laboratory tests were carried out in accordance with ISRM standards on 

cylindrical samples at various orientation angles. Figure 2.10 shows the orientation 

angles of the tested samples. Figure 2.11 shows the variation of uniaxial compressive 

strength versus orientation angles.  The results are based on the average experimental 

data obtained from three to five tests for each orientation.  The results clearly show 

that the slate has a U-shaped anisotropy. Figure 2.12 shows the strength variations 

with orientation angles at various confining pressures.  The plots are drawn by taking 

the average experimental results of three to five tests. It is clear from the results that 

the maximum and minimum strengths values are observed at β = 90° and 30° 

respectively.  In order to evaluate the most suitable criterion for predicting the 

anisotropic strength of rocks in uniaxial compression, the Liao and Huong (Liao and 

Hsieh, 1999) and Ramamurthy criteria (Ramamurthy, 1993) were studied.  The 

predicted values were then plotted and compared with experimental test results.  The 

study clearly shows that both criteria have good agreements with the test results; 

however, the Liao and Huong criterion predicts the strength more precisely.  In order 

to investigate the most suitable criterion for predicting the anisotropic strength of 

rocks in triaxial compression, various criteria was used.  The most commonly criteria 

utilized in this study were Donath and Mclamore (Mclamore and Gray, 1967; 
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Fahimifar and Soroush, 2003; Goodman, 1989), Hoek and Brown criterion for 

anisotropic rocks (Hoek and Brown, 1980), Liao & Huong (Liao and Hsieh, 1999), 

Tien and Kuo (Tien, and Kuo, 2001) and Ramamurthy (Ramamurthy, 1993; Nasseri 

et al., 2003).  Figures 2.13–2.15 exhibit the comparison between the predicted 

strength values and the experimental data at different confining pressures.  In general, 

the predicted strength value by Hoek and Brown and Mclamore criteria agrees better 

with the experimental test results.  However, it should be noted that in order to use 

these criteria, it is essential to conduct three triaxial tests at orientation angles of 0°, 

30°, 75° and 90°.  In contrast, for the Ramamurthy criterion one only needs to do 

three uniaxial tests at orientation angles of 0°, 30° and 90° and one triaxial test in 90° 

at two confining pressures.  Hence, it can be concluded that if very precise values are 

needed, then one should use the Hoek and Brown and McLamore criteria by 

conducting a large number of tests.  If the number of tests is limited, then the 

Ramamurthy criterion can be utilized to predict the strength values reasonably.  

 

Figure 2.10 Orientation angles of tested slate specimens (Goshashi et al., 2006). 
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Figure 2.11 Experimental and predicted curves of uniaxial compressive strength of 

slates (Goshashi et al., 2006). 

 

Figure 2.12 Variation of strengths versus orientation angles (Goshashi et al., 2006). 
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Figure 2.13 Comparison between predicted and experimental strength at σ3 = 3 MPa 

(Goshashi et al., 2006). 

 

Figure 2.14 Comparison between predicted and experimental strength at σ3 = 5 MPa 

(Goshashi et al., 2006). 
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Figure 2.15 Comparison between predicted and experimental strength at σ3 = 10 

MPa (Goshashi et al., 2006). 

2.6 Deformation modulus of rock mass 

Yoshinaka and Yamabe (1986) present a constitutive relation for evaluating 

deformation behavior of regularly jointed rock.  Based on the concept of joint 

stiffness, an equation to evaluate the deformation of jointed rock is derived as: 
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where Ec is elastic modulus of intact rock, θ1, θ2 are the angles of inclination from the 

applied plane of major principal stress, L1 and L2 are joint spacings and ks and kn are 

joint stiffnesses.  In order to confirm the constitutive relations derived here, loading 

tests using jointed rock mass models were carried out and the applicability of the 

proposed relations was confirmed from the comparison of experimental and numerical 
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results.  To obtain the characteristics of joint deformation, joint shear and 

compression tests were performed in the laboratory using rock specimens with several 

kinds of roughness and size.  The rock used in the experiments was soft welded-tuff 

and its physical properties are listed in Table 2.7.  Now, as an example, we consider a 

model of the jointed rock mass shown in Figure 2.16.  This model can be expressed 

by the mechanical model shown in Figure 2.17 with the following conditions.  The 

state of stress is plane stress, σ3= 0. The rock mass has two sets of joints with the 

same dip direction parallel to the axis of minimum principal stress.  Each joint has the 

joint stiffnesses shown in Figure 2.17, the angles of inclination at θ1 and θ2 from the 

applied plane of maximum principal stress, and joint spacings L1 and L2, respectively.  

The intact rock is elastic with properties Ec and νc.  Loading tests have been 

performed in two series of rock mass models assembled as 32 element blocks with the 

smooth or rough surface joints.  The loading system arrangement is shown in Figure 

2.18 and the capacities for loading in the two perpendicular horizontal directions are 1 

MN and 0.5MN respectively.  The results of the loading tests are clearly shown that 

the stress-strain curves of jointed rock masses change remarkably according to the 

confining pressure and joint angle, and the curves have strong non-linearity owing to 

the characteristics of joint deformation.  

Table 2.7 Physical properties of welded-tuff (Ohya-stone) (Yoshinaka and Yamabe, 

1986). 
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Figure 2.16 Model of a jointed rock mass subjected to three principal stresses 

(Yoshinaka and Yamabe, 1986). 

 

Figure 2.17 Mechanical model for jointed rock mass with two sets of joints 

(Yoshinaka and Yamabe, 1986). 
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Figure 2.18 Loading system for jointed rock mass model, plan view (figures in mm) 

(Yoshinaka and Yamabe, 1986). 

Yang et al. (1998) describes a series of physical model tests for jointed rock 

masses with several superimposed joint sets.  The objective is to study the effect of 

joint sets on the deformation of rock mass models.  The Uniaxial tests are performed 

on prismatic jointed models with two joint sets and three joint sets with different 

surface roughness and configurations.  It was observed that the axial deformation 

behavior of the jointed model is highly nonlinear and joint orientation dependent.  The 

deformation moduli are less than that of the nonjointed rock.  The highest value of 

deformation modulus in the split model only reaches 40% of the nonjointed rocks 

(Figure 2.19).  The lowest values also occur in the range of the sliding mode.  The 

deformation modulus reduces as the number of joint set increasing.   
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Figure 2.19 Influence of joint sets on the modulus of rock masses (Yang et al., 1998). 

Ramamurthy (2001) show the modulus ratio is also linked to the failure axial 

strain of jointed rocks when tested in uniaxial compression.  Examination of the 

available experimental data of the jointed rock specimens tested in uniaxial 

compression and dense soil specimens also tested in uniaxial compression or under 

very low confining pressure suggest that when the modulus ratio (Etj/σcj for jointed 

rocks and Et/σc for soils, where Et is the tangent modulus) is less than 50, the material 

may be considered to behave as a soil; most dense/stiff soils will have this ratio in the 

range of 50.  All the available data on the ratios of moduli, Etj/Eti, obtained from tests 

in uniaxial compression with Jf for the jointed specimens are presented in Figure 2.20.  

An average relation may be represented by Equation (2.17): 
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Figure 2.20 Relationship between Etj/Eti and joint factor for jointed specimens 

(Ramamurthy, 2001). 

where Etj is the jointed rock deformation modulus, Eti is the intact deformation 

modulus, and Jf is the joint factor.  Figure 2.20 infer that when a rock mass assumes a 

value of Jf greater than 200/m, it may be treated to respond as a soil. 

Tiwari and Rao (2006) study an experimental on rock mass model with three 

joint sets under triaxial and true-triaxial stress states to assess the influence of joint 

geometry and stress ratios on deformational behavior of rock mass.  The true-triaxial 

system (TTS) developed by Rao and Tiwari (2002) was used in the present study 

(Figure 2.21a and b).  The results from experimental study are used to develop 

expressions for predicting modulus values of rock mass. As expected, the modulus 

values are increasing at all dipping with increasing confining stress, σ3 (see Figure 
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2.22).  The modulus values predicted using the Janbu (1963) and Jf (Ramamurthy, 

1993) approaches are presented along with the experimental data for comparison as 

shown in Table 2.8.  The modulus values are minimum at θ=60° and maximum at 

θ=90° obtained by both approaches and show anisotropy at all confining stresses.  It 

can be seen that joint factor approach may not be applicable in describing the 

deformation behavior of rock mass under confining stress state because Jf assumes U 

shaped anisotropy behavior of jointed rock mass, which is possible in UCS conditions 

only.  In the field a method should be selected based on input parameters available.  It 

can be seen that both approaches require entirely separate type of input parameters for 

their applicability.  Hence, the use of any approach in field solely depends upon 

availability of parameters at the site suiting with the requirement of that method.  

Further Janbu coefficient approach is recommended over joint factor approach.  The 

modulus value Ej (=Etj = Etm50) value in triaxial stress state is once known using 

Janbu’s coefficients and joint factor approaches as discussed above.  Then, based on 

the extensive data of true-triaxial test results, the expression of Ej in true-triaxial stress 

states (σ2>σ3) is suggested as in Equation (2.18). 
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where T, r joint inclination parameters and vary with inclination of joint set-I.  Once 

the Ej value in triaxial stress state is known by any of the approach discussed above, 

the Equation (2.18) can be conveniently used for prediction of modulus at any joint 

dip θ of rock mass under true-triaxial stress conditions at any σ2/σ3 level. 
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(a) 

 

 

Figure 2.21 (a) Complete set-up of true-triaxial system (after Rao and Tiwari, 2002). 

(b) Schematic diagram for set-up of true-triaxial system (Tiwari and Rao, 

2006). 

(b) 
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Figure 2.22 Prediction of modulus at different confining pressures using Janbu’s 

coefficients approach (Tiwari and Rao, 2006). 

Table 2.8 Comparison of Ej values obtained from different approaches (Tiwari and 

Rao, 2006). 

 

Maji and Sitharam (2008) use two artificial neural network models for the 

efficient prediction of the elastic moduli of jointed rocks from the elastic modulus of 

intact rocks and different joint parameters for various different confining pressure 
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conditions.  The important joint parameters which are taken into consideration 

independently are joint frequency (Jn), joint inclination parameter (n) and joint 

roughness parameter (r).  The results of this analysis are compared with the 

experimental results of Arora (1987), Roy (1993) and Yaji (1984).  First all the 896 

experimental data sets are systematically analyzed to check the correlation among 

elastic modulus ratio (EMR, ratio of elastic modulus of jointed rock to the intact rock) 

and joint factor (Jf) which takes care for the joint frequency, joint inclination and joint 

roughness.  Finally, artificial neural network models provide significant advantage for 

handling problems involving practical discontinuous system.  The present work 

supports the use of neural networks for the successful prediction of elastic properties 

jointed rocks and opens up the possibility of embedding neural networks into 

numerical modeling codes for modeling the structures in jointed rocks. 

2.7 Conclusion of review 

 The anisotropy can reduce the strength of rock mass.  The rock mass 

compressive strengths decrease significantly as the number of joints increases.  The 

increasing of joint set also reduces the strength of jointed rock mass.  Joint 

orientations are one parameter that describes rock mass properties.  The results 

indicate that the strength exhibit a U-shaped anisotropic behavior.  The minimum 

strength was observed at the angle between the joint orientation and vertical axis 

through the specimen ranging from 30 to 40°.  At the higher confining pressures the 

strengths are unaffected by joint orientation. Confining pressure is adequately 

effective to compressive strength.  In term of deformability, the joint is also reflected 

as a reduction of elastic modulus, which indicates that the jointed rocks are less than 
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that of the nonjointed rock.  The axial deformation behavior of the jointed model is 

highly nonlinear and joint orientation dependent.  The existing methods to estimate the 

rock mass strength using empirical failure criteria and classification/characterisation 

systems are reviewed and evaluated the most suitable criterion for predicting the 

anisotropic strength of rocks. 

 

 

 

 

 

 

 

 



CHAPTER III 

SAMPLE PREPARATION 

The rock samples used in this study are Phra Wihan sandstone.  This rock is 

classified as fine-grained quartz sandstones with highly uniform texture and density 

(Boonsener and Sonpiron, 1997).  They are prepared to obtain cubic specimens with 

nominal dimensions of 60×60×60 mm3 and 80×80×80 mm3.  Appendix A (Tables A.1 

through A.4) gives dimensions and density of the rock samples.  Artificial joints are 

induced into the intact specimens by developing a number of smooth and rough joints at 

different orientations.  The specimens are prepared with three different characteristics 

for triaxial compression tests.  Each case is shown in Table 3.1 and is described below. 

Case A: The single joint specimens are prepared with joint making angles of 

0, 45 and 90° to the major principal stress.  The simulated joints are saw-cut surfaces 

(case A1) and tension-induced fractures (case A2).  These specimens are prepared to 

study the effect of joint orientation and roughness.  Case A1 shows single joint plane 

with smooth surface obtain by saw-cut device.  Case A2 shows single joint plane 

simulated by a line load applied to obtain a tension-induced fracture diagonally across 

the sandstone block to study the effect of joint roughness.  The normal to the fracture 

plane makes angles of 0, 45 and 90° with the major axis of the specimen (Figure 3.1).  

The joint roughness coefficient is averaged as 6. 

Case B: One joint set specimens with four joint frequencies are prepared to 

study the effect of joint frequency.  The numbers of joints are 1, 2, 3 and 4 joints 
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Table 3.1 Specimens prepared for triaxial compression test with confining pressures 

of 0, 1, 3, 5, 7 and 12 MPa.   

 

for each set (equivalent to 17 to 67 joints per meter).  Joints are prepared by saw-cut 

method.  This case is separated into 2 cases; cases B1 and B2.  For case B1 the 

specimens are simulated by joints parallel to the major principal stress direction (β=90°) 

(β is the angle between the normal to the jointed plane and vertical axis through the 

specimen).  For case B2 the specimens are simulated with joints normal to the major 

principal stress direction (β=0°).   

Case C: Specimens with three mutually perpendicular joint sets are prepared.  

There are 1, 2, 3, 4 and 5 joints for each set (equivalent to 13 to 63 joints per meter).  

Joints are prepared by saw-cut method.  This case is simulated to study the effect of 

joint set number under various confining pressures and joint frequencies. 
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All tests are conducted under ambient temperature and dry condition. 

Line load

60 mm

60 mm
60 mm

Line load

60 mm

60 mm
60 mm

Line load

60 mm

60 mm
60 mm

 

Figure 3.1 Line load applied to obtain tension-induced fracture in specimen. 

 

 

 

 

 

 

 

 



CHAPTER IV 

TEST METHOD 

4.1  Introduction 

 The objective of this section is to describe the components of the true triaxial 

load frame and the test procedure for the triaxial compression tests.   

4.2  True triaxial loading device 

The true triaxial loading device is developed in order to test rock specimens 

under biaxial, triaxial and polyaxial stress states (Komenthammasopon and 

Fuenkajorn, 2014).  Figure 4.1 shows the true triaxial load frame.  This device is 

divided into two parts; lateral and vertical load frame (Figure 4.2).  Lateral load 

frame comprises two steel cross load frames, four  

 

Figure 4.1 True triaxial load frame used in this study. 
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Figure 4.2 Two main parts of true triaxial load frame. 

hydraulic load cells and two hand pumps.  And vertical load frame is the set of load 

frame which is inserted vertically into the crossed load frame consists of one steel 

cross load frame, two hydraulic load cells and one hand pump.  Each load frame has 

two thick supporting steel plates (430×430×38 mm3), connected by four steel rods 

with 36 millimeters in diameter.  They support the structures of the two load cells.  

The load cells, installed at the supporting plates, are connected to the hand pumps 

which have the capacity of applying load up to 1000 kN.  Besides the three main 

parts, other accessories designed to measure and monitor the rock stresses and 

deformations during testing include three 4-inch pressure gauges and three 

displacement dial gauges.  The three pressure gauges are installed at three hand 

pumps to measure the applied load, while the three dial gauges measure the 

deformations along the principal axes for further strain calculation.  During the test 

each set of the frame will apply the independent loads to provide different principal 

stresses (σ1≠ σ2≠ σ3) onto the rock specimens.  This loading device can accommodate 
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the cubic or rectangular specimens of different sizes by adjusting the distances 

between the opposite steel loading platens.   

4.3  Test procedure 

A true triaxial load frame is used to apply axial stress (σ1) and constant lateral 

stresses (σ3) to the intact and jointed rock specimens.  Before testing these specimens 

are wrapped with plastic film.  Neoprene sheets are placed in all interfaces between 

the loading platens and specimen surfaces to minimize the friction (Figure 4.3).  The 

testing system is always calibrated before  

 

 

Figure 4.3 Sample preparation before installed into the load frame. 
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testing using an electronic load cell.  The axial stress is applied along the axial 

direction of the specimen.  The constant lateral confining pressures (σ2=σ3) on the 

specimens range from 0, 1, 3, 5, 7 to 12 MPa.  After installing the jointed rock 

specimen into the load frame, four lateral hydraulic pumps apply loads to obtain the 

pre-defined magnitude of the uniform lateral stress (σ3) on the specimen.  

Simultaneously the axial stress is increased to the pre-defined σ3 value.  The test is 

started by that the axial stress (major principal stress) is increased at a constant rate 

(∂σ1/∂t) of 0.1 MPa/s using the hydraulic pump.  The specimen deformations are 

monitored in the three loading directions and are used to calculate the principal strains 

during loading.  The readings are recorded every 8.4 kN (equivalent to the 100 psi on 

the pump pressure gauges) of load increment until the applied axial stress is dropped, 

which indicates the failure of the specimen.  Photograph is taken of the post-test 

specimens and the modes of failure are identified.  All tests are conducted under 

ambient temperature. 

 

 

 

 

 

 

 

 

 



CHAPTER V 

TEST RESULTS 

5.1  Introduction 

 The objective of this section is to present the experimental results for each 

case, which comprise post-test failure mode, stress-strain curves and strengths. 

5.2  Post-test observations  

Figures 5.1 through 5.5 show some post-test specimens.  Throughout these 

tests, the specimens showed different failure patterns, depending upon joint 

configurations, stress ratios, and stress orientations.  The failure mode can be divided 

into 3 types:  

(1) Extensile splitting mode: This mode of failure involves tensile fractures 

which almost are parallel to the major principal stress direction.  The main mechanism 

of failure is the extensile failure through the intact pieces and pre-existing joints of the 

specimen. 

(2) Sliding mode: This mode of failure is characterized by movement of the 

intact pieces of the jointed specimens parallel to the joint planes. 

(3) Crushing mode: This mode of failure shows combination of large number 

of minute cracks, tensile fractures, crushed pieces and rock powder.  There was 

always a combination of more than one mechanism.  

The failure modes in each case are described below. 
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Cases A1 and A2: The single joint specimens are subjected to the applied 

load at various constant confining pressures.  The results show that extensile splitting 

mode is observed with specimens of joint parallel to the major principal stress 

direction by tensile fractures parallel to the jointed planes.  The extensile splitting 

mode is also observed with specimens of joint normal to the major principal stress 

direction by fracturing through the pre-existing joint planes.  For case A1, the 

specimens with joint making angle of 45° show sliding mode under low confining 

pressures and combinations of extensile splitting fracture and sliding under high 

confining pressures.  For case A2, single rough joint specimens show combinations of 

extensile splitting mode and sliding mode under all confining pressures. 

 

Figure 5.1 Some post-test specimens of case A1.  Numbers in brackets indicate 

[σ1, σ3, σ3] at failure in MPa. 

[36.10, 0, 0] [59.03, 3, 3] [36.10, 7, 7] [36.10, 12, 12] 

[37.60, 0, 0] [60.61, 3, 3] [85.56, 7, 7] [101.60, 12, 12] 

[0.00, 0, 0] [39.62, 3, 3] [49.98, 7, 7] [81.92, 12, 12] 
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Figure 5.2 Some post-test specimens of case A2.  Numbers in brackets indicate [σ1, 

σ3, σ3] at failure in MPa. 

Case B1: Specimens with one joint set with four joint frequencies are tested 

under various confining pressures.  The specimens show the failure of extensile 

splitting mode.  The specimens at high confining pressures show large number of 

minute cracks. 

Case B2: The one joint set specimens are tested with joints frequencies ranging 

from 1 to 4 joints per set.  Under confining pressures and increasing axial stress the 

specimens show extensile splitting mode.  

Case C: The three joint sets specimens show the failure of extensile splitting 

mode with large number of minute cracks.  When increasing of joint frequency, the  

failures tend to show crushing mode.  

[38.88, 0, 0] [58.31, 3, 3] [83.31, 7, 7] [105.52, 12, 12] 

[42.86, 0, 0] [63.43, 3, 3] [87.47, 7, 7] [105.52, 12, 12] 

[20.00, 0, 0] [61.09, 3, 3] [83.31, 7, 7] [97.19, 12, 12] 
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Figure 5.3 Some post-test specimens of case B1.  Numbers in brackets indicate [σ1, 

σ3, σ3] at failure in MPa. 

5.3  Stress-strain curves 

Figures B.1 through B.16 (Appendix B) show stress-strain curves at different 

numbers of joint per meter and confining pressures for one joint set and three joint 

sets conditions.  The stress-strain curves tend to show nonlinear behavior, particularly 

under high confining pressures and high joint frequencies.  Under the same joint 

frequency, the stress and strain increase with confining pressure.  The effect of the 

joint fracture on the rock is reflected as the reduction of stresses and increment of 

strains.  Results for the compressive strength, elastic modulus and Poisson’s ratio are 

calculated from these curves. 

[36.10, 0, 0] [59.03, 3, 3] [77.62, 7, 7] [95.08, 12, 12] 

[34.09, 0, 0] [54.72, 3, 3] [74.52, 7, 7] [90.97, 12, 12] 

[28.95, 0, 0] [51.26, 3, 3] [70.48, 7, 7] [87.36, 12, 12] 

[26.48, 0, 0] [49.98, 3, 3] [66.89, 7, 7] [82.91, 12, 12] 
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Figure 5.4 Some post-test specimens of case B2.  Numbers in brackets indicate [σ1, 

σ3, σ3] at failure in MPa. 

 

Figure 5.5 Some post-test specimens of case C.  Numbers in brackets indicate [σ1, 

σ3, σ3] at failure in MPa.  

[37.60, 0, 0] [60.61, 3, 3] [85.56, 7, 7] [101.60, 12, 12] 

[34.84, 0, 0] [59.12, 3, 3] [80.94, 7, 7] [97.63, 12, 12] 

[30.89, 0, 0] [54.63, 3, 3] [75.01, 7, 7] [93.94, 12, 12] 

[24.64, 0, 0] [54.00, 3, 3] [73.53, 7, 7] [89.20, 12, 12] 

[35.40, 0, 0] [53.10, 3, 3] [74.72, 7, 7] [90.69, 12, 12] 
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5.4  Strength results 

The compressive strength results obtained from the laboratory testing are shown 

in Tables 5.1 through 5.5.  Confining pressures vary from 0 to 12 MPa.  Figures 5.6 

through 5.9 show the major principal stresses for each case plotted as a function of 

confining pressure.  The test results can be presented in terms of the octahedral shear 

stress at failure (τoct,f) as a function of mean stress (σm), as shown in Tables 5.6 through 

5.10 and Figure  5.10, where (Jaeger et al., 2007): 

 ( ) ( ) ( )[ ]
0.5

2
13

2
32

2
21foct, 3

1






 σ−σ+σ−σ+σ−σ=τ  (5.1) 

 ( )321m 3
1

σ+σ+σ=σ  (5.2) 

Table 5.1 Strength results of case A1. 

Confining 
pressures, σ3 

(MPa) 

Major principal stresses at failure, σ1 (MPa) 

σ1

σ3

σ3  
- 

σ1

σ3
σ3  

β = 90° 

σ1

σ3

σ3  
β = 45° 

σ1

σ3

σ3  
β = 0° 

0 43.34 36.10 0.00 37.64 

1 47.80 43.08 13.88 44.65 

3 63.40 59.03 36.10 60.61 

5 74.10 68.80 44.43 71.35 

7 88.90 77.62 49.98 85.56 

12 106.87 95.08 81.92 101.60 
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Table 5.2 Strength results of case A2. 

Confining 
pressures, σ3 

(MPa) 

Major principal stresses at failure, σ1 (MPa) 

σ1

σ3

σ3  
- 

σ1

σ3
σ3  

β = 90° 

σ1

σ3

σ3  
β = 45° 

σ1

σ3

σ3  
β = 0° 

0 43.34 38.88 21.49 42.86 

1 47.80 42.00 30.55 44.57 

3 63.40 58.31 55.54 63.43 

5 74.10 72.20 69.42 72.20 

7 88.90 83.31 83.31 87.47 

12 106.87 105.52 97.19 105.52 

 

Table 5.3 Strength results of case B1. 

Confining 
pressures, 
σ3 (MPa) 

Major principal stresses at failure, σ1 (MPa) 

σ1

σ3

σ3  
Intact 

σ1

σ3
σ3  
1 Joint/set 

σ1

σ3
σ3  
2 Joints/set 

σ1

σ3
σ3  
3 Joints/set  

σ1

σ3
σ3  
4 Joints/set 

0 43.34 36.10 34.09 28.95 26.48 

1 47.80 43.08 41.11 36.57 34.76 

3 63.40 59.03 54.72 51.26 48.98 

5 74.10 68.80 65.98 64.65 59.40 

7 88.90 77.62 74.50 70.48 66.89 

12 106.87 95.08 90.97 87.36 82.91 
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Table 5.4 Strength results of case B2. 

Confining 
pressures, 
σ3 (MPa) 

Major principal stresses at failure, σ1 (MPa) 

σ1

σ3

σ3  
Intact 

σ1

σ3

σ3  
1 Joint/set 

σ1

σ3

σ3  
2 Joints/set 

σ1

σ3

σ3  
3 Joints/set  

σ1

σ3

σ3  
4 Joints/set 

0 43.34 37.64 34.84 30.89 28.64 

1 47.80 44.65 42.16 39.25 37.60 

3 63.40 60.61 59.12 54.63 54.00 

5 74.10 71.35 70.04 67.67 63.73 

7 88.90 85.56 80.94 75.01 73.53 

12 106.87 101.60 97.63 30.89 89.20 

 

Table 5.5 Strength results of case C. 

Confining 
pressures, 
σ3 (MPa) 

 

Major principal stresses at failure, σ1 (MPa) 

σ1

σ3

σ3  
Intact 

σ1

σ3

σ3  
1 Joint/set 

σ3

σ1

σ3  
2 Joints/set 

σ3

σ1

σ3  
3 Joints/set 

σ3

σ1

σ3  
4 Joints/set 

σ1

σ3

σ3  
5 Joints/set 

0 43.34 37.64 34.84 30.89 28.64 28.64 

1 47.80 44.65 42.16 39.25 37.60 37.60 

3 63.40 60.61 59.12 54.63 54.00 54.00 

5 74.10 71.35 70.04 67.67 63.73 63.73 

7 88.90 85.56 80.94 75.01 73.53 73.53 

12 106.87 101.60 97.63 93.94 89.20 89.20 
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Figure 5.6 Major principal stresses at failure as a function of confining pressure for 

various joint orientation (case A1). 
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Figure 5.7 Major principal stresses at failure are compared between smooth and 

rough surface at different orientation (case A2). 
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Figure 5.8 Major principal stresses at failure as a function of confining pressure for 

case B1(left) and  B2 (right). 
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Figure 5.9 Major principal stresses at failure as a function of confining pressure for 

case C. 
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Figure 5.10 Octahedral shear stresses at failure (τoct,f) as a function of mean stress 

(σm). 
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Table 5.6 Octahedral shear stresses at failure (Case A1). 

specimens σ3 (MPa) σ1 (MPa) σm (MPa) τoct,f (MPa) 

σ1

σ3

σ3  

0 43.34 14.45 20.43 

1 47.80 16.60 22.07 

3 63.40 23.14 28.48 

5 74.10 28.03 32.57 

7 88.90 34.33 38.64 

12 106.87 43.62 44.72 

σ1

σ3
σ3  

0 36.10 12.03 17.02 

1 43.08 15.03 19.84 

3 59.03 21.68 26.41 

5 68.80 26.27 30.08 

7 77.62 30.54 33.29 

12 95.08 39.69 39.16 

σ1

σ3

σ3  

0 0.00 0 0 

1 13.88 5.29 6.07 

3 36.10 14.03 15.60 

5 44.43 18.14 18.59 

7 49.98 21.33 20.26 

12 81.92 35.31 32.96 

σ1

σ3

σ3  

0 0 12.5 17.7 

1 1 15.5 20.6 

3 3 22.2 27.2 

5 5 27.1 31.3 

7 7 33.2 37.0 

12 12 42.9 43.7 

β = 90° 

β = 45° 

β = 0° 

Intact  
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Table 5.7 Octahedral shear stresses at failure (Case A2). 

specimens σ3 (MPa) σ1 (MPa) σm (MPa) τoct,f (MPa) 

σ1

σ3

σ3  

0 43.34 14.45 20.43 

1 47.80 16.60 22.07 

3 63.40 23.14 28.48 

5 74.10 28.03 32.57 

7 88.90 34.33 38.64 

12 106.87 43.62 44.72 

σ1

σ3
σ3  

0 38.88 12.96 18.33 

1 42.00 14.67 19.16 

3 58.31 21.44 28.06 

5 72.20 27.4 31.68 

7 83.31 32.44 35.97 

12 105.52 43.17 44.09 

σ1

σ3

σ3  

0 21.49 7.16 10.13 

1 30.55 10.85 13.93 

3 55.54 20.51 24.77 

5 69.42 26.47 30.37 

7 83.31 32.44 35.97 

12 97.19 40.40 40.16 

σ1

σ3

σ3  

0 42.86 14.29 20.20 

1 44.57 15.52 20.54 

3 63.43 23.14 28.49 

5 72.20 27.4 31.68 

7 87.47 33.82 37.93 

12 105.52 43.17 44.09 

β = 90° 

β = 45° 

β = 0° 

Intact  
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Table 5.8 Octahedral shear stresses at failure (Case B1). 

specimens σ3 (MPa) σ1 (MPa) σm (MPa) τoct,f (MPa) 

σ1

σ3
σ3  

0 36.10 12.03 17.02 

1 43.08 15.03 19.84 

3 59.03 21.68 26.41 

5 68.80 26.27 30.08 

7 77.62 30.54 33.29 

12 95.08 39.69 39.16 

σ1

σ3
σ3  

0 34.09 11.36 16.07 

1 41.11 14.37 18.91 

3 54.72 20.24 24.38 

5 65.98 25.33 28.75 

7 74.50 29.50 31.82 

12 90.97 38.32 37.22 

σ1

σ3
σ3  

0 28.95 9.65 13.65 

1 36.57 12.86 16.77 

3 51.26 19.09 22.75 

5 64.65 24.88 28.12 

7 70.48 28.16 29.92 

12 87.36 37.12 35.53 

σ1

σ3
σ3  

0 26.48 8.83 12.48 

1 34.76 12.25 15.91 

3 48.98 18.33 21.68 

5 59.40 23.13 25.64 

7 66.89 26.96 28.23 

12 82.91 35.64 33.43 

1 Joint/set 

2 Joints/set 

3 Joints/set 

4 Joints/set 
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Table 5.9 Octahedral shear stresses at failure (Case B2). 

specimens σ3 (MPa) σ1 (MPa) σm (MPa) τoct,f (MPa) 

σ1

σ3

σ3  

0 37.64 12.5 17.7 

1 44.65 15.5 20.6 

3 60.61 22.2 27.2 

5 71.35 27.1 31.3 

7 85.56 33.2 37.0 

12 101.60 42.9 43.7 

σ1

σ3

σ3  

0 34.84 11.61 16.42 

1 42.16 14.72 19.40 

3 59.12 21.71 26.46 

5 70.04 26.68 30.66 

7 80.94 31.65 34.86 

12 97.63 40.54 40.36 

σ1

σ3

σ3  

0 30.89 10.3 14.6 

1 39.25 13.8 18.0 

3 54.63 20.2 24.3 

5 67.67 25.9 29.5 

7 75.01 29.7 32.1 

12 30.89 39.3 38.6 

σ1

σ3

σ3  

0 28.64 9.5 13.5 

1 37.60 13.2 17.3 

3 54.00 20.0 24.0 

5 63.73 24.6 27.7 

7 73.53 29.2 31.4 

12 89.20 37.7 36.4 

1 Joint/set 

2 Joints/set 

3 Joints/set 

4 Joints/set 
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Table 5.10 Octahedral shear stresses at failure (Case C). 

specimens σ3 (MPa) σ1 (MPa) σm (MPa) τoct,f (MPa) 

σ1

σ3

σ3  

0 37.64 11.81 16.71 

1 44.65 14.63 19.28 

3 60.61 19.71 23.63 

5 71.35 25.43 28.90 

7 85.56 29.57 31.92 

12 101.60 38.23 37.09 

σ3

σ1

σ3  

0 34.84 10.95 15.49 

1 42.16 13.75 18.03 

3 59.12 18.68 22.17 

5 70.04 23.32 25.90 

7 80.94 27.98 29.67 

12 97.63 35.77 33.61 

σ3

σ1

σ3  

0 30.89 8.51 12.04 

1 39.25 12.23 15.88 

3 54.63 17.39 20.35 

5 67.67 22.24 24.39 

7 75.01 25.48 26.13 

12 93.94 32.81 29.42 

σ3

σ1

σ3  

0 28.64 6.80 9.61 

1 37.60 10.07 12.83 

3 54.00 15.70 17.95 

5 63.73 20.41 21.79 

7 73.53 23.68 23.59 

12 89.20 31.14 27.07 

4 Joints/set 

3 Joints/set 

2 Joints/set 

1 Joint/set 
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Table 5.10 Octahedral shear stresses at failure (Continue). 

specimens σ3 (MPa) σ1 (MPa) σm (MPa) τoct,f (MPa) 

σ1

σ3

σ3  

0 28.64 6.04 8.55 

1 37.60 9.11 11.47 

3 54.00 13.74 15.18 

5 63.73 18.13 18.56 

7 73.53 21.54 20.57 

12 89.20 28.75 23.68 
 

5 Joints/set 

 

 

 

 

 

 

 

 



CHAPTER VI 

STRENGTH CRITERIA 

6.1  Introduction 

 The objective of this section is to assess the predictive capability of some rock 

mass strength criteria developed by Hoek-Brown, Sheorey, Yudhbir and 

Ramamurthy-Arora by comparing with the test results. 

6.2  Strength results 

The triaxial compressive strength of the test models decreases with increasing 

joint frequency for all cases.  For single joint set specimens, the strength of the 

specimens with joints normal to σ1 axis always yields greater strength than those with 

joints parallel to σ1 axis.  The lowest strengths are obtained when the joint planes 

make angles 45° with the major principal stress.  It can be postulated that the rock 

mass model strengths would be lower if the applied stress makes oblique angles with 

the joint planes.  The single joints studied here are simulated from smooth saw-cut 

surfaces and tension-induced fractures.  The strengths of the rock mass model for saw-

cut surfaces are lower than those of the tension-induced fractures.  The drop of 

strengths for the three joint set specimens tends to be more rapid than those of the 

single joint set specimens.  One important finding from the study is that the decrease 

of rock mass strength as the joint frequency increases tends to be equally act 

throughout the ranges of confining pressures used here (1-12 MPa). 
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6.3  Strength criteria 

Four strength criteria that are commonly used to determine rock mass strength 

are compared against the triaxial strength data obtained from three mutually 

perpendicular joint set specimens.  These include the Hoek and Brown (1980), 

Sheorey (1989), Yudhbir (1983) and Ramamurthy and Arora (1994) criteria.  

Exhaustive reviews of these criteria have been given elsewhere (Edelbro et al., 2007; 

Sheorey, 1997), and hence will not be repeated here.  They are all formulated in the 

terms of σ1 and σ3.  The predictive capability of these strength criteria is determined 

and compared using the coefficient of correlation (R2) as an indicator.  The higher R2 

value indicates the better predictability of the criterion.  Governing equations of these 

strength criteria used in the regression are described briefly below. 

The Hoek and Brown criterion defines the relationship between the major and 

minor stresses at failure by 

 2
c3c31 sσσmσσσ ++=  (6.1) 

where m and s are constants which depend on the properties of the rock.   

The sheorey criterion defines the relationship between the major and minor 

principal stresses at failure by: 

 

mb

tm

3
cm1 σ

σ
1σσ 








+=  (6.2) 

where bm is a constant, σcm is the uniaxial compressive strength of rock mass, and σtm 

is the uniaxial tensile strength of rock mass.   
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Yudhbir et al. (1983) modify the original Bieniawski criterion (1974).  The 

new criterion can be written in a more general form as: 

 

α









σ
σ

+=
σ
σ

c

3

c

1 BA  (6.3) 

where A is a dimensionless parameter whose value depends on rock mass quality, and 

B is material constant depending on rock type  

Ramamurthy and Arora (1994) present a nonlinear shear strength response of 

intact rocks in the form of a modified Mohr-Coulomb theory.  For a jointed rock mass 

the criterion can be written as: 

 

α









σ
σ

=
σ

σ−σ

3

c

3

31 B  (6.4) 

where α and B are the material constants for the rock mass, and σcm is the uniaxial 

compressive strength of rock mass.  The results show that σcm is the most effective 

parameter to dictate the strength of rock mass.  However, this criterion can not be 

used to predict rock mass strength under unconfined condition.  Ramamurthy suggests 

an alternative formula in terms of joint factor Jf which can be written by: 

 ( )fccm 0.008Jexpσσ −=  (6.5) 

 


















=

0.5

c

cm
i σ

σ
2.037/0.13expBB  (6.6) 

 ( )0.5
ccmi /σσαα =  (6.7) 
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The constants calculated from SPSS program for strength criteria are shown in 

Table 6.1.  All criteria can provide good correlation with the test data, with R2 greater 

than 0.9.  Figure 6.1 compares the test data with curve fits of the strength criteria in 

the terms of σ1 as a function of σ3 at failure.  Figure 6.2 shows the decrease of 

parameters m and s of Hoek-Brown criterion as the joint frequency increases.  The 

parameters m and s of one joint set specimen are greater than those of the three joint 

set specimens.  The uniaxial compressive strengths of rock mass models predicted by 

sheorey and Ramamurthy-Arora strength criteria are shown in Figure 6.3.   

Table 6.1  Strength criteria and their constants calibrated from the test data. 

Specimens Parameters 
σ1

σ3

σ3  

σ1

σ3

σ3  
σ3

σ1

σ3  
σ3

σ1

σ3  
σ3

σ1

σ3  

σ1

σ3

σ3  

Hoek-Brown (1980) 

σ1= σ3+(mσc σ3+sσc
2)a 

m 14.10 11.30 9.22 7.89 6.03 4.83 

s 1.0 0.7 0.5 0.4 0.3 0.2 

a 0.5 0.5 0.5 0.5 0.5 0.5 

R2 0.992 0.969 0.984 0.971 0.979 0.986 

Sheorey et al. (1989) 

σ1= σcm(1+ σ3/σtm)bm 

σcm 41.8 35.8 31.0 26.5 22.9 19.6 

σtm 2.6 2.1 1.8 1.4 1.2 1.0 

bm 0.54 0.51 0.48 0.47 0.46 0.45 

R2 0.991 0.986 0.988 0.991 0.992 0.997 

Yudhbir et al. (1983) 

σ1/σc=A+B(σ3/σc)α 

A 0.97 0.82 0.70 0.59 0.50 0.43 

B 4.04 3.64 3.31 2.98 2.71 2.44 

α 0.79 0.76 0.72 0.70 0.68 0.65 

R2 0.986 0.984 0.986 0.987 0.989 0.993 

Ramamurthy-Arora 

(1994) 

(σ1- σ3)/σ3=B(σcm/σ3)α 

σcm 43.3 37.4 32.3 27.5 24.0 20.7 

B 3.19 3.15 3.13 3.08 3.00 2.90 

α 0.69 0.69 0.69 0.69 0.69 0.69 

R2 0.989 0.973 0.979 0.980 0.997 0.995 
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Figure 6.1 Test data (points) and curve fits of four strength criteria. 
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Figure 6.2 Hoek-Brown parameters m and s as a function of joint frequency. 
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Figure 6.3 Uniaxial compressive strengths of rock mass model (σcm) with three joint 

sets, σcm calculated from Sheorey and Ramamurthy-Arora criteria as a 

function of joint frequency. 

 

 

 

 

 

 

 

 

 

 



CHAPTER VII 

DEFORMATION MODULUS 

7.1  Introduction 

 The objective of this section is to determine the effects of joint frequency, 

orientation and set numbers on the deformation modulus of rock mass model and to 

assess the predictive capability of the empirical criteria developed by Goodman 

(1970), Yoshinaka and Yamabe (1986) and Ramamurthy (2001) by comparing with 

the test results. 

7.2  Deformation modulus 

The deformation parameters are determined from the tangent of the stress-

strain curves at about 50% of the failure stress.  An attempt is made to calculate the 

deformation moduli along the three loading directions.  It is initially assumed that the 

Poisson’s ratio (ν) of the specimens is the same for all principal planes.  The 

deformation moduli along the major, intermediate and minor principal directions can 

then be calculated by (Jaeger et al., 2007): 

 ε1 = σ1/E1-ν (σ2/E2+σ3/E3) (7.1) 

 ε2 = σ2/E2-ν (σ1/E1+σ3/E3) (7.2) 

 ε3 = σ3/E3-ν (σ1/E1+σ2/E2) (7.3) 
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where ε1, ε2 and ε3 are the major intermediate and minor principal strains, and E1, E2 

and E3 are the deformation moduli along the major, intermediate and minor principal 

directions.  The results show that for one joint set specimens the deformation moduli 

that are parallel to the joint planes show highest values compared to those that are 

normal to the joints.  This is true for all joint frequencies as shown in Figure 7.1.  For 

three joint set specimens, the deformation moduli are similar for all principal 

directions (Figure 7.2).  The deformation modulus decreases with increasing joint 

frequency, and tends to increase with confining pressure (Figure 7.3).  The Poisson’s 

ratio of the specimens with different joint frequencies ranges from 0.23 to 0.29 

(Figure 7.4).  The effect of the confining pressure on the Poisson's ratio cannot be 

clearly observed from the test results. This may be due to the intrinsic variability 

among the test models. 
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Figure 7.1  Deformation moduli parallel joint plane as a function those normal to 

joint plane. 
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Figure 7.2  Deformation moduli calculated along the intermediate and minor 

principal axes as a function of the major principal axis. 
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Figure 7.3 Deformation modulus as a function of confining pressure. 
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Figure 7.4 Poisson’s ratio values as a function of joint frequency for all cases. 

7.3  Deformability criteria 

Three empirical criteria are used to estimate rock mass deformation modulus 

(Em).  They include the Goodman (1970), Yoshinaka and Yamabe (1986) and 

Ramamurthy criteria (2001).  The deformation modulus calculated from the triaxial 

compression test results for each case are compared with the rock mass deformability 

criteria.  A brief description of each criterion is described below. 

Goodman (1970) has presented a method to evaluate the elastic constants for 

an equivalent continuous material representative of a rock mass regularly crossed by a 

single set of joints using the concept of joint stiffness. The criterion can be written as: 
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+=  (7.4) 

where Er is the rock deformation modulus, kn is the joint normal stiffness, s is the 

average joint spacing and En is the equivalent deformation modulus.  

Yoshinaka and Yamabe (1986) study the stress-strain behavior of a 

discontinuous rock mass. Based on the concept of joint stiffness, an equation to 

evaluate the deformation of jointed rock is derived as: 

1

2n

2

2s

2

2

2
2

1n

2

1s

2

1

1
2

ct k
cos

k
sin

L
cos

k
cos

k
sin

L
cos

E
1

E
1 2211

−





















 θ
+

θθ
+









 θ
+

θθ
+=  (7.5) 

where Ec is elastic modulus of intact rock, θ1, θ2 are the angles of inclination from 

the applied plane of major principal stress, L1 and L2 are joint spacings and ks and kn 

are joint stiffnesses.  

Ramamurthy (2001) defines the relationship between the ratios of moduli, 

Etj/Eti and Jf. which can be represented by: 

( )f
2

ti

tj J101.15exp
E
E −×−=  (7.6) 

where Etj is the jointed rock deformation modulus, Eti is the intact deformation 

modulus, and Jf is the joint factor which has been defined by the following relation: 

rn
JJ n

f ⋅
=  (7.7) 
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where Jn is joint frequency, i.e. number of joints per meter, n is inclination parameter 

depending upon the orientation of the joint β (Table 2.1), r is joint strength parameter 

dependent upon the joint condition (Table 2.2). 

The comparisons between the test data and predictions are shown in Figure 

7.5.  Results indicated that the Goodman (1970) and Yoshinaka and Yamabe (1986) 

equations give good prediction for the deformation modulus normal to joint planes, 

Em,n (R2=0.954).  Yoshinaka and Yamabe (1986) equation also predicts the 

deformation modulus of rock mass model with three joint sets given R2=0.839.  

Ramamurthy (2001) equation gives a fair estimation for the deformation modulus 

normal to the joint planes, Em,n (R2=0.869).  It gives a slightly better prediction 

(R2=0.968) for the deformation modulus that is parallel to the joint planes (Em,p). 
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Figure 7.5  Comparisons between the test data (points) and predictions (lines). 
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7.4  Modified Goodman’s equation 

The Goodman (1970) equation is modified to determine deformation modulus 

in different directions.  It is proposed as: 

inm E
1

sk
N

E
1

+=  (7.8) 

where Em is the jointed rock deformation modulus, Ei is the intact deformation 

modulus, s is the joint spacing, kn is the joint normal stiffness and N is a parameter 

which value depends on joint set direction (Table 7.1).  The equation shows well 

prediction for all cases as shown in Table 7.2 and Figure 7.6.  The proposed equation 

however can only predict the deformation modulus in the directions normal and 

parallel to the joint planes. 

Table 7.1 Parameter N defined for modified Goodman’s equation. 

Number 
of joint sets 

Orientation of joint 
set to σ1 

Case N 

1 1 parallel 
σ1 Em,p

 
0.5* 

1 1 normal 
σ1 Em,n

 

1.0* 
(original Goodman) 

2 1 parallel, 1 normal 
σ1 Em,p Em,n

 
1.5 

3 2 parallels, 1normal 
σ1 Em

Em

Em

 
2.0* 

* Verified by the test results
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Table 7.2 Coefficient of correlation of each criterion. 

Criteria 

R2 
Case 

1

σ1 Em,p

 

Case 

2

σ1 Em,n

 

Case 

3

σ1 Em

Em

Em

 

Goodman (1970) - 0.954 - 

Yoshinaka and Yamabe (1986) - 0.954 0.839 

Ramamurthy (2001) 0.968 0.869 - 

Modified Goodman 0.970 0.954 0.951 
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Figure 7.6  Comparisons between the test data (points) and modified Goodman 

equation (lines). 

 

 

 

 

 

 

 

 



CHAPTER VIII 

DISCUSSIONS AND CONCLUSIONS 

8.1  Discussions and conclusions 

 Triaxial compressive strength tests have been performed to determine strength 

and deformability of rock mass model with multiple joint sets and joint frequencies 

under confining pressures up to 12 MPa.  The results indicate that the triaxial 

compressive strength of the test models decreases with increasing joint frequency for 

all cases.  These generally agree with the experimental observations by Ramamurthy 

and Arora (1994) on jointed specimens of plaster of Paris.  For single joint set 

specimens, the strength of the specimens with joints normal to σ1 axis always yields 

greater strength than those with joints parallel to σ1 axis.  The lowest strengths are 

obtained when the joint planes make angles 45° with the major principal stress.  These 

agree reasonably well with experimental observations by Nasseri et al. (2002), Colak 

and Unlu (2004), Goshtasbi et al. (2006) and Saroglou and Tsiambaos (2008).  It can 

be postulated that the rock mass model strengths would be lower if the applied stress 

makes oblique angles with the joint planes.  The single joints are simulated from both 

smooth saw-cut surfaces and tension-induced fracture.  The strengths of saw-cut 

surface specimens are lower than those of the tension-induced fractures.  The strengths 

of the rock mass model with smooth joint surfaces obtained here, therefore, represent 

the lower bound of the strengths of actual rock mass where most fractures are rough.  

The decrease of the strengths for the three joint set specimens tends to be more rapid 
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than those of the single joint set specimens.  One important finding from the study is 

that the decrease of rock mass strength as the joint frequency increases tends to be 

equally act throughout the ranges of confining pressures used here (1-12 MPa).   

 Four strength criteria that are commonly used to determine rock mass strength 

are compared against the triaxial strength data obtained from three mutually 

perpendicular joint set specimens.  These include the Hoek and Brown (1980), 

Sheorey (1989), Yudhbir (1983) and Ramamurthy and Arora (1994) criteria.  All 

strength criteria used here give a good estimation of the specimen compressive 

strengths.  The Hoek-Brown criterion can effectively describe the effect of joint 

frequency on the strength results.  The parameter s decreases rapidly with increasing 

joint frequency while parameters m tend to be insensitive with the joint frequency, 

ranging between 4.83 and 14.10.  The parameters m and s of the one joint set 

specimens are higher than those of the three joint set specimens.  This suggests that 

decreasing of joint set numbers will increase the rock mass strength.  The uniaxial 

compressive strength of rock mass model (σcm) decreases with increasing joint 

frequency, which agrees reasonably well with the σcm calculated from Sheorey and 

Ramamurthy-Arora criteria.   

 The deformation parameters are determined from the tangent of the stress-

strain curves at about 50% of the failure stress.  An attempt is made to calculate the 

deformation moduli along the three loading principal directions.  The results show 

that for one joint set specimens the deformation moduli that are parallel to the joint 

planes show highest values compared to those that are normal to the joints.  This is 

true for all joint frequencies.  For three joint set specimens, the deformation moduli 

are similar for all principal directions.  The deformation modulus decreases with 
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increasing joint frequency, and tends to increase with the confining pressure.  These 

agree with the experimental observations by Tiwari and Rao (2006).  The Poisson’s 

ratio of the specimens with different joint frequencies ranges from 0.23 to 0.29.  The 

effect of the confining pressure on the Poisson's ratio cannot be clearly observed from 

the test results. This may be due to the intrinsic variability among the test models.   

 Three empirical criteria are used to estimate rock mass deformation modulus 

(Em).  They include the Goodman (1970), Yoshinaka and Yamabe (1986) and 

Ramamurthy criteria (2001). The deformation modulus calculated from the triaxial 

compression test results for each case are compared with the rock mass deformability 

criteria.  The results show that Goodman (1970) criterion gives the good prediction of 

the deformation moduli for one joint set specimens with joint normal to the major 

principal axis (Case 2) but cannot determine the deformation modulus for specimens 

with more than one joint set.  Yoshinaka and Yamabe (1986) equation can determine 

the specimen with more than one joint set and orientation but this equation does not 

consider the deformation modulus that have joint planes parallel to σ1.  This is 

opposite to the results from testing where the deformation moduli decrease with 

increasing joint frequency.  Ramamurthy criterion can predict the deformation moduli 

along the joint plane (Case 1) and perpendicular to the joint plane (Case 2).  The 

deformation moduli of specimens with three joint set cannot be predicted with this 

criterion.  Goodman (1970) equation is modified here to determine the deformation 

modulus along three principal directions.  The parameter N is proposed whose value 

depends on joint set direction.  The proposed equation can only predict the 

deformation modulus in the directions normal and parallel to the joint planes. 
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8.2  Recommendations for future studies 

The uncertainties of the investigation and results discussed above lead to the 

recommendations for further studies.  More testing is required on a variety of rocks 

with different joint roughness and orientations.  More investigation is also desirable to 

confirm or verity that the effect of joint frequency by using the rock mass 

classification system.  The test results under higher confining pressure should be 

obtained. 
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Table A.1 Intact rock specimens. 

Specimen No. Dimension (mm3) Density (g/cc) 

PWSS-01-I 61.50×61.00×60.80 2.24 

PWSS-02-I 60.40×60.50×60.70 2.25 

PWSS-03-I 60.20×61.40×62.30 2.31 

PWSS-04-I 60.70×62.00×62.00 2.30 

PWSS-05-I 59.40×61.40×62.60 2.24 

PWSS-06-I 59.50×60.40×60.00 2.29 

PWSS-07-I 60.80×61.40×51.60 2.26 

PWSS-08-I 60.50×61.00×60.70 2.25 

PWSS-09-I 61.10×61.70×60.15 2.24 

PWSS-10-I 61.00×61.75×60.00 2.22 
 

Table A.2 One joint set specimens. 

Specimen No. Cases Number of 
joints per set Dimension (mm3) Density 

(g/cc) 
PWSS-1S-1J -01 A1 1 62.00×62.00×62.26 2.22 

PWSS-1S-1J -02 A1 1 62.00×62.36×62.00 2.25 

PWSS-1S-1J -03 A1 1 62.56×62.78×62.36 2.28 

PWSS-1S-1J -04 A1 1 62.48×61.70×62.30 2.17 

PWSS-1S-1J -05 A1 1 62.30×62.88×62.80 2.30 

PWSS-1S-1J -06 A1 1 62.40×63.50×62.30 2.26 

PWSS-1S-1J -07 A1 1 62.30×62.90×63.20 2.28 

PWSS-1S-1J -08 A1 1 62.90×62.10×63.00 2.33 

PWSS-1S-1J -09 A1 1 62.20×62.42×63.54 2.24 

PWSS-1S-1J -10 A1 1 61.40×61.38×63.26 2.12 

PWSS-1S-1J -11 A1 1 62.76×62.36×63.82 2.27 

PWSS-1S-1J -12 A1, B1 1 62.00×62.00×62.26 2.22 

PWSS-1S-1J -13 A1, B1 1 60.00×61.00×60.00 2.28 
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Table A.2 One joint set specimens (continue). 

Specimen No. Cases Number of 
joints per set Dimension (mm3) Density 

(g/cc) 
PWSS-1S-1J -14 A1, B1 1 61.50×61.00×60.32 2.26 

PWSS-1S-1J -15 A1, B1 1 60.00×60.30×59.78 2.30 

PWSS-1S-1J -16 A1, B1 1 60.00×60.30×60.30 2.27 

PWSS-1S-1J -17 A1, B1 1 60.70×60.00×60.00 2.29 

PWSS-1S-1J -18 A1, B1 1 59.90×60.40×60.30 2.30 

PWSS-1S-1J -19 A1, B1 1 60.60×60.80×60.30 2.30 

PWSS-1S-1J -20 A1, B1 1 60.40×60.60×60.70 2.24 

PWSS-1S-1J -21 A1, B1 1 60.50×60.60×60.60 2.21 

PWSS-1S-1J -22 A1, B1 1 60.60×60.30×60.10 2.25 

PWSS-1S-1J -23 A1, B1 1 59.00×60.70×58.70 2.35 

PWSS-1S-1J -24 A1, B2 1 60.50×60.50×60.70 2.19 

PWSS-1S -1J-25 A1, B2 1 60.90×60.80×60.90 2.22 

PWSS-1S -1J-26 A1, B2 1 60.60×60.80×60.90 2.19 

PWSS-1S -1J-27 A1, B2 1 60.10×60.80×60.50 2.22 

PWSS-1S -1J-28 A1, B2 1 60.20×60.30×60.30 2.29 

PWSS-1S -1J-29 A1, B2 1 60.40×60.30×60.50 2.21 

PWSS-1S -1J-30 A1, B2 1 60.00×60.50×58.40 2.27 

PWSS-1S -1J-31 A1, B2 1 60.70×60.30×60.30 2.24 

PWSS-1S -1J-32 A1, B2 1 60.40×60.70×60.60 2.20 

PWSS-1S -1J-33 A1, B2 1 58.60×60.70×60.20 2.24 

PWSS-1S -1J-34 A1, B2 1 60.60×60.60×60.50 2.23 

PWSS-1S -1J-35 A1, B2 1 060.50×60.50×60.30 2.24 

PWSS-1S -1J-36 A1, B2 1 60.40×60.60×60.40 2.25 

PWSS-1S-2J -01 B1 2 60.70×60.60×60.50 2.22 

PWSS-1S-2J -02 B1 2 60.70×60.20×60.70 2.23 

PWSS-1S-2J -03 B1 2 60.10×60.80×60.50 2.22 
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Table A.2 One joint set specimens (continue). 

Specimen No. Cases Number of 
joints per set Dimension (mm3) Density 

(g/cc) 
PWSS-1S-2J -04 B1 2 60.50×60.50×60.50 2.20 

PWSS-1S-2J -05 B1 2 52.56×52.70×53.52 2.25 

PWSS-1S-2J -06 B1 2 52.50×52.00×52.56 2.26 

PWSS-1S-2J -07 B1 2 52.50×51.50×51.60 2.24 

PWSS-1S-2J -08 B1 2 50.30×53.40×51.20 2.25 

PWSS-1S-2J -09 B1 2 49.84×53.20×51.80 2.23 

PWSS-1S-2J -10 B1 2 48.56×52.76×51.60 2.28 

PWSS-1S-2J -11 B1 2 52.10×51.40×50.50 2.29 

PWSS-1S-2J -12 B1 2 52.16×50.50×51.46 2.24 

PWSS-1S-2J -13 B2 2 62.10×63.00×63.30 2.21 

PWSS-1S-2J -14 B2 2 51.80×50.00×50.00 2.22 

PWSS-1S-2J -15 B2 2 61.50×61.50×62.36 2.21 

PWSS-1S-2J -16 B2 2 53.00×51.48×52.00 2.23 

PWSS-1S-2J -17 B2 2 60.70×58.00×59.20 2.22 

PWSS-1S-2J -18 B2 2 60.20×61.10×60.80 2.26 

PWSS-1S-2J -19 B2 2 60.70×60.70×61.00 2.25 

PWSS-1S-2J -20 B2 2 58.44×61.00×60.00 2.27 

PWSS-1S-2J -21 B2 2 61.00×61.00×61.00 2.21 

PWSS-1S-2J -22 B2 2 58.00×60.50×59.90 2.23 

PWSS-1S-2J -23 B2 2 59.80×60.00×58.24 2.24 

PWSS-1S-2J -24 B2 2 61.80×61.25×61.15 2.25 

PWSS-1S-3J -01 B1 3 60.00×59.20×57.90 2.24 

PWSS-1S-3J -02 B1 3 61.15×60.80×60.50 2.23 

PWSS-1S-3J -03 B1 3 59.50×59.30×61.60 2.24 

PWSS-1S-3J -04 B1 3 58.60×60.20×59.40 2.25 

PWSS-1S-3J -05 B1 3 60.80×59.65×60.50 2.27 
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Table A.2 One joint set specimens (continue). 

Specimen No. Cases Number of 
joints per set Dimension (mm3) Density 

(g/cc) 
PWSS-1S-3J -06 B1 3 60.75×60.50×60.70 2.22 

PWSS-1S-3J -07 B1 3 61.10×59.00×61.40 2.24 

PWSS-1S-3J -08 B1 3 61.45×59.20×62.30 2.26 

PWSS-1S-3J -09 B1 3 60.50×59.10×59.50 2.27 

PWSS-1S-3J -10 B1 3 61.30×59.60×62.80 2.25 

PWSS-1S-3J -11 B1 3 61.50×59.70×62.70 2.24 

PWSS-1S-3J -12 B1 3 61.45×59.20×62.30 2.27 

PWSS-1S-3J -13 B2 3 60.40×61.10×61.10 2.28 

PWSS-1S-3J -14 B2 3 60.75×61.30×60.10 2.32 

PWSS-1S-3J -15 B2 3 61.80×59.80×59.90 2.24 

PWSS-1S-3J -16 B2 3 60.80×60.30×58.50 2.25 

PWSS-1S-3J -17 B2 3 58.45×59.70×61.20 2.25 

PWSS-1S-3J -18 B2 3 58.00×62.50×60.85 2.23 

PWSS-1S-3J -19 B2 3 61.65×61.20×61.70 2.30 

PWSS-1S-3J -20 B2 3 58.10×60.85×61.35 2.29 

PWSS-1S-3J -21 B2 3 59.60×61.10×62.00 2.22 

PWSS-1S-3J -22 B2 3 59.10×60.00×61.80 2.27 

PWSS-1S-3J -23 B2 3 61.00×62.50×61.50 2.23 

PWSS-1S-3J -24 B2 3 61.15×62.10×59.80 2.25 

PWSS-1S-4J -01 B1 4 60.20×60.20×59.40 2.23 

PWSS-1S-4J -02 B1 4 60.45×61.20×60.40 2.25 

PWSS-1S-4J -03 B1 4 59.20×60.10×60.00 2.24 

PWSS-1S-4J -04 B1 4 59.60×60.00×61.40 2.25 

PWSS-1S-4J -05 B1 4 60.10×60.15×60.40 2.26 

PWSS-1S-4J -06 B1 4 59.95×60.40×60.60 2.23 

PWSS-1S-4J -07 B1 4 60.10×59.90×61.10 2.27 
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Table A.2 One joint set specimens (continue). 

Specimen No. Cases Number of 
joints per set Dimension (mm3) Density 

(g/cc) 
PWSS-1S-4J -08 B1 4 60.15×59.90×61.20 2.26 

PWSS-1S-4J -09 B1 4 60.00×59.90×59.90 2.24 

PWSS-1S-4J -10 B1 4 60.30×59.85×60.80 2.28 

PWSS-1S-4J -11 B1 4 60.20×59.90×61.70 2.23 

PWSS-1S-4J -12 B1 4 60.30×60.40×61.30 2.23 

PWSS-1S-4J -13 B2 4 60.70×61.70×61.30 2.25 

PWSS-1S-4J -14 B2 4 60.15×60.30×60.80 2.24 

PWSS-1S-4J -15 B2 4 60.20×59.70×61.10 2.26 

PWSS-1S-4J -16 B2 4 60.10×60.50×59.80 2.23 

PWSS-1S-4J -17 B2 4 59.75×59.80×60.25 2.27 

PWSS-1S-4J -18 B2 4 59.90×61.50×60.00 2.22 

PWSS-1S-4J -19 B2 4 60.75×61.00×60.70 2.25 

PWSS-1S-4J -20 B2 4 59.10×60.55×61.15 2.26 

PWSS-1S-4J -21 B2 4 60.60×60.10×60.00 2.27 

PWSS-1S-4J -22 B2 4 60.30×60.50×61.25 2.24 

PWSS-1S-4J -23 B2 4 61.50×62.00×61.00 2.24 

PWSS-1S-4J -24 B2 4 60.45×60.10×60.20 2.23 
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Table A.3 Single rough joint specimens. 

Specimen No. Cases Number of 
joints per set Dimension (mm3) Density 

(g/cc) 
PWSS-R-1J-01 A2 1 61.50×62.12×62.16 2.21 

PWSS-R-1J-02 A2 1 61.78×62.04×62.22 2.25 

PWSS-R-1J-03 A2 1 63.14×62.38×62.82 2.32 

PWSS-R-1J-04 A2 1 62.16×62.70×61.38 2.17 

PWSS-R-1J-05 A2 1 62.40×62.36×61.92 2.18 

PWSS-R-1J-06 A2 1 62.16×63.44×62.94 2.25 

PWSS-R-1J-07 A2 1 62.28×62.26×62.32 2.21 

PWSS-R-1J-08 A2 1 61.30×61.96×61.18 2.20 

PWSS-R-1J-09 A2 1 62.06×61.98×62.16 2.22 

PWSS-R-1J-10 A2 1 63.38×62.20×62.36 2.26 

PWSS-R-1J-11 A2 1 62.06×62.26×62.30 2.21 

PWSS-R-1J-12 A2 1 61.38×62.16×61.98 2.25 

PWSS-R-1J-13 A2 1 63.32×62.86×62.56 2.26 

PWSS-R-1J-14 A2 1 62.30×62.06×62.06 2.22 

PWSS-R-1J-15 A2 1 62.38×61.98×62.26 2.20 

PWSS-R-1J-16 A2 1 62.16×61.40×62.34 2.24 

PWSS-R-1J-17 A2 1 62.38×62.06×62.54 2.19 

PWSS-R-1J-18 A2 1 61.98×61.98×62.22 2.23 

PWSS-R-1J-19 A2 1 62.00×62.00×62.26 2.39 

PWSS-R-1J-20 A2 1 62.78×63.30×62.20 2.28 

PWSS-R-1J-21 A2 1 62.06×62.60×63.30 2.28 

PWSS-R-1J-22 A2 1 62.10×63.00×63.30 2.25 

PWSS-R-1J-23 A2 1 61.50×61.50×62.36 2.27 

PWSS-R-1J-24 A2 1 61.20×61.70×62.00 2.24 

PWSS-R-1J-25 A2 1 62.60×62.70×62.40 2.29 

PWSS-R-1J-26 A2 1 62.00×62.00×62.00 2.22 

 

 

 

 

 

 

 

 



97 
 

Table A.3 Single rough joint specimens (continue). 

Specimen No. Cases Number of 
joints per set Dimension (mm3) Density 

(g/cc) 
PWSS-R-1J-27 A2 1 62.00×62.00×61.62 2.23 

PWSS-R-1J-28 A2 1 61.70×61.60×61.50 2.20 

PWSS-R-1J-29 A2 1 62.10×61.60×61.80 2.21 

PWSS-R-1J-30 A2 1 62.90×62.20×62.70 2.30 

PWSS-R-1J-31 A2 1 62.40×63.50×62.20 2.34 

PWSS-R-1J-32 A2 1 63.00×63.00×62.00 2.30 

PWSS-R-1J-33 A2 1 61.70×61.90×61.50 2.24 

PWSS-R-1J-34 A2 1 62.60×63.54×62.00 2.28 

PWSS-R-1J-35 A2 1 61.90×62.70×62.50 2.38 

PWSS-R-1J-36 A2 1 63.10×62.90×62.30 2.32 

PWSS-R-1J-37 A2 1 61.70×61.50×61.50 2.31 

PWSS-R-1J-38 A2 1 61.70×61.80×61.40 2.27 

PWSS-R-1J-39 A2 1 63.40×62.16×62.60 2.29 

PWSS-R-1J-40 A2 1 62.50×63.00×62.30 2.35 

PWSS-R-1J-41 A2 1 62.50×62.60×62.30 2.30 

PWSS-R-1J-42 A2 1 62.26×62.36×63.54 2.29 

PWSS-R-1J-43 A2 1 63.00×62.66×62.26 2.33 

PWSS-R-1J-44 A2 1 62.76×62.56×62.60 2.27 

PWSS-R-1J-45 A2 1 62.40×62.36×63.74 2.24 

PWSS-R-1J-46 A2 1 62.30×62.00×62.00 2.24 

PWSS-R-1J-47 A2 1 62.00×62.70×63.30 2.26 

PWSS-R-1J -48 A2 1 63.56×62.00×63.00 2.27 
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 Table A.4  Three joint sets specimens. 

Specimen No. Cases Number of 
joints per set Dimension (mm3) Density 

(g/cc) 
PWSS-3S-1J -01 C 1 80.50×80.90×80.80 2.28 

PWSS-3S-1J -02 C 1 81.00×80.20×80.90 2.26 

PWSS-3S-1J -03 C 1 80.80×80.43×80.12 2.29 

PWSS-3S-1J -04 C 1 80.73×81.00×82.00 2.23 

PWSS-3S-1J -05 C 1 80.53×80.73×81.33 2.25 

PWSS-3S-1J -06 C 1 80.63×80.90×80.90 2.26 

PWSS-3S-1J -07 C 1 80.00×80.76×80.00 2.26 

PWSS-3S-1J -08 C 1 80.56×81.54×80.48 2.25 

PWSS-3S-1J -09 C 1 80.36×80.56×80.68 2.27 

PWSS-3S-1J -10 C 1 80.00×80.36×79.88 2.28 

PWSS-3S-1J -11 C 1 80.46×80.00×80.56 2.23 

PWSS-3S-1J -12 C 1 81.00×81.00×79.80 2.29 

PWSS-3S -2J -01 C 2 80.00×79.60×81.60 2.29 

PWSS-3S -2J -02 C 2 81.00×81.00×79.00 2.29 

PWSS-3S -2J -03 C 2 82.00×79.60×78.30 2.30 

PWSS-3S -2J -04 C 2 81.70×81.50×79.60 2.21 

PWSS-3S -2J -05 C 2 80.00×83.00×79.36 2.24 

PWSS-3S -2J -06 C 2 79.50×78.00×81.00 2.33 

PWSS-3S -2J -07 C 2 78.70×79.00×80.50 2.30 

PWSS-3S -2J -08 C 2 79.20×80.80×80.40 2.27 

PWSS-3S -2J -09 C 2 79.70×80.80×81.40 2.23 

PWSS-3S -2J -10 C 2 80.00×80.40×81.70 2.26 

PWSS-3S -2J -11 C 2 79.60×80.00×81.00 2.29 

PWSS-3S -2J -12 C 2 79.86×79.70×81.00 2.25 

PWSS-3S-3J -01 C 3 80.00×80.00×80.40 2.26 

PWSS-3S-3J -02 C 3 80.70×81.50×79.40 2.23 
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Table A.4 Three joint sets specimens (continue). 

Specimen No. Case Number of 
joints per set Dimension (mm3) Density 

(g/cc) 
PWSS-3S-3J -03 C 3 81.40×80.90×83.00 2.23 

PWSS-3S-3J -04 C 3 81.70×80.40×81.30 2.25 

PWSS-3S-3J -05 C 3 80.50×82.00×78.50 2.33 

PWSS-3S-3J -06 C 3 80.30×81.30×9.00 2.23 

PWSS-3S-3J -07 C 3 81.30×80.90×79.00 2.20 

PWSS-3S-3J -08 C 3 80.20×83.00×79.30 2.18 

PWSS-3S-3J -09 C 3 82.30×81.48×80.00 2.20 

PWSS-3S-3J -10 C 3 82.00×80.00×79.00 2.20 

PWSS-3S-3J -11 C 3 81.40×81.00×80.50 2.24 

PWSS-3S-3J -12 C 3 81.80×80.50×79.80 2.27 

PWSS-3S-4J -01 C 4 81.70×82.50×78.73 2.19 

PWSS-3S-4J -02 C 4 82.00×81.50×79.00 2.22 

PWSS-3S-4J -03 C 4 80.00×80.00×81.60 2.24 

PWSS-3S-4J -04 C 4 81.00×88.00×81.50 2.06 

PWSS-3S-4J -05 C 4 80.00×79.50×79.00 2.35 

PWSS-3S-4J -06 C 4 80.00×80.00×80.20 2.29 

PWSS-3S-4J -07 C 4 80.00×80.00×80.46 2.30 

PWSS-3S-4J -08 C 4 80.36×80.50×79.50 2.24 

PWSS-3S-4J -09 C 4 80.00×80.30×80.00 2.29 

PWSS-3S-4J -10 C 4 80.20×80.00×80.36 2.28 

PWSS-3S-4J -11 C 4 78.50×80.56×80.00 2.35 

PWSS-3S-4J -12 C 4 79.90×81.64×80.44 2.19 

PWSS-3S-5J -01 C 5 81.60×81.80×79.60 2.25 

PWSS-3S-5J -02 C 5 81.30×80.20×78.40 2.29 

PWSS-3S-5J -03 C 5 80.30×82.50×81.20 2.23 
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Table A.4 Three joint sets specimens (continue). 

Specimen No. Cases Number of 
joints per set Dimension (mm3) Density 

(g/cc) 
PWSS-3S-5J -04 C 5 82.40×81.30×82.30 2.28 

PWSS-3S-5J -05 C 5 82.00×80.70×81.50 2.20 

PWSS-3S-5J -06 C 5 81.00×80.60×80.20 2.25 

PWSS-3S-5J -07 C 5 80.00×80.20×82.00 2.22 

PWSS-3S-5J -08 C 5 79.60×80.00×80.70 2.26 

PWSS-3S-5J -09 C 5 80.50×81.70×80.00 2.17 

PWSS-3S-5J -10 C 5 81.80×82.80×79.70 2.20 

PWSS-3S-5J -11 C 5 80.36×81.32×79.20 2.26 

PWSS-3S-5J -12 C 5 81.90×80.00×78.50 2.23 
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Figure B.1 Stress-strain curves for intact specimens.  Numbers in brackets indicate 

[σ1, σ3, σ3] at failure in MPa. 
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Figure B.2 Stress-strain curves of 1 joint per set specimens for case B1.  Numbers in 

brackets indicate [σ1, σ3, σ3] at failure in MPa. 
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Figure B.3 Stress-strain curves of 2 joints per set specimens for case B1.  Numbers in 

brackets indicate [σ1, σ3, σ3] at failure in MPa. 
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Figure B.4 Stress-strain curves of 3 joints per set specimens for case B1.  Numbers in 

brackets indicate [σ1, σ3, σ3] at failure in MPa.. 
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Figure B.5 Stress-strain curves of 4 joints per set specimens for case B1.  Numbers in 

brackets indicate [σ1, σ3, σ3] at failure in MPa. 
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Figure B.6 Stress-strain curves of 1 joint per set specimens for case B2.  Numbers in 

brackets indicate [σ1, σ3, σ3] at failure in MPa. 
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Figure B.7 Stress-strain curves of 2 joints per set specimens for case B2.  Numbers in 

brackets indicate [σ1, σ3, σ3] at failure in MPa. 
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Figure B.8 Stress-strain curves of 3 joints per set specimens for case B2.  Numbers in 

brackets indicate [σ1, σ3, σ3] at failure in MPa. 
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Figure B.9 Stress-strain curves of 4 joints per set specimens for case B2.  Numbers in 

brackets indicate [σ1, σ3, σ3] at failure in MPa. 
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Figure B.10 Stress-strain curves of 1 joint per set specimens for case C.  Numbers in 

brackets indicate [σ1, σ3, σ3] at failure in MPa. 
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Figure B.11 Stress-strain curves of 2 joints per set specimens for case C.  Numbers in 

brackets indicate [σ1, σ3, σ3] at failure in MPa. 
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Figure B.12 Stress-strain curves of 3 joints per set specimens for case C.  Numbers in 

brackets indicate [σ1, σ3, σ3] at failure in MPa. 

 

 

 

 

 

 

 

 



114 
 

-10 -5 0 5 10 15 20
milli-strains

[20.24, 0, 0]

ε120

40

60

80

100
σ1(MPa)

-10 -5 0 5 10 15 20
milli-strains

[28.22, 1, 1]

ε1ενε2ε3

20

40

60

80

100
σ1(MPa)

-10 -5 0 5 10 15 20
milli-strains

[41.09, 3, 3]

ε1ενε2ε3

20

40

60

80

100
σ1(MPa)

-10 -5 0 5 10 15 20
milli-strains

[51.22, 5, 5]

ε1ενε2ε3

20

40

60

80

100
σ1(MPa)

-10 -5 0 5 10 15 20
milli-strains

[57.04, 7, 7]

ε1ενε2ε3

20

40

60

80

100
σ1(MPa)

-10 -5 0 5 10 15 20
milli-strains

[69.42, 12, 12]

ε1ενε2ε3

20

40

60

80

100
σ1(MPa)

σ3

σ1

σ3

σ3

σ1

σ3

σ3

σ1

σ3

σ3

σ1

σ3

σ3

σ1

σ3

σ3

σ1

σ3

 

Figure B.13 Stress-strain curves of 4 joints per set specimens for case C.  Numbers in 

brackets indicate [σ1, σ3, σ3] at failure in MPa. 
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Figure B.14 Stress-strain curves of 5 joints per set specimens for case C.  Numbers in 

brackets indicate [σ1, σ3, σ3] at failure in MPa. 
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Figure B.15 Stress-strain curves for case A1 with joints parallel to the major principal 

stress.  Numbers in brackets indicate [σ1, σ3, σ3] at failure in MPa. 
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Figure B.16 Stress-strain curves for case A2 with joints normal to the major principal 

stress.  Numbers in brackets indicate [σ1, σ3, σ3] at failure in MPa. 
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	be obtained as a function of the orientation angle (().  Finally normalized H-B strength envelopes are obtained according to Equation (2.2), and they also depend on the orientation angle.




