PRODUCTION AND SECRETION OF BACILLUS CHITOSANASE IN LACTOBACILLUS PLANTARUM

EXPRESSION SYSTEM

A Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Biotechnology

Suranaree University of Technology

Academic Year 2014

การผลิตและการส่งออกไคโตซาเนสจากบาซิลัสโดยใช้ ระบบการแสดงออกของเชื้อ *Lactobacillus plantarum*

^ຍາລັຍເກคโนโลยี

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีชีวภาพ มหาวิทยาลัยเทคโนโลยีสุรนารี ปีการศึกษา 2557

PRODUCTION AND SECRETION OF BACILLUS CHITOSANASE IN LACTOBACILLUS PLANTARUM EXPRESSION SYSTEM

Suranaree University of Technology has approved this thesis submitted in partial fulfillment of the requirements for a Master's Degree.

Thesis Examining Committee

(Prof. Dr. Neung Teaumroong)

Chairperson

(Assoc. Prof. Dr. Montarop Yamabhai)

Member (Thesis Advisor)

(Prof. Dr. Dietmar Haltrich)

(Assoc. Prof. Dr. Sunee Nitisinprasert)

Member

(Prof. Dr. Sukit Limpijumnong)

Vice Rector for Academic Affairs and Innovation (Asst. Prof. Dr. Suwayd Ningsanond)

Dean of Institute of Agricultural Technology

้ปีณิดา นามวิจิตร : การผลิตและการส่งออกไคโตซาเนสจากบาซิลัสโดยการใช้ระบบการ แสดงออกของเชื้อ *Lactobacillus plantarum* (PRODUCTION AND SECRETION OF *BACILLUS* CHITOSANASE IN *LACTOBACILLUS PLANTARUM* EXPRESSION SYSTEM) อาจารย์ที่ปรึกษา : รองศาสตราจารย์ คร.มณฑารพ ยมาภัย, 91 หน้า.

้วัตถุประสงค์ของวิทยานิพนธ์นี้คือการพัฒนาระบบการแสดงออกของยืนเพื่อการผลิต เอนไซม์ใกโตเนสจากเชื้อบาซิลัสที่เหมาะสมกับอุตสาหกรรมอาหาร โดยใช้เชื้อ L. plantarum เป็น เซลล์เจ้าบ้าน ซึ่งอาจจะสามารถนำไปประยุกต์ใช้ในการผลิตเอนไซม์ทางค้านอาหารในการผลิตเชิง พาณิชย์ต่อไปในอนาคต โดยในการศึกษาวิจัยนี้ เอนไซม์ไคโตซาเนสลูกผสม ถูกสร้างขึ้นด้วยการ เชื่อมต่อกับเปบไทค์นำสัญญาณ 2 ชนิค คือ เปบไทค์นำสัญญาณตามธรรมชาติของเชื้อ Bacillus subtilis และเปบไทค์นำสัญญาณของโปรตีนเยื่อหุ้มชั้นนอกของเชื้อ Escherichia coli หรือ OmpA ้จากนั้นทำการโคลนยืนดังกล่าวเข้าสู่พาหะที่ใช้ในการแสดงออกของยืนชื่อเวคเตอร์ pSIP409 ด้วย ้วิธีการที่ต้องใช้ปฏิกิริยาลูกโซ่โพลิเมอเรสปลายเหนียว เพื่อเชื่อมต่อชิ้นของยืนเข้าไปในระหว่าง ตำแหน่งตัดจำเพาะของเอนไซม์ Ncol และ Xhol ของเวคเตอร์ pSIP409 ที่มียืนต้านยาปฏิชีวนะอีริ-โทรมัยซินเป็นเครื่องหมายในการคัดเลือกเวตเตอร์ที่ถูกต้อง ทำให้ได้เวกเตอร์ใหม่ 2 ชนิด คือ pSIP409CSN_nt และ pSIP409CSN_OmpA จากนั้นนำยืนเอนไซม์ไคโตซาเนสดังกล่าวไป แสดงออกในเชื้อ L. plantarum WCFS1 ซึ่งเป็นเชื้อที่สามารถใช้ในงานด้านอาหาร การแสดงออก ของยืน csn จากเชื้อนี้ได้ถูกควบคุมโดยอาศัยตัวชักนำซึ่งมีคุณสมบัติเป็นเปบไทด์ฟีโรโมน จากนั้น ้จึงทำการวิเคราะห์เพื่อเปรียบเทียบระดับกิจกรรมเอนไซม์และประสิทธิภาพในการส่งออกของ เอนไซม์ทั้งสองรูปแบบ ^ายาลัยเทคโนโลยี^ส

จากการวิเคราะห์พบว่า ผลผลิตของเอนไซม์ที่ได้จากการเลี้ยงเชื้อในปริมาตร 500 มิลลิลิตร ที่สภาวะเหมาะสม กิจกรรมเอนไซม์ที่อยู่ในน้ำเลี้ยงเชื้อมีประมาณ 10,700±25 ยูนิต และ 4,970±411 ยูนิต และมีประสิทธิภาพการส่งออกของเอนไซม์คิดเป็นร้อยละ 79.0 และ 89.0 สำหรับเอนไซม์ที่ใช้ เปบไทด์นำสัญญาณจากธรรมชาติและเปบไทด์นำสัญญาณ OmpA ตามลำคับ ในขั้นตอนต่อไปได้ ทำการสร้างเวกเตอร์สำหรับการผลิตเอนไซม์เพื่อสามารถใช้ในอุตสาหกรรมอาหาร โดยการแทนที่ ตำแหน่งของยืนต่อต้านยาอิริโทรไมซินด้วยยืนอะลานีน ราซิเมส เรียกเวกเตอร์ใหม่ที่ได้สร้างขึ้นนี้ ว่า pSIP609CSN_nt และ pSIP609CSN_OmpA ผลจากการวัดกิจกรรมของเอนไซม์ในเบื้องต้นโดย การเลี้ยงเชื้อในขวดรูปชมพู่ปริมาตร 100 มิลลิลิตร พบว่า ค่ากิจกรรมในส่วนน้ำเลี้ยงเชื้อวัดได้ ประมาณ 12,600 ยูนิต (U) ต่อลิตร ผลสรุปจากการศึกษานี้แสดงว่า สามารถใช้เชื้อ *L. plantarum* ใน การผลิตเอนไซม์ใคโตซาเนสจากเชื้อบาซิลัสได้ ซึ่งระบบการผลิตเอนไซม์ที่ได้พัฒนาขึ้นมานี้มี ศักยภาพในการนำไปประยุกต์ใช้ในการผลิตโปรตีนชนิดอื่นๆ ได้ต่อไป

สาขาวิชาเทคโนโลยีชีวภาพ ปีการศึกษา 2557 ลายมือชื่อนักศึกษา____ ลายมือชื่ออาจารย์ที่ปรึกษา_

PEENIDA NAMVIJITR : PRODUCTION AND SECRETION OF *BACILLUS* CHITOSANASE IN *LACTOBACILLUS PLANTARUM* EXPRESSION SYSTEM. THESIS ADVISOR : ASSOC. PROF. MONTAROP YAMABHAI, Ph.D., 91 PP.

RECOMBINAT CHITOSANASE/*LACTOBACILLUS PLANTARUM*/SECRETION/ SIGNAL PEPTIDE

The goal of this study was to develop a food-grade expression system for the production of Bacillus chitosanse in Lactobacillus plantarum that could be applied for commercial production of food-grade enzyme in the future. Two forms of recombinant chitosanase (Csn) fused with different signal peptides, i.e., Bacillus subtilis Csn native signal peptide (SP) and the signal peptide of the Escherichia coli outer membrane protein (OmpA) were cloned into Ncol and Xhol sites of pSIP409 expression vector, harboring erythromycin resistant gene (erm), by a sticky PCR-based method. The two constructs, designated pSIP409CSN nt and pSIP409 CSN OmpA, were generated and over-expressed from L. plantarum WCFS1, which is a food-grade expression host. The csn gene expression was controlled by using a peptide pheromone as inducer, and both enzyme activity and secretion efficiency of the two constructs were compared. The yields from 500 mL of culture volume at the optimal condition were approximately 10,700±25 U and 4,970±411 U/L, when using the native and OmpA SP, respectively. The secretion efficiencies were approximately 79.0% and 89.0% for the constructs containing the native and the OmpA SP, respectively. Subsequently, food grade vector for the expression of the recombinant chitosanase was constructed by replacing the erythromycin resistance gene with the alanine racemase (*alr*) gene, resulting pSIP609CSN_nt and pSIP609CSN_OmpA constructs. Preliminary analysis of the yield of recombinant Csn containing native signal peptide from 100 mL of cultivation was approximately 12,600 U/L, when culture in a shake-flask. In conclusion, an efficient system for the production and secretion of recombinant chitosanase in *L. plantarum* was successfully developed. This system may potentially be applied for the production of other proteins.

School of Biotechnology

Student's Signature_____

Academic Year 2014

Advisor's Signature

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my thesis advisor, Assoc. Prof. Dr. Montarop Yamabhai for her invaluable help and constant encouragement throughout the course of this research. I am most grateful for her teaching and advice, not only the research methodologies but also many other methodologies in life. I would not have achieved this far and this thesis would not have been completed without all the support that I have always received from her.

I am grateful to Prof. Dr. Dietmar Haltrich and Dr. Thu-Ha Nguyen for advice on *L. plantarum* expression system, enzyme activity and valuable suggestion.

I would like to thank Assoc. Prof. Dr. Sunee Nitisinprasert and all Biotechnology lecturers. Prof. Dr. Neung Teaumroong, Assoc. Prof. Dr. Mariena Ketudat-Cairns, Asst. Prof. Dr. Chokchai Wanapu, Asst. Prof. Dr. Kaemwich Jantama, Asst. Prof. Dr. Panlada Tittabutr and Dr. Parinya Noisa, etc. for their knowledge and patient teaching me.

I would like to thank all of my friends and colleagues in School of Biotechnology especially MY lab members for kindly help, inspiration and support in many things.

I do appreciated my truly friend; Mr. Pattharasedthi Pholyiam, Miss. Supathra Phakping, Miss. Numphon Thaiwong, Miss. Nipha Chaicharoenaudomrung, and Miss. Jiraporn Lubsungnoen who have never left me when I was down.

I gratefully acknowledge the scholarships provide by the Research and Development Supporting Fund for graduate students Suranaree University of Technology (SUT). This research was supported by National Research Council of Thailand (NRCT).

Finally, my special thanks are given to my beloved family and best friend, Miss Suwisa Pranprai, for love and support without limitation.

Peenida Namvijitr

CHAPTER I

INTRODUCTION

1.1 Significance of this study

Application of green/white biotechnology for the sustainable environment has become an important issue in this century. For food industry, commercial production of food enzymes and proteins for the production of commodities by green/white biotechnology has been growing tremendously in the past decade. To achieve an increasing in the demand and market expanding, recombinant DNA technology is necessary for the production of various food modifying enzymes and proteins. However, most of expression hosts and vectors that are commonly used for the expression of heterologous proteins do not comply with the "food-grade" definition (Peterbauer et al., 2011). Therefore, food grade expression systems that based on food grade microorganisms or food-grade recombinant microorganisms must be developed and used as a cell factory for the production of recombinant proteins. The system is considered as safe and carries the "Generally recognized as safe" (GRAS) status for food applications purposes. In this system, the expression of the gene encoding heterologous proteins is controlled by quorum-sensing mechanism, which involves the production of antimicrobial peptide or bacteriocin (Sorvig et al., 2003; Sorvig et al., 2005).

Food- grade gene expression systems for lactic acid bacteria (LAB) are useful for applications in the food industry (Giraffa *et al.*, 2010). Recently, a new food-grade

host/vector system for *Lactobacillus plantarum* based on pSIP expression vectors and the use of the homologous alanine racemase gene (*alr*) as selection marker, without the use of antibiotics has been described by Nguyen and co-worker (2011).

The goal of this study was to develop a food-grade expression system based on the pSIP expression vectors for the production of *Bacillus* sp. chitosanase (Csn) in *L. plantarum* WCFS1. This expression system can be used for the bioconversion of chitin/chitosan wasters to generate value-added chitooligosaccharides (CHOS) for food, feed and pharmaceutical applications in the future.

1.2 Research objectives

- To sub-clone *Bacillus* chitosanase (*csn*) genes into *Lactobacillus* expression vector (pSIP-based vector)
- 2. To compare the expression, secretion and activity of the different constructs in *L. plantarum*
- 3. To optimize the condition for the over-expression of selected recombinant enzymes
- 4. To construct food-grade expression vector using alanine racemase (*alr*) gene as a selection marker

CHAPTER II

LITERATURE REVIEW

2.1 Food-grade gene expression systems

Food grade systems are based on the integration and stable retention of a food grade expression vector in the host strain. The development of different selection markers is attended to specify the food-relevant definitions. Most importantly, these systems must not contain antibiotic resistance markers since their presence may increase the risk of transfer of antibiotic resistance to the human intestinal microbiota (Vos, 1999; Sybesma *et al.*, 2006).

Host strains used for genetic engineering must be safe, taxonomically well characterized, stable, and have the "Generally Recognized As Safe" (GRAS) status. Selection markers such as antibiotic resistance genes or markers that require the application of, for example, heavy metals for selection or plasmid maintenance, cannot be used, and no production of harmful (toxic or allergenic) compounds may occur (Peterbauer *et al.*, 2011). Molecular working techniques, modification tools and genetic elements should conform to the criteria of self-cloning. Finally, food-grade systems require stable processes in large-scale industrial applications (Konings *et al.*, 2000). Self-cloning limits the DNA that is to be introduced into a micro-organism to genes obtained from organisms of the same genus. A somewhat broader definition allows the introduction of genes from organisms that are more distantly related (beyond genus borders) provided that these donor organisms themselves have the

GRAS status. The introduction of DNA from non-GRAS organisms is acceptable during the construction process, provided that it is removed entirely in the final production strain (Sybesma *et al.*, 2006).

2.1.1 Food-grade expression hosts

Bacillus subtilis has a long history of application in enzyme production and food fermentation so that it is a GRAS microorganism (Meijer et al., 1995; Kunst et al., 1997). In order to develop an entirely food-grade recombinant B. subtilis expression system for food industry, a food-grade integrative vector was constructed by exploiting the endogenous B. subtilis alanine racemase (dal) gene as both a homologous sequence for integration and an efficient complementary marker for selection of recombinant B. subtilis strain (Xia et al., 2005; Xia et al., 2007). In addition to Bacillus, for a large-scale production of recombinant enzyme in food industry, the Gram-negative bacteria E. coli K-12, which has been approved for GRAS status by the US Food and Drug Administration (US-FDA), has also been used. This strain of E. coli has been used as a laboratory organism for over 30 years without reported incidents of infection and that it does not produce toxins that cause illness by ingestion (Olempska-Beer et al., 2006). Another attractive host for food grade expression is lactic acid bacteria (LAB). The genetic manipulation of LAB has many potential applications in food safety and in the development of improved food products. The safe use of genetically modified LAB requires the development of cloning systems that are composed solely of DNA from food-grade organisms. Different food-grade cloning systems published during the past decade have been reviewed (Vos, 1999).

2.1.2 Food-grade selection markers

2.1.2.1 Dominant selection markers

The highly strain-independent dominant selection is comparable to antibiotic resistance markers. They allow the direct selection of positive transformants and the stable integration of plasmids in host organisms as long as selection pressure is obtained. Dominant markers usually confer a new ability to the host strain such as bacteriocin immunity/resistance (Takala and Saris, 2002), heatshock resistance (El Demerdash *et al.*, 2003), or sugar utilization abilities (Boucher *et al.*, 2002). Dominant markers have the advantage that they potentially may be used in a wide variety of strains, but the number of suitable food-grade markers is limited.

2.1.2.2 Complementation selection markers

The second main approach to obtain stable and selectable host/vector systems are based on specific mutations or deletions in a chromosomal gene of the host organism that are an essential step in a metabolic pathway or conferring certain properties to an organism or phenotype. To conduct the complementation, in the first step a feasible knockout mutant is constructed carrying the desired gene deletion in the host chromosome. The second step contains the construction of expression vectors carrying the compatible complementation. As a consequence, these markers can only be used in specific host-vector combinations (Dickely *et al.*, 1995; Peterbauer *et al.*, 2011).

Examples of such genes include the thymidylate synthase gene (thyA) (Sasaki *et al.*, 2004), and genes involved in lactose conversion, such as lactose phosphotransferase (lacF) (MacCormick *et al.*, 1995), or phospho- β -galactosidase (lacG) (Gosalbes *et al.*, 2000). The enzyme alanine racemase converts L-alanine to D-

alanine (Bron *et al.*, 2002), which is crucial for cell wall biosynthesis , and is thus an essential enzyme for growth of prokaryotic cells (Hols *et al.*, 1997). In lactococci and lactobacilli, alanine racemase activity is encoded by a single gene, *alr* (Hols et al., 1997; Palumbo *et al.*, 2004). D-Alanine is not a common ingredient of large-scale fermentation media, and previous studies have shown that the *alr* gene has considerable potential as a food-grade selection marker in lactic acid bacteria (Bron *et al.*, 2002).

2.2 Food-grade gene expression in lactic acid bacteria (LAB)

Lactic acid bacteria (LAB) are gram-positive, non-sporeforming cocci, coccibacilli or rod shape. LAB are facultative bacteria which are able to grow both aerobically or anaerobically. Most LAB are able to produce many enzymes, antimicrobial peptides, or metabolites that provide and improve the quality of food products (Schmidt, 2004). Many LAB considered to be non-pathogenic bacteria, are given "GRAS" status by US-FDA. The terms "long history" and "safe use" are, however, still somewhat arbitrary, and efforts are under way in the European Union to come up with a comparable regulatory term, "Qualified Presumption of Safety" (QPS), that should have more scientific precision without forcing extensive safety reviews for long established products (Sybesma *et al.*, 2006; Peterbauer *et al.*, 2011).

There are two well-known inducible expression systems developed for lactic acid bacteria (LAB), i.e. *Lactococcus* and *Lactobacillus* (Kleerebezemab *et al.*, 2000; Giraffa *et al.*, 2010). These systems are based on quorum-sensing mechanisms involved in regulation of bacteriocin production. These systems are derived from the genes involved in the production of nisin in *Lactococcus lactis* (Kuipers *et al.*, 1997)

or sakacin A and P (pSIP vectors) in *Lactobacillus sakei* (Sorvig et al., 2003; Sorvig et al., 2005)

2.2.1 NIsin Controller gene Expression system (NICE) for Lactococcus lactis

NICE system system has found widespread use as an inducible system for LAB. Nisin, an antimicrobial peptide with 34 amino acids, is used for the induction of a regulatory cascade starting with its binding to the membrane-bound histidine protein kinase (NisK), which upon binding autophosphorylates a conserved His residue in the cyctoplasmic domain of the NisK for its activation. In the next step the phosphate group from activated NisK is transferred to the intracellular response regulator (NisR), thereby activating this regulator. Activated NisR then induces the nisin operon at the nisin A promoter (PnisA) which controls the expression of the spression system (Figure 1) (Maischberger *et al.*, 2010).

Recently, the first "true" heterologous food-grade overexpression of the enzyme β -galactosidase using the NICE system in *L. lactis* NZ9000 and NZ3900 has been reported. The construction of food-grade expression vectors was performed by replacing the chloramphenicol acetyltransferase (*cat*) gene in these plasmids with the promotorless lactococcal *lacF* gene, encoding the soluble carrier enzyme llA^{Lac}, so that *lacF* was then under control of the *repC* promotor (Figure 2). *L. lactis* NZ3900, carrying an in-frame deletion of the chromosomal *lacF* gene, was the host for these food-grade constructed vectors, which could easily be selected by complementation of this strain for growth on lactose (Maischberger *et al.*, 2010).

Figure 1. Schematic overview of the NICE system, its components and its function. NisK and NisR are the sensor protein and the response regulator, respectively. The product of the expressed gene can either accumulate in the cell or be secreted into the extracellular medium depending on the presence of a signal sequence in the construct (Mierau et al., 2005)

Figure 2. Vector map of pTM plasmids for the expression of β-galactosidase using NICE system. lacLM, structural gene; cat, chloramphenicol resistance marker; lacF, *lacF* gene for selection on lactose; *repA* and *repC*, replication determinants; PnisA,induciblepromoter; *TpepN*, transcriptional terminator (Maischberger *et al.*, 2010).

2.2.2 Sakacin-based gene expression system (pSIP) for Lactobacillus strains

Many lactic acid bacteria (LAB) produce antimicrobial peptides, called "bacteriocins", to combat competing Gram-positive bacteria. The bacteriocin production is often regulated via quorum-sensing mechanisms based on a secreted peptide pheromone (Eijsink *et al.*, 2002). The bacteriocins from LAB have been classified into 3 classes: the lanthibiotics (class I), the non-modified heat-stable bacteriocins (class II) and the large heat labile bacteriocins (class III) (Nes *et al.*, 1996; Nes and Holo, 2000).

The production of some class II bacteriocins in lactobacilli is regulated by quorum-sensing mechanisms which differ from the mechanism employed for nisin regulation in *L. lactis*. These lactobacilli secrete a non-modified peptide whose primary function is to act as a pheromone and not as a bacteriocin. The regulatory operons in these systems consist of three genes, encoding the peptide pheromone precursor, a HK protein that senses the pheromone, and a cognate RR protein. Activation of the RR enhances transcription from regulated promoters that precede all operons involved in bacteriocin production, processing, secretion and immunity, as well as the regulatory operon itself (Figure 3) (Nes *et al.*, 1996).

Vectors for high-level expression of target genes, the so called pSIPsystem, have been developed for inducible gene expression in *L. plantarum* and *Lactobacillus sakei* (Sorvig *et al.*, 2003; Sorvig *et al.*, 2005). A series of versatile expression vectors are based on the sap (pSIP300 series) and the *spp* (pSIP400 series) regulon. The vectors were constructed in a modular fashion, permitting easy exchange of different parts, such as the gene of interest, the promoter, the replicon, and the selection marker (Figure 4). In another series, such as in pSIP403, expression was driven both by *ermB* read-through and by the original inducible promoter (*PsppIP*). In all variants, the structural gene for the IP, which naturally precedes the K-R genes, was inactivated by deletion. With respect to the choice of promoter, it must be noted that IP-regulated bacteriocin regulons contain several IP-controlled promoters, which in principle all can be used to drive expression of the gene of interest. Usually, the promoters driving expression of bacteriocin structural genes are the strongest and most tightly regulated (Brurberg *et al.*, 1997; Risøen *et al.*, 2000) Therefore, only such promoters were used in the pSIP series, i.e., PsapA in the pSIP300 series and P*sppA* or P*sppQ* in the pSIP400 series (*PsppQ* has been called PorfX in previous publications) (Mathiesen *et al.*, 2005; Diep *et al.*, 2009).

The lactobacillal expression vectors pSIP409 (figure 5) in this thesis is based on the sakacin P operon of *L. sakei* for expression in *L. plantarum* WCFS1. It has previously been shown that the pSIP-based expression system allows for production of high levels of intracellular proteins. The expression of the gene of interest is driven by strong, regulated promoters. The activity of these promoters is controlled via a two-component signal transduction system, which responds to an externally added peptide pheromone. The vectors have a modular design, permitting easy exchange of all essential elements including the inducible promoter, the cognate regulatory system, the gene of interest, the antibiotic resistance marker and the replicon (Sorvig *et al.*, 2003; Sorvig *et al.*, 2005).

Figure 3. Schematic illustration of pheromone regulated bacteriocin production. (1) Low amounts of the constitutively induction peptide (IP) are produced in the cell. (2) The IP bind to the receptor histidine protein kinase (HPK). (3) This results in autophosporylation of a conserved histidine residue in the HPK. (4) The phosphoryl-group is transferred to the response regulator (RR) through interaction with the HPK. (5) The phosphorylated RR binds to DNA and activates transcription of all genes involved in bacteriocin biosynthesis (6). The figure is modified from Mathiesen (2004).

Figure 4. Schematic overview of the modular pSIP-vector expression system. The picture shows the main outline of the pSIP400 series, based on the *spp* regulon. The *sppK* and *sppR* genes encode the proteins in the two-component regulatory system. The gene of interest is under control of one of the strictly regulated bacteriocin promoters, P*sppA* (sakacin P) or P*sppQ* (sakacin Q) and is translation-ally coupled to the promoter via an NcoI restriction that incorpo-rates the ATG start codon. Unique restriction sites for easy re-placement of different modules are indicated. The replicon region consist of two determinants; pUC(pGEM)-ori for *E. coli* and 256rep for *L. sakei* and *L. plantarum*. Lollipops indicate transcription terminators. Note that the vectors vary with respect to the promoter driving the transcription of the *KR* operon (Diep *et al.*, 2009).

Figure 5. Schematic overview of pSIP409 plasmids that is used in this study. The picture shows the main outline of the pSIP409, based on the *spp* regulon. Yellow region represents replication determinants (pUC(pGEM)ori and 256rep); blue region represents erythromycin resistance marker; red regions, histidine protein kinase (*sppK*) and response regulator genes(*sppR*); green regions represents inducible bacteriocin promoters and inducible *sppIP* promoter; grey regions represent stranscriptional terminator; pink region represents insert gene (*gusA* for pSIP409). The figure was modified from Sorvig (2005).

Recently, Nguyen and co-workers (2011) described a new food-grade host/vector system for *L. plantarum* based on the complementation selection markers using the homologous alanine racemase gene (*alr*). A new series of expression vectors were constructed by exchanging the erythromycin resistance gene (*erm*) in pSIP vectors by the *L. plantarum* WCFS1 *alr* gene (Figure 5). The vectors were applied for the over-expression of desired genes from *Lactobacillus reuteri* L103 and *L. plantarum* WCFS1 in an *alr* deletion mutant of *L. plantarum* WCFS1 (named *L. plantarum* TLG02). The genome of *L. plantarum* contains a single *alr* gene encoding an alanine racemase which is enzyme that can catalyze the inter-conversion of D-alanine and L-alanine. The alanine racemase converts L-alanine to D-alanine that is involved in biosynthesis of cyclosporine locate in cell wall because D-alanine is cross-linkaging or apart of cell wall of *L. plantarum* that is essential for their growth (Palumbo *et al.*, 2004).

รัฐาวักยาลัยเทคโนโลยีสุรบา

15

Figure 6. The construction of pSIP609-based expression vector, a food-grade expression vector from pSIP409 vector. The DNA fragment between *ClaI* and *BamHI* containing *erm* gene was replaced with the fragment containing *alr* gene that was obtained *L. plantarum* WCFS1 genome (Nguyen *et al.*, 2011)

2.3 Chitosanases

Chitosan N-acetylglucosaminohydrolase or chitosanases (EC 3.2.1.132) are enzymes that catalyse the hydrolysis of the β -1,4 glycosidic bond of chitosan (Figure 7), a partially deacetylated derivative of chitin, which comprises N-acetyl-Dglucosamine (GlcNAc) and D-glucosamine (GlcN) residues (Figure 8) (Dahiya *et al.*, 2006). These enzymes can be found in a wide variety of microorganisms including Gram-positive and Gram-negative bacteria, yeast and fungi (Eijsink *et al.*, 2010). The enzymes belong to glycoside hydrolase (GH) families 5, 7, 8, 46, 75 and 80, according to the carbohydrate-Active Enzymes database (CAZy) (Cantarel *et al.*, 2009). While families GH5, GH7 and GH8 contain a few chitosanases and other glycoside hydrolases, specifically, families GH46, GH75 and GH80 comprise exclusively chitosanases (Eijsink *et al.*, 2010). Chitosanase from family 46, especially those from *streptomyces* (Fukamizo and Brzezinski, 1997; Dubeau *et al.*, 2011), *Bacillus circulans* (Fukamizo *et al.*, 2005), and *Bacillus subtilis* 168 (Pechsrichuang *et al.*, 2013), are presently the best-studied enzymes.

Figure 7. Structures of chitin and chitosan (Kim and Rajapakse, 2005).

Figure 8. The chitosanase activity (Fukamizo et al., 1995).

CHAPTER III

MATERIAL AND METHOD

3.1 Materials

3.1.1 Bacteria

Strain	Relevant characteristics/ Genotypes	Source of reference
Escherichia coli	Cloning host/ fhuA2 (argF-lacZ)U169 phoA	New England Biolabs
DH5aF'	glnV44 Φ80 Δ(lacZ)M15 gyrA96 recA1 relA1	(NEB)
	endA1 thi-1 hsdR17	
Escherichia coli	Cloning host/ D-alanine auxotroph	(Strych et al., 2001)
MB2159		
Escherichia coli	Cloning host/ F- mcrA Δ(mrr-hsdRMS-mcrBC)	Invitrogen
TOP10	φ80lacZΔM15 ΔlacX74 nupG recA1 araD139	
	Δ (ara-leu)7697 galE15 galK16 rpsL(Str ^R)	
	endA1 λ-	
Lactobacillus	Expression host/ wild type	(Kleerebezem et al.,
plantarum WCFS1	7755	2003)
Lactobacillus	Expression host/ Δalr (D -alanine auxotroph)	(Nguyen et al., 2011)
plantarum TLG02		

3.1.2 DNA Primers

Name	Sequence (5'-3')
B.subCsnfwNcoIlong	CATGAAAATCAGTATGCAAAAAGCAGATTTTTGG
B.subCsnfwNcoIshort	AAAATCAGTATGCAAAAAGCAGATTTTTGG
FlagNcoIfwlong	CATGAAAAAGACAGCTATCGCGATTG
FlagNcoIfwshort	AAAAAGACAGCTATCGCGATTG
6HisXhoIrvlong	TCGAGTCAATGGTGATGGTGATGGTG
6HisXhoIrvshort	GTCAATGGTGATGGTGATGGTG

3.1.3 Plasmids

Plasmid	Description	Source of reference
pSIP409gusA	erm, pSIP401 derivative, gusA	(Sorvig et al., 2005)
	controlled by $PsppQ$	
pSIP609gusA	pSIP409 derivative, alr replaced	(Nguyen et al., 2011)
	with <i>erm</i>	
pSIP409CSN_nt	erm, pSIP409 derivative, csn_nt	This work
	controlled by $PsppQ$	
pSIP409CSN_OmpA	erm, pSIP409 derivative,	This work
	<i>csn_OmpA</i> controlled by P <i>sppQ</i>	
pSIP609CSN_nt	alr, pSIP409 derivative, csn_nt	This work
	controlled by P_{sppQ}	
pSIP609CSN_OmpA	alr, pSIP409 derivative, csn_OmpA	This work
	controlled by P_{sppQ}	

3.1.4 Laboratory equipment

Autoclave:	Hiclave HA-3000MIV, Hirayama, Japan
Balance:	Precisa 205A, Precisa Instruments, Switzerland
⁷ ่า _{อักยาลัยเท}	Precisa 3000C, Precisa Instruments, Switzerland
Centrifuge machine:	Thermoscientific, Sorvall legend XTR centrifuge, USA
	Eppendrof centrifuge 5810 R, Eppendrof, USA
	Eppendrof minispin plus, wiswspin® feedback control digital timer function, Eppendrof, USA
Deep freezer -70 °C:	Thermosciencetific, forma 900 series, USA.
ELISA reader:	Sunrise, TECAN, Austria
Electroporator :	Eppendrof 2510, Eppendrof, USA

Freezer -20 °C:	Heto, HLLF 370, Denmark.
	Haier, China.
Gel Document set:	White/Ultraviolet Transilluminator GDS7500, UVP, USA
	Digital Graphic Printer UP-D890, Sony, Japan.
Gel dryer:	Drygel sr. SLAB GEL Dryer model SE1160, Hoefer Scientific Instruments, USA
Gel electrophoresis	Mini Protean® 3 cell, BioRad, USA
Heat Box:	HB1, Wealtee Corp., USA
Incubator shaker:	Innova 4230 refrigerated incubator shaker, New Brunswick Scientific, USA
	Innova® 42 incubator shaker series, USA
Incubator:	Memmert, BE 500, WTB Binder BD115,
Laminar hood:	Thermoscientific 1300 series A2, USA
E. MAR	BH 2000 Series ClassII Biological Safety Cabinets
^{1/วั} ทยาลัยเท	BHA120 & BHA180, Clyde-Apac
Micro-centrifuge:	Mini spin plus, Eppendrof, USA
	Eppendorf 54154, Eppendorf, Germany
pH meter:	Ultra Basic pH meter, Denver Instruments, Germany
PCR machine:	DNA Engine PTC 200 peltier Thermal cycler, MJ Research, USA
Rotator:	Certomat TCC, B. Braun Biotech International, Germany
Sequencing machine:	ABI prism model 310 Genetic Analyzer, Applied, Biosystems, USA

Shaker:	Innova 2300 platform shaker, New Brunswick Scientific, UK
	Certomat TC2, B. Braun Biotech International, Germany
Sonicator:	Waken GE100 Ultrasonic processor, Japan
Spectrophotometer:	Ultrospec 2000, Pharmacia biotech, UK
Stirrer:	Variomag Electronicrührer Poly 15, Germany
	Magnetic stirrer MSH300, USA
Thermomixer:	Thermomixer compact, Eppendrof, USA
Vortex: Vortex: Vortex-Genie 2 G506, Scientific Industrie USA	
ั ^ก ยาลัยเท	คโนโลยิ ^{สุร}

22

3.2 Methods

3.2.1 Culture of bacterial strains

Escherichia coli Top10 and *E.coli* DH5 α were used as cloning hosts. They were grown in Luria- Bertani (LB) medium either on solid agar plates or in liquid medium, and incubated for overnight at 37°C cabinet (for plates) or in a shaker incubator (for liquid cultures). The 800 µg/mL of erythromycin concentration was added to the medium when growing *E. coli* Top10 strains containing the plasmids.

E. coli MB2159 (D-alanine auxotroph) was used as cloning host for foodgrade expression vectors. The bacterium was grown in LB medium supplemented with 200 μ g/mL of D-alanine and incubated for overnight at 37°C cabinet (for plates) or in a shaker incubator (for liquid cultures).

Lactobacillus plantarum WCFS1 (wild type) was grown either in MRS medium (Man-Rogosa-Sharpe) or on solid MRS-agar plates. *L. plantarum* cultures were incubated under facultative aerobic condition at 37 °C without agitation for 18-24 h. *L. plantarum* WCFS1 cells containing plasmids harboring an antibiotic resistance gene were grown in agar plates and liquid medium containing 5 µg/mL of erythromycin concentration.

L. plantarum TLG02 (Δalr , D-alanine auxotroph) as used as expression host for food grade expression vectors. The cells were grown in MRS medium supplemented with 200 µg/mL D-alanine and incubated for overnight at 37°C cabinet (for plates) or in a shaker incubator (for liquid cultures).

3.2.2 Molecular cloning of *Bacillus subtilis* chitosanase gene

The plasmids CsnNativepMY202 and CsnOmpApMY202 containing the complete chitosanase (*csn*) gene with native and OmpA signal peptide, and His-tag sequences (Pechsrichuang *et al.*, 2013) were used as templates for *csn* gene amplification. The oligonucleotides used for *csn* gene amplification were designed for cloning by a sticky PCR-based method (Yamabhai, 2009). The two forward primers [B.subCsnfwNcoIlong and B.subCsnfwNcoIshort] and two reward primers [6HisXhoI rvlong and 6HisXhoIrvshort] were used to amplify the *csn* gene containing *B. subtilis csn* native signal peptide (SP). The two forward primers [FlagNcoIfwlong and Flag-NcoIfwshort] and two reward primers [6HisXhoIrvshort] were used to amplify the *csn* gene containing the *E. coli* outer membrane protein (OmpA) signal peptide. The lists of primers in this study are shown in Table 3.1.2, and were compatible with the *NcoI* and *XhoI* restriction sites. The vector pSIP409gusA, which is used for gene expression in *L. plantarum* WCFS1, as double digested with *NcoI* and *XhoI* restriction enzymes for cloning (Figure 9).

The PCR thermal profile (total volume of 50 μ L) consisted of 10 μ M of primers, 10 mM dNTP, 1.25 units of *Pfu* DNA Polymerase (Thermo scientific) and 10X *Pfu* Buffer with MgSO₄, provided by the manufacturer (MJ Research). The amplifications were done as follows: initial denaturation at 95°C for 2 min, followed by 30 cycles of 95°C for 45 s, annealing at 55 °C for 30 s extension at 72 °C for 2 min and followed by final extension step at 72 °C for 10 min. All PCR products and vectors were separated using 1% agarose gel in 1xTAE containing 0.2 μ g/mL of ethidium bromide and visualized under a UV transilluminator. The PCR products and vectors were purified using the Wizard® SV gel and PCR Clean-Up system

(Promega). Approximately equal amounts of PCR products were mixed together in a PCR tube and heated at 95°C for 5 min, and then the denatured products were briefly mixed in a vortex mixer. The re-annealing was done in a thermal cycler machine by reducing the temperature slowly from 95 °C to 25°C. The total time for re-annealing is usually 2.35 h.

Ligation reactions were performed with the relevant restriction endonuclease used to digest the vector and a molar ratio of linearized vector to re-annealed insert of approximately 1:15. The amount of linearized vector used for each ligation was 100 ng. Ligations were performed for 16 h at 16°C in the presence of T4 DNA ligase in a final volume of 25 µL. T4 DNA ligase was heat-inactivated (65°C for 15 min) before transformation. The constructed was transformed into competent *E.coli* Top10 cell resulting in the plasmid pSIP409CSN_nt and pSIP409CSN_OmpA. The transformants were selected on LB agar containing 800 µg/mL erythromycin in the culture condition at 37 °C for 16 h.

Figure 9. Schematic overview of pSIP409gusA plasmid used in this study. *NcoI* and *XhoI* restriction enzymes were used for cloning.

The plasmid was extracted using QIAGENTM plasmid preparation kit. Then plasmids were digested with the *PstI* and *XhoI* to analyze the restriction pattern by agarose gel electrophoresis. The DNA sequence and the integrity of the constructs were confirmed by automated DNA sequencing (Macrogen, Korea). Assembly and analysis of DNA sequences were done by using Vector NTI. Afterwards, pSIP409-CSN_nt and pSIP409CSN_OmpA were transformed into competent *L. plantarum* WCFS1 cell which is an expression host by electroporation. Electroporation condition was performed at 25% amplitude, pulse 5 sec, 3 min. for 2 rounds on ice. The transformants were selected on MRS agar plate containing 5 μ g/mL erythromycin. The colony PCR method was used for checking the positive clones. All strains were stored in sterilized 1.5 mL eppendorf tubes at -70 °C in MRS broth medium containing 20% (v/v) glycerol until used.

3.2.3 Construction of food grade expression vector

Food-grade expression vector of the recombinant chitosanase was constructed by replacing the erythromycin resistance gene with the alanine racemes gene (*alr*) from *L. plantarum* WCFS1 genome (Nguyen *et al.*, 2011). The erythromycin resistance (*erm*) genes in pSIP409CSN_nt and pSIP409CSN_OmpA were exchanged with alanice racemase (*alr*) gene between the restriction sites *BamHI* and *ClaI* (Figure 10), which are compatible with the same position for gene exchanging, resulting pSIP609CSN_nt and pSIP609CSN_OmpA, respectively.

The plasmids were extracted using QIAGENTM plasmid preparation kit. Then, the plasmids were digested with the *BamHI* and *ClaI* to confirm the restriction site pattern, which indicated the *alr* gene fragment after digestion. Afterwards, pSIP609-CSN_nt and pSIP609CSN_OmpA were transformed into *L. plantarum* TLG02 ($\Delta alr/$ D-alanine auxotroph) by electroporation. The transformants were selected on normal MRS agar plate. The colony PCR method was used to confirm the positive clones.

รั_{้รับวิ}กยาลัยเทคโนโลยีส์รูบไ

Figure 10. Schematic overview of pSIP409-based expression vector of which the *erm* gene was exchanged with *alr* gene.

3.2.4 Determination of optimal duration of induction

The transformed *L. plantarum* WCFS1 harboring pSIP409CSN_nt and pSIP409CSN_OmpA in glycerol stock were taken from -80 °C freezer and re-streaked and grown on MRS agar plate supplemented with erythromycin. Colonies of each constructs were picked and grown in 250 mL of MRS broth supplemented with 5 ug/mL erythromycin at 37 °C without shaking for 18-24 h. The overnight cultures were pooled together and mixed well and measured the cell density at the OD₅₉₅ (ELISA reader, Sunrise, TECAN, Austria). The overnight cultures were added into MRS broth containing 5 μ g/mL erythromycin at an OD₅₉₅ of 0.1 and cultivated at 30 °C without agitation in anaerobic condition. The cells were induced for the expression of an enzyme at an OD₅₉₅ of approximately 0.3 after by adding peptide

pheromone IP-673 at the concentration of 25 ng/mL (Amino acid sequence of IP-673 is Met-Ala-Gly-Asn-Ser-Ser-Asn-Phe-Ile-His-Lys-Ile-Lys-Gln-Ile-Phe-Thr-His-Arg) (Brurberg *et al.*, 1997). The thirty milliliters of culture medium were sampling at 0, 6, 12, and 24 h to measure total enzyme activity. After induction, the cell and supernatant were separated by centrifugation at 4,000 rpm for 15 min at 4 °C (swing angle). Cells were washed twice with lysis buffer (50 mM Tris-HCl, pH 8.0), and re-suspended in lysis buffer supplemented with 0.1 mM PMSF (phenylmethylsulfonyl fluoride), 1 mg/ml lysozyme. The cell pallets were broken using sonicator at 25% amplitude, pulse 5 sec, 3 minutes for 2 rounds on ice. The cell lysate fraction was collected at 13,000 rpm, 4 °C for 45 min. to eliminate cellular debris.

To measure the enzyme activity in culture medium, 10-15 ml of supernatant containing secreted chitosanase was dialyzed with 10 mM Tris-HCl buffer, pH 8.0 at 250 rpm at 4 °C for 8-12 h, using snake skin dialysis tubing 10 kDa kit (Thermo scientific, USA). The dialysated fraction was collected and continuously kept on ice. The qualitative and quantitative analyses of recombinant chitosanase enzymes in cell extract and supernatant were assayed by SDS-PAGE and DNS method (Miller, 1959), respectively.

3.2.5 Determination of optimal inducer concentration

To determine the optimal inducer concentration, the recombinant cells were cultivated as described above. The cultures were inoculated into MRS broth containing 5 μ g/mL of erythromycin to obtain an initial OD₅₉₅ of 0.1. The culture was then incubated at 30 °C without agitation in anaerobic condition. Seventy milliliters of diluted cultures were induced in several inducer concentrations ranging from 0, 1.562, 3.125, 6.25, 12.5, 25, 50 and 75 ng/mL of IP-673. After 6 h. of induction time, the

crude enzymes in both fractions were prepared as previously described. The recombinant chitosanase enzymes in cell extract and supernatant were assayed.

3.2.6 Expression of recombinant *csn* in *L. plantarum* WCFS1 in 100-mL of culture volume

The recombinant L. plantarum WCFS1 harboring pSIP409CSN nt and pSIP409CSN OmpA were grown in MRS broth containing 5 µg/ml of erythromycin overnight at 37°C. Then, the overnight cultures were diluted in 100 mL of MRS medium containing 5 μ g/ml erythromycin to an O.D. at 595 nm of ~ 0.1 and incubated at 30 °C, no agitation, in anaerobic condition to an O.D. of~0.3 (approx.2.30 h). Then, the cultures were induced with 12.5 ng/mL of IP-673. Cells were harvested at an OD₅₉₅ of ~ 1.4-1.6 (around 6 hr.) by centrifugation (4,000 rpm for 15 min at 4 °C), washed twice with lysis buffer (50 mM Tris-HCl, pH 8.0), and re-suspended in 6 mL of lysis buffer supplemented with 0.1 mM PMSF, 1 mg/ml lysozyme. Then, cell suspension was kept at -30 °C for overnight. After that, cell suspension was thawed and disrupted using a sonicator at 25% amplitude, pulse 5 sec, 3 minutes for 2 rounds on ice. Cell debris was removed by centrifugation (13000 rpm, 45 min, 4 °C) to obtain the crude enzyme extracts. To measure the enzyme activity in culture medium, 10-15 ml of supernatant was dialyzed with 10 mM Tris-HCl buffer, pH 8.0 at 250 rpm at 4 °C for 8-12 h, using snake skin dialysis tubing 10 kDa kit (Thermo scientific, USA). The dialysated fraction was collected and continuously kept on ice. The recombinant chitosanase enzymes in cell extract and supernatant were assayed.

3.2.7 Expression of recombinant *csn* in *L. plantarum* WCFS1 in 500-mL of culture volume

The recombinant L. plantarum WCFS1 harboring pSIP409CSN nt and pSIP409CSN OmpA were grown in MRS broth containing 5 µg/ml of erythromycin overnight at 37°C. Then, the overnight cultures were diluted in 500 mL of MRS medium containing 5 µg/ml erythromycin to an O.D. at 595 nm of ~0.1 and incubated at 30 °C, 150 rpm agitation, in anaerobic condition to an OD₅₉₅ o f~ 0.3. Then, the cultures were induced with 12.5 ng/mL of IP-673. Cells were harvested at 0, 3, 6, 9, 12 and 20 hr. by centrifugation (4,000 rpm for 15 min at 4 °C), washed twice with lysis buffer (50 mM Tris-HCl, pH 8.0) and re-suspended in 6 mL of lysis buffer supplemented with 0.1 mM PMSF, 1 mg/ml lysozyme. Then, cell suspension was kept at -30 °C for overnight. Cell suspension was thaw and disrupted using a sonicator. Cell debris was removed by centrifugation (13000 rpm, 45 min, 4 °C) to obtain the crude enzyme extracts. To measure the enzyme activity in culture medium, 10-15 ml of supernatant was dialyzed with 10 mM Tris-HCl buffer, pH 8.0 at 250 rpm at 4 °C for 8-12 h, using snake skin dialysis tubing 10 kDa kit (Thermo scientific, USA). The dialysated fraction was collected and continuously kept on ice. The recombinant chitosanase enzymes in cell extract and supernatant were assayed.

3.2.8 Enzyme assay of recombinant chitosanase

Gel electrophoresis analysis

Denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed. Protein bands were stained with Coomassie brilliant blue R-250 (Laemmli, 1970). A protein ladder (10–200 kDa) was purchased from Bio-Rad. The protein samples were heated at 100 °C for 10 min in the loading buffer.

Protein determination

Proteins concentration was determined by Quick startTM Bradford protein assay (Bio-Rad) using bovine serum albumin as standard. The dye reagent was mixed 1 to 4 with DI water and filtered. The properly diluted samples (60 μ l) were mixed with 200 μ l of dye reagent and stand at room temperature for 2 min. The absorbance at 595 nm was measured.

Chitosanase activity assay

Chitosanase activity were analyzed using the dinitrosalicylic acid (DNS) method (Miller, 1959). The reaction mixer consists of 40 μ l of broth fraction or appropriate dilution of enzyme from cell fraction and 160 μ l of 0.5% soluble chitosan in 200 mM sodium acetate buffer, pH 5.5 which was pre-incubated at 50 °C for 30 min. Then, the reaction was incubated at 50 °C for 5 min, at 900 rpm (Pechsrichuang *et al.*, 2013). The reaction was stopped by adding 200 μ l of DNS solution, centrifuged at 13,000 rpm at for 5 min to precipitate the remaining chitosan. After that, the color was developed by heating the reaction at 100 °C for 20 min and cooled down on ice for 5 min. The reducing sugar was determined by measuring the OD at 540 nm using D-glucosamine as a standard. One unit of chitosanase was defined as the amount of

enzyme the released 1 μ mol of D-glucosamine per minute under the standard assay condition.

Statistical analysis

The data were expressed as the mean \pm standard deviation (SD) when normally distributed or as a median (range) when abnormally distributed. Statistical analyses were completed using the SPSS 16.0 system (SPSS Inc., Chicago, IL). Group differences from the experiments in 3.2.6 and 3.2.9 were analyzed by independentsamples t-test (p < 0.05). For the experiment in 3.2.7, One-Way ANOVA was applied to preparation about different between control and sample groups from sampling random of each treatment, and show mean \pm standard deviation (X \pm S.D.) of each treatment by Turkey-Kramer post-hoc test at significant p<0.05.

3.2.9 Preliminary analysis of food-grade *csn* gene expression in *L. plantarum*

Freshly transformed *L. plantarum* TLG02 harboring pSIP609CSN_nt and pSIP609CSN_OmpA were grown on MRS agar plate. Colonies of each constructs were picked and grown in 5 mL of MRS broth at 37 °C without shaking for 18-24 h. Then, the overnight cultures were pooled together and mixed prior to measure OD at 595 nm before inoculation. The overnight cultures were inoculated into 100 mL of MRS broth to obtain an initial OD₅₉₅ of 0.1. After that, the diluted cultures were grown at 30 °C without agitation in an anaerobic condition until OD₅₉₅ value was 0.3. The culture was then collected after inducing with 25 ng/mL of IP-673 (Nguyen *et al.*, 2011) and incubated at 30 °C without agitation in anaerobic condition for 6 h or until the cell density reach an OD₅₉₅ of ~ 1.4-1.6. The recombinant chitosanase enzymes in both fractions were assayed by SDS-PAGE and DNS method.

CHAPTER IV

RESULTS

4.1 Molecular cloning of *Bacillus subtilis* chitosanase gene

4.1.1 Cloning of chitosanse gene in pSIP(erm)-based expression vector

The special molecular cloning strategies for vector construction must be used because there were internal restriction sites in the *B. subtilis* csn gene. The optimal condition of sticky-PCR method was used to amplify and generate the csn genes containing either their native signal peptides or signal peptides from *E.coli* outer membrane protein, called OmpA, which were fused at N-terminal end of csn gene and histidine tag was linked at C-term. The sticky PCR strategy is also a powerful method for complex DNA inserts. Depending on the primers selected, it is possible to generate all four combinations of cohesive overhangs in the insert. Two pairs of oligonucleotide primers were required for each restriction site, one for the longer protruding end and the second one for the shorter end (Figure 11). PCR reactions were used to generate each type of the PCR products. All PCR products were performed at 55°C of annealing temperature (Figure 12). For vector preparation, the pSIP409gusA vectors were double digested with the NcoI and XhoI to delete the gusA gene out before cloning (Figure 13). Then, the products from two sticky PCR reactions of each constructed were re-annealed to generate DNA fragments including the csn gene fusing with the native signal peptide was approximately 0.860 kbp, while the csn gene fusing with OmpA signal peptide was around 0.830 kbp (Figure 14(I)). Meanwhile,

linearized pSIP409 fragment without *gusA* gene was purified (Figure 14(II)). Next, each re-annealed PCR products were used for ligation into pSIP409-based expression vector at the *NcoI* and *XhoI* restriction sites to generate the new plasmids and *NcoI* site at 5' end of *csn* gene must be destroyed after ligation. The pSIP409CSN_nt was the vector containing the *csn* gene fused with the native SP. The pSIP409CSN_OmpA was the vector containing the *csn* gene fused with OmpA SP (Figure 15).

Figure 11. Schematic overview of the primer design for molecular cloning using sticky PCR method that demonstrates the primer design for permitting PCR cloning into *NcoI* and *XhoI* cloning sites of the linearized vector and illustrates the DNA sequences of the correct cohesive ends of the reannealed products for the cloning of the *csn* gene.

Figure 12. Agarose gel analysis of sticky PCR products after *csn* amplification. M; 100 bp DNA leader, L1; *csn* gene with native SP (primer: fwlong& rvshort). L2; *csn* gene with native SP (primer: fwshort&rvlong). L3; *csn* gene with OmpA (primer: fwlong&rvshort). L4; *csn* gene with OmpA (primer: fwshort&rvlong).

รัฐาวักยาลัยเทคโนโลยีสุรุง

Figure 13. The Map of pSIP409gusA after cutting with Ncol and Xhol (A). Restriction fragment analysis of pSIP409gusA was shown (B). M ; 1 kb DNA leader. L1; uncut pSIP409gusA. L2-5; pSIP409gusA (Clone1-4) double digested with Ncol and Xhol.

Figure 14. Agarose gel analysis of PCR products after re-annealing (I) and linearized pSIP409 vector after digesting with *NcoI* and *XhoI* restriction enzymes (II) were shown.. M; 100 bp DNA leader, M1; 1 kb DNA leader. L1; Uncut pSIP409 vector. L2 ; linearized pSIP409 after double digestion.

Figure 15. The map of pSIP409CSN_nt (A) and pSIP409CSN_OmpA (B), a pSIP-based vector for the expression of Csn_nt and Csn_OmpA, respectively.

After transformation, plasmids from positive clones of recombinant *E.coli* habouring pSIP409CSN_nt and pSIP409CSN_OmpA were prepared and checked by restriction fragment analysis using the *BglII* and *XhoI* restriction enzymes. These enzymes digested at positions upstream and downstream of P_{sppQ} promoter, *csn* gene and his tag, respectively. The right band size of DNA fragments were shown approximately 1.5 kbp after gel electrophoresis analysis, indicating that the sticky-PCR based cloning was successful (Figure 16). The integrity of the construct was confirmed by automated DNA sequencing (Macrogen, Korean).

To express the enzyme, the recombinant vectors (pSIP409CSN_nt clone1 and pSIP409CSN_OmpA clone 1) were transformed into *L. plantarum* WCFS1 which is the expression host. The PCR products were the *csn* genes amplification from *L. plantarum* WCFS1 which harbored the different constructs using colony PCR method (Figure 17).

Figure 16. Restriction fragment analysis of positive clones was shown (A). M ; 1 kb DNA leader. Lane1; uncut pSIP409 vector. Lane2; purified pSIP409 vector. Lane3-5; pSIP409CSN_nt clone1. Lane6-8; pSIP409CSN_nt clone
2. Lane9-11; pSIPCSN_OmpA. Lane3, 6, and 9; Recombinant vectors were digested with *BglII*, Lane 4, 7, and 10; Recombinant vectors were digested with *XhoI*. Lane 5, 8, and 11; Recombinant vectors were double digested with *BglII* and *XhoI*. The map of pSIP409CSN_nt (B) and pSIP409CSN_OmpA (C), which are double digested with *BglII* and *XhoI*.

Figure 17. Confirmation of the presence of *csn* genes in *L. plantarum* by PCR. M;
100 bp DNA leader. Lane1 and 5; are PCR reactions when using *L. plantarum* WCFS1 (Negative control) as template. Lane2 and 6 are PCR products when using pSIP409LacZhis (Negative control) as templates. Lane3-4; PCR products when using *L. plantarum* WCFS1 habouring pSIP409CSN_nt clone 1 and 2. Lane7-11; PCR products when using *L. plantarum* WCFS1 habouring pSIP409CSN_ompA clone 1-5 as templates.

4.1.2 Construction of food grade expression vectors for the expression of Bacillus csn

The food-grade expression vectors were constructed by replacing erythromycin resistant (*erm*) gene of the pSIP409CSN_nt and pSIP409CSN_OmpA vectors with alanine racemase (*alr*) gene. The pSIP609gusA was prepared and checked by restriction analysis. The DNA fragments of *gusA* gene (-2.2 kbp) and *alr* gene (-1.8 kbp) were shown after double digestion with *PstI-XhoI* and *BamHI-ClaI* restriction enzymes (Figure 18). The recombinant *csn* in these *alr*-based vectors are designed as pSIP609CSN_nt and pSIP609CSN_OmpA (Figure 19). The transcription of *csn* genes is controlled by the promoters P_{sppQ} . Selection of constructs harboring the food-grade expression vector were done by growing the *E. coli* MB2159 (D-alanine auxotroph) in LB media without using antibiotic. The integrity of the food-grade constructs were confirmed by digesting vectors with *BamHI* and *ClaI* restriction enzymes (Figure 20). The bands with the size of the *alr* gene of about 1.8 - 2.0 kbp are indicated by an arrow. After that, food-grade vectors were prepared to transform into *L. plantarum* TLG02 which is the expression host.

The recombinant *L. plantarum* TLG02 (D -alanine auxotroph) harboring the different constructs were confirmed by using colony PCR method. The PCR products showed the presence of the *csn* gene amplification from the positive clones of *L. plantarum* TLG2 harboring pSIP609CSN_nt and pSIP609CSN_OmpA (Figure 21).

Figure 18. Restriction fragment analysis of pSIP609gusA. M;1 kbp and 100 bp DNA leader. L1; cut with *PstI*. L2; cut with *XhoI*. L3; double digest with *PstI* and *XhoI* showing gusA gene. L4; cut with *BamHI*. L5; cut with *ClaI*. L6; double digest with *BamHI*. and *ClaI* showing *alr* gene. L7; uncut vector.

Figure 19. The map of pSIP609CSN_nt(A) and pSIP609CSN_OmpA (B), of which the *erm* genes were exchanged with *alr* gene.

Figure 20. Restriction fragment analysis of recombinant constructs. M; 1 kb DNA leader. Lane 1-5; pSIP609CSN_nt clone1-5. Lane 6; pSIP609CSN_OmpA clone1. Recombinant vectors were double digested with *BamHI* and *ClaI*. The bands with the size of the *alr* gene of about 1.8 - 2.0 kbp.

Figure 21. Colony PCR to confirm the presence of *csn* genes in *L. plantarum* TLG02.
M; 1 kbp DNA leader. Lane1 and 9; Negative control (pSIP609GUSA).
Lane 2 and 10; Positive control (pSIP409CSN_nt and pSIPCSN_OmpA.
Lane 3-7; pSIP609CSN_nt clone 1-5. Lane 11-15; pSIP609CSN_OmpA clone 1-5.

4.2 Optimization of the expression of recombinant chitosanase gene in L. plantarum WCFS1

4.2.1 Determination of optimal duration of induction

SDS-PAGE analysis of Csn from recombinant *L. plantarum* WCFS1 harboring pSIP409CSN_nt and pSIP409CSN_OmpA at different time point after induction is shown in Figure 22 (recombinant *csn* containing native signal peptide) and Figure 23 (recombinant *csn* containing OmpA peptide). The recombinant *csn* showed a molecular weight of approximately 30 kDa. These results correspond to the hypothetical molecular weight (MW) of the mature recombinant enzyme of 30.35 kDa, without the signal peptide. The enzymes could be found both in cell and culture supernatant as shown in Table 1. Our results indicated that the yield of the construct containing native signal peptide was much higher than those containing OmpA signal peptide. At 6 hr after induction, the chitosanase enzyme in the culture supernatant was the highest. Therefore, in the next experiment, the enzyme was harvested after a 6-h induction time.

Figure 22. Expression and secretion of recombinant *B. subtilis* chitosanase containing *B. subtilis csn* native signal peptide. The enzyme were taken at 0, 6, 12, and 24 hr after induction with IP-673 and analyzed by SDS-PAGE (A) samples from supernatant, (B) samples from cell extract.

Figure 23. Expression and secretion of recombinant *B. subtilis* chitosanase containing OmpA signal peptide. The enzyme were taken at 0, 6, 12, and 24 hr after induction with IP-673 and analyzed by SDS-PAGE. (A) samples from culture supernatant, (B) samples from cell extract.

Type of SP	Time (hr)	Enzyme activity (U/ml)		Volumetric activity (U/L)			
i ype or sr		Supernatant	Cell	Supernatant	Cell	Total	
	0	0.52	0.55	516	55	571	
<i>B. subtilis</i> csn	6	4.25	36.8	4,250	3,670	7,920	
native SP	12	0.71	235	707	23,500	24,200	
	24	0.72	166	721	16,600	17,300	
	0	0.55	0.55	547	55	602	
	6	1.42	8.65	1,420	865	2,280	
OmpA	12	0.65	23.7	653	2,370	3,020	
	24	0.59	11.8	594	1,180	1,770	

Table 1. Chitosanase activity of recombinant csn from different compartments at

different time points after induction

The data represent average values obtained in three-replication from one-independent experiments.

4.2.2 Determination of the inducer concentration

Studies with different concentrations of peptide pheromone (IP-673) were performed on the sakacin P-based expression vectors, pSIP409CSN_nt, in *L. plantarum* WCFS1. In this strain, the *csn* activity was found to be IP dose-dependent. After induction at 6 hr, forty milliliters of culture were taken at $OD_{595} \sim 1.4$ -1.6 (approx. 6 hr). Dose-response of the pSIP409CSN_nt system was investigated by adding different IP-673 concentrations in the range of 0, 1.563, 3.125, 6.25, 12.5, 25.0, 50.0, and 75.0 ng/mL (Figure 24). The optimum activity was achieved essentially at 12.5 ng/mL. The concentrations of IP-673 above 12.5 ng/mL up to 75 ng/mL showed essentially the same response as 12.5 ng/mL for csn activity from supernatant. There was very low activity in non-induced cultures. It can be concluded that an optimal concentration of inducer for *csn* gene expression was at 12.5 ng/mL of IP-673.

Figure 24. The expression of *csn* gene in *L. plantarum* WCFS1 harboring pSIP409 CSN_nt at various inducer concentration. Each data point shows *csn* activity after a 6-h induction at a given concentration of IP and is the average of three–replication from three-independent experiments.

4.2.3 Expression of recombinant *csn* in *L. plantarum* in 100-mL of culture volume

The *csn* enzymes from supernatant and cell were collected and analyzed. The result of the recombinant *B. subtilis* chitosanase from difference compartments was illustrated in figure 25 and the chitosanase protein bands were shown at approximately 30 kDa. The expression of recombinant *csn* obtained in laboratory cultivations as approximately $11,600\pm1,560$ U and $3,340\pm269$ U of chitosanase activity per liter of medium when using the native and the OmpA signal peptide, respectively. The secretion efficiencies (ratio of extracellular to intracellular activity) were approximately 50.9 % and 89.9% for the systems using the native and the OmpA SP (Table 2). These results suggested that both *B. subtilis* and *E. coli* signal peptides were able to direct the secretion of recombinant chitosanase in *L. plantarum*. The OmpA SP seemed to be more efficient in directing the secretion of the recombinant enzymes into the culture media, but the yield was lower

รั_{ราวัทยาลัยเทคโนโลยีสุร}บ

Figure 25. Expression of recombinant chitosanase in *L. plantarum* WCFS1. SDS-PAGE analysis illustrates the crude recombinant Csn_nt and Csn_OmpA from supernatant and cell extract.

 Table 2.
 Chitosanase activity and secretion efficiency of recombinant csn

Type of SP	Vol	% secretion		
	supernatant	Cell fraction	Total	efficiency
<i>B. subtilis csn</i> native SP	5,900 ^a	5700 ^b	11,600 ^b	50.9 ^a
OmpA	3,000 ^a	337 ^a	3,340 ^a	89.9 ^b

The data represent average values obtained in three-replication of two-independent experiments. Unit of enzyme was performed from 100 ml of culture medium.

Note: Each value is mean \pm SD. Means within columns and with different letter (^{a, b}) are significantly different (p < 0.05).

4.2.4 Expression of recombinant *csn* in *L. plantarum* WCFS1 in 500-mL of culture volume

The recombinants *L. plantarum* WCFS1 harboring pSIP409CSN_nt and pSIP409CSN_OmpA were induced with 12.5 ng/mL of IP-673 at O.D. values~0.3. Seventy milliliters of culture were harvest at 0, 3, 6, 9, 12, and 20 hr. after induction for approx. 2.0 h. The result showed that two types of chitosanase coud be secreted into broth medium and presented the maximum yield of chitosanase activity after induction for 3 hr. The maximum expressions of recombinant *csn* were approximately 10,700±25 U and 4,970±411 U of chitosanase activity per liter of medium when using the native and the OmpA signal peptide, respectively. The secretion efficiencies were approximately 79.0% and 89.0% for the systems using the native and the OmpA SP (Table 3). At 6 hr, the enzyme activities were approximately 10,100±1,450 U and 4,650±492 U of chitosanase activity per liter of medium when using the native and the OmpA signal peptide, respectively. The secretion efficiencies were approximately 74.9% and 89.7% for the systems using the native and the OmpA SP (Figure 26).

The pH of medium and the growth of recombinant strain harboring pSIP409CSN_nt and pSIP409CSN_OmpA and were checked at different time points of the cultivation at 30 °C, anaerobic condition and 150 rpm. The pH of medium was gradually reduced to final of pH 4. Our results indicated that after about 6 h of cultivation, these two strains reached the end of exponential phase (Figure 27).

Figure 26. The csn activity of L. plantarum WCFS1 harboring pSIP409CSN_nt and pSIP409CSN_OmpA at various time points. The cultures were induced at O.D.600~0.3. Each data point shows csn activity that was the average of two-independent experiments.

Figure 27. Growth and pH curve of the recombinant *L. plantarum* containing pSIP409CSN_nt and pSIP409CSN_OmpA. Each data point shows *csn* activity that was the average of two- independent experiments.

Time	The recombinant <i>csn</i> enzyme fused with <i>B. subtilis csn</i> native signal peptide			The recombinant <i>csn</i> enzyme fused with <i>E. coli</i> outer membrane protein (OmpA)				
	Supernatant	Cell	Total	% secretion	Supernatant	Cell	Total	% secretion
0	3,030±43 ^a	124±14 ^a	3,150±29 ^a	96.1 ^b	3,130±226 ^{ab}	128±18 ^a	3,250±207 ^a	96.1 ^b
3	8,480±145 ^c	2,260±170 ^a	10,700±25 ^c	79.0 ^{ab}	4,420±363 ^c	548 ± 548^{b}	4,970±411 ^c	89.0 ^a
6	7,570±245°	2,540±1,200 ^a	10,100±1,450 ^c	74.9 ^{ab}	4,170±382 ^{bc}	480±110 ^b	4,650±492 ^{bc}	89.7 ^{ab}
9	5,560±326 ^b	2,540±1,190 ^a	8,100±1,520 ^{bc}	68.7 ^{ab}	3,360±64 ^{ab}	386±69 ^{ab}	3,740±4 ^{ab}	89.7 ^{ab}
12	4,450±236 ^b	2,720±1,400 ^a	7,170±1,170 ^{bc}	62.0 ^{ab}	3,250±30 ^{ab}	391±20 ^{ab}	3,640±50 ^{ab}	89.3 ^{ab}
20	3,050±499 ^a	3,020±993 ^a	6,070±494 ^{ab}	50.2 ^a	2,950±281ª	396±100 ^{ab}	3,350±181 ^a	88.2 ^a

Table 3. Volumetric activity (U/L) of recombinant *B. subtilis* chitosanase fused to different signal peptides, in different compartments.

The data represent average values obtained from the average of the three-replication from two-independent experiments.

Unit of enzyme was performed from 500 ml of culture medium.

One-Way ANOVA was applied to preparation about different between control and sample groups from sampling random of each treatment, and show mean \pm standard deviation (X \pm S.D.) of each treatment by Turkey-Kramer post-hoc test at significant p<0.05.

4.2.5 Preliminary analysis of food-grade expression of recombinant *csn* gene in *L. plantarum* in 100-mL of culture volume

Observation of the food-grade csn expression system was based on the optimal condition for pSIP-based expression system. Even though, secretion efficiencies are the same, the yield obtained from the construct containing native signal peptide was higher; therefore, the recombinant *L. plantarum* TLG02 harboring pSIP609CSN_nt was used in the assay for food-grade expression system. One hundred milliliters of culture were collected at O.D. value~1.4-1.6 (approximately 6 hr) after induction with 25 ng/mL of IP-673. The SDS-PAGE analysis of recombinant *csn* from difference fraction was shown in figure 28. The molecular weight of the recombinant enzyme was approximately 30 kDa. The result showed that the expression of recombinant *csn* in laboratory cultivation was approximately 12,600 U of total chitosanase activity per liter (Table 4). This food-grade expression system will be further optimized and investigated for the food-grade production of *csn* in the future.

รักวักยาลัยเทคโนโลยีสุรบั

57

Type of SP	Compartments	Volumetric activity (U/L)
	supernatant	8,700 ^b
B. subtilis csn native SP	Cell extract	3,900 ^a
	Total	12,600

 Table 4.
 Volumetric activity (U/L) of recombinant food-grade chitosanase

Unit of enzyme was performed in the average of three-replication from 100 ml of culture medium. Note: Each value is mean \pm SD. Means within columns and with different letter (^{a, b}) are significantly different (p < 0.05).

Figure 28. SDS-PAGE analysis of recombinant Csn from food-grade expression system.

CHAPTER V

DISCUSSION

The expression of csn gene, encoding GH46 chitosanase from B. subtilis, which is suitable for various biotechnological applications has been previously reported (Pechsrichuang et al., 2013). However, the E. coli expression system is not suitable for food applications. The work in this thesis is the first report on expression and secretion of recombinant chitosanase (Csn) in L. plantarum WCFS1, which is a food-grade expression host. Two types of the recombinant chitosanase (csn) gene were sub-cloned into pSIP409-based expression vector by sticky PCR-based method. The first construct, designated pSIP409CSN nt, contained the csn gene fused with B. subtilis csn native signal peptide (SP) sequence containing 35 amino acids (MKI SMQ KAD FWK KAA ISL LVF TMF FTL MMS ETV FA); while the second construct, pSIP409CSN OmpA vector, the mature enzyme was fused with signal peptide of the E. coli outer membrane protein (OmpA) (MKK TAI AIA VAL AGF ATV AQA). After demonstrated that both of these constructs could be expressed and secreted in L. plantarum, a food-grade system for csn gene expression in Lactobacillus was generated by replacing erythromycin resistant gene (erm) in pSIP409-based vector with alr gene. The alr gene is a food-grade selection marker that encodes alanine racemase enzyme. This enzyme is essential in L. plantarum because it is used to convert L-alanine to D-alanine, which is involved in the biosynthesis of cyclosporine in the cell wall of L. plantarum (Palumbo et al., 2004).

Therefore, this expression system is applicable for enzyme production in food, feed or pharmaceutical applications as it can be used to produce recombinant Csn without the use of antibiotic form a food grade host.

Recently, it has been reported that both native and OmpA SP could be used to direct the secretion of *bacillus* extracellular enzymes using *E. coli* expression system. (Yamabhai et al., 2008; Songsiriritthigul et al., 2010a; Songsiriritthigul et al., 2010b; Pechsrichuang et al., 2013). In this research, it was found that the recombinant Csn could be expressed and secreted out of the cell of L. planatarum, when either the native or OmpA SP were used as signal peptide as well. The optimal expression of recombinant Csn could be achieved after induction with 12.5 ng/mL of peptide pheromone (IP-673) (Met-Ala-Gly-Asn-Ser-Ser-Asn-Phe-Ile-His-Lys-Ile-Lys-Gln-Ile-Phe-Thr-His-Arg) (Brurberg et al., 1997), when the OD₅₉₅ reached approximately 0.3. The maximum yields of Csn from L. plantarum system were approximately 10,700±25 U/L (Csn nt) and 4,970±411 U/L (Csn OmpA) from 500-ml shake flask culture. These yields were lower than previous report in the *E. coil* expression system (Pechsrichuang et al., 2013), which showed routinely about 57,000 U of total Csn activity in 1-L shake flask culture. The study of secretion efficiencies of recombinant Csn from this research revealed that the E. coil OmpA signal peptide seemed to be more efficient in directing the secretion of the Csn to the supernatant (89.0%) when compare to the Csn with native signal peptide (79.0%). However, the total yield of Csn fusing OmpA SP was twice lower than Csn containing native SP. Interestingly, the amount of secreted chitosanase from L. plantarum WCFS1 were the same as the secretion efficiency of those obtained from *E.coil* expression system (78.9%) (Pechsrichuang et al., 2013). The secretion efficiencies of both chitosanase seemed to

be more efficient than the secretion of L. amylovorus amylase (69%), of which Amy SP is coupled to its natural cognate amylase gene, from the same L. plantarum expression system (Mathiesen et al., 2008). Since, B. subtilis csn native SP sequence belongs to Gram-positive bacteria, which is the same type of cell wall polymer as those of L. plantarum; therefore, it can be expected that the secretion machinery of L. plantarum can recognized Bacillus signal peptide as well. However, our results indicated that a signal peptide from Gram-negative bacteria (OmpA) could also be used to direct the secretion of Csn out of L. plantarum cell wall as well. Nevertheless, the yield obtained from this constructs was much lower. These results confirmed previous observation that it is very difficult to rationalize expression level and secretion efficiency (Brockmeier et al., 2006). The difference in secretion efficiency was observed when different culture volume was used. The secretion efficincies of Csn nt from 500-mL and 100-mL of culture volume after 6-h of induction were approximately 74.9%, 50.9%, respectively. These data indicated that the effect of agitation and the different culture volume may affect the secretion efficiency ^{ับก}ยาลัยเทคโนโลยี^อลิ recombinant enzyme.

To create a food-grade expression system, the recombinant Csn construct contaning native signal peptide was used because the expression level was much higher. Preliminary study of the expression of Csn from food-grade expression system showed enzyme activity in both supernatant and cell extract. The food-grade *csn* gene expression levels obtained from 100-mL of cultivations was approximately 12,600 U of total chitosanase activity per liter. This result demonstrated that the food-grade expression system containing the recombinant *csn* gene could be used as an

alternative sources for the production of recombinant chitosanases for food, feed, or pharmaceutical applications in the future.

CHAPTER VI

CONCLUSION

- The recombinant *Bacillus subtilis* chitosanase (*csn*) was successfully cloned into *Lactobacillus* expression vector (pSIP-based expression vector) using sticky-PCR based method. The recombinant constructs contained the *csn* gene fused with different signal peptides, i.e. *B. subtilis csn* native signal peptide (SP) and the signal peptide of the *E. coli* outer membrane protein (OmpA).
- Production and secretion of the recombinant *B.subtilis* chitosanase from *L. plantarum* could be obtained using pSIP-based expression vector when either native or
 OmpA were used as a signal peptide.
- 3. The expression of the *csn* gene was controlled by using a peptide pheromone as inducer. Both enzyme activity and secretion efficiency were compared for the different constructs. Expression levels obtained from 500 mL of cultivation at the optimal condition were approximately 10,700±25 U and 4,970±411 U of chitosanase activity per liter of medium when using the native and the OmpA SP, respectively. The secretion efficiencies were approximately 79.0% and 89.0% for the systems using the native and the OmpA SP. The enzyme activity obtained from 100 mL of cultivation was approximately 11,600±1,560 U and 3,340±269 U of chitosanase activity per liter of medium and showed the secretion efficiencies 50.9% and 89.9% for the systems using the native and the OmpA SP.
- 4. The food-grade *csn* gene expression levels obtained from 100 mL of cultivations was approximately 12,600 U of total chitosanase activity per liter of medium, when the native signal peptide was used.
- This is the first report on the expression and secretion of csn gene from *B.subtilis* from *L. plantarum* food-grade expression system.

REFERENCES

- Boucher, I., Parrot, M., Gaudreau, H., Champagne, C.P., Vadeboncoeur, C., Moineau,
 S., 2002. Novel food-grade plasmid vector based on melibiose fermentation for
 the genetic engineering of *Lactococcus lactis*. Appl Environ Microbiol 68, 6152-6161.
- Brockmeier, U., Caspers, M., Freudl, R., Jockwer, A., Noll, T., Eggert, T., 2006.
 Systematic screening of all signal peptides from *Bacillus subtilis*: a powerful strategy in optimizing heterologous protein secretion in Gram-positive bacteria.
 J Mol Biol 362, 393 402.
- Bron, P.A., Benchimol, M.G., Lambert, J., Palumbo, E., Deghorain, M., Delcour, J., de Vos, W.M., Kleerebezem, M., Hols, P., 2002. Use of the *alr* Gene as a Food-Grade Selection Marker in Lactic Acid Bacteria. Appl Environ Microbiol 68, 5663-5670.
- Brurberg, M.B., Nes, I.F., Eijsink, V.G.H., 1997. Pheromone-induced production of antimicrobial peptides in *Lactobacillus*. **Mol Microbiol** 26, 347-360.
- Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V., Henrissat, B.,
 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37, 5.
- Dahiya, N., Tewari, R., Hoondal, G.S., 2006. Biotechnological aspects of chitinolytic enzymes: a review. **Appl Microbiol Biotechnol** 71, 773-782.

- Dickely, F., Nilsson, D., Hansen, E.B., Johansen, E., 1995. Isolation of *Lactococcus lactis* nonsense suppressors and construction of a food-grade cloning vector.
 Mol Microbiol 15, 839-847.
- Diep, D.B., Mathiesen, G., Eijsink, V.G.H., Nes, I.F., 2009. Use of Lactobacilli and their Pheromone-Based Regulatory Mechanism in Gene Expression and Drug Delivery. Curr Pharm Biotechnol 10, 62-73.
- Dubeau, M.P., Guay, I., Brzezinski, R., 2011. Modification of genetic regulation of a heterologous chitosanase gene in *Streptomyces lividans* TK24 leads to chitosanase production in the absence of chitosan. **Microb Cell Fact** 10, 1475-2859.
- Eijsink, V., Hoell, I., Vaaje-Kolstada, G., 2010. Structure and function of enzymes acting on chitin and chitosan. **Biotechnol Genet Eng Rev** 27, 331-366.
- Eijsink, V.H., Axelsson, L., Diep, D., Håvarstein, L., Holo, H., Nes, I., 2002.
 Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. A Van Leeuw 81, 639-654.
- El Demerdash, H.A.M., Heller, K.J., Geis, A., 2003. Application of the *shsp* gene, encoding a small heat shock protein, as a food-grade selection marker for lactic Acid Bacteria. Appl Environ Microbiol 69, 4408-4412.
- Fukamizo, T., Amano, S., Yamaguchi, K., Yoshikawa, T., Katsumi, T., Saito, J., Suzuki, M., Miki, K., Nagata, Y., Ando, A., 2005. *Bacillus circulans* MH-K1 chitosanase: amino acid residues responsible for substrate binding. J Biochem 138, 563-569.
- Fukamizo, T., Brzezinski, R., 1997. Chitosanase from *Streptomyces* sp. strain N174: a comparative review of its structure and function. **Biochem Cell Biol** 75, 687-696.

- Fukamizo, T., Honda, Y., Goto, S., Boucher, I., Brzezinski, R., 1995. Reaction mechanism of chitosanase from *Streptomyces* sp. N174. **Biochem J** 311, 377 -383.
- Giraffa, G., Chanishvili, N., Widyastuti, Y., 2010. Importance of Lactobacilli in food and feed biotechnology. **Res Microbiol** 161, 480-487.
- Gosalbes, M.J., Esteban, C.D., Galan, J.L., Perez-Martinez, G., 2000. Integrative foodgrade expression system based on the lactose regulon of *Lactobacillus casei*.
 Appl Environ Microbiol 66, 4822-4828.
- Hols, P., Defrenne, C., Ferain, T., Derzelle, S., Delplace, B., Delcour, J., 1997. The alanine racemase gene is essential for growth of *Lactobacillus plantarum*. J Bacteriol 179, 3804-3807.
- Kim, S.-K., Rajapakse, N., 2005. Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydr Polym 62, 357-368.
- Kleerebezem, M., Boekhorst, J., van Kranenburg, R., Molenaar, D., Kuipers, O.P., Leer, R., Tarchini, R., Peters, S.A., Sandbrink, H.M., Fiers, M.W.E.J., Stiekema, W., Lankhorst, R.M.K., Bron, P.A., Hoffer, S.M., Groot, M.N.N., Kerkhoven, R., de Vries, M., Ursing, B., de Vos, W.M., Siezen, R.J., 2003.
 Complete genome sequence of *Lactobacillus plantarum* WCFS1. Proc Natl Acad Sci 100, 1990-1995.
- Kleerebezemab, M., Hols, P., Hugenholtz, J., 2000. Lactic acid bacteria as a cell factory: rerouting of carbon metabolism in *Lactococcus lactis* by metabolic engineering. Enzyme Microb Technol 26, 840-848.
- Konings, W.N., Kok, J., Kuipers, O.P., Poolman, B., 2000. Lactic acid bacteria: the bugs of the new millennium. Curr Opin Microbiol 3, 276-282.

- Kuipers, O.P., de Ruyter, P.G., Kleerebezem, M., de Vos, W.M., 1997. Controlled overproduction of proteins by lactic acid bacteria. Trends Biotechnol 15, 135-140.
- Kunst, F., Ogasawara, N., Moszer, I., Albertini, A.M., Alloni, G., Azevedo, V., Bertero, M.G., Bessieres, P., Bolotin, A., Borchert, S., Borriss, R., Boursier, L., Brans, A., Braun, M., Brignell, S.C., Bron, S., Brouillet, S., Bruschi, C.V., Caldwell, B., Capuano, V., Carter, N.M., Choi, S.K., Codani, J.J., Connerton, I.F., Danchin, A., et al., 1997. The complete genome sequence of the grampositive bacterium *Bacillus subtilis*. Nature 390, 249-256.
- Laemmli, U.K., 1970. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 227, 680-685.
- MacCormick, C.A., Griffin, H.G., Gasson, M.J., 1995. Construction of a food-grade host/vector system for *Lactococcus lactis* based on the lactose operon. FEMS Microbiol Lett 127, 105-109.
- Maischberger, T., Mierau, I., Peterbauer, C.K., Hugenholtz, J., Haltrich, D., 2010. High-level expression of Lactobacillus β -galactosidases in *Lactococcus lactis* using the food-grade, nisin-controlled expression system NICE. J Agric Food Chem 58, 2279-2287.
- Mathiesen, G., Huehne, K., Kroeckel, L., Axelsson, L., Eijsink, V.G., 2005. Characterization of a new bacteriocin operon in sakacin P-producing *Lactobacillus sakei*, showing strong translational coupling between the bacteriocin and immunity genes. Appl Environ Microbiol 71, 3565-3574.

- Mathiesen, G., Sørvig, E., Blatny, J., Naterstad, K., Axelsson, L., Eijsink, V.G.H., 2004. High-level gene expression in Lactobacillus plantarum using a pheromone-regulated bacteriocin promoter. Letters in Applied Microbiology 39, 137-143.
- Mathiesen, G., Sveen, A., Piard, J., Axelsson, L., Eijsink, V., 2008. Heterologous protein secretion by *Lactobacillus plantarum* using homologous signal peptides. J Appl Microbiol 105, 215-226.
- Meijer, W.J.J., Boer, A.J.d., Tongeren, S.v., Venema, G., Bron, S., 1995. Characterization of the replication region of the *Bacillus subtilis* plasmid pLS20: a noval type to replicon. Nucleic Acids Res 23, 3214-3223.
- Mierau, I., Olieman, K., Mond, J., Smid, E., 2005. Optimization of the *Lactococcus lactis* nisin-controlled gene expression system NICE for industrial applications.
 Microb. Cell. Fact. 4, 1-12.
- Miller, G.L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31, 426-428.
- Nes, I., Diep, D., Håvarstein, L., Brurberg, M., Eijsink, V., Holo, H., 1996.
 Biosynthesis of bacteriocins in lactic acid bacteria. A Van Leeuw 70, 113-128.
- Nes, I.F., Holo, H., 2000. Class II antimicrobial peptides from lactic acid bacteria. J Pep Sci 55, 50-61.
- Nguyen, T.-T., Mathiesen, G., Fredriksen, L., Kittl, R., Nguyen, T.-H., Eijsink, V.G.H., Haltrich, D., Peterbauer, C.K., 2011. A Food-Grade System for Inducible gene expression in *Lactobacillus plantarum* using an alanine racemase encoding selection marker. J Agric Food Chem 59, 5617-5624.

- Olempska-Beer, Z.S., Merker, R.I., Ditto, M.D., DiNovi, M.J., 2006. Food-processing enzymes from recombinant microorganisms - a review. Regul Toxicol Pharm 45, 144-158.
- Palumbo, E., Favier, C.F., Deghorain, M., Cocconcelli, P.S., Grangette, C., Mercenier, A., Vaughan, E.E., Hols, P., 2004. Knockout of the alanine racemase gene in *Lactobacillus plantarum* results in septation defects and cell wall perforation.
 FEMS Microbiol Lett 233, 131-138.
- Pechsrichuang, P., Yoohat, K., Yamabhai, M., 2013. Production of recombinant Bacillus subtilis chitosanase, suitable for biosynthesis of chitosanoligosaccharides. Bioresour Technol 127, 407-414.
- Peterbauer, C., Maischberger, T., Haltrich, D., 2011. Food-grade gene expression in lactic acid bacteria. **Biotechnol J** 6, 1147-1161.
- Risøen, P.A., Brurberg, M.B., Eijsink, V.G.H., Nes, I.F., 2000. Functional analysis of promoters involved in quorum sensing-based regulation of bacteriocin production in *Lactobacillus*. Mol Microbiol 37, 619-628.
- Sasaki, Y., Ito, Y., Sasaki, T., 2004. *ThyA* as a selection marker in construction of food-grade host-vector and integration systems for *Streptococcus thermophilus*. Appl Environ Microbiol 70, 1858-1864.
- Schmidt, F., 2004. Recombinant expression systems in the pharmaceutical industry. **Appl Microbiol Biotechnol** 65, 363 - 372.
- Songsiriritthigul, C., Buranabanyat, B., Haltrich, D., Yamabhai, M., 2010a. Efficient recombinant expression and secretion of a thermostable GH26 mannan endo-1,4-beta-mannosidase from *Bacillus licheniformis* in *Escherichia coli*. Microb. Cell. Fact. 9.

- Songsiriritthigul, C., Lapboonrueng, S., Pechsrichuang, P., Pesatcha, P., Yamabhai, M., 2010b. Expression and characterization of *Bacillus licheniformis* chitinase (ChiA), suitable for bioconversion of chitin waste. Bioresour Technol 101, 4096-4103.
- Sorvig, E., Gronqvist, S., Naterstad, K., Mathiesen, G., Eijsink, V., Axelsson, L., 2003. Construction of vectors for inducible gene expression in *Lactobacillus sakei* and *L. plantarum*. **FEMS Microbiol Lett** 229, 119 126.
- Sorvig, E., Mathiesen, G., Naterstad, K., Eijsink, V., Axelsson, L., 2005. High-level, inducible gene expression in *Lactobacillus sakei* and *Lactobacillus plantarum* using versatile expression vectors. **Microbiology** 151, 2439 2449.
- Strych, U., Penland, R.L., Jimenez, M., Krause, K.L., Benedik, M.J., 2001. Characterization of the alanine racemases from two Mycobacteria. FEMS Microbiol Lett 196, 93-98.
- Sybesma, W., Hugenholtz, J., Vos, W.M.d., Smid, E.J., 2006. Safe use of genetically modified lactic acid bacteria in food. Bridging the gap between consumers, green groups, and industry. **Electronic J Biotechno**, 915 07.
- Takala, T., Saris, P., 2002. A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene *nisI*. Appl Microbiol Biotechnol 59, 467-471.
- Vos, W.M.d., 1999. Safe and sustainable systems for food-grade fermentations by genetically modified lactic acid bacteria. **Int Dairy J** 9, 3-10.
- Xia, Y., Chen, W., Fu, X., Zhang, H., Yang, S., Ding, X., 2005. Construction of an integrative food-grade expression system for *Bacillus subtilis*. Food Res Int 38, 251-256.

- Xia, Y., Chen, W., Zhao, J., Tian, F., Zhang, H., Ding, X., 2007. Construction of a new food-grade expression system for *Bacillus subtilis* based on theta replication plasmids and auxotrophic complementation. Appl Microbiol Biotechnol 76, 643-650.
- Yamabhai, M., 2009. Sticky PCR: A PCR-based protocol for targeted protein engineering. Biotechnol J 4, 544-553.
- Yamabhai, M., Emrat, S., Sukasem, S., Pesatcha, P., Jaruseranee, N., Buranabanyat,
 B., 2008. Secretion of recombinant *Bacillus* hydrolytic enzymes using *Escherichia coli* expression systems. J Biotechnol 133, 50-57.

APPENDIX A

REAGENT PREPERATION

10% A	Ammonium persulfate (APS)	1	mL
	Ammonium persulfate	0.1	g
	Add DI H ₂ O to	1	mL
	Use frash solution and do not storage		
1% Cl	nitosan solution	1	L
	Chitosan low molecular weight	10	g.
	1 M acetic acid	90	mL
	Add DI H ₂ O	400	mL
	Mix well and adjust pH 5.5 with 1 M Sodium acetat	te	
	Adjust DI H ₂ O to	1	L
	Remark: Chitosan low molecular weight [product number 4	48869 (7	75-85% DDA)]
	was purchased from Sigma-Aldrich.		
200 m	g/mL D-alanine solution	2	mL
	D-alanine	400	mg
	Add DI H ₂ O	2	mL
	Sterilize the solution using 0.22 μ m filter and storage	ge -30 °	С
Destai	ning solution	1	L
	Methanol	400	mL
	Glacial acetic acid	100	mL
	Add DI H ₂ O to	1	L

3,5 Dinitrosalicylic acid (DNS solution)	250	mL
3,5 Dinitrosalicylic acid	2.5	g
2 N NaOH	50	mL
Potasium sodium tartrate	75	g
add DI H ₂ O to	250	mL
Stir for overnight		
100% Glycine solution		
Glycine	100	g
add DI H ₂ O to	100	mL
Autoclave the solution for 15 minutes at 121 °C		
Luria bertani (LB)	1	L
Bacto-Tryptone	10	g
Bacto-yeast extract	5	g
NaCl	5	g
Agar (for agar medium)	15	g
Adjust volume by deionized water (ddH ₂ O) to	1	L
Autoclave the solution for 15 minutes at 121 °C		
30% Polyethylene glycol 1500 (or 1450) solution	100	mL
Polyethylene glycol 1500 (or 1450)	10	g
add DI H ₂ O to	100	mL
Autoclave the solution for 15 minutes at 121 °C		

100 µg/mil 1 eptile pheromone (11 -075)		
2 mg/mL peptide pheromone (IP-673)	50	μL
DNase,RNase-free H ₂ O	950	μL
Storage -30 °C		
4X Runing gel buffer	200	mL
Tris	36.3	g
Adjust pH 8.8 with HCL and add DI H ₂ O to	200	mL
Storage 4 °C in the dark		
4X Stacking gel buffer	50 ml	Ĺ
Tris	3	g
Adjust pH 6.8 with HCL and add DI H_2O to	50	mL
Storage 4 °C in the dark		
10% SDS	100	mL
Sodium dodecyl sulfate	10	g
dd DI H ₂ O to	100	mL
Staining solution	1	L
Coomassie brilliant blue R-250	1.25	g
Methanol	400	mL
Glacial acetic acid	100	mL
Add DI H ₂ O to	1	L

100 μg/mL Peptide pheromone (IP-673)

10X T	ank buffer	1	L
	Tris	36.3	g
	Glycine	144.13	g
	Sodium dodecyl sulfate	10	g
	Add DI H ₂ O to	1	L
12.5%	Running gel SDS-PAGE (for 4 gel)		
	40%acrylamine	4.7	mL
	4X Running gel buffer	3.75	mL
	10% SDS	0.15	mL
	DI H ₂ O	6.35	mL
	10% SDS	75	μL
	TEMED	7	μL
4% St	acking gel SDS-PAGE (for 4 gel)		
	40%acrylamine	0.499	μL
	4X Stacking gel buffer	1.25	mL
	10% SDS	50	μL
	DI H ₂ O	3.166	mL
	10% SDS	25	μL
	TEMED	12	μL
200 m	g/mL Erythromycin solution	5	mL
	Erythromycin	500	mg
	Ethanol	5	mL

Storage -30 °C in the dark

APPENDIX B

COMPETENT CELL PREPARATION

1. Preparation of chemically competent Escherichia coli TOP10 cells and chemical transformation

Materials:

- Ca/Glycine buffer

0.6 M CaCl ₂	100	mL
0.5 M Pipas	20	mL
Glycine [100% used]	100	mL
Add DI H ₂ O to	1000	mL
Stirilize by autoclaving		100
- LB medium	1.109	J
valura:	เลยง	

- 1. A single E. coli TOP 10 colony was picked and cultivated in 10 mL of LB broth, overnight in a shaking incubator at 37 ° C, 250 rpm.
- 2. The culture was innoculated of 1.5 mL of culture into 250 mL of LB broth and grown at 37 ° C, with shaking at 250 rpm, around 4 hr until OD₆₀₀ \sim 0.5-0.6.
- 3. The culture was placed on ice for 10 min. The culture was transferred into 50 mL Nunc tubes and centrifuged at 4 ° C at 4000 rpm for 10 min.

- The supernatant was discarded and the pellet re-suspended in 40 mL of the ice-cold Ca/Glycine buffer. The cell suspension was centrifuged at 4 ° C at 3000 rpm for 10 min.
- 5. The supernatant was discarded and the pellet re-suspended in 40 mL of the ice-cold Ca/Glycine buffer and incubated on ice for 30 min . The cell suspension was centrifuged at 4 ° C at 3000 rpm for 10 min.
- 6. The supernatant was discarded and the pellet re-suspended in 6 mL of the ice-cold Ca/Glycine buffer. The 100 μ L of re-suspension of culture were dispensed in eppendorf tubes and placed in liquid nitrogen. Then, the competent cells were stored at 80 °C.

Transforming chemically competent E. coli TOP10 cells

- Thaw competent *E. coli* TOP10 cells on ice and add DNA, pipette gently to mix (1μl of prepped plasmid is more than enough).
- 2. Place for 30 minutes on ice.
- 3. Incubate cells for 90 seconds at 42°C and incubate cells on ice for 5 min.
- Add 900 μL of LB broth and incubate for 1 hour at 37°C on shaker at 150 rpm.
- Spread 30, 100 μl and spread all onto a plate made with 800 μg/mL of erythromycin and grow overnight at 37 °C.

2. Preparation of chemically competent *Escherichia coli* MB2159 cells and

chemical transformation

Materials:

- Ca/Glycine buffer

0.6 M CaCl ₂	100	mL
0.5 M Pipas	20	mL
Glycine [100% used]	100	mL
Add DI H ₂ O to	1000	mL

Stirilize by autoclaving

- LB medium with D-alanine 200 $\mu\text{g/mL}$

- A single *E. coli* MB2159 colony was picked and cultivated in 10 mL of LB broth with D-alanine 200 µg/mL, overnight in a shaking incubator at 37 ° C, 250 rpm.
- 2. The culture was innoculated of 2 mL of culture into 200 mL of LB broth with D-alanine 200 μ g/mL and grown at 37 ° C, with shaking at 250 rpm until OD₆₀₀ ~ 0.5-0.6 for approximately 2.30 h.
- The culture was placed on ice for 10 min. The culture was transferred into 50 mL Nunc tubes and centrifuged at 4 ° C at 4000 rpm for 10 min.
- The supernatant was discarded and the pellet re-suspended in 40 mL of the ice-cold Ca/Glycine buffer. The cell suspension was centrifuged at 4 ° C at 3000 rpm for 10 min.

- 5. The supernatant was discarded and the pellet re-suspended in 40 mL of the ice-cold Ca/Glycine buffer and incubated on ice for 30 min . The cell suspension was centrifuged at 4 ° C at 3000 rpm for 10 min.
- 6. The supernatant was discarded and the pellet re-suspended in 4.8 mL of the ice-cold Ca/Glycine buffer. The 100 μ L of re-suspension of culture were dispensed in eppendorf tubes and placed in liquid nitrogen. Then, the competent cells were stored at 80 °C.

Transforming chemically competent E. coli MB2159 cells

- 1. Thaw competent *E. coli* MB2159 cells on ice and add DNA, pipette gently to mix (1μl of prepped plasmid is more than enough).
- 2. Place for 30 minutes on ice.
- 3. Incubate cells for 90 seconds at 42°C and incubate cells on ice for 5 min.
- Add 900 μL of normal LB broth and incubate for 1 hour at 37°C on shaker at 150 rpm.
- 5. Spread 30, 100 μl and spread all onto a normal LB plate and grow overnight at 37 °C.

3. Preparation of electro-competent *L. plantarum* WCFS1 cells and electrotransformation

Materials:

- MRS (with 1% glycine)
- 30% PEG-1500 (or PEG 1450)
- MRS (with 0.5 M sucrose, 0.1 M MgCl₂)
- MRS medium with appropriate antibiotics
- Electro-competent L. plantarum WCFS1
- Electroporation cuvettes

- 1. Grow L. plantarum WCFS1 overnight in MRS at 37°C
- 2. Make a serial dilutions from 10^{-2} to 10^{-8} in MRS + 1% glycine, and grow these overnight at 37°C.
- 3. Stop the precultures with $OD_{600} = 2.5 \pm 0.5$. Dilute 1 to 20 in fresh MRS + 1% glycine and incubate this culture at 37° until exponential phase ($OD_{600} = 0.70 \pm 0.05$)
- 4. Keep the culture on ice for 10 minutes.
- 5. Centrifuge for 10 minutes at 4°C, 4500 rpm.
- 6. Re-suspend the pellet in 0.5 1 culture volume in ice-cold 30% PEG-1450
- 7. Keep the cell suspension on ice for 10 minutes.
- 8. Centrifuge for 10 minutes at 4°C, 4500 rpm.
- Re-suspend the pellet in 1/50 1/100 culture volume in ice-cold 30% of PEG-1450.

10. The cells are kept on ice until use or pipette aliquots of 40 μ l into pre-cool and sterile eppies and store these at -80 °C.

Electroporation of L. plantarum WCFS1 competent cells

- Fill an ice-cold electroporation cuvet with 40 μl competent cells (freshly prepared or thawed out from -80°C deep freezer and kept on ice).
- 2. Add 1 5 µg DNA.
- 3. Set the electroporator as follows in voltage 1.5 kV
- Place the dry electroporation cuvet in the gene pulser and give electric pulse.
- 5. Incubate 2 minutes on ice and
- Transfer the contents of the cuvet into a sterile eppi with 500 μl MRS +
 0.5M sucrose + 0.1 M MgCl₂ and incubate 1 2 hours at 37 °C.
- 7. Plate the dilutions on MRSA plates with a suitable antibiotic.

รั_{รวอักยาลัยเทคโนโลยีสุร}บ์

8. Incubate the plates 1 - 3 days at 37 °C until the colonies are visible.

4. Preparation of electro-competent *L. plantarum* TLG02 cells and electrotransformation

Materials:

- MRS (1% glycine, 200 mg/mL D-alanine)
- 30% PEG-1450
- MRS (0.5 M sucrose, 0.1 M MgCl₂)
- MRS medium with 200 mg/mL D-alanine
- Electro-competent L. plantarum WCFS1
- Electroporation cuvettes

- 1. Grow L. plantarum WCFS1 overnight in MRS at 37°C
- Make a serial dilutions from 10⁻² to 10⁻⁸ in MRS (1% glycine, 200 mg/mL D-alanine), and grow these overnight at 37°C.
- 3. Stop the precultures with $OD_{600} = 2.5 \pm 0.5$. Dilute 1 to 20 in fresh MRS (1% glycine, 200 mg/mL D-alanine) and incubate this culture at 37° until exponential phase ($OD_{600} = 0.70 \pm 0.05$)
- 4. Keep the culture on ice for 10 minutes.
- 5. Centrifuge for 10 minutes at 4°C, 4500 rpm.
- 6. Re-suspend the pellet in 0.5 1 culture volume in ice-cold 30% PEG-1450
- 7. Keep the cell suspension on ice for 10 minutes.
- 8. Centrifuge for 10 minutes at 4°C, 4500 rpm.
- Re-suspend the pellet in 1/50 1/100 culture volume in ice-cold 30% of PEG-1450.

10. The cells are kept on ice until use or pipette aliquots of 40 μ l into pre-cool and sterile eppies and store these at -80 °C.

Electroporation of L. plantarum TLG02 competent cells

- Fill an ice-cold electroporation cuvet with 40 μl competent cells (freshly prepared or thawed out from -80°C deep freezer and kept on ice).
- 2. Add 1 5 µg DNA.
- 3. Set the electroporator as follows in voltage 1.5 kV
- Place the dry electroporation cuvet in the gene pulser and give electric pulse.
- 5. Incubate 2 minutes on ice and
- Transfer the contents of the cuvet into a sterile eppi with 500 μL of MRS (0.5 M sucrose, 0.1 M MgCl₂) and incubate 1 2 hours at 37 °C.
- 7. Plate the dilutions on MRS plates.
- 8. Incubate the plates 1 3 days at 37 °C until the colonies are visible.

รั_{ราวิ}กยาลัยเทคโนโลยีสุรั

APPENDIX C

STANDARD CURVE

Glucose standard curve for determining chitosanase activity using DNS method.

รั_{รวิวั}กยาลัยเทคโนโลยีสุรี

APPENDIX D

VECTOR MAPPING AND DNA SEQUENCE

1. Schematic overview of the modular pSIP-vector expression system.

2. Schematic overview of pSIP409 plasmids that is used in this study

3. Amino acids sequence alignment of pSIP409CSN_nt and pSIP409CSN_OmpA

pSIP409CSN_ntC1 pSIP409CSN_ntC2 pSIP409CSN_OmpA	MKISMQKADFWKKAAISLLVFTMFFTLMMSETVFAAGLNKDQKRRAEQLTSIFENGTTEI 6 MKISMQKADFWKKAAISLLVFTMFFTLMMSETVFAAGLNKDQKRRAEQLTSIFENGTTEI 6 MKKTAIAIAVALAGFATVAQASAGLNKDQKRRAEQLTSIFENGTTEI 4 **:**:: * *::.: ***********************	0 0 17
pSIP409CSN_ntC1 pSIP409CSN_ntC2 pSIP409CSN_OmpA	QYGYVERLDDGRGYTCGRAGFTTATGDALEVVEVYTKAVPNNKLKKYLPELRRLAKEESD 1 QYGYVERLDDGRGYTCGRAGFTTATGDALEVVEVYTKAVPNNKLKKYLPELRRLAKEESD 1 QYGYVERLDDGRGYTCGRAGFTTATGDALEVVEVYTKAVPNNKLKKYLPELRRLAKEESD 1	.20 .20 .07
pSIP409CSN_ntC1 pSIP409CSN_ntC2 pSIP409CSN_OmpA	DTSNLKGFASAWKSLANDKEFRAAQDKVNDHLYYQPAMKRSDNAGLKTALARAVMYDTVI 1 DTSNLKGFASAWKSLANDKEFRAAQDKVNDHLYYQPAMKRSDNAGLKTALARAVMYDTVI 1 DTSNLKGFASAWKSLANDKEFRAAQDKVNDHLYYQPAMKRSDNAGLKTALARAVMYDTVI 1	,80 .80 .67
pSIP409CSN_ntC1 pSIP409CSN_ntC2 pSIP409CSN_OmpA	QHGDGDDPDSFYALIKRTNKKAGGSPKDGIDEKKWLNKFLDVRYDDLMNPANHDTRDEWR 2 QHGDGDDPDSFYALIKRTNKKAGGSPKDGIDEKKWLNKFLDVRYDDLMNPANHDTRDEWR 2 QHGDGDDPDSFYALIKRTNKKAGGSPKDGIDEKKWLNKFLDVRYDDLMNPANHDTRDEWR 2	240 240 227
pSIP409CSN_ntC1 pSIP409CSN_ntC2 pSIP409CSN_OmpA	ESVARVDVLRSIAKENNYNLNGPIHVRSNEYGNFVIKGSVDHHHHHH 287 ESVARVDVLRSIAKENNYNLNGPIHVRSNEYGNFVIKGSVDHHHHHHH 287 ESVARVDVLRSIAKENNYNLNGPIHVRSNEYGNFVIKGSVDHHHHHHHH 276	
	⁷ ว <i>ิกยาลั</i> ยเทคโนโลยีสุรุง	

APPENDIX E

POSTER PRESENTATION

Total 344 = 249 Construction of food-grade expression vectors for the expression of Bacillass Constructed by replacing erythromycin resistant gene of the pSIP409CSN, nt and pSIP409CSN, OnipA, vectors with alanine racemase (aft) gene, resulting pSIP609CSN_nf and pSIP609CSN_OmpA, respectively. Selection of recombinant L. plantarum containing the expression vector can be done by graving appropriate strain of the bacterial (TLGO) without using antibiotic. The integrity of the food-grade constructs were confirmed by digesting vectors with Jannet and Cal restriction enzymes (Fig. 3). The bands with the size of the alr gene of about 1.8 - 2.0 kbp are indicated by an arrow. These expression vectors will be further investigated for the food-grade production of Cn in the future.

Figure 3. Construction of food-grade expression vectors. (A) Restriction fragment analysis of constructs. The map of $\beta SIP600CSN_{12}$ ([B) and $\beta SIP600CSN_{10}mpA (C)_{10}$ of which the are exchanged with a 0 gene, are shown.

Conclusion:

Production and secretion of the recombinant B.subtilis chitosanase from L plantarum could be obtained using pSIP-based expression vector when either native or OmpA were used as a signal peptide.

Acknowledgement :This is research was supported by National Research Council of Thailand (NRCT), Suranarce University of Technology (SUT) and by the Higher Education Research Promotion and National Research University Project of Thailand (NRU), Office of the Higher Education Commission. 63

the triggers reduced to Commission:
 References:
 Single XML (075: A random excision method for the question of mice form quantities of
 process of more than process of provincing to folding. And Bracketters 72:247-254
 Brackmare TU, Career MJ, Small R, Jeckware A, Nell T, Eggers T, 2006. Synthesis exercising of all
 gersl applies for Bacinia networks to proceed any angle of process of the section of th

- 31425-228, Pechnichung P, Yonha K, Yanabha M, 2013, Production of moenhinest Beetlier scheller sche

Abstract :

The aim:

Figure 1. Map of pSIP409CSN mt (A) and _pSIP409CSN_OmpA (B), which is a pSIP-b expression of Cis_mt and Cin_OmpA, respectively.

expression of Cm_mand Cm_DompA, respectively. Expression of recombinant csn: The overnight culture of L plantarum WCFS1 harboring pS1P409CSN-mt and pS1P409CSN_OmpA were diluted in fresh MRS containing erythromycin to an OD_{ase} of ~0.1 and incubated at 30 °C without agitation and anaerobic condition. The cell were induced at an OD_{ase} of 0.3 by adding 12.5 ng/mL of peptide pheromone IP-673. Cells were harvested at an OD_{ase} of 1.5-1.6 (around 6 h). *Chitosanse casey and protein determination :* Chitosanse activity was analyzed by dinitrosalicylic acid (DNS) method (Miller, 1959). Chitosan was used to be substrate for analysis of chitosanaes activity. Protein concentrations were determined by Bradford method (Bradford 1976), as standard. Denots and discussion :

Results and discussion :

Figure 2. SDS-PAGE analysis illustrates these crude recombinant Cen_nt (Jane 1) and Cen_OmpA (Jane 2) from supernatant; and crude recombinant Can_nt (Jane 3) and Cen_OmpA (Jane 4) from cell lysate

Results and discussion : Expression of recombinant chitosanase enzymes in L. plantarum WCFSI L. plantarum WCFSI was used as a host for the expression of recombinant B. ubtills of chitosanase containing native and OmpA signal peptide. Cultures were taken after induction at OD_{000} 1.5-1.6 (around 6 h of expression time). SDS-PAGE analyses of runde enzyme obtained from culture supernation at and cell by save were illustrated in Fig. 2. The expression of recombinant for obtained in laborated in the expression of recombinant for obtained from culture supernation of recombinant for obtained in a 12 s of the expression of recombinant for obtained in a 1340 U of chitosanase sectivity per liter of mediate when using the mative and the OmpA signal peptide, respectively. The secretion efficienties (ratio of extragefuluer to intradilular active show the top Berlinder to both Berlinder and file compA signal peptides were able to direct the secretion of recombinant Can in L. plantarum. The OmpA SP recombinant Can in L. plantarum The OmpA SP recombinant Can in L. plantarum The OmpA SP recombinant Can in L. plantarum of directing the secretion of the recombinant enzymes into the utilities end to be more efficient of end the compA SP recombinant Can in L. plantarum. The OmpA SP recombinant Can in L. plantarum The OmpA SP recombinant Can in the output recombinant Can in L. plantarum The OmpA SP receives of the recombinant Can in L. plantarum The OmpA SP receives of the recombinant Can in L. plantarum The OmpA SP receives of the recombinant Can in L. plantarum The OmpA SP receives of t

	The 16 th FOOD INNOVATION ASIA CONFERENCE 2014 12 -13 June 2014
	BITEC Bangna, Bangkok, Thelland
	Production and secretion of Bacillus subtilis chitosanase
	using a food-grade expression system
<u></u>	Peenida Namvijitra, ² Dietmar Haltrich, ¹ Phomstri Pechsrichuang, and
	^{7*} Mantarop Yamabhal
School	of Biotechnology, Institute of Agriculturel Technology, Summarce University of Technology, National Resolutions, Theilard
Laborate	ry of Food Biotochnology, BOKU University of Natural Resources and Life Sciences, Vienna,
	Austria
	[*] Corresponding author: (montarop/2)e sut ac.th)
hstract	cations of green and white biotechnology for sustainable environment have
Abstract The appli become a	cations of green and white biotechnology for sustainable environment have n important issue. Nowadays, food industry and commercial production have
Abstract The appli secome a seen grov	cations of green and white biotechnology for sustainable environment have n important issue. Nowadays, food industry and commercial production have ving extensively. To achieve an increase in the demand and market expanding
Abstract The appli- secome a seen grov secombin- snzvmes	cations of green and white biotechnology for sustainable environment have n important issue. Nowadays, food industry and commercial production have ving extensively. To achieve an increase in the demand and market expanding ant DNA technology is necessary for the production of various food modifying and proteins. Food-grade gene expression systems are alternative choices and
Abstract The appli- become a been grov ecombin- enzymes useful for	cations of green and white biotechnology for sustainable environment having important issue. Nowadays, food industry and commercial production having extensively. To achieve an increase in the demand and market expanding ant DNA technology is necessary for the production of various food modifying and proteins. Food-grade gene expression systems are alternative choices and food applications, because they are considered as safe and carry the "Generally
Abstract The appli- become a been grov ecombini- enzymes useful for Recognizi	cations of green and white biotechnology for sustainable environment have in important issue. Nowadays, food industry and commercial production have ving extensively. To achieve an increase in the demand and market expanding ant DNA technology is necessary for the production of various food modifying and proteins. Food-grade gene expression systems are alternative choices and food applications, because they are considered as safe and carry the "Generally ed As Safe" (GRAS) status for lactic acid bacteria. We constructed expression
Abstract The appl. become a been grov ecombini enzymes useful for Recognizi vectors bi wohills, f	cations of green and white biotechnology for sustainable environment have in important issue. Nowadays, food industry and commercial production have ving extensively. To achieve an increase in the demand and market expanding ant DNA technology is necessary for the production of various food modifying and proteins. Food-grade gene expression systems are alternative choices and food applications, because they are considered as safe and carry the "Generally ed As Safe" (GRAS) status for lactic acid bacteria. We constructed expression ased on the pSIP system, containing the chitosanase (<i>csn</i>) gene from <i>Bacillu</i> used to different signal pentides. These included the <i>B</i> subtilis can native signa
Abstract The appl become a been grov recombini enzymes useful for Recognizi vectors bi subrills, fi peptide (S	cations of green and white biotechnology for sustainable environment have important issue. Nowadays, food industry and commercial production have ving extensively. To achieve an increase in the demand and market expanding ant DNA technology is necessary for the production of various food modifying and proteins. Food-grade gene expression systems are alternative choices are food applications, because they are considered as safe and carry the "Generally ed As Safe" (GRAS) status for lactic acid bacteria. We constructed expression ased on the pSIP system, containing the chitosanase (<i>csn</i>) gene from <i>Bacillu</i> used to different signal peptides. These included the <i>B. subtilits csn</i> native signal iP) as well as the signal peptide of the <i>E. coll</i> outer membrane protein (OmpA)
Abstract The appl tecome a teen grow ecombina enzymes useful for Recogniza vectors bi aubrilla, fo teptide (S These ex	cations of green and white biotechnology for sustainable environment have in important issue. Nowadays, food industry and commercial production have ying extensively. To achieve an increase in the demand and market expanding ant DNA technology is necessary for the production of various food modifying and proteins. Food-grade gene expression systems are alternative choices and food applications, because they are considered as safe and carry the "Generally ed As Safe" (GRAS) status for lactic acid bacteria. We constructed expression ased on the pSIP system, containing the chitosanase (<i>csn</i>) gene from <i>Bacillu</i> used to different signal peptides. These included the <i>B. subtilis csn</i> native signa iP) as well as the signal peptide of the <i>E. coll</i> outer membrane protein (OmpA) pression vectors were constructed for expression in the food-grade hos
Abstract The appl become a been grow recombini enzymes useful for Recognizi whillis, fi peptide (S These ex Lactobaci	cations of green and white biotechnology for sustainable environment have in important issue. Nowadays, food industry and commercial production have ying extensively. To achieve an increase in the demand and market expanding and DNA technology is necessary for the production of various food modifying and proteins. Food-grade gene expression systems are alternative choices and food applications, because they are considered as safe and carry the "Generally ed As Safe" (GRAS) status for lactic acid bacteria. We constructed expression used on the pSIP system, containing the chitosanase (<i>csn</i>) gene from <i>Bactlinu</i> used to different signal peptides. These included the <i>B. subtilis csn</i> native signa iP) as well as the signal peptide of the <i>E. coll</i> outer membrane protein (OmpA) pression vectors were constructed for expression in the food-grade hos <i>llus plantarum</i> . Expression of the <i>csn</i> gene was controlled by using a peptid
Abstract The appl become a been grow recombini enzymes useful for Recognizi whritis, fi peptide (S These ex Lacrobaci pheromon	cations of green and white biotechnology for sustainable environment have in important issue. Nowadays, food industry and commercial production have ving extensively. To achieve an increase in the demand and market expanding ant DNA technology is necessary for the production of various food modifying and proteins. Food-grade gene expression systems are alternative choices and food applications, because they are considered as safe and carry the "Generally ed As Safe" (GRAS) status for lactic acid bacteria. We constructed expression used on the pSIP system, containing the chitosanase (<i>csn</i>) gene from <i>Bactillu</i> used to different signal peptides. These included the <i>B. subtilis csn</i> native signal P) as well as the signal peptide of the <i>E. coll</i> outer membrane protein (OmpA) pression vectors were constructed for expression in the food-grade hos <i>llus plantarum</i> . Expression of the <i>csn</i> gene was controlled by using a peptid e as inducer, and both enzyme activity and secretion efficiency were compares for the protein of the two plantarum efficiency were compares
Abstract The appl become a been grov recombin enzymes useful for Recognize vectors be subritis, fi peptide (S These ex Lacrobace pheromore for the di	cations of green and white biotechnology for sustainable environment have important issue. Nowadays, food industry and commercial production have ving extensively. To achieve an increase in the demand and market expanding ant DNA technology is necessary for the production of various food modifying and proteins. Food-grade gene expression systems are alternative choices and food applications, because they are considered as safe and carry the "Generally ed As Safe" (GRAS) status for lactic acid bacteria. We constructed expression ased on the pSIP system, containing the chitosanase (<i>csn</i>) gene from <i>Bacillu</i> , used to different signal peptides. These included the <i>B. subtilits csn</i> native signal P) as well as the signal peptide of the <i>E. coll</i> outer membrane protein (OmpA) pression vectors were constructed for expression in the food-grade has <i>llus plantarum</i> . Expression of the <i>csn</i> gene was controlled by using a peptidi e as inducer, and both enzyme activity and secretion efficiency were compares fferent constructs. Expression levels obtained in laboratory cultivations were were 12000 II and 3400 II of chitosanase activity are line of medium when
Abstract The appl become a been grow recombini enzymes useful for Recognizi vectors bi swhills, fi peptide (S These ex Lacrobaci pheromon for the di approxim- using the	cations of green and white biotechnology for sustainable environment have in important issue. Nowadays, food industry and commercial production have ving extensively. To achieve an increase in the demand and market expanding and DNA technology is necessary for the production of various food modifying and proteins. Food-grade gene expression systems are alternative choices and food applications, because they are considered as safe and carry the "Generally ed As Safe" (GRAS) status for lactic acid bacteria. We constructed expression ased on the pSIP system, containing the chitosanase (<i>csn</i>) gene from <i>Bacillu</i> used to different signal peptides. These included the <i>B. subtilis csn</i> native signa iP) as well as the signal peptide of the <i>E. coll</i> outer membrane protein (OmpA) pression vectors were constructed for expression in the food-grade hos <i>llus plantarum</i> . Expression of the <i>csn</i> gene was controlled by using a peptid e as inducer, and both enzyme activity and secretion efficiency were compares forent constructs. Expression levels obtained in laboratory cultivations were ately 12000 U and 3400 U of chitosanase activity per liter of medium where native and the OmpA SP, respectively. The secretion efficiencies (ratio of
Abstract The appl become a been grow recombin- enzymes useful for Recogniz- wettors bi- nobility, fi- peptide (S These ex- Lactobaci- pheromoni- for the di- approxim- using the extracellu	cations of green and white biotechnology for sustainable environment have in important issue. Nowadays, food industry and commercial production have ying extensively. To achieve an increase in the demand and market expanding ant DNA technology is necessary for the production of various food modifying and proteins. Food-grade gene expression systems are alternative choices and food applications, because they are considered as safe and carry the "Generally ed As Safe" (GRAS) status for lactic acid bacteria. We constructed expression ased on the pSIP system, containing the chitosanase (<i>csn</i>) gene from <i>Bacillu</i> used to different signal peptides. These included the <i>B. subtilis csn</i> native signa iP) as well as the signal peptide of the <i>E. coll</i> outer membrane protein (OmpA) pression vectors were constructed for expression in the food-grade hos <i>llus plantarum</i> . Expression of the <i>csn</i> gene was controlled by using a peptid e as inducer, and both enzyme activity and secretion efficiency were compared ferent constructs. Expression levels obtained in laboratory cultivations were ately 12000 U and 3400 U of chitosanase activity per liter of medium when native and the OmpA SP, respectively. The secretion efficiencies (ratio of lar to intracellular activity) were 51% and 90% for the systems using the nativi-
Abstract The appl become a been grow recombini enzymes useful for Recognizi wettors bi swhillis, fi peptide (S These ex Lacrobaci pheromon for the di approxim using the extracellu and the C	cations of green and white biotechnology for sustainable environment have in important issue. Nowadays, food industry and commercial production have ing extensively. To achieve an increase in the demand and market expanding and DNA technology is necessary for the production of various food modifying and proteins. Food-grade gene expression systems are alternative choices and food applications, because they are considered as safe and carry the "Generally ed As Safe" (GRAS) status for lactic acid bacteria. We constructed expression used on the pSIP system, containing the chitosanase (<i>csn</i>) gene from <i>Bactllu</i> used to different signal peptides. These included the <i>B. subtilis csn</i> native signa iP) as well as the signal peptide of the <i>E. coll</i> outer membrane protein (OmpA) pression vectors were constructed for expression in the food-grade has <i>llus plantarum</i> . Expression of the <i>csn</i> gene was controlled by using a peptid e as inducer, and both enzyme activity and secretion efficiency were compares fferent constructs. Expression levels obtained in laboratory cultivations were ately 12000 U and 3400 U of chitosanase activity per liter of medium when native and the OmpA SP, respectively. The secretion efficiencies (ratio o lar to intracellular activity) were 51% and 90% for the systems using the nativi- ompA SP. In conclusion, these constructs resulted in efficient secretion of the constructs.
Abstract The appl become a been grow recombini enzymes useful for Recognizi wortilis, fi peptide (S These ex Lacrobaci obecomore for the di approximusing the extracellu and the C recombini	cations of green and white biotechnology for sustainable environment have important issue. Nowadays, food industry and commercial production have ving extensively. To achieve an increase in the demand and market expanding ant DNA technology is necessary for the production of various food modifying and proteins. Food-grade gene expression systems are alternative choices and food applications, because they are considered as safe and carry the "Generally ed As Safe" (GRAS) status for lactic acid bacteria. We constructed expression ased on the pSIP system, containing the chitosanase (<i>csn</i>) gene from <i>Bacillus</i> used to different signal peptides. These included the <i>B. subtilits csn</i> native signa iP) as well as the signal peptide of the <i>E. coll</i> outer membrane protein (OmpA) pression vectors were constructed for expression in the food-grade hos <i>llus plantarum</i> . Expression of the <i>csn</i> gene was controlled by using a peptid ferent constructs. Expression levels obtained in laboratory cultivations were native and the OmpA SP, respectively. The secretion efficiencies (ratio o lar to intracellular activity) were 51% and 90% for the systems using the nativi- mat target protein. Currently, we are changing the selection marker in thesit
Abstract The appl become a been grow recombin- insertion of the support whills, fi septide (S These ex Lacrobact beromon for the di approxim using the extracellu- ind the C recombini- constructs	cations of green and white biotechnology for sustainable environment have in important issue. Nowadays, food industry and commercial production have ving extensively. To achieve an increase in the demand and market expanding ant DNA technology is necessary for the production of various food modifying and proteins. Food-grade gene expression systems are alternative choices are food applications, because they are considered as safe and carry the "Generally ed As Safe" (GRAS) status for lactic acid bacteria. We constructed expression ased on the pSIP system, containing the chitosanase (<i>csn</i>) gene from <i>Bacillus</i> used to different signal peptides. These included the <i>B. subtilits csn</i> native signa iP) as well as the signal peptide of the <i>E. coll</i> outer membrane protein (OmpA) pression vectors were constructed for expression in the food-grade hos <i>llus plantarum</i> . Expression of the <i>csn</i> gene was controlled by using a peptide e as inducer, and both enzyme activity and secretion efficiency were compares for and the OmpA SP, respectively. The secretion efficiencies (ratio o lar to intracellular activity) were 51% and 90% for the systems using the nativi- ompA SP. In conclusion, these constructs resulted in efficient secretion of the ant target protein. Currently, we are changing the selection marker in thes is by replacing the antibiotic resistance gene with the alanine racemase gene
Abstract The appli- recome a reen grov- ecombin- mzymes useful for Accogniz- rectors bi- ubritis, fi- rectors bi- ubritis, fi- rectors bi- ubritis, fi- rectors bi- ubritis, fi- rectors bi- ubritis, fi- rectors bi- distribution becomo- nor the di- upproxim- using the stracellu- ind the C ecombinu- onstructs hereby of	cations of green and white biotechnology for sustainable environment have important issue. Nowadays, food industry and commercial production have ving extensively. To achieve an increase in the demand and market expanding and DNA technology is necessary for the production of various food modifying and proteins. Food-grade gene expression systems are alternative choices are food applications, because they are considered as safe and carry the "Generally ed As Safe" (GRAS) status for lactic acid bacteria. We constructed expression ased on the pSIP system, containing the chitosanase (<i>csn</i>) gene from <i>Bacillu</i> used to different signal peptides. These included the <i>B. subtilis csn</i> native signa IP) as well as the signal peptide of the <i>E. coll</i> outer membrane protein (OmpA) pression vectors were constructed for expression in the food-grade hos <i>llus plantarum</i> . Expression of the <i>csn</i> gene was controlled by using a peptid e as inducer, and both enzyme activity and secretion efficiency were compares ferent constructs. Expression levels obtained in laboratory cultivations were ately 12000 U and 3400 U of chitosanase activity per liter of medium when native and the OmpA SP, respectively. The secretion efficiencies (ratio of lar to intracellular activity) were 51% and 90% for the systems using the nativi- ous ASP. In conclusion, these constructs resulted in efficient secretion of the ant target protein. Currently, we are changing the selection marker in these is by replacing the antihiotic resistance gene with the alanine racemase gene training true food-grade expression systems.

BIOGRAPHY

Miss Peenida Namvijitr was born on December 18, 1983 in Khonkhan Province, Thailand. She received hes Bachelor's Degree in Agricultural Technology (Food Technology) form Suranaree University of Technology in 2006. After graduation, she has been employed under the position of research and development supervisor by Surapon Foods Public Co.,Ltd. In 2011, she decided to further study for master degree in the field of Molecular Biology at school of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand. Her research topic was production and secretion of *Bacillus* chitosanase in *L. plantarum* food-grade expression system. The results from part of her study have been poster presented and published in FOOD INNOVATION ASIA CONFERENCE 2014 "Science and Innovation for Quality of Life" 12-13 June, 2014 BITEC, Bangkok, Thailand.