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CHAPTER I 

INTRODUCTION 

 

1.1 Background 

Globalization takes form in the expansion of social and economic networks 

and activities among countries. A significant part of it that cannot be overlooked is in 

the area of international trade. Products (manufactured goods) and services in one 

country become more easily accessible in other different parts of the world. These 

exchanges are progressively made easier as we enter the 21
st
 century with the help of 

advanced communication technologies and various multilateral agreements. Nations 

realized the benefits of engaging in international economic cooperation thus 

regulations fostering this idea is continuously sought for, discussed, jointly agreed, 

and put in the ground of implementation. Free trade areas are examples of such 

regulations and in a regional scale we have witnessed the inauguration of the ASEAN 

Economic Community in 2015. 

One of the driving forces behind the flourishing international trade, 

inarguably, lies in the increasingly better practice of logistics and distribution 

systems. These systems facilitate the transfer of products and services from the point 

of origin to the point of consumption and better systems result in more efficient 

transfers in terms of speed, cost, and reliability. Their role in the betterment of overall 

company performance is therefore as critical as other company functions. Academics 

and practitioners are continuously developing, testing, and exploring new frontiers in 
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this area and a growing number of studies and publications are testament of such 

phenomena. 

Transfers of physical products can be made over land, sea, or air. Land-based 

logistics such as trains, trucks, or buses, are the most popular option, partly due to 

their high visibility, but mainly on their flexibility in handling various types of 

products. Their major limitation, however, is in the area of inefficiency with regard to 

the amount of cargo they can carry per trip and the distance they can cover. Long-

distance transfers therefore require other modes of transportation, either by air or sea. 

Air-based logistics are represented by airplanes and these are characterized by the 

following attributes (Liu, 2012): (1) fast, making them ideal for the transportation of 

perishable products; (2) secure, given the well-established and tightly regulated safety 

standards that make them the preferred shipping option for valuable goods; and (3) 

reliable, in relation to the superior punctuality compared to other shipping modes. The 

major drawback of this logistics mode is on its limitations in dealing with sizes, 

weights, and high costs. 

The last of the three modes of logistics is maritime logistics (also commonly 

referred to as sea/maritime transportation). Its visibility is low compared to the other 

two modes, much to the fact that people rarely use it for commuting. However, for 

transporting goods, the world trade depends largely on sea-borne transportation. 

Christiansen et al (2007) estimate the share of weight of international trade borne by 

sea is in the range of 65% to 85%, whereas Singapore Logistics Association (2010) 

estimates that 90% of global freight are transported via shipping, using different types 

of vessels across the world’s oceans and through man-made waterways. The ships’ 

capacity is many times larger than that of trucks/trains/airplanes and ships can travel 
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far carrying cargo across seas and oceans. In countries with long shorelines or 

thousands of islands such as Indonesia, the Philippines, Japan, Greece, and Norway, 

the role of maritime logistics for domestic transportation is even more critical. It is far 

from exaggeration to express that maritime logistics is the bloodline of world 

trade/economy and a key actor in globalization. 

The picture of international shipping in the last decade is decorated with major 

events including the world economic crisis in 2008, debt crises in several European 

countries in the subsequent years, the rise and volatility of oil prices, and political and 

social unrest as well as natural disasters in some countries with irregular patterns that 

disrupted the global supply chains whenever occurred. These caused fluctuations in 

both the supply and demand sides that worth a closer look. Firstly, on the demand 

side, the aforementioned factors to a certain extent have shrunk the world economic 

capacity. Table 1.1 details the story for the last five years: after a big shock in 2008, 

the world gross domestic product (GDP) suffered a negative growth (2009), recovered 

in the next year (2010), but the growth continued to diminish afterwards (2011-2013). 

The world exports (measured in volume of merchandise trade) and seaborne trade are 

also trending in a similar fashion. Secondly, on the supply side, an opposite direction 

is encountered: the world fleet capacity is steadily increasing from 1.28 billion 

deadweight tons (dwt) in 2009 to 1.63 dwt in 2012, and the growth had also been 

expanding until 2012 (Table 1.2). This trend had actually been seen since 2001 where 

year after year between 2001 and 2011, this growth figure always recorded new 

historical highs and only in 2012, for the first time since 2001, it slowed down. It 

should be highlighted that the capacity still grew from 2011 to 2012, only at a slower 

rate than in 2011. Overall, the world fleet capacity has more than doubled since 2001. 
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Table 1.1 World economy growths 

 2009 2010 2011 2012 2013 2014 
a
 

GDP -2.2% 4.1% 2.8% 2.3% 2.3% 2.7% 
Exports -13.3% 13.9% 5.5% 2.3% 2.2% n.a. 

Seaborne trade -4.5% 7.0% 4.5% 4.3% 3.8% n.a. 

Source: UNCTAD (2013, 2014) 
a
 Forecast

 

 

Table 1.2 World fleet capacity 

 2009 2010 2011 2012 2013 

Billion dwt 1.28 1.40 1.54 1.63 1.69 

Growth 7.0% 9.4% 9.9% 6.0% 4.1% 

Source: UNCTAD (2010, 2011, 2012, 2013, 2014) 

 

The above data indicate a mismatch between supply and demand in the 

shipping business. While the decreasing demand is attributed to the world economic 

downturn, the increasing supply is reported due to the reluctance of major shipbuilder 

countries such as China, Japan, and the Republic of Korea, to cancel or postpone 

deliveries for orders placed prior to the economic crisis (UNCTAD, 2012), and only 

in 2012 onwards the impact was manifested. Regardless of the causes, oversupply of 

ships is a fierce challenge today faced by the companies in this industry. Shipping 

companies must rethink on the way they operate and seek better methods at all 

managerial levels to improve their performance and profitability. Collaboration, 

partnership, and forging alliances, are some possible paths that could enable 

companies to serve today’s depressing markets with more efficient operations. 

An important segment in maritime logistics is the container ships. While the 

total fleet accounts for only 13% of total world fleet capacity, much lower than the 

other segments, for example, bulk carriers (43%) and oil tankers (29%) (UNCTAD, 

2014), container ships are estimated to carry 52% of global seaborne trade in terms of 
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value, or more than US$ 4 trillion worth of goods annually (World Shipping Council, 

2014). Indeed, as The Economist put it: “… container has been more of a driver of 

globalization than all trade agreements in the past 50 years taken together.” (The 

Economist, 2013). The shipping service associated with this segment is called liner 

shipping (from the word container line). A container ship is responsible for cargoes 

(containers) from multiple owners. Because a liner company serves many shippers, it 

needs to publish a timetable and its routing in advance so shippers can schedule their 

shipment. The design of network for routing has to take into account many 

considerations such as the company’s fleet size, fleet deployment, demand/market 

growth in the ports of call, port development, government regulations, etc. It is 

therefore an important strategic decision, because once the network is established, it is 

usually adopted for months or years depending on the scale of the company’s 

operations. 

The practice of liner shipping collaboration stretched back to 1875 with the 

formation of the U.K.-Calcutta Conference. Known under various names such as liner 

conferences, shipping conferences, and ocean shipping conferences, these are the 

primary form for liner companies to setup agreements in such scopes as route 

allocation, capacity management, price fixing, and loyalty discounts (Sjostrom, 2009). 

In the last decade, however, conferences have lost its charm and companies have 

collaborated in other forms that generally can be grouped into two types. Firstly, it 

can take a form as global/strategic alliances. This type of collaboration involves more 

than one company and is usually under long-term contracts. Secondly, it is in the form 

of collaborative agreements between two companies and is usually short-term in 

nature and targeted at the operational level. The activities in either type can be on 
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route specific ventures, vessels sharing, or slot sharing. It is also possible that 

companies may follow more than one of them (Heaver et al, 2001). 

From 1996 to 2011, the world liner shipping had witnessed the establishment 

of three big alliances: the Grand Alliance (GA), the New World Alliance (NWA, 

formerly the Global Alliance), and the CKYH Alliance (formerly Hanjin/Tricon, then 

the United Alliance). These three alliances account for one-third of the world line 

capacity (Panayides and Wiedmer, 2011). In the late 2011, GA and NWA formed the 

G6 Alliance and began operation in March 2012 (Hapag-Lloyd, 2013). The top three 

liner companies (APM-Maersk, MSC, and CMA CGM) have been known to operate 

independently, or labeled as ‘soloists’, but recent news suggests they are set forth to 

form the so-called P3 Alliance. This gigantic business entity will assume more than 

40% of world line capacity and criticisms have been expressed by cargo owners and 

shippers' groups for the fear of their market domination that would decline 

competition and possibly lead to oligopolistic markets (Reuters, 2014). Immediately 

after this movement, Evergreen, currently rank fifth in the world with regard to 

capacity and who would be left out as a leading soloist if P3 takes place, announced 

that it will join the CKYH Alliance that will make the resulting CKYHE Alliance 

controls 21% of world line capacity and 26% of routes (Taipei Times, 2014). These 

dynamics in world liner shipping competition indicate that liner companies are 

relentlessly in pursuit of efficiency to help them reduce costs and increase profits. The 

downside is that the new alliances will clearly dominate the market and very likely 

put the small companies out of business. This could worsen much faster the trend that 

UNCTAD reported, where during the last 11 years, the average number of companies 

per country has decreased from 22 in 2004 to just 16 in 2014 (UNCTAD, 2014). 

 

 

 

 

 

 

 

 



7 

 

 

 

 

1.2 Rationale and Problem Definition 

There are a number of motives as to why liner companies collaborate, but 

generally it is to exploit the economies of scale by extending the service coverage and 

adding more service frequencies. Panayides and Wiedmer (2011) examined the 

announcements between 2000 and 2010 from member companies of the three big 

alliances and conclude that these motives include strategic reasons, operational 

reasons, to increase or decrease connectivity, to increase or decrease capacity, to 

introduce a new service, to suspend a service, to merge services, to demerge services, 

to offer slots for charter and to offer slots. The authors also provide taxonomy of liner 

alliance literature, from which it can be seen that the number of literature in this area 

is quite few (17 papers for the period 1999-2010) and the majority used qualitative 

approach. They further argue that the current literature in the container shipping 

industry is rich in qualitative assessments but is lacking quantitative evaluations and 

that further research is needed in the area of alliance performance measurement. 

If studies on liner collaboration are viewed as a system of input-process-

output, it can be said that the system is rich with information on the input, but is 

lacking in both the process and output. The studies of motivational background for 

collaboration are analogous with the input; the studies of how the collaboration should 

be translated at the operational level are equivalent with the process; and the studies 

of what the impacts of collaboration are and how they can be measured correspond to 

the output. The current literature has shown a growing interest in the input side, with 

most of it in the domain of qualitative approach. There are still few academic papers 
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concerning this, but the number is relatively high compared to that of the process and 

output sides. 

The process and output sides are obviously as much important as the input. 

Knowing the rationale behind collaboration without understanding how the follow ups 

should be pursued clearly has minimum value for the collaborating members. 

Moreover, results from operations should also be measurable and performances 

between with- and without-collaboration should be able to be compared and validated. 

All these are integral part of an input-process-output system as one part is heavily 

linked to and as important as the others. However, in the field of liner-shipping 

collaboration, the how-to (process) and impact (output) parts, specifically in the 

quantitative section, are yet to receive more attention from the academic world and as 

of today remain a vast research ground to be explored. 

From a different perspective, discussions on what to measure, as part of 

revealing more shed of light in the output side, can be taken to a higher level by 

considering other stakeholders in the business. Any managerial effort is naturally 

oriented to benefit the company’s shareholders. At the operational level, this can 

translate to the maximization of profits or minimization of costs. However, 

complexity arises when other stakeholders are involved. In collaborative activities, the 

partner company acts as a stakeholder and there exist possibilities to optimize other 

objectives than profits/costs by considering joint preferences from both parties. For 

example, how can the companies divide the geographic coverage service areas 

between them equally or fairly while at the same time still working on maximizing the 

total revenues? Another example has actually been mentioned in the preceding 

paragraph with regard to the forthcoming P3 Alliance. In this case, if the shippers are 
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considered as a stakeholder, their expressed concern for the negative outcomes from 

such an alliance (market domination that will cut their negotiating power) is 

conflicting with the intention of the alliance members to enhance their business 

standing. 

Methods-wise, such a situation as described above falls in the domain of 

multi-objective optimization. In this branch of knowledge, decision makers are faced 

with a number of objectives that cannot be simultaneously optimized, or in other 

words, improvement in one objective leads to the worsening of the others. Multi-

objective optimization itself is a growing research area because of its proximity to the 

background of real-world problems that are inherently multi-objective. The downside 

is that it is far more complex than the conventional single-objective optimization that 

it prevents exact approaches to be developed for the solution method. Researchers are 

turning to meta-heuristics for that purpose and evolutionary algorithms are one class 

in meta-heuristics that are suitable for this type of problems (Deb, 2008). 

To conclude this section, the problem definition of this research is stated as 

follows. The intensifying future competition in the shipping industry will force 

shipping companies to find ways to improve their operations. One possible approach 

is via collaboration among companies. The studies of maritime logistics collaboration, 

particularly in the segment of liner shipping, however, are lacking of the quantitative 

approaches. This area needs to be enriched by further exploring the how-to and 

methodologies of the collaboration activities. In addition, the real-world problems 

contain many facets and solution in only one dimension of the problem may not 

suffice to represent the best solution. Approaching the problem in liner shipping 
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collaboration, therefore, should also consider more than one objective to bring the 

solution closer to the reality. 

 

1.3 Research Questions 

Taking into account the background, rationale, and problem definition as 

discussed in the first two sections, this research aims to fill the gap in the field of 

maritime logistics collaboration. To be more specific, the following research 

questions will be answered: 

1. Realizing that real-world problems are inherently multi-objective and given a 

scope of collaboration in the liner segment, what are the objectives to be 

optimized that can represent the stakeholders’ preferences resulting from the 

collaborative activities? 

2. How such collaboration in (1) should be formulated into a mathematical 

model, solved with a quantitative approach, and translated in operational 

details? 

3. What will be the properties of the developed quantitative model in (2) with 

regard to computational complexity and sensitivity to the model parameters? 

 

1.4 Research Objectives 

The objectives of this research are as follows: 

1. To introduce the idea of maritime logistics collaboration, particularly in the 

segment of liner shipping, with emphasis on multi-objective optimization to 

capture the mutual interests from the collaborating parties. 
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2. To formulate a mathematical model for liner shipping collaboration as 

described in (1), using means of a generated case study. 

3. To develop a solution methodology for (2) with an evolutionary algorithm 

approach and to investigate the properties of the proposed methodology. 

 

1.5 Research Scope 

Research in liner collaboration has grown satisfactorily at a steady rate in the 

last two decades. In anticipation of a more intense future competition in shipping 

business as a result from the mismatch in supply and demand, more in-depth studies 

are called for in this area. As of today, the literature rests heavier on the input side 

(investigation on motives for collaboration, etc.) and mainly adopts qualitative 

approaches (surveys, interviews, etc.). Figure 1.1 displays this situation with the scope 

of this dissertation highlighted in the sections of quantitative and process-output. 

Logically, research on process cannot stand on itself because whatever method to be 

applied, the outputs must be measurable to gauge its effectiveness and efficiency. 

Therefore, the scope in Figure 1.1 encompasses both the process and output grids. 

Maritime logistics offers a number of topics that can be studied in these 

sections. Some examples are written in the lower box of Figure 1.1 (will be revisited 

in chapter two with more details). A related branch in the study of these topics is the 

what-so-called vehicle routing problem (VRP) including its variants (time windows, 

pickups and deliveries, split deliveries, and so on) (Toth and Vigo, 2002). VRP 

studies have gained considerable attention in the academic world owing to their 

usefulness in real-life applications. This research demonstrates the VRP applications 

in maritime logistics by extending it into a ship routing problem (SRP). 
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Figure 1.1 Research scope 

 

From the perspective of methods, multi-objective optimization will be in the 

central theme and since network/routing problems belong to the class of hard 

combinatorial optimization, meta-heuristic approach will be employed, particularly 

the branch of evolutionary algorithm. The idea behind this is to accommodate the 

involvement of more dimensions of the problem resulting from the collaborative 

activities. 

Finally, numerical examples will be needed for model validation and therefore 

a case study with data as close as possible to reality will be utilized. For this purpose, 

Indonesian archipelago will be used as the data background. The archipelago, 

consisting of more than 17,500 islands, is the largest in the world but maritime 

research on this country can hardly be found. 
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1.6 Organization of Dissertation 

Chapter one presents the background, rationale and problem definition of the 

research, followed by formulation of research questions and objectives. A general 

discussion on research scope provides an outline of research areas and its boundaries. 

Chapter two extensively reviews the related literature. Subjects discussed 

include the general concept of supply chain/logistics to highlight the research 

positioning, overview of maritime logistics with emphasis given on liner network 

design, collaboration issues in the segment of liner shipping, and in the sections of 

methods: vehicle routing problem and multi-objective optimization. The chapter 

concludes with identification of the research gap. 

Chapter three discusses the research methodology that includes the research 

framework and research stages. Two preliminary models are proposed to introduce 

the research idea on maritime logistics collaboration with multiple objectives. 

Chapter four builds an improved version of genetic algorithm that is suitable 

for a routing problem of a liner shipping company. The model used is based on 

vehicle routing problem that considers heterogeneous vessels, time windows, and 

fixed cost. Some or all of these attributes are usually not considered in land-based 

logistics, but all are important for a problem involving a liner shipping company. 

Chapter five extends the work of chapter four by combining the principles of 

effective and efficient genetic algorithm already developed in chapter four with one 

elitist multi-objective evolutionary algorithm (MOEA). The resulting methodology is 

a novel contribution of this research and its application on maritime logistics 

collaboration involving multiple objectives is demonstrated. 
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Finally, in chapter six, summary and conclusions of the research are outlined 

and research contribution is highlighted. Future research directions are also discussed. 

 

1.7 Chapter Summary 

Maritime logistics is the backbone of international trade and a key factor 

driving the globalization. In the last decade, international shipping faces challenges 

due to the mismatch in supply and demand. Given such a background, collaboration, 

partnership, and forging alliances are some possible paths that could be pursued by 

shipping companies to achieve more efficient operations. 

Among other shipping services, liner shipping is a segment most responsible 

for the global seaborne trade. A liner company deals with containers and serves many 

shippers, so it needs to publish its schedule and routing in advance. Network design is 

therefore an important strategic decision for such company. The theoretical ground 

related to this field is called the vehicle routing problem, where its studies and 

applications are scant in maritime logistics. This research intends to enrich that area. 

If collaboration is seen as a system of input-process-output, the process and 

output sides are still vast research ground to be explored, more specifically those 

using quantitative approaches. Also, since collaboration will involve more than one 

stakeholder, potentially there will also be more than one objective representing 

different preferences of each stakeholder. Multi-objective optimization (MOO) is 

therefore one research agenda in this dissertation. The complexity of MOO prohibits 

the use of exact approaches to solve the problem and this calls the adoption of meta-

heuristics. One emerging class in this field is called the evolutionary algorithms. 

 

 

 

 

 

 

 

 

 



 

 

 

 

CHAPTER II 

LITERATURE REVIEW 

 

2.1 Logistics vs. Supply Chain Management 

Much has been said about logistics and supply chain management (SCM). 

Authors have been debating on their similarities, differences, and functions within an 

organization. Its terminology is sometimes even more obscured from the 

amalgamation of the two terms, for example ‘supply chain logistics’ (Liu, 2012) or 

‘supply chain logistics management’ (Bowersox et al, 2013). Some authors argue that 

SCM is a broader function than logistics management (Lambert et al, 1998). This 

argument is backed up by Long (2003) stating that “SCM is logistics taken to a higher 

level of sophistication.” In contrast, Waters (2003) argues that both terms refer to 

exactly the same function, and arguments over their differences are largely semantics 

rather than real differences in practice. 

In an effort to establish a unity of views for both terms, The Council of Supply 

Chain Management Professionals (CSCMP, formerly The Council of Logistics 

Management), has set forth a definition for each term (CSCMP, 2014). Many authors 

refer to CSCMP definitions that are more in favor of putting SCM in a larger context 

than logistics (Lambert et al, 1998; Long, 2003; Wisner et al, 2008; Langley, Jr. et al, 

2009), although the exact wordings are different at the time of publications due to the 

continuous updates in the CSCMP website. 
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Table 2.1 Definition of logistics and supply chain management from various sources 

Author(s) (year) Term Definition/quote Remarks 
Bowersox et al 

(2013) 
Logistics The work required to move and geographically 

position inventory. 
 

Supply chain 

management 
Consists of firms collaborating to leverage strategic 

positioning and to improve operating efficiency. 
 

Christopher 

(2005) 
Logistics The process of strategically managing the 

procurement, movement and storage of materials, 

parts and finished inventory (and the related 

information flows) through the organization and its 

marketing channels in such a way that current and 
future profitability are maximized through the cost-

effective fulfillment of orders. 

 

Supply chain 

management 
The management of upstream and downstream 

relationships with suppliers and customers to deliver 

superior customer value at less cost to the supply 

chain as a whole. 

 

Council of 

Supply Chain 

Management 

Professionals 

(2014) 

Logistics 

management 
That part of supply chain management that plans, 

implements, and controls the efficient, effective 

forward and reverses flow and storage of goods, 

services and related information between the point of 

origin and the point of consumption in order to meet 

customers' requirements. 

 

Supply chain 

management 
Encompasses the planning and management of all 

activities involved in sourcing and procurement, 
conversion, and all logistics management activities. 

Importantly, it also includes coordination and 

collaboration with channel partners, which can be 

suppliers, intermediaries, third party service 

providers, and customers. 

 

Harrison and 

Van Hoek 

(2005) 

Supply chain A group of partners who collectively convert a basic 

commodity (upstream) into a finished product 

(downstream) that is valued by end-customers, and 

who manage returns at each stage. 

 

Logistics The task of coordinating material flow and 

information flow across the supply chain. 
 

Supply chain 

management 
Planning and controlling all of the processes that link 

partners in a supply chain together in order to serve 

needs of the end-customer. 

 

Lambert et al 
(1998) 

Logistics 
management 

The process of planning, implementing and 
controlling the efficient, effective flow and storage of 

goods, services, and related information from point of 

origin to point of consumption for the purpose of 

conforming to customer requirements. 

Follow 
CLM 

(former 

name of 

CSCMP) 
Supply chain 

management 
The integration of business processes from end user 

through original suppliers that provides products, 

services, and information that add value for 

customers. 
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Table 2.1 Definition of logistics and supply chain management from various sources 

(continued) 

Author(s) (year) Term Definition/quote Remarks 
Langley et al 

(2009) 
Supply chain An extended enterprise that crosses the boundaries of 

individual firms to span the related activities of all 

the companies involved in the total supply chain. 

 

Logistics That part of the supply chain process that plans, 

implements, and controls the efficient, effective flow 

and storage of goods, services, and related 

information from point of origin to point of 

consumption in order to meet customer requirements. 

Follow 

CSCMP 

Long (2003) Logistics 
management 

That part of the supply chain process that plans, 
implements, and controls the efficient, effective flow 

and storage of goods, services, and related 

information from point of origin to point of 

consumption in order to meet customer requirements. 

Follow 
CLM 

(former 

name of 

CSCMP) 
Supply chain 

management 
The integration of key business processes from end 

user through original suppliers that provides 

products, services, and information that add value for 

customers. 

Follow 

Lambert 

et al 

(1998) 
Waters (2003) Supply chain Consists of the series of activities and organizations 

that materials move through on their journey from 

initial suppliers to final customers. 

 

Logistics The function responsible for the flow of materials 

from suppliers into an organization, through 

operations within the organizations, and then out to 
customers. 

 

Wisner et al 

(2008) 
Logistics The process of planning, implementing and 

controlling the efficient, effective flow and storage of 

goods, services, and related information from point of 

origin to point of consumption for the purpose of 

conforming to customer requirements. 

Follow 

CSCMP 

Supply chain 

management 
The planning and management of all activities 

involved in sourcing and procurement, conversion, 

and all logistics management activities. Importantly, 

it also includes coordination and collaboration with 

channel partners, which can be suppliers, 

intermediaries, third-party service providers, and 

customers. 

Follow 

CSCMP 

 

Table 2.1 lists the definition of logistics and SCM from various sources. 

Despite the variety, few keywords can be discerned from those definitions. 

Relationships with outside partners, from upstream (suppliers) to downstream 

(customers/end users), highlights the SCM definition, whereas movement of goods 

(and information) signifies the definition of logistics. 
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Figure 2.1 Positioning of the research 

 

The purpose of highlighting logistics and SCM definitions is to put in context 

the positioning of this research. Figure 2.1a displays the common view of SCM 

concept following many definitions already mentioned. In this figure, the supply 

chain is shown as the spanning relationships from the supplier all the way to the 

consumer. The role of logistics can be divided in two types: inbound and outbound. 

Inbound logistics deals with the transportation of materials within an organization 
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(e.g. material handling in a factory) whereas outbound logistics is the movement of 

goods between entities in the chain, represented with the truck icons in both figures. 

In Figure 2.1b, notwithstanding other outbound logistics role of the chain, 

factory-to-distributor transportation is used as an example to highlight the research 

positioning. The central theme of this research is maritime logistics collaboration. 

Hence, logistics is obviously the key activity. The ‘collaboration’ part in the research 

theme entails a partner company collaborating in logistics activities. The involvement 

of an outside partner in collaboration here should not be confused with the upstream-

downstream relationship as in the common SCM concept, since the nature of the 

relationship is horizontal rather than vertical, involving partner in the same tier of the 

chain with similar role. Such a positioning is also highly affected by the fact that the 

organization type being studied is logistics instead of manufacturing companies. 

The research positioning outlined in the preceding paragraph serves as a 

background to look deeper into one of the logistics modes chosen for this research. 

Various issues in maritime logistics will be discussed in the next section. 

 

2.2 Maritime Logistics 

Despite being a subset in the overall logistics literature, research in maritime 

logistics is abundant and dedicated reviews are needed to provide a general view on 

its classification and where the trend is going. History of such reviews can be traced 

back to 1983 in a review by David Ronen, which was then updated by the same 

author in 1993. Christiansen et al (2004; 2013) continued with updated reviews in 

2004 and 2013, hence setting a decade interval for a comprehensive review in 

maritime logistics. Between the last two reviews, a different version of review 
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appeared as a chapter on ‘Maritime Transportation’ in the ‘Handbook in Operations 

Research and Management Science’ (Christiansen et al, 2007). This version of 

review, being part of a handbook rather than an invited journal article, focuses on 

descriptive models through the inclusion of in-depth mathematical formulations. 

Furthermore, in the 2007 review, the authors grouped shipping services into 

three types: liner, tramp, and industrial. Liner shipping is akin to bus operations where 

it has fixed and published schedules. As such, it not only involves high fixed costs but 

also administrative overhead because the service promises to depart on a 

predetermined schedule regardless of whether the ship is full. Tramp shipping is more 

like taxis where ships are usually contracted by specific buyers (cargo owners) to ship 

their cargo in a rather exclusive setting. Industrial shipping is similar to owning 

private cars, i.e. both the ships and cargo are owned by the same party. In the 2013 

review, tramp and industrial shipping were considered similar in certain aspects and 

thus merged as one class. 

In addition to the types of services, ships can also be classified into these 

classes based on their physical attributes (Lindstad et al, 2011): (a) Bulk vessels 

which are built for carrying either dry or wet cargoes. Their main commodities 

include iron ore, coal, grain, alumina and aggregates, while crude oil is the dominant 

wet bulk commodity. These vessels have typical dead-weights ranging from 40,000 to 

300,000 tons and service speeds at 13-16 knots; (b) Container vessels which are 

employed for the transport of containers filled with a wide range of products and 

commodities, from high-value items like electronics, to low-value products as well as 

scrap steel and paper for recycling. The typical dead-weights of these vessels range 

from 40,000 to 160,000 tons and service speeds are around 25 knots; (c) RoRo (Roll-
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on Roll-off) vessels (multi-deck vessels where the cargo is driven on and off the 

vessel through a ramp) which are used for the transport of cars, trucks, heavy 

machines, forest products and project cargo, and typically have dead-weights between 

15,000 and 40,000 tons with service speeds around 20 knots. 

Today, container shipping constitutes the major segment of liner shipping. 

Other segment such as RoRo, although expanded remarkably during recent decades, 

is considered minor. The cargo carrying capacity of the world containership fleet has 

more than doubled in each of the last three decades. In 2006, the maximum ship size 

carrying capacity has surpassed the 10,000 TEUs (twenty-foot equivalent unit) 

milestone (Imai et al, 2006). Notteboom and Rodrigue (2009) argue that the future of 

containerization will be geared by commercial, technological and logistical forces. 

Given the fast growth of the containership fleet, liner shipping therefore has attracted 

a large attention in research, particularly on liner network design and related topics. 

The volume of research roughly doubles every decade and during the last 

decade, over a hundred new papers have been refereed. These already exclude 

specialized problems associated with container line operations, such as berth 

scheduling, container stowage, containers management, container yard management, 

and cargo allocation (the left part of Figure 2.2), and papers regarding operation of 

non-commercial vessels (e.g. naval vessels). General reviews for port/in-land 

operations can be found in Steenken et al (2004) and Stahlbock and Voß (2008). A 

more specific review on berth allocation and quay crane scheduling problems is 

reported by Bierwirth and Meisel (2010). Berth allocation is a growing research area 

as studied by Golias (2011) and Zhen and Chang (2012), both using bi-objective 

approach. Other topics in this part, for example, include port selection (Lam, 2010; 
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Tran, 2011; Talley and Ng, 2013) and the impact of inland transport times on 

container fleet sizing (Dong and Song, 2012). 

The right part of Figure 2.2 is the substance of review in Christiansen et al 

(2013). A total of 132 papers are cited in that review. This number already excludes 

working papers, conference proceedings, theses, dissertations, and technical reports, 

and also port/in-land operations as mentioned earlier. While tramp/industrial shipping 

is an important part of the review, liner network design and its related topics are given 

wider coverage due to the fast growth of the containership fleet. Also included in the 

review are topics with increasing attention, such as maritime inventory routing (MIR), 

liquefied natural gas (LNG) transportation, offshore supply vessels (OSV), decision 

support systems (DSS), and sailing speeds/environmental impact. Table 2.2 provides 

the statistic of papers classification, reproduced from Christiansen et al (2013). 

 

 

 

Figure 2.2 Grouping of research topics in maritime logistics 
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Table 2.2 Statistic of maritime papers classification 

Publication 

year 
Total * 

(all 

modes) 

Liners General 
Net. 

design 
Size & 

mix 
Routing 

& sch. 
Deploy-

ment 
Speed Other 

2007-2011 104 10 4 13 8 9 5 3 
2002-2006 26   6 1  1 3 

1997-2001 28  3  3   3 

1992-1996 11   1   1 2 

 

Publication 

year 
Tramp and Industrial 

Size & 

mix 
Routing 

& sch. 
Speed MIR LNG OSV DSS Other 

2007-2011 1 16 7 11 6 5 3 6 
2002-2006  4  5   1 6 

1997-2001 4 9 2 5  1  1 

1992-1996 2 4  2    1 

* A paper may address more than one topic. 

Source: Christiansen et al (2013) 

 

2.2.1 Tramp and industrial shipping 

Although tramp/industrial shipping is not the segment to be studied in 

this research, few points worth addressing here. At the strategic level, fleet size and 

mix (or composition) is an important issue in tramp/industrial shipping. Hoff et al 

(2010) provided a literature survey on fleet composition and routing. They included 

both road-based and maritime transportation in the review and discussed their 

industrial aspects. Pantuso et al (2014) provided a more specific review on fleet size 

and mix by focusing on maritime problems, but the scope is on all segments and not 

limited to tramp/industrial. Both papers agree on one thing: most papers under their 

reviews did not consider the stochastic aspects which are obviously present in reality, 

especially given the long time-frame of planning at the strategic level. Further, three 

papers proposed the use of decision support systems for strategic planning in maritime 

transportation: Cheng and Duran (2004) developed a decision support system using 
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discrete event simulation and stochastic optimal control for world-wide crude oil 

transportation; Fagerholt (2004) promoted TurboRouter, a decision support system for 

fleet scheduling; and Fagerholt et al (2010a) designed a decision support 

methodology that combines Monte Carlo simulation and optimization. 

At the tactical level in tramp/industrial shipping, the focus of attention 

shifts from fleet size and mix to routing and scheduling. Brønmo et al (2010) and 

Korsvik and Fagerholt (2010) discussed ship scheduling problems with flexible cargo 

sizes/quantities. The former used a column-generation approach, whereas the latter 

developed a tabu-search heuristic. The difference between the two papers is regarding 

the spot cargoes in its relation to cargo-size flexibility. In Brønmo et al (2010), such 

flexibility is treated outward, i.e. some of the cargoes are offered on the spot market, 

whereas Korsvik and Fagerholt (2010) treated it inward, i.e. to allow spot cargoes to 

be carried to improve profit. A similar research is reported by Korsvik et al (2011) 

where the authors introduced the concept of split loads to break the restriction that 

each cargo can only be transported by one ship. Split-loads consideration is common 

in land-based routing (split delivery vehicle routing problem), but not in ship routing 

and scheduling as argued by the authors. A large neighborhood search (LNS) heuristic 

was used in this paper and good solutions were obtained for all test cases. The authors 

also reported that their LNS heuristic will be integrated in the above-mentioned 

prototype DSS called TurboRouter. 

For liquid bulk cargoes, reference can be made to these papers. Jetlund 

and Karimi (2004) discussed routing and scheduling for multi-compartment chemical 

tankers. The authors argued that their mixed-integer linear programming formulation 

can improve profit when compared to the actual plan used by a chemical shipping 
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company. For crude oil transportation, Hennig et al (2012) proposed a path flow 

model for a split pickup and split delivery oil tanker routing and scheduling problem 

and Nishi and Izuno (2014) recently suggested a column-generation heuristic, also for 

oil tanker routing and scheduling problem with split deliveries. A different business 

sector in liquid bulk cargoes is liquefied natural gas (LNG). Halvorsen-Weare et al 

(2013) studied ship routing and scheduling in this area, dealing with uncertainty such 

as in sailing times and production rates. 

Other specific areas in tramp/industrial shipping can be found in the 

following papers. Andersson et al (2011) studied a special segment in tramp shipping 

called project shipping, where a cargo can be part of a process facility, hence 

deliveries of the cargo and different parts of the facility might need synchronization 

within some time windows. Pang et al (2011) studied a ship routing problem with a 

focus on coordination for loading and unloading of cargoes at pickup and delivery 

locations by multiple vessels, so to avoid berthing time clash. Finally, Stålhane et al 

(2014) introduced a vendor managed inventory (VMI) service in tramp shipping that 

may potentially be a better way to substitute the contract agreement that has for 

decades been a standard approach between a tramp shipping company and a charterer. 

These novel developments can pave new directions for future research in 

tramp/industrial shipping. 

 

2.2.2 Liner shipping 

The strategic scope in tramp/industrial shipping is on determining the 

fleet size and mix to serve the contracted buyers (realized demand). Afterward, the 

tactical scope then determines the route and schedule of such a service. Different from 
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this structure, in liner shipping, the network of services should first be established 

before any consideration for vessel allocation. This owes to the fact that a liner 

company works with a larger number of shippers than a tramp company does. As 

explained, liner operations are similar to bus operations with published schedules for 

their customers to adhere to (anticipating future demand). A liner company therefore 

needs to assess the feasibility of the ports-of-call it plans to serve, in terms of various 

aspects such as market potential, port “friendliness”, government regulations in that 

city, etc. The service network consists of ship routes, i.e. the sequence of port-of-calls 

to be visited by a given fleet of ships. This sequence generally rotates in the same 

cycles over a certain planning horizon. A liner company needs to also determine the 

sailing frequency on those routes to maintain the integrity of its schedule. Such a 

network of a liner company is usually utilized for several years before a review, 

although the frequency of sailings may change seasonally. Upon establishment of the 

network, comes the tactical planning in fleet deployment. In this phase, the sailing 

frequency will dictate the number of ships to be deployed on the service routes. 

Confusion may arise from the literature as to the separation of strategic 

and tactical scopes in liner operations as described above. For example, Agarwal and 

Ergun (2008) consider the fleet size and mix of liner operations falls in the strategic 

phase and network design in the tactical phase, but Christiansen et al (2013) regard 

otherwise. However, a closer look suggests that Agarwal and Ergun (2008) view the 

fleet size and mix from the perspective of a start-up liner company. In this case, the 

decision of acquiring how many ships and the resources needed is indeed a strategic 

one. On the other hand, the classification from Christiansen et al (2013) assumes a 
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given fleet size hence the network design phase shifts up to the strategic decision-

making area. In the subsequent discussion, the latter point of view will be used. 

In the specific section on liner network design, Christiansen et al 

(2013) classify the models from published research papers into four categories below: 

1. Models with a single route or sets of routes without transshipment. 

2. Models with hub and feeder routes where each feeder port is connected 

to a single hub port. 

3. Models where some ports are classified as hub ports without any 

constraints on the number of hub and non-hub ports a route may visit. 

4. Models with multiple routes without any separation of hub and non-

hub ports. 

A hub port is a major transit port where supply/demand is accumulated 

before distributed to the smaller ports (usually called “spoke”). This process of 

accumulation and distribution is known as “transshipment”. The route connecting hub 

ports is the main route whereas the routes between a hub port and its spokes are called 

the feeder routes. A hub-and-spoke network configuration is shown in Figure 2.3. 

 

Hub ports

Spoke ports

Main route

Feeder routes  

 

Figure 2.3 A hub-and-spoke network configuration 

 

 

 

 

 

 

 

 

 



28 

 

 

 

The above classification from Christiansen et al (2013) only groups the 

references based on one element, i.e. network characteristics. It lacks classification 

from other factors that are equally important and regularly found in practice, such as 

issues of empty-container repositioning, demand uncertainty, transshipment, etc. A 

classification that is composed of a number of factors is called taxonomy. An example 

of research taxonomy in liner operations can be found in Kjeldsen (2011). In the 

article, the author reviewed 24 papers regarding ship routing and scheduling problems 

from 1969 to 2010. The taxonomy has 18 elements, which is somewhat excessive 

considering the low number of papers reviewed. Some of the elements are not critical, 

for example number of starting points and number of routes for ship. Determining the 

starting point is often a more critical problem, while number of routes per ship is more 

relevant for RoRo shipping. Other elements are less significant based on the author’s 

self arguments, for example whether or not demand is allowed to be split or satisfied 

partially. These two elements are common in land-based logistics but rarely found in 

liner shipping. The elements of port-related considerations such as port precedence 

requirement and ship-port compatibility also have little value if the focus of review is 

not on port operations. Cruising speed is another element lacking of relevance in liner 

network design since it is more suitably considered as an operational problem. 

Therefore, the following review intends to also use a taxonomic 

approach with a few improvements: (1) the taxonomy elements from Kjeldsen (2011) 

will be filtered based on the above evaluation and also to make it more concise. The 

result is 5 elements reflecting the issues of empty-container handling, nature of 

demand, transshipment, time windows, and fleet composition; (2) new elements will 

be added, including network classification from Christiansen et al (2013), and other 
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elements related to the scope of activity, collaboration, and a variable element 

describing the number of ports in the research. This last element will be useful to 

gauge the complexity of the model studied in the papers. A total of 26 papers will be 

reviewed under the newly developed taxonomy, dated from 2003 to 2014. Compared 

to Kjeldsen (2011), the range of years of the selected papers is more recent. The 

inclusion of recently published papers that have not been discussed in Kjeldsen (2011) 

and Christiansen et al (2013) will enhance the quality of the review. Below are 

explanations of the taxonomy elements followed by the review. 

 

1. Characteristics of the network 

This element follows the work of Christiansen et al (2013). The papers will be 

classified based on the four network categories as explained earlier and the 

network model will labeled as 1, 2, 3, and 4 accordingly. 

2. Scope of activity 

This element consists of three options: network design (ND), fleet deployment 

(FD), and network design and fleet deployment (NF). While the majority of the 

papers discuss network design activity exclusively, there are papers studying 

network design and fleet deployment problems simultaneously, and some other 

papers deal with just fleet deployment problem by assuming a given network (a 

priori known and not to be designed). 

3. Empty-container handling 

In Kjeldsen (2011), this element is labeled as Ships required to be empty with 

two options: Yes indicates no empty containers are involved, and No otherwise. 
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Here, it is rephrased as above with two options: Considered and Not considered. 

Such a rewording is more straightforward in its articulation. 

4. Nature of demand 

Nature of demand is also an element taken from Kjeldsen (2011), although here 

the option Dependent of service is omitted, which leaves two remaining options: 

Deterministic and Stochastic. The rationale for omitting the third option is due 

to its rare applications. 

5. Cargo transshipment 

Cargo transshipment is an element from Kjeldsen (2011) and along with its 

options (Allowed and Not allowed), are used here as is. 

6. Time windows 

This element was formulated in Kjeldsen (2011) as Scheduling constraints at 

the port with three options: Time of service fixed in advance, Time windows, and 

No restrictions. The first element appeared only in a 1969 publication and is 

never revisited for its lack of relevance. As a matter of fact, time of service is 

difficult to be fixed and some allowance must be given to obtain a robust 

schedule. Therefore, only two options are used in this element: Restricted and 

Not restricted. 

7. Fleet composition 

Similar to Cargo transshipment, this element is taken from Kjeldsen (2011) as 

is with its two options Homogenous and Heterogeneous. 

8. Collaboration scheme 

Collaboration scheme is an important element added to the present taxonomy. It 

will be used to highlight that only a few papers address this important issue, 
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despite the competitive background faced by many shipping companies today. 

The options of this element are: Collaboration, Competition, and Not discussed. 

9. Number of ports in the network 

The number of ports used in the case study of the papers reflects the complexity 

of the models and their algorithmic solutions. The options of this element are: 1-

10, 11-20, 21-50, > 50. 

 

There are 26 papers included in the following review. To ease the 

readability of the review, the network classification from Christiansen et al (2013) is 

used as a main structure in dividing the papers. 

 

1. Models with a single route or sets of routes without transshipment 

Chu et al (2003) studied a pendular route consisting of 8 ports with the 

objectives to determine the cycle time of the route and the number of vessels needed 

to serve that route. In this sense, the scope of their model can be considered an NF 

(both network design and fleet deployment problems are considered concurrently). 

Once the cycle time is determined, the number of vessels needed for weekly service is 

known, and chartering is left as an option if the company’s fleet cannot meet up this 

requirement (hence fleet composition is not mentioned). Time windows are included 

in the model formulation but are imposed for a cycle of a route rather than at the 

ports. Sambracos et al (2004) analyzed and proposed the use of small containers as a 

new technology for the coastal freight shipping in the Aegean Sea in Greece. Many 

papers in the field of liner network design build a mixed-integer linear programming 

formulation from scratch. However, this one makes use of the existing vehicle routing 
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problem (VRP) formulation and adapts it to its case study consisting of 13 ports and 

25 sea links. 

Shintani et al (2007) can be considered as one of the pioneers in 

modeling a liner network by incorporating empty-container repositioning. They argue 

that the deployment of ships and containers are key and inter-related issues that are 

usually treated separately in the earlier models. Empty containers occur as a result of 

trade imbalances and its handling is a multi-billion dollars business. It is certainly a 

promising research area in the future. In their paper, the problem is tackled in two 

stages: first, the lower problem identifies the optimal calling sequence of ports for a 

specific group of calling ports; and second, the upper problem is reduced to the 

Knapsack problem and chooses the best set of calling ports that associate to the 

calling sequence found in the lower problem. A heuristic based on genetic algorithm 

(GA) is used. Another positive area in this paper, which is often cited in the other 

papers, is related to the detailed formulation of the cost functions. 

Boros et al (2008) studied the optimization of cycle time between a 

shipping company and a port operator. In this research, it is assumed that a shipping 

company would prefer a longer cycle time as that would allow its vessels for slow 

steaming to reduce fuel consumption. On the other hand, a port operator would prefer 

a shorter cycle time as more ships berthing translates to more profit. The conflicting 

preference of these two parties is modeled as conflicting objectives. However, since 

both take the same dimension, i.e. time, the objective function is aggregated and 

modeled into a single-objective optimization. The search for an optimized cycle time 

for both logistics actors in this study can be considered as a collaborative endeavor. In 
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addition, the authors extend the vessel-scheduling problem to container-yard capacity 

optimization problem. 

Chuang et al (2010) use the fuzzy genetic approach for the routing of 

container ships taking into account uncertainty in demand, voyage time, and berthing 

time. Meng and Wang (2011a) discuss long-term ship fleet planning (10 years in their 

case study) as they argue that the fleet size, mix and ship-to-route allocation should be 

adjustable period-by-period, since the container shipment demand is period-

dependent. Stochastic demand is considered and a scenario-based dynamic 

programming using a tree structure is employed. Since the routes are fixed, this paper 

is oriented more on the fleet size and mix instead of network design. Finally in this 

category, Plum et al (2014) discuss single liner shipping service design (SLNSSD) 

that possesses similarities with the traveling salesman problem with pickup and 

deliveries. A branch-and-cut-and-price algorithm is proposed and shown that it can 

solve problems with up to 25 nodes (ports). 

 

2. Models with hub and feeder routes where each feeder port is 

connected to a single hub port 

An example of a multi-objective approach in maritime logistics is 

proposed by Hsu and Hsieh (2007). Their research involves routing, ship size, and 

sailing frequency under the hub-and-spoke environment with transshipment. Two 

objectives being traded off are shipping costs and inventory costs in order to obtain 

Pareto optimal solutions. Minimizing shipping costs is the objective pursued by a 

shipping company, whereas minimizing inventory costs is the shipper’s objective. 

This follows a similar pattern as in Boros et al (2008) in two ways: firstly, each 
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objective represents a different interest of each logistic actor; secondly, both 

objectives are measured in the same units. However, they differ in the approach used, 

i.e. single vs. multi-objective optimization. After lengthy and detailed costs 

formulation, the authors prove that the objectives are conflicting, thus justifies the 

multi-objective approach. 

The papers of Karlaftis et al (2009) and Takano and Arai (2009) have 

one thing in common, they both use genetic algorithm (GA) approach. Karlaftis et al 

(2009) extend the work of Sambracos et al (2004) by adding transportation from the 

islands to the mainland and incorporating delivery time limits. These added 

complexities call for meta-heuristics approach that is represented by GA. Since 

Sambracos et al (2004) use a VRP formulation, the model extension in Karlaftis et al 

(2009) is developed based on a variant of VRP called VRP with pick-ups and 

deliveries and time windows (VRPPDTW). Takano and Arai (2009) did not formulate 

any time restriction in their model. They also use two types of ships, different from 

the homogenous fleet in Karlaftis et al (2009).  The number of nodes in Karlaftis et al 

(2009) is 26, including one depot, although it should be noted that the remaining 25 

nodes actually refer to islands in the Aegean Sea instead of ports. On the other hand, 

Takano and Arai (2009) use a case study consisting of 18 ports with two of them are 

hub ports in Los Angeles and Rotterdam. 

Two papers from Gelareh et al (2010) and Gelareh and Nickel (2011) 

address a different perspective from other common network design problems. While 

they can still be classified as network design problems, the issue at hand is how to 

locate the hub ports among the other ports in the network to increase the overall 

efficiency of operations. These are commonly referred to as hub-location problem 
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(HLP). More specifically, Gelareh et al (2010) coined the term a competitive hub 

location problem (CMPT-HLP) for their model, as it addresses the competition 

between a newcomer liner service provider and an existing dominating operator, both 

operating on hub-and-spoke networks. Gelareh and Nickel (2011) compared general 

Public Transport (PT) model to Hub Location Problem for Public Transport (HLPPT) 

and showed that HLPPT is more efficient in terms of the number of variables and 

constraints than the PT. Further, the authors suggest that the model can also be 

applied to urban transport network in addition to liner network design. Gelareh et al 

(2010) use a MILP formulation with Lagrangian, whereas Gelareh and Nickel (2011) 

use Benders decomposition. 

Meng and Wang (2011b) present an unconventional problem in their 

research. The problem still belongs to hub-and-spoke network design, but involving 

multiple stakeholders and multiple types of containers. The stakeholders include the 

sea, rail, and road links, and the problem is called an intermodal hub-and-spoke 

network. A hybrid GA was employed. 

 

3. Models where some ports are classified as hub ports without any 

constraints on the number of hub and non-hub ports a route may 

visit 

Gelareh and Pisinger (2011) studied the hub-location problem by 

simultaneously considering network design and fleet deployment activities. Their 

model aims to locate the hub ports on a circular hub route then assign/connect the 

spoke ports to those hub ports. Assignment of optimal vessel type, arrival frequency 

to each spoke link, and determination of the fraction of demand to be fulfilled are 
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subsequent problems to be answered (the latter problem implies that the demand is 

elastic). Since general-purpose MIP solvers had difficulties to solve small problem 

instances (up to 10 ports), Benders decomposition was proposed to solve larger 

instances. Similar to this research, Reinhardt and Pisinger (2012) combined network 

design and fleet assignment problems, with a difference that their study is on butterfly 

routes. A branch-and-cut algorithm was used to efficiently deal with the model 

involving transshipment factor, heterogeneous fleet, and route-dependent capacities. 

In both papers, time windows are imposed over a schedule period but not at the ports. 

Meng and Wang (2011c) combined multi-port-calling (MPC) and hub-

and-spoke (H&S) into an integrated model by considering empty-container 

repositioning, and compared it to pure MPC and pure H&S networks. They 

demonstrate that large cost-savings can be expected by integrating both the MPC and 

H&S networks and empty-container repositioning at the network design stage. 

Heterogeneous fleet is also considered and time windows are observed through berth 

occupancy times at the ports. 

Two recent papers in this category appear in 2014 and they were not 

discussed in Christiansen et al (2013). First, Lin and Tsai (2014) introduced a new 

operational model called “daily frequency”. The sensitivity analyses on idle cost, 

cargo due date, and delay cost, confirm the potential use of this new model. 

Homogenous fleet is considered and time constraints are imposed for container 

shipment in a case study on 22 ports along the Pacific Rim. A MIP formulation was 

developed and solved with Lagrangian and local search. Second, Mulder and Dekker 

(2014) combined and solved the fleet-design, ship-scheduling, and cargo-routing 

problems simultaneously. The case considered is with limited availability of ships. 
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When discussing the fleet design problem, the authors follow the framework of 

Agarwal and Ergun (2008) regarding the strategic level of planning in a liner 

company, i.e. the optimal composition of the fleet (the number and size of the ships) 

as a factor to be determined first. In the ship-scheduling problem (tactical level), the 

service network has to be designed. Such a network consists of a set of ship routes 

and the allocation of ships to the routes. In cargo-routing problem (operational level), 

the shipping company decides which demands it accepts and which routes are used to 

transport the cargo. The authors also discuss the determination of optimal speed in 

servicing a certain route. Stochastic demand is generated between 80% and 120% of 

the actual demand from the reference network. 

 

4. Models with multiple routes without any separation of hub and 

non-hub ports 

Agarwal and Ergun (2008) discussed ship scheduling and cargo 

routing problems by considering transshipment, stochastic demand, time constraint on 

the operated routes, and heterogeneous fleet of vessels. Their case study was based on 

published cycles of major liner shipping companies, but the experiment data were 

randomly generated. The demand sizes were randomly generated from the interval 0.1 

to 1.0 times the capacity of the largest ship, while the three ship sizes (2000 TEU, 

4000 TEU, and 8000 TEU) used in the study were defined arbitrarily. The authors 

also show the dominance of Benders decomposition based algorithm over the greedy 

heuristic and the column generation based algorithm. The same authors, Agarwal and 

Ergun (2010), extend the work by discussing the design of large scale networks as a 

result of integrating the service networks of different carriers in the alliance. They 
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also discuss the allocation of limited capacity on a transportation network among the 

carriers in the alliance. Inverse programming and game theory are the methods used to 

design a mechanism to guide the alliance members to allocate the whole cargo for the 

overall benefits of the alliance. The model complexity, however, is slightly reduced 

by the use of homogenous fleet. 

Imai et al (2009) compared multi-port calling by conventional ship size 

to hub-and-spoke by mega ships. The authors have earlier justified the economies of 

scale from the deployment of container mega-ships (over 10,000 TEU) in Imai et al 

(2006). In their latest study, they consider empty-container repositioning and conclude 

that neither network is superior in all cases in terms of the container management 

costs (CMC). Optimality of each network depends on the shipping line. The role of 

CMC, however, is very important since whether or not it is considered will affect the 

network choice. 

Wang and Meng (2010) studied a fleet deployment problem involving 

transshipment, multiple routing options, and uncertain demand. The network used in 

their study is known a priori and not part of problem formulation therefore it is 

considered as a fleet deployment and not a network design problem. The stochastic 

nature of the demand is formulated as a stochastic program and solved by the sample 

average approximation method, through which the expected value model (EVM) is 

transformed to the approximating deterministic model (ADM). A case from real-

world problems is efficiently solved to 1% of relative optimality gap at 95% 

confidence level. Another research in this area where the network is given is by Wang 

(2013), where the author discussed a fleet deployment problem that incorporates five 

elements concurrently, i.e. slot-purchasing, integer number of containers, multi-type 
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containers, empty container repositioning (ECR), and ship repositioning. The author’s 

arguments are based on practical insight, that two twenty-feet equivalent containers 

and one forty-feet equivalent container, although occupy the same space, have 

different handling costs. Using a MILP formulation, the results demonstrate that slot-

purchasing and empty-container repositioning have the largest impact on tactical 

planning decisions and relaxing the numbers of containers as continuous variables has 

little impact on the decisions. 

Song and Dong (2012) studied the cargo routing and empty-container 

repositioning in multi-routes. Their proposed methods divide the solution algorithm in 

two stages: first, cargo-route planning is tackled by finding the shortest paths (no time 

windows involved); then second, an integer programming problem is solved for laden 

container assignment and empty-container repositioning in the dynamic situation. 

Two methods are evaluated (both are based on integer programming formulation): (1) 

shortest-path based method; (2) heuristic-rule based method. It is shown that for a 

large-scale real case study, the SPBM has difficulty to deal with computational 

complexity, but such is not the case with the HRBM. The performance of both 

methods, however, is insensitive to demand variations. 

Wang and Meng (2013) proposed a reversing-port-direction model as 

an alternative to revamping an existing network. The authors collaborated with a real 

global liner shipping company and according to the authors, the company concurs that 

such an alternative is more feasible than revamping the network due to many factors 

(dedicated container terminals, joint shipping services with alliances, direct call at 

ports adjacent to major customers, container handling contracts with port operators, 

and locations of the ships to be deployed all affect the flexibility of changing the 
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shipping network). The purpose is to improve the network without dramatic changes. 

Their model can also partially reverse and optimize the already-established network. 

Wang and Meng (2014) studied liner shipping network design problem 

with deadlines (LSNDPD). Although the problem characteristics possess similarities 

with its counterpart in land-logistics model, i.e. vehicle routing problem with time 

windows (VRPTW) or vehicle routing problem with pickups-deliveries and time 

windows (VRPPDTW), they authors argue for their differences for several reasons: 

(1) split delivery may be allowed in container shipping; (2) each port, including that 

in the middle sequence, can be an origin port; (3) the port time is a function of the 

number of containers handled at the port; (4) a fixed weekly service frequency has to 

be maintained. In their model, the time windows are derived from the transit time and 

container handling time. The authors also demonstrate that the LSNDPD is NP-hard 

and it can be formulated as a mixed-integer non-linear non-convex programming 

model. Column generation based heuristic is used. 

To conclude this section, the taxonomy of research in liner shipping 

network design is presented in Table 2.4.  For readability, the papers are numbered as 

shown in Table 2.3. 

There are other papers concerning pure fleet deployment that cannot be 

categorized in the above taxonomy. For example, Gelareh and Meng (2010) discussed 

fleet deployment problem (FDP) for a short-term planning horizon. Wang et al (2011) 

later reformulated the model in Gelareh and Meng (2010) and remedied some of the 

constraints. Other papers by Meng and Wang (2012) and Wang and Meng (2012) 

discussed FDP with different varieties. 
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Table 2.3 List of the papers reviewed in liner shipping network design 

Model No. Author(s) (year) Model No. Author(s) (year) 

1 

1 Chu et al (2003) 

3 

14 Gelareh & Pisinger (2011) 

2 Sambracos et al (2004) 15 Meng & Wang (2011c) 

3 Shintani et al (2007) 16 Reinhardt & Pisinger (2012) 

4 Boros et al (2008) 17 Lin & Tsai (2014) 

5 Chuang et al (2010) 18 Mulder & Dekker (2014) 

6 Meng & Wang (2011a) 

4 

19 Agarwal & Ergun (2008) 

7 Plum et al (2014) 20 Imai et al (2009) 

2 

8 Hsu & Hsieh (2007) 21 Agarwal & Ergun (2010) 

9 Karlaftis et al (2009) 22 Wang & Meng (2010) 

10 Takano & Arai (2009) 23 Song & Dong (2012) 

11 Gelareh et al (2010) 24 Wang (2013) 

12 Gelareh & Nickel (2011) 25 Wang & Meng (2013) 

13 Meng & Wang (2011b) 26 Wang & Meng (2014) 

 

Table 2.4 Taxonomy of research in liner shipping network design 

No. Taxonomy element Options Papers 

1 Characteristics of the network 1 

2 

3 

4 

1-7 

8-13 

14-18 

19-26 

2 Scope of activity ND 

NF 

FD 

3, 5, 7-13, 15, 19-21, 23, 25, 26 

1-2, 14, 16-18 

4, 6, 22, 24 

3 Empty-container handling Considered 

Not considered 

3-4, 15, 19-20, 23-24 

1-2, 5-14, 16-18, 21-22, 25-26 

4 Nature of demand Deterministic 

Stochastic 

1-4, 7-17, 20-21, 23-26 

5-6, 18-19, 22 

5 Cargo transshipment Allowed 

Not allowed 

2, 8-19, 21-26 

1, 3-7, 20 

6 Time windows Restricted 

Not restricted 

1, 4, 9, 14-17, 19, 26 

2-3, 5-8, 10-13, 18, 20-25 

7 Fleet composition Homogenous 

Heterogeneous 

2, 5, 9, 17, 20, 21 

3, 6, 8, 10, 14-16, 18-19, 22-26 

8 Collaboration scheme Collaboration 

Competition 

4, 21 

11, 12 

9 Number of ports in the 

network 

1-10 

11-20 

21-50 

> 50 

1, 4-5, 8, 21 

2-3, 10-11, 14, 16, 19-20, 24, 26 

6-7, 9, 12-13, 15, 17, 22-23, 25 

18 
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As earlier mentioned, one of the emerging research areas in maritime 

logistics is concerning the empty-container repositioning. There exists research in this 

field that is not related to network design problem. For example, Choong et al (2002) 

studied the effect of planning horizon length on empty-container management for 

intermodal transportation networks involving truck, rail, and barge, and found that 

inexpensive and slow-speed barges are the key factor in the management of empty 

containers; Jula et al (2006) simulated the reuse of empty containers to reduce cost 

and congestion in port areas; Li et al (2007) discussed the imbalances of international 

trade activities that are causing an oversupply of empty containers in the Middle East 

but a shortage of empty containers in Hong Kong. Their study aims to formulate a 

strategic empty-container allocation policy between multi-ports with specific 

emphasis on the repositioning of surplus empty containers and the leasing of 

additional empty containers; Song and Dong (2011) developed point-to-point (P2P) 

and coordinated balancing mechanisms to reposition empty containers. The first leads 

to a P2P repositioning policy and the second leads to a coordinated repositioning 

policy. Neither policy is best for all scenarios. Each policy is highly influenced by 

demand uncertainty and route topological structure; Long et al (2012) approached the 

problem of stochastic empty-container repositioning with the sample average 

approximation and scenario decomposition methods. The stochastic nature of their 

problem lie in the demand, supply, residual ship space capacity, and residual ship 

weight capacity factors; finally, Di Francesco et al (2013) also investigated stochastic 

empty-container problems but focusing in port disruptions, modeled as partial 

disruptions (only seaside operations are hampered) and complete disruptions (both 

seaside and landside operations are prohibited). 
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2.2.3 Speed optimization 

Apart from the demand and supply mismatch, global economic 

uncertainty and geopolitical tensions, international shipping is also facing a pressing 

agenda in the matters of climate change and environmental sustainability. Despite 

positive developments on a number of fronts, the world is not yet on track to limit the 

average global temperature rise to 2°C (UNCTAD, 2013). Without adequate and 

proper precautionary actions from all involved parties including the shipping 

companies, port authorities, and legislation bodies, the potential negative impacts (e.g. 

extreme weather events and rising sea levels) are actually in a close distant to badly 

affect the whole international seaborne operations. 

To respond to such problems, energy efficiency in shipping industry is 

an attractive research topic nowadays as summarized in a survey by Psaraftis and 

Kontovas (2013). The survey result in this review shows that international shipping 

accounts for 2.7% CO2 emissions. Among the other transport modes, this figure 

comes second to the road transport (21.3%) and is higher than aviation (1.9%), 

domestic shipping and fishing (0.6%), and rail (0.5%) (Figure 2.4). Containerships are 

the top-category maritime emitters of CO2. Corbett et al (2009) suggest that compared 

to bulk shipping, crude oil tankers, and general cargo ships, CO2 emissions from 

containerships are 1.3, 2.2 and 2.5 times greater, respectively. Different from road 

transport that cannot avoid traffic congestion, a ship can travel on seas and oceans 

relatively uncontested and it is limited only by its speed design and, to some extent, 

weather conditions. Faster speed burns more fuel in a quadratic (Fagerholt et al, 

2010b) or cubical (Corbett et al, 2009) relationship and increases gas emissions. CO2 
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is a type of greenhouse gases (GHGs) and together with methane (CH4) and nitrous 

oxide (N20), their emissions are accountable for the global warming phenomenon. In 

addition to the GHGs, ships also emit non-greenhouse gases (NGHGs) such as sulfur 

oxides (SOx) that are responsible for acid rain and deforestation, and nitrogen oxides 

(NOx) that can cause undesirable health problems. In 2008, the Sulfur Emissions 

Control Areas (SECAs) is enacted in the Baltic Sea, the North Sea, and the English 

Channel. In 2010, the entire US-Canadian coastal zone is designated as an Emissions 

Control Areas (ECAs). Regulation for the GHGs came a bit late in 2011. 

 

 

 

Figure 2.4 Survey on energy efficiency on shipping industries 

Source: Psaraftis and Kontovas (2013) 

 

In light of the above, speed reduction has been a strategic theme in 

shipping operations, not just from the perspective of vessels’ owners, but also port 

authorities. The benefit of this strategy is obvious especially during the times when 

fuel prices are high, such as the peaks in 1979 and 2008 where they rose to US$116 

and US$135, respectively (inflation adjusted in 2014 dollars). This practice can be 

achieved at two levels: by building ships with smaller engines thus reducing their 
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maximum speed; and by reconfiguring the engine so that a ship can sail at speeds 

lower than its maximum speed design (Psaraftis and Kontovas, 2010). The former is a 

more strategic and future-oriented approach, while the latter is more 

tactical/operational and can be executed with the current available fleet. Lindstad et al 

(2011) conducted an analysis to prove that lower speeds can reduce GHGs emissions 

for bulk, RoRo, or container vessels. Their calculation show that 50% speed reduction 

in bulk vessels, 59% in RoRo, and 67% in container ships, can lead to 35%, 46%, and 

62% emission reduction from each class, respectively. The authors further argue that 

given today’s oversupply of vessels, there is no need to build additional vessels. In 

fact, shipbuilding activities will also create emissions and such a factor should be 

accounted in future analysis. 

Gas emissions and fuel consumption in shipping are determined by one 

key variable: sailing speed. Speed optimization is therefore a viable path to pursue to 

arrive at overall efficiency in shipping operations. This includes but not limited to 

speed reduction strategy. Speed reduction strategy can be achieved in many ways 

such as instituting speed limits or designing more efficient propeller systems for the 

ships (therefore, demolitions of older ships is a necessity for the industry so that better 

ships replace the older and less efficient ones). It is understood that slow steaming 

might reduce service levels to the shippers; however, environmentally-driven 

concerns suggest this must be pursued whenever possible. 

Despite its importance, speed optimization in shipping still receives 

less attention from researchers. Psaraftis and Kontovas (2013) proposed taxonomy for 

speed models for researches done in this area. From 1981 to present, as few as 41 

papers are found in this topic, with majority are dated within the last decade. This 
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proves that the research in this area albeit few but is growing. Some of the papers 

mentioned in the review will be briefly discussed below. 

In the perspective of GHGs, Corbett et al (2009) examined a database 

of over 90,000 records involving US ports and ships in foreign commerce and found 

that a 50% speed reduction translates to 70% reduction in emissions across the board 

of the shipping industry. Speed reduction is naturally against the profit maximizing 

behavior of shippers, and therefore it would be neutral if authorities such as the 

government or multilateral organizations mandate the regulation, for example by 

tying it up with fuel and carbon taxes. 

The recent issue of gas emissions is only a part of the picture. Still in 

the area of speed optimization, a larger scope is related to the rising oil prices and this 

leads to fuel optimization strategy. Both fuel consumption and gas emissions have the 

same merit with regard to speed optimization strategy since fuel consumption follows 

a quadratic or cubical functions of design and operational speeds of the vessel, and the 

CO2 emission is a linear function from the fuel-consumption’s function. A number of 

papers in this area deserve some attention as discussed below. 

Lo and McCord (1995) formulated a routing problem to minimize fuel 

consumption for ships sailing in an ocean, particularly in the Gulf Stream region 

which was used as their case study. Using a dynamic programming approach, they 

developed two heuristics to find a path that minimizes fuel consumption by riding 

favorable currents and avoiding unfavorable ones. They refined their methods by 

involving a stochastic element in the ocean currents by formulating current changes as 

state transition probabilities with 5 categories of magnitude changes and 9 categories 
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of direction changes, bringing 45 combination of states overall, and mapped over 15 × 

15 km grids of Gulf Stream region (Lo and McCord, 1998). 

Unfortunately in liner shipping, schedule unreliability is largely caused 

by events at the ports rather than in the seas. When a ship is behind schedule, it has to 

recover it by fast steaming on its next leg to the next port of call. By so doing it will 

burn more fuel and ultimately will deteriorate its cost performance. To maintain 

higher schedule integrity, a possible way is to add more time buffers in port 

operations but it is undesirable from the shippers’ point of view. Another way is to 

assess the possibility to add more vessels to service a certain route such as studied by 

Ronen (2010) and Notteboom and Vernimmen (2009). Both studies found that when 

fuel prices rise above USD 150, an option to reduce speed and add another vessel (to 

maintain service frequency) is in fact more favorable in term of total costs. Ronen 

(2010) cited that bunker fuel may constitute more than 75% of vessel’s operating 

costs (approximately USD 100,000 per day for a large ship) and reducing the cruising 

speed by 20% can reduce the bunker cost by 50%. 

Both studies by Ronen (2010) and Notteboom and Vernimmen (2009) 

were carried on deterministic settings. Complexity arises when stochastic elements 

play part such as in Qi and Song (2012). In their paper, uncertainties are modeled in 

the port times. This research has more potential for the fuel optimization strategy than 

modeling uncertainties in the seas. Three models are discussed in the paper: (1) 

deterministic with 100% service level; (2) stochastic with 100% service level; and (3) 

stochastic without 100% service level. Non-linear programming formulations were 

constructed with rigorous proof of propositions to validate the optimality conditions 

for the first two models, whereas the last model used a simulation-based stochastic 
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approximation approach. A case study was used to compare the results of the original 

problem against model 2 and 3. 

 

2.3 Liner Shipping Collaboration 

The history of formal collaboration among liner shipping companies stretched 

back to 1875 when the U.K.-Calcutta Conference was established. Afterward, 

development of other conferences quickly followed. In these conferences, liner 

companies fix cargo rates and members’ quotas. This practice can actually be 

considered as cartels, and in Europe the industry had been sheltered by the Council 

Regulation 4056/86 that exempted conference practices from competition law. The 

regulation, however, has been repealed since 2008. In the USA, The Ocean Shipping 

Reform Act of 1998 changed the treatment of conferences under American antitrust 

law, by mandating secret and independent action to the members. In the absence of 

these immunities, evidence show that conferences are gradually being displaced by 

alliances (Sjostrom, 2009). Unlike conferences, alliances do not fix rates, but they 

enlarge service coverage by taking advantage of the economies of scale. 

Since owning an asset, such as an airplane or a ship, involves large capital 

investment (millions of US dollars), the cost of idling an asset runs in tens of 

thousands of dollars per day. Liners therefore collaborate and form alliances to share 

capacity on assets and infra-structural setup and capital costs. From the academic 

point of view, however, more research is still needed to establish sound and proven 

analytical evaluation on the benefits of alliance formation. Agarwal and Ergun (2010) 

argue that only a few references on qualitative study on liner shipping alliances are 

available, but a rigorous quantitative study is missing. Of the 17 papers concerning 
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liner alliance literature surveyed by Panayides and Wiedmer (2011), only 5 (29%) can 

be considered as quantitative studies. Not only the total number is minimal, but the 

percentage also favors the qualitative studies. 

This section intends to develop further the work carried out by Panayides and 

Wiedmer (2011) in analyzing the literature related to liner alliance. Figure 1.1 will be 

used as a basis in qualifying the reviewed articles. This will also enhance the previous 

review where the articles are outlined briefly on account of the findings and the 

methods used. The axes in Figure 1.1 are: (1) the input-process-output (IPO) 

perspective; (2) the approach, either qualitative or quantitative. 

The IPO perspective classifies the literature based on the following arguments. 

An article is tagged as “input” if it concerns to answer the “why” question, mostly in 

this case, why carriers embark on collaborative activities. The “process” tag serves to 

describe the “how” question, or in other words, to explain the technicality of the 

collaboration schemes. The last tag, the “output”, is used for articles that put emphasis 

on observing the impacts of collaboration. Naturally, one cannot discuss a process 

without mentioning the results. All articles grouped in this category, therefore, 

actually encompass both the process and output dimensions. However, for the sake of 

mutually-exclusive grouping, the leading aspect is considered outweighing the 

lagging one. Only when an article clearly focuses on studies such as impact 

assessment, outcome verification, etc., it will be classified in the output group. The 

other axis, qualitative vs. quantitative, is pretty much self-explanatory. Qualitative 

studies use methods such as survey, interview, descriptive statistics, empirical 

investigation, etc., whereas quantitative studies deal with model development, 

analytical investigation, etc. Table 2.5 depicts the classification result for articles on 
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collaboration between carriers, and Table 2.6 does so for articles on collaboration 

between carrier and port. 

 

Table 2.5 Classification result for articles on collaboration between carriers 

 Input (Why) Process (How) Output (Impact) 

Qualitative 

Alix et al (1999) 

Evangelista & Morvillo 

(2000) 

Heaver et al (2000) 

Yeo (2013) 

Lu et al (2006) 

Sjostrom (2009) 

 

Quantitative 

Alexandrou et al (2014) 

Bergantino & Veenstra 

(2002) 

Czerny & Mitusch (2005) 

Lam & Van de Voorde 

(2011) 

Ding & Liang (2005) 

Lei et al (2008) 

Pierre (2000) 

Yang et al (2011) 

 

Table 2.6 Classification result for articles on collaboration between carrier and port 

 Input (Why) Process (How) Output (Impact) 

Qualitative Heaver (2002) Heaver et al (2001)  

Quantitative 

 Álvarez -SanJaime et al 

(2013) 

Asgari et al (2013) 

Boros et al (2008) 

 

 

The collection of articles in Table 2.5 and 2.6 is not a copy of the articles 

reviewed by Panayides and Wiedmer (2011). Some articles are omitted, but other 

recent articles are added. These articles are reviewed below. 

Alix et al (1999) used CP Ships, a liner company in Canada, as their case 

study. The company had grown from a series of periodic acquisition and based on that 

fact, the authors argue that forming an alliance is not the only path to survival. Such 

an argument, however, is largely questionable as witnessed in 2005 when CP Ships 

was purchased by Hapag Lloyd. Evangelista and Morvillo (2000) presented a 
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descriptive model for the various forms of cooperative relations undertaken by 

shipping lines. They used a database survey for their methodology and the survey 

result showed a polarization of operations around two main groups: contractual 

agreements and equity agreements (joint-ventures and minority stakes). The former 

group outweighs the latter by a big percentage gap with the ratio of 79:21. A specific 

attention was also given to survey the cooperation forms of Italian shipping lines. 

Heaver et al (2000) also studied the rationale behind cooperation in the shipping 

industry. They categorized four market players in this industry: shipping companies, 

stevedores, hinterland transport, and port authorities. These players can interact to 

setup collaborative agreements, but collaboration between shipping companies and 

shipping companies has the most variety compared to the other combinations. The 

authors further argue that initiative for cooperation strategies is almost always taken 

by shipping companies, e.g. Maersk pushed dedicated terminal in Rotterdam, and the 

same case with MSC in Antwerp. They finally conclude that reasons for cooperation 

are to improve efficiency and to increase entry barriers for new players to enter the 

market. The last paper in this group is by Yeo (2013), who studied the patterns of 

mergers and acquisitions (M&As) in the industry. The author found two underlying 

factors behind M&As. First, the geographical distance, i.e. the longer the distance is, 

the less likely a target will be acquired. Second, contrary to the existing literature that 

financially underperforming firms are more likely to be targeted, it turn out that 

smaller and unquoted public firms are more vulnerable to M&As. 

Lu et al (2006) used the Delphi method in a qualitative survey to CKYH 

alliance members to investigate the motives for alliance and found that to extend the 

service coverage and to provide more service frequencies are the top two reasons. 
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Sjostrom (2009) firstly presented the evolving trend of liner shipping competition and 

cooperation from a historical perspective, then used the models of monopoly and 

perfect competition to explain the extend of competition in the shipping market. In the 

concluding remarks, the author stated that “in liner shipping… research on strategic 

alliances remains largely descriptive.” 

Alexandrou et al (2014) studied all shipping M&As from 1984 to 2011 and 

found that, contrary to evidence reported in general M&A studies, acquirers realize 

positive abnormal returns. Bergantino and Veenstra (2002) investigated the evolution 

of forms of cooperation in liner shipping, in particular of global strategic alliances, 

from the perspective of network theories. Quantitative analysis is given on the model 

of alliance formation and evolution and the model is used to illustrate the rationale for 

network integration in the liner shipping industry. The authors caution that under 

certain circumstances, the benefits for joining an alliance might be offset by the 

coordination costs. Czerny and Mitusch (2005) presented a logical argument that the 

existence of conferences (with open membership) leads to higher average prices and 

more uncertainty with respect to entry and investment decisions. This is a very 

interesting argument as it seems to bear a paradoxical loop: conferences are presumed 

to stabilize supply, but in actual fact, the presence of a conference induces market 

instability; if such instability is observed, liners would tend to reinforce their support 

and making things worse. Given such conclusion, the authors proposed for the 

abolishment of liner conferences. Lam and Van de Voorde (2011) demonstrated the 

approach of scenario analysis in empirical examinations of the world’s top 30 

container shipping lines. They mapped these top liners based on their strategies into 

four quadrants: high integration, partner-focused, low integration, and activity-
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focused. They conclude that market situations favor those scenarios representing 

higher level of supply-chain integration. 

The last four papers in Table 2.5 are characterized by sound quantitative 

analysis. Ding and Liang (2005) used a fuzzy multi-criteria decision making approach 

to setup criteria and model in selecting partners for strategic alliances. A hypothetical 

problem was designed to demonstrate the computational process of the algorithm. Lei 

et al (2008) compared three management policies in liners partnership: the non-

collaborative policy, the slot-sharing policy, and the total-sharing (the total 

collaboration) policy. In each policy, a mixed integer programming model is 

employed and the results are then compared to arrive at a conclusion that the sharing 

policies have lots of potential to offer. Pierre (2000) developed an allocation model 

for ship owners involved in strategic alliances. The author argues that achieving the 

economies of scale in an alliance might not necessarily be an automatic outcome since 

each alliance member (ship-owner) is constrained by the limited number of vessels. A 

classical transportation problem was used as the background in model development. 

Finally, Yang et al (2011) investigated the influence of increasing ship size to the 

stability of alliance. They applied the core theory (co-operative game theory) to study 

the economic performance and stability of liner shipping alliance. In general, they 

conclude that the alliance’s stability is significantly related to the structure of 

member’s demands and joint-ship’s capacity. Unlike the former three papers, this 

study is classified in the output box for its stronger emphasis on the impacts of 

collaboration than the collaboration process itself. 

Five studies appear in Table 2.6 concerning collaboration between carrier and 

port operator. Heaver (2002) studied the economics behind vertical integration in liner 
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business. The author inferred the integration strategies from liner’s three types of 

services: (a) with port terminals; (b) with intermodal transport; and (c) with logistics 

services. Heaver et al (2001) observed the response of port authorities to the changing 

market environment. Their descriptive statistics shows that the port authorities 

responded well to these changes. New companies with new strategies emerged in 

container terminal management and they became better counterpart for shipping lines 

in establishing long-term mutual cooperation. In the quantitative section, Álvarez-

SanJaime et al (2013) focused their study on partnership between a shipping line and 

a terminal operator, particularly in investigating whether it is strategically profitable 

for a shipping line to own a dedicated terminal. Two scenarios were studied assuming 

a liner owns a terminal: (1) deviating part of its own traffic to the open terminal; (2) 

supply its terminal services to the other shipping lines. Admitting that no 

generalization can be made to the whole population of ports and container terminals, 

the authors suggest that non-exclusivity is a better way to capture more market share 

and gain control over the rivals. Asgari et al (2013) investigated the competition and 

cooperation strategies among three parties: two major container hub-ports and the 

shipping companies. Three scenarios were studied: (1) perfect competition between 

the hub-ports; (2) perfect cooperation between the hub-ports; and (3) cooperation 

among all as a whole. The model was tested on two Asian hub-ports, Singapore and 

Hong Kong, and the authors found that the objective value of shipping companies is 

conflicting with the objective value of the hub-ports. Non-dominated solutions were 

then sought. Lastly, Boros et al (2008) has been discussed in Section 2.2.2 and no 

further remarks are added here. 
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Other academic papers discussing collaboration and/or competition but not 

involving shipping companies are also available. For example, Hoshino (2010) 

discussed competition and collaboration with specific attention to Japan ports. Kim 

(2011) developed the appraisal criteria to assess the likelihood for a port to become 

The Premier Port (not necessarily a hub-port but basically means “mega port” that can 

handle more than 20 million TEUs). The proposed criteria are geographical 

advantages, scale of container volumes, cost advantage, and national port policy. 

Musso et al (2013), similar to the previous two authors, also discussed the variables of 

port competition that are expected to provide insights to port competitiveness. They 

used a case study from Italian seaports. Finally, Panigrahi and Pradhan (2012) used 

qualitative methodology to reflect the competitive maritime policies for seaports in 

India. 

Before concluding the whole discussion on maritime logistics, two final 

remarks are worth to be pointed out. Firstly, collaboration platforms in shipping 

business are numerous, and depending on the chosen platform, some academic papers 

reviewed above confirm the benefits, but others caution against the potential pitfalls. 

Secondly, a number of papers address special geographical attention focusing on 

certain countries, such as Greece, Italy, Japan, and India, but no reference is found on 

maritime studies in Indonesia. This is quite a striking fact considering the country is 

the largest archipelago in the world with over 17,500 islands. Research with particular 

attention to this country will contribute to the overall big picture in maritime logistics 

studies and its practical applications. 
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2.4 Vehicle Routing Problem and Its Variants 

Dantzig and Ramser (1959) first introduced “The Truck Dispatching Problem” 

that was since more popularly referred to as the Vehicle Routing Problems (VRP). 

The problem generalizes the Travelling Salesman Problem (TSP) and is therefore NP-

hard, thus their more complex variants such as VRP with time windows (VRPTW) or 

VRP with pickups and deliveries (VRPPD) are also NP-hard (Cordeau et al, 2007). 

The VRP literature grows in an almost perfectly annual exponential rate at 6.09% 

between 1956 and 2005 (Eksioglu et al, 2009) and therefore it would be nearly 

impossible to cite all progresses unless in a dedicated review. However, several 

review papers are worth mentioning in the need to trace back the latest advances to 

their origins. In addition to the general reviews by Cordeau et al (2007) and Eksioglu 

et al (2009), specific reviews can be found in Bräysy et al (2005) for evolutionary 

algorithms for VRPTW; Gendreau et al (2008) for meta-heuristics VRP; Josefowiez 

et al (2008) for multi-objective VRPs; El-Sherbeny (2010) for VRPTW; Vidal et al 

(2013) for heuristics for multi-attribute VRP; and Lin et al (2013) for a survey of 

trends in green VRP. 

In this section, the basic formulation of VRP will be presented. The 

capacitated VRP (CVRP) is often considered as the basic version of VRP (Toth and 

Vigo, 2002) so these two terms are used interchangeably. The following sub-sections 

further detail the mathematical model formulation of the well-known VRP variants 

particularly those that are relevant to this research. 

A CVRP model can be described as a complete undirected graph 𝒢 = (𝒩, 𝒜) 

with a node set 𝒩 = {0, 1, … , 𝑁} and an arc set 𝒜. Node 0 is the depot and the 

remaining nodes 𝒞 ∈ 𝒩\{0} represent the customers, each with a non-negative 
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demand. Each arc (𝑖, 𝑗) ∈ 𝒜 has a non-negative travel cost 𝑐𝑖,𝑗 associated with it and 

corresponds to the cost incurred for traversing from node 𝑖 to node 𝑗. If the 

relationship 𝑐𝑖,𝑗 = 𝑐𝑗,𝑖 holds, the problem is called a symmetric CVRP (SCVRP); one 

which is usually assumed in many VRP studies. On the other hand, if 𝑐𝑖,𝑗 ≠ 𝑐𝑗,𝑖, then it 

is called asymmetric CVRP (ACVRP). The CVRP problem consists of determining a 

set of vehicle trips to minimize the total travel cost, such that: (1) each vehicle starts 

from and ends at the depot, (2) each customer is visited exactly only once, and (3) the 

total demand in each trip does not exceed the vehicle capacity. Define set 𝒱 as the set 

of the vehicles, indexed by 𝑣, and each vehicle has a capacity 𝐾𝑣
. The demands to be 

satisfied in 𝒞 are represented by 𝑑𝑖. The simplest CVRP formulation is then as 

follows. 

 

Min. ∑ ∑ 𝑐𝑖,𝑗 . 𝑥𝑖,𝑗
𝑣

(𝑖,𝑗)∈𝒜𝑣∈𝒱

 (2.1) 

Subject to: 

∑ ∑ 𝑥𝑖,𝑗
𝑣

𝑗∈𝒩𝑣∈𝒱

= 1 ∀𝑖 ∈ 𝒞 (2.2) 

∑ 𝑑𝑖 ∑ 𝑥𝑖,𝑗
𝑣

𝑗∈𝒩𝑖∈𝒞

≤ 𝐾𝑣 ∀𝑣 ∈ 𝒱 (2.3) 

∑ 𝑥0,𝑗
𝑣

𝑗∈𝒞

= 1 ∀𝑣 ∈ 𝒱 (2.4) 

∑ 𝑥𝑖,𝑘
𝑣

𝑖∈𝒩

− ∑ 𝑥𝑘,𝑗
𝑣

𝑗∈𝒩

= 0 ∀𝑘 ∈ 𝒞; 𝑣 ∈ 𝒱 (2.5) 

∑ 𝑥𝑖,0
𝑣

𝑖∈𝒞

= 1 ∀𝑣 ∈ 𝒱 (2.6) 
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𝑥𝑖,𝑖
𝑣 = 0 ∀𝑖 ∈ 𝒩; 𝑣 ∈ 𝒱 (2.7) 

𝑥𝑖,𝑗
𝑣 ∈ {0,1} ∀(𝑖, 𝑗) ∈ 𝒜; 𝑣 ∈ 𝒱 (2.8) 

 

The objective function (2.1) minimizes total cost. Each node can only be 

visited by one vehicle (2.2) and demands are satisfied by considering vehicles’ 

capacity (2.3). Constraints (2.4) state that all vehicles must provide a service (leave 

the home node); constraints (2.5) are the flow constraints, i.e. any incoming arc in one 

node must be followed immediately by an outgoing arc from that node; and 

constraints (2.6) ensure that a vehicle will return to the home base. Constraints (2.4)-

(2.6) are commonly referred to as a multi-commodity flow structure. Vehicles cannot 

start and end at the same node (2.7) and finally, constraints (2.8) are the binary 

requirements for the decision variables (𝑥𝑖,𝑗
𝑣 = 1 if vehicle 𝑣 traverses arc (𝑖, 𝑗) and 

𝑥𝑖,𝑗
𝑣 = 0 otherwise). 

In addition to the above basic formulation, the following constraints can be 

added to ensure that the number of routes is not more than the number of the vehicles, 

in other words no vehicle can take up more than one route. 

 

∑ ∑ 𝑥0,𝑗
𝑣

𝑗∈𝒞𝑣∈𝒱

≤ 𝑉  (2.9) 

 

Some authors (for example, El-Sherbeny, 2010) use constraints (2.4)-(2.6) for 

the flow structure. Others (for example, Baños et al, 2013) use constraints (2.10) to 

replace the above three sets of constraints, however it should be noted that constraints 

(2.10) does not require that all vehicles must leave the depot. 
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∑ 𝑥0,𝑘
𝑣

𝑘∈𝒞

− ∑ 𝑥𝑘,0
𝑣

𝑘∈𝒞

= 0 ∀𝑣 ∈ 𝒱 (2.10) 

 

Heterogeneity of the vehicles plays a critical role. If the costs 𝑐𝑖,𝑗 are not the 

same for each vehicle traversing arc (𝑖, 𝑗) (hence, denoted by 𝑐𝑖,𝑗
𝑣 ), then the 

requirement that all vehicles must go must be relaxed to allow the model to choose 

vehicles with smaller cost. In this case, the following sub-tour breaking constraints 

(2.11) must be added to the model. Define 𝒬𝑛 as all subsets of size 2 or larger of 

𝒞 = {1,2, … , 𝑁} with 𝑛max = ∑ 𝐶𝑟
𝑁𝑁

𝑟=2 . Then, for example, if 𝑁 = 5, 𝒬1 =

{1,2};  𝒬2 = {1,3}; … ; 𝒬10 = {4,5};  𝒬11 = {1,2,3}; … ;  𝑄𝑛max
= 𝒬26 = {1,2,3,4,5}. 

The sub-tour breaking constraints formulation is as follows (Cordeau et al, 2002). 

 

∑ ∑ ∑ 𝑥𝑖,𝑗
𝑣

𝑣∈𝒱𝑗∈𝒬𝑛𝑖∈𝒬𝑛

≤ |𝒬𝑛| − 1 𝑛 = 1,2, … , ∑ 𝐶𝑟
𝑁

𝑁

𝑟=2
 (2.11) 

 

2.4.1 Vehicle routing problem with time windows 

In a vehicle routing problem with time windows (VRPTW), a customer 

𝑖 has to be visited within a certain time frame [𝑒𝑖, 𝑙𝑖] where 𝑒𝑖 is the earliest time and 

𝑙𝑖 is the latest time a visit is allowed. In practice, a single-sided time window where 

𝑒𝑖 = 0 and 𝑙𝑖 > 0 is equivalent to imposing a due-date to the service. Many real-life 

routing applications require this additional constraint, making this variant of VRP one 

of the popular ongoing research areas. Especially in liner shipping where schedule is 

the most important part of the service, due dates or estimated arrival times at the ports 

of call are the key feature of the process for the customers. 
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The formulation of time windows is obtained by introducing variables 

𝑠𝑖
𝑣, 𝑖 ∈ 𝒩, 𝑣 ∈ 𝒱 that represent the time vehicle 𝑣 starts to service customer 𝑖. In the 

basic CVRP model described earlier, the costs 𝑐𝑖,𝑗
𝑣  are assumed in linear relationship 

with 𝑡𝑖,𝑗
𝑣  (the travel time of vehicle 𝑣 from node 𝑖 to node 𝑗), thus either of the two sets 

of parameters are considered valid representation in the minimization of the objective 

function. Since that is not always the case, it would actually be more accurate to use 

both parameters in the model. Also, when time dimension is such of a paramount 

factor as in the VRPTW formulation, defining the time parameters explicitly is 

nothing but a necessity. The constraints representing the time windows are as follows. 

 

𝑠0
𝑣 = 0 ∀𝑣 ∈ 𝒱 (2.12) 

𝑥𝑖,𝑗
𝑣 . (𝑠𝑖

𝑣 + 𝑡𝑖,𝑗
𝑣 − 𝑠𝑗

𝑣) ≤ 0 ∀(𝑖, 𝑗) ∈ 𝐶; 𝑣 ∈ 𝒱 (2.13) 

𝑒𝑖 ≤ 𝑠𝑖
𝑣 ≤ 𝑙𝑖 ∀𝑖 ∈ 𝒩; 𝑣 ∈ 𝒱 (2.14) 

𝑠𝑖
𝑣 ≥ 0 ∀𝑖 ∈ 𝒩; 𝑣 ∈ 𝒱 (2.15) 

 

If 𝑥𝑖,𝑗
𝑣 = 1, constraints (2.13) state that vehicle 𝑣 cannot arrive at 

customer 𝑗 before 𝑠𝑖
𝑣 + (travel time from customer 𝑖 to customer 𝑗). These constraints 

are non-linear and require the following transformation. 

 

𝑠𝑖
𝑣 + 𝑡𝑖,𝑗

𝑣 − 𝑀. (1 − 𝑥𝑖,𝑗
𝑣 ) ≤ 𝑠𝑗

𝑣  ∀(𝑖, 𝑗) ∈ 𝐶; 𝑣 ∈ 𝒱 (2.16) 

 

The parameter 𝑀 is a large number, such that when 𝑥𝑖,𝑗
𝑣 = 0, the 

constraints will become redundant. Some authors (Cordeau et al, 2007; El-Sherbeny, 

2010) generalize (2.13) by having (𝑖, 𝑗) ∈ 𝒩 and omitting (2.12), but this requires 
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node 𝑁 + 1 as the last sinking node for all the departing vehicles. This can be the 

same depot from where all vehicles depart (𝑖 = 0), only indexed differently. Finally, 

constraints (2.15) suggest that 𝑠𝑖
𝑣 are continuous decision variables and change the 

pure-binary CVRP into a mixed-integer programming VRPTW. 

One interesting aspect to observe in the VRPTW model is that the sub-

tour breaking constraints (2.11) are no longer required due to the time windows. 

 

Proposition 1. Time windows in (2.12) to (2.15) eliminate sub-tours. 

Proof. Suppose we have 𝑁 > 3 and, for any vehicle 𝑣, if the set of 

routes contains a sub-tour where 𝑥1,2
𝑣 = 𝑥2,3

𝑣 = 𝑥3,1
𝑣 = 1, then 𝑠1

𝑣 ≤ 𝑠2
𝑣 ≤ 𝑠3

𝑣 and clearly 

𝑠3
𝑣 ≰ 𝑠1

𝑣 and the sub-tour cannot be formed due to the relations of 𝑠𝑖
𝑣 established by 

(2.13). However, it is still possible for vehicle 𝑣 to form a tour 𝑥0,1
𝑣 = 𝑥1,2

𝑣 = 𝑥2,3
𝑣 =

𝑥3,0
𝑣 = 1 and to have 𝑠0

𝑣 = 0 ≤ 𝑠1
𝑣 ≤ 𝑠2

𝑣 ≤ 𝑠3
𝑣 and 𝑠3

𝑣 is not restricted to be ≤ 𝑠0
𝑣 .∎ 

 

In reality, strict due dates are hardly encountered. Mild late arrival of 

orders, in most cases, are still tolerated but at certain penalty costs. In this case, both 

the lower and upper bounds of the time windows can be utilized as due dates with 𝑒𝑖 

being the minimum and 𝑙𝑖 being the maximum. The minimum due date 𝑒𝑖 serves as a 

point where lateness is measured after this point, but is still accepted up to the point of 

𝑙𝑖. On the other hand, 𝑙𝑖 is a hard constraint where lateness is absolutely prohibited. 

This can be a point where customers cannot accept late deliveries (for example fresh 

products such as vegetables or fruits) and the distribution company will have to 

compensate for such lateness (Figure 2.5). 
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Figure 2.5 Time windows as minimum and maximum due dates 

 

Another possibility for due dates formulation related to time windows 

is to assign penalty costs beyond, but not inside, the time windows. In other words, 

early deliveries before 𝑒𝑖 are penalized, in addition to late deliveries over 𝑙𝑖. This is 

also common in reality with regard to warehouse management from the customer’s 

point of view. Fagerholt (2001) discussed this issue with various penalty cost 

functions. 

 

2.4.2 Vehicle routing problem with pickups and deliveries 

Another popular variant of VRP is called the VRP with pickups and 

deliveries (VRPPD). In this variant, the source node for goods to be delivered is not 

restricted to a single depot. Other nodes can serve the same function as the depot, i.e. 

becoming locations where goods are to be picked up and delivered. This variant has a 

high degree of relevance in maritime logistics applications since it is possible that a 

vessel, after transporting goods in one port of call, can pick up other goods from that 

port to be delivered to the next port of call. What can be considered as classes of 

VRPPD are (Wassan and Nagy, 2014): (1) VRP with backhauling (VRPB), where all 

deliveries must be served before pick-ups can begin; (2) VRP with mixed pick-ups 
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and deliveries (VRPMPD), where pick-ups and deliveries are allowed to occur in any 

order along the vehicle route; and (3) VRP with simultaneous pick-ups and deliveries 

(VRPSPD), where pick-ups and deliveries are made in the same locations. Further, 

the VRPTW discussed in the previous section can be generalized in this variant as the 

VRPPD with time windows (VRPPDTW) (Desaulniers et al, 2002). Due to its distinct 

characteristics involving timetable and the likelihood of transshipment in its 

operations, liner shipping has a large potential to benefit from research in VRPPDTW. 

An example of VRPPDTW application in maritime routing problem is demonstrated 

by Karlaftis et al (2009) that is solved using a hybrid genetic algorithm. 

The formulation of VRPPDTW as presented in Desaulniers et al 

(2002) is rewritten below, with simplification by assuming that all vehicles can serve 

all destinations. This does not change the key aspects in the formulation, but only to 

generalize the notations. In this formulation, the nodes are divided into two sets: set 𝒫 

for the nodes where pick-up is to be made, and set 𝒟 for the nodes that will receive 

delivery. There are 𝑛 requests of pick-up and delivery to be satisfied in the problem 

and each request 𝑖 is identified by a pair of nodes, 𝑖 and 𝑛 + 𝑖, corresponding to the 

pick-up node and delivery node, respectively. Note that the identification of nodes is 

no longer based on the geographical separation (e.g. customer or city), but on the 

pick-up and delivery pair of request, i.e. 𝒩 = 𝒫 ∪ 𝒟. Let 𝑢𝑖 = 𝑑𝑖 and 𝑢𝑛+𝑖 = −𝑑𝑖 if 

request 𝑖 consists of transporting 𝑑𝑖 units from 𝑖 to 𝑛 + 𝑖. It is further assumed that 

each vehicle will depart from its origin, node 𝑜(𝑣), and will finish its tour on node 

𝑑(𝑣). Lastly, variables 𝐿𝑖
𝑣 denote the load of vehicle 𝑣 after the service at node 𝑖. 
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Min. ∑ ∑ 𝑐𝑖,𝑗
𝑣 . 𝑥𝑖,𝑗

𝑣

(𝑖,𝑗)∈𝒜𝑣∈𝒱

 (2.17) 

Subject to: 

∑ ∑ 𝑥𝑖,𝑗
𝑣

𝑗∈𝒩𝑣∈𝒱

= 1 ∀𝑖 ∈ 𝒫 (2.18) 

∑ 𝑥𝑖,𝑗
𝑣

𝑗∈𝒩

− ∑ 𝑥𝑗,𝑛+𝑖
𝑣

𝑗∈𝒩

= 0 ∀𝑣 ∈ 𝒱;  𝑖 ∈ 𝒫 (2.19) 

∑ 𝑥𝑜(𝑣),𝑗
𝑣

𝑗∈𝒫

= 1 ∀𝑣 ∈ 𝒱 (2.20) 

∑ 𝑥𝑖,𝑘
𝑣

𝑖∈𝒩

− ∑ 𝑥𝑘,𝑗
𝑣

𝑗∈𝒩

= 0 ∀𝑘 ∈ 𝒩; 𝑣 ∈ 𝒱 (2.21) 

∑ 𝑥𝑖,𝑑(𝑣)
𝑣

𝑖∈𝒟

= 1 ∀𝑣 ∈ 𝒱 (2.22) 

𝑠𝑜(𝑣)
𝑣 = 0 ∀𝑣 ∈ 𝒱 (2.23) 

𝑠𝑖
𝑣 + 𝑡𝑖,𝑗

𝑣 − 𝑀. (1 − 𝑥𝑖,𝑗
𝑣 ) ≤ 𝑠𝑗

𝑣 ∀(𝑖, 𝑗) ∈ 𝒜; 𝑣 ∈ 𝒱 (2.24) 

𝑒𝑖 ≤ 𝑠𝑖
𝑣 ≤ 𝑙𝑖 ∀𝑖 ∈ 𝒩; 𝑣 ∈ 𝒱 (2.25) 

𝑠𝑖
𝑣 + 𝑡𝑖,𝑛+𝑖

𝑣 ≤ 𝑠𝑛+𝑖
𝑣  ∀𝑖 ∈ 𝒫; 𝑣 ∈ 𝒱 (2.26) 

𝑥𝑖,𝑗
𝑣 . (𝐿𝑖

𝑣 + 𝑢𝑗 − 𝐿𝑗
𝑣) = 0 ∀(𝑖, 𝑗) ∈ 𝒜; 𝑣 ∈ 𝒱 (2.27) 

𝑢𝑖 ≤ 𝐿𝑖
𝑣 ≤ 𝐾𝑣 ∀𝑖 ∈ 𝒫; 𝑣 ∈ 𝒱 (2.28) 

0 ≤ 𝐿𝑛+𝑖
𝑣 ≤ 𝐾𝑣 − 𝑢𝑖 ∀𝑛 + 𝑖 ∈ 𝒟; 𝑣 ∈ 𝒱 (2.29) 

𝐿𝑜(𝑣)
𝑣 = 0 ∀𝑣 ∈ 𝒱 (2.30) 

𝑥𝑖,𝑗
𝑣 ∈ {0,1} ∀(𝑖, 𝑗) ∈ 𝒜; 𝑣 ∈ 𝒱 (2.31) 

𝑠𝑖
𝑣 , 𝐿𝑖

𝑣 ≥ 0 ∀𝑖 ∈ 𝒩; 𝑣 ∈ 𝒱 (2.32) 
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The objective function (2.17) minimizes total travel cost. Constraints 

(2.18) and (2.19) warrant each request to be served once and by the same vehicle. 

Constraints (2.20)-(2.22) are the multi-commodity flow so that each vehicle starts 

from its origin depot and ends at its destination depot. As in the previous section, 

constraints (2.23)-(2.25) are the time windows constraints. For each request, a vehicle 

must visit the pick-up node before the delivery node (2.26). Constraints (2.27) 

regulate the feasibility of vehicle loads with respect to the routes the vehicle traverses. 

The linearization of these constraints is given in (2.33) and (2.34). Next, constraints 

(2.28) and (2.29) are the vehicle dependent capacity intervals at pick-up and delivery 

nodes, and constraints (2.30) set the initial vehicle load at its origin node. Finally, 

constraints (2.31) and (2.32) are the binary and non-negativity requirements, 

respectively, for the corresponding decision variables. 

 

𝐿𝑖
𝑣 + 𝑢𝑗 − 𝐿𝑗

𝑣 ≤ (1 − 𝑥𝑖,𝑗
𝑣 ). 𝑀 ∀(𝑖, 𝑗) ∈ 𝒜; 𝑣 ∈ 𝒱 (2.33) 

𝐿𝑖
𝑣 + 𝑢𝑗 − 𝐿𝑗

𝑣 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝒜; 𝑣 ∈ 𝒱 (2.34) 

 

Other formulation of VRPPD can be found, for example, in Nagy and 

Salhi (2005). In their paper, the authors assume that the commodities to be transported 

are generic and they can be supplied from all depots instead of certain origins. This 

type of formulation clearly does not resemble liner shipping operations, as in liner 

shipping, containers to be shipped have specific origin and destination ports. 

 

  

 

 

 

 

 

 

 

 



66 

 

 

 

2.4.3 Meta-heuristics for the VRP 

There are still other VRP variants in the VRP literature than the 

previously described VRPTW and VRPPD. One possible variant that is highly 

applicable in maritime logistics is the VRP with stochastic demand (VRPSD) (Tan et 

al, 2007). In reality, the nature of demand is stochastic, and deterministic treatment in 

many studies is catered mainly to reduce problem complexity. Another variant is the 

Site-dependent VRP (SDVRP) (Pisinger and Ropke, 2007) where a customer may 

only be serviced by a given subset of the vehicles. This can be because the access 

paths to the node do not allow certain type of vehicles to pass, or because specific 

facilities are demanded in the vehicles. The access-dependent situation is frequently 

encountered in shipping, for example, not all ports can handle mega ships. Specific 

facilities, e.g. a freezing compartment, are also common in many ships. Split-delivery 

VRP (SDVRP) (Archetti and Speranza, 2008) is another possible variant to be 

accommodated in maritime routing problems, particularly in tramp shipping. Note 

that due to the richness of the subject, it is difficult to gain consensus among authors 

in abbreviating the VRP variants and different variants may appear with the same 

abbreviations in the literature. 

Although the VRP models belong to hard combinatorial problems, 

their applications in maritime routing problems are scant. Part of the reasons is their 

unique structure that is inflexible to cope with different kinds of route in maritime 

transportation (e.g. pendulum route, butterfly route, etc.). For example, the 

VRPPDTW formulation from Desaulniers et al (2002) above cannot be used for the 

butterfly route as illustrated in Reinhardt and Pisinger (2012). However, when the 
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case is relatively small such as in Sambracos et al (2004) (13 ports including a depot 

port, and 25 sea links), VRP can still be applied. 

The complexity of VRP calls for meta-heuristic approaches, e.g. 

Gambardella et al (1999) and Silva, Jr. and Leal (2011) who developed multiple ant 

colony system and Baños et al (2013) who proposed a hybrid meta-heuristic, all 

dealing with multi-objective VRPTW. Gendreau et al (2002) suggest that meta-

heuristics for CVRP outperform classical heuristics in terms of solution quality, and 

sometimes now in terms of computing time. However, algorithm such as Clarke and 

Wright remains popular because it can be easily adapted to other variants of VRP and 

is easy to implement. They also conclude that tabu search is the most effective 

approach compared to genetic algorithms (GA), neural networks, 

simulated/deterministic annealing, and ant systems, but also further argue that while 

GA is not competitive on general VRPs, it is still considered promising on VRPTW. 

In contrast to the above argument, however, Prins (2004) presented a 

simple and effective hybrid GA and reported that it is able to outperform most 

published tabu search heuristics on some well-known instances. The author’s GA uses 

tour-splitting procedure, dispersal mechanism, and local search mutation (the latter 

two components are usually referred as memetic algorithm and the reason why the 

algorithm is classified as hybrid). Each of these components has its own role in 

enhancing the algorithm’s performance: the tour-splitting procedure (called Split) 

partitions and forms feasible and optimal/near-optimal trips from the chromosome 

under evaluation; the dispersal mechanism maintains the population such that no 

identical chromosomes (or clones) can co-exist in the population, hence improving the 

quality of the search; and the local search mutation increases the search speed by 
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performing methodical swaps of cities in the same or  different trips (e.g. the well-

known 2-Opt). 

Split is a novel procedure of the above GA and its effectiveness makes 

it stand out among other similar approaches ever developed. To illustrate how it 

works, consider the following VRP example, reproduced from Prins (2004), 

consisting of one depot (0) and five cities (a to e) as shown in Figure 2.6a. The 

distances between cities (including from and to the depot) are shown adjacent to the 

arrows connecting the cities, and the figures inside the brackets are the demands of 

the corresponding city. The vehicles are identical with capacity of 10 units each. Split 

does not work on the original graph of the problem, but it transforms the graph in 

Figure 2.6a to an auxiliary minimum-cost path graph as shown in Figure 2.6b. The 

auxiliary graph translates the problem more lucidly: which paths should be traversed 

from 0 to e that yields the minimum cost? Algorithms described in Prins (2004) can 

answer this question and the solution with minimum cost 205 is shown in bolded 

paths in Figure 2.6b. The corresponding solution consisting of three trips is shown in 

Figure 2.6c. 

Progressing further from this groundbreaking work, Prins (2009) 

developed a GA for heterogeneous VRP (HVRP). The problem is obviously much 

more complex than CVRP owing to the heterogeneity of the vehicles involving 

different capacities and different fixed and/or variable costs. Dynamic programming 

is employed as part of the algorithm and despite an issue with the Split procedure that 

can sometimes produce infeasible splitting, the algorithm is shown very competitive 

compared to other meta-heuristics when tested on equivalent known instances. The 

test instances used, however, do not consider fixed costs. 
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Figure 2.6 (a) Original graph; (b) Minimum-cost path auxiliary graph; (c) Solution 

with three partitioned trips 

 

Other works on GA for VRP include the following. Chang and Chen 

(2007) extend the work of Prins (2004) by formulating time-window constraints (GA 

for VRPTW) in their model. Their work, however, still assumes homogeneous 

vehicles. The approach for heterogeneous vehicles appears in Liu et al (2009) for 

unlimited number of vehicles, in addition to Prins (2009) for both unlimited and 
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limited number of vehicles as has been described earlier. The version with unlimited 

number of vehicles is referred by many names such as fleet size and mix vehicle 

routing problem (FSMVRP), vehicle fleet mix problem (VFMP), or fleet size and 

composition vehicle routing problem (Renaud and Boctor 2002), but the general 

notion of application is for a start-up company involving strategic decisions to procure 

an optimal number of vehicles that have unlimited availability in the supply market. 

Sub-variants of this branch concern whether or not fixed and/or variable costs are 

considered. When the number of the heterogeneous vehicles is limited, the problem is 

called the heterogeneous fleet VRP (HFVRP or HVRP). HVRP is more complex than 

VFMP, for example, in the trip feasibility of a VFMP, one only needs to check if the 

trip at least can be served by the largest-capacity vehicle. Reassignment of vehicles 

with the cheapest ones is also a simple way to test if the objective function can be 

improved, since these cheapest vehicles are assumed always available. This is not true 

for HVRP due to limited availability of each vehicle type. Because HVRP arises in 

tactical planning phase, it implies that the problem will be more frequently 

encountered. 

Contrary to the rapid growth in the VRP studies, the literature on 

HVRP is relatively scarce. Imran et al (2009) outlined 22 papers found between 1984 

and 2007 that address this VRP variant. Among these is Li et al (2007) who proposed 

a record-to-record travel metaheuristic that performs well on a number of HVRP 

benchmark instances. For detailed discussion on these 22 papers, readers can refer to 

Imran et al (2009). The following review will focus on papers published beyond that 

period that are obtainable, summarized in Table 2.7. 
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Table 2.7 Latest HVRP studies 

Authors Year Problem type Method Test benchmark 

Belfiore and 

Yoshizaki 

2009 HVRPTWSD Scatter search Known; generated; real case 

Imran et al 2009 HVRP VNS Known; generated 

Li et al 2010 HVRP MAMP + TS Known; generated 

Subramanian et al 2012 HVRP ILS + SP Known 

Leung et al 2013 2L-HVRP SA + LS Known 

Jiang et al 2014 HVRP TS Known; generated 
Wang et al 2014 HVRPTW-

ILC 

Ruin-recreate + TS Known; real case 

 

Belfiore and Yoshizaki (2009) proposed a scatter-search metaheuristic 

for a HVRP that considers time windows and split deliveries, and applied it in a real 

case study on 519 outlets and also compared the method on modified instances from 

the literature by changing the demands to accommodate split deliveries. Authors who 

work on pure HVRP include the following. Imran et al (2009) developed two variants 

of variable neighborhood search heuristics and tested the methods on two classes of 

data sets. The first class of data set is taken from the literature as is, and the second 

class involves a larger number of customers and modified with regard to vehicle 

capacity and costs. Li et al (2010) used a multi-start adaptive memory programming 

supported by a modified tabu search. Their benchmark is on instances from the 

literature with 50-100 customers and generated instances with 50-200 customers. 

Subramanian et al (2012) suggested a hybrid form of heuristic by combining an 

iterated local search and set-partitioning based algorithm. The set-partitioning 

problems are solved by mixed-integer programming and the solutions interactively 

called the local search procedure for improvement. Various test instances from the 

literature with up to 360 customers are used as test benchmark. The latest in this 

group is Jiang et al (2014) who extended the existing tabu search procedure and 

implement it on known and generated HVRP instances. Papers with rather different 
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focus from the ones previously discussed are the next two studies that incorporate 

loading constraints. First, Leung et al (2013) combined the routing problem with 

loading constraint by means of simulated annealing and heuristic local search. Their 

test benchmark is on instances from 2L-CVRP studies. Second, Wang et al (2014) 

formulated ruin-recreate heuristic and threshold tabu search for a HVRP with time 

windows and incompatible loading constraint. In addition to comparing their method 

on known instances, the authors also applied it on a real problem of supermarket 

chain. 

The above review on HVRP indicates not only scarcity on the overall 

subject, but also on each category with respect to problem type, method, and scope of 

application. On problem type, most studies look on the general class of HVRP and 

very few discuss specific variant such as time windows etc. Heuristics and 

metaheuristics dominate the proposed methods, but evolutionary/population-based 

algorithm such as GA is rarely encountered. To show the strength and robustness of 

the newly-developed models, the majority of studies also focuses on benchmarking 

against common instances rather than showcase their field application. In particular 

with HVRP studies, benchmark instances in the literature ignore fixed costs (Prins 

2009). Reducing complexity is acceptable for the purpose of model testing, but clearly 

is unrealistic in actual application, especially in maritime logistics where the fixed 

costs of using a vessel are high. 

The subset between maritime logistics and HVRP (or general VRP, for 

that matter) is even much a smaller domain. Most authors develop LP-based 

formulation rather than borrow the VRP model because of the uniqueness in maritime 

routing problems (for example, hub-and-spoke environments). Only few authors 
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discuss problems whose structure are suitable to the adoption of the VRP model, for 

example Sambracos et al (2004), Karlaftis et al (2009) and Takano and Arai (2009) 

(see sub-section 2.2.2 on liner shipping). Also, Agra et al (2013) utilized a VRPTW 

model with uncertain travel times in a maritime transportation problem. In terms of 

shipping service, their study can be classified in tramp/industrial rather than liner 

shipping, since ship capacities are not part of their model. 

HVRP is probably the closest VRP model that can be adopted for 

maritime logistics problem since many shipping companies, unlike, for example, 

trucking companies, usually own heterogeneous vessels. For liner shipping, the model 

should be extended to HVRP with time windows (HVRPTW) given the paramount 

importance of schedule/due dates in liner services. The GA principles from Prins 

(2009) can be borrowed as a starting point in model development, bearing in mind 

that the fixed costs of operating the vessels should be taken into considerations. 

 

2.5 Single-Objective vs. Multi-Objective Optimization 

Real world problems are not only complex, but also contain many perspectives 

from where the problems can be approached. When an operational problem is 

optimized only on one dimension (the most common objective is profit maximization 

or cost minimization), it is carried out under the assumption that other things are 

negligible or can safely be ignored. This is hardly a fact and such an assumption is 

made mainly for the purpose of model simplification. The advantage of this approach 

is to provide decision makers with a clearer picture by pointing out just the important 

factors of the problem. The disadvantage, however, is a high probability that the 

problem’s solution might deviate from the best solution, or even worse, is impractical.  
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Logistics and routing problems are no exception from such a syndrome. They 

are not always cost driven. For example, in a vehicle routing problem, suppose one 

solution arrives at a minimum cost, but imbalance loads are assigned to the vehicles. 

In practical terms, some drivers need to work harder than the other drivers to achieve 

that solution. Clearly this will be an issue in the real world application that demands 

further thoughts. Other examples relate to situations involving qualitative measures, 

e.g. customer satisfaction, brand image, safety, etc. What if, for example, total cost is 

minimized but at the expense of service level (late deliveries to some customers)? 

Some would argue that such a solution may not be the best solution after all since it 

does not put emphasis to the future sustainability of the company. To cater for this 

argument, one possible way is to formulate the other factor as constraints, e.g. the 

loads deviation in the first example must not be higher than a certain figure, or late 

deliveries in the second example must have an upper bound value. This approach, 

however, suffers from a drawback that that other equally-important factor can only be 

maintained from derailing against certain parameters, but not optimized. Another way 

is to model all objectives into the same unit so they can be aggregated. If this task can 

be accomplished without much difficulty, then the problem is solved. However, more 

often than not what happens is the opposite: how to turn loads imbalance into a cost 

function? Or how can customer satisfaction level be transformed into profit/cost? All 

these difficulties lead to the need for a different and better approach that is called 

multi-objective optimization (MOO). 

The next sub-sections provide an introduction to MOO, followed by a review 

on MOO research studies in routing problems, and conclude with a brief note on a 

robust approach in multi-objective evolutionary algorithms called elitism. 
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2.5.1 An introduction to multi-objective optimization 

In a single-objective optimization with decision variables 𝒙 (a decision 

vector) and an objective function 𝑧 to be maximized, a solution 𝒙𝟏 is better than 

another solution 𝒙𝟐 if and only if 𝑧1 = 𝑓(𝒙𝟏) > 𝑧2 = 𝑓(𝒙𝟐). In a multi-objective 

optimization, there are more than one 𝑧 to be optimized, i.e. 𝒛 becomes a solution 

vector. In this case, the situation of comparing two solutions 𝒙𝟏 and 𝒙𝟐 is more 

complex. Suppose two objective functions 𝑧1 and 𝑧2 are both to be maximized, and 𝑧1
1 

and 𝑧2
1 are the solutions of 𝒙𝟏 for 𝑧1 and 𝑧2, respectively, and 𝑧1

2 and 𝑧2
2 are the 

solutions of 𝒙𝟐 for 𝑧1 and 𝑧2, respectively. Here, it is said that 𝒙𝟏 dominates 𝒙𝟐 if at 

least one component of 𝒛𝟏 is greater than the corresponding component of 𝒛𝟐 and 

none is smaller. If, for example, 𝑧1
1 is greater than 𝑧1

2 but 𝑧2
1 is smaller than 𝑧2

2 (or 𝑧1
1 

is less than 𝑧1
2 but 𝑧2

1 is greater than 𝑧2
2), no solution dominates the other and these are 

referred to as the Pareto or non-dominated set of optimal solutions (Zitzler et al, 

2003). 

Further, let 𝒙 = 𝑥1, … , 𝑥𝑛 ∈ ℝ𝑛. In a single-objective optimization, 

because there is only one objective function 𝑓, a space of ℝ𝑛+1 suffices to represent 

together the vector of variables and the objective. However, when multiple objectives 

𝑓1, … , 𝑓𝑘  are involved, the mapping of decision variables to the objective function 

values is made easier by the representation of a decision space ℝ𝑛 and an objective 

space ℝ𝑘 . Figure 2.7 shows an example with 𝑛 = 2 and 𝑘 = 2. 
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Figure 2.7 The mapping of decision space to objective space 
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Figure 2.8 Pareto front based on objectives relationship 

 

Two approaches commonly used in solving multi-objective problems 

are: (1) by assigning a weight vector to the objectives so they can be aggregated into a 

single value; (2) by searching the Pareto set of non-dominated solutions and letting 
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the decision maker(s) to exercise higher-level considerations to arrive at a desired 

solution. The latter approach is often considered more practical since weight vector 

assignment is not an easy process even for experienced users in the field. 

To obtain the Pareto set, the nature of the objectives to be optimized 

will determine the frontier of the set. Figure 2.8 describes the resulting Pareto front in 

different combinations of a multi-objective problem involving two objectives. In (a) 

where the two objectives are to be minimized, the front lies in the bottom-left part of 

the feasible region; in (b) where the first objective is to be maximized and the second 

is to be minimized, the front lies in the bottom-right; and so on. 

 

2.5.2 Multi-Objective Optimization in Routing Problems 

Research in routing problems using multi-objective approach was first 

encountered in a 1986 study from Park and Koelling concerning routing of perishable 

products involving several objectives: minimization of the traveled distance, 

maximization of the realization of urgent queries, maximization of the station of 

conditional dependence, and minimization of the merchandise deterioration 

(Josefowiez et al, 2008a, 2008b). Ever since, the subject has attracted a growing 

research interest in various settings and applications. 

Bowerman et al (1995), Corberán et al (2002), and Pacheco and Marti 

(2006) discussed MOO for school-bus routing problem. Five objectives appear in 

Bowerman et al (1995), mainly on route minimization but include ‘student walking 

distance’ as one of the objectives, which is an important but a conflicting objective to 

the minimization effort. The objectives are weighted to form an aggregate measure. 

Corberán et al (2002) and Pacheco and Martí (2006) formulated two objectives, 
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minimization of the number of buses and minimization of the maximum time in the 

bus. The former used scatter search method while the latter employed a tabu search to 

explore the non-dominated frontier. 

Giannikos (1998) used goal programming for a MOO problem in 

hazardous product transportation. Four objectives are considered in this study. 

Lacomme et al (2006) experimented with a multi-objective evolutionary algorithm 

(MOEA) method called Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) 

in a capacitated arc routing problem. They concluded, however, that the algorithm 

could not efficiently solve the problem. Doerner et al (2007) presented a MOO case 

on a healthcare facility tour planning in developing countries. In this unique case, in 

addition to minimization of tour length as one objective, they also formulated 

‘coverage of population to the facilities’ as the other objective. Three meta-heuristics 

in the form of evolutionary algorithms are investigated in this problem: Pareto-Ant 

Colony Optimization (P-ACO), Vector Evaluated Genetic Algorithm (VEGA), and 

Multi-Objective Genetic Algorithm (MOGA). 

Specifically in VRPTW applications with multi-objective setting, the 

following research can be mentioned. Hong and Park (1999) used goal programming 

for a MOVRPTW involving two objectives: minimization of total vehicle travel time 

and minimization of customer wait time. Zografos and Androutsopoulos (2004) 

studied a MOVRPTW application for hazardous materials distribution problem by 

minimizing total travel time and total transportation risk. They also developed their 

own algorithm to search for the non-dominated solutions. Ombuki et al (2006) 

employed MOGA for a VRPTW minimizing total cost (distance) and the number of 

vehicles. Tan et al (2006) proposed a Hybrid Multi-Objective Evolutionary Algorithm 
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(HMOEA) combining specialized genetic operators, variable-length representation, 

and local search heuristic, for what the authors referred to as the Trucks and Trailers 

Vehicle Routing Problem (TTVRP). As explained by the authors, this class of 

problem does not exactly belong to the VRPTW family, but closely related. Two 

objectives are formulated: routing cost and number of trucks used. Ghoseiri and 

Ghannadpour (2010) combined goal programming and genetic algorithm in a 

MOVRPTW with minimization of total fleet size and total traveling distance. The 

goal programming is used in the formulation to minimize the deviations from the 

decision maker’s aspiration levels, whereas the genetic algorithm is used for exploring 

the Pareto front. Lastly, Melián-Batista et al (2014) proposed two alternative versions 

of scatter search meta-heuristic that are compared and proven better than the NSGA-

II. Two objectives in their VRPTW model are the total traveled distance and the 

workload of the drivers. 

Several important facts can be discerned from the above review. 

Firstly, the method of finding the Pareto or non-dominated set of solutions appears in 

references from the year 2006 onwards. Meta-heuristics in the form of evolutionary 

algorithms such as VEGA, MOGA, and NSGA-II, being the tools for exploring the 

Pareto front, also have spurred together in the same period. This indicates that the 

methods are still relatively new and offer much research ground to uncover. Secondly, 

unlike in earlier studies where the number of objectives could amount to four 

(Giannikos, 1998) or five (Bowerman et al, 1995), research dealing with Pareto-front 

exploration usually accounts for two objectives (with minimization of total 

cost/distance often being the main and other such as minimization of vehicles used 

being the secondary). A possible deduction from this pattern is that Pareto-front 
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exploration is a challenging task for researchers that require them to devote more 

attention on this part of the studies. On the other hand, having many objectives that 

are then weighted and aggregated into one final objective value is not a difficult 

process. What should be cautioned in the latter approach is the process in obtaining 

the weights that is a subject of research on itself. Thirdly, while maritime logistics has 

a close association with routing problems, research dealing with MOO in maritime 

logistics is very few in number, as opposed to the same topic in land logistics. 

 

2.5.3 Elitist Multi-Objective Evolutionary Algorithms 

A number of multi-objective evolutionary algorithms (MOEA) have 

been mentioned in the previous sub-section and the reviews of these and other MOE 

algorithms can be found in Coello Coello et al (2007) and Deb (2008). Basically, 

MOEAs can be classified into two main groups: non-elitist and elitist. Elitist MOEAs 

are considerably better than their non-elitist counterparts due to the use of an elite-

preserving mechanism that prevents good solutions from being discarded by the 

genetic operators during the search iterations. Two competitive elitist MOEAs today 

are SPEA2 (Strength Pareto Evolutionary Algorithm 2) (Zitzler et al, 2002) and 

NSGA-II (Elitist Non-Dominated Sorting Genetic Algorithm) (Deb et al, 2000). 

SPEA2 is an improvement from the earlier version SPEA (Zitzler and Thiele, 1999). 

Likewise, NSGA-II is the elitist version from the earlier non-elitist NSGA (Srinivas 

and Deb, 1994). According to Zitzler et al (2002), both SPEA2 and NSGA-II are 

equally good except in higher dimensional objective spaces where SPEA2 seems to 

have advantages. On the other hand, NSGA-II is more easily coded, therefore a better 

preference for a problem with not more than two objectives. 
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To illustrate the basic principles of NSGA-II, consider a min-min 

problem with feasible solution space as shown in Figure 2.9. The true Pareto front of 

this problem, as indicated in Figure 2.8a, is the curve line A-B. The objective of the 

algorithm is, thus, to explore the solution space until it finds solutions as close as 

possible to the line A-B. As the name implies, NSGA-II sorts the population based on 

non-dominated principles. Given eight solutions [a, b, c, d, e, 1, 2, 3] in the 

population, the algorithm groups these solutions into two non-dominated fronts [a, b, 

c, d, e] and [1, 2, 3], and sorts them by assigning a higher rank to the set of solutions 

[a, b, c, d, e] due to its proximity to the true Pareto front. In other words, solutions a-e 

are non-dominating to each other (and so are solutions 1-3 to each other), but 

solutions a-e dominate solutions 1-3. 

The algorithm then progresses by considering the ranking of these 

fronts. The elitism principle plays a critical part in choosing the solutions to be carried 

to the next iterations. For example, if the number of population is set at 5, solutions a-

e will go through and perform the usual genetic procedures (crossover and mutation), 

and solutions 1-3 in the second front will be discarded. If the number of population is, 

for example, set at 4, then the selection becomes a bit more complicated and another 

measure called crowding distance is involved. This measure basically weighs 

solutions with less neighboring solutions for a better spread of population. In this 

case, solution d is better than solution b, thus the four solutions that will advance to 

the next iteration are a, e, d, and c. 
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Figure 2.9 Illustration of NSGA-II basic principles 

 

2.6 Research Gap Identification 

This section highlights the research gap viewed from two perspectives: scope 

and method. The scope-wise analysis (Table 2.8) is a closer look on maritime logistics 

research papers that have been reviewed in the previous sections. These papers are 

tagged in a taxonomy using four attributes: collaboration, VRP class, objective, and 

meta-heuristic. The papers listed come from section 2.2 (liner shipping; in particular 

sub-section 2.2.2 on liner shipping network design) and section 2.4 (liner shipping 

collaboration). The papers that do not address these two main topics, or any of the 

attribute in the taxonomy, are automatically screened out. 

The method-wise taxonomy has six attributes: scope of logistics, VRP class, 

objective, meta-heuristic, nature of vehicles, and whether or not fixed costs are 

considered (Table 2.9). The papers listed mainly come from sections 2.4 and 2.5 on 

the discussion of VRP and MOO, respectively. 

It is clear from both perspectives in the research gap that a research on multi-

objective maritime logistics collaboration, with emphasis on liner shipping, utilizing a 
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heterogeneous VRPTW that considers fixed cost, and a meta-heuristic approach, has 

never been studied. This research aims to fill this gap and contribute in the overall 

literature of maritime logistics studies. To shorten the abbreviation from HVRPTW-F 

so to emphasize the uniqueness of this research, the problem is named as the ship 

routing problem (SRP). 

 

Table 2.8 The research gap: scope-wise 

Author(s) (year) Main topic Theme 

Collaboration VRP class Objective Meta-

heuristic 

Agarwal & Ergun (2010) Net. design Yes1 - Single - 

Asgari et al (2013) Collaboration Yes2 - Multiple - 

Boros et al (2008) Net. design Yes3 - Multiple - 

Hsu & Hsieh (2008) Net. design No - Multiple - 

Karlaftis et al (2009) Net. design No VRP Single GA 

Lei et al (2008) Collaboration Yes1 - Single - 

Sambracos et al (2004) Net. design No VRP Single LBTA4 

Takano & Arai (2009) Net. design No - Single GA 

This research Collaboration Yes1 VRPTW Multiple GA 
1 Between-carrier collaboration 
2 Between-carrier and Carrier-Port collaboration 
3 Carrier-Port collaboration 
4 LBTA (list-based threshold acceptance) 

 

Table 2.9 The research gap: method-wise 

Author(s) (year) Scope of 

logistics 

VRP class Objective Meta-

heuristic 

Nature of 

vehicles 

Fixed 

costs 

Baños et al (2013) General VRPTW Multiple Hybrid Identical - 

Gambardella et al (1999) General VRPTW Single MACS1 Identical - 

Karlaftis et al (2009) Maritime VRP Single GA Hetero. No 

Melián-Batista et al 

(2014) 

General VRPTW Multiple Scatter 

search 

Identical - 

Ombuki et al (2006) General VRPTW Multiple GA Identical - 

Prins (2004) General VRP Single GA Identical - 

Prins (2009) General HVRP Single GA Hetero. No 

Sambracos et al (2004) Maritime VRP Single LBTA Identical - 

Silva, Jr. & Leal (2011) General VRPTW Multiple MACS1 Identical - 

Takano & Arai (2009) Maritime - Single GA Hetero. Yes 

This research Maritime SRP Multiple GA Hetero. Yes 
1 Multiple ant colony system 

 

 

 

 

 

 

 

 

 



84 

 

 

 

2.7 Chapter Summary 

In this chapter, an extensive literature review on a number of subjects is 

presented. The chapter starts with a discussion on logistics and supply chain 

management definitions for the purpose to highlight the research positioning, i.e. 

collaboration between logistics actors in the same tier of the chain. Overview of 

maritime logistics is then provided with emphasis given on liner shipping. In 

particular, the section builds taxonomy of research in liner shipping network design. 

Other issues such as tramp/industrial shipping and speed optimization are briefly 

discussed. Next, a section on liner shipping collaboration is outlined. The important 

outcome of this section is the classification of research in liner collaboration under the 

following clusters: qualitative vs. quantitative, input-process-output perspective, and 

carrier-carrier or carrier-port collaboration. Vehicle Routing Problem and its variants 

are then discussed and the mathematical models for CVRP, VRPTW, and VRPPD, as 

well as discussion and an example of a meta-heuristic approach for CVRP are 

presented. The next section discusses single-objective vs. multi-objective 

optimization. An introduction to the subject is given, followed by a review on the 

progress of research development in this area and a brief outline of one elitist MOEA. 

Finally, the chapter concludes with identification of the research gap viewed from the 

perspectives of scope and method. 

 

 

 

 

 

 

 

 

 



 

 

 

 

CHAPTER III 

RESEARCH METHODOLOGY 

 

This chapter outlines the research methodology. The research framework is 

firstly described to show how all the issues and related concepts are bound and linked 

together in a structured way to form a coherent view. The research stages are then 

elaborated and these detail the step-by-step planned approach, including the proposed 

four models, to undertake the research. The first two models are the preliminary 

models built with the purpose to introduce the idea and scope of this research, i.e. 

maritime logistics collaboration, and these will be discussed in the third section. 

 

3.1 Research Framework 

In chapter two, a literature review has been carried out on a number of 

subjects in the fields of maritime logistics, liner shipping collaboration, vehicle 

routing problem and its variants, and multi-objective optimization. The subjects 

discussed can be grouped in three big blocks. The first block discusses the scope of 

research in general. From wide-ranging logistics/supply chain operations, maritime 

logistics is chosen. Based on the types of service in maritime logistics, the general 

scope is narrowed down to liner shipping. Liner shipping deals with containers and 

container ships, and as pointed out in Panayides (2006), maritime logistics as a 

concept in this field applies to the transportation of containerized cargoes rather than 

bulk cargoes. 
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Figure 3.1 Research framework 

 

The second block details the scope further. Liner shipping collaboration is 

given focus here considering the relatively minimum number of studies in this area. 
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Further, to be able to demonstrate the proposed model, numerical examples are 

required. Thus, case studies that can provide data as close as possible to the real-world 

shipping practice needs to be built. Indonesian archipelago will be used as the data 

background for this purpose. Despite the fact of being the largest archipelago in the 

world with over 17,500 islands, to the best of our knowledge, there is no record found 

on studies in Indonesian maritime cases. 

The third block relates to the methods of this research. Since liner operations 

have a close relation to routing problems with time constraints, the heterogeneous 

VRP with time windows (HVRPTW) is selected as the model for the final case. 

Multi-objective optimization is another concept to be utilized due to its more realistic 

representation of real-world problems. Finally, acknowledging that routing problems 

are hard combinatorial problems, a meta-heuristic approach in the form of 

evolutionary algorithm is used, with a particular selection on a method called the 

elitist non-dominated sorting genetic algorithm (NSGA-II). 

 

3.2 Research Stages 

The first stage in undertaking this research is to define its scope. This comes 

from personal preferences and expertise, and also considers the research potentials in 

terms of benefits and contributions that the research can offer, both in the theoretical 

development and practical applications. Maritime logistics and liner shipping 

collaboration are the topics emerged from this stage. Literature review then follows to 

establish a foundation upon which the research gap can be identified. The review 

encompasses both the defined scope and various research methods. Research 
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questions and contributions are then formulated and together with the research gap 

identification they formalize the research problem. 
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Literature Review

Models Building, Experimentation, and Analysis

Conclusions & 
Documentation
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Figure 3.2 Research stages 

 

Models building comes in the next stage and a total of four models are 

developed, experimented, and analyzed. The first two models introduce the idea and 
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scope of maritime logistics collaboration. Model I is a multi-objective assignment 

problem and Model II is an extended VRPTW, both are applied on liner shipping case 

studies. One underlying method, the genetic algorithm for HVRP (Prins, 2009), is 

introduced in Model III and extended to HVRPTW that also considers fixed costs. 

This extension is an important adjustment for problems involving liner companies. 

Next, the last model integrates all the preceding models and becomes the final model 

of this research. In this final model, the idea of maritime logistics collaboration and 

GA for HVRPTW are combined with a multi-objective evolutionary algorithm called 

NSGA-II. Throughout these four models, data are obtained and generated based on 

the Indonesian archipelago to produce numerical instances. Some of the data are 

secondary (e.g. company profiles and distances, obtained from websites) and others 

(e.g. demands) are generated based on published reports. The experiment results are 

analyzed with regards to the outcomes and also the models’ properties. Finally, 

conclusions are derived and all processes are documented. The research stages are 

illustrated in Figure 3.2. 

 

3.3 Preliminary Models Building 

In this section, two preliminary models are built with numerical examples to 

demonstrate the idea of multi-objective optimization in liner shipping collaboration. 

The degree of complexity between the two models varies. The first model is 

formulated as a multi-objective assignment problem where vessels and ports are 

paired (indicating services) without considering the possibilities of any vessel routed 

to more than one port. The approach of assignment is considered adequate for a small 
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case with only 5 ports and 10 vessels operating in relatively short distances. The focus 

of attention is on the dual objectives formulation and their resulting properties. 

In the second model, the case is enlarged with added vessels and ports. Two 

cases differing in size are introduced: the small case with 6 vessels and 8 ports, and 

the large case with 9 vessels and 13 ports. Using the VRPTW formulation, routing 

possibilities are considered. Given the complexity, a single-objective optimization 

approach is used and what is targeted as a second objective is shifted as a set of 

constraints. The approaches used in the two models are varied to generate as many 

angles as possible of the problem. The second model is termed the extended VRPTW 

and both cases use the Indonesian archipelago as a background for the data setup. 

 

3.3.1 Multi-objective Collaboration in Maritime Logistics
1
 

The problem description in this model is stated as follows. Two liner 

shipping companies (carriers) are operating a heterogeneous fleet of vessels and 

serving a number of ports from the same home-base port (depot). Given today’s norm 

in the shipping business where supply is larger than demand, these two carriers would 

like to join forces by sharing their capacities to serve their joint demands. Two 

objectives are formulated in the model: (1) minimization of total fuel costs, and (2) 

minimization of total sailing time. It should not be difficult to infer that these two 

objectives are conflicting because faster sailing speed minimizes the sailing time, but 

at the same time burns more fuels and increases the fuel costs. These conflicting 

objectives warrant the approach of multi-objective optimization. The possibility of 

                                                
1 Materials of this sub-section have been presented as a paper at The 2013 International Conference on 

Logistics and Maritime Systems (LOGMS 2013), National University of Singapore, Singapore. 

 

 

 

 

 

 

 

 



91 

 

 

 

fast-steaming is also considered in the model to distinguish it from other typical 

models in land logistics. 
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Vessels’ 

capacities

Vessels’ 

speeds

Companies’ 

websites

Companies’ 

websites

Distance 

database

Demand size

(U[100; 500])

Due dates

(min. & max.)

Fuel costs
Fuel-consumption 

formula
Sailing times

Multiple objectives 

optimization model

 

Figure 3.3 Data generation schematic for Model I 

 

The two companies used in this case are typically alike in terms of 

fleet capacity and serviced ports. Data are obtained from companies’ websites 

(www.meratusline.com and www.tantonet.com). These include the vessels’ 

particulars (capacities and speeds) and ports to be serviced. Since at this stage it is not 

possible to replicate the whole operations of the two companies, only subsets of the 

data are used. This results in 7 vessels for each carrier (a combination of 

homogeneous and heterogeneous) and 5 ports to be serviced. Vessels’ capacities 

range in 224-1024 TEUs and their speeds range in 12.5-19.2 knots. In addition, 

distances are calculated using distancecalculator.globefeed.com. From the home-base 
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port to the serviced ports, distances range between 500 and 1140 nautical miles. Fuel 

costs and sailing times are then estimated from distances and speeds. Further, fast-

steaming speeds are assumed 30% faster than the normal speeds. Demands (in TEUs) 

are generated in each port for each carrier using the uniform distribution U[100; 500]. 

Attached to these demands are the due dates (in hours). Two sets of due dates, 

minimum and maximum, are tested to examine the model sensitivity to these 

parameters. The data generation process is described in Figure 3.3 and the data are 

listed in Appendix A. 

In the absent of any search mechanism, obtaining the non-dominated 

set of solutions is carried out by optimizing the model separately vis-à-vis each 

objective function, however, both objective functions’ values are calculated in each 

run. By combining the two objective functions with binary fast-steaming decisions 

and two sets of due dates, eight scenarios are produced and optimized. Fast-steaming 

decision is formulated as binary variables rather than a function although the latter is 

also possible, at least at a discrete level. However, for short trips (in domestic seas) it 

is more of a strategic rather than a tactical decision, and formulating it as a continuous 

function might have limited practicality. 

The following notation is used to describe the mathematical model. 

Subscript 𝑖 is used as an index for the vessels and subscript 𝑗 is used as an index for 

the ports. To ease the readability of the notations, the sets for each carrier are 

separated, in terms of the set for the vessels and the decision variables. The pure-

binary programming model for the problem is presented after the notation. 

 

𝒩 Set of ports, excluding the depot 
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𝒱𝑎 Set of vessels of carrier 𝑎 

𝑐𝑖,𝑗 Cost of vessel 𝑖 if goes to port 𝑗 

𝑐𝑖,𝑗
+  Cost of vessel 𝑖 if goes to port 𝑗 with fast steaming 

𝑡𝑖,𝑗 Sailing time of vessel 𝑖 if goes to port 𝑗 

𝑡𝑖,𝑗
+  Sailing time of vessel 𝑖 if goes to port 𝑗 with fast steaming 

𝐾𝑖
𝑎 Vessel 𝑖 capacity of carrier 𝑎 

𝑑𝑗
𝑎 Demand size of carrier 𝑎 at port 𝑗 (in TEUs) 

𝐷𝑗
𝑎 Due date of demand of carrier 𝑎 at port 𝑗 (in hours) 

𝑥𝑖,𝑗 Binary decision variables, 1 if vessel 𝑖 of carrier 1 goes to port 𝑗, 0 otherwise 

𝑦𝑖,𝑗 Binary decision variables, 1 if vessel 𝑖 of carrier 2 goes to port 𝑗, 0 otherwise 

𝑔𝑖,𝑗 Binary decision variables, 1 if vessel 𝑖 of carrier 1 goes to port 𝑗 with fast 

steaming, 0 otherwise 

ℎ𝑖,𝑗  Binary decision variables, 1 if vessel 𝑖 of carrier 2 goes to port 𝑗 with fast 

steaming, 0 otherwise 

 

Min. ∑ ∑ 𝑥𝑖,𝑗[𝑔𝑖,𝑗 . 𝑐𝑖,𝑗
+ + (1 − 𝑔𝑖,𝑗)𝑐𝑖,𝑗]

𝑗∈𝒩𝑖∈𝒱1

+ ∑ ∑ 𝑦𝑖,𝑗[ℎ𝑖,𝑗 . 𝑐𝑖,𝑗
+ + (1 − ℎ𝑖,𝑗)𝑐𝑖,𝑗]

𝑗∈𝒩𝑖∈𝒱2

 (3.1) 

Min. ∑ ∑ 𝑥𝑖,𝑗[𝑔𝑖,𝑗 . 𝑡𝑖,𝑗
+ + (1 − 𝑔𝑖,𝑗)𝑡𝑖,𝑗]

𝑗∈𝒩𝑖∈𝒱1

+ ∑ ∑ 𝑦𝑖,𝑗[ℎ𝑖,𝑗 . 𝑡𝑖,𝑗
+ + (1 − ℎ𝑖,𝑗)𝑡𝑖,𝑗]

𝑗∈𝒩𝑖∈𝒱2

 (3.2) 

 

Subject to: 

 

∑ 𝑥𝑖,𝑗 . 𝐾𝑖
1

𝑖∈𝒱1

+ ∑ 𝑦𝑖,𝑗. 𝐾𝑖
2 ≥

𝑖∈𝒱2

𝑑𝑗
1 + 𝑑𝑗

2 ∀𝑗 ∈ 𝒩 (3.3) 
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𝑥𝑖,𝑗 . 𝑔𝑖,𝑗 . 𝑡𝑖,𝑗
+ + 𝑥𝑖,𝑗(1 − 𝑔𝑖,𝑗)𝑡𝑖,𝑗 ≤ min(𝐷𝑗

1, 𝐷𝑗
2) ∀𝑖 ∈ 𝒱1;  𝑗 ∈ 𝒩 (3.4) 

𝑦𝑖,𝑗 . ℎ𝑖,𝑗 . 𝑡𝑖,𝑗
+ + 𝑦𝑖,𝑗(1 − ℎ𝑖,𝑗)𝑡𝑖,𝑗 ≤ min(𝐷𝑗

1, 𝐷𝑗
2) ∀𝑖 ∈ 𝒱2;  𝑗 ∈ 𝒩 (3.5) 

∑ 𝑥𝑖,𝑗

𝑗∈𝒩

≤ 1 ∀𝑖 ∈ 𝒱1 (3.6) 

∑ 𝑦𝑖,𝑗

𝑗∈𝒩

≤ 1 ∀𝑖 ∈ 𝒱2 (3.7) 

𝑔𝑖,𝑗 ≤ 𝑥𝑖,𝑗 ∀𝑖 ∈ 𝒱1;  𝑗 ∈ 𝒩 (3.8) 

ℎ𝑖,𝑗 ≤ 𝑦𝑖,𝑗 ∀𝑖 ∈ 𝒱2;  𝑗 ∈ 𝒩 (3.9) 

∑ ∑ 𝑥𝑖,𝑗

𝑗∈𝒩𝑖∈𝒱1

≥ 1  (3.10) 

∑ ∑ 𝑦𝑖,𝑗

𝑗∈𝒩𝑖∈𝒱2

≥ 1  (3.11) 

 

The first objective is to minimize the total fuel costs and the second 

objective is to minimize the total sailing time. The fuel costs are calculated using the 

fuel-consumption formula from Fagerholt et al (2010b) with oil price assumed at 

US$100/barrel. 

 

𝑓(𝑠) = 0.0036𝑠2 − 0,1015𝑠 + 0,8848  (3.12) 

 

Constraints (3.3) are the demand size constraints. Each carrier has 

customers of its own and these customers generate the demand. Total demand in each 

port must be satisfied by a group of vessels going to that port, which can be a 

combination of the fleets from both carriers. The demands are generated such that 

total demand of both carriers in all ports is less than total capacity of both carriers. 
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Constraints (3.4) and (3.5) are the due-date constraints for vessels of carrier 1 and 

carrier 2, respectively. Constraints (3.6) and (3.7) are the flow constraints to ensure 

that one vessel can only go to one port. Constraints (3.8) and (3.9) are related to the 

fast-steaming decision where such a decision can only take place behind the go/no-go 

decision for each vessel sailing to a port. Lastly, constraints (3.10) and (3.11) are set 

up so that each carrier must serve at least one port so that it still maintains a shipping 

activity rather than just being a brokerage firm. 

Since products of decision variables present in the model, the model is 

not linear and needs the following transformation (Chen et al, 2010). Let 𝑧𝑖,𝑗
1 =

𝑥𝑖,𝑗 . 𝑔𝑖,𝑗 for carrier 1, 𝑧𝑖,𝑗
2 = 𝑦𝑖,𝑗 . ℎ𝑖,𝑗 for carrier 2, and these constraints are added: 

 

𝑧𝑖,𝑗
1 ≤ 𝑥𝑖,𝑗 ∀𝑖 ∈ 𝒱1;  𝑗 ∈ 𝒩 (3.13) 

𝑧𝑖,𝑗
1 ≤ 𝑔𝑖,𝑗 ∀𝑖 ∈ 𝒱1;  𝑗 ∈ 𝒩 (3.14) 

𝑧𝑖,𝑗
1 ≥ 𝑥𝑖,𝑗 + 𝑔𝑖,𝑗 − 1 ∀𝑖 ∈ 𝒱1;  𝑗 ∈ 𝒩 (3.15) 

𝑧𝑖,𝑗
2 ≤ 𝑦𝑖,𝑗 ∀𝑖 ∈ 𝒱2;  𝑗 ∈ 𝒩 (3.16) 

𝑧𝑖,𝑗
2 ≤ ℎ𝑖,𝑗  ∀𝑖 ∈ 𝒱2;  𝑗 ∈ 𝒩 (3.17) 

𝑧𝑖,𝑗
2 ≥ 𝑦𝑖,𝑗 + ℎ𝑖,𝑗 − 1 ∀𝑖 ∈ 𝒱2;  𝑗 ∈ 𝒩 (3.18) 

 

The combination of two objective functions, binary fast-steaming 

decisions, and two sets of due dates, produces eight scenarios calling for optimization. 

All eight scenarios are optimized and the results are reported in Table 3.1. In 

scenarios 1 to 4, all fast-steaming decision variables are set to zeros. The ‘Solution’ 

column in Table 3.1 refers to the decision variables with value 1. It can be inferred 
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from these results that only scenario 2 does not belong to the non-dominated set of 

solutions. The other 7 scenarios fall into this set and in fact some of them are 

duplicates, bringing only 4 distinct non-dominated solutions in the set. The difference 

in solutions with equal objective functions’ values, e.g., x6,3 in model 3 and x5,3 in 

model 4 is due to the homogeneity of the vessels. Figure 3.4 displays the Pareto-front 

chart for the results obtained in Model I. 

The results in Table 3.1 suggest two important findings: Firstly, when 

the objective to be minimized is the total costs, the objective functions’ values vary. 

On the contrary, when it is the total sailing time, the same results are obtained, 

irrespective of fast-steaming decisions and sets of due dates used. Despite the fact that 

the solutions from this objective belong to the Pareto set, this could indicate that 

sailing time may not be a critical objective. Secondly, within the subset of total costs 

objective, due dates play an important role. Longer due dates imply ‘no rush’ and 

therefore the vessels can safely slow-steam (reflected in all fast-steaming variables 

equal to zero) and burn less fuel, at the expense of sailing time. Stricter due dates 

produce different results, i.e. fast-steaming is required to reach the Pareto front and 

when it is not allowed (scenario 2) the solution fails to reach that front. 

In light of the above findings, a consideration for model extension is in 

order. That sailing time may not be a critical objective prompts a search for other 

better one(s). It is also noted that efficient search methods such as evolutionary 

algorithms are required to further discover the Pareto front. 
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Table 3.1 Optimization results for Model I 

No. 
Objective 

(min.) 

Fast 

spee

d 

Due 

date 
Solution 

Total 

costs 

(US$) 

Total 

time 

(hours) 

1 Cost No Max. x63, x72; y21, y44, y65 72.306 235 

2 Cost No Min. x51, x73; y44, y65, y72 79.374 221 

3 Sailing time No Max. x63; y41, y55, y64, y72 81.487 214 

4 Sailing time No Min. x53; y41, y55, y64, y72 81.487 214 

5 Cost Yes Max. x63, x72; y21, y44, y65 72.306 235 

6 Cost Yes Min. x41 (g41), x63, x72 (g72); y45, y54 77.733 218 

7 Sailing time Yes Max. x53 (g53); y45 (h45), y54 (h54), 
y61 (h61), y72 (h72) 

170.590 164 

8 Sailing time Yes Min. x63 (g63); y41 (h41), y55 (h55), 

y64 (h64), y72 (h72) 

170.590 164 

 

 

 

 

Figure 3.4 Pareto front for Model I 

 

3.3.2 Collaborative Capacity Sharing in Liner Operations
2
 

The problem description of Model II is stated as follows: two liner 

shipping companies (two carriers of different size) are operating a heterogeneous fleet 

                                                
2 Materials of this sub-section are part of a paper that has been accepted for publication at The 

International Journal of Logistics Systems and Management (In Press). 
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of vessels and serving a number of ports from the same depot. Given today’s norm in 

the shipping business where supply is larger than demand, these two carriers would 

like to collaborate by sharing their capacities. This strategy allows one carrier to fill 

its unused capacities with orders from the other carrier going to the same destination, 

and reciprocally send its cargoes to the under-capacity vessels of the other carrier. 

Using this approach, carriers can avoid operating their under-utilized fleet. The 

objective is to minimize total fuel consumption. 

Model II borrows the VRPTW as the basis to develop a new model 

with two extensions. Firstly, concerns for a greener environment have prompted 

maritime actors to seek better ways of operations, for example by slow steaming to 

reduce gas emissions. In this model, this factor is taken into account by formulating it 

as decision variables. Secondly, an investigation is carried out with regard to the 

distribution sharing of operational burdens measured in fuel consumption. More 

specifically, three different sharing policies will be evaluated: 

1. open policy, where there is no restriction to the sharing requirement 

2. proportionate-sharing policy, where the sharing is set in proportion to 

the size of the carriers 

3. equal-sharing policy, where the sharing is set equal, or fifty-fifty, 

regardless of the carriers’ size. 

 

The following sets, parameters and variables are defined below. 

 

𝒞 Set of carriers, indexed by 𝑎 

𝒱𝑎 Set of vessels of carrier 𝑎, indexed by 𝑣 
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𝒜 Set of arcs (𝑖, 𝑗) denoting a flow from port 𝑖 to port 𝑗 

𝒩 Set of all ports 𝒩 = {1, 2, … , 𝑛}; {1} is the home-base port 

𝒫 Set of ports-of-call, or 𝒩 ∖ {1} 

𝑐𝑖,𝑗
𝑎,𝑣

 Fuel consumption of vessel 𝑣 of carrier 𝑎 if it sails from port 𝑖 to port 𝑗 

𝑐𝑖,𝑗
𝑎,𝑣,−

 Fuel consumption of vessel 𝑣 of carrier 𝑎 if it sails from port 𝑖 to port 𝑗 with 

slow steaming 

𝑡𝑖,𝑗
𝑎,𝑣

 Sailing time of vessel 𝑣 of carrier 𝑎 if it sails from port 𝑖 to port 𝑗 

𝑡𝑖,𝑗
𝑎,𝑣,−

 Sailing time of vessel 𝑣 of carrier 𝑎 if it sails from port 𝑖 to port 𝑗 with slow 

steaming 

𝐶𝑎,𝑣 Capacity of vessel 𝑣 of carrier 𝑎 

𝐷𝑖 Total demand of both carriers at port 𝑖 (in TEUs) 

𝑇𝑖 Due date at port 𝑖 (in hours) 

𝑝𝑖 Service time at port 𝑖 

𝑀 Big M 

𝑎, 𝑏 Minimum and maximum deviations of fuel-consumption sharing between 

the two carriers 

𝑥𝑖,𝑗
𝑎,𝑣

 Binary variables for vessel 𝑣 of carrier 𝑎 in arc (𝑖, 𝑗); 𝑥𝑖,𝑗
𝑎,𝑣 = 1 if the vessel 

traverses arc (𝑖, 𝑗) and equals 0 otherwise 

𝑓𝑖,𝑗
𝑎,𝑣

 Binary slow-steaming variables for vessel 𝑣 of carrier 𝑎 in arc (𝑖, 𝑗); 

𝑓𝑖,𝑗
𝑎,𝑣 = 1 if the vessel traverses arc (𝑖, 𝑗) with reduced speed and equals 0 if it 

uses normal speed 

𝑠𝑖
𝑎,𝑣

 Time window for vessel 𝑣 of carrier 𝑎 at port 𝑖 
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The extended VRPTW model can then be formulated as follows: 

 

Minimize ∑ ∑ ∑ 𝑥𝑖,𝑗
𝑎,𝑣 . [𝑓𝑖,𝑗

𝑎,𝑣 . 𝑐𝑖,𝑗
𝑎,𝑣,− + (1 − 𝑓𝑖,𝑗

𝑎,𝑣). 𝑐𝑖,𝑗
𝑎,𝑣]

𝑖,𝑗∈𝒜𝑣∈𝒱𝑎𝑎∈𝒞

 (3.19) 

  

Subject to:  

∑ ∑ ∑ 𝑥𝑖,𝑗
𝑎,𝑣 .

𝑖,𝑗∈𝒜𝑣∈𝒱𝑎

𝐶𝑎,𝑣

𝑎∈𝒞

≥ 𝐷𝑖 ∀ 𝑖 ∈ 𝒫 (3.20) 

∑ 𝐷𝑖

𝑖∈𝒫

∑ 𝑥𝑖,𝑗
𝑎,𝑣

𝑗∈𝒩

≤ 𝐶𝑎,𝑣 ∀ 𝑎 ∈ 𝒞;  𝑣 ∈ 𝒱𝑎 (3.21) 

∑ 𝑥𝑖,𝑘
𝑎,𝑣

𝑖∈𝒩

− ∑ 𝑥𝑘,𝑗
𝑎,𝑣

𝑗∈𝒩

= 0 ∀ 𝑘 ∈ 𝒫;  𝑎 ∈ 𝒞;  𝑣 ∈ 𝒱𝑎 (3.22) 

𝑥𝑖,𝑖
𝑎,𝑣 = 0 ∀ 𝑖 ∈ 𝒩;  𝑎 ∈ 𝒞;  𝑣 ∈ 𝒱𝑎 (3.23) 

∑ 𝑥1,𝑗
𝑎,𝑣 ≤ 1

𝑗∈𝒫

 ∀ 𝑎 ∈ 𝒞;  𝑣 ∈ 𝒱𝑎 (3.24) 

𝑓𝑖,𝑗
𝑎,𝑣 ≤ 𝑥𝑖,𝑗

𝑎,𝑣
 ∀ 𝑖, 𝑗 ∈ 𝒜;  𝑎 ∈ 𝒞;  𝑣 ∈ 𝒱𝑎 (3.25) 

𝑠𝑖
𝑎,𝑣 ≤ 𝑇𝑖 ∀ 𝑖 ∈ 𝒫;  𝑎 ∈ 𝒞;  𝑣 ∈ 𝒱𝑎 (3.26) 

𝑠𝑖
𝑎,𝑣 + [𝑓𝑖,𝑗

𝑎,𝑣 . 𝑡𝑖,𝑗
𝑎,𝑣,− + (1 − 𝑓𝑖,𝑗

𝑎,𝑣). 𝑡𝑖,𝑗
𝑎,𝑣] + 𝑝𝑖 − 𝑀(1

− 𝑥𝑖,𝑗
𝑎,𝑣) ≤ 𝑠𝑗

𝑎,𝑣
 

∀ 𝑖 ∈ 𝒩; 𝑗 ∈ 𝒫;  𝑎 ∈ 𝒞;  𝑣 ∈ 𝒱𝑎 (3.27) 

𝑎 ≤ ∑ ∑ 𝑥𝑖,𝑗
1,𝑣 . (𝑓𝑖,𝑗

1,𝑣 . 𝑐𝑖,𝑗
1,𝑣,− + (1 − 𝑓𝑖,𝑗

1,𝑣). 𝑐𝑖,𝑗
1,𝑣)

𝑖,𝑗∈𝒜𝑣∈𝒱1

− ∑ ∑ 𝑥𝑖,𝑗
2,𝑣 . (𝑓𝑖,𝑗

2,𝑣 . 𝑐𝑖,𝑗
2,𝑣,−

𝑖,𝑗∈𝒜𝑣∈𝒱2

+ (1 − 𝑓𝑖,𝑗
2,𝑣). 𝑐𝑖,𝑗

2,𝑣) ≤ 𝑏 

 (3.28) 

𝑥𝑖,𝑗
𝑎,𝑣 , 𝑓𝑖,𝑗

𝑎,𝑣 ∈ {0, 1}  ∀ 𝑖, 𝑗 ∈ 𝒜;  𝑎 ∈ 𝒞;  𝑣 ∈ 𝒱𝑎 (3.29) 
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𝑠𝑖
𝑎,𝑣 ≥ 0 ∀ 𝑖 ∈ 𝒩;  𝑎 ∈ 𝒞;  𝑣 ∈ 𝒱𝑎 (3.30) 

 

The objective function (3.19) is to minimize total fuel consumption. 

Note that binary decision variables 𝑓𝑖,𝑗
𝑎,𝑣

 are added for whether reduced or normal 

speed will be used by a particular vessel in a particular arc. An extra summation sign 

is also present to signify the involvement of more than one carrier. The per-nautical-

mile fuel-consumption formula follows the quadratic function from Fagerholt et al 

(2010b) as shown in constraints (3.12) with single variable sailing speed 𝑠 (in knots). 

This function is valid for speeds between 14 and 20 knots which will be the case in 

our study. We consider that fuel consumption is sufficient to reflect the operational 

burdens of the carriers, thus we avoid converting this figure to monetary values, 

particularly given the unstable oil prices in the current market and also to reduce too 

many approximations from other cost-relevant factors. 

Constraints (3.20) to (3.24) are the foundation of a VRP formulation, 

and constraints (3.26) and (3.27) are the addition for a VRPTW. Constraints (3.20) 

ensure that the demand in each port will be satisfied and constraints (3.21) dictate that 

such fulfilment by a vessel in several ports will not exceed the vessel’s capacity. 

Constraints (3.22) are the flow equation to balance the incoming and outgoing trips to 

and from each port. Constraints (3.23) state that a vessel cannot travel inside the same 

node. Constraints (3.24) prevent a vessel to assume more than one tour. Constraints 

(3.25) dictate that decision for speed reduction can only be imposed if a vessel sails an 

arc. The products of binary variables resulting from the introduction of slow-steaming 

decisions are transformed to maintain the linearity of the model by using the same sets 

of constraints similar to constraints (3.13) to (3.18). These constraints imply that 
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constraints (3.25) can be omitted from the formulation since if 𝑥𝑖,𝑗
𝑎,𝑣 = 0, whatever the 

value of 𝑓𝑖,𝑗
𝑎,𝑣

 will have no effect on the objective function. However, supplying 

bounds in mathematical programming is helpful to reduce the computation time. 

Time windows are observed by constraints (3.26) and (3.27). A single-

sided time window 𝑇𝑖 reflecting a due date that a vessel must arrive in a port is used 

as an upper bound of 𝑠𝑖
𝑎,𝑣

. Given port service time 𝑝𝑖 and the big 𝑀 in constraints 

(3.27), the inequality constraints specify that if a vessel sails from port 𝑖 to port 𝑗, the 

vessel cannot arrive at port 𝑗 before 𝑠𝑖
𝑎,𝑣 + travel time from port 𝑖 to port 𝑗 +

service time at port 𝑖, either with reduced or normal speed. Constraints (3.27) also 

eliminate sub-tours (see 2.4.1). The model is a mixed-integer program due to the 

presence of 𝑠𝑖
𝑎,𝑣

. 

An important part of the formulation is constraints (3.28) where the 

deviation of total fuel consumption between two carriers is measured. Parameters 𝑎 

and 𝑏 serve as the bounds for the fuel-consumption sharing policies to be investigated. 

The case involves two carriers of different sizes and the collaboration bears a question 

as to how the division of operational burdens should be assigned to each carrier. 

The case study uses data from the Indonesian archipelago. The data are 

divided into cities and distances, vessels’ particulars, demand, and the due dates. For 

the purpose of benchmark and further studies, all data can be found in this URL: 

http://ti.ubaya.ac.id/index.php/component/content/article/24-dosen/159-wibisono-

jittamai-2014.html 
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a. Cities and distances 

Over 17,500 islands span in the geographical layout of Indonesia 

between latitudes 6°N and 11°S and longitudes 95°E and 141°W, and cities in all 

corners of the country are almost equally important in the subjects of trade and 

economy. The two largest cities, the capital Jakarta situated on West Java and 

Surabaya on East Java, are both on the southern/south-western part of the archipelago. 

These two cities are heavily linked to the other regions of the country for various, 

especially business-related, affairs. In this study, the city of Surabaya is chosen as the 

depot, and two cases are developed: the small case with six vessels (4:2 for the ratio 

of fleet size between the two carriers) and eight ports; and the large case with nine 

vessels (6:3 for the same ratio) and thirteen ports. The small case is basically 

orientated towards servicing the eastern part of the country. The geography and 

included ports in the study are illustrated in Figure 3.5. Distances between ports are 

measured using distancecalculator.globefeed.com, however, since these are Euclidean 

measures, some adjustments are made with 103% to 180% of the obtained measures 

maintaining triangular relationships (𝑐𝑖,𝑗 + 𝑐𝑗,𝑘 ≥ 𝑐𝑖,𝑘). For example between 

Pontianak (West Kalimantan) and Samarinda (East Kalimantan), a ship must travel 

via the Java Sea which clearly takes a longer distance than if the transport is made 

over land. Taking into account all possible links, the distances measured fall in the 

range of 63 to 2,396 nautical miles. The travel times are assumed deterministic based 

on these distances. 
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Figure 3.5 Map of Indonesia with cities being studied in Model II 

 

b. Vessels’ particulars 

Two particulars of the vessels are involved in the data setup. These are: 

(1) capacities of the vessels, which are generated using a uniform distribution 

𝑈[500; 1500] TEUs (twenty-foot equivalent); (2) their speeds: a vessel with capacity 

≤ 1000 TEUs uses 15 knots and 19 knots for the slow speed and normal speed, 

respectively, whereas the upper half of the range uses 16 knots and 20 knots for the 

corresponding speeds. The random generation for capacities is a one-time process and 

the results are used in all instances of the experiment. Of the six vessels in the small 

case, two are the slow/low-capacity vessels and four are the fast/high-capacity vessels 

with the range of capacities between 708 to 1390 TEUs. In the large case, there are five 

slow/low-capacity vessels and four fast/high-capacity vessels with the range of 

capacities in 530-1390 TEUs. 

The vessels in this case study are assumed homogenous in terms of age 

and other cost-related factors. This assumption is needed given the variety of cost 
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elements in shipping operations and incorporating all of them could obscure the focus 

of the study which is to investigate the impacts of sharing policies on fuel 

consumption. However, one major cost element that cannot be neglected is the fixed 

cost of running a vessel. In the experiment, it is possible to obtain a result of lower 

consumption in one policy but by using an extra vessel, and certainly this is not 

comparable to a result of higher consumption with less number of vessels in the other 

policy. To deal with this issue, for each instance, we run the experiment twice if the 

results show there is a policy using a fewer number of vessels. On the second run, 

constraints (3.31) are imposed on all policies with 𝑛 being the minimum number of 

vessels found in the first run. 

 

∑ 𝑥𝑗,1
𝑎,𝑣 ≤ 𝑛

𝑗∈𝒫

 ∀ 𝑎 ∈ 𝒞;  𝑣 ∈ 𝒱𝑎 (3.31) 

 

c. Demand 

Each carrier has customers of its own and these customers generate the 

demand. Similar to the capacities, the demands are also in TEUs and generated 

randomly. However, in order to get as close as possible to the reality and avoid blind 

randomization, we based the generation from the OECD report (OECD, 2012), which 

provides data for container volumes through Indonesian ports in 2012, both for 

international and domestic traffic. Several cities are selected from the list of the major 

ports (the same with those in Figure 3.5 except for Kendari, which is added 

arbitrarily) and the domestic data are used. Ten percent of the weekly demand is then 

assumed as the market share of each carrier and ±50% is given for the range of the 

uniform distribution used in the demand generation. Demands are then generated for 
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twelve instances both for the small and large cases. Table 3.2 summarizes the process. 

The idea of capacity sharing collaboration is to make one carrier responsible for the 

demand of its partner carrier and of its own in some ports, and let the partner carrier 

take care of its demand in the other ports. Therefore during optimization, only the 

total demand is relevant. 

 

Table 3.2 Demand generation process for Model II 

No. Port Abbrev. Domestic traffic 2012 
(000 TEUs)

 1
 

Weekly 10% 
(TEUs) 

Uniform dist. 

1 Jakarta Jk1, Jk2 833 1602 U[801; 2403] 

2 Medan Mdn 278 535 U[267; 802] 

3 Makassar Mks 248 477 U[238; 715] 
4 Banjarmasin Bjm 118 227 U[113; 340] 

5 Pontianak Ptk  99 190 U[95; 286] 

6 Samarinda Smr 95 183 U[91; 274] 
7 Bitung Bit 63 121 U[61; 182] 

8 Balikpapan Bpn 35 67 U[34; 101] 

9 Batam Btm 26 50 U[25; 75] 

10 Tarakan Tar 17 33 U[16; 49] 
11 Ambon Amb 15 29 U[14; 43] 

12 Kendari Kdi 10 19 U[10; 29] 
1
 Based on OECD (2012) 

 

The demand of Jakarta is very large and for simplicity we split the 

demand in this city into two equal sizes and created a duplicate city (both are 

identified as Jk1 and Jk2 with zero distance) that shares half of the demand. Since 

only one city has this problem, this approach is preferred to split-delivery formulation 

in order to reduce model complexity. Note that the total number of ports in the large 

case is therefore thirteen instead of twelve. Also, since the upper limit of demand in 

Jakarta still exceeds the upper limit of vessel capacity, some generated instances 

violating this have to be omitted. 
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d. Due dates 

Since there is no sufficient information for the background of due dates 

establishment, the due dates are assigned by considering normal sailing time that can 

be achieved from the depot in Surabaya plus some slack that could allow a vessel to 

serve several more ports. Leaving the due dates completely open is not a practical 

approach, as that might produce a long tour for a vessel that is limited only by its 

capacity to serve as many ports as possible. The due dates for the small case are 

stricter than those for the large case, but none of the due date exceeds one week since 

the demand is on a weekly basis. In addition, port service times are set equally for 

twelve hours for all ports including the initial service at the home port in Surabaya. 

Rooms for further studies are open for the consideration of probabilistic port service 

times. 

In summary, two cases are developed. The small case consists of six 

vessels and eight ports, and the large case consists of nine vessels and thirteen ports. 

In each case, three models in relation to fuel-consumption sharing policies are 

evaluated: open policy, proportionate policy, and equal policy. Twelve instances are 

generated, plugged into the model, and run for optimization. 

The parameters 𝑎 and 𝑏 in constraints (3.28) are determined as 

follows: first, a few instances were run without these constraints to probe the range of 

minimized total fuel consumption. The small case has this figure less than 2000 and 

the large case has it less than 2800, thus we set the upper bound 𝑏 close to those 

figures so we have 𝑎 = 0 and  𝑏 = 2000, and 𝑎 = 0 and 𝑏 = 3000, respectively, for 

the small case and the large case in the open policy. For the proportionate-sharing 

policy, noting that carrier A offers two times of fleet size (4:2 in the small case and 
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6:3 in the large case) than carrier B, the fair proportion of fuel consumption 

consequently should be in 2:1 ratio. We therefore set 𝑎 = 600 and 𝑏 = 700, and 

𝑎 = 800 and 𝑏 = 900, respectively, for the small case and the large case in this 

policy. Finally, in the equal-sharing policy, both carriers are expected to equally share 

the fuel consumption hence the upper bound 𝑏 of the equation should be set as 

minimum as possible and it is set at 100 for both cases in this policy. Table 3.3 

summarizes these values for all scenarios. All instances for both cases and the three 

policies were run for optimization using Lingo 11.0 on an Intel i5-2430M processor at 

2.4 GHz and 4 MB of RAM. The running times for the small case reached 15 seconds 

maximum, whereas for the large case they spread from seconds to five hours. 

 

Table 3.3 Values of a and b for all scenarios 

 Small-case Policies Large-case Policies 

 Open Proportionate Equal Open Proportionate Equal 

𝑎 0 600 0 0 800 0 

𝑏 2000 700 100 3000 900 100 

 

 

   

 

Figure 3.6 Scatter plots of total demand vs. total fuel consumption for the large case 
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Figure 3.7 Distribution of fuel consumption between two carriers 

 

Table 3.4 Experiment results of the large case for Model II 

 

 

Results of the small case do not reveal much information and it is very 

likely due to the excess capacity (6536) than the average demand of the twelve 

instances (2299). The total fuel consumptions in all instances do not vary except in 

the last instance of open and proportionate policies. An interesting finding, however, 

can be seen from the distribution of fuel consumption between the two carriers. For 

the proportionate-sharing and equal-sharing policies, the distribution does not spread, 

naturally because the policies dictate so. However, the behavior of such distribution is 
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Large Case: Equal (0-100)

Carrier A Carrier B

Carrier A Carrier B Total Carrier A Carrier B Total Gap Carrier A Carrier B Total Gap

1 8 6347 2131 578 2710 1780 980 2760 1.86% 1563 1469 3032 11.91%

2 8 6314 2236 354 2590 1718 889 2607 0.65% 1310 1307 2617 1.05%

3 9 6880 1617 1085 2702 1799 903 2702 0.00% 1397 1305 2702 0.00%

4 7 5476 1555 806 2361 1599 799 2399 1.59% 1203 1202 2405 1.86%

5 8 6036 1187 1307 2494 1701 810 2511 0.67% 1295 1216 2511 0.67%

6 8 6443 1469 980 2449 1676 838 2514 2.65% 1264 1202 2466 0.68%

7 8 6020 1272 1313 2586 1776 877 2653 2.60% 1316 1313 2629 1.69%

8 9 6627 1939 764 2702 1826 926 2753 1.86% 1425 1328 2753 1.86%

9 9 6667 2124 578 2702 1799 903 2702 0.00% 1397 1305 2702 0.00%

10 8 6223 1667 799 2466 1667 799 2466 0.00% 1306 1243 2549 3.36%

11 9 6251 1704 878 2583 1722 861 2583 0.00% 1303 1280 2583 0.00%

12 8 6445 1812 654 2466 1692 838 2531 2.63% 1306 1243 2549 3.36%

6311 2568 2598 1.21% 2625 2.20%

132,239 14,389 13,768 26,760

Equal-sharing Policy

Variance

Demand 

(TEU)
Instance

# of 

vessels

Mean

Open Policy Proportionate-sharing Policy
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rather erratic in the open policy where on one instance the ratio is 1836:118 and on 

the other 1317:637 (Figure 3.7). This finding is reconfirmed in the results of the large 

case. 

The large case comes with total fleet capacity of 8571 and is relatively 

tighter to the average demand of 6311, compared to the same ratio in the small case. 

The first analysis concerns the effect of the randomized demand to the optimized fuel 

consumption. Figure 3.6 presents the scatter plots and the correlation coefficients 

between the total demand and the resulting optimized total fuel consumption of the 

three policies. The correlation coefficients of the open policy and the proportionate-

sharing policy are statistically significant at 0.52% and 0.78%, respectively. 

Compared to these two policies, the equal-sharing policy has a weaker coefficient and 

it is significant at 5.45%. In general, we can assert that the fuel consumption is largely 

affected by the demand size except in the equal-sharing policy. However, these 

relationships do not tell the story of the consumption sharing that has to be analyzed 

separately. 

As previously confirmed in the small case, an unclear pattern is 

observed from the distribution of fuel consumption between carrier A and carrier B in 

the open policy. On one hand, it is logical since the minimization of total fuel 

consumption is not restricted by any rule. On the other hand, an important conclusion 

is obtained that, whenever a sharing policy is imposed, be that proportionate or equal, 

total fuel consumption shifts from its minimum value. We measure the optimality gap 

between the open policy and the two sharing policies and the results are presented in 

Table 3.4 together with the resulting fuel consumption. The gaps are relatively low 

except for instance #1 on equal-sharing policy that spikes to nearly 12%. This 
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suggests that these gaps are instance-dependent and careful investigation is mandatory 

prior to utilizing the policy. 

Between the two sharing policies, observing that no policy dominates 

the other, we conducted a statistical test to check the significance level of differences 

between the policies. Since the data sets (instances) serve as the locking factor, two-

tailed paired-t test is used in this case. The calculated two-tailed significance level of 

0.2925 indicates that the difference in fuel consumption between these two policies is 

not significant. Since the underlying factor behind these policies is the ratio of fleet 

size, it implies that this ratio is not a significant factor affecting the total fuel 

consumption. Another finding is related to the variances in fuel consumption and it 

can be inferred from Table 3.3 that the proportionate-sharing policy has the lowest 

variance than the other two policies. 

The slow-steaming decision variables 𝑓𝑖,𝑗
𝑎,𝑣

 exhibit certain behaviour 

that should be addressed. In the open policy, these variables help reduce the fuel 

consumption by finding combination of segments in a route that can be travelled 

using the slow speed. However, in the other policies, there are cases where these 

variables function to satisfy the bounds 𝑎 and 𝑏 in constraints (3.28) even if the 

application makes no sense. For example, a route can safely be serviced with slow 

steaming, but for the sake of satisfying the bounds, the resulting decision variables are 

to use the normal speed instead. The implication of this finding is that these variables 

have proper use only in the open policy. 
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Table 3.5 Example of one routing result for Model II 

Case: Small 

Policy: Proportionate 
Instance: #1 

Results: 

Carrier A consumption = 1317.27 

Carrier B consumption =   636.81 
Total consumption = 1954.08 

Carrier Vessel Routing
1
 

A 

A1 - 

A2 Sby – Mks – Kdi * Sby 

A3 Sby – Bpn * Sby 

A4 Sby – Amb * Bit * Sby 

B 
B1 Sby – Smr – Tar * Sby 

B2 Sby * Bjm * Sby 
1
 * indicates slow steaming 

 

Overall, we can conclude that in a collaboration effort such as 

observed in this study, minimization of operational burdens is a conflicting objective 

with the policies on how these burdens are to be shared. The minimized fuel 

consumptions in the open policy are demand-dependent and therefore cannot be 

predicted, thus the policy is difficult to be used as a basis for planning. For practical 

purpose, the sharing policies should be preferred. The choice of sharing policy 

(proportionate or equal) does not significantly affect fuel consumption, but since the 

proportionate-sharing policy has smaller variance, it is considered more predictable 

and therefore a better choice as a basis for the carriers to setup their liner route. An 

example of routing from one instance in the small case with the proportionate-sharing 

policy is provided in Table 3.5. Note that one vessel of carrier A is not assigned a trip 

thereby maximizing the utilization of the remaining five vessels. 
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3.4 Chapter Summary 

In this chapter, the research methodology is presented consisting of research 

framework and research stages. The framework encapsulates various aspects of the 

research that can be divided in three big blocks: (1) general scope; (2) detailed scope; 

and (3) methods. Maritime logistics is defined in the general scope and liner shipping 

collaboration, with case studies in Indonesian archipelago, is selected for the detailed 

scope. The vehicle routing problem, multi-objective optimization, and evolutionary 

algorithm, are the components in the methods block. The research stages detail the 

step-by-step planned approach to undertake the research from the scope definition to 

conclusions and documentation. 

Two preliminary models are then built, experimented, and analyzed with the 

objective to introduce the idea of multi-objective maritime logistics/liner shipping 

collaboration. In Model I, a case study is demonstrated showing collaboration 

between two carriers under a slot-exchange scheme. The model is a multi-objective 

assignment problem involving 5 ports and 10 vessels. Two objective functions, costs 

and sailing time, are minimized under various scenarios related to fast-steaming 

decisions and different sets of due dates. By optimizing each objective function 

separately, a number of non-dominated solutions are obtained. The optimization 

results suggest that sailing time is not a critical objective, hence the search for a better 

secondary objective in this problem continues. It is also noted that an efficient search 

method such as evolutionary algorithm is required to further discover the Pareto front. 
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In the second model, the case is enlarged with added vessels and ports. Two 

cases differing in size are introduced: the small case with 6 vessels and 8 ports, and 

the large case with 9 vessels and 13 ports. Routing possibilities are considered using 

VRPTW formulation and the model is extended by incorporating slow-steaming 

variables and fuel-consumption sharing policies. More specifically, three sharing 

policies are evaluated: open policy, proportionate-sharing policy, and equal-sharing 

policy. The objective of Model II is to investigate the impacts of capacity sharing that 

is reflected in fuel consumption between two collaborating liner shipping companies. 

To reduce model complexity, a single-objective optimization approach is used and 

what is targeted as a second objective is shifted as a set of constraints. Twelve 

instances are generated based on the Indonesian archipelago. 

Both the small and large cases exhibit a similar pattern of high unpredictability 

of fuel-consumption sharing between both carriers when it is minimized without any 

restriction, i.e. by employing the open policy. This indicates that the best solution 

does not provide a clear suggestion as to how the operational burdens, reflected in 

fuel consumption, should be shared. In other words, the optimal results in the open 

policy are impractical to be used as a basis for route planning in liner shipping since 

they fluctuate depending on the generated demand. The two sharing policies, the 

proportionate-sharing and the equal-sharing policies, on the other hand, provide better 

guidance in operations due to their less erratic pattern of fuel-consumption 

distribution, although they result in relatively higher (does not minimize) total fuel 

consumption. Furthermore, the proportionate-sharing policy has a smaller variance 

than the equal-sharing policy although not statistically significant. If a decision must 

be made, the proportionate-sharing policy is the most recommended. 
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Improvement in this study can be made by formulating the problem into a 

multi-objective model. For example, in addition to minimize fuel consumption, a 

secondary objective can be added to represent either of the sharing policies (e.g. 

equal-sharing policy can be formulated as a minimization of deviation in total fuel 

consumption). This versatile approach can possibly lead to more information on the 

impacts of collaboration. A more detailed cost structures could also help in providing 

better picture of bottom-line results. 

 

 

 

 

 

 

 

 

 



 

 

 

 

CHAPTER IV 

GENETIC ALGORITHM FOR HETEROGENEOUS 

VEHICLE ROUTING PROBLEM WITH TIME 

WINDOWS IN SHORT-SEA SHIPPING
3
 

 

4.1 Introduction 

Due to the complexity of VRP and in order to reduce it, most VRP studies are 

addressed to tackle a specific variant, but to warrant the robustness of the proposed 

method and to benchmark the strength of a method over another, comparisons are 

made on the effectiveness of a method in dealing with a large number of cities. 

Another approach to reduce complexity is by assuming homogeneous fleet of 

vehicles, in terms of capacity and/or cost structure. For land-logistics applications, 

such an assumption is still valid, for example, fleet in the trucking companies. 

In maritime logistics, however, the assumptions of homogeneous vehicles and 

hundreds of cities are hardly realistic. Shipping companies are more likely to own 

heterogeneous vessels servicing dozens port-of-call. This is especially true in 

domestic shipping, where the problem is characterized by a small number of ports 

connected in short distances (short seas) and companies operating ships with low, but 

different, speeds and capacities. Given such background, this chapter will investigate 

the application of heterogeneous vehicle routing problems with time windows 

                                                
3 Materials in this chapter are part of a paper submitted for publication at The International Journal of 

Logistics Research and Applications. 
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(HVRPTW) in short-sea shipping with an emphasis on routing design, using the 

Indonesian archipelago for the case-study data. The chosen type of shipping services 

in this paper is liner shipping that deals with container ships operating with due-date 

restrictions. Genetic algorithm (GA) will be used as the tool in this study and we will 

analyze its properties based on several parameters and compare the method to the 

classical mixed-integer programming optimization. The choice of a metaheuristic 

approach, in particular GA, is due to its flexibility and potentials to be developed 

further for more complex problems. The methods discussed here have been proposed 

by other authors but only in the scope of test instances and, to the best of our 

knowledge, have never been shown for their actual application in real-world 

problems. It will be shown later in the experiment results that when applied to a case 

with some of the data obtained from a real problem, minor but critical tweaking on the 

methods is needed for improvement. More specifically, the objectives of this chapter 

are: 

1. to demonstrate the real-life application of genetic algorithm for heterogeneous 

vehicle routing problem with time windows in maritime logistics, particularly 

in short-sea shipping in Indonesian archipelago, within the scope of liner 

routing design 

2. to improve the GA by proposing simple heuristics to help accelerate its 

convergence and improving the local search procedure to increase its chance 

to reach optimality 

3. to investigate how the GA parameters affect its properties in terms of the 

ability to reach optimality and the running time. 
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4.2 Problem Description 

The problem can be described as follows. A liner shipping company operates 

in domestic shipping using nine heterogeneous feeder vessels with capacities ranging 

between 400 and 800 TEUs (twenty-foot equivalent unit) and speeds of 13-17 knots. 

The company operates from one home-base port and serves a number of ports-of-call 

similar to the case presented in 3.3.2 with the geographical spread of the ports-of-call 

shown in Figure 3.5. The case study will also be divided into two groups: small and 

large. This division has a purpose to test the model sensitivity on different scales. 

As in 3.3.2, one port of call, Jakarta, has a large demand that cannot be served 

in one shipment of containers by any of the available vessel, thus the demand of this 

port is divided into two batches and a dummy city at the same coordinate is created to 

assume roughly half of the demand. Because there is only one port with this 

characteristic, this simple approach is opted rather than using split-delivery 

formulation. To recap, the small case consists of six vessels and eight ports-of-call, 

whereas the large case involves nine vessels and thirteen ports-of-call. The data of 

distances can be accessed in the following URL: 

http://ti.ubaya.ac.id/index.php/component/content/article/24-dosen/177-wibisono-

jittamai-2015.html  

The vessels used in the small case are of four different types, and another type 

is added to the large case. The costs data are extrapolated from those of larger ships in 

Stopford (2004), without inflation adjustment. The bunker costs are estimated from 

the speed of 19 knots. A cubical constant is derived from the speed-cost relationship 

based on this speed, and then it is used to estimate the other bunker costs of different 

speeds. Details of vessels’ particulars are shown in Table 4.1. 
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Table 4.1 Data of vessels for Model III 

Type Capacity 

(TEUs) 

Speed 

(knots) 

Weekly 

fixed cost 

(USD) 

Bunker 

cost per 

nm (USD) 

Small case Large case 

Units 

available 

Total 

capacity 

Units 

available 

Total 

capacity 

A 400 13 81,638.20 3.53 - - 1 400 

B 500 14 84,756.00 4.48 3 1,500 3 1,500 
C 600 16 87,873.80 6.82 1 600 2 1,200 

D 800 14 94,109.40 4.73 1 800 1 800 

E 800 17 94,109.40 8.47 1 800 2 1,600 

Total 6 3,700 9 5,500 

 

Table 4.2 Data of ports for Model III 

No. City Abbrev. Due date 

(hours) 

Small case Large case 

Demand 

(TEUs) 

Port time 

(hours) 

Demand 

(TEUs) 

Port time 

(hours) 

1 Samarinda Smr 66 335 16.38 90 10.25 

2 Balikpapan Bpn 66 111 10.78 32 8.80 

3 Banjarmasin Bjm 54 260 14.50 102 10.55 

4 Kendari Kdi 90 26 8.65 9 8.23 

5 Makassar Mks 66 753 26.83 149 11.73 
6 Ambon Amb 108 38 8.95 14 8.35 

7 Tarakan Tar 108 53 9.33 10 8.25 

8 Bitung Bit 126 167 12.18 39 8.98 

9 Medan Mdn 126 - - 254 14.35 

10 Pontianak Ptk 90 - - 90 10.25 

11 Jakarta1 Jk1 78 - - 456 19.40 

12 Jakarta2 Jk2 78 - - 707 25.68 

13 Batam Btm 102 - - 28 8.70 

Total 1,743  1,980  

 

The maximum due dates (that served as upper time windows) in each port are 

seven days, hence the service can be associated as weekly. This will allow a vessel to 

visit more than just one port in one trip. The port demands are estimated from OECD 

report (OECD 2012). For the large case, 15% of weekly total domestic demand is 

assumed, and 4.5% is assumed for the small case. These numbers are then used as the 

mean of a uniform distribution to generate one time the port demands as shown in 

Table 4.2. These demands also affect berthing times. A constant of eight hours plus a 
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fixed 40-container-per-hour unloading times in all ports are assumed for these figures 

(except in home base port Surabaya where only eight hours service time is assumed). 

 

4.3 Methodology 

In this section, the linear-programming formulation of HVRPTW is explained, 

followed by discussion on various aspects of the GA that are used and will further be 

developed. The section concludes with details on model development. 

 

4.3.1 Formulation of HVRPTW 

The formulation of HVRPTW is similar to that of VRPTW as 

described in 2.4.1. However, given heterogeneous vessels, costs data must be stated 

explicitly in terms of fixed cost 𝑓𝑣  and variable cost 𝑐𝑖,𝑗
𝑣 . The following are definitions 

of sets, parameters and variables, and the model formulation. 

 

𝒱 Set of vessels, indexed by 𝑣 

𝒜 Set of arcs (𝑖, 𝑗) denoting a flow from port 𝑖 to port 𝑗 

𝒩 Set of all ports 𝒩={0, 1, …, 𝑁}; {0} is depot port 

𝒞 Set of ports-of-call, or 𝒩∖{0} 

𝑓𝑣  Weekly fixed cost of vessel 𝑣 

𝑐𝑖,𝑗
𝑣  Bunker cost of vessel 𝑣 if it sails from port 𝑖 to port 𝑗 

𝑡𝑖,𝑗
𝑣  Sailing time of vessel 𝑣 if it sails from port 𝑖 to port 𝑗 

𝐶𝑣 Capacity of vessel 𝑣 

𝐷𝑖 Total demand at port 𝑖 (in TEUs) 

𝑇𝑖 Due date at port 𝑖 (in hours) 
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𝑝𝑖  Service time at port 𝑖 

𝑀 Big M 

𝑥𝑖,𝑗
𝑣  Binary variables for vessel 𝑣 in arc (𝑖, 𝑗); 𝑥𝑖,𝑗

𝑣 = 1 if the vessel traverses arc 

(𝑖, 𝑗) and equals 0 otherwise 

𝑠𝑖
𝑣 Time window for vessel 𝑣 at port 𝑖 

 

Minimize ∑ ∑ 𝑥𝑖,𝑗
𝑣 . 𝑐𝑖,𝑗

𝑣

𝑖,𝑗∈𝒜𝑣∈𝒱

+ ∑ ∑ 𝑓𝑣 . 𝑥0,𝑗
𝑣

𝑗∈𝒜𝑣∈𝒱

 (4.1) 

Subject to:  

∑ ∑ 𝑥𝑖,𝑗
𝑣 . 𝐶𝑣

𝑖,𝑗∈𝒜𝑣∈𝒱

≥ 𝐷𝑖 ∀ 𝑖 ∈ 𝒞 (4.2) 

∑ 𝐷𝑖

𝑖∈𝒞

∑ 𝑥𝑖,𝑗
𝑣

𝑗∈𝒩

≤ 𝐶𝑣 ∀ 𝑣 ∈ 𝒱 (4.3) 

∑ 𝑥𝑖,𝑘
𝑣

𝑖∈𝒩

− ∑ 𝑥𝑘,𝑗
𝑣

𝑗∈𝒩

= 0 ∀ 𝑘 ∈ 𝒞;  𝑣 ∈ 𝒱 (4.4) 

𝑥𝑖,𝑖
𝑣 = 0 ∀ 𝑖 ∈ 𝒩;  𝑣 ∈ 𝒱 (4.5) 

∑ 𝑥0,𝑗
𝑣 ≤ 1

𝑗∈𝒞

 ∀ 𝑣 ∈ 𝒱 (4.6) 

𝑠𝑖
𝑣 ≤ 𝑇𝑖 ∀ 𝑖 ∈ 𝒞;  𝑣 ∈ 𝒱 4.(7) 

𝑠𝑖
𝑣 + 𝑡𝑖,𝑗

𝑣 + 𝑝𝑖 − 𝑀(1 − 𝑥𝑖,𝑗
𝑣 ) ≤ 𝑠𝑗

𝑣 ∀ 𝑖 ∈ 𝒩; 𝑗 ∈ 𝒞;  𝑣 ∈ 𝒱 (4.8) 

𝑥𝑖,𝑗
𝑣 ∈ {0, 1}  ∀ 𝑖, 𝑗 ∈ 𝒜;  𝑣 ∈ 𝒱 (4.9) 

𝑠0
𝑣 = 0 ∀ 𝑣 ∈ 𝒱 (4.10) 

𝑠𝑖
𝑣 ≥ 0 ∀ 𝑖 ∈ 𝒩;  𝑣 ∈ 𝒱 (4.11) 
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The objective function (4.1) minimizes total cost. Constraints (4.2) and 

(4.3) guarantee that demands are fulfilled without violating vessel capacity. 

Constraints (4.4) are the flow balancing equations. Constraints (4.5) prevent a vessel 

from looping in the same node. Constraints (4.6) regulate a vessel to assume only one 

tour. Constraints (4.7) and (4.8) are the time windows formulation with 𝑀 being a 

large number such that when 𝑥𝑖,𝑗
𝑣 = 0, the constraints will become redundant. Finally, 

constraints (4.9)-(4.11) are the nature of decision variables involved. Note that since 

𝑠𝑖
𝑣 are continuous in addition to the binary variables 𝑥𝑖,𝑗

𝑣 , the model is a mixed integer 

programming. 

 

4.3.2 Genetic algorithm for HVRPTW 

The concept of genetic algorithms and the idea of using them as 

optimization tool were first introduced by Holland (1975) but considered popularized 

by one of his students, Goldberg (1989). The algorithms mimic Charles Darwin’s 

theory of evolution through natural selection where a population, through its natural 

ability to evolve on the basis of survival-of-the-fittest, will continuously and 

consistently generate members with better attributes as they are more likely able to 

survive than members with worse attributes. Over time, better individuals will 

dominate the population and produce even better offspring, thus advancing the entire 

population to an overall better state. In optimization problems, population members 

(or individuals) represent solutions and are encoded in a unique structure called 

chromosomes. For example, in routing problems, a solution in a form of a trip visiting 

a series of cities can be encoded as a chromosome reflecting the sequence of that trip 

and is regarded as one population member. Population members then compete via a 
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certain scheme for a spot to ‘mate’ with other members and produce another member. 

These processes in GA terms are labelled ‘crossover’ and ‘reproduction’. Another 

important process in GA is called ‘mutation’ that alters the codification of a 

chromosome to maintain diversity of the population. Although usually given small 

chance of occurring, this last process is very important for the algorithm to avoid 

reaching premature convergence at local optima. 

The GA developed in this paper will be based on Prins (2004) (for 

VRP) and Prins (2009) (for HVRP). Basic tenets of these GAs are described in the 

following points. 

 

a. Split procedure 

Split is a tour splitting procedure that partitions a chromosome m into T 

feasible trips. A chromosome m is a permutation of N cities/customers in the problem, 

without trip delimiters, or similar to a giant TSP tour. This giant tour relaxes 

constraints such as vehicle capacity. The purpose of Split is to optimally partition this 

tour into T trips, subject to available constraints, with each trip served by one vehicle, 

and also to calculate the fitness value of a chromosome. Specific constraints referring 

to specific VRP variants can be coded in this procedure as part of feasibility tests, for 

example, load feasibility in basic CVRP, load and time-windows feasibilities in 

VRPTW, and so on. Split works on an acyclic auxiliary graph ℋ = (𝒩, 𝒜) that 

transforms the original distance matrix of cities to a minimum-cost path problem. 

Sub-section 2.4.3 already provides a general overview of this procedure. For more 

detailed discussion, interested readers should refer to Prins (2004, 2009). 
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b. Initial population construction using heuristics 

To enhance the performance of the GA in terms of speed, the initial 

population must be setup by including several good chromosomes (usually two or 

three good chromosomes are sufficient for a population of size 50). The good 

chromosomes will help accelerate convergence of the GA while the rest of the 

population, which are simply randomized, will maintain the diversity. In Prins (2004), 

three heuristics are included in the initial population construction: Clarke-Wright 

savings algorithm, Mole-Jameson sequential insertion heuristic, and Gillett-Miller 

sweep algorithm. This inclusion is possible since these heuristics are tailored for 

CVRP, thus they are matched with the problem discussed in the paper. In Prins 

(2009), however, in the absence of reliable heuristics for HVRP, the good 

chromosomes are obtained by applying local search after they are generated. This is 

one part of the problem that we aim to improve by proposing two simple heuristics for 

HVRPTW. As in the other cases, the heuristics need not necessarily be the best ones. 

It is acceptable to use simple but reliable heuristics since their purpose is mainly to 

jump start the search, while the task to explore the space and locate the best solution 

is left to the GA mechanism. Heuristics that are too good not just burden the 

computation time, but might also run the risk to trap the search in local optima. 

 

c. Population management 

The population is managed in such a way that all members are unique 

and no two identical members (clones) are allowed. Two methods proposed in Prins 

(2009) are used and tested here. The first one is based on a distance measure in 

solution space. For two chromosomes A and B, the distance d(A, B) is the number of 
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pairs of adjacent cities in A that are no longer adjacent in B. For example, if A = (1, 2, 

3, 4, 5) and B = (3, 5, 4, 1, 2), then (2, 3) and (3, 4) are no longer adjacent in B, thus 

d(A, B) = 2. Given 𝐷(𝑃, 𝐶) = min{𝑑(𝐴, 𝐶): 𝐴 ∈ 𝑃} as the minimum distance of a new 

chromosome C to population P, C is accepted if and only if (4.12) holds, where 

distance limit DL is a non-negative threshold. A well-dispersed population as 

regulated above is termed spaced. During the initialization stage, DL is set at 0, and 

during the GA iterations, DL follows (4.12) but the value changes either increasingly 

or decreasingly, proportionate to the number of iterations. However, an exception for 

acceptance is given in the iterations stage if the fitness value of the new chromosome 

is smaller (minimization problem) than the fitness value of the best population 

member (n = number of cities). 

 

𝐷(𝑃, 𝐶) > 𝐷𝐿 𝐷𝐿 ∈ {1. .0.5 × (𝑛 − 1)} (4.12) 

 

The second method of population management is based on a dispersal 

mechanism controlled by a parameter called the dispersal value (DV). Like DL, DV 

also serves as a threshold criterion for accepting new population members. A new 

chromosome C is accepted if and only if it has a fitness-value gap larger than the DV. 

In other words, C is accepted if and only if (4.13) holds (C = newly generated 

chromosome; pt = chromosome number t in the population; S = number of 

population). 

 

|𝐹(𝐶) − 𝐹(𝑝𝑡)| > 𝐷𝑉 𝑡 = 1. . 𝑆 (4.13) 
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In the initialization stage, after good chromosomes are generated by 

the heuristics, each subsequent chromosome is then generated and checked whether 

its fitness value is larger or smaller by DV than the fitness value of the other already 

accepted chromosomes in the population. If (4.13) is not satisfied, the new 

chromosome is rejected and the next generation process takes place. If, before one 

new chromosome is produced, the rejection is too excessive and has been repeated 

more than a certain time, the generation is stopped and the population size is accepted 

at whatever available at that point. Otherwise, the process is repeated until a targeted 

population size is reached. At the end of this stage, the population is sorted in an 

ascending fashion so the best chromosome is p1. This mechanism remains in effect 

during the iterations stage, but is overridden if the fitness value of the new 

chromosome is smaller than that of the best chromosome, i.e. 𝐹(𝐶) < 𝐹(𝑝1). 

In the main stage (GA iterations), two population members (parents) 

are selected by binary tournament then undergo order crossover (OX) to produce two 

children. Figure 4.1 shows an example of this operator with crossover points at the 4
th

 

and 6
th

 nodes. One child is then selected randomly to replace one of the chromosomes 

in the lower-half of population. As in the initialization stage, the child is also required 

to be spaced with respect to the other existing members. 

 

    i = 4  j = 6    
    ↓  ↓    

P1 : 4 8 7 3 6 5 2 10 9 

P2 : 3 5 4 2 7 9 10 8 6 

          
C1 : 2 7 9 3 6 5 10 8 4 

C2 : 3 6 5 2 7 9 4 10 8 

 

Figure 4.1 Example of Order Crossover 
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d. Mutation using local search 

A mutation operator is given a probability pm for occurring after a 

successful reproduction of a new chromosome. The operator works by scanning the 

O(n
2
) neighborhoods of n (cities) and O(k

2
) neighborhoods of k (vehicles) via a 

number of moves as shown in Figure 4.2. Each time a chromosome is improved by 

one move, the iteration restarts from the first move. A number of different local 

search algorithms have been proposed for this GA. In Prins (2009) with 

heterogeneous vehicles, two versions of local search (LS1 and LS2) are employed. LS1 

does not allow change of vehicles but LS2 does otherwise. The moves in the second 

part of LS2 evaluate the swap of vehicles between two trips and each move is carried 

out inside each move in LS1, thus LS1 has O(n
2
) complexity whereas LS2 has O(n

2
k

2
). 

 

LS1: u and v are nodes in different trips; x is the successor of u, y is 

the successor of v 

M1. Relocate u to a different trip, 

M2. Swap u and v, 

M3. Replace (u; x) and (v; y) by (u; y) and (v; x), 

M4. Replace (u; x) and (v; y) by (u; v) and (x; y). 

 

LS2 = LS1 + the following: 

F is the set of free vehicles; T1 and T2 are two different trips 

M1. The two trips exchange their vehicles, 

M2. T1 gives its vehicle to T2 and takes one in F, 

M3. T2 gives its vehicle to T1 and takes one in F, 

M4. Both T1 and T2 exchange their current vehicle with a free one. 

 

 

Figure 4.2 Local search mutation LS1 and LS2 
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4.3.3 Model development 

The GA mechanism described in the preceding sub-section will be 

improved in the following aspects. First, time windows constraints are added in the 

Split and mutation procedures as part of trip feasibility tests. Second, two heuristics 

are developed for generating good chromosomes in the initial population. Third, the 

mutation operator is enhanced with an additional local search. Since adding time 

windows formulation is not too difficult (similar to capacity constraints), the 

following explanation will focus on the heuristics and the additional local search. 

 

a. Heuristics for HVRPTW 

Two simple heuristics are proposed as part of the initial population 

construction. The first heuristic is based on load assignment and the second heuristic 

employs port sequencing in accordance to the topology of the cities layout. The load 

assignment heuristic is inspired by a method in assembly line-balancing problem 

called the largest-candidate rule (Groover, 2007). In this method, work elements are 

grouped in workstations by putting each element one by one to a workstation until the 

maximum designated cycle time is reached. The work elements are sorted in 

descending order, from the longest time to the smallest, and the inclusion to the 

workstations follows this order. The idea of this method is to arrange the ‘chunky’ 

work elements first before working on the easier (smaller) ones. In our problem, the 

work elements are the port demands, workstations are the trips, and the targeted cycle 

time is the capacity and time constraints. The load assignment heuristic is as follows: 

1. Sort vessels and ports based on capacity and demand, respectively, in 

descending order. 
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2. Select the available highest-capacity vessel to serve the remaining port 

with the highest-demand. 

3. Following the order in the port list, continue selecting the other ports to 

be serviced by the same vessel, maintaining capacity and due date 

feasibilities. 

4. If no more port can be scheduled (the remaining ports violate 

feasibilities), return to step 2. Repeat until all ports are serviced. 

The second heuristic is similar to the sweep algorithm by forming a 

rotating ray centered at the depot with the zero degree of the ray starts from the West. 

The resulting sequence is a giant tour, which will then be partitioned using Split. This 

heuristic is very effective in our problem as it takes advantage of the relative position 

of the depot port to the other ports of call. The port sequencings obtained from 

applying this heuristic are: 

 Small case: Bjm-Bpn-Smr-Tar-Mks-Kdi-Bit-Amb 

 Large case: Jk1/2-Mdn-Btm-Ptk-Bjm-Bpn-Smr-Tar-Mks-Kdi-Bit-Amb 

 

b. Additional LS procedure 

When used sparingly, LS2 proves to be sufficiently good in helping the 

algorithm maintain population diversity. The dispersal mechanism guided by DL or 

DV allows aggressive exploration, but excessive use of local search mutation with 

higher probability rate will deteriorate the GA performance due to its higher tendency 

of getting trapped in several local-optima solutions. However, as indicated in the 

experiments, in cases where the GA fails to reach the optimal point, another version 

of local search can be adopted to improve the solution. This version of local search is 
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called LSv and it is run only at the end of the algorithm. This local search is similar to 

the second part of LS2 concerning the swaps of vehicles, but not necessarily involves 

two trips. The argument of invoking LSv only at the end of the algorithm rather than 

treating it as a continuation of the mutation procedure and running it behind LS2 is 

because LS2 is powerful enough for a problem with dozens of cities and having LSv in 

the mutation block will only add unnecessary computation time. Putting LSv in the last 

step guarantees its one-time execution on a solution that is already near optimal (if the 

solution is optimal, LSv has no effect.). Figure 4.3 shows the three moves in LSv. 

 

M1. T1 exchanges its vehicle with one in F, 

M2. T1 and T2 exchange their vehicles, 

M3. T1 gives its vehicle to T2 and takes one in F. 
 

Figure 4.3 Local search mutation LSv 

 

c. The formulated GA 

Incorporating the time windows, load and sequencing heuristics, and 

the added LSv, the GA for HVRPTW is developed as shown in the pseudo-code in 

Figure 4.4 (DL-based version). After reading the case data in line 1, the population is 

initialized in lines 2-14. Lines 2-3 generate the first two population members using the 

proposed heuristics and line 4 generates the third solution using random permutation. 

All three initial solutions are enhanced by LS2 and Split. Lines 5-14 generate the rest 

of population using random permutation. This is similar to the approach in generating 

the third solution, but the generated chromosomes are not enhanced to ensure 

diversity. The chromosome is rejected in case of infeasible splitting. 
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01. read input data; 

02. initialize population #1 with load assignment heuristic; LS2; Split; 

03. initialize population #2 with sequencing heuristic; LS2; Split; 

04. initialize population #3 with random permutation; LS2; Split; 

05. ctrPop = 4; 

06. while ctrPop <= popSize 

07.    spaced = false; noSplit = true; 

08.    while not(spaced) and noSplit 

09.       generate new chromosome C by random permutation; 

10.       if D(P, C) > 0, spaced = true; end 

11.       if F(C) ≠ ∞, noSplit = false; end 

12.    end %while 

13.    accept new chromosome; ctrPop = ctrPop + 1; 

14. end %while 

15. sort the population ascending based on fitness values; 

16. for i = 1:maxIter 

17.    set the value of DL based on iteration number; 

18.    noSplit = true; 

19.    while noSplit 

20.       select two parents by binary tournament; 

21.       apply OX operator and randomly select one child; Split; 

22.       if F(C) ≠ ∞, noSplit = false; end 

23.    end %while 

24.    if rand(1) < probMut 

25.       run mutation procedure with LS2; Split; M = mutated chromosome; 

26.       if F(M) < F(p1) or D(P, M) > DL 

27.          C = M; 

28.       end 

29.    end 
30.    if F(C) < F(p1) 

31.       accept new/mutated chromosome, replace one in the lower half; 

32.       count productive iteration; 

33.    elseif D(P, C) > DL 

34.       accept new/mutated chromosome, replace one in the lower half; 

35.       count productive iteration; count unimproved iteration; 

36.    end 

37.    sort the population ascending based on fitness values; 

38. end %for 

39. run mutation procedure with LSv; 

 

Figure 4.4 Pseudo-code GA for HVRPTW 
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For a version with dispersal value, changes need to be made in lines 

10, 26, and 30 regarding the check of the spaced criterion. The generated population 

is then sorted ascending based on fitness value (line 15), so the best solution is the 

first member. 

After the initial population is constructed, the main GA procedure 

begins. Iterations run up to maxIter times and in each iteration the following steps 

(lines 17-37) are executed. Two parents are selected by binary tournament followed 

by a crossover using OX operator. Split is then applied to partition the giant-tour 

chromosome into trips. Infeasible splitting can also occur at this stage that will prompt 

repeat of the process. After the reproduction and crossover phases are passed, a 

mutation module is invoked with a probability probMut, and LS2 is applied (lines 24-

29). In lines 30-32, the spaced requirement is overridden and the new chromosome is 

accepted if it has a smaller cost than that of the best chromosome, and one productive 

iteration is counted. In lines 33-35, spaced criterion is again checked to see if the new 

chromosome can be accepted. If it is accepted, since in this case this new 

chromosome is not the best, productive iteration and also unimproved iteration are 

counted. The new chromosome will replace one of the old chromosomes, randomly 

selected in the worse lower-half of the population. The rationale of this approach is to 

preserve good chromosomes in the upper-half of population while advancing the 

search. Throughout the algorithm, time windows feasibilities are checked within the 

Split and mutation blocks. Finally, the population is resorted (line 37) and after 

maxIter iterations, LSv is invoked (line 39). 
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4.4 Results and Discussion 

GA for HVRP has been shown to be as competitive as other metaheuristics 

when tested on the same benchmark instances. However, to the best of our 

knowledge, real example of its application has never been published in the literature. 

Moreover, the benchmark instances used in the literature do not consider time 

windows and fixed costs, which are important attributes for cases in maritime 

logistics, particularly in liner shipping. One of the aims of this chapter is therefore to 

demonstrate a real-life example of this method in a maritime case study of Indonesian 

archipelago. Fleet data of a domestic liner shipping company are used, however, for 

confidentiality purpose, demands are assumed as percentage of the company’s market 

share of the national outputs. Since due dates are an important attribute in liner 

operations, HVRPTW is formulated by adding feasibility tests on time constraints in 

the routing. 

Different scenarios involving a number of parameters are investigated in the 

case study. In addition to the case size (small and large), the effects of dispersal 

mechanism, number of iterations, mutation probability, and the population size on the 

GA performance are also evaluated. Three types of dispersal mechanism are tested 

based on the following parameters: increasing distance limit, decreasing distance 

limit, and dispersal value, denoted with DL+, DL-, and DV1, respectively. Given 

eight ports in the small case and thirteen ports in the large case, the distance limits are 

1 to 3 and 1 to 6 in the small case and large case, respectively, whereas the dispersal 

value is set at 1 for all scenarios. The number of iterations is set at 150 in the small 

case, but is varied at 300 and 600 in the large case. The last two parameters, mutation 

probability pm and population size S, are paired to represent the characteristics of 
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population. One set of parameters, pm = 0.2 and S = 30, follows what are used in Prins 

(2009). However, a more aggressive mutation and dense population with pm = 0.3 and 

S = 40 are also tested. The combination of the above parameters produces multiple 

scenarios. Since a randomization effect occurs in many stages of the GA run, each 

scenario is run for ten times and the averages are collected and reported. 

The results of branch-and-bound (B&B) optimization using Lingo 11.0 and 

GA using Matlab R2100b are compared, both on an Intel i5-2430M processor running 

at 2.4 GHz and 4 MB of RAM on Windows 7 Ultimate. The results are summarized in 

Table 4.3 for the primary outputs and Table 4.4 for the secondary outputs. The 

primary outputs concern with the ability of the GA to reach optimality and are 

measured in optimality gap, frequency in reaching the optimal solution, and 

computation times. The secondary outputs discuss the quality of iterations, the 

performance of heuristics in the initial solutions, and the frequency of infeasible 

splitting. 

Table 4.3 indicates that in general the GA cannot outperform B&B. However, 

as the case gets larger, the relative performance of GA over B&B (the ratio of running 

times of the two methods) gets more competitive. This suggests that the GA is more 

suitable to more complex problems, thus the algorithm used here is promising but still 

needs to be developed further to tackle such problems. Among different GA 

scenarios, the set of parameters pm = 0.3 and S = 40 performs better than pm = 0.2 and 

S = 30 that is used for benchmark test in the other literature. This applies in all case 

sizes and it implies that the GA favors more aggressive exploration with higher 

mutation probability in a larger population. On the dispersal mechanism, despite of its 

well performance in the small case, DV1 worsens in the large case. Since GA will be 
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more likely used for large-scale cases, the method based on distance limit should be 

preferred. For the large case using this method, DL+ is better than DL- in terms of 

optimality search but not in computation time. Overall, the ability to find the optimal 

solution is mainly influenced by the number of iterations, as shown in the results of 

the large case. Figure 4.5 shows several charts of various typical GA runs. In some of 

these runs, the jump to the optimal point is made beyond the 300
th
 iteration (Figure 

4.5a) or even beyond the 400
th

 iteration (Figure 4.5b). Another observation from these 

charts is related to the impact of additional local search LSv at the end of the 

algorithm. Note the dip in Figure 4.5c (the red circle) where the best solution is 

improved by LSv at the end of iterations. As to the algorithm running times, a 

percentage shift from population initialization time to the iterations time is noticeable 

when the number of iterations is increased, but the total running times are relatively in 

par for scenarios within each group of the same number of iterations. 

 

Table 4.3 Experiment results (primary outputs) of Model III 

Scenario Cost %Gap Optimal Time (seconds) 

Init %Init Run %Run Total 

 

Small case 

        

B&B (benchmark) 393,781       7 

DL+;it150;pm0.2;N30 398,854 1.38 6/10 5 19.04 22 80.96 27 

DL+;it150;pm0.3;N40 395,143 0.56 8/10 7 22.70 24 77.30 31 

DL-;it150;pm0.3;N40 393,781 0.25 9/10 7 22.48 24 77.52 31 

DV1;it150;pm0.3;N40 395,143 0.35 9/10 10 28.74 25 71.26 35 

 

Large case 

        

B&B (benchmark) 528,270       1818 

DL+;it300;pm0.2;N30 573,217 8.51 2/10 367 25.86 1046 74.14 1413 

DL+;it300;pm0.3;N40 560,718 6.14 4/10 472 28.30 1194 71.70 1666 

DL-;it300;pm0.3;N40 561,563 6.30 4/10 456 27.32 1207 72.68 1663 
DV1;it300;pm0.3;N40 566,382 7.21 2/10 465 27.59 1218 72.41 1683 

DL+;it600;pm0.3;N40 539,086 2.05 8/10 438 15.15 2456 84.85 2894 

DL-;it600;pm0.3;N40 550,746 4.25 6/10 416 15.32 2300 84.68 2716 

DV1;it600;pm0.3;N40 555,578 5.17 4/10 446 16.09 2322 83.91 2768 
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Table 4.4 Experiment results (secondary outputs) of Model III 

Scenario Iterations Heuristic’s rank Infeasible splitting 

Prod. Unimpr. Heu1 Heu2 Heu3 Init Run 

 

Small case 

       

DL+;it150;pm0.2;N30 46 44 1.3 3.6 3.3 19 16 

DL+;it150;pm0.3;N40 41 40 1.4 3.9 5.0 28 17 

DL-;it150;pm0.3;N40 43 41 1.3 4.0 3.2 31 23 

DV1;it150;pm0.3;N40 95 93 1.2 4.1 4.1 41 16 

 

Large case 

       

DL+;it300;pm0.2;N30 177 172 3.1 1.7 2.0 151 20 

DL+;it300;pm0.3;N40 170 163 3.0 1.8 1.6 194 18 

DL-;it300;pm0.3;N40 217 212 3.5 1.8 1.8 184 32 

DV1;it300;pm0.3;N40 267 262 3.1 2.0 1.7 194 19 

DL+;it600;pm0.3;N40 322 316 2.8 1.8 1.5 172 30 

DL-;it600;pm0.3;N40 397 391 3.2 2.0 1.3 176 51 

DV1;it600;pm0.3;N40 533 529 3.2 2.0 1.3 188 25 

 

(a) 

 

(b) 

 

(c) 

 

 

Figure 4.5 Various typical GA runs 

 

The number of productive iterations and its ratio to that of the unimproved 

iterations exhibit similar patterns among all scenarios, with an exception in the DV1 

case where the numbers are significantly higher. However, this only highlights the 

nature of the mechanism as its running time is proven competitive to the other 

mechanisms’. For the heuristics in the initial solution, the enhanced load-assignment 

heuristic works best in the small case, but averages third in the large case. The 

enhanced sequencing heuristic competes with the third heuristic (enhanced random 
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permutation), but is superior to the other two in the large case. Given this satisfactory 

performance, it can be concluded that the heuristics serve their purpose in the 

algorithm. The last part of the secondary outputs is regarding the amount of infeasible 

splitting. It is clear from Table 4.4 that the Split procedure has difficulty to form 

feasible trip partitions when the number of cities is high and its sequence is purely 

randomized. The problem is not apparent in the small case (in some of the runs, 

infeasible splitting is in fact more frequent in the iterations than in population 

initialization stage).  However, in the large case, the frequency of infeasible splitting 

is fairly high during initialization. This marks an area for improvement as better 

splitting might be able to reduce computation time. 

Finally, the optimized liner route from the large case is shown in Table 4.5. It 

is interesting to note a long sequence of cities to be visited by two large-capacity 

vessels of type E since the total demands in each trip is less than one-fourth of the 

vessel capacity. However, if these trips are to be served by smaller and slower vessels, 

the number of vessels required would probably increase and given high fixed costs of 

vessels, this could increase total costs. In other words, long voyages by utilizing fewer 

vessels is preferable, provided due dates in each port-of-call are manageable and not 

too much pampered by unpredictable events such as disruptions in port operations. 

This highlights the importance of fixed costs in maritime logistics cases and it would 

be unrealistic to ignore this factor. It is also important to reiterate that designing a 

liner route/network is a medium-term tactical activity for a shipping company and 

once the route is established, it is published and takes effect for months in order for 

the customers to adapt with their shipment schedule. Therefore, the demands used as 

the basis in setting up the route must also be estimated from a similar time horizon. 
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Table 4.5 Optimized liner route for the large case of Model III 

Vessel (capacity) Route (figures denote port demand) 

B (500) Sby-Ptk (90)-Btm (28)-Mdn (254)-Sby 
C (600) Sby-Bjm (102)-Jk1 (456)-Sby 

D (800) Sby-Jk2 (707)-Sby 

E (800) Sby-Mks (149)-Kdi (9)-Amb (14)-Sby 
E (800) Sby-Bpn (32)-Smr (90)-Tar (10)-Bit (39)-Sby 

 

4.5 Chapter Summary 

This chapter demonstrates the application of genetic algorithm (GA) for 

heterogeneous vehicle routing problem with time windows (HVRPTW) in short-sea 

shipping, specifically in Indonesian archipelago. Two heuristics are built as part of 

initial population construction phase for the GA to help accelerate its convergence. 

The first heuristic is based on load assignment and the second heuristic employs port 

sequencing based on a rotating ray. Time windows and additional local search 

mutation procedure are added to the algorithm. Two methods of population 

management are used as dispersal mechanism to keep the population spaced so the 

search progresses better. The model is tested on two cases differing in size. The small 

case consists of eight ports-of-call and six vessels and the large case involves thirteen 

ports-of-call and nine vessels. 

Experiment results indicate that the proposed heuristics and the added local 

search are beneficial in boosting the GA performance. For dispersal mechanism, the 

method based on distance limit shows better performance than the method based on 

dispersal value. 

 

 

 

 

 

 

 

 

 



 

 

 

 

CHAPTER V 

MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM 

FOR SHIP ROUTING PROBLEM IN MARITIME 

LOGISTICS COLLABORATION
4
 

 

5.1. Introduction 

Shipping companies have been embarking on various efforts to respond 

today’s fierce challenges and collaboration is one viable path. In the segment of liner 

shipping, a common collaboration theme is the formation of alliances to enlarge 

service coverage by taking advantage of the economies of scale. Collaboration entails 

certain impacts that should be evaluated. When companies form an alliance, the next 

strategic decision will be how to assign each company’s role and how to fairly divide 

the works in their operations to serve the aggregate market demands. A number of 

factors must be determined and investigated in this phase, e.g. how many vessels each 

company shall contribute to the joint fleet, what is the route of each vessel, what is the 

resulting total profit/cost and whether or not it is acceptable by the collaborating 

parties, etc. The answers to these questions are very important and will determine 

sustainability of partnership. However, as highlighted in chapter two, most studies in 

maritime logistics collaboration are on the qualitative side and only a few quantitative 

studies are encountered. 

                                                
4 Materials in this chapter are part of a paper submitted for publication at The International Journal of 

Shipping and Transport Logistics. 
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This chapter is the heart of the research topic in this dissertation that studies 

maritime logistics collaboration using a multi-objective evolutionary algorithm for a 

ship routing problem (MOEA-SRP). The SRP is a variant of the vehicle routing 

problem (VRP) that considers important attributes in maritime logistics such as 

heterogeneous vessels, time windows, and fixed cost. These attributes are usually not 

formulated simultaneously in land-logistics VRP applications. The heterogeneity 

aspect comes from the fact that shipping companies normally own different types of 

vessels in terms of speeds and capacities. Time windows in the model are common 

constraints that dictate a visit to a customer be made within a certain time interval. For 

liner operations where shipping schedules are published, due dates are critical factor. 

The scope of the problem is collaboration of two liner shipping companies in 

determining the routing of their fleet. The multi-objective approach is used because 

real-life problems are seldom one-dimensional and single-objective models are 

usually built by discharging some factors with assumptions and/or other simplification 

schemes. The first objective is the natural minimization of total cost. The second 

objective is a novel formulation of fair cost distribution. The rationale behind the 

second objective is to control the impacts of collaboration so that cost is not 

minimized in such an unfair proportion, sacrificing the interests of either company. 

The algorithm proposed in this chapter is inspired by two different methods, 

each is oriented towards a different background of the problem. First, NSGA-II (elitist 

non-dominated sorting genetic algorithm) from Deb et al (2000) will be used to tackle 

the multi-objective part. Second, aggressive but effective genetic algorithm (GA) for 

VRP/HVRP from Prins (2004, 2009) will be responsible for the routing part. The 

strengths of these two methods are combined and used to find the set of non-

 

 

 

 

 

 

 

 



141 

 

 

 

dominated solutions (Pareto points) for the particular problem discussed in this paper. 

A case study using the Indonesian archipelago for the data background is setup to 

evaluate the proposed algorithm. The objectives of this chapter are therefore: 

1. to introduce the concept of multi-objective optimization in maritime logistics 

collaboration 

2. to propose (and investigate the properties of) a new method by combining the 

key concepts and strengths of two already established methods that are 

normally used independently to address a partial dimension of the problem 

presented in this paper 

3. to show an application example of the proposed method in a domestic 

shipping of the Indonesian archipelago. 

 

5.2. Problem Description 

The problem description of Model IV in this chapter is similar to that of 

Model II in chapter three. Two domestic liner shipping companies operate from the 

same depot and serve several ports/cities in the Indonesian archipelago. Both carriers 

plan to collaborate by joining their service routes via capacity sharing to increase the 

utilization of their vessels. Capacity sharing means Carrier A will allocate a portion of 

its capacity to be used by Carrier B going to a number of ports-of-call, such that 

Carrier B does not have to use its own vessels going to the same destination (except if 

the demand is high and cannot be served by one vessel), and vice versa. The problem 

on hand is how to design the new joint routing network resulting from the 

collaboration, optimizing two objectives; namely, total costs and fairness in cost-

sharing distribution. The first objective is straightforward and typical in optimization 
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programming. This objective is preferred over profit maximization since all demands 

are assumed to be satisfied, thus the same amount of profit will be generated. The 

second objective is part of the novelty of this research, and its formulation is 

motivated by the collaboration background in the problem. The idea is, while costs 

are minimized, the distribution of total cost should be in a fair proportion that is 

acceptable by the collaborating parties. 

The carriers are of different sizes: Carrier A is larger than Carrier B in terms 

of fleet size and demands. Carrier A owns six vessels and Carrier B has three vessels, 

all in the category of feeder vessels with capacities in the range of 400 to 850 TEUs 

(twenty-foot equivalent units) and speeds in 13-17.5 knots. The costs of vessels are 

extrapolated from the larger ships’ in Stopford (2009), without inflation adjustment. 

Two cost components include weekly fixed/overhead costs and variable costs 

measured as bunker cost per nautical mile at a certain speed. Vessels data are listed in 

Table 5.1. Note that the fixed costs are relatively high and thus cannot be ignored. 

 

Table 5.1 Data of vessels for Model IV 

Carrier A 

Type Capacity 

(TEUs) 

Speed 

(knots) 

Weekly 

fixed cost 
(USD) 

Bunker cost 

per nm 
(USD) 

Units 

available 

Total 

capacity 

A1 400 13.0 81,638.20 3.53 1 400 

A2 500 13.5 84,756.00 4.02 2 1,000 

A3 650 16.5 89,432.70 7.54 2 1,300 

A4 850 14.0 95,668.30 4.77 1 850 

Total 6 3,550 

Carrier B 

Type Capacity 

(TEUs) 

Speed 

(knots) 

Weekly 

fixed cost 

(USD) 

Bunker cost 

per nm 

(USD) 

Units 

available 

Total 

capacity 

B1 450 13.5 83,197.10 3.98 1 450 

B2 700 16.5 90,991.60 7.61 1 700 

B3 850 17.5 95,668.30 9.32 1 850 

Total 3 2,000 
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Data of ports-of-call are listed in Table 5.2 and the geographical spread of the 

cities is similar to that in Figure 3.5, except that the case in Model IV is not divided in 

two sizes as in Model II. For convenience, the figure is reproduced and shown in 

Figure 5.1 with all cities must be served without any distinction of small or large case. 

The same URL given in 4.2 contains the details of port distances. 

Port demands are estimated from OECD (2012) where domestic throughputs 

of containers are reported. The figures are converted to weekly demands and 2.5% is 

assumed for the demand of Carrier A and 1.25% for Carrier B. Demand of Jakarta is 

very large and cannot be served by any of the vessel in the combined fleet, thus for 

simplicity it is evenly split and half of it is assigned to a dummy city at the same 

coordinate, making a total of 13 ports-of-call excluding the depot Surabaya. Service 

times are incurred in ports by a constant of eight hours plus a fixed 40-container-per-

hour unloading times, except for the depot where only eight hours of service time are 

assumed. Finally, time windows are formulated as due dates of the ports-of-call. Only 

upper time windows that represent due dates are formulated and none of these due 

dates exceeds seven days, hence corresponds to a weekly liner service which is 

equivalent to the period of demands. 

 

5.3. Methodology 

This section describes an overview of the basic methods, particularly the LP-

formulation of multiple carriers HVRPTW, followed by model development. 
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Table 5.2 Data of ports for Model IV 

No. City Abbrev. Due 

date 

(hours) 

Carrier A Carrier B Total 

Demand 

(TEUs) 

Port 

time 

(hours) 

Demand 

(TEUs) 

Port 

time 

(hours) 

Demand 

(TEUs) 

Port 

time 

(hours) 

1 Samarinda Smr 66 46 9.15 23 8.58 69 9.73 
2 Balikpapan Bpn 66 17 8.43 8 8.20 25 8.63 

3 Banjarmasin Bjm 54 57 9.43 28 8.70 85 10.13 

4 Kendari Kdi 90 7 8.18 0 0 7 8.18 

5 Makassar Mks 66 119 10.98 60 9.50 179 12.48 

6 Ambon Amb 108 7 8.18 0 0 7 8.18 

7 Tarakan Tar 108 8 8.20 0 0 8 8.20 

8 Bitung Bit 126 30 8.75 15 8.38 45 9.13 

9 Medan Mdn 126 134 11.35 0 0 134 11.35 

10 Pontianak Ptk 90 48 9.20 0 0 48 9.20 

11 Jakarta1 Jk1 78 400 18.00 200 18.00 600 23.00 

12 Jakarta2 Jk2 78 400 13.00 200 13.00 600 23.00 
13 Batam Btm 102 13 8.33 0 0 13 8.33 

Total   1,286  534    

 

v

Sby

Bjm

Bpn

Smr

Tar

Kdi Amb

Bit

Legend: = depot = ports-of-call

Jk1, Jk2 Mks

PtkBtm

Mdn

 

 

Figure 5.1 Map of Indonesia with cities being studied in Model IV 

 

5.3.1 Overview of the basic methods 

Throughout this dissertation, there have been a number of VRP models 

elaborated. In chapter four (4.3.1), a linear-programming formulation of SRP 

(HVRPTW-F) is given, emphasizing the fixed-cost element of the vessels. This sub-
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section will extend that formulation with the inclusion of an additional carrier. In 

other words, the following model is called multiple carriers SRP. 

 

𝒞 Set of carriers, indexed by 𝑎 

𝒱𝑎 Set of vehicles of carrier 𝑎, indexed by 𝑣 

𝒜 Set of arcs (𝑖, 𝑗) denoting a flow from city 𝑖 to city 𝑗 

𝒩 Set of all cities 𝒩={0, 1, …, 𝑁}; {0} is the depot 

𝒫 Set of customers, or 𝒩 ∖ {0} 

𝑓𝑎,𝑣 Weekly fixed cost of vehicle 𝑣 of carrier 𝑎 

𝑐𝑖,𝑗
𝑎,𝑣 Travel cost of vehicle 𝑣 of carrier 𝑎 if it goes from city 𝑖 to city 𝑗 

𝑡𝑖,𝑗
𝑎,𝑣 Travel time of vehicle 𝑣 of carrier 𝑎 if it goes from city 𝑖 to city 𝑗 

𝐶𝑎,𝑣 Capacity of vehicle 𝑣 of carrier 𝑎 

𝐷𝑖 Total demand of all carriers at city 𝑖 

𝑇𝑖 Due date at city 𝑖 

𝑝𝑖  Service time at city 𝑖 

𝑀 Big M 

𝑥𝑖,𝑗
𝑎,𝑣

 Binary variables for vehicle 𝑣 of carrier 𝑎 in arc (𝑖, 𝑗); 𝑥𝑖,𝑗
𝑎,𝑣 = 1 if the vehicle 

traverses arc (𝑖, 𝑗) and equals 0 otherwise 

𝑠𝑖
𝑎,𝑣

 Time window for vehicle 𝑣 of carrier 𝑎 at city 𝑖 

 

The multiple carriers SRP can now be formulated as follows: 
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Minimize ∑ ∑ (∑ 𝑓𝑎,𝑣 . 𝑥0,𝑗
𝑎,𝑣

𝑗∈𝒜

+ ∑ 𝑥𝑖,𝑗
𝑎,𝑣 . 𝑐𝑖,𝑗

𝑎,𝑣

𝑖,𝑗∈𝒜

)

𝑣∈𝒱𝑎𝑎∈𝒞

 (5.1) 

  

Subject to:  

∑ ∑ ∑ 𝑥𝑖,𝑗
𝑎,𝑣 .

𝑖,𝑗∈𝒜𝑣∈𝒱𝑎

𝐶𝑎,𝑣

𝑎∈𝒞

≥ 𝐷𝑖 ∀ 𝑖 ∈ 𝒫 (5.2) 

∑ 𝐷𝑖

𝑖∈𝒫

∑ 𝑥𝑖,𝑗
𝑎,𝑣

𝑗∈𝒩

≤ 𝐶𝑎,𝑣 ∀ 𝑎 ∈ 𝒞;  𝑣 ∈ 𝒱𝑎 (5.3) 

∑ 𝑥𝑖,𝑘
𝑎,𝑣

𝑖∈𝒩

− ∑ 𝑥𝑘,𝑗
𝑎,𝑣

𝑗∈𝒩

= 0 ∀ 𝑘 ∈ 𝒫;  𝑎 ∈ 𝒞;  𝑣 ∈ 𝒱𝑎 (5.4) 

𝑥𝑖,𝑖
𝑎,𝑣 = 0 ∀ 𝑖 ∈ 𝒩;  𝑎 ∈ 𝒞;  𝑣 ∈ 𝒱𝑎 (5.5) 

∑ 𝑥0,𝑗
𝑎,𝑣 ≤ 1

𝑗∈𝒫

 ∀ 𝑎 ∈ 𝒞;  𝑣 ∈ 𝒱𝑎 (5.6) 

𝑠𝑖
𝑎,𝑣 ≤ 𝑇𝑖 ∀ 𝑖 ∈ 𝒫;  𝑎 ∈ 𝒞;  𝑣 ∈ 𝒱𝑎 (5.7) 

𝑠𝑖
𝑎,𝑣 + 𝑡𝑖,𝑗

𝑎,𝑣 + 𝑝𝑖 − 𝑀(1 − 𝑥𝑖,𝑗
𝑎,𝑣) ≤ 𝑠𝑗

𝑎,𝑣
 ∀ 𝑖 ∈ 𝒩; 𝑗 ∈ 𝒫;  𝑎 ∈ 𝒞;  𝑣 ∈ 𝒱𝑎 (5.8) 

𝑥𝑖,𝑗
𝑎,𝑣 ∈ {0, 1}  ∀ 𝑖, 𝑗 ∈ 𝒜;  𝑎 ∈ 𝒞;  𝑣 ∈ 𝒱𝑎 (5.9) 

𝑠0
𝑎,𝑣 = 0 ∀ 𝑎 ∈ 𝒞;  𝑣 ∈ 𝒱𝑎 (5.10) 

𝑠𝑖
𝑎,𝑣 ≥ 0 ∀ 𝑖 ∈ 𝒩;  𝑎 ∈ 𝒞;  𝑣 ∈ 𝒱𝑎 (5.11) 

 

The objective function (5.1) minimizes total cost that is composed of 

the fixed cost if a vehicle is used, and the variable cost derived from the travel cost. 

Constraints (5.2) and (5.3) warrant demand fulfilment in each city without violating 

capacity of the vehicle used. Constraints (5.4) balance the incoming and outgoing 

trips in each city. The next two sets of constraints regulate the trips by preventing 
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looping in the same node (5.5) and assigning not more than one tour to one vehicle 

(5.6). 

Time windows are formulated by introducing variables 𝑠𝑖
𝑎,𝑣

 that 

represent the time vehicle 𝑣 of carrier 𝑎 starts to service customer 𝑖. Constraints (5.7) 

are the upper-bound of 𝑠𝑖
𝑎,𝑣

 and constraints (5.8) indicate that a vehicle cannot arrive 

at city 𝑗 before 𝑠𝑖
𝑎,𝑣 + travel time from city 𝑖 to city 𝑗 + service time at city 𝑖. If arc 

(𝑖, 𝑗) is not traversed by vehicle 𝑣 of carrier 𝑎 (𝑥𝑖,𝑗
𝑎,𝑣 = 0), the constraints become 

redundant due to the presence of Big M. The rest of the equations describe the nature 

of decision variables. Variables 𝑥𝑖,𝑗
𝑎,𝑣

 are binary integer while variables 𝑠𝑖
𝑎,𝑣

 are 

continuous, thus the model is a mixed integer programming. 

One approach in multi-objective optimization (MOO) is finding a set 

of non-dominated solutions, also called the Pareto set. The Pareto approach returns 

several alternative solutions to the decision makers who can exercise other higher-

level considerations that probably have not been embedded in the model. This 

approach is more practical especially when a trade-off relation of objective functions 

is not a priori known. 

NSGA-II is an MOO technique based on evolutionary search algorithm 

proposed by Deb et al (2000) as a refinement from the earlier version (NSGA) from 

Srinivas and Deb (1994). A significant difference between the two methods is that 

NSGA-II uses an elite-preserving mechanism to prevent good solutions from being 

discarded by the genetic operators during iterations. After an initial parent population 

is generated, crossovers are performed to produce child population. Both populations 

are then combined and a number of best solutions, dictated by population size, from 

the combined population are carried out to the subsequent iterations. NSGA-II 
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classifies population members based on ranks and distance measures which set the 

criteria to determine best solutions. The basic principles of how NSGA-II works have 

been outlined in 2.5.3 and a more detailed description can be traced in Deb et al 

(2000) or Deb (2008) that provides examples with hand calculations. 

The last part of the basic methods is the genetic algorithms for VRP 

(Prins, 2004) and for HVRP (Prins, 2009). The strengths of the GAs come from the 

formulation of tour-splitting procedure called Split, dispersal mechanisms to prevent 

identical solutions (clones) in the population, and mutation operator using local 

search. The first component helps partition the chromosomes into feasible trips while 

the latter two components, often referred as memetic algorithm, are the key for faster 

convergence of the GAs to the best solution. The idea of Split has been discussed in 

2.4.3, and its application, together with the memetic algorithm, has been demonstrated 

in 4.3.1 for a single-carrier/single-objective optimization problem. To be more 

specific, Split, the ray heuristic, population management using two dispersal 

mechanisms, i.e. distance limit and dispersal value, order crossover (OX) operator, 

and LS2 local search mutation are the elements of the GA that will be extended by 

combining it with NSGA-II to form an algorithm for a multi-objective HVRPTW that 

will be applied in a case of maritime logistics collaboration. 

 

5.3.2 Model development 

There have been a number of studies on multi-objective VRPTW as 

discussed in 2.5.2, but none considers the use of heterogeneous vehicles because they 

are not oriented toward the applications in maritime logistics. Furthermore, in some of 

the studies, in addition to the natural total cost/time/distance minimization as the first 
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objective, the second objective is formulated as minimization of the number of 

vehicles. If the fixed cost of vehicles is very significant as in the case in shipping, 

these two objectives will be very likely correlated and the problem can be treated as a 

single-objective problem. 

In this chapter, a second objective that reflects a fair distribution of the 

total cost is proposed. Such distribution is considered fair if its proportion is in line 

with the proportion of the capital contributed to the joint operations. The deviation 

between the targeted and actual total costs of each carrier is calculated, summed for 

all carriers, and subject to minimization. Wibisono and Jittamai (in press) proposed 

the idea of this sharing policy and named it proportionate-sharing policy. The authors 

also showed that the policy leads to a smaller variance compared to the other sharing 

policies, thus is more reliable to be used in planning (see Model II in chapter three). 

Before moving forward with the formulation of objectives, the parameters 𝑞𝐴 as the 

cost proportion of Carrier A and 𝑞𝐵 = 1 − 𝑞𝐴 as the cost proportion of Carrier B need 

to be introduced. Recall in the data in Table 5.1, Carrier A contributes six vessels and 

Carrier B contributes three vessels to the joint fleet, thus 𝑞𝐴 = 2

3
 and 𝑞𝐵 = 1

3
. The total 

cost in (5.1) needs to be broken down for each carrier to ease readability and (5.12) 

and (5.13) are obtained for the total cost of Carrier A and Carrier B, respectively. 

 

∑ (∑ 𝑓𝑎,𝑣 . 𝑥0,𝑗
𝑎,𝑣

𝑗∈𝒜

+ ∑ 𝑥𝑖,𝑗
𝑎,𝑣 . 𝑐𝑖,𝑗

𝑎,𝑣

𝑖,𝑗∈𝒜

)

𝑣∈𝒱𝐴

= 𝑇𝐶𝐴 (5.12) 

∑ (∑ 𝑓𝑎,𝑣 . 𝑥0,𝑗
𝑎,𝑣

𝑗∈𝒜

+ ∑ 𝑥𝑖,𝑗
𝑎,𝑣 . 𝑐𝑖,𝑗

𝑎,𝑣

𝑖,𝑗∈𝒜

)

𝑣∈𝒱𝐵

= 𝑇𝐶𝐵 (5.13) 
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𝑇𝐶𝐴 − 𝑞𝐴(𝑇𝐶𝐴 + 𝑇𝐶𝐵) = 𝛿𝐴 (5.14) 

𝑇𝐶𝐵 − 𝑞𝐵(𝑇𝐶𝐴 + 𝑇𝐶𝐵) = 𝛿𝐵 (5.15) 

 

Define 𝛿𝐴 as the total cost of Carrier A minus its targeted proportionate 

cost, and, likewise, 𝛿𝐵 for the total cost minus the targeted proportionate cost of 

Carrier B. Now, the dual objectives of the problem can be formulated as follows, 

subject to the same set of constraints (5.2) to (5.11): 

 

1. Minimize 𝑇𝐶𝐴 + 𝑇𝐶𝐵 (5.16) 

2. Minimize |𝛿𝐴| + |𝛿𝐵| (5.17) 

 

The second objective function (5.17) minimizes total absolute 

deviation of discrepancies between carrier’s fair cost proportion and carrier’s total 

cost. This equation is non-linear but can easily be transformed to a linear form by a 

technique described in (5.18)-(5.20). 

 

Minimize |𝑎 − 𝑏| = Minimize max. {𝑎 − 𝑏, 𝑏 − 𝑎} = Minimize 𝑦  (5.18) 

𝑦 ≥ 𝑎 − 𝑏 (5.19) 

𝑦 ≥ 𝑏 − 𝑎 (5.20) 

 

The multi-carrier/single-objective SRP in 5.3.1 is run to find the 

optimal route of each carrier separately using each carrier’s data of vessels and 

demands. The resulting total costs of all carriers are summed and compared to the 

joint-routing total cost to validate the financial impact of collaboration. Next, the 

multi-carrier/dual-objective SRP is minimized and maximized on each objective. The 
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obtained minimum values on each objective are none other the extreme points of the 

true Pareto front. These two solutions alone may not suffice as decision alternatives 

given their extreme nature where one best solution is achieved at the expense of the 

other. However, these are true Pareto points, therefore cannot be ignored. As part of 

the elitism principle of NSGA-II, these solutions will be included and always kept as 

population members. As to the maximum values, these are needed as required 

parameters in the crowding distance procedure of the algorithm. Lingo 11.0 on an 

Intel i5-2430M processor running at 2.4 GHz and 4 MB of RAM on Windows 7 

Ultimate is used for the above optimization. 

After the key parameters are found by means of optimization, the 

search algorithm is performed using Matlab R2100b on the same computer. The 

algorithm is developed by combining the principles of NSGA-II for the multi-

objective part and Prins’ GA for the evolutionary search process. The main algorithm 

is detailed in Figure 5.2. After input data and parameters are read, the parent 

population is initialized. The population is halved and each group weighs on each 

objective. This approach is necessary because on every solution (chromosome) that is 

generated by random permutation, Split is called to form the trip partition and the 

procedure needs to know on what ground a good partition should be constructed. 

Population number one uses the minimum-cost solution already found by the linear 

programming optimization. Population number two is built with the ray heuristic that 

works by forming a rotating ray centered at the depot with the zero degree starts at 

West. This heuristic is very suited to the problem given the centralized position of the 

depot relative to the other cities. A cost-based Split (splitcost) is then performed on 

this second chromosome. The inclusion of good solutions in the initial population can 
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help jump-start the search exploration. Population number three up to half of the 

population size are generated randomly, each is evaluated by Split and spaced criteria 

according to the dispersal mechanism. The other half of parent population are 

generated in a similar fashion: population number (halfpop+1) uses the minimum-

deviation solution; population number (halfpop+2) uses ray heuristic evaluated by 

deviation-based Split (splitdevn); and the rest of the population use random 

generation, evaluated by splitdevn and spaced criteria. 

 

01. read input data and parameters; halfpop = popsize / 2; 
02. initialize parent population: 

a) parent #1: mincost; 

b) parent #2: ray heuristic, splitcost; 

c) parent #3-parent #halfpop: random, splitcost(feasible, spaced); 

d) parent #(halfpop+1): mindevn; 

e) parent #(halfpop+2): ray heuristic, splitdevn; 

f) parent #(halfpop+3)-parent #popsize: random, splitdevn(feasible, spaced); 

03. initialize child population by binary tournament and order crossover: 

a) child #1-child #halfpop: bintourn, OX, splitcost(feasible, spaced); 

b) child #(halfpop+1)-child #popsize: bintourn, OX, splitdevn(feasible, spaced); 

04. for iter = 1:maxiter 

05.     combine parent population and child population; 

06.     select members from the combined population to create new parent population; 

07.     create new child population using modified crowded tournament; 

08. end 

 

Figure 5.2 MOEA-SRP main algorithm 
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01. ctrchld = 1; 
02. while ctrchld <= halfpop 

03.     nosplit = true; spaced = false; 

04.     while nosplit and not(spaced) 

05.         select two parents by crowded tournament; 

06.         apply OX to produce new child C; 

07.         splitcost(C, feasible); 

08.         if feasible 

09.             nosplit = false; 

10.         end 

11.         if not(nosplit) and rand(1) < probmut 

12.             M = mutation(C); 

13.             if M belongs to Pareto rank 1 

14.                 mutoverride = true; else mutoverride = false; 

15.             end 
16.             if not(mutoverride) 

17.                 check spaced against both parent population and child population; 

18.                 if spacedprnt and spacedchld 

19.                     mutspaced = true; else mutspaced = false; 

20.                 end 

21.             end 
22.             if mutoverride or mutspaced 

23.                 C = M; 

24.             end 

25.         end 
26.         if not(nosplit) 

27.             if C belongs to Pareto rank 1 

28.                 override = true; else override = false; 

29.             end 

30.         end 

31.         if not(nosplit) and not(override) 

32.             check spaced against both parent population and child population; 

33.             if spacedprnt and spacedchld 

34.                 spaced = true; else spaced = false; 

35.             end 

36.         end 

37.     end %while 

38.     if (not(nosplit) and override) or (not(nosplit) and spaced) 

39.         accept C in new child population; 

40.         ctrchld = ctrchld + 1; 

41.     end 
42. end %while 

 

Figure 5.3 Modified crowded tournament procedure (for half population) 
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Afterward, a population of child is initialized. The regular binary 

tournament is applied to select two parents to produce offspring using order crossover 

operator. As in the parent initialization, splitcost, splitdevn, and spaced criteria are the 

backbone of the process. With one parent population and one child population, the 

iterations can start. These are executed through lines 04-08, which are standard 

NSGA-II iterations except for line 07 where some principles of Prins’ GA are inserted 

in the algorithm to form the modified crowded tournament. The pseudo-code of this 

procedure is listed in Figure 5.3, which is more detailed than the main algorithm in 

Figure 5.2 for better clarification of this important procedure. The code is listed for 

the creation of only half of the new child population. The creation of the other half is 

a replication and the only change needed is to replace splitcost with splitdevn so each 

half of the new child favors each of the two objectives. 

The parent population becomes an input to this procedure. Two parents 

are selected randomly, then compete via the crowded tournament. The working 

principle of crowded tournament is basically as explained in Figure 2.9 in 2.5.3: two 

chromosomes are compared based on their ranks; if the ranks are equal, then their 

distance measures become the deciding criteria. Two random parents again compete 

and the two winners perform crossover to produce child chromosome C (lines 5-6). 

Splitcost then detects whether C can be feasibly partitioned into trips (lines 7-10) and 

if successful, the rest of the lines are executed. If mutation is triggered, C is improved 

by a local search on trip and vehicle exchanges, and temporarily copied to M (lines 

11-12). Next, M is compared to all members of the first-rank Pareto set on its non-

domination status. If M is not dominated by all first-rank Pareto members, then it is 
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marked for acceptance (lines 13-15). This test is called overriding rule since if it is 

passed, spaced requirement is no longer checked. 

If the new mutated chromosome M does not belong to the first-rank 

Pareto, it is tested for spaced criteria against both parent and child populations (lines 

16-21). If either of the overriding or spaced tests passes, M is copied back to C (lines 

22-24). The temporary copy of C to M is necessary since if mutation is not triggered, 

C is subject to the same tests for overriding rule (lines 26-30) and spaced criteria 

(lines 31-36). Finally, if either of the tests on C passes (and Split is feasible from the 

beginning), lines 38-41 perform acceptance of the new chromosome to the new child 

population, and a counter is increased for the next generation process. 

The source codes of the above algorithm are uploaded in a website and 

the website URL and the list of the source codes are given in Appendix B. 

 

5.4. Results and Discussion 

The results of linear programming optimization are reported in Table 5.3. 

Table 5.3 shows that the collaborative joint-routing results in lower total cost 

compared to the total cost if the carriers work independently. Another observable 

point is the comparison of the minimization results of each objective separately under 

collaboration, or the comparison of the two most extreme Pareto points. When only 

the total cost is minimized, the deviation is not concurrently minimized, and the 

routing suggests that Carrier B is forced to use two of its most expensive vessels 

(those with the highest capacity). On the other hand, when only the deviation is 

minimized, even near to non-existent, the total cost shoots up as both carriers are 

scheduled to route all their vessels. This suggests a conflicting nature between the two 
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objectives, and other non-dominated alternative solutions are worth exploring using 

the algorithm developed in the previous section. 

 

Table 5.3 Results of linear programming optimization 

Per-carrier optimization 

Carrier A: Minimize cost Carrier B: Minimize cost 

Cost: $589,605.50 Cost: $304,554.90 

Total Cost: $894,160.40 

Routing: 

A1: Sby-Btm-Mdn-Sby 

A2: Sby-Bpn-Bit-Sby 

A2: Sby-Smr-Tar-Sby 

A3: Sby-Bjm-Ptk-Sby 

A3: Sby-Mks-Kdi-Amb-Sby 

A4: Sby-Jk2/Jk1-Sby 

Routing: 

B1: Sby-Jk2/Jk1-Sby 

B2: Sby-Bpn-Smr-Bit-Sby 

B3: Sby-Bjm-Mks-Sby 

Both-carriers optimization 

Minimize cost Minimize deviation 

Cost: $548,692.44 

Deviation: $83,568.52 

Cost: $891,170.59 

Deviation: $0.04 

Routing: 

A1: - 

A2: - 

A2: - 

A3: Sby-Bjm-Mks-Bit-Sby 

A3: Sby-Bpn-Smr-Tar-Sby 

A4: Sby-Kdi-Amb-Sby 

B1: - 

B2: Sby-Jk1-Ptk-Sby 

B3: Sby-Jk2-Btm-Mdn-Sby 

Routing: 

A1: Sby-Tar-Sby 

A2: Sby-Ptk-Mdn-Sby 

A2: Sby-Btm-Sby 

A3: Sby-Amb-Sby 

A3: Sby-Bjm-Bpn-Bit-Sby 

A4: Sby-Jk2-Sby 

B1: Sby-Smr-Sby 

B2: Sby-Mks-Kdi-Sby 

B3: Sby-Jk1-Sby 

𝑇𝐶𝐴 = 324,010.70 

𝛿𝐴 = −41,784.26 

𝑇𝐶𝐵 = 224,681.74 

𝛿𝐵 = 41,784.26 

𝑇𝐶𝐴 = 594,113.75 

𝛿𝐴 = 0.02 

𝑇𝐶𝐵 = 297,056.84 

𝛿𝐵 = −0.02 

 

Various scenarios involving different dispersal mechanisms and controlled 

parameters are tested. Four types of dispersal mechanism are used and named 

DV(1)/50, DV(1)/100, DL(+), and DL(-). The DV-based mechanisms use a dispersal 

value of 1 and run on 50 and 100 iterations. The DL-based mechanisms use increasing 
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(or decreasing) distance limits from 1 to 5 (or 5 to 1), equally spread on 50 iterations. 

Note that according to (4.12), the maximum distance limit is 6 on a case with 13 

ports, but in this case the actual number of ports is 12 with an additional dummy port, 

therefore the maximum distance limit is set at 5. 

In Prins (2004) and Prins (2009), the author proposed an aggressive set of 

parameters, i.e. higher mutation rate (10%-50%) and small population size (30-50), 

leading to fast convergence. In this study, a mutation probability of 20% is used, 

which can also be considered aggressive. A mutation rate beyond this figure is also 

tested, but a higher rate leads to a poor convergence whereas a lower rate dampen the 

search speed and can only be compensated by increasing the number of iterations but 

at the expense of algorithm running time. The running times are already quite 

expensive: DV(1)/50 spends roughly five hours to complete the iterations, and the 

other scenarios require approximately twice longer. Given the strategic level of the 

activity where the results can be used for a period of several months, such a long 

computation time is still acceptable. However, going for further iterations is highly 

inefficient. In fact, combining the results from different scenarios is a better approach 

than forcing one particular scenario to run longer, since there are unique Pareto points 

in each scenario that cannot be found in others, proving that no scenario is most 

superior, except for DV(1)/100 that is naturally better than DV(1)/50. 

The population size is set at 100. Smaller population size does not work in this 

case since instead of finding one best solution, we are interested in finding a set of 

non-dominated solutions. The randomization effects in the chromosome construction 

are controlled with the ‘rng’ function in Matlab so the results from different scenarios 

are comparable. The ray heuristic results in the following order of ports: Sby-Jk1-Jk2-
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Mdn-Btm-Ptk-Bjm-Bpn-Smr-Tar-Mks-Kdi-Bit-Amb. Table 5.4 details the final 

solutions found in different scenarios. 

 

Table 5.4 Final solutions from various scenarios 

DV(1)/50 DV(1)/100 
No. Cost Devn. No. Cost Devn. 

1 548,692.44 83,568.52 1 548,692.44 83,568.52 
2 600,788.37 10,128.61 2 600,788.37 10,128.61 
3 607,837.82 729.35 3 607,837.82 729.35 
4 622,997.69 393.77 4 622,997.69 393.77 
5 695,639.25 16.44 5 695,639.25 16.44 
6 873,342.11 6.38 6 873,342.11 6.38 
7 877,835.85 3.85 7 874,042.13 1.66 
8 877,953.29 1.53 8 877,508.05 0.79 
9 884,889.29 1.25 9 890,655.38 0.68 

10 891,170.59 0.04 10 891,170.59 0.04 
 Unique: 0 

Untrue: 3 

KNF: 7 

Inf. Split.: 1541 

Runtime: 5.05 hrs. 

 Unique: 2 
Untrue: 1 

KNF: 5 

Inf. Split.: 2458 

Runtime: 9.58 hrs. 
DL(-) DL(+) 

No. Cost Devn. No. Cost Devn. 
1 548,692.44 83,568.52 1 548,692.44 83,568.52 
2 600,788.37 10,128.61 2 600,788.37 10,128.61 
3 629,684.60 358.44 3 607,837.82 729.35 
4 695,639.25 16.44 4 695,639.25 16.44 
5 876,624.05 4.22 5 873,730.58 1.82 
6 877,848.66 0.61 6 877,953.29 1.53 
7 881,074.66 0.45 7 881,879.48 1.02 
8 891,170.59 0.04 8 885,682.20 0.10 
   9 891,170.59 0.04 
      

 Unique: 3 
Untrue: 1 

KNF: 7 

Inf. Split.: 3850 

Runtime: 10.38 hrs. 

 Unique: 2 
Untrue: 2 

KNF: 7 

Inf. Split.: 2294 

Runtime: 11.99 hrs. 
Note: 

1. Bold: unique solutions; 
2. Italic: solutions non-dominated within scenario; 

3. KNF = Known not found. 
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Table 5.4 listed the Pareto members found in four scenarios and it is shown 

that the DV mechanisms are able to obtain 10 solutions, whereas the DL(-) and DL(+) 

mechanisms found 8 and 9 solutions, respectively. The bolded solutions are unique 

solutions within a scenario that are not found in the other scenarios. The italicized 

solutions are untrue Pareto, i.e. they are non-dominated only within a scenario where 

they reside, but if all solutions are combined, they become dominated. For example, 

solution 890,655/0.68 is non-dominated in DV(1)/100, but dominated in DL(-) or 

DL(+). Known-not-found solutions are the Pareto points not found in one scenario. 

For example, for DV(1)/100, these are solutions in DL(-) and DL(+) with deviation 

0.10, 0.45, 0.61, 1.82, and 358.44. Overall, the results in Table 5.4 suggest that each 

scenario, geared by different dispersal mechanism, has its own unique solutions that 

cannot be found in the other scenarios. DV(1)/100 is slightly better than the DL-based 

mechanisms in terms of the number of Pareto points unable to be discovered (KNF) 

and computation time. The population members of DV(1)/100 at final iteration are 

also spread in the bottom-left section of the feasible space where solutions for a min-

min problem are supposed to be (Figure 5.4). In contrast, a large portion of solutions 

of the DV-based mechanisms at final iteration are still “inside” the feasible region. 

Part of the long running times are suspected due to the amount of infeasible 

splitting during the chromosome construction. The construction process works by 

randomly generating the sequence of ports in the chromosome, and if an infeasible 

splitting occurs, the next random generation is called for, without any marking on the 

generated infeasible chromosome. Such markings are the notion of a tabu-search 

procedure and incorporating it is a potential area for future algorithm improvement. 
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Figure 5.4 Scatter plots of population from Model IV 

 

Finally, two non-dominated routing solutions are provided in Table 5.5 and 

visualized in Figure 5.5. Interestingly, these two solutions are found in the scenario 

with the least computation time DV(1)/50. It is clear that the number of routes in the 

obtained solutions is much less than that in the per-carrier optimization listed in Table 

5.3. Moreover, with total costs not too far away from the minimum-cost solution in 

Table 5.3, these can be considered acceptable for both carriers. Carrier B can now use 

its smallest vessel B1 instead of being forced to use both of its two expensive vessels, 

B2 and B3. Initially, in the minimum-cost solution, Carrier B is the “losing” side 

because its total cost is $41,784 above its targeted proportionate cost, whereas Carrier 
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A benefits from the partnership by a saving of that amount (see Table 5.3). In the two 

solutions in Table 5.5, Carrier B now gets the benefit at the expense of Carrier A, 

however, the discrepancy of $5,064 or $365 is much lower than $41,784. 

 

Table 5.5 Two non-dominated routing solutions 

Cost: $600,788.37 
Deviation: $10,128.61 

Cost: $607,837.82 
Deviation: $729.35 

Routing: 
A1: Sby-Btm-Mdn-Sby 

A2: - 
A2: - 

A3: Sby-Bpn-Smr-Tar-Sby 

A3: Sby-Jk2-Ptk-Sby 
A4: Sby-Kdi-Amb-Sby 

B1: Sby-Mks-Bit-Sby 

B2: Sby-Bjm-Jk1-Sby 

B3: - 

Routing: 
A1: Sby-Btm-Mdn-Sby 

A2: - 
A2: - 

A3: Sby-Jk1-Ptk-Sby 

A3: Sby-Bpn-Smr-Tar-Sby 
A4: Sby-Kdi-Amb-Sby 

B1: Sby-Mks-Bit-Sby 

B2: - 

B3: Sby-Bjm-Jk1-Sby 

𝑇𝐶𝐴 = 405,589.88 

𝛿𝐴 = 5,064.30 

𝑇𝐶𝐵 = 195,198.49 

𝛿𝐵 = −5,064.30 

𝑇𝐶𝐴 = 405,589.88 

𝛿𝐴 = 364.67 

𝑇𝐶𝐵 = 202,247.93 

𝛿𝐵 = −364.68 
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Figure 5.5 Routing visualization of solutions 
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5.5. Chapter Summary 

This chapter discusses the final model of this dissertation, i.e. a multi-

objective evolutionary algorithm ship routing problem for a maritime logistics 

collaboration of two liner companies in the scope of joint-routing network design. 

Two objectives in the model are minimization of total cost and minimization of 

deviation in fair cost proportion. The algorithm combines NSGA-II and the principles 

of aggressive but effective genetic algorithms from the published literature and an 

example of application with data background from the Indonesian archipelago is 

demonstrated. Two types of search mechanism are tested on four scenarios and the 

experiment results suggest that the mechanism based on dispersal value has a slightly 

better performance than the mechanism based on distance limit. Non-dominated 

solutions are found and translated to joint routings for both carriers. 

 

 

 

 

 

 

 

 

 



 

 

 

 

CHAPTER VI 

SUMMARY AND CONCLUSIONS 

 

6.1. Summary 

This dissertation explores a new topic in logistics that, to the best of our 

knowledge, has never been encountered in any earlier academic publication. The topic 

discussed is on maritime logistics collaboration with a more specific attention given 

on the segment of liner shipping that deals with the transportation of containers. A 

more detailed scope of the research is the construction of joint-routing network of two 

liner companies. Liner service is characterized by an important factor, i.e. adherence 

to the companies’ published schedule, and therefore the routing model chosen for the 

foundation is the vehicle routing problem with time windows (VRPTW). Because 

ships involve high capital costs and since shipping companies are very likely to own 

and operate heterogeneous vessels, the heterogeneous VRPTW that considers fixed 

costs is used in the final model and named as the ship routing problem (SRP). 

Although the formulation of SRP can be found in the literature, due to its immense 

complexity, it has never been compared on benchmark instances nor has its real 

application ever been showcased. In the section of method, multi-objective 

optimization is selected as the approach to accommodate different and conflicting 

preferences of the collaborating parties. A novel multi-objective evolutionary 

algorithm (MOEA) combining the strengths from a particular genetic algorithm and 

an elitist MOEA is proposed. Four models and case studies using the Indonesian 
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archipelago are developed as numerical instances for the purpose of model 

experimentation and analysis. Each model has its own scope and offers a different 

approach. The first two models introduce the idea of liner shipping collaboration, 

whereas the last two delve deeper into the area of methods. 

Model I in 3.3.1 introduces the idea of slot-exchange collaboration between 

two liner companies. The model is formulated as an assignment instead of a routing 

problem and two objectives are called for minimization: cost and sailing time. 

Limited scenarios are tested and no search mechanism is developed to explore the 

Pareto front, hence the model lacks ability to search for non-dominated solutions.  

Model II in 3.3.2 investigates different policies on fuel-consumption sharing 

and their impacts on the collaboration agenda. Two case studies of different sizes are 

set up but both are larger than the case study in Model I. The collaboration activity is 

still on capacity sharing, but the model is formulated as a single-objective problem. 

The model borrows VRPTW formulation but is extended with two distinct measures. 

The first measure is catered as slow-steaming decision variables and the second 

measure concerns the sharing policies in fuel consumption and is reflected in one of 

the sets of constraints. Experimenting with these measures is an attempt to find a 

better second objective. Three sharing policies are investigated: (1) open policy, 

where no restriction is applied, (2) proportionate-sharing policy, where the sharing of 

operational burdens (fuel consumption) is proportionate to the vessels contributed in 

the joint fleet, and (3) equal-sharing policy, where the fuel-consumption sharing is 

equal at 50-50 regardless of vessels contribution. 

In the next two models, the research stage shifts its focus towards method 

development. Model III in chapter four develops a population-based algorithm and 
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demonstrates its application in single-objective liner shipping routing problems. The 

problem is still formulated with single objective, but a search mechanism is developed 

using a meta-heuristic approach. Genetic algorithms for VRP (Prins, 2004) and HVRP 

(Prins, 2009) form the foundation of an extended version of this research’s own 

genetic algorithm. The extension includes: (1) two simple yet effective heuristics in 

the initial population construction stage: load-assignment and shooting ray; (2) time 

windows in trips’ feasibility tests, turning HVRP to HVRPTW, and (3) added local 

search. Two types of dispersal mechanism are tested based on: (1) distance limit, and 

(2) dispersal value. The distance-limit mechanism has two variants: increasing and 

decreasing distances. As in Model II, two case studies differing in sizes are developed 

to test the algorithm sensitivity against the scale of the problems. 

Finally, Model IV in chapter five culminates the research with the 

development of a MOEA for SRP in maritime logistics collaboration, more 

specifically in the scope of joint-routing network design of two liner companies. Two 

objectives are formulated; namely, minimization of total cost and minimization of 

deviation in fair cost proportion. The model takes into account the important findings 

from the preceding models. The idea of proportionate-sharing policy from Model II is 

formulated as the second objective (minimization of deviation in fair cost proportion) 

and the tenets of effective genetic algorithm developed in Model III is adopted and 

combined with the strengths of one particular elitist MOEA called the non-dominated 

sorting genetic algorithm (NSGA-II) from Deb et al (2000). The same dispersal 

mechanisms as in Model III are tested. The model properties, involving the quality of 

outputs and the computation times, are discussed based on the experiment results. 
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6.2. Conclusions 

Model I, being a preliminary model with the least degree of complexity than 

Models II-IV, does not provide significant results, but it highlights the need of a 

search mechanism to explore the Pareto front. The second objective of minimization 

of sailing time is also proven not critical thus the quest for a more practical objective 

remained. 

The optimization results in Model II show that the slow-steaming decision 

variables offer no significant value both in model enhancement and practical aspects. 

On the other hand, the sharing policies are promising to be investigated further. The 

minimum consumption is found in the open policy but due to its erratic behavior 

depending on the demands, it unfortunately cannot be used for establishing a liner 

schedule. This indicates a conflicting nature between the cost and policies, which is a 

prerequisite for a multi-objective problem. The large case study suggests that the 

proportionate sharing results in the least variance, thus is more predictable and better 

suited for planning. Given that the model has only one objective, Model II is still not 

improved from Model I in terms of the need for a search mechanism to find non-

dominated solutions. 

Extensive runs are carried out on Model III and the results show that the 

proposed two heuristics perform well and rank not worse than among the top-four 

spots in the population after its members are constructed. This conclusion is general 

for all scenarios, thus it can be concluded that the heuristics serve their purpose by 

helping the GA jump-start its search towards a better solution space. Three types of 

dispersal mechanism based on two different methods are also tested and in general the 

method using distance limit is better than that using dispersal value. Efforts to reach 
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the optimal point are mainly influenced by the number of iterations and to some 

extent the population size and the mutation rate. As indicated in our experiment 

results, larger number of iterations and population size, and a higher mutation rate, 

seem to be the best combination for the GA parameters. Lastly, the added local search 

procedure also helps the algorithm improve its final solution. By comparing the 

results of the small case and those of the large case, the proposed GA shows a 

tendency to become more competitive as the problem size becomes larger. This is 

indeed the advantage of any metaheuristic approach over a classical optimization 

approach where the former is more suitable for more complex problems.  

In Model IV, two types of search mechanism similar to the ones exercised in 

Model III are tested on four scenarios. Unlike in Model III, the mechanism based on 

dispersal value has a slightly better performance than the mechanism based on 

distance limit in terms of computation time and the ability to reach the true Pareto 

front. The argument behind this finding is that the mechanism based on distance limit 

generates more diverse solutions to enlarge the search space and it is advantageous in 

a single-objective problem, but not necessarily true in a multi-objective problem since 

the interest of decision makers are the non-dominated solutions in the Pareto front. 

Examples of non-dominated solutions found by the algorithm are translated as joint-

routing of both carriers and it is shown that while the solutions are not minimized in 

total cost, the inherent fairness that does not sacrifice either of the carrier serves as a 

balancing factor in the collaboration efforts. Such solutions highlight the practical 

benefit from this research that an “acceptable” network is not necessarily the least-

cost option, especially in a collaboration endeavor involving more than one company. 
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The nature of real-life problems that has many facets, which are often conflicting, is 

thus emphasized by this research. 

 

6.3. Research Contribution 

The research in this dissertation offers valuable contribution in the following 

areas. Firstly, this research enriches a growing number of studies in the field of 

maritime logistics collaboration, with emphasis given on network design and routing 

of liner shipping, using a quantitative approach. The vehicle routing problem (VRP) is 

an established concept in this field and it has been extensively studied but its 

applications are mostly concerned with land-based logistics. The extension of VRP to 

the ship routing problem (SRP) in this dissertation enriches the scope of VRP 

applications. To be more specific, the SRP considers heterogeneous vessels, time 

windows, and fixed cost, and these attributes are highlighted in this research. 

Secondly, collaborative activities will entail different and most likely 

conflicting preferences from the stakeholders. Multi-objective optimization is 

therefore a key concept in this research. Real-life problems are inherently multi-

objective and this approach raises the applicability of the obtained solutions. As 

suggested by the experiment outcomes, when two or more objectives are being 

considered, it is possible that optimizing one objective could sacrifice the other(s). 

Compromise, satisfactory solutions are therefore required and an effective method to 

obtain these solutions needs to be developed. This research accomplishes that front 

end from the formulation of a novel multi-objective evolutionary algorithm (MOEA) 

for SRP. Application of the algorithm is demonstrated on a maritime logistics 

collaboration problem. Neither the algorithm nor an example of its application has 
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ever been documented in the literature, therefore this research bears high practical 

values and significant contribution in this domain. 

 

6.4. Future Research Directions 

Several notes for future improvement of this research are in order. Firstly, 

although long computation times (as indicated in the results of Model IV) are still 

acceptable for an intermediate planning phase such as liner network establishment, 

efforts to reduce them should be attempted whenever possible. The algorithm is coded 

and run on Matlab and a switch to a more efficient programming language such as 

Java could remedy the situation. 

Secondly, still related to computation times, the algorithm suffers a drawback 

from excessive creation of infeasible splitting. This gets worse when the problem 

scale gets larger. A possible way to cut the amount is by enforcing a tabu list that 

records chromosomes that have been constructed but failed to be split, and compare 

each new chromosome with this list before calling the Split procedure. This 

comparison, with much less complexity than Split, should take less time than the time 

required to execute Split. 

Thirdly, there are other paths from the richness of GA/MOEA that can also be 

explored fur further study, e.g. exploring the most suitable crossover operator for a 

possibility of a more efficient algorithm. 
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APPENDIX A 

DATA FOR MODEL I 
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Carrier 1 

 

 

 

 

 

 

 

Fuel costs (US$) Fuel costs (US$)

Oil price 100 US$/barrel

Samarinda Kendari Makassar Ambon Kupang Samarinda Kendari Makassar Ambon Kupang

1 SS 10.348 13.173 8.964 20.342 14.265 1 SS 10.782 13.726 9.340 21.196 14.864

2 RW-39 10.067 12.815 8.720 19.789 13.877 2 RW-39 11.454 14.582 9.922 22.518 15.790

3 F 10.348 13.173 8.964 20.342 14.265 3 F 10.782 13.726 9.340 21.196 14.864

4 Xpress 11.020 14.029 9.546 21.664 15.191 4 Xpress 21.095 26.855 18.274 41.469 29.080

5 G 9.817 12.498 8.504 19.300 13.534 5 G 13.327 16.966 11.545 26.200 18.372

Sailing times (hours) Sailing times (hours)

Samarinda Kendari Makassar Ambon Kupang Samarinda Kendari Makassar Ambon Kupang

1 SS 46,36 59,02 40,16 91,14 63,91 1 SS 35,66 45,40 30,89 70,11 49,16

2 RW-39 44,58 56,75 38,62 87,64 61,45 2 RW-39 34,29 43,66 29,71 67,41 47,27

3 F 46,36 59,02 40,16 91,14 63,91 3 F 35,66 45,40 30,89 70,11 49,16

4 Xpress 35,12 44,71 30,43 69,05 48,42 4 Xpress 27,02 34,40 23,40 53,11 37,25

5 G 41,40 52,70 35,86 81,38 57,07 5 G 31,84 40,54 27,58 62,60 43,90

Vessels' particulars
No. Vessel Number Cap. (TEUs) DWT Speed (n) Speed (f)

1 SS 1 380 7215 12,5 16,25

2 RW-39 2 526 7855 13 16,9

3 F 1 224 4705 12,5 16,25

4 Xpress 2 662 8652 16,5 21,45

5 G 1 876 10652 14 18,2

7 2668

1) Fast steaming speed is 30% faster than the normal speed

Port data
No. Port Distance Demand Total Due-min Due-max

1 Samarinda 579,54 106 221 36 48

2 Kendari 737,79 392 873 48 60

3 Makassar 502,03 170 578 36 48

4 Ambon 1139,29 347 837 72 84

5 Kupang 798,91 328 745 48 60

1343 3254

1) Distances in nautical miles

2) Demand sizes in number of containers

3) Ambon via Makassar

4) Demand generated with U[100; 500]

5) Due dates in hours

Port
No. Vessel

Port

No fast steaming

No fast steaming

Fast steaming

No. Vessel
Port

Fast steaming

No. Vessel
Port

No. Vessel
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Carrier 2 

 

 

 

Fuel costs (US$) Fuel costs (US$)

Oil price 100 US$/barrel

Samarinda Kendari Makassar Ambon Kupang Samarinda Kendari Makassar Ambon Kupang

1 Ultima 9.948 12.664 8.618 19.556 13.714 1 Ultima 11.942 15.203 10.345 23.477 16.463

2 Tangguh 9.824 12.506 8.510 19.313 13.543 2 Tangguh 14.027 17.857 12.151 27.574 19.336

3 Spirit 11.122 14.159 9.635 21.865 15.332 3 Spirit 21.497 27.367 18.622 42.260 29.635

4 Marina 12.091 15.393 10.474 23.770 16.668 4 Marina 24.970 31.788 21.631 49.088 34.422

5 Mamiri 15.248 19.411 13.209 29.975 21.020 5 Mamiri 34.434 43.837 29.829 67.693 47.468

Sailing times (hours) Sailing times (hours)

Samarinda Kendari Makassar Ambon Kupang Samarinda Kendari Makassar Ambon Kupang

1 Ultima 43,57 55,47 37,75 85,66 60,07 1 Ultima 33,52 42,67 29,04 65,89 46,21

2 Tangguh 40,53 51,59 35,11 79,67 55,87 2 Tangguh 31,17 39,69 27,01 61,29 42,98

3 Spirit 34,91 44,44 30,24 68,63 48,13 3 Spirit 26,86 34,19 23,26 52,79 37,02

4 Marina 33,31 42,40 28,85 65,48 45,91 4 Marina 25,62 32,62 22,19 50,37 35,32

5 Mamiri 30,18 38,43 26,15 59,34 41,61 5 Mamiri 23,22 29,56 20,11 45,64 32,01

Vessels' particulars
No. Vessel Number Cap. (TEUs) DWT Speed (n) Speed (f)

1 Ultima 1 455 6013 13,3 17,29 13,32138

2 Tangguh 1 508 8618 14,3 18,59 14,29548

3 Spirit 1 712 13207 16,6 21,58 16,63102

4 Marina 3 846 13193 17,4 22,62 17,37778

5 Mamiri 1 1104 14464 19,2 24,96 19,15304

7 3625

1) Fast steaming speed is 30% faster than the normal speed

2) Normal speed is estimated with multiple regression equation 9,21 + 0,0056 Cap. + 0,00026 DWT

Port data
No. Port Avg. dist. Demand Total Due-min Due-max

1 Samarinda 579,54 115 221 36 48

2 Kendari 737,79 481 873 48 60

3 Makassar 502,03 408 578 36 48

4 Ambon 1139,29 490 837 72 84

5 Kupang 798,91 417 745 48 60

1911 3254

1) Distances in nautical miles

2) Demand sizes in number of containers

3) Ambon via Makassar

4) Demand generated with U[100; 500]

5) Due dates in hours

No fast steaming Fast steaming

No. Vessel
Port

No. Vessel
Port

No fast steaming Fast steaming

No. Vessel
Port

No. Vessel
Port

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX B 

LIST OF SOURCE CODES 
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Due to the amount of lines of the source codes (Lingo and Matlab), they are 

not provided in the hardcopy of this dissertation, but they have been uploaded and can 

be accessed in the following URL (only for Model IV): 

http://ti.ubaya.ac.id/index.php/component/content/article/24-dosen/183-list-of-

dissertation-source-codes.html  

Below is the screenshot of the above URL. 

 

 

 

 

 

 

 

 

 

http://ti.ubaya.ac.id/index.php/component/content/article/24-dosen/183-list-of-dissertation-source-codes.html
http://ti.ubaya.ac.id/index.php/component/content/article/24-dosen/183-list-of-dissertation-source-codes.html
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