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Abstract

The current study has successfully produced a mathematical model that can be used
to predict the rate of solution mediated transformation of polymorphs and also aid
understanding of the phenomenon. The model results have been compared with
experimental values of the solution mediated transformation of a-DL-methionine into vy-
DL-methionine (time dependent methionine concentration and polymorph mass fraction
results). Initially the parameters in the model were fitted based on experimental
measurements of crystal growth Kinetics, nucleation kinetics, dissolution kinetics and
induction times for the two polymorphs; there were no parameters in the model that were
fitted using solution mediated transformation data. This model showed the same trends as
the experimental data, but the rate of transformation was not correct. Analysis of the results
showed that the only parameter that could be responsible for the mismatch was the
dissolution rate constant; when this result was fitted based on solution mediated
transformation results then the fit was very good. Reasons for the mismatch are also
discussed.

A second study was made of modeling open steam distillation columns in order to
solve for the reflux ratio resulting in a minimum number of stages. It was hoped to be able
to find an analytical solution to the problem, however while an equation could be found
that gave the solution, the equation was very complex and could not be analytically solved.
The equation could be solved numerically for any set of operating conditions, and example

solutions are shown in this report.



Contents

Acknowledgements
Abstract (Thai)
Abstract (English)
Contents
Figures
I. Introduction
1.1 Background and Significance
1.2 Objective
1.3 Scope and Assumptions
1.4 Outcomes of the Research
Il. Theory and Literature Review
2.1 Polymorphs
2.2 Solution Mediated Transformation
2.3 Open Steam Distillation
2.4 Objectives
I11. Mathematical Models Used in the Study
3.1 Models used in the Solution Mediated Transformation Simulation
3.2 Models used in the Open Steam Distillation Model
IV. Results and Discussion of the Solution Mediated Transformation
4.1 Simulation Within and Outside the Metastable Zone
V. Results and Discussion for the Open Steam Distillation
VI. Summary
References

Appendix. Papers fully or partially supported by the project

Page

©® 0 O o UA D WN R R R LZ

AN D W NN B
W Rk, O N B B B



Figures

Figure 3.1 Finite control region, consisting of a control volume and particle
size range, for the derivation of the population balance.

Figure 3.2 Schematic diagram of an open steam distillation column showing all
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experimental data..
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kinetics obtained from a previous work [11], (b) the dissolution kinetics were
estimated from the combination of the modeling method with the SMT
experimental data.
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Figure 4.5 lllustrative data for crystal growth rates and dissolution rates as a
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growth rate dispersion, dissolution rate dispersion, a null supersaturation, and a
null undersaturation are all evident.

Figure 5.1 Reflux ratio necessary for the minimum number of stages in an
open steam distillation column with a saturated liquid feed with solute mole
fraction of 0.2. The top product composition is 0.95, and % recovery and
relatively volatility as given in the figure.

Figure 5.2 Reflux ratio necessary for the minimum number of stages in an
open steam distillation column with a saturated liquid feed with solute mole
fraction of 0.3. The top product composition is 0.95, and % recovery and
relatively volatility as given in the figure.

Figure 5.3 Reflux ratio necessary for the minimum number of stages in an
open steam distillation column with a saturated liquid feed with solute mole
fraction of 0.5. The top product composition is 0.95, and % recovery and
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Chapter |

Introduction

1.1 Background and Significance

Separation operations are among the most significant operations in the chemical
process industries, which are highly significant for the Thai economy, since they include
petroleum and petrochemical production, food industries, paints and pigment production,
and other chemical production industries.

The two most significant separation operations in the chemical industry (in terms of
numbers of products which require these operations in their processing) are distillation and
crystallization. These processes also account for a significant proportion of the cost of
processing the chemicals, and therefore a significant proportion of the cost of the products.
Thus the ability to optimize the separation operations has great significance to the chemical
process industry, and such optimization depends on simple but accurate mathematical
models of the processes involved. In many cases (for instance for distillation columns
operating at steady-state) satisfactory modeling of the systems has been long completed,
however there is great need in work in optimization of the processes based on known
mathematical models. In other processes (for instance competitive crystallization of
polymorphs in a batch crystallizer) optimization is not yet possible because mathematical
models for the process are not yet sufficiently accurate.

The current project aims to model and optimize the open-steam distillation process,
where a mathematical model of the process exists however it has not yet been optimized to
obtain a general solution for the optimum reflux ratio used. Another aim is to improve the
mathematical modeling of batch crystallization in combination with the polymorph
transformation process. An improved mathematical model could be used for process

optimization.

1.2 Objectives

(1) To produce a model based on first principle models of mechanisms and
continuity that can accurately model the crystallization of two polymorphs simultaneously,
and include the solution mediated transformation of the less stable polymorph to the more
stable polymorph.



(2) To produce a model that can model the relationship between the significant
variables in an open steam distillation column, and to use the model to find the reflux ratio,
the key optimizable parameter in the column operation, at which a particular column
(based on its feed state and composition, top product composition, and percent recovery of
solute component into the top product of the column) requires a minimum number of
stages. For a distillation column using a reboiler the reflux ration that results in a minimum
number of stages is R = infinity. However (despite the commonly held but naive) view that
the same reflux ratio will give the same result for open steam columns, it is easy to show

that this view is incorrect. The real optimum reflux ratio is, however, unknown.

1.3 Scope and Assumptions of Work

1.3.1 Scope and assumptions of Solution Mediated Transformation (SMT)

study

In the SMT study it has been assumed that there are only two polymorphs present
in the crystallization vessel at any time, and that the unstable polymorph has crystallized
first (as the Ostwald stability rule suggests). The kinetics for the underlying physical
mechanisms (crystal growth, crystal nucleation, and dissolution) for each polymorph can
be modeled using empirical physical models depending on the supersaturation as the
driving force, models that are widely accepted. The models can be parameterized based on

previous measurements of the process kinetics and fit the experimental data well.

1.3.2 Scope and Assumptions of the Open Steam Distillation Model

The model for the open steam distillation column is based on the constant molar
overflow theory assumed in the McCabe-Thiele method of design. This assumption means
that the molar flowrates (i.e. flowrate in units of mole/s) of both the liquid and vapor
phases in the top and bottom sections of the column are constant values. In this study the
steam injected into the bottom of the column is assumed to be saturated at the pressure of
the column. Pressure drops inside the column are ignored. The constant molar overflow
assumption is correct when the two species involved have essentially the same molar
enthalpy of vaporization under the conditions of the distillation (which is almost always
approximately true), the heat of solution in the liquid phase is small (again, this is

common), and where there are no heat losses in the column.



In addition this study assumes that the vapor-liquid equilibrium can be modeled via
a constant value of the relative volatility. This assumption is accurate in many distillation

systems, however there are obvious exceptions to this, including the ethanol-water system.

1.4 Outcomes of the research

The research has led to better understanding an ability to model the SMT process.
In addition it has shown where the limitations in the current models of the physical
processes leads to inaccuracies in modeling, particularly the need to improve dissolution
rate models at the very small levels of the undersaturation (or driving force for dissolution)
that are present for the unstable polymorph under the conditions of the SMT. Further
research work is evidently needed in these dissolution rate models in order to find an
acceptable model at very small driving forces.

In addition, the research has provided details of how the reflux ratio for the
minimum number of stages in an open steam distillation column can be found based on the
variables and parameters in the system. Unfortunately it was not possible to find an
analytical solution for the problem, however several sets of numerical solutions have been

determined and given graphically.



Chapter 11
Theory and Literature Review

2.1 Polymorphs

Polymorphs are different crystal structures of the same species. Polymorphism can
occur for two reasons; the first is that a molecule may have the same conformation in the
polymorphic forms but different packing (packing polymorphism) and the second is that
different conformers of a molecule may occur in the different crystal structures
(conformational polymorphism). Both forms of polymorph are relatively common, with a
characteristic example of a packing polymorph being p-nitrophenol [1] and a characteristic
example of a conformational polymorph being 1-(1,6-dithiahexyl)anthracene-9,10-dione
[2].

Two or more polymorphs of a species may exist at a particular state (T,P), however
only one polymorph can be stable at a particular state; all polymorphs appearing in a
system other than the stable form are referred to as metastable polymorphs. This leads to a
characterization for polymorphic systems: a system is known as a monotropic system if
one particular polymorph is stable (has the lowest free energy) for all temperatures below
the melting points of the polymorphs, and enantiotropic if there is one or more transition
temperatures where the stable polymorph changes from one polymorphic form to another.
Since crystallization is fundamentally a kinetic process, it is possible that a metastable
polymorph will form before the stable polymorph begins to crystallize. If a metastable
polymorph exists then it should transform into the stable polymorph in order to minimize
the free energy of the system. Ostwald’s rule of stages states that in a given system the
least stable polymorph that can crystallize will crystallize first, and this is followed by
successive phase transformations into the next least stable polymorph until the stable
polymorphic form is reached. Thus the first form created has the largest free energy of any
polymorphic form that can crystallize in the system and the form then converts step by step
to the polymorph having the minimum free energy. The stable polymorph must also have a
lower solubility than the metastable polymorphs, and thus the system also steps down from
polymorphs having a larger solubility to the minimum solubility form. It should be
strongly noted here that Ostwald’s rule of stages is an empirical statement based on
observations rather than a fundamental law, and that many exceptions to this rule have

already been observed.



2.2 Solution Mediated Transformation

Solution mediated phase transformation (SMT) is a process where a polymorph
transforms into a more stable polymorph with a solvent or solution playing some role in
the mechanism of the transformation. Care must be taken to distinguish this mechanism
from solid state transformation which tends to be a much slower process (at an equivalent
temperature) due to the more constrained nature of the molecules in the solid state.
Solution mediated phase transformation consists of three main mechanisms, the nucleation
of the more stable polymorph, the growth of the more stable polymorph and the dissolution
of the less stable polymorph. Thus the SMT can be modeled by a system that connects the
fundamental models of these mechanisms in a rigorous way.

The method to connect the models of the fundamental phenomena in the SMT to an
overall predictive model of the SMT is the population balance. The population balance
model was independently derived by two groups in the 1960s, Hulbert and Katz [3] and
Randolph and Larson [4,5]. Randolph and Larson [6] have stated that “... we shall
develop a predictive multidimensional particle distribution theory ...[which] is useful in
the a priori prediction of the form and often the magnitude of the particle distribution”
(where the highlights are those used by the original authors!). What is clear from this
comment is that the population balance model was always intended as a predictive and a
priori model. The parameters in the model (such as the growth rate as a function of
supersaturation or the dissolution rate as a function of undersaturation), are easily
measureable, and the boundary condition (the population density at zero size, which is
equal to the birth rate at zero size divided by the growth rate at zero size for the
supersaturation encountered) is also easily determined. The initial condition is the crystal
size distribution of the contents of the vessel at the start of the crystallization, which is
known. In order to fully model the SMT it is necessary to formulate a population balance
equation for each of the polymorphs present in the system. Since the measurements and
fundamental models required for the population balance model (nucleation, growth, and
dissolution for each of the polymorphs) seem straightforward, it appears that a fully
predictive model of SMT for a particular system should also be straightforward. The
methods used for measurements of the underlying data required for the kinetics, and the

models commonly used to fit the data, are available in well-known reference texts [7].



However, modeling of the SMT is essentially never done via a predictive method. In nearly
all cases in the literature it is done by fitting the model parameters required in the
underlying models for the crystal growth, nucleation, and possibly also dissolution
Kinetics, to experimental data for the SMT. Typical descriptions of methods include the
following: “...the parameters of the kinetic equations were estimated using data sets of
Run 1 and Run 2.” [8]; “...the in-situ experimental data combined with parameter
estimation algorithms were used to calculate the nucleation and growth kinetics ...” [9].
This is not meant as a criticism of these previous studies (since these studies represent very

good research concerning SMT) or other similar previous studies of the SMT.

2.3 Open Steam Distillation

Open steam distillation is a technique that is similar to ordinary distillation
processes, however where instead of using a reboiler to produce vapor from the liquid at
the bottom of the column, steam is injected directly into the bottom of the column. In this
case all the liquid at the bottom of the column becomes the bottom product. Naturally this
type of system is specific to processes where the bottom product of the column is intended
to be predominately composed of water. This can be a more efficient process because
plants typically have ready sources of steam (for heating and other purposes) and designing
the column does not require the design or construction of the heat exchanger required for
the reboiler. The types of design calculations for open steam columns are modifications of
those required for traditional columns, taking into account the differences in the mass,

component and energy balances in the bottom section of the column.

2.4 Objectives

(1) To produce a model of the solution mediated phase transformation of
polymorphs based on first principles modeling, including continuity equations for particle
numbers (i.e. the population balances for each polymorph) and measured kinetic values of
the underlying process mechanisms (crystal growth, crystal nucleation, and crystal
dissolution). The project will also compare the model to carefully determined experimental
data for the SMT for a- and y-DL-methionine, and industrially and biologically significant
amino acid that crystallizes in a polymorphic system.

(2) To produce a model for the open steam distillation process for a binary feed

mixture in terms of the significant variables and parameters in the system (for instance top



product composition, percent recovery, feed composition and state, relative volatility of the
solute, etc...). This model is then to be analyzed mathematically in order to fins the reflux

ratio at which a minimum number of theoretical stages will result.



Chapter 111
Mathematical Models Used in the Study

3.1 Models used in the Solution Mediated Transformation Simulation

For the model of the crystallizer with SMT the first component of the model
required is the population balance. This equation is an equation of continuity of entities (as
in particles) and is given via a balance of particles within a differential size class (L to L +
dL) into and out of a differential control volume, as shown in Fig. 3.1. The number density
of particles within this size range is n (#/m3m). Velocity vector components are

represented by v.

7 Vz|z+Az ® | | > L
4 I Vyly+y L L+AL
(X, y, 2+42)
Vyly — " > (x,y+ay,z) ] Vx|x+4x
y
SN
xy.2) : (x+4X, Y, 2)
Vyly
Valz
> X

Fig. 3.1: Finite control region, consisting of a control volume and particle size range, for

the derivation of the population balance.

The end result of this balance is the partial differential equation (PDE)

oan(x,y,z,Lt) _ _[a(\/xn) s o(v,n) . o(v,n) N G(Gn)] (3.1)

ot OX oy 0z oL
or
8_n+v_(vn)+_6(Gn) =0
ot oL (3.2)



This derivation did not, however, take into account mechanisms that could give rise to new
crystals (birth) or those that could destroy entities (death). The nucleation of crystals is
considered to occur at a size approaching zero, and hence can be taken care of using a
boundary condition rather than as an extra term in the PDE. This equation is the well-
known population balance equation (PBE)

a—n+V-(vn)+@—B+D:O (3.3)
ot oL

In the case of the current research it is necessary to write this equation for each of
the polymorphs, in this case polymorph a and polymorph y. G is the crystal growth rate of
the polymorph considered in the equation.

The equation above is impossible to solve except in a few cases. If the system is
well mixed (i.e the properties of the system are the same at any point in the system) than it
is possible to use a “well-mixed” form of this balance. This can be achieved by integrating
the spatially dependent population balance above over the entire region V, and then
simplifying the integral of the spatial divergence of the population flux to a surface integral
using the Gauss-Ostrogradskii Divergence Theorem. The result is

a_n+ n 5(|09V) + a(Gn) _ Z Qin,inin,i _z Qout,inout,i +B=D
dt ot oL \Y Vv (3.4)

Here, the Q terms represent either in or out-flows with their respective particle number

densities nin or Nout. V is the volume of the crystallizer.

The crystallizer modeled in this work is a batch crystallizer. This is a more complex
model than a continuous crystallizer, since continuous crystallizers operate at steady-state
resulting in the first two terms being equal to zero. This reduces the continuous crystallizer
models being ordinary differential equations: the assumptions for the batch crystallizer
maintain the model as a PDE however. For the batch crystallizer there are no inflows or
outflows, and in a carefully controlled batch we can assume that birth and death terms are
also zero. In addition, when the change in volume of the species on crystallization is small
(as is usually the case) a batch crystallizer operates at constant volume, and as such the

second term on the left hand side is zero. In addition, the crystal growth rate is independent
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of crystal size, such that (in the third term of the left hand side) G can be removed from the
differential. Thus the model becomes (for the two polymorphs)

ong ong

2 TG =0 ng(L,t=0)=ng0 ny(L=0,t) = By(t)/Ga(t) (3.5)
ony ony, . _ _ i
- TG 5 =0 ng(L,t =0) =ny,, n,(L=0,t) = B,(t)/G,(t) (3.6)

The driving forces for the crystallization processes are

Sa(t) =52 (3.7)
Cy ()
Sy () = =% (3.8)

These are different functions since the solubility (C*) of the two polymorphs are different.
However the actual concentration of the two polymorphs is the same at any time (since the
polymorph molecules are identical in the liquid phase). The growth rate G(t) and

nucleation rate B(t) can be determined from the following models

Go(t) = kg a(Se(t) = )™ (3.9)

G, (t) = kg, (S,(®) = 1) (3.10)
Bo(t) = kpo(Sa(®)™" (3.11)
By (t) = kg o (S, ()™ (3.12)

If the driving force for a polymorph is negative then the growth becomes dissolution. This
can only occur to the less stable polymorph (in this case the alpha one).
Dy(t) = kpa(1 — Se(£))"4® (3.13)

The model also contains an experimentally determined induction time; the time required
from the creation of supersaturation until the creation of viable nuclei. The parameters in
these kinetic models can be found from fitting sets of accurate experimental data. The
Kinetic data needed to parameterize the models for DL-methionine have already been

collected in a set of previous articles.
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3.2 Models Used in the Open Steam Distillation Model

L]

D
v o
» Xp
Ho
-.-,....,,§Page n
F V y Yn+1 T R I—1 Xn
XF >— Stage f
Hr :
Stage m =
V| yme v | Lo Xm
Stage N-1 | ———
Stage N |——
4|
VN+1 | J' B=Ln
yn+1 =0 XB = XN
Hv,n+1 Hs

Fig. 3.2 Schematic diagram of an open steam distillation column showing all significant

flows and compositions, and control volumes for the balances used.

A schematic diagram of the type of column used for open-steam distillation giving
relevant solute mole fractions in stream flows (x for mole fractions in liquid streams and y
for mole fractions in vapor streams) and the molar flow rates of the streams in kmol/s (L
for liquid flows and V for vapor flows, with rates in the bottom section having an
overscore) is given above. It is also necessary to do an energy balance over the entire
column, and so enthalpy values (H) are given for inflows and outflows, as well as the

cooling load in the condenser at the top of the column.
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0
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X, mole fraction solute in liquid

Fig. 3.3 Schematic diagram of the design of an open steam distillation column showing

equilibrium and balance lines used.

Balances over the entire column give:
F+V,,=D+B (3.14)

Fxg = Dxp + Bxg (3.15)

The top section of the column can be modeled with a solute balance over a finite set of
stages (from the top of the column to an arbitrary stage n in the top section, above the feed
point).

L D
Yna =\7Xn +VXD (316)

Which reduces to

XD
yn+1 = Xn

(3.17)
R+1 R+1

Based on the definition of the reflux ratio, R = L/D and the overall balance which shows
thatV=L + D.
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The bottom section of the column is modeled with similar solute balances

L L
Lty 3.18
ym+l V m V B ( )

The feed mixture must also be added at the most appropriate point of the column, which is
determined via balances around the feed based on the following equation
Zg

y:ﬁ.x_ﬁ (3.19)

Where q is defined via the following equation involving the enthalpies of the saturated
feed, saturated vapor and saturated liquid at the same temperature and pressure (or the
fraction of the feed which is a liquid if the feed is a two-phase mixture).

L-L_ H,-H

_ 3.20
F H,—H, | (3:20)

The g-line represents the locus of possible intersection points for the top section operating
line and the bottom section operating line. This allows for the bottom section operating line
to be fully specified given the top section operating line (which only requires the top
product composition xp and the reflux ratio R) and the g-line (which requires the feed

composition zr and enthalpy Hr).

In order to determine the driving force for the mass transfer at any stage in a column (or at
any height in a packed column) the equilibrium concentrations must also be known, which
is usually given as a function y* = f(x), where y* is the equilibrium vapor phase mole
fraction for a liquid phase mole fraction of x in the contacting liquid phase. The function
depends on the thermodynamics in the given binary system, however a simple and
commonly used assumption is that of constant relative volatility, «, where relative
volatility is defined (in a binary system) as

_yr A=y
““Zﬁ?ﬁ‘ (3.21)

Solving to obtain the equilibrium vapor phase solute mole fraction gives
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aX
xo_ OX 3.22
Y i x(@-1) (3:22)

Thus, at a particular point in a column (a stage in a staged column, or at a particular point
in the packing for a packed column) the equilibrium vapor phase in contact with the liquid

phase is

2, (3.23)
1+ X, (-1

y *

Equation 3.23 is valid for the entire column, unlike equation 3.17 which is only
valid for the section of the column above the feed, and equation 3.18 which is valid only
for the section below the feed. Together, equations 3.17, 3.18, and 3.23 describe the
driving force for the distillation, and also the separation that can be expected in one ideal
stage, for the packed and staged columns. It should be noted that these equations are using
only mass balances on sections of the columns and equilibrium thermodynamics, and
hence the equations are equally valid for both types of columns.

Since the contacting methods are different in packed columns and staged columns,
as is the required result (either the height of packing required or the number of stages
required) the derivations for modeling the two types of column now begin to differ.
However the reflux ratio for the minimum number of stages should be very close to the
reflux ratio for the minimum height of packing. Starting with the packed column we can
derive the height of packing required based on the mass transfer rates as a function of
position in the column, a derivation which is given in many texts on mass transfer design.
The height of packing for a particular section of column is given by the equation

Y2
L = Lyj (3.24)
5 Kyas(y*-y)

Where y; represents the vapor phase mole fraction entering the bottom of the section, y
represents the vapor phase mole fraction leaving the top of the section, y* is the
equilibrium vapor phase composition (which depends on the liquid it is in contact with)
and is given by equation 3.23, y is the actual vapor phase composition at that point and is
given by equation 3.17 or 3.18 depending on whether the point is in the section above the
feed point or the section below the feed point, V is the vapor phase flow rate (in mole/s or
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similar), S is the packed cross-section of the column, and Kya represents a mass transfer
coefficient (mole/m?2s) multiplied by a specific surface area for the packing (m? interfacial
area/m® packed volume). The cross-section area is usually constant since constant diameter
columns are usually used, and the vapor phase flow rate is also constant in a section based
on the constant molar overflow assumption already made in deriving the mass balances.
The assumption that the mass transfer coefficient and specific surface area of the packing
are also constant leads to
L - vV % dy
K,aS 3 (y*-y)

(3.25)

The term outside the integral is usually referred to as the height of a transfer unit
based on the overall gas phase driving force (Hog), and the integral is referred to as the
number of transfer units based on the overall gas phase driving force (Nog). In order to
determine the minimum height of packed column which could achieve a particular
separation we would need to minimize the number of transfer units.

To calculate the number of transfer units in the distillation column it is necessary to
sum two integrals, one for the section of column below the feed stage and one for the
section of column above the feed stage.

The equilibrium line, equation 3.23 (which is valid for both sections) has only a
single parameter which is known for any relevant system. The top section operating line
contains only two parameters, the top product composition xp and reflux ration R. The
value of xp is given in the problem statement as one of the two major design objectives of
the column (along with the solute recovery, Cr). The value of R is what we can optimize in
order to minimize the value of the number of transfer units. This indicates that in the top
section of the column we know both functions in the integral, y* and y. This does not
indicate that we can evaluate the integral because the lower limit of the integral still needs
evaluation; the top limit of the integral is y. = xp since the distillate product is made via a
complete condensation of the vapor produced at the top of the column. However we will
determine the value of y; for the top section latter as this is equal to the upper limit of the
integral for the lower section of column.

The bottom section of the column is modeled with

(Xn=Xs) (3.26)

<|| r

ym+1 =
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We will assume the feed is a saturated liquid since a liquid feed is most common, and the
saturated liquid is simplest for the calculations involved. Based on balances around the
feed point for these conditions

L=L+F=RD+F (3.27)
G=G=L+D=D(R+1]) (3.28)

The recovery is defined as the fractional amount of solute in the feed which is recovered

into the top product, and therefore

c, =% (3.29)
FX;

Thus

D= CrXeF (3.30)
XD

Thus

[- RGP ¢ (3.31)
XD

v = S%eF gy (3.32)
X

We will consider a feed flow rate equal to 1 mole/s as a basis (without loss of generality —
scale-up does nothing to change the result of this calculation). Therefore

RCLXe

L= +1 (3.33)
XD

v = S (R ) (3.34)
XD

This produces the bottom section operating line

CiXe R+ X5
=" —2(X,,—X 3.35
ym+1 CRXF(R+1)( m B) ( )

This still has one value which is as yet unknown, the bottom product composition
xg. This can be calculated from the top product composition and product recovery. A

component balance over the column gives



17

XsB = Fx. — DX, (3.36)

Equation (17) relates the component recover to the feed and top product, such that

XsB = Fxz —Cgx: (3.37)
Thus
X, = LBCRXF (3.38)

And since the bottom product molar flow rate, B, is equal to the liquid molar flow rate in
the bottom section of the column, it is given by equation (20). With some simplification,
the bottom product is
« = Xe X5 1-Cp)

3.39
®  CexR+X, (3.39)
Thus
ym+1=CRXFR+XD Xm_xeD(l—CR) (3.40)
CXe (R+1) CiX:R+Xp

Using the definition of the number of transfer units applied to both sections of the column,

we obtain

Yint Xp

— fym+1 +J‘ dyn+l (341)
o (YY) 5 (Y*=Yn)

0G

The equations for yn+1 and ym+1 are the operating lines derived above, equations 3.17 and
3.40, and the function y* is given for both sections by equation 3.23. The last variable
required for the solution is the vapor phase mole fraction at the intersection between the
two operating lines, yint. This can be found from the intercept between the g-line and the
top-section operating line, equations 3.17 and 3.19, under the basis that g = 1, and x, = zr =
Xg: since the feed is a liquid we can use the liquid phase mole fraction variable x rather
than the more general z. This gives

_ RXg +X,

= 3.42
ylnt R +1 ( )
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This fully parameterizes the two integrals in equation 3.41. We can calculate the driving
force (y — y*) for each section of the column by using the operating line to calculate xn (for
example) as a function of yn+1 and then using the x value in the equilibrium line to

calculate the appropriate function for y*. Rearranging equation 3.17 for x, gives

Xn — yn+1(R;1)_XD (343)

This can then be substituted into equation 3.23 to obtain the equilibrium vapor phase mole
fraction.

We will integrate each of these independently, giving Nog,t for the top section, and
Nog,s for the bottom section. To minimize the height of the packed column we need to
minimize the sum of these two integrals.

The number of transfer units for the top section

yi=X X —(1—0!) E Yo t (1_a)X7D+1
R S ! _F R R
Noo= | 522, 9= ] R+1 R+1 X g
Yint ~In Y (1— o)l ST |y 2 REL) _q_g "o |21y — %o
a-af Ptz (o B ) - - - %
:I _2Clnyn +C4n ) (344)
Yint Clnyn—i_CZnyn—i_CSn
Where, C,, = (1- a)(RRH]
R+1 X
C, =|a —= |-1-a)=2>-1
" (“(Rj( R J
ax
C3n:_ RD
XD
C4n = (1—0{)34'1
Using integral forms of
dx 1 2ax +b—+/b? —4ac
j > = In (3.45)
ax’+bx+c b2 _dac | 2ax+b++b? —4ac
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J xdx :iln(ax2 +bx +¢) -

b n 2ax+b—+/b? —4ac
aX2+bX+C 2a 2a11b2_4ac

2
2ax+b++b —4acJ (3.46)

Rearranging Eqgs. 3.44 to

? Yady, k: 1dy,
_Cl”jc y2+C,y +C. “”Ic y2+C,y +C
NOG|T: Yie —1nYn 2nJn 3n Yine —InJn 2nJn 3n (347)
Solving Egs. (3.47), we get the result
X

VCZZn _4ClnC3n 2C1n Yn +C2n + szn _4C1nC3n 2C1nC2n C22n _4C1nC3n

2C +C, —+CZ —4C,C )
| 2n¥s *Can =VCn 24CuCar | Civ (o ae s )
2C1n Yn +C2n + C22n _4C1nc3” 2C1n

[ C4n [chn yn C2n - szn _4ClnC3n J ClnCZn
In +
Nog, 1=

Y (3.48)

Rearranging to

Xp

C2n
Cln +7 In 2C1n yn +C2n . VCZZn _4C1nc3n
VCZZn _4C1nC3n 2C1n Y +C 2n+VC22n _4C1nc3n

}%In(cln yr? +C2n yn +C3n)

Yint

(3.49)

Nog,T =

_ Rxg +xp

y nt —
Take lower limit ( R+1 ) and upper limit (xo) and rearrange term of this, the
solution become to:

C2n
C4n +7 In (2C1nXD +CZn B VCZZn _4C1nC3n chln Yint +C2n + VCZZn _4C1nC3n )
NogT = VC22n _4C1nC3n (zclnXD +C2n + VCZZn _4C1nC3n chln Yint +C2n - VCZZn _4C1nc3n )

_£|n|: C:lnXIZD +C2nXD +C3n :|
C1n ylznt + C2n ylnt + CBn

2 (3.50)
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Yint 1

0 y*_ym

Nocp = dy,, (3.51)

Solving Equation 3.18 for Xm:

Xg xCRx(R+1)
Xo =Y + Xw
Xg xCRxR+ Xy

(3.52)
Rewriting Egs. 3.21 to
. ax,,
Y ="
1-x,(1-a) (3.53)

Then, after substituting into the integral for the bottom section and rearranging, we get

RxR
y . + Xg xCRxR+X, [ 1 j(XW(l—a)—l)
X, xCRx(R+1) \1-a
X, xCRx(R+1)
Xe xCRxR+X, [xeCRxR+xDj( 1 j
m 4w

dy,

1-x,, +axX, —0{

2
-yt
I X¢ xCR x (R +1) X xCRx(R+1) \1-a
=) xcrxR
X X X R+ X
Noc,s = F 2
(3.54)
or
y - X. xCRxR+X, ( 1 j[xw(l—a)—l]
I X, xCRx(R+1) \1-« "
’ X. xCRx(R+1) )
1-x, +ax, —«a
o X. xCRxR+X, y o X xCRxR+X, ( 1 j
" X¢ XCR x (R +1) " X xCRx (R+1) \ -«
=) <CRxR+x
'NOG,B: g X XR+Xp
(3.55)
Yint ym+csm
2 m
'NOG,B: 0 ym+Clmym+C2m (356)
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Xe x CRx R+ X, ( 1
l-a

Xg XxCRx(R+1)
X xCRx(R+1)

1-x, +ax, —a
]{ " v Xg xCRxR+Xp

m —
Where, [
S Xg xCRxR+ Xy
M \1-a )\ x. xCRx(R+1)

X xCRxR+Xx 1
Cop =[ % |2 a1
X, xCRx(R+1) \1-«a

Rearranging Eq. 3.56 to

Yint

y yj;n 1
T dy, +C,, dy,
’ 0 yli + Clm ym + C2m (357)

'NOG,B = 0 yr2n +Clm ym +C2m

Solving 3.57 we get the result

C1m In 2ym +Clm - Vclzm _4C2m
2 C12m _4C2m 2ym +C1m + VClZm _4CZm

Yint
C3m In[zym +C1m - Vclzm _4C2m }]

[% In(y; + C1m y + CZm )_

-Nogp =

+

VClZm _4CZm 2ym +Clm + VClzm _4CZm

0 (3.58)

Rearranging to

C Yint

Can="  (2y +C, —.JCZ —4C
2 In( Yin * 1 2m +%In(y,i+clmym+c2m)

\ C12m - 4'CZm 2ym + C1m + Vclzm - 4'C2m

-Nogg = 0 (3.59)

Yo = RXg + Xp
Take lower limit (zero) and upper limit (* R+1 ) and rearrange term of this, the

solution become to:
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C m
Cgm _? Inl:(zylnt + C1m B VClzm B 4C2m )(Clm A Clzm B 4CZm )]
-N = \/Clzm — 4Gy (Zylnt +Cyp + \/Clzm —4C,, ) (Clm - \/Clzm —4C,, )
0oGB —
+£|n ylznt +C1m ylnt +CZm
: Com (3.60)
or
Clm
B C3m _7 In (Zylnt + Clm - VC12m _4C2m )(C1m + kY, C12m _4C2m )
Clzm _4C2m (Zylnt +Clm + VC12m _4C2m )(Clm - Clzm _4C2m)
Nocs =
_E In y|2nt + c1my|nt + C2m
2 Com (3.61)

3.2.1 The Total Number of Transfer Units (Nogc):

The total number of transfer units necessary in the column is simply the sum of the
numbers of transfer units in both sections:
Noc = Nog,7 + Nog,s (3.62)

This equation (the sum of Nog 1 and Nogg) is a relatively simple function of the
reflux ratio R, as it appears in the constants of these two terms. Thus, the function can be
differentiated with respect to R, and finding the value of R which results in the differential
being equal to zero gives the value of R that will result in the minimum number of transfer
units for the entire column, and will also be a close approximation to the value R for the
minimum number of theoretical stages. The analytical differential of the function can be
found without trouble in programs such as Mathematica or Reduce. It is however too long
to show here, taking up in excess of 10 printed pages in Mathematica format!
Unfortunately the equation is too extensive for Mathematica or Reduce to find a suitable
simplification (the computer runs out of memory before a solution is found, if such a
reduction exists). In addition the programs cannot find an analytical solution to the

derivative being equal to zero. We are still working on this problem to find simplifications
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or analytical solutions. However, we are able to solve the equation numerically for suitable
values of the parameters used in the method. These results are shown in chapter V.

A similar method was used to obtain a solution for the case of a saturated vapor
feed. In this case the g-line for the feed is a different function, and hence the operating
lines and the intersection of the operating lines is different. However the derivation is
similar, and not difficult to construct based on the work presented above.



Chapter IV
Results and Discussion for the Solution Mediated Transformation

4.1 Simulations Within and Outside the Metastable Zone

Simulation results using the parameters for crystal growth rate kinetics, crystal
nucleation rate Kinetics, crystal dissolution rate Kinetics, and induction time data from
previous research from the group [10-12] on the species’ a-DL-methionine and y-DL-
methionine were compared to experimentally measured SMT data for DL-methionine.
Although the simulation can predict a large number of variables as a function of
experiment time (relating to the particle size distributions of the two polymorphs, the total
mass and volume of crystals in both polymorphic forms, the total concentration of DL-
methionine remaining in the solution, the mass fraction of DL-methionine in a particular
polymorphic form, among others) the main variables we are interested in and would
measure during a SMT are the concentration of the solute in solution as a function of time
and the mass fraction of the crystal in a particular polymorphic form.

Two sets of simulations were performed. The first set had no fitted parameters; all
parameter values in the model were given based on models with concentration driving
forces that were predicted on measurements of the underlying physical phenomena
(equilibrium between solid and liquid phases, crystal nucleation, crystal growth, and
crystal nucleation) for the two polymorphs published in our previous articles. The results
for these simulations are shown in Figure 4.1a for a batch crystallization where the initial
concentration of solute is outside the secondary nucleation threshold of the stable
polymorph (causing an instantaneous nucleation of the stable polymorph), and Figure 4.2a
where the initial concentration of solute is within the secondary nucleation threshold of the
stable polymorph (causing an delayed nucleation of the stable polymorph). It can be seen
that this model greatly over-predicts the rate of the conversion of a-DL-methionine to y-
DL-methionine. In the case of the experiment outside the secondary nucleation threshold
(having spontaneous nucleation) the conversion being complete in the model prediction
within circa 500 min whereas in the experiments full conversion requires approximately
5000 min. In the case of the experiment within the secondary nucleation threshold the
experiment reaches complete conversion only after 12000 min whereas the model

predicted complete conversion within 6000 min.
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Fig. 4.1 Solute concentration and fraction of y-DL-met in the crystal phase during the
polymorphic transformation for Co = 40.5 kg m™: (a) the dissolution kinetics obtained from
a previous work [11], (b) the dissolution kinetics were estimated from the combination of

the modeling method with the SMT experimental data.
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Fig. 4.2 Solute concentration and fraction of y-DL-met in the crystal phase during the
polymorphic transformation for Co = 37.0 kg m™: (a) the dissolution kinetics obtained from
a previous work [11], (b) the dissolution kinetics were estimated from the combination of

the modeling method with the SMT experimental data.

Analysis of the model in comparison with the experimental results shows that the
rate of conversion between the two polymorphs is controlled by three mechanisms, the rate
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of dissolution of the unstable polymorph, the rate of nucleation of the stable polymorph,
and the rate of crystal growth of the stable polymorph.

More detailed descriptions of one of the a priori modeling of one of these
experiments is shown in Figure 4.3 (solute concentration) and Figure 4.4 (stable
polymorph fraction). Note that the population balance model is completely independent of
the experimental SMT results since it uses fundamental models of growth, dissolution, and

nucleation parameterized on experimental measurements of the mechanisms in isolation.
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Fig. 4.3 The concentration of DL-methionine as a function of time during SMT of a-DL-
methionine to y-DL-methionine starting at a concentration within the instantaneous
Secondary Nucleation Threshold (SNT) of y-DL-methionine. The first 70 min of the
transformation are expanded to highlight the crystal growth of the metastable form.
Experimental data e ; prediction of a priori population balance model — — — ; prediction of

population balance model with a fitted dissolution rate constant —— .
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Fig. 4.4 The fraction of DL-methionine in the y-DL-methionine form as a function of time
during SMT of a-DL-methionine to y-DL-methionine starting at a concentration within the
instantaneous SNT of y-DL-methionine. Experimental data e ; prediction of a priori
population balance model — — — ; prediction of population balance model with a fitted

dissolution rate constant —— .

It is clear that the predictions of the a priori model are not good. Although the
concentration data is fitted acceptably, the polymorph fraction results are not fitted at all
well. The predicted polymorph fractions for the stable polymorph increase far too rapidly
compared to the experimental results, showing that one of the rates in this step is much
faster in the model than it is in the experiments. Analysis of the data showed that the
mechanism that was not fitted well was the dissolution rate of the metastable polymorph.
The dissolution kinetics is assumed to be first order and therefore only have a single
parameter, the dissolution rate constant. This parameter was allowed to vary in order to fit
the experimental data for these experiments (and also experimental data performed above
the SMT), and the results are shown using the solid line in Figures 4.3 and 4.4. The second
set of predictions on Figure 4.3 and 4.4 shows very good agreement with the experimental
data, and use of the same rate constant in other SMT data (for instance data outside of the
instantaneous SNT) also showed a very good fit. However in achieving this improved
result the dissolution rate constant decreased from the measured value of 5.8x107" m/s to a

value of 7.5x10° m/s, a quite drastic re-evaluation of this constant! The error in the initial
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value may be due to an assumption that the dissolution rate of both polymorphs is mass
transfer controlled, and that therefore the dissolution rate of the two polymorphs should be
equal for an equal driving force, considering that the two polymorphs have different
solubility and therefore a different driving force at an equal concentration. The metastable
polymorph was found to occur as very small crystals of irregular shape since it can only be
produced from precipitation of the species from acidic solutions. Therefore the dissolution
rate measurements were performed on the stable polymorph and the dissolution model
transformed across to the metastable polymorph. Although this appears incorrect in this
instance it is a commonly used assumption. For instance the Sherwood correlation for mass
transfer is commonly used to predict dissolution rate constants of a metastable polymorph
[8,13], which indicates an assumption that the mass transfer is rate controlling for
dissolution. Even when allowing a single parameter to float results in a good fit to the data,
it is not clear whether the model parameters are now an accurate representation of the real
mechanisms. The change between the measured dissolution kinetics and the predicted
kinetics is larger than could be expected, with the fitted dissolution rate constant being
almost two orders of magnitude smaller than the experimental one for the stable
polymorph.

Similar results were seen in experiments starting outside of the instantaneous SNT.
When the fully a priori model was used the agreement between the model predictions and
the experimentally measured SMT were poor, particularly during the step involving the
dissolution of a-DL-methionine and the growth of y-DL-methionine. Using the same fitted
dissolution rate constant as with the first set of experiments allowed a very good fit to the
experimental data. The following section discusses particular improvements to
understanding and modeling the underlying mechanisms involved in the SMT which could

assist in achieving accurate a priori modeling of the SMT.

4.1.1 Improvements Required to Obtain Accurate SMT Models

The modeling of the underlying phenomena for the SMT tend to be very simple
engineering models of the phenomena (for instance the use of power law models to
represent the relationship between average kinetics for a phenomenon and driving forces)
that do not fully represent the complexity of what occurs in real systems. The researchers
in this project completed a survey of prior experimental work to determine in what ways

models of the underlying phenomena, such as nucleation, growth, and dissolution kinetic
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equations could be improved so that complete models of SMT could better represent real
data. Discussion of why these models may fail to accurately model the systems studied and
what further understanding relating to these processes is required is discussed in this
section. An illustration of the complexity of crystal growth and dissolution kinetics is
shown in Figure 4.5, which shows artificial data which could describe a typical system.
The plot is based on similar data for step velocities in potassium bichromate [14] and
crystal growth and dissolution rates for sucrose [15]. This plot will help to illustrate many

of the points discussed below.
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Relative Supersaturation
Fig. 4.5 Illustrative data for crystal growth rates and dissolution rates as a function of
relative supersaturation. In carefully measured experimental data, growth rate dispersion,
dissolution rate dispersion, a null supersaturation, and a null undersaturation are all

evident.

4.1.2 The Growth Rate Model & Null Supersaturation

Carefully measured experimental data on crystal growth rates at low values of the
supersaturation typically find a region above the solubility where crystal growth does not
occur (see the region 0 < o < 0.01 on Figure 4.5). This region has an upper bound called
the null supersaturation, below which crystal growth is negligible or zero. For instance
Khaddour et al. [16] have commented that for sucrose “... obtained growth rate curves
show a practical stoppage of the growth process at 6=0.04” and comment that this

phenomenon agrees with measurements taken over 40 years previously [17]. The
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phenomenon has also been observed by a range of groups in pure and impure solutions
[18-21]. Neglecting the null supersaturation will result in a model that does not predict the
crystallization Kinetics near the solubility of either polymorph very well.

A second problem with crystal growth rate Kinetics is that the relative significance of the
rate of mass transfer and the rate of surface integration is often not taken into account.
There are two methods that can be used to correctly account for this; the crystal growth
rates can be measured in an agitated vessel similar to the crystallizer used for SMT over a
range of agitation rates, and the role of mass transfer predicted from these experiments, or
the crystal growth rates can be measured under surface integration controlled conditions
and the mass transfer kinetics predicted from mass transfer correlations. It is important to
take this into account in the model, since the relative significance of the rate of mass
transfer might be significantly different in the crystallization vessel compared to the

solution in which the experiments to determine the crystal growth rates were performed.

4.1.3 Dissolution Rate Model and Null Undersaturation

The dissolution rate modeling typically contains the same difficulties as the crystal
growth rate modeling. In the case of SMT modeling, the null undersaturation (the region -
0.01 <6 <0 on Figure 4.5) is a more significant feature than the null supersaturation. This
iIs because the system may spend a considerable time at, or very close to, the
supersaturation of the metastable polymorph, which is a-DL-methionine in the system
discussed in the section above. At the start of the SMT the system may maintain a
concentration close to the solubility of the metastable polymorph while this polymorph
dissolves, depending on the relative kinetics of the crystal growth of the stable polymorph
and the dissolution kinetics of the metastable polymorph. During this period the dissolution
rate of the metastable polymorph may be very low (due to the null undersaturation)
compared with the rate predicted based on a model parameterized by dissolution
measurements at higher undersaturation values. This slowing of the dissolution of the
metastable polymorph may greatly reduce the rate of the SMT, and this is likely what has
occurred in the case study above.

A second consideration is whether the dissolution rate of a crystal is really mass
transfer controlled for the species under consideration. If the dissolution rate is not fully
mass transfer controlled then the relative rates of the surface reaction and mass transfer

need to be investigated under conditions similar to those under which the SMT takes place.
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It is possible that for a large number of species the assumption that dissolution may be

modeled using mass transfer correlations may be inadequate.

4.1.4 Growth Rate Dispersion (GRD) and Dissolution Rate Dispersion (DRD)
Careful measurements of crystal growth rates using a large population of crystals show that
there is significant crystal growth rate dispersion for crystals grown under the same
conditions of growth. A typical example is a recent study by Srisa-nga et al., [22] which
showed that the fastest five percent of a population of a-glucose monohydrate crystals had
growth rates that were six to eight times larger than the slowest five percent of the
population. This is shown in Figure 3 by comparison of the data Gi to the mean value as a
function of supersaturation, G. This is important since the population balance models for
the polymorphs require a mass balance closure in order to correctly predict the time
dependent supersaturations of all relevant polymorphs. This can only be achieved
accurately if a full growth rate distribution (or dissolution rate distribution) is known such
that the time dependent crystal size distributions are modeled accurately. If the time
dependence of the supersaturation is not modeled adequately then the rates of the
significant mechanisms (growth, dissolution, nucleation, induction time, etc...) will also be
incorrect.

Currently available growth rate models only attempt to model the mean crystal growth rate
of a distribution, and such a form is typically used in the population balance models
without attempting to account for GRD. Using only a mean crystal growth rate when GRD
is significant miscalculates the mass balance by a significant amount. As an example of the
significance of GRD to the mass balance, consider a population of 1x10° crystals which
are a monosize distribution at 40 um, and are cubic in habit. These crystals grow for a
period of 1 h with a growth rate distribution which is normally distributed with a mean
growth rate of 1 um/min and a standard deviation of 0.38 um/min (which equates to the
fastest five percent of crystals growing at 7.3 times the rate of the slowest five percent).
The end result of this growth is a population of crystals with a normally distributed crystal
size distribution that has a mean of 100 pm and a standard deviation of 22.8 um. The
volume of these product crystals is 1.156 mL, whereas if only the mean growth rate was
used the volume predicted for the product would be exactly 1 mL. Thus, use of only the
mean growth rate has underestimated the volume by fifteen percent (and the change in

volume due to growth by a larger amount). It is important to note that even if the growth
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rate distribution is symmetric the reduction in volume produced caused by the slow
growing crystals is not sufficient to cancel the increase in volume produced due to the fast
growing crystals. Accurate mass balances require that the population balance accounts for
the crystal growth rate dispersion if it is significant, and nearly all carefully measured
crystal growth rate data has observed significant GRD. If the mass balance calculation used
with the population balance is not sufficiently accurate then the supersaturation dependent
parameters in the model will also be incorrect, leading to a poor prediction.

Similar arguments can be made for the effect of DRD. This is a less well known
phenomenon than GRD, however it is known to exist [14,15]. Dissolution of the
metastable polymorph is an extremely significant part of the SMT, and thus DRD needs to
be accurately modeled in the population balance if it exists to a significant extent in the

system.

4.1.5 Nucleation Rate Modeling
There is very incomplete knowledge about nucleation in systems containing two or more
polymorphs. In particular it is usually assumed that secondary nucleation only occurs with
the aid of parent crystals of the same form of crystal as that which is nucleating. This has
been shown to not be true in previous studies. For instance Elankovan and Berglund [23]
have shown via Raman spectroscopy that secondary (contact) nuclei of both anhydrous a-
glucose and a-glucose monohydrate can form from parent crystals of anhydrous a-glucose.
The authors used the result to suggest that contact nucleation is due to the removal of a
semiordered absorbed layer from the surface of the parent crystal, and that this partly
disordered cluster is able to reform into a different structure than the parent crystal it is
removed from. Although these two forms are not polymorphs (but an anhydrous form and
its monohydrate) the result that the material removed from the parent is both disordered
and able to rearrange into a different form has important implications in the study of
solution mediated transformation. This makes the mechanism of nucleation of the stable
polymorph in suspensions containing crystals of the metastable polymorph difficult to
model. The rate is likely to be somewhere between the primary nucleation rate (nucleation
from a solution containing none of the polymorphs or hydrates/solvates of the solute) and
the secondary nucleation rate where secondary nuclei are produced from the correct
(stable) polymorph. At the moment there appears to be no way to fundamentally model

this. Experiments for secondary nucleation can be performed in similar systems
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(attempting to nucleate the stable polymorph from suspensions containing the metastable
polymorph) however in such a case it is difficult to prove whether the initial nuclei formed
are the stable polymorph, the metastable polymorph, or a mechanical mixture of the two
polymorphs.

A further consideration in modeling nucleation rates is that the rate of secondary
nucleation will depend strongly on the agitation in the system, the fluid dynamics, and also
the suspension density. Thus, nucleation rates should be measured in a system with similar
properties to that likely to be used for the SMT, if possible.

Another very significant problem in the measurement of nucleation kinetics in systems
containing more than one polymorph is to distinguish the nucleation of the two
polymorphs under conditions where two or more polymorphs may nucleate
simultaneously. This is in principle a very difficult task, however there have been two
approaches used in the literature. The first method is to use spectroscopic and/or particle
characterization methods to characterize the polymorphic form of the nuclei. An example
of the use of this method is work by Schall et al. [24], who measured nucleation rates in
the polymorphic system of L-glutamic acid, determining the form of the crystal with in-situ
Raman spectroscopy and by a Particle Vision and Measurement (PVM) system. The PVM
system can be useful when the polymorphs have strongly differing habits, as in the case of
a- and B- L-glutamic acid. This method is likely to produce accurate results, although care
needs to be taken that there is no phase transformation occurring before a definite
determination can be made, for example before the spectroscopic signal is strong enough
and/or before the particles are large enough to be detected or large enough to maintain a
characteristic shape. The second method that has been used is to search for a discontinuity
in the nucleation Kinetics that could be attributed to a change in the nucleating species, as
has been demonstrated by Teychené and Biscans [25] in a study of nucleation of the
polymorphs of eflucimibe. In this method care needs to be taken to ensure that the
discontinuity is not due to a change in the nucleation mechanism of a single polymorph,
from a heterogeneous to a homogeneous mechanism for example. Further fundamental

studies concerning nucleation in polymorphic systems are certainly warranted.

4.1.6 Induction Time Prediction
The induction time may be independent of the nucleation rate, however many of the

difficulties discussed in section 3.4 will also be apparent in attempting to model the
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induction time of the stable polymorph. Induction times are either measured in terms of
metastable zone width (MSW) values or nucleation thresholds (NT); however the
induction time is strongly dependent on the range of conditions that the solution
experiences between the formation of the solution and the nucleation event (or the
detection of nucleation) and these two methods will give different induction times for the
same nucleation condition. Thus, the induction time is extremely difficult to predict using a
fundamental model, and is instead typically fitted with empirical relationships. In either
case a decision is needed as to whether the primary nucleation threshold or the secondary
nucleation threshold is most applicable to the system being modeled, but the presence of
the metastable polymorph makes this decision difficult. It is likely that the nucleation
threshold is somewhere between the primary nucleation threshold and the secondary
nucleation threshold, perhaps closer to the latter.

A second difficulty with induction time measurements is their wide scatter;
replicate induction time measurements can often vary by hours, so a large number of
replicates are needed to accurately describe the induction time. Even when this is done, the
induction time for a particular SMT experiment may be anywhere within the distribution of
induction times predicted by the experimental induction times at a particular condition.
Induction times for secondary nucleation also suffer from the fact that the induction time
tends to depend on the amount and size of the parent crystals used to induce the secondary
nucleation, and the agitation and fluid dynamics that is present in the system. Induction
time experiments for secondary nuclei need to be made in a system as close as possible to
the system in which the SMT takes place.

In some models for the induction time (or nucleation threshold or metastable zone
width) the phenomenon is seen as an artificial construct caused only by the fact that nuclei
formed as soon as the solution is produced still require a certain period of time to obtain a
large enough number concentration and size in the solution to be able to be detected. In
this case we need to ask whether a model of the phenomenon is required at all? The
phenomenon should be able to be accounted for within the nucleation and growth rate
models, without the need for an additional condition on the population balance. If the
modeling is done in this way care needs to be taken to account for the fact that the crystals
that have a size between the size of a critical nucleus and the size of a detectable crystal
will have lower growth rates than the detectable crystals, due to the size dependence of the

solubility for very small crystals. More recently there has been some discussion as to
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whether some part of the metastable zone is, in fact, a true metastable state [26]. Further
studies on the phenomenon are necessary to clarify this issue.

4.1.7 The Effect of Changes in Shape

As mentioned earlier, closure of the population balance models requires a mass
balance to determine the supersaturations of all relevant polymorphs as a function of time.
This is necessary in order to accurately determine the kinetics as a function of time. The
mass balance should be calculated from either the second or third moments of the crystal
size distribution of each polymorph, and the relevant shape factors. Typically in the
population balance models it is assumed that the shape factors are constant with respect to
time, however in certain cases this assumption may be violated. In particular it is known
that particular facial growth rates of certain crystals have a significant dependence on the
level of supersaturation, and that therefore the aspect ratios and the shape factor of the
crystals will change during the SMT. A similar effect may occur during the dissolution of
the metastable phases. In most cases this effect is likely to be minor, although it is
necessary to consider the possibility if accurate models of the other phenomenon still fail

to adequately describe the SMT.

4.1.8 Effect of Crystalline Perfection on Rates and Solubility

Most kinetic data (in particular for growth and dissolution measurements) is
measured based on large, very perfect seed crystals. In addition, most nucleation rate data
is performed at low enough supersaturation that well-formed crystals are created. The
metastable form in SMT may not be in agreement with these measurements: often the
initial metastable phase is irregular and imperfect in shape and quality, and may consist of
very small sized particles. Strongly imperfect crystals and also very small crystals have
different solubility, and different kinetics when the change in solubility is taken into
account, than large near perfect crystals. This may lead to incorrect estimates from all the
parameter models (the growth rate model, the dissolution rate model, the nucleation rate
model, and the induction time model) for the metastable polymorph in particular, based on

measurements in more ideal systems.



Chapter V
Results and Discussion for the Open Steam Distillation

As mentioned, although it has been shown to be possible to find the function
relating all variables to the number of transfer units (a more convenient task than
evaluating the number of stages) and also to take the derivative of this equation with
respect to the reflux ratio (and therefore to set this derivative equal to zero to define the
reflux ration at which the number of stages should be a minimum) it has not been possible
to solve this equation analytically to give an exact answer for any conditions (see chapter 3
on the mathematical model for details of the derivation and equations involved). It has
been possible to solve the equation numerically for any given set of conditions however.

Some examples are shown below.
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Fig. 5.1 Reflux ratio necessary for the minimum number of stages in an open steam
distillation column with a saturated liquid feed with solute mole fraction of 0.2. The top
product composition is 0.95, and % recovery and relatively volatility as given in the figure.
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Fig. 5.2 Reflux ratio necessary for the minimum number of stages in an open steam
distillation column with a saturated liquid feed with solute mole fraction of 0.3. The top

product composition is 0.95, and % recovery and relatively volatility as given in the figure.

The examples given are plotted between 80% recovery and 98% recovery; this is
the likely range in industrial practice since smaller recoveries are uneconomic because the
loss (greater than 20%) of product is too significant, and recoveries greater than 98% will
be uneconomic because of the requirement for a very large number of stages, or larger
reflux ratios. The trends of the results are in agreement with expectations, in that an
increase in % recovery increases the reflux ratio necessary to achieve a minimum number
of stages for open steam distillation, as does a decrease in the relative volatility of the
binary mixture. The effect of the feed composition was not forecasted, however clearly a
decrease in the amount of solute in the feed greatly affects the ability to easily recover this
solute, thus leading to an increase in the reflux ratio required to give the minimum number
of stages. Note that these conclusions are only correct for open steam distillation columns;
the reflux ratio required for a minimum number of stages for a column with a reboiler is a

reflux ratio of infinity (as is well known).
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Fig. 5.3 Reflux ratio necessary for the minimum number of stages in an open steam
distillation column with a saturated liquid feed with solute mole fraction of 0.5. The top

product composition is 0.95, and % recovery and relatively volatility as given in the figure.

Clearly the results presented above are not all those obtained. The model has also
been solved for open steam distillation columns where the feed is a saturated vapor. In this
case the model for the system is different for the case above, and hence the solutions are
also very different, although can be achieved in the same manner as above. Graphs of these

solutions (in a similar format as Fig 5.1 — 5.3) are available from the author if required.

The equations for different feeds containing both liquid and vapor have not been
solved yet, although the method will be analogous to the above. (The fraction of the feed in
the vapor phase is required to be known in order to solve the 2-phase feed problem). While
subcooled liquid or superheated vapor feeds could also be used in industrial columns, the
problem becomes more complex because of the need to perform the energy balance at the
feed, and thus subcooling or superheating in terms of the enthalpy relative the saturated
state must also be known (and is not given a-priori in the relative volatility value). This is

beyond the scope of the present study and has not been attempted.



Chapter VII

Summary

There are two studies within the present study, a study of a model of the solution
mediated transformation of polymorphs, which will be used to further understand how
different crystalline polymorphs convert from less stable polymorphs to more stable
polymorphs, and a model of an open steam distillation column that can be used to find the
reflux ratio at which a minimum of stages will be required. Both problems are very
significant in the chemical industry, and also in the pharmaceutical industry for the
polymorph problem.

The mathematical study of the polymorph transformation was very successful,
leading to a good model of the phase transition, with all parameters but one coming from
experimental measurements of the underlying mechanisms. Only the dissolution rate
constant of the metastable polymorph needed to be fitted. We have fully investigated why
this parameter causes difficulties, and have made conclusions about this in a full study. The
work was published in Journal of Crystal Growth and also presented as a Plenary
Presentation in the Asian Crystallization Technology Society symposium in 2012.

In the second problem, it was possible to model the system to find a general model
between the number of stages and the reflux ratio, with the other significant variables in
the systems (the feed state and composition, the top product composition, the percent
recovery of the solute,...) as parameters in the model. It was also possible to find an
analytical solution for the derivative of this model with respect to the reflux ratio. Setting
this derivative to zero and solving for the reflux ratio gives the reflux ratio that will result
in a minimum number of stages in the system. Unfortunately the analytical equation is
many pages long in Maple code, and Maple (and Reduce) is unable to find a general
solution for where this equation is equal to zero. However, if values are given for the
parameters needed in the design of the column a numerical solution can be found for any
set of conditions, and thus the minimum number of stages can be found. Some of these
solutions are plotted here, and other can be requested from the author. The minimum
number of stages possible for a separation is an important consideration in the design of
distillation columns, as it sets a limit for possible designs, and suggests a likely number of

stages to be used in a real column.
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