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บทคัดย่อ 
 
การศึกษาวจิยัน้ีประสบผลส าเร็จในการสร้างแบบจ าลองทางคณิตศาสตร์เพื่อใชท้  านายอตัราการเปล่ียน
รูปผลึกโดยอาศยัสารละลายเป็นส่ือกลาง (solution mediated transformation) ของผลึกท่ีมีโครงสร้างผลึก
มากกวา่หน่ึงแบบ และช่วยใหเ้ขา้ใจเร่ือง การเกิดการเปล่ียนรูปผลึกโดยอาศยัสารละลายเป็นส่ือกลาง มาก
ยิง่ข้ึน ผลการค านวนท่ีไดจ้ากแบบจ าลองน้ีไดน้ ามาเปรียบเทียบกบัค่าจากการทดลองการเกิด การเปล่ียน
รูปผลึกโดยอาศยัสารละลายเป็นส่ือกลางของ อลัฟา-ดีแอล-เมทไธโอนีน (-DL-methionine) ไปเป็น  
แกมมา-ดีแอล-เมทไธโอนีน (-DL-methionine) โดยเปรียบเทียบในส่วนของความเขม้ขน้ของเมทไธ
โอนีนท่ีเปล่ียนแปลงไปตามเวลาและอตัราส่วนโดยมวลของผลึกทั้งสองแบบ เบ้ืองตน้นั้นตวัแปรต่างๆ ท่ี
ใชใ้นการสร้างแบบจ าลองเจาะจงใชเ้ฉพาะท่ีสามารถวดัไดจ้ากการทดลองเก่ียวกบัปรากฏการณ์ การโต
ของผลึก การเกิดผลึกใหม่ การละลายของผลึก และช่วงเวลาก่อนการเกิดผลึกของผลึกทั้งสองแบบ โดย
ไม่มีตวัแปรท่ีสร้างมาจากขอ้มูลของการเปล่ียนรูปผลึกโดยอาศยัสารละลายเป็นส่ือกลางมาเก่ียวขอ้ง ซ่ึง
แบบจ าลองท่ีสร้างข้ึนใหผ้ลการค านวนไปในทิศทางเดียวกนักบัขอ้มูลท่ีไดจ้ากผลการทดลอง แต่ค่าอตัรา
การเปล่ียนแปลงโครงสร้างของผลึกนั้นไม่ถูกตอ้ง จากการวเิคราะห์ผลท่ีไดท้  าใหท้ราบวา่ตวัแปรท่ีมีผล
ท าใหแ้บบจ าลองและการทดลองใหผ้ลไม่เหมือนกนัคือ ค่าคงท่ีของอตัราการละลาย เน่ืองจากเม่ือลอง
ก าหนดตวัแปรท่ีเก่ียวขอ้งกบัขอ้มูลการเกิดการเปล่ียนรูปผลึกโดยอาศยัสารละลายเป็นส่ือกลาง เพิ่มลงไป 
แบบจ าลองใหผ้ลออกมาดีมาก  ส าหรับเหตุผลของความคลาดเคล่ือนของแบบจ าลองนั้นก็ไดว้เิคราะห์
และน าเสนอไวใ้นงานวจิยัน้ีแลว้ การศึกษาในส่วนท่ีสองเป็นการสร้างแบบจ าลองทางคณิตศาสตร์ของ
หอกลัน่ไอน ้าแบบเปิด เพื่อน ามาใชห้าปริมาณอตัราส่วนท่ีเหมาะสมในการป้อนกลบัของของเหลว
ผลิตภณัฑท่ี์ไดห้ลงัจากการกลัน่เขา้สู่หอกลัน่ ในกรณีท่ีตอ้งการออกแบบใหห้อกลัน่มีขนาดเล็กท่ีสุด 
(จ านวนชั้นของหอกลัน่นอ้ยท่ีสุด) ซ่ึงในเบ้ืองตน้นัน่คาดวา่จะสามารถสร้างสมการท่ีสามารถแกไ้ด้
โดยง่าย แต่เม่ือสร้างสมการข้ึนมาส าเร็จ สมการท่ีไดน้ั้นมีความซบัซอ้นมาก จนไม่สามารถแกโ้ดยใช้
ระบบวธีิการทางการวิเคราะห์ได ้อยา่งไรก็ตามสมการท่ีถูกสร้างข้ึนน้ีสามารถแกไ้ดโ้ดยใชร้ะบบวธีิการ
ทางตวัเลขในทุกๆ สภาวะการทดลอง ซ่ึงในรายงานน้ีก็ไดแ้สดงตวัอยา่งการแกส้มการไวด้ว้ย 
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Abstract 

 

 The current study has successfully produced a mathematical model that can be used 

to predict the rate of solution mediated transformation of polymorphs and also aid 

understanding of the phenomenon. The model results have been compared with 

experimental values of the solution mediated transformation of -DL-methionine into -

DL-methionine (time dependent methionine concentration and polymorph mass fraction 

results). Initially the parameters in the model were fitted based on experimental 

measurements of crystal growth kinetics, nucleation kinetics, dissolution kinetics and 

induction times for the two polymorphs; there were no parameters in the model that were 

fitted using solution mediated transformation data. This model showed the same trends as 

the experimental data, but the rate of transformation was not correct. Analysis of the results 

showed that the only parameter that could be responsible for the mismatch was the 

dissolution rate constant; when this result was fitted based on solution mediated 

transformation results then the fit was very good. Reasons for the mismatch are also 

discussed.  

A second study was made of modeling open steam distillation columns in order to 

solve for the reflux ratio resulting in a minimum number of stages. It was hoped to be able 

to find an analytical solution to the problem, however while an equation could be found 

that gave the solution, the equation was very complex and could not be analytically solved. 

The equation could be solved numerically for any set of operating conditions, and example 

solutions are shown in this report.  
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Chapter I 

Introduction 

 

1.1 Background and Significance 

 Separation operations are among the most significant operations in the chemical 

process industries, which are highly significant for the Thai economy, since they include 

petroleum and petrochemical production, food industries, paints and pigment production, 

and other chemical production industries.  

The two most significant separation operations in the chemical industry (in terms of 

numbers of products which require these operations in their processing) are distillation and 

crystallization. These processes also account for a significant proportion of the cost of 

processing the chemicals, and therefore a significant proportion of the cost of the products. 

Thus the ability to optimize the separation operations has great significance to the chemical 

process industry, and such optimization depends on simple but accurate mathematical 

models of the processes involved. In many cases (for instance for distillation columns 

operating at steady-state) satisfactory modeling of the systems has been long completed, 

however there is great need in work in optimization of the processes based on known 

mathematical models. In other processes (for instance competitive crystallization of 

polymorphs in a batch crystallizer) optimization is not yet possible because mathematical 

models for the process are not yet sufficiently accurate.   

The current project aims to model and optimize the open-steam distillation process, 

where a mathematical model of the process exists however it has not yet been optimized to 

obtain a general solution for the optimum reflux ratio used. Another aim is to improve the 

mathematical modeling of batch crystallization in combination with the polymorph 

transformation process. An improved mathematical model could be used for process 

optimization. 

 

1.2 Objectives 

  (1) To produce a model based on first principle models of mechanisms and 

continuity that can accurately model the crystallization of two polymorphs simultaneously, 

and include the solution mediated transformation of the less stable polymorph to the more 

stable polymorph.  
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 (2) To produce a model that can model the relationship between the significant 

variables in an open steam distillation column, and to use the model to find the reflux ratio, 

the key optimizable parameter in the column operation, at which a particular column 

(based on its feed state and composition, top product composition, and percent recovery of 

solute component into the top product of the column) requires a minimum number of 

stages. For a distillation column using a reboiler the reflux ration that results in a minimum 

number of stages is R = infinity. However (despite the commonly held but naïve) view that 

the same reflux ratio will give the same result for open steam columns, it is easy to show 

that this view is incorrect. The real optimum reflux ratio is, however, unknown.  

 

1.3 Scope and Assumptions of Work 

 1.3.1 Scope and assumptions of Solution Mediated Transformation (SMT)     

study 

 In the SMT study it has been assumed that there are only two polymorphs present 

in the crystallization vessel at any time, and that the unstable polymorph has crystallized 

first (as the Ostwald stability rule suggests). The kinetics for the underlying physical 

mechanisms (crystal growth, crystal nucleation, and dissolution) for each polymorph can 

be modeled using empirical physical models depending on the supersaturation as the 

driving force, models that are widely accepted. The models can be parameterized based on 

previous measurements of the process kinetics and fit the experimental data well. 

 

 1.3.2 Scope and Assumptions of the Open Steam Distillation Model 

 The model for the open steam distillation column is based on the constant molar 

overflow theory assumed in the McCabe-Thiele method of design. This assumption means 

that the molar flowrates (i.e. flowrate in units of mole/s) of both the liquid and vapor 

phases in the top and bottom sections of the column are constant values. In this study the 

steam injected into the bottom of the column is assumed to be saturated at the pressure of 

the column. Pressure drops inside the column are ignored. The constant molar overflow 

assumption is correct when the two species involved have essentially the same molar 

enthalpy of vaporization under the conditions of the distillation (which is almost always 

approximately true), the heat of solution in the liquid phase is small (again, this is 

common), and where there are no heat losses in the column. 
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 In addition this study assumes that the vapor-liquid equilibrium can be modeled via 

a constant value of the relative volatility. This assumption is accurate in many distillation 

systems, however there are obvious exceptions to this, including the ethanol-water system.  

   

 1.4 Outcomes of the research 

 The research has led to better understanding an ability to model the SMT process. 

In addition it has shown where the limitations in the current models of the physical 

processes leads to inaccuracies in modeling, particularly the need to improve dissolution 

rate models at the very small levels of the undersaturation (or driving force  for dissolution) 

that are present for the unstable polymorph under the conditions of the SMT. Further 

research work is evidently needed in these dissolution rate models in order to find an 

acceptable model at very small driving forces. 

 In addition, the research has provided details of how the reflux ratio for the 

minimum number of stages in an open steam distillation column can be found based on the 

variables and parameters in the system. Unfortunately it was not possible to find an 

analytical solution for the problem, however several sets of numerical solutions have been 

determined and given graphically.  

 

 

 

 

 

 

 

 



Chapter II 

Theory and Literature Review 

 

 2.1 Polymorphs 

 Polymorphs are different crystal structures of the same species. Polymorphism can 

occur for two reasons; the first is that a molecule may have the same conformation in the 

polymorphic forms but different packing (packing polymorphism) and the second is that 

different conformers of a molecule may occur in the different crystal structures 

(conformational polymorphism). Both forms of polymorph are relatively common, with a 

characteristic example of a packing polymorph being p-nitrophenol [1] and a characteristic 

example of a conformational polymorph being 1-(1,6-dithiahexyl)anthracene-9,10-dione 

[2].  

 Two or more polymorphs of a species may exist at a particular state (T,P), however 

only one polymorph can be stable at a particular state; all polymorphs appearing in a 

system other than the stable form are referred to as metastable polymorphs. This leads to a 

characterization for polymorphic systems: a system is known as a monotropic system if 

one particular polymorph is stable (has the lowest free energy) for all temperatures below 

the melting points of the polymorphs, and enantiotropic if there is one or more transition 

temperatures where the stable polymorph changes from one polymorphic form to another.    

Since crystallization is fundamentally a kinetic process, it is possible that a metastable 

polymorph will form before the stable polymorph begins to crystallize. If a metastable 

polymorph exists then it should transform into the stable polymorph in order to minimize 

the free energy of the system. Ostwald’s rule of stages states that in a given system the 

least stable polymorph that can crystallize will crystallize first, and this is followed by 

successive phase transformations into the next least stable polymorph until the stable 

polymorphic form is reached. Thus the first form created has the largest free energy of any 

polymorphic form that can crystallize in the system and the form then converts step by step 

to the polymorph having the minimum free energy. The stable polymorph must also have a 

lower solubility than the metastable polymorphs, and thus the system also steps down from 

polymorphs having a larger solubility to the minimum solubility form. It should be 

strongly noted here that Ostwald’s rule of stages is an empirical statement based on 

observations rather than a fundamental law, and that many exceptions to this rule have 

already been observed. 
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 2.2 Solution Mediated Transformation 

 Solution mediated phase transformation (SMT) is a process where a polymorph 

transforms into a more stable polymorph with a solvent or solution playing some role in 

the mechanism of the transformation. Care must be taken to distinguish this mechanism 

from solid state transformation which tends to be a much slower process (at an equivalent 

temperature) due to the more constrained nature of the molecules in the solid state. 

Solution mediated phase transformation consists of three main mechanisms, the nucleation 

of the more stable polymorph, the growth of the more stable polymorph and the dissolution 

of the less stable polymorph. Thus the SMT can be modeled by a system that connects the 

fundamental models of these mechanisms in a rigorous way. 

 The method to connect the models of the fundamental phenomena in the SMT to an 

overall predictive model of the SMT is the population balance. The population balance 

model was independently derived by two groups in the 1960s, Hulbert and Katz [3] and 

Randolph and Larson [4,5].  Randolph and Larson [6] have stated that “… we shall 

develop a predictive multidimensional particle distribution theory …[which] is useful in 

the a priori prediction of the form and often the magnitude of the particle distribution” 

(where the highlights are those used by the original authors!). What is clear from this 

comment is that the population balance model was always intended as a predictive and a 

priori model. The parameters in the model (such as the growth rate as a function of 

supersaturation or the dissolution rate as a function of undersaturation), are easily 

measureable, and the boundary condition (the population density at zero size, which is 

equal to the birth rate at zero size divided by the growth rate at zero size for the 

supersaturation encountered) is also easily determined. The initial condition is the crystal 

size distribution of the contents of the vessel at the start of the crystallization, which is 

known. In order to fully model the SMT it is necessary to formulate a population balance 

equation for each of the polymorphs present in the system. Since the measurements and 

fundamental models required for the population balance model (nucleation, growth, and 

dissolution for each of the polymorphs) seem straightforward, it appears that a fully 

predictive model of SMT for a particular system should also be straightforward. The 

methods used for measurements of the underlying data required for the kinetics, and the 

models commonly used to fit the data, are available in well-known reference texts [7].  
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However, modeling of the SMT is essentially never done via a predictive method. In nearly 

all cases in the literature it is done by fitting the model parameters required in the 

underlying models for the crystal growth, nucleation, and possibly also dissolution 

kinetics, to experimental data for the SMT. Typical descriptions of methods include the 

following: “…the parameters of the kinetic equations were estimated using data sets of 

Run 1 and Run 2.” [8]; “…the in-situ experimental data combined with parameter 

estimation algorithms were used to calculate the nucleation and growth kinetics …” [9]. 

This is not meant as a criticism of these previous studies (since these studies represent very 

good research concerning SMT) or other similar previous studies of the SMT. 

 

 2.3 Open Steam Distillation 

  Open steam distillation is a technique that is similar to ordinary distillation 

processes, however where instead of using a reboiler to produce vapor from the liquid at 

the bottom of the column, steam is injected directly into the bottom of the column. In this 

case all the liquid at the bottom of the column becomes the bottom product. Naturally this 

type of system is specific to processes where the bottom product of the column is intended 

to be predominately composed of water. This can be a more efficient process because 

plants typically have ready sources of steam (for heating and other purposes) and designing 

the column does not require the design or construction of the heat exchanger required for 

the reboiler.  The types of design calculations for open steam columns are modifications of 

those required for traditional columns, taking into account the differences in the mass, 

component and energy balances in the bottom section of the column. 

  

 2.4 Objectives 

 (1) To produce a model of the solution mediated phase transformation of 

polymorphs based on first principles modeling, including continuity equations for particle 

numbers (i.e. the population balances for each polymorph) and measured kinetic values of 

the underlying process mechanisms (crystal growth, crystal nucleation, and crystal 

dissolution). The project will also compare the model to carefully determined experimental 

data for the SMT for - and -DL-methionine, and industrially and biologically significant 

amino acid that crystallizes in a polymorphic system.  

 (2) To produce a model for the open steam distillation process for a binary feed 

mixture in terms of the significant variables and parameters in the system (for instance top 
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product composition, percent recovery, feed composition and state, relative volatility of the 

solute, etc…). This model is then to be analyzed mathematically in order to fins the reflux 

ratio at which a minimum number of theoretical stages will result. 

 

 

 

 

 

 

 

 



Chapter III 

Mathematical Models Used in the Study 

    

 3.1 Models used in the Solution Mediated Transformation Simulation 

 For the model of the crystallizer with SMT the first component of the model 

required is the population balance. This equation is an equation of continuity of entities (as 

in particles) and is given via a balance of particles within a differential size class (L to L + 

dL) into and out of a differential control volume, as shown in Fig. 3.1. The number density 

of particles within this size range is n (#/m3.m). Velocity vector components are 

represented by v. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1: Finite control region, consisting of a control volume and particle size range, for 

the derivation of the population balance. 

 

The end result of this balance is the partial differential equation (PDE) 
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This derivation did not, however, take into account mechanisms that could give rise to new 

crystals (birth) or those that could destroy entities (death). The nucleation of crystals is 

considered to occur at a size approaching zero, and hence can be taken care of using a 

boundary condition rather than as an extra term in the PDE. This equation is the well-

known population balance equation (PBE) 

 
( )

vn 0
n Gn

B D
t L

 
    

 
       (3.3) 

 

 In the case of the current research it is necessary to write this equation for each of 

the polymorphs, in this case polymorph  and polymorph . G is the crystal growth rate of 

the polymorph considered in the equation. 

 The equation above is impossible to solve except in a few cases. If the system is 

well mixed (i.e the properties of the system are the same at any point in the system) than it 

is possible to use a “well-mixed” form of this balance. This can be achieved by integrating 

the spatially dependent population balance above over the entire region V, and then 

simplifying the integral of the spatial divergence of the population flux to a surface integral 

using the Gauss-Ostrogradskii Divergence Theorem. The result is 

, , , ,(log ) ( ) in i in i out i out iQ n Q nn V Gn
n B D

dt t L V V

  
     

 
 

   (3.4) 

 

Here, the Q terms represent either in or out-flows with their respective particle number 

densities nin or nout. V is the volume of the crystallizer. 

 

 The crystallizer modeled in this work is a batch crystallizer. This is a more complex 

model than a continuous crystallizer, since continuous crystallizers operate at steady-state 

resulting in the first two terms being equal to zero. This reduces the continuous crystallizer 

models being ordinary differential equations: the assumptions for the batch crystallizer 

maintain the model as a PDE however. For the batch crystallizer there are no inflows or 

outflows, and in a carefully controlled batch we can assume that birth and death terms are 

also zero. In addition, when the change in volume of the species on crystallization is small 

(as is usually the case) a batch crystallizer operates at constant volume, and as such the 

second term on the left hand side is zero. In addition, the crystal growth rate is independent 
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of crystal size, such that (in the third term of the left hand side) G can be removed from the 

differential. Thus the model becomes (for the two polymorphs) 

𝜕𝑛𝛼

𝜕𝑡
+ 𝐺𝛼

𝜕𝑛𝛼

𝜕𝐿
= 0     𝑛𝛼(𝐿, 𝑡 = 0) = 𝑛𝛼,0    𝑛𝛼(𝐿 = 0, 𝑡) =  𝐵 𝛼(𝑡)/𝐺𝛼(𝑡)  (3.5) 

 

𝜕𝑛𝛾

𝜕𝑡
+ 𝐺𝛾

𝜕𝑛𝛾

𝜕𝐿
= 0     𝑛𝛼(𝐿, 𝑡 = 0) = 𝑛𝛼,0    𝑛𝛾(𝐿 = 0, 𝑡) =  𝐵 𝛾(𝑡)/𝐺𝛾(𝑡)  (3.6) 

 

 The driving forces for the crystallization processes are  

𝑆𝛼(𝑡) =
𝐶𝛼(𝑡)

𝐶𝛼
∗           (3.7) 

𝑆𝛾(𝑡) =
𝐶𝛾(𝑡)

𝐶𝛾
∗           (3.8) 

 

These are different functions since the solubility (C*) of the two polymorphs are different. 

However the actual concentration of the two polymorphs is the same at any time (since the 

polymorph molecules are identical in the liquid phase). The growth rate G(t) and 

nucleation rate B(t) can be determined from the following models 

𝐺𝛼(𝑡) = 𝑘𝐺,𝛼(𝑆𝛼(𝑡) − 1)𝑛𝛼        (3.9) 

𝐺𝛾(𝑡) = 𝑘𝐺,𝛾(𝑆𝛾(𝑡) − 1)
𝑛𝛾

        (3.10) 

𝐵𝛼(𝑡) = 𝑘𝐵,𝛼(𝑆𝛼(𝑡))
𝑛𝑏𝛼

        (3.11) 

𝐵𝛾(𝑡) = 𝑘𝐵,𝛼(𝑆𝛾(𝑡))𝑛𝑏𝛾        (3.12) 

 

If the driving force for a polymorph is negative then the growth becomes dissolution. This 

can only occur to the less stable polymorph (in this case the alpha one). 

𝐷𝛼(𝑡) = 𝑘𝐷,𝛼(1 − 𝑆𝛼(𝑡))𝑛𝑑𝛼        (3.13) 

 

The model also contains an experimentally determined induction time; the time required 

from the creation of supersaturation until the creation of viable nuclei. The parameters in 

these kinetic models can be found from fitting sets of accurate experimental data. The 

kinetic data needed to parameterize the models for DL-methionine have already been 

collected in a set of previous articles. 
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 3.2 Models Used in the Open Steam Distillation Model 

 

 

Fig. 3.2 Schematic diagram of an open steam distillation column showing all significant 

flows and compositions, and control volumes for the balances used. 

 

A schematic diagram of the type of column used for open-steam distillation giving 

relevant solute mole fractions in stream flows (x for mole fractions in liquid streams and y 

for mole fractions in vapor streams) and the molar flow rates of the streams in kmol/s (L 

for liquid flows and V for vapor flows, with rates in the bottom section having an 

overscore) is given above. It is also necessary to do an energy balance over the entire 

column, and so enthalpy values (H) are given for inflows and outflows, as well as the 

cooling load in the condenser at the top of the column. 

D 

xD

HD 

F 

xF 

HF 

B = LN 

xB = xN 

HB 

Stage n 

Stage m 

Stage 1 

Stage 2 

Stage N 

Stage f 

Stage N-1 

V1, y1 

L0, x0 

VN+1 

 yN+1 = 0 

HV,N+1 

QC 

, xm , ym+1 

L, xn , yn+1 
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Fig. 3.3 Schematic diagram of the design of an open steam distillation column showing 

equilibrium and balance lines used. 

 

Balances over the entire column give: 

BDVF N  1
         (3.14) 

BDF BxDxFx           (3.15) 

 

The top section of the column can be modeled with a solute balance over a finite set of 

stages (from the top of the column to an arbitrary stage n in the top section, above the feed 

point). 

Dnn x
V

D
x

V

L
y 1          (3.16) 

 

Which reduces to 

11
1







R

x
x

R

R
y D

nn         (3.17) 

 

Based on the definition of the reflux ratio, R = L/D and the overall balance which shows 

that V = L + D.  
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 The bottom section of the column is modeled with similar solute balances 

Bmm x
V

L
x

V

L
y 1          (3.18) 

 

The feed mixture must also be added at the most appropriate point of the column, which is 

determined via balances around the feed based on the following equation 

11 





q

z
x

q

q
y F          (3.19) 

 

Where q is defined via the following equation involving the enthalpies of the saturated 

feed, saturated vapor and saturated liquid at the same temperature and pressure (or the 

fraction of the feed which is a liquid if the feed is a two-phase mixture). 

q
HH

HH

F

LL

LV

FV 






        (3.20) 

 

The q-line represents the locus of possible intersection points for the top section operating 

line and the bottom section operating line. This allows for the bottom section operating line 

to be fully specified given the top section operating line (which only requires the top 

product composition xD and the reflux ratio R) and the q-line (which requires the feed 

composition zF and enthalpy HF). 

 

In order to determine the driving force for the mass transfer at any stage in a column (or at 

any height in a packed column) the equilibrium concentrations must also be known, which 

is usually given as a function y* = f(x), where y* is the equilibrium vapor phase mole 

fraction for a liquid phase mole fraction of x in the contacting liquid phase. The function 

depends on the thermodynamics in the given binary system, however a simple and 

commonly used assumption is that of constant relative volatility, , where relative 

volatility is defined (in a binary system) as 

* (1 *)

(1 )

y y

x x






         (3.21) 

 

Solving to obtain the equilibrium vapor phase solute mole fraction gives 
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*
1 ( 1)

x
y

x






 
         (3.22) 

 

Thus, at a particular point in a column (a stage in a staged column, or at a particular point 

in the packing for a packed column) the equilibrium vapor phase in contact with the liquid 

phase is 

*
1 ( 1)

n
n

n

x
y

x






 
         (3.23) 

 

 Equation 3.23 is valid for the entire column, unlike equation 3.17 which is only 

valid for the section of the column above the feed, and equation 3.18 which is valid only 

for the section below the feed. Together, equations 3.17, 3.18, and 3.23 describe the 

driving force for the distillation, and also the separation that can be expected in one ideal 

stage, for the packed and staged columns. It should be noted that these equations are using 

only mass balances on sections of the columns and equilibrium thermodynamics, and 

hence the equations are equally valid for both types of columns.  

 Since the contacting methods are different in packed columns and staged columns, 

as is the required result (either the height of packing required or the number of stages 

required) the derivations for modeling the two types of column now begin to differ. 

However the reflux ratio for the minimum number of stages should be very close to the 

reflux ratio for the minimum height of packing. Starting with the packed column we can 

derive the height of packing required based on the mass transfer rates as a function of 

position in the column, a derivation which is given in many texts on mass transfer design. 

The height of packing for a particular section of column is given by the equation 

2

1

( )

( * )

y

T

yy

d Vy
L

K aS y y


          (3.24) 

 

Where y1 represents the vapor phase mole fraction entering the bottom of the section, y2 

represents the vapor phase mole fraction leaving the top of the section, y* is the 

equilibrium vapor phase composition (which depends on the liquid it is in contact with) 

and is given by equation 3.23, y is the actual vapor phase composition at that point and is 

given by equation 3.17 or 3.18 depending on whether the point is in the section above the 

feed point or the section below the feed point, V is the vapor phase flow rate (in mole/s or 
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similar), S is the packed cross-section of the column, and Kya represents a mass transfer 

coefficient (mole/m2s) multiplied by a specific surface area for the packing (m2 interfacial 

area/m3 packed volume). The cross-section area is usually constant since constant diameter 

columns are usually used, and the vapor phase flow rate is also constant in a section based 

on the constant molar overflow assumption already made in deriving the mass balances. 

The assumption that the mass transfer coefficient and specific surface area of the packing 

are also constant leads to 

2

1
( * )

y

T

y y

V dy
L

K aS y y


          (3.25) 

 

 The term outside the integral is usually referred to as the height of a transfer unit 

based on the overall gas phase driving force (HOG), and the integral is referred to as the 

number of transfer units based on the overall gas phase driving force (NOG). In order to 

determine the minimum height of packed column which could achieve a particular 

separation we would need to minimize the number of transfer units.  

 To calculate the number of transfer units in the distillation column it is necessary to 

sum two integrals, one for the section of column below the feed stage and one for the 

section of column above the feed stage.  

 The equilibrium line, equation 3.23 (which is valid for both sections) has only a 

single parameter which is known for any relevant system. The top section operating line 

contains only two parameters, the top product composition xD and reflux ration R. The 

value of xD is given in the problem statement as one of the two major design objectives of 

the column (along with the solute recovery, CR). The value of R is what we can optimize in 

order to minimize the value of the number of transfer units. This indicates that in the top 

section of the column we know both functions in the integral, y* and y. This does not 

indicate that we can evaluate the integral because the lower limit of the integral still needs 

evaluation; the top limit of the integral is y2 = xD since the distillate product is made via a 

complete condensation of the vapor produced at the top of the column. However we will 

determine the value of y1 for the top section latter as this is equal to the upper limit of the 

integral for the lower section of column.  

 The bottom section of the column is modeled with 

 1m m B

L
y x x

V
            (3.26) 
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We will assume the feed is a saturated liquid since a liquid feed is most common, and the 

saturated liquid is simplest for the calculations involved. Based on balances around the 

feed point for these conditions 

L L F RD F             (3.27) 

( 1)G G L D D R             (3.28) 

 

The recovery is defined as the fractional amount of solute in the feed which is recovered 

into the top product, and therefore 

D
R

F

Dx
C

Fx
           (3.29) 

Thus 

R F

D

C x F
D

x
           (3.30) 

Thus 

R F

D

RC Fx
L F

x
           (3.31) 

( 1)R F

D

C x F
V R

x
           (3.32) 

 

We will consider a feed flow rate equal to 1 mole/s as a basis (without loss of generality – 

scale-up does nothing to change the result of this calculation). Therefore 

1R F

D

RC x
L

x
           (3.33) 

( 1)R F

D

C x
V R

x
           (3.34) 

 

This produces the bottom section operating line 

 1
( 1)

R F D
m m B

R F

C x R x
y x x

C x R



 


        (3.35) 

 This still has one value which is as yet unknown, the bottom product composition 

xB. This can be calculated from the top product composition and product recovery. A 

component balance over the column gives 
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B F Dx B Fx Dx           (3.36) 

 

Equation (17) relates the component recover to the feed and top product, such that 

B F R Fx B Fx C x           (3.37) 

 

Thus 

F R F
B

Fx C x
x

B


          (3.38) 

 

And since the bottom product molar flow rate, B, is equal to the liquid molar flow rate in 

the bottom section of the column, it is given by equation (20). With some simplification, 

the bottom product is 

(1 )F D R
B

R F D

x x C
x

C x R x





         (3.39) 

 

Thus 

1

(1 )

( 1)

R F D F D R
m m

R F R F D

C x R x x x C
y x

C x R C x R x


  
  

  
      (3.40) 

 

Using the definition of the number of transfer units applied to both sections of the column, 

we obtain 

1 1

1 10
( * ) ( * )

Int D

Int

y x

m n
OG

m ny

dy dy
N

y y y y

 

 

 
          (3.41) 

 

The equations for yn+1 and ym+1 are the operating lines derived above, equations 3.17 and 

3.40, and the function y* is given for both sections by equation 3.23. The last variable 

required for the solution is the vapor phase mole fraction at the intersection between the 

two operating lines, yInt. This can be found from the intercept between the q-line and the 

top-section operating line, equations 3.17 and 3.19, under the basis that q = 1, and xn = zF = 

xF: since the feed is a liquid we can use the liquid phase mole fraction variable x rather 

than the more general z. This gives 

1

F D
Int

Rx x
y

R





         (3.42) 
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This fully parameterizes the two integrals in equation 3.41. We can calculate the driving 

force (y – y*) for each section of the column by using the operating line to calculate xn (for 

example) as a function of yn+1 and then using the x value in the equilibrium line to 

calculate the appropriate function for y*. Rearranging equation 3.17 for xn gives  

1( 1)n D
n

y R x
x

R

  
          (3.43) 

 

This can then be substituted into equation 3.23 to obtain the equilibrium vapor phase mole 

fraction.  

 We will integrate each of these independently, giving NOG,T for the top section, and 

NOG,B for the bottom section. To minimize the height of the packed column we need to 

minimize the sum of these two integrals. 

 The number of transfer units for the top section 

NOG = 




Di

In

xy

ty n

dy
yy *

1
 = 


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
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


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 
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


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





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
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

 
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R
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y
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x
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R
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x
y

R

R
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

1)1(
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2

 

 

= n

x

y nnnnn

nnn dy
CyCyC

CyCD

Int

 



32

2

1

41          (3.44) 

Where, 






 


R

R
C n

1
)1(1           

 















 
 1)1(

1
2

R

x

R

R
C D

n                                                       

 
R

x
C D

n


3                                                                   

  1)1(4 
R

x
C D

n                                                               

 

Using integral forms of   

 

 




















 acbbax

acbbax

acbcbxax

dx

42

42
ln

4
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2

2
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     (3.45) 
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 




















 acbbax

acbbax

acba

b
cbxax

acbxax

xdx

42

42
ln

42
)ln(

2

1

2

2

2

2

2

 (3.46) 

 

 

Rearranging Eqs. 3.44 to  

 

NOG,T = 
 





D

Int

D

Int

x

y nnnnn

n
n

x

y nnnnn

nn
n

CyCyC
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C

CyCyC

dyy
C

32

2

1

4

3.2

2
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1

1

   (3.47) 

 

 

 

Solving Eqs. (3.47), we get the result 
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 (3.48) 

 

 

Rearranging to 
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Take lower limit ( 1




R

xRx
y DF

Int

) and upper limit (xD) and rearrange term of this, the 

solution become to:  
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Solving Equation 3.18 for xm: 
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Rewriting Eqs. 3.21 to 
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Then, after substituting into the integral for the bottom section and rearranging, we get 
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or 
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Rearranging Eq. 3.56 to 
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Solving 3.57 we get the result 
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Rearranging to 
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Take lower limit (zero) and upper limit ( 1
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 3.2.1 The Total Number of Transfer Units (NOG): 

 

 The total number of transfer units necessary in the column is simply the sum of the 

numbers of transfer units in both sections: 

NOG = NOG,T + NOG,B                                                          (3.62) 

  

 This equation (the sum of NOG,T and NOG,B) is a relatively simple function of the 

reflux ratio R, as it appears in the constants of these two terms. Thus, the function can be 

differentiated with respect to R, and finding the value of R which results in the differential 

being equal to zero gives the value of R that will result in the minimum number of transfer 

units for the entire column, and will also be a close approximation to the value R for the 

minimum number of theoretical stages. The analytical differential of the function can be 

found without trouble in programs such as Mathematica or Reduce. It is however too long 

to show here, taking up in excess of 10 printed pages in Mathematica format! 

Unfortunately the equation is too extensive for Mathematica or Reduce to find a suitable 

simplification (the computer runs out of memory before a solution is found, if such a 

reduction exists). In addition the programs cannot find an analytical solution to the 

derivative being equal to zero. We are still working on this problem to find simplifications 
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or analytical solutions. However, we are able to solve the equation numerically for suitable 

values of the parameters used in the method. These results are shown in chapter V. 

 A similar method was used to obtain a solution for the case of a saturated vapor 

feed. In this case the q-line for the feed is a different function, and hence the operating 

lines and the intersection of the operating lines is different. However the derivation is 

similar, and not difficult to construct based on the work presented above. 

 

 

 

 

 

 

 

 



Chapter IV 

Results and Discussion for the Solution Mediated Transformation 

 

4.1  Simulations Within and Outside the Metastable Zone 

 Simulation results using the parameters for crystal growth rate kinetics, crystal 

nucleation rate kinetics, crystal dissolution rate kinetics, and induction time data from 

previous research from the group [10-12] on the species’ -DL-methionine and -DL-

methionine were compared to experimentally measured SMT data for DL-methionine. 

Although the simulation can predict a large number of variables as a function of 

experiment time (relating to the particle size distributions of the two polymorphs, the total 

mass and volume of crystals in both polymorphic forms, the total concentration of DL-

methionine remaining in the solution, the mass fraction of DL-methionine in a particular 

polymorphic form, among others) the main variables we are interested in and would 

measure during a SMT are the concentration of the solute in solution as a function of time 

and the mass fraction of the crystal in a particular polymorphic form.  

 Two sets of simulations were performed. The first set had no fitted parameters; all 

parameter values in the model were given based on models with concentration driving 

forces that were predicted on measurements of the underlying physical phenomena 

(equilibrium between solid and liquid phases, crystal nucleation, crystal growth, and 

crystal nucleation) for the two polymorphs published in our previous articles. The results 

for these simulations are shown in Figure 4.1a for a batch crystallization where the initial 

concentration of solute is outside the secondary nucleation threshold of the stable 

polymorph (causing an instantaneous nucleation of the stable polymorph), and Figure 4.2a 

where the initial concentration of solute is within the secondary nucleation threshold of the 

stable polymorph (causing an delayed nucleation of the stable polymorph). It can be seen 

that this model greatly over-predicts the rate of the conversion of -DL-methionine to -

DL-methionine. In the case of the experiment outside the secondary nucleation threshold 

(having spontaneous nucleation) the conversion being complete in the model prediction 

within circa 500 min whereas in the experiments full conversion requires approximately 

5000 min. In the case of the experiment within the secondary nucleation threshold the 

experiment reaches complete conversion only after 12000 min whereas the model 

predicted complete conversion within 6000 min.  

 

 

 

 

 

 

 

 



25  

 

   

 

 

 

Fig. 4.1 Solute concentration and fraction of γ-DL-met in the crystal phase during the 

polymorphic transformation for C0 = 40.5 kg m-3: (a) the dissolution kinetics obtained from 

a previous work [11], (b) the dissolution kinetics were estimated from the combination of 

the modeling method with the SMT experimental data. 
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Fig. 4.2 Solute concentration and fraction of γ-DL-met in the crystal phase during the 

polymorphic transformation for C0 = 37.0 kg m-3: (a) the dissolution kinetics obtained from 

a previous work [11], (b) the dissolution kinetics were estimated from the combination of 

the modeling method with the SMT experimental data. 

 

 Analysis of the model in comparison with the experimental results shows that the 

rate of conversion between the two polymorphs is controlled by three mechanisms, the rate 
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of dissolution of the unstable polymorph, the rate of nucleation of the stable polymorph, 

and the rate of crystal growth of the stable polymorph. 

 More detailed descriptions of one of the a priori modeling of one of these 

experiments is shown in Figure 4.3 (solute concentration) and Figure 4.4 (stable 

polymorph fraction). Note that the population balance model is completely independent of 

the experimental SMT results since it uses fundamental models of growth, dissolution, and 

nucleation parameterized on experimental measurements of the mechanisms in isolation. 

  

Fig. 4.3 The concentration of DL-methionine as a function of time during SMT of α-DL-

methionine to γ-DL-methionine starting at a concentration within the instantaneous 

Secondary Nucleation Threshold (SNT) of γ-DL-methionine. The first 70 min of the 

transformation are expanded to highlight the crystal growth of the metastable form. 

Experimental data ● ; prediction of a priori population balance model ‒ ‒ ‒ ; prediction of 

population balance model with a fitted dissolution rate constant —— .      
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Fig. 4.4 The fraction of DL-methionine in the γ-DL-methionine form as a function of time 

during SMT of α-DL-methionine to γ-DL-methionine starting at a concentration within the 

instantaneous SNT of γ-DL-methionine. Experimental data ● ; prediction of a priori 

population balance model ‒ ‒ ‒ ; prediction of population balance model with a fitted 

dissolution rate constant —— . 

 

 It is clear that the predictions of the a priori model are not good. Although the 

concentration data is fitted acceptably, the polymorph fraction results are not fitted at all 

well. The predicted polymorph fractions for the stable polymorph increase far too rapidly 

compared to the experimental results, showing that one of the rates in this step is much 

faster in the model than it is in the experiments. Analysis of the data showed that the 

mechanism that was not fitted well was the dissolution rate of the metastable polymorph. 

The dissolution kinetics is assumed to be first order and therefore only have a single 

parameter, the dissolution rate constant. This parameter was allowed to vary in order to fit 

the experimental data for these experiments (and also experimental data performed above 

the SMT), and the results are shown using the solid line in Figures 4.3 and 4.4. The second 

set of predictions on Figure 4.3 and 4.4 shows very good agreement with the experimental 

data, and use of the same rate constant in other SMT data (for instance data outside of the 

instantaneous SNT) also showed a very good fit. However in achieving this improved 

result the dissolution rate constant decreased from the measured value of 5.8×10-7 m/s to a 

value of 7.5×10-9 m/s, a quite drastic re-evaluation of this constant! The error in the initial 
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value may be due to an assumption that the dissolution rate of both polymorphs is mass 

transfer controlled, and that therefore the dissolution rate of the two polymorphs should be 

equal for an equal driving force, considering that the two polymorphs have different 

solubility and therefore a different driving force at an equal concentration. The metastable 

polymorph was found to occur as very small crystals of irregular shape since it can only be 

produced from precipitation of the species from acidic solutions. Therefore the dissolution 

rate measurements were performed on the stable polymorph and the dissolution model 

transformed across to the metastable polymorph. Although this appears incorrect in this 

instance it is a commonly used assumption. For instance the Sherwood correlation for mass 

transfer is commonly used to predict dissolution rate constants of a metastable polymorph 

[8,13], which indicates an assumption that the mass transfer is rate controlling for 

dissolution. Even when allowing a single parameter to float results in a good fit to the data, 

it is not clear whether the model parameters are now an accurate representation of the real 

mechanisms. The change between the measured dissolution kinetics and the predicted 

kinetics is larger than could be expected, with the fitted dissolution rate constant being 

almost two orders of magnitude smaller than the experimental one for the stable 

polymorph.     

 Similar results were seen in experiments starting outside of the instantaneous SNT.  

When the fully a priori model was used the agreement between the model predictions and 

the experimentally measured SMT were poor, particularly during the step involving the 

dissolution of α-DL-methionine and the growth of γ-DL-methionine. Using the same fitted 

dissolution rate constant as with the first set of experiments allowed a very good fit to the 

experimental data. The following section discusses particular improvements to 

understanding and modeling the underlying mechanisms involved in the SMT which could 

assist in achieving accurate a priori modeling of the SMT.  

 

 4.1.1 Improvements Required to Obtain Accurate SMT Models 

 The modeling of the underlying phenomena for the SMT tend to be very simple 

engineering models of the phenomena (for instance the use of power law models to 

represent the relationship between average kinetics for a phenomenon and driving forces) 

that do not fully represent the complexity of what occurs in real systems. The researchers 

in this project completed a survey of prior experimental work to determine in what ways 

models of the underlying phenomena, such as nucleation, growth, and dissolution kinetic 
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equations could be improved so that complete models of SMT could better represent real 

data. Discussion of why these models may fail to accurately model the systems studied and 

what further understanding relating to these processes is required is discussed in this 

section. An illustration of the complexity of crystal growth and dissolution kinetics is 

shown in Figure 4.5, which shows artificial data which could describe a typical system. 

The plot is based on similar data for step velocities in potassium bichromate [14] and 

crystal growth and dissolution rates for sucrose [15]. This plot will help to illustrate many 

of the points discussed below.  

 

Fig. 4.5 Illustrative data for crystal growth rates and dissolution rates as a function of 

relative supersaturation. In carefully measured experimental data, growth rate dispersion, 

dissolution rate dispersion, a null supersaturation, and a null undersaturation are all 

evident. 

   

 4.1.2 The Growth Rate Model & Null Supersaturation 

 Carefully measured experimental data on crystal growth rates at low values of the 

supersaturation typically find a region above the solubility where crystal growth does not 

occur (see the region 0 < σ < 0.01 on Figure 4.5). This region has an upper bound called 

the null supersaturation, below which crystal growth is negligible or zero. For instance 

Khaddour et al. [16] have commented that for sucrose “… obtained growth rate curves 

show a practical stoppage of the growth process at σ≈0.04” and comment that this 

phenomenon agrees with measurements taken over 40 years previously [17]. The 
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phenomenon has also been observed by a range of groups in pure and impure solutions 

[18-21]. Neglecting the null supersaturation will result in a model that does not predict the 

crystallization kinetics near the solubility of either polymorph very well.  

A second problem with crystal growth rate kinetics is that the relative significance of the 

rate of mass transfer and the rate of surface integration is often not taken into account. 

There are two methods that can be used to correctly account for this; the crystal growth 

rates can be measured in an agitated vessel similar to the crystallizer used for SMT over a 

range of agitation rates, and the role of mass transfer predicted from these experiments, or 

the crystal growth rates can be measured under surface integration controlled conditions 

and the mass transfer kinetics predicted from mass transfer correlations. It is important to 

take this into account in the model, since the relative significance of the rate of mass 

transfer might be significantly different in the crystallization vessel compared to the 

solution in which the experiments to determine the crystal growth rates were performed.  

 

 4.1.3 Dissolution Rate Model and Null Undersaturation 

 The dissolution rate modeling typically contains the same difficulties as the crystal 

growth rate modeling. In the case of SMT modeling, the null undersaturation (the region -

0.01 < σ < 0 on Figure 4.5) is a more significant feature than the null supersaturation. This 

is because the system may spend a considerable time at, or very close to, the 

supersaturation of the metastable polymorph, which is α-DL-methionine in the system 

discussed in the section above. At the start of the SMT the system may maintain a 

concentration close to the solubility of the metastable polymorph while this polymorph 

dissolves, depending on the relative kinetics of the crystal growth of the stable polymorph 

and the dissolution kinetics of the metastable polymorph. During this period the dissolution 

rate of the metastable polymorph may be very low (due to the null undersaturation) 

compared with the rate predicted based on a model parameterized by dissolution 

measurements at higher undersaturation values. This slowing of the dissolution of the 

metastable polymorph may greatly reduce the rate of the SMT, and this is likely what has 

occurred in the case study above. 

 A second consideration is whether the dissolution rate of a crystal is really mass 

transfer controlled for the species under consideration. If the dissolution rate is not fully 

mass transfer controlled then the relative rates of the surface reaction and mass transfer 

need to be investigated under conditions similar to those under which the SMT takes place. 
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It is possible that for a large number of species the assumption that dissolution may be 

modeled using mass transfer correlations may be inadequate. 

 

 4.1.4 Growth Rate Dispersion (GRD) and Dissolution Rate Dispersion (DRD) 

Careful measurements of crystal growth rates using a large population of crystals show that 

there is significant crystal growth rate dispersion for crystals grown under the same 

conditions of growth. A typical example is a recent study by Srisa-nga et al., [22] which 

showed that the fastest five percent of a population of α-glucose monohydrate crystals had 

growth rates that were six to eight times larger than the slowest five percent of the 

population. This is shown in Figure 3 by comparison of the data Gi to the mean value as a 

function of supersaturation, 𝐺̅. This is important since the population balance models for 

the polymorphs require a mass balance closure in order to correctly predict the time 

dependent supersaturations of all relevant polymorphs. This can only be achieved 

accurately if a full growth rate distribution (or dissolution rate distribution) is known such 

that the time dependent crystal size distributions are modeled accurately. If the time 

dependence of the supersaturation is not modeled adequately then the rates of the 

significant mechanisms (growth, dissolution, nucleation, induction time, etc…) will also be 

incorrect. 

Currently available growth rate models only attempt to model the mean crystal growth rate 

of a distribution, and such a form is typically used in the population balance models 

without attempting to account for GRD.  Using only a mean crystal growth rate when GRD 

is significant miscalculates the mass balance by a significant amount. As an example of the 

significance of GRD to the mass balance, consider a population of 1106 crystals which 

are a monosize distribution at 40 μm, and are cubic in habit. These crystals grow for a 

period of 1 h with a growth rate distribution which is normally distributed with a mean 

growth rate of 1 μm/min and a standard deviation of 0.38 μm/min (which equates to the 

fastest five percent of crystals growing at 7.3 times the rate of the slowest five percent). 

The end result of this growth is a population of crystals with a normally distributed crystal 

size distribution that has a mean of 100 μm and a standard deviation of 22.8 μm. The 

volume of these product crystals is 1.156 mL, whereas if only the mean growth rate was 

used the volume predicted for the product would be exactly 1 mL. Thus, use of only the 

mean growth rate has underestimated the volume by fifteen percent (and the change in 

volume due to growth by a larger amount). It is important to note that even if the growth 
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rate distribution is symmetric the reduction in volume produced caused by the slow 

growing crystals is not sufficient to cancel the increase in volume produced due to the fast 

growing crystals. Accurate mass balances require that the population balance accounts for 

the crystal growth rate dispersion if it is significant, and nearly all carefully measured 

crystal growth rate data has observed significant GRD. If the mass balance calculation used 

with the population balance is not sufficiently accurate then the supersaturation dependent 

parameters in the model will also be incorrect, leading to a poor prediction. 

Similar arguments can be made for the effect of DRD. This is a less well known 

phenomenon than GRD, however it is known to exist [14,15]. Dissolution of the 

metastable polymorph is an extremely significant part of the SMT, and thus DRD needs to 

be accurately modeled in the population balance if it exists to a significant extent in the 

system.      

 

 4.1.5 Nucleation Rate Modeling  

There is very incomplete knowledge about nucleation in systems containing two or more 

polymorphs. In particular it is usually assumed that secondary nucleation only occurs with 

the aid of parent crystals of the same form of crystal as that which is nucleating. This has 

been shown to not be true in previous studies. For instance Elankovan and Berglund [23] 

have shown via Raman spectroscopy that secondary (contact) nuclei of both anhydrous α-

glucose and α-glucose monohydrate can form from parent crystals of anhydrous α-glucose. 

The authors used the result to suggest that contact nucleation is due to the removal of a 

semiordered absorbed layer from the surface of the parent crystal, and that this partly 

disordered cluster is able to reform into a different structure than the parent crystal it is 

removed from. Although these two forms are not polymorphs (but an anhydrous form and 

its monohydrate) the result that the material removed from the parent is both disordered 

and able to rearrange into a different form has important implications in the study of 

solution mediated transformation. This makes the mechanism of nucleation of the stable 

polymorph in suspensions containing crystals of the metastable polymorph difficult to 

model. The rate is likely to be somewhere between the primary nucleation rate (nucleation 

from a solution containing none of the polymorphs or hydrates/solvates of the solute) and 

the secondary nucleation rate where secondary nuclei are produced from the correct 

(stable) polymorph. At the moment there appears to be no way to fundamentally model 

this. Experiments for secondary nucleation can be performed in similar systems 
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(attempting to nucleate the stable polymorph from suspensions containing the metastable 

polymorph) however in such a case it is difficult to prove whether the initial nuclei formed 

are the stable polymorph, the metastable polymorph, or a mechanical mixture of the two 

polymorphs. 

A further consideration in modeling nucleation rates is that the rate of secondary 

nucleation will depend strongly on the agitation in the system, the fluid dynamics, and also 

the suspension density. Thus, nucleation rates should be measured in a system with similar 

properties to that likely to be used for the SMT, if possible. 

Another very significant problem in the measurement of nucleation kinetics in systems 

containing more than one polymorph is to distinguish the nucleation of the two 

polymorphs under conditions where two or more polymorphs may nucleate 

simultaneously. This is in principle a very difficult task, however there have been two 

approaches used in the literature. The first method is to use spectroscopic and/or particle 

characterization methods to characterize the polymorphic form of the nuclei. An example 

of the use of this method is work by Schöll et al. [24], who measured nucleation rates in 

the polymorphic system of L-glutamic acid, determining the form of the crystal with in-situ 

Raman spectroscopy and by a Particle Vision and Measurement (PVM) system. The PVM 

system can be useful when the polymorphs have strongly differing habits, as in the case of 

α- and β- L-glutamic acid. This method is likely to produce accurate results, although care 

needs to be taken that there is no phase transformation occurring before a definite 

determination can be made, for example before the spectroscopic signal is strong enough 

and/or before the particles are large enough to be detected or large enough to maintain a 

characteristic shape. The second method that has been used is to search for a discontinuity 

in the nucleation kinetics that could be attributed to a change in the nucleating species, as 

has been demonstrated by Teychené and Biscans [25] in a study of nucleation of the 

polymorphs of eflucimibe. In this method care needs to be taken to ensure that the 

discontinuity is not due to a change in the nucleation mechanism of a single polymorph, 

from a heterogeneous to a homogeneous mechanism for example. Further fundamental 

studies concerning nucleation in polymorphic systems are certainly warranted.    

 

 4.1.6 Induction Time Prediction 

 The induction time may be independent of the nucleation rate, however many of the 

difficulties discussed in section 3.4 will also be apparent in attempting to model the 
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induction time of the stable polymorph. Induction times are either measured in terms of 

metastable zone width (MSW) values or nucleation thresholds (NT); however the 

induction time is strongly dependent on the range of conditions that the solution 

experiences between the formation of the solution and the nucleation event (or the 

detection of nucleation) and these two methods will give different induction times for the 

same nucleation condition. Thus, the induction time is extremely difficult to predict using a 

fundamental model, and is instead typically fitted with empirical relationships. In either 

case a decision is needed as to whether the primary nucleation threshold or the secondary 

nucleation threshold is most applicable to the system being modeled, but the presence of 

the metastable polymorph makes this decision difficult. It is likely that the nucleation 

threshold is somewhere between the primary nucleation threshold and the secondary 

nucleation threshold, perhaps closer to the latter. 

 A second difficulty with induction time measurements is their wide scatter; 

replicate induction time measurements can often vary by hours, so a large number of 

replicates are needed to accurately describe the induction time. Even when this is done, the 

induction time for a particular SMT experiment may be anywhere within the distribution of 

induction times predicted by the experimental induction times at a particular condition. 

Induction times for secondary nucleation also suffer from the fact that the induction time 

tends to depend on the amount and size of the parent crystals used to induce the secondary 

nucleation, and the agitation and fluid dynamics that is present in the system. Induction 

time experiments for secondary nuclei need to be made in a system as close as possible to 

the system in which the SMT takes place. 

 In some models for the induction time (or nucleation threshold or metastable zone 

width) the phenomenon is seen as an artificial construct caused only by the fact that nuclei 

formed as soon as the solution is produced still require a certain period of time to obtain a 

large enough number concentration and size in the solution to be able to be detected. In 

this case we need to ask whether a model of the phenomenon is required at all? The 

phenomenon should be able to be accounted for within the nucleation and growth rate 

models, without the need for an additional condition on the population balance. If the 

modeling is done in this way care needs to be taken to account for the fact that the crystals 

that have a size between the size of a critical nucleus and the size of a detectable crystal 

will have lower growth rates than the detectable crystals, due to the size dependence of the 

solubility for very small crystals. More recently there has been some discussion as to 
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whether some part of the metastable zone is, in fact, a true metastable state [26]. Further 

studies on the phenomenon are necessary to clarify this issue. 

 

 4.1.7 The Effect of Changes in Shape 

 As mentioned earlier, closure of the population balance models requires a mass 

balance to determine the supersaturations of all relevant polymorphs as a function of time. 

This is necessary in order to accurately determine the kinetics as a function of time. The 

mass balance should be calculated from either the second or third moments of the crystal 

size distribution of each polymorph, and the relevant shape factors. Typically in the 

population balance models it is assumed that the shape factors are constant with respect to 

time, however in certain cases this assumption may be violated. In particular it is known 

that particular facial growth rates of certain crystals have a significant dependence on the 

level of supersaturation, and that therefore the aspect ratios and the shape factor of the 

crystals will change during the SMT. A similar effect may occur during the dissolution of 

the metastable phases. In most cases this effect is likely to be minor, although it is 

necessary to consider the possibility if accurate models of the other phenomenon still fail 

to adequately describe the SMT. 

 

 4.1.8 Effect of Crystalline Perfection on Rates and Solubility 

 Most kinetic data (in particular for growth and dissolution measurements) is 

measured based on large, very perfect seed crystals. In addition, most nucleation rate data 

is performed at low enough supersaturation that well-formed crystals are created. The 

metastable form in SMT may not be in agreement with these measurements: often the 

initial metastable phase is irregular and imperfect in shape and quality, and may consist of 

very small sized particles. Strongly imperfect crystals and also very small crystals have 

different solubility, and different kinetics when the change in solubility is taken into 

account, than large near perfect crystals. This may lead to incorrect estimates from all the 

parameter models (the growth rate model, the dissolution rate model, the nucleation rate 

model, and the induction time model) for the metastable polymorph in particular, based on 

measurements in more ideal systems.  

 

 

 

 

 

 

 

 



Chapter V 

Results and Discussion for the Open Steam Distillation 

 

 As mentioned, although it has been shown to be possible to find the function 

relating all variables to the number of transfer units (a more convenient task than 

evaluating the number of stages) and also to take the derivative of this equation with 

respect to the reflux ratio (and therefore to set this derivative equal to zero to define the 

reflux ration at which the number of stages should be a minimum) it has not been possible 

to solve this equation analytically to give an exact answer for any conditions (see chapter 3 

on the mathematical model for details of the derivation and equations involved). It has 

been possible to solve the equation numerically for any given set of conditions however. 

Some examples are shown below. 

 

 

 

 

Fig. 5.1 Reflux ratio necessary for the minimum number of stages in an open steam 

distillation column with a saturated liquid feed with solute mole fraction of 0.2. The top 

product composition is 0.95, and % recovery and relatively volatility as given in the figure. 
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Fig. 5.2 Reflux ratio necessary for the minimum number of stages in an open steam 

distillation column with a saturated liquid feed with solute mole fraction of 0.3. The top 

product composition is 0.95, and % recovery and relatively volatility as given in the figure. 

 

 The examples given are plotted between 80% recovery and 98% recovery; this is 

the likely range in industrial practice since smaller recoveries are uneconomic because the 

loss (greater than 20%) of product is too significant, and recoveries greater than 98% will 

be uneconomic because of the requirement for a very large number of stages, or larger 

reflux ratios. The trends of the results are in agreement with expectations, in that an 

increase in % recovery increases the reflux ratio necessary to achieve a minimum number 

of stages for open steam distillation, as does a decrease in the relative volatility of the 

binary mixture. The effect of the feed composition was not forecasted, however clearly a 

decrease in the amount of solute in the feed greatly affects the ability to easily recover this 

solute, thus leading to an increase in the reflux ratio required to give the minimum number 

of stages. Note that these conclusions are only correct for open steam distillation columns; 

the reflux ratio required for a minimum number of stages for a column with a reboiler is a 

reflux ratio of infinity (as is well known).  
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Fig. 5.3 Reflux ratio necessary for the minimum number of stages in an open steam 

distillation column with a saturated liquid feed with solute mole fraction of 0.5. The top 

product composition is 0.95, and % recovery and relatively volatility as given in the figure. 

 

 Clearly the results presented above are not all those obtained. The model has also 

been solved for open steam distillation columns where the feed is a saturated vapor. In this 

case the model for the system is different for the case above, and hence the solutions are 

also very different, although can be achieved in the same manner as above. Graphs of these 

solutions (in a similar format as Fig 5.1 – 5.3) are available from the author if required. 

 

 The equations for different feeds containing both liquid and vapor have not been 

solved yet, although the method will be analogous to the above. (The fraction of the feed in 

the vapor phase is required to be known in order to solve the 2-phase feed problem). While 

subcooled liquid or superheated vapor feeds could also be used in industrial columns, the 

problem becomes more complex because of the need to perform the energy balance at the 

feed, and thus subcooling or superheating in terms of the enthalpy relative the saturated 

state must also be known (and is not given a-priori in the relative volatility value). This is 

beyond the scope of the present study and has not been attempted. 
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Chapter VII 

Summary 

 

  

 There are two studies within the present study, a study of a model of the solution 

mediated transformation of polymorphs, which will be used to further understand how 

different crystalline polymorphs convert from less stable polymorphs to more stable 

polymorphs, and a model of an open steam distillation column that can be used to find the 

reflux ratio at which a minimum of stages will be required. Both problems are very 

significant in the chemical industry, and also in the pharmaceutical industry for the 

polymorph problem. 

The mathematical study of the polymorph transformation was very successful, 

leading to a good model of the phase transition, with all parameters but one coming from 

experimental measurements of the underlying mechanisms. Only the dissolution rate 

constant of the metastable polymorph needed to be fitted. We have fully investigated why 

this parameter causes difficulties, and have made conclusions about this in a full study. The 

work was published in Journal of Crystal Growth and also presented as a Plenary 

Presentation in the Asian Crystallization Technology Society symposium in 2012.  

In the second problem, it was possible to model the system to find a general model 

between the number of stages and the reflux ratio, with the other significant variables in 

the systems (the feed state and composition, the top product composition, the percent 

recovery of the solute,…) as parameters in the model. It was also possible to find an 

analytical solution for the derivative of this model with respect to the reflux ratio. Setting 

this derivative to zero and solving for the reflux ratio gives the reflux ratio that will result 

in a minimum number of stages in the system. Unfortunately the analytical equation is 

many pages long in Maple code, and Maple (and Reduce) is unable to find a general 

solution for where this equation is equal to zero. However, if values are given for the 

parameters needed in the design of the column a numerical solution can be found for any 

set of conditions, and thus the minimum number of stages can be found. Some of these 

solutions are plotted here, and other can be requested from the author. The minimum 

number of stages possible for a separation is an important consideration in the design of 

distillation columns, as it sets a limit for possible designs, and suggests a likely number of 

stages to be used in a real column. 
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