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CHAPTER 1

INTRODUCTION

1.1 Motivation

Spintronics is an emerging field that studies how to exploit the intrinsic
spin of the electron in addition to its fundamental electronic charge in solid-state
devices (Wolf et al., 2001; Zutic et al., 2004; Barnas et al., 1990). This abil-
ity has lead to dramatic improvement in electronic systems and devices, such as
memory elements, logic elements, spin transistors and spin valves. Current efforts
in designing and manufacturing spintronic devices have involved two different ap-
proaches. The first has been perfecting the existing giant magnetoresistance-based
technology by either developing new materials with larger normalized spin polar-
ization of electrons, or making improvements on the existing devices for better
spin filtering. The second, more radical, effort has focused on finding novel ways
of both generation and utilization of spin-polarized currents. The latter includes
the investigation of spin transport in semiconductors and looking for the ways, in
which semiconductors can function as spin polarizers and spin valves. The materi-
als that possed the potential to be manipulated in such ways are, for example, the
semiconductors with spin-orbit coupling (Hu and Matsuyama, 2001; Datta and
Das, 1989; Zutic et al., 2004). The spin-orbit coupling in these materials gives rise
to spin splitting of energy band lifting the degeneracy of up-spin and down-spin
states. There are two well-known kinds of such spin-orbit coupling; Dresselhaus
spin-orbit coupling(DSOC), and the Rashba-Bychkov spin-orbit coupling(RSOC).

In the system lacking of the bulk inversion symmetry, like a zinc blende



structure (in Figurel.l), there exists the Dresselhaus spin-orbit coupling (Dressel-
haus, 1955). The widely known semiconductors that have such spin-orbit coupling
are the III-IV semiconductor compounds, like InAs, GaAs, GaSb, InP and InSb
(Dresselhaus, 1955; Wepfer et al., 1971; Perel et al., 2003; Desrat et al., 2006;
Studer et al., 2010). This interaction takes the form (Dresselhaus, 1955; Silva,

1992)

: — X(100)
T e——a— ™ (110)

Figure 1.1 A unit cell of a zinc blende structure, such as GaAs, where the shaded

dots represent Ga atoms and the bold dots represent As atoms

Hpsoc =7 ok (k] — k2) + oyky (k2 — k2) + 0.k, (K2 — K2)], (1.1)

where k = (ky, Ky, k) is the wave vector of electron. Each component of the wave
vector are parallel to the main crystal axes (100), (010) and (001) respectively.
is the material constant. o, 0, and o, are the Pauli spin matrices. If the electrons

are confined to move in the xy plane, the interaction can be simplified to

Hpsoc = 5(0—50]{:35 - Uyky) + V(Okaki - Uykyk§)> (1'2)



where 3 = —y < k? > is the Dresselhaus spin-orbit coupling constant, and < k2 >
is the expected value of k2. For the ITI-IV semiconductor compounds, the typical
magnitude of the cubic terms in the wave vector compared to that of the linear
term is given by the ratio of the Fermi energy Ep of the in-plane motion to the
kinetic energy of the quantized degree of freedom in the growth direction. The
magnitude for k = (k,, k,) on the Fermi surface, i.e., for k2 + k2 = k3 the ratios
kZ/ < k2 > and k7/ < k2 > have an upper limit of k%/ < k2 > and are zero for
the certain orientation of . Therefore, the linear term is dominant in the case of
strong confinement, i.e., for < k? >>> k%. The DSOC spin-orbit interaction for a
two-dimensional system (2DEG) can be then written as (Perel et al., 2003)

h? By

mp

HDSOC = (Gmk‘x — O'yk’y), (13)

where [y = m,;gﬁ is the strength parameter of DSOC.

In the effective mass model, the Hamiltonian of the two-dimensional system

with DSOC takes the form

2 2

P h* B

+ — — 1.4
S . (ouks O'yky), (1.4)

Hps =

where p is the momentum of an electron, and mp is the effective mass of an

electron. The energy spectrum is found to be

2 2
E* (k) = W2y 00

2mD mp

K1, (1.5)

where k = ,/k2 + k2. The spin part of the eigenfunction with E* and £~ states

is

katiky
1| VR o)
V2 _t



and
_ kotiky
= | VR (1.7)
V2 1
respectively.
. E E E
l}-'i : k
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Figure 1.2 (a) The energy spectrum of an electrons in a two-dimensional Dres-
selhaus system. (b) The sketches of the energy spectrum of the electron in Dres-
selhaus system as a function of k,, for zero (top) and nonzero (bottom) k,. The
dashed lines represent the energy spectrum of the electron with energy E* and

the solid lines represent energy spectrum of the electron with energy £~

The energy spectrum of an electron in the two-dimensional Dresselhaus
system are shown in Figure 1.2. Notice that for only k, = 0 the E* and E~ bands
meet at k, = 0. It should also be pointed out that E* = E*(| k |), independent
of the k direction. The energy contours of |[+) and |—) states are shown in Figure
1.3. The contours are invariant through the rotation around the z axis. The spin
states of the electrons at some k states are graphically shown by the arrows on

the contours. Unlike the energy contours, the spin states are not invariant with
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(a) (b)

Figure 1.3 The energy contours of an electron in the two-dimensional Dresselhaus
system for (a) £ > 0 and (b) E < 0. Dashed lines represent the energy contour
of the electron with energy E* and solid lines represent energy contour of the
electron with energy E~. The arrows depict the spin direction of the electrons at

the k state on the contours.

respect to the rotation around the z axis.

Many researchers measured the strength of DSOC by various techniques like
Raman scattering (Jusserand et al., 1992), magnetotransport (Dresselhaus et al.,
1992; Miller et al., 2003; Krich and Halperin, 2007), Hall and Shubnikov-de Hass
oscillations (Studer et al., 2010). The typical value of the Dresselhaus spin-orbit
coupling constant is between 0.5 x 10713 — 2.5 x 107 eV.m.

The Rashba spin-orbit coupling (RSOC) exist in the system lacking of the
structural inversion symmetry, like surface alloys Bi/Ag(111) and Pb/Ag(111)
(Bychkov and Rashba, 1984; Pacile et al., 2006; Ast et al., 2007a; Premper et al.,
2007; Ast et al., 2007b; Vajna et al., 2012) and semiconductor heterostructures,
such as AlGaAs/GaAs and InSb/InAlSb (Toloza Sandoval et al., 2010; Usaj and
Balseiro, 2004). For the heterostructure, like GaAs/AlGaAs in the (001) direction,

the electrons are trapped at the interface and can move only in the interface plane



(see Figure 1.4). The Rashba spin-orbit interaction takes the form (Rashba, 1960;

Bychkov and Rashba, 1984; Wepfer et al., 1971; Desrat et al., 2006)
HRSOC:)\ﬁ'(EX5), (18)

where )\ is the Rashba spin-orbit coupling constant, & are Pauli spin matrices, 2 is
a unit vector perpendicular to the plane of motion, and k is the wave vector. For

a system defined in Figure 1.5, the Hamiltonian is simplified to

ZA

AlGaAs

2DEG with RSOC

GaAs X

Figure 1.4 Schematic diagram of the semiconductors heterostucture grown in

z (001) direction, like GaAs and AlGaAs. A 2DEG with RSOC occurs at the

interface.
h2k
Hpsoo = —(0uky — k), (1.9)
mp
where ko = mh’;z’\ is the strength parameter of RSOC, and mpg is the effective mass

of the electron in the Rashba system. In the effective mass model, the Hamiltonian



of the system with RSOC takes the form

2 Bk
p L P

Hps =
2mR mpg

(0ky — oyky) (1.10)

The energy dispersion relation of the electrons in these system are

2 2
E* (k) = W ey Tho
2mpg MRS

k|, (1.11)

where k = \/m The spin part of the eigenfunction for the E™ and E~ state

is
ik +ky

vk (1.12)

VR (1.13)

respectively.

The energy spectrum of the electron in the two-dimensional Rashba system
are shown in Figure 1.5. Similar to the Dresselhaus case, for k, = 0 both ET
and £~ bands meet at k, = 0, and the energy contours are invariant under the
rotation around the z axis. The spin states of the electrons at some values of k
state are depict by the arrows on the contours.

Many researchers measured the strength of the RSOC by using many tech-
niques such as the weak antilocalization analysis (Koga et al., 2002), photocurrent
measurement (Ganichev et al., 2004), the scanning-tunneling spectroscopy (Ast
et al., 2007b), the Shubnikovde Haas oscillations (Engels et al., 1997; Hu et al.,
1999) and angle-resolved photoelectron spectroscopy (Ast et al., 2007a; LaShell
et al., 1996; Henk et al., 2004; Popovic et al., 2005; Cercellier et al., 2004). The typ-
ical value of the Rashba spin-orbit coupling strength is about 1 x 107 —4 x 107!

eV.m. It was also found that the strength of RSOC can be tunned by applying
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Figure 1.5 (a) The band structure of an electron in the two-dimensional Rashba
system. (b) The sketches of the energy spectrum as a function of k, for zero
(top) and nonzero (bottom) k,. Dashed lines represent the energy spectrum of the
electron with energy E1 and solid lines represent energy spectrum of the electron

with energy F~.

gate voltage perpendicular to the 2DEG plane and adsorption of adatoms (By-
chkov and Rashba, 1984; Rashba, 1960; Grundler, 2000; Nitta et al., 1997).

Both types of the spin-orbit couplings can also co-exist in the systems like
InAs/GaSb, InAs/AlISb, GaAs/AlGaAs and InGaAs/InAlAs. Figure 1.7 depicts
the 2DEG in which both types of spin-orbit coupling can coexist (Nitta et al.,
1997; Das et al., 1989; Toloza Sandoval et al., 2012; Studer et al., 2009a). The

Hamiltonian of the electron in these systems can be written as

h2k h?
0 (03ky — oyky) + bo
MRD

MRD

Hrpsoc = (0cke — oyky), (1.14)



A

(@) (b)

Figure 1.6 The energy contours of an electron in the two-dimensional Rashba
system for (a) £ > 0 and (b) E' < 0. The dashed lines represent the energy contour
of an electron with energy E* and the solid lines represent energy contour of the
electron with energy E~. The arrows depict the spin direction of the electrons at

the k state on the contours.

In the effective mass model, the Hamiltonian takes the form

2 h2]€ h2
Hpps = 5 €, 2 (0pky — oyks) + fo
™MRD MRD MRD

(03ky — oyky), (1.15)

where mpgp is the electron effective mass of electron in the Rashba-Dresselhaus

system. The energy dispersion relation is

h2k? h?
+
MRrD Mmpgrp

E* (ks ky) = V(B + KK + 4Bokokaky,  (1.16)

where k = |/k2 + k2. The spin part of the eigen function for the E* and £~ state

is

(ﬁOkr +k0ky)+7t(ﬁoky +k0k’1‘)
i V/ (B3+k3) (k2 +k2)+4Bokoka ky (1'17)
V2 ) ’

+) =
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AlGaAs

2DEG with RDSOC

GaAs X

Figure 1.7 Schematic diagram of the semiconductors heterostucture grown in

z (001) direction, like GaAs and AlGaAs. 2DEG with RDSOC occurs at the

interface between GaAs and AlGaAs.

— (/BO kw +k0 ky) +7/(50 ky +k0k1)
/(B3 +K3) (k2 +k2)+4Bkokaky (1.18)

1
=7 ) :

respectively.

The energy spectrum of the electron in the two-dimensional Rashba and
Dresselhaus system is shown in Figure 1.8(a). Unlike the system with only either
Rashba or Dresselhaus spin-orbit coupling, the energy contours of Rashba and
Dresselhaus system are not invariant under the rotation around the z axis. Also
E*(—ky, k) # E*(ky, k,) (see Figure 1.8(b)). In Figure 1.9, the energy contours
and the spin directions at a few corresponding k states are shown.

The strength of RSOC is usually stronger than that of DSOC, and
when they both exist, they can be determined by many techniques such as the

Shubnikov-de Hass oscillations (Park et al., 2013), persistent charge and spin cur-
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Figure 1.8 (a) The band structure of an electron in a two-dimensional Rashba-
Dresselhaus system. (b) The sketches of the energy spectrum as a function of k,
for zero (top) and nonzero (bottom) k,. The dashed lines represent the energy
spectrum of the electron with energy E' and the solid lines represent energy

spectrum of the electron with energy E~.

rents in a mesoscopic ring (Maiti, 2011), k - p calculation (Pfeffer and Zawadzki,
1999), and the spin-dependent photo current, electron spin resonance, weak an-
tilocalization and time-resolved Kerr rotation (Nitta et al., 1997; Ganichev et al.,
2004; Studer et al., 2009a; Studer et al., 2009b; Meier et al., 2007; Giglberger
et al., 2007; Frolov et al., 2009; Knap et al., 1996). The typical ratio between
Rashba and Dresselhaus spin-orbit constant (/) is about 1.5 — 7.6.

Many types of junctions involving the systems with either type of interac-
tion also have been studied in order to find ways to control spin transport. For
instance, in study of Rashba system/ferromagnetic metal junction, it was found

that the spin injection across junction can be reduced or enhanced by RSOC (Jiang
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(b)

Figure 1.9 The energy contours of an electron in a two-dimensional Rashba-
Dresselhaus system (a) for £ > 0 and (b) F < 0. The dashed lines represent the
energy contour of the electron with energy E* and the solid lines represent energy
contour of the electron with energy E~. The arrows depict the spin direction of

the electrons at the k state on the contours.

and Jalil, 2003; Yokoyama et al., 2006). Also, in Rashba system/Superconductor
junction, it was found that in the limit of low insulating barrier, the tunneling con-
ductance was suppressed by the RSOC, where in the tunneling limit the RSOC
can enhance the conductance (Sawa et al., 2007). Similar results can also be found
in Dresselhaus system/Superconductor junction (Lee and Choi, 2005). Perel and
co-worker (Perel et al., 2003) studied the electron tunneling through a symmet-
ric semiconductor barrier, and found the polarization efficiency is increased with
the strength of DSOC and the barrier width. Similarly, the overall conductance
and the normalized spin polarization of conductance of Metal /Dresselhaus system
junction can be enhanced by the spin-flip scattering from applying voltages below
spin splitting energy (Srisongmuang and Kaoey, 2012). Jantayod (Jantayod, 2013)
also found that the normalized spin polarization of current can be enhanced by

increasing the carrier density and it weakly depends on the interfacial scattering.
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There are also many other works that studied the tunneling properties in
a junction, in which one or more materials containing both types of spin orbit
coupling. For instance, it was found that the transmission probability, the trans-
port normalized spin polarization and the conductance can be modulated by the
Rashba and Dresselhaus strength as well as the strength of the interface barrier
(Xiao and Deng, 2010; Xu and Guo, 2005; Lu and Li, 2010). More specifically,
when the barrier strength is increased, there appear two resonant peaks in the elec-
tron transmission probability. However, the transmission probability is decreased
to zero as the barrier is stronger. Linder and co-worker (Linder et al., 1997) pro-
posed a method for generating pure spin current in Metal/2DEG with both types
of the spin-orbit couplings, by rotating the spin polarizing of the incident current.
They also found that the pure transverse spin current could be generated in the
normal metal, when the incident current was completely unpolarized. Further-
more, the transverse charge current can be tuned by rotating the magnetization of
the polarizing ferromagnet. Liang and co-worker (Liang et al., 2009) showed that
one could control the normalized spin polarization direction of the spin current by
tunning the ratio of the RSOC and DSOC strength.

The fact that both the energy contours and the spin states of the system
with both types of spin-orbit couplings are not invariant with respect to the rota-
tion about the z axis can also lead to many other interesting effects. For instance,
Park and co-worker, found that the strength of spin orbit coupling parameters
from the beat pattern in the Shubnikov-de Hass oscillations depends on the crys-
tal direction (Park et al., 2013). In this thesis we will explore more on how this
dependence on the crystallographic orientation will affect the particle and spin
transport across the interface between a metal and the system with both types

of the spin-orbit couplings. In particular, we will study the conductance, and
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the normalized spin polarization of conductance, and the current flow along the

interface plane.

Metal

—
v

Figure 1.10 Schematic diagram of the junction of the system considered in this
thesis. A metal is in the x < 0 region and the z > 0 region is occupied by a 2DEG

with spin-orbit coupling.

1.2 Research Procedure

We modeled our junction as a two-dimensional infinite system, in which a
metal is in the x < 0 region where in the z > 0 region the media is occupied by
a 2DEG with spin-orbit couplings, as shown in Figure 1.10. The effective mass
model is used to describe the electronic properties of the system. A scattering
method is used to study the particle and spin transport. Two types of junction
are considered. The first one is the junction where the right side of which is the
Dresselhaus system and the second one is the junction where the right side of

which has both Rashba and Dresselhaus spin-orbit coupling. It is assumed that
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the interface is smooth. The barrier at the interface is represented by a Dirac delta-
function potential. From the Hamiltonian, the eigenstates and energy dispersion
relation can be obtained. With appropriate eigenstates, the wave function for
electrons in each region can be formed. It is a summation of incoming and outgoing
states of the same energy and the momentum with the same component along the
interface. The reflection and transmission amplitudes can be obtained by applying
the matching conditions for the wave function at the interface. The matching
conditions are the continuity of the wave function and the discontinuity of the
slopes of the wave functions due to the Dirac delta-function potential and the
spin-orbit interactions. The transmission and reflection probabilities can then be
calculated and used to obtain conductance and the normalized spin polarization

of conductance.

1.3 Outline of Thesis

The organization of this thesis is as follows.

The next chapter includes the study of a metal/Dresselhaus system junc-
tion. The electronic and spin properties of an electron in the Dresselhaus system
will be described, and the calculation of the conductance spectrum and the nor-
malized spin polarization of conductance will be shown. The effect of the crystal
orientation of the Dresselhaus side, the DSOC strength, and the barrier strength
will be considered.

In Chapter III, the conductance spectrum and the normalized spin polariza-
tion of conductance of the junction between metal and Rashba-Dresselhaus system
will be presented. The effect of the crystal orientation of the Rashba-Dresselhaus
system, the RDSOC strength, and the barrier strength will be considered. Finally,

the conclusion of this work is given in Chapter IV.



CHAPTER 11
TUNNELING BETWEEN A NORMAL
METAL AND A 2DEG WITH ONLY

DRESSELHAUS SPIN-ORBIT COUPLING

In this chapter, the particle and spin transport across the interface between
a normal metal and a 2DEG with only DSOC (M/DS junction) are considered.
The scattering method is used to obtain the conductance and the normalized spin
polarization of conductance as a function of applied voltage. The effect of the
crystallographic orientation of the 2DEG, the barrier strength, and the spin-orbit
strength are considered. In the next section, the density of states (DOS) of a
2DEG with Dresselhaus spin-orbit coupling will be examined. In Section 2.2, the
method to obtain the conductance and the spin-polarization of conductance will

be presented. The numerical results and discussions will be in Section 2.3.

2.1 Density of States

The DOS of the electrons in a two-dimensional Dresselhaus system is
2
D(E) = 5 Y 8(F ~ By, (2.1
k

where A is the area of the system, k is the wave vector of the electron, and the

sum is overall possible values of k. In our case Ep = QED (k? 4 203y |k|) (see Figure

2.1) when [ is the strength of Dresselhaus spin-orbit coupling . By changing the
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Figure 2.1 (a) The energy spectrum of the electrons in a two-dimensional Dres-

selhaus system. (b) The sketches of the energy spectrum of the electron in Dres-

selhaus system as a function of k,. Dashed lines represent the energy spectrum

of the electron with energy E and solid lines represent energy spectrum of the

electron with energy E~.

summation to the integral, we obtain

1

D(E)

™

/OO S(E — E)kdk,

Changing the integration variable to Ej, we have

Bo

QmDEE
h2

mp

Coh?

D*(E)

/002 2 (5<E— EE) (1 F ) dE,;,
~Tp + B3

where upper and lower signs represent the DOS of electrons in the E™

(2.3)

and B~
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branches. The DOS in E > 0 region of each branches is then

Diuz>0):?%§ (1:F %1é¥ ), (2.4)
i Vs
and when the £ < 0 region, the DOS is
DHE<0) =2 (51 + bo (2.5)
wh 2mpBy 32
h2 0

The total DOS can be obtained from

Dtotal(E) T D+(E) + Di(E) (26)
mp B E <0
™ 2mpE ) )

Dtotal(E) — hg + Bg (27)
o E > 0.

The DOS are plotted in Figure 2.2, where Ep = ZZ}E . The dotted line
represents the DOS of electron in the E~ branch, the dashed line for electron
in the £ branch and the solid line for the total DOS. In E < 0 region, there
is only £~ branch, the DOS has a singularity at £ = —FEp. In E > 0 region,
both branches exist. The total DOS in £ > 0 region is constant due to the

two-dimensionality of the system.

2.2 Model and Formalism

2.2.1 Basic Model

We modeled our junction (M/DS junction) as a two-dimensional infinite
system, in which a normal metal is in x < 0 and a 2DEG with DSOC is in > 0
as shown in Figure 2.3. It is assumed that the interface is smooth and the barrier

at the interface is represented by a Dirac delta-function potential, Hdé(x) where
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Figure 2.2 The DOS of a 2DEG with Dresselhaus spin-orbit coupling. The dotted
line represents the DOS of the electron in the £~ branch, the dashed line represents

the electron in the ET branch and solid line represents the total DOS.

H is the scattering potential strength at the interface. The Hamiltonian of the

electron in M/DS junction is written as

fﬂm):2;;w — Epp®(z) — EpO(—2) + Ho(z)
h2
+ ﬁsl@@(ax(kx cos2 + k, sin20) — o, (k, cos20 — k, sin26)), (2.8)
D
where p = —ih(Z2 + Qa%) is the momentum operator, the effective mass m(x) =

m.O(—x) + mpO(z) which is position dependent, m, and mp are the effective
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electron mass in the metal and in Dresselhaus system, respectively, ©(x) is the
Heaviside step function, 6 is the angle between the (100) crystal axis and the
surface normal, Er is the Fermi energy of the metal, and Erp is the Fermi energy

of the Dresselhaus system.

F 3 Y
Metal DS
Y
¥, Ky (010)
'&\ . X, Kx(100)
B "
<~
e [ ~
N
X
- .
X=0

Figure 2.3 A Metal/Dresselhaus system junction.

In the metal, x < 0, the energy dispersion relation for both spin-up and

spin-down are equal to (see Figure 2.4)

h2q2
- 2me’

E(q) (2.9)

where ¢ is the wave vector of electron in the metal, ¢ = ,/q2 + ¢2. The eigenstats

of electron with spin-up and spin-down are

T =— : (2.10)

and

(2.11)
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H 6(x)

+X

Figure 2.4 The energy spectrum of the electrons in a metal (left) and the Dres-
selhaus system (right). The arrows pointing left or right, represent electron states
that are considered in the scattering process. We assumed the incoming state is
equal to 1, r+ and 7| are reflected states with spin-up and spin-down, ¢, and ?_

are outgoing states of the electron with ET and E~, respectively.

respectively, where the magnitude of the wave vector ¢, as a function of energy is

written as

4(E,qy) = -2, (2.12)

In the Dresselhaus system, x > 0, the energy dispersion relation of Dres-

selhaus system is equal to (see Figure 2.4)

h2
E*(ky, k) = S (k2 + K2) & 260\ k2 + k2) . (2.13)

where k = (ky, k) is the wave vector of electron in the Dresselhaus system. The
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eigenstats of electron with £ and E~ states are

k¥ cos20 4 kysin20 + i (kycos20 — kisin20)

1 +2 2
)= — Vi , 2.14
=7 1 214)

and

1 kg cos20 + kysin20 + i (kycos20 — k, sin20)
-) = — Vi "k (2.15)

V2 1

respectively, where the magnitude of the wave vector k, as a function of energy

(E), and k, is written as

2
KE(E k) =+ @”$E+%¢%)—@. (2.16)

2.2.2 The Wave Functions and Matching Conditions

We consider ballistic transport across the interface. Thus the wave function

of the electron in metal side takes form

W ) 1 +1 y —1 .
MYz, 4y, T) = — 7= e’ zm—i_TT e 't
V2 1 1
+ 7y e 1T | 'Y (2.17)
1

where the + in the first term refer to the electron with spin-up (the spin state point
to 4y direction) and spin-down (the spin state point to —y direction) respectively.
The first term represents the incoming state, the second and third terms are the
reflecting state, where Ry and R| are the reflection probability amplitude of elec-
tron with spin-up and spin-down respectively, and ¢ = (¢., ¢,) is the wave vectors

of electron in the normal metal.
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The wave function of electron with energy E in the two-dimensional Dres-

selhaus system can be written as

90<k;_7 kya ‘9) eikim

q’D(kkawe?x) = tJr

&I ‘
[\
—

+ t_ ke | ethuy (2.18)

This wave function is the linear combination of two outgoing states of electron in
the Dresselhaus system, where ¢, and t_ are the transmission probability ampli-
tudes of the electron with energy E, and E_ respectively.

The appropriate matching conditions at the interface (z = 0) of M/DS
junction are the continuity of wave function and the discontinuity of slope of wave

function at the interface:

Up |o=0+= ¥nsr|z=0-, (2.19)
and
77:;8;;1) =0+ — %\HFO = (2qr Z — i%ﬁo(axcos&? + 0,sin20) )V p | o+,
(2.20)
where Z = ;:;qf is a dimensionless parameter of the strength of the barrier at the
interface.

2.2.3 Conductance and Normalized Spin Polarization of

Conductance

From the matching conditions to the suitable wave functions, we can cal-

culate the reflection and transmission amplitudes and thus their associated prob-
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abilities as

R, = |r,|?, (2.21)
T (B) = |t? o, (2.22)
T_(E)=|t_]* v, (2.23)

where R, are the reflection probabilities of spin state o, and 7'y, T are the corre-
sponding transmission probability for the plus and minus branches, respectively.

The transmission probabilities for spin-up and spin-down are defined as
2 2
THE) = (T ) vy + (PR vy, (2.24)

TU(E) = [(L It v + [ v, (2.25)

the group velocities of the electron are

+
v JRI (1 + Lz) . (2.26)
)

The current density flows to the right is given by

JE = nivgse, (2.27)
k

where nj, = Y2 (1 — Ryp(Ey) + Ry (Ex))f(Eg), i = 1,2 correspond to the spin
orientation of the incident electron, f(Ej) is the Fermi Dirac distribution function,
Ugz is the group velocity, and e is the electron charge. The electric current density
flows across the junction when applied voltage V' is written as

Jp(eV) = waz (Rip(Ex) + Ri (Bp))(f(Ey — V) — f(Ey)), (2.28)

ko >0,ky i=1
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The tunneling conductance is

dJS(eV)
= —F—= 2.2
and at zero temperature
2 A ky,maac
Gv) =5 /k (1— Riy(eV) + Ry (eV))dk,. (2.30)

The conductance spectrum of the electron with spin-up state can be obtained from

QA ky mag
Gy = 20 /k (1— Riy(eV) + Riy(eV) — Ty (eV))dk,, (2.31)

- h 27T Y, min
and the conductance spectrum of the electron with spin-up state takes form

e? Aqp /ky,mz
k

y,min

We also define the total conductance Gruq as the summation of the conductance

of electron with spin-up and spin-down, i.e.
GTotal = GT -+ Gi' (233)

The difference conductance AG is the differentiation between the conductance of

electron with spin-up and electron with spin-down, i.e.
AG =Gy — G, (2.34)

and the normalized spin polarization of conductance Gp is defined

AG

Gp= )
GTotal

(2.35)
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2.3 Results and Discussions

We set the effective mass of the electron in Dresselhaus system; mp =

0.05m, through this section, and the dresselhaus spin-orbit coupling strength;

e? Aqp

Bo = 0.025qr. We calculate all of the conductance in the unit of - <.

ﬂ.m f i 1 " 1 M
eV/E,

Figure 2.5 The total conductance of the M/DS junction as a function of applied
voltage (eV') at various values of Z, where 3y = 0.05 g, mp = 0.05 m., Z =0,

and 0 = 0.

In Figure 2.5, the conductance spectra for § = 0 for various values of Z are
shown. There are two prominent features. The first one is at the bottom of the
Dresselhaus band where the conductance spectrum value starts to be non-zero.

The second one is at the voltage value is higher than the bottom of the Dres-
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selhaus band by Fp = ;;fg This two features are robust against the change in
7. 'This discontinuity in the slope of the conductance can be used to determine
the Dresselhaus energy(FEp), which measures from the energy scale between the
beginning of the spectrum to the discontinuity point. However, as Z increases, the
conductance decreases as expected (Srisongmuang and Kaoey, 2012). We also see
that the total conductance gives the highest value when Z = 0 and it decreases
when Z increase. The total conductance shows step value at eV = 0 with different
patterns for nonzero of Z. For small Z = 0.5, the total conductance in eV < 0
region is smaller than eV > 0 region. The total conductance increases when ap-
plied more voltage. However, for a bigger Z (Z = 1,2) the total conductance in
eV < 0 region is higher than eV > 0 region. We also found that at Z = 0.65 is
the first point that gives the total conductance in eV < 0 region is higher than
eV > 0 region.

The magnitude of normalized spin polarization of conductance, decreases
when the applied voltage increases. The normalized spin polarization of conduc-
tance is increased with the barrier strength as shown in Figure 2.6. There is a
step at eV = 0 similar to the total conductance spectra. For small Z (Z = 0,0.5),
the normalized spin polarization of conductance in eV < 0 region is smaller than
eV > 0 region, but for a bigger Z (Z = 1,2), the normalized spin polarization of
conductance in eV’ < 0 region is higher than eV > 0 region.

Figure 2.7 shows the total conductance and the normalized spin polariza-
tion of conductance as a function of Z. The total conductance decrease when
Z increases, but the normalized spin polarization conductance increase when Z
increases. The optimum point which give maximum values of both total conduc-
tance and normalized spin polarization of conductance is between Z = 0.6 and

Z =0.7.
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Figure 2.6 The normalized spin polarization of conductance of the M/DS junc-
tion as a function of applied voltage(eV') at various values of Z, where 5, =

0.05¢r, mp = 0.05m,, and § = 0.

The plots of total conductance and normalized spin polarization of conduc-
tance of junction between a normal metal and a two-dimensional electron with only
Dresselhaus spin-orbit coupling as a function of applied voltage (eV') at various
values of 6 shown in Figure 2.8 and Figure 2.9. The total conductance spectrum is
invariant with the crystallographic orientation. However, the normalized spin po-
larization of conductance are strongly depend on the #. Especially, in the eV > 0,
the magnitudes of normalized spin polarization of conductance are risen when 6

are considered, and decreased when eV is increases. The maximum values of the
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Figure 2.7 Plots of the total conductance and the normalized spin polarization

of conductance as a function of Z, where mp = 0.05 me, By = 0.05¢r, and 6 = 0.

magnitudes of normalized spin polarization of conductance are occur at eV = 0.
For eV < 0, the magnitudes of normalized spin polarization of conductance are
risen when 6 are considered, and also increased when eV is increases. While 6 = 0,
the magnitudes of normalized spin polarization of conductance is slightly increase
with the applied voltage.

The plots of total conductance and normalized spin polarization of conduc-
tance of junction between a normal metal and a two-dimensional electron with
only Dresselhaus spin-orbit coupling as a function of 3y at various values of 8 are

shown in Figure 2.10 and Figure 2.11. The total conductance is increased with



30

0.08

0.06

—— 0 =0, /6, n/4|

0.00 . .

eV/E,

Figure 2.8 The total conductance of the M/DS junction as a function of applied

voltage(eV') at various 0, where 5y = 0.05 ¢gp, mp = 0.05m,, and 6 = 0.

the Dresselhaus spin-orbit coupling strength.

The plot of the spin-polarization of conductance as a function of 3 for
changes with 6. When 6 = 0, it is zero. For nonzero 6, the magnitudes of the
normalized spin polarization of conductance are increased. The normalized spin-
polarization of conductance is negative indicate that the numbers of electron with
spin-up is fewer than that of electron with spin-down.

The normalized spin polarization of conductance changes with # and shows
an oscillation with period of 7 rad. For eV > 0, the magnitude of the normalized

spin polarization of conductance is a maximum, when the (100) crystal axis makes
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Figure 2.9 The normalized spin polarization of conductance of the M /DS junction
as a function of applied voltage(eV') at various 6, where fy = 0.05 gp,mp =

0.05m,, and Z = 0.

0 = +(2n + 1)7/4 and is zero at £n7/2 where n =0, 1,2, 3, .... For eV < 0, both
of the maximum and zero values were not exactly at § = +(2n+1)7/4 and +nn /2

(see Figure 2.12).

2.4 Conclusions

We calculated the total conductance and the normalized spin polarization
of conductance across the junction between a normal metal and a 2DEG with only

DSOC. We found that the total conductance and the normalized spin polarization
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Figure 2.10 The total conductance of the M/DS junction as a function of [, at

various applied voltages, where eV = Ep,mp = 0.05 m,, and Z = 0.

of conductance can be enhanced by increasing the Dresselhaus strength, and can
be suppressed by increasing the potential barrier strength. The Dresselhaus cou-
pling energy can be determined from the beginning of the conductance spectra to
the discontinuity point in the conductance spectra similar to (Srisongmuang and
Kaoey, 2012).

The crystallographic orientation of the 2DEG, only offset the normalized
spin polarization. Its magnitude oscillates with € in a period of 7. The maximum
magnitude occurs when the (100) crystal axis makes 0 = £(2n + 1)7/4 with the

interface normal, while the zero magnitude occurs when 6 = +nn /2, where n is a
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Figure 2.11 The normalized spin polarization of conductance of the M/DS junc-

tion as a function of 3y at various applied voltages, where eV = Ep, mp = 0.05 m,,

and Z = 0.

non-negative integer.
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Figure 2.12 The normalized spin polarization of conductance in the
Metal /Dresselhaus system junction as a function of # at various applied voltages.
where By = 0.05 gp, mp = 0.05 m,, and Z = 0. The solid line shows Gp is in

eV < 0 region, and dashed line is in eV > 0 region.



CHAPTER III

TUNNELING BETWEEN A NORMAL

METAL AND A 2DEG WITH BOTH RASHBA

AND DRESSELHAUS SPIN-ORBIT

COUPLING

In this chapter, the particle and spin transport across the interface between
a normal metal and a 2DEG with both types of spin-orbit couplings (M/RDS
junction) are considered. Similar to the approach used in previous chapter, the
scattering method is used to obtain the conductance and the normalized spin
polarization of conductance as a function of applied voltage. In this chapter we will
see the effect of the crystallographic orientation of the 2DEG on both conductance
and normalized spin polarization of conductance. The effect of barrier strength
and the spin-orbit strength are also considered. In the next section, the DOS of
the electron in the 2DEG with both Rashba and Dresselhaus spin-orbit coupling
(RDSOC) will be examined in Section 3.1. In Section 3.2, the approach used to
obtain the conductance and the spin-polarization of conductance will be described

in details. The numerical results and discussions will be in Section 3.3.
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Figure 3.1 (a) The energy spectrum of the electron in a two-dimensional Rashba-
Dresselhaus system. (b) The sketches of the energy spectrum of the electron in
Rashba-Dresselhaus system as a function of k,. Dashed lines represent the energy
spectrum of the electron with energy E* and solid lines represent energy spectrum

of the electron with energy E~.

3.1 Density of States

The DOS of the electron in the Rashba-Dresselhaus system can be calculate
from

D(E) = ZZ&(E—E,;), (3.1)

where A is the area of the system, k is the wave vector of the electron, the sum

V(B2 + KR)|KI? + 4Bokoksk,

when [ is the strength of Dresselhaus spin-orbit coupling, and kg is the strength of

h2k2 h2
2mRgrp MRD

is over all possible values of E, and Ej =

Rashba spin-orbit coupling (see 3.1). By changing the summation to the integral

D(E) = 71T /O:O /OOO S(E — Ey)dk,dk,, (3.2)
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By changing the integration variable to Er, we obtain

MRD > Oi(E)
D*(E) = / S(E — E-) dE-dk
"ok o, Je  C(E5)kE + (B2 + K2k + 2kok,) ( £) dEgdky,
(3.3)
where ¢ = — 2(Botko)®
2mgrp
CE(E) = /(83 + k3) (k£ + k2) + 4fokokzk,, (3.4)

, £ correspond to the E™ and E~ branches, respectively. From the calculation,

the DOS of each branches are The total DOS can be obtained from

Diotar(E) = D*(E) + D (E) (3.5)

Distat(E), D*(E), D~(E) are plotted in Figure 3.2, where Ep = 500
With mgrp = 0.05m,, By = 0.025¢F, and ky = 0.05¢r,and Erp = 9Ep. dotted line
represents the DOS of electrons in the E~ branch, dashed line is E* branch and
the solid line is the total DOS. The DOS of the electrons in £~ branch becomes a
singularities at —9FEp and —FEp, which are satisfied to the bottom and the saddle
point of the band spectrum, respectively. Similarly, the DOS of the electrons in

E™ branch starts at —FEp. For E > 0, the DOS is the usual 2DEG DOS.

3.2 Model and Formalism

3.2.1 Basic model

Similar to the previous junction in Chapter II, we modeled the M/RDS
junction, as a two-dimensional infinite system, in which a normal metal is in x < 0

and a 2DEG with RDSOC is in > 0 as shown in Figure 3.3. It is alsso assumed
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that the interface is smooth and the barrier at the interface is represented by a
Dirac delta-function potential, Ho(x) where H is the scattering potential strength

at the interface. Thus, the Hamiltonian of M/RDS junction is

n2 h2
H= QTS(ZE) + m}f; (04(ky cos20 + kK, sin20) — o, (k, cos20 — k, sin26))
h%k
(Uzky - Uykx) - EFRD (@(Zlf)) - EF (9(_37)) + H5($)7 (36)
MRD
where p = —ih(22 + g}a%) is the momentum operator, the effective mass m(x) =

meO(—zx) + mrpO(z), m. and mgp are the effective mass of an electron in the
metal and in Rashba-Dresselhaus system, respectively, ©(x) is the Heaviside step
function, € is the angle between the (100) crystal axis and the surface normal, Er is
the metal Fermi energy, and Ergp is the Fermi energy of the Rashba-Dresselhaus
system.

The energy dispersion relation of the electron in the metal is

A h2q2

Ty
(q) o

(3.7)

where ¢ is the wave vector of the electron in the metal, ¢ = ,/¢2 +q2. The

eigenstates of electron with spin-up and spin-down are

1 | —
and
=1 (3.9
— 7 1 , )
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here the magnitude of the wave vector g, as a function of energy is written as

2m.FE
72

0(E,qy) = -2, (3.10)

For the electron in the Rashba-Dresselhaus system, the energy dispersion

relation is equal to (see Figure 3.4)

n2k?
E*(ky, ky,0) = ——
( MY ) QmRD
h2
+ \/(50(1%00520 + kysin20) + kok,)? + (Bo(kycos26 — k,sin20) + kok,)?,

MRD
(3.11)

where k = (ky, ky) is the wave vector of the electron in the Rashba-Dresselhaus

system. The eigenstats of the electrons with E* and E~ states are

|+>:\}§ Pk ) , (3.12)
1
and
oy = | etk ) (3.13)
V2 ] ’
where

(Bo(kEcos20 + k,sin20) + kok,) + i(Bok + kokE)

<P(k‘it> kyv 9) = )
V/ (Bo(kfcos20 + kysin20) + kok, )2 + (Boks + kokE)2

and k = (k,cos20 — kEsin26).
The magnitude of the wave vector k, as a function of F, 0, and k, can be obtain

from equation 3.11.
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3.2.2 The Wave Functions and Matching Conditions

We consider ballistic transport across the interface; Thus, the wave function

of the electron in the metal side takes the form

W ) 1 +1 . —1 "
M\Qz;Qy, T) = —7= e + 1y e e
V2 4 1
+ 7 e 1T | 'Y (3.14)
1

where + and — are for the cases of the electron with spin-up (the spin state point
to +y direction) and spin-down (the spin state point to —y direction), respectively.
The wave function of the electron in the metal side is this a linear combination
of an incoming and two reflecting eigenstates of the electron. r4+ and r; are the
reflection probability amplitude of the spin-up and spin-down states, respectively.

The wave function of the electron in the Rashba-Dresselhaus system is a

linear combination of two transmitted eigenstates:

1 PRk, 0) | s

\DRD<k;7 kya 6) = = |t €
V2 1

e’ (3.15)

t. and t_ are the transmission probability amplitudes of the electron in the E
and E_ energy states, respectively.
The appropriated matching conditions at the interface for the two wave

functions are the continuity and the discontinuity of slope of wave function. This
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can be written as

Uiple—or = Yar|z—o-, (3.16)
and
mMe 8\I/RD ‘ . 8\117]\4‘ .
™MRrD 6’x 2=07 6.73 v=0"
<2qF -1 Mhe (0'160(30820 — O'y(k?() — 50811120))) ‘IIRD|m:0+7 (317)
MRD
where Z = ;j;qf is a dimensionless parameter of the strength of the barrier at the
interface.

3.2.3 Conductance and Normalized Spin Polarization of

Conductance

By applying the appropriated matching, we will obtain the reflection and

transmission amplitude and the corresponding probability can be obtained from

R, = |r,|%, (3.18)
T, = [ty o, (3.19)
T- = t_|* v, (3.20)
where
+ Me +
Vg, = k
® mepg, (
Bocos20(Bo(kEcos20 + k,sin20) + kok,)
\/(ﬁo(kfvﬁcos% + kysin20) + kok,)? + (Bo(kycos26 — ksin26) + kokE)?
N (ko — Bosin20)(Bo(kycos20 — kEsin26) + kokE)

Bo(kEcos20 + kysin20) + kok,)? + (Bo(kycos20 — kEsin26) + kok)?
T Y Yy Yy T T
(3.21)



42

R, are the reflection probabilities of spin o state, and T',, T are the corresponding
transmission amplitudes for the plus and minus branches. We can also obtain the

transmission probabilities for spin-up and spin-down states from

T = (1 |t v + 1) v, (3.22)

T, = (It o + 1161 v, (3.23)

In the two-dimensional system, the electric current density flows across the
junction when applied voltage is given as
FV) = Y eve Y1~ RalB) + Ry(E)F(E — V) — F(EEL)), (3.24)
ke >0,ky i=1
which the electric current density flowing parallel to the junction under applied
voltage can be written as
JeV)= > 6%;;2 Riy(Ey) + Riy(Ex))(f(E —eV) — f(ER)), (3.25)
ko >0,k

Oky
where vy = Vg i

is the group velocities in y direction. The tunneling conduc-
tance for the current density flowing parallel to and perpendicular to the junction

normal are defined as
dJS(eV)

Grr(V) = A (3.26)
and
Gay(V) = wy;(;m’ (3.27)

respectively. The total conductance spectrum of the electron can be obtained from

G(V) = ¢ Agr /k T Gy (1 — Riy(€V) + Ry (eV)) (3.28)

h 27 Jkymin
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The conductance spectrum of the electron with spin-up state can be obtained from

G+(V)

62 Aq ky max
¢ 24r /k (1= Ri(eV) + Riy(eV) — Ty (eV))dk,, (3.29)

T or

y,min

and the conductance spectrum of the electron with spin-up state takes the form

@2 Aq ky,maac
vy =S58 /k (1= Rir(eV) + Ry (eV) — Ti(eV))dk, (3.30)

Y, min

We also defined the total conductance; Gy is the summation of the conductance

of electron with spin-up and electron with spin-down
Grota = Gy + G (3.31)

For the different conductance, AG is the differentiation between the conductance

of electron with spin-up and electron with spin-down is defined from
AG =Gy — G, (3.32)

and the normalized spin polarization of conductance ; Gp is given by

NG

GTotal

Gp

(3.33)

3.3 Results and Discussions

We studied the transport properties of the electron in metal/Rashba-
Dresselhaus system junction. We set the effective mass of electron in Rashba-
Dresselhaus system; mgrp = 0.05m, through this section, and setting parameters

as By = 0.025¢r, and kg = 0.05¢gr which makes Erp = 9FEp. The conduc-

tance is in units of %AQ%. Firstly, we show the results § = +7/4 rad, because

these two cases posses the energy contours such that E(—k,, k,) = E(k,, k,) and

E(kxv _ky) - E(km ky)-
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Figure 3.5 shows the conductance spectrum for the junction when § = —n /4
at various values of Z. As can be seen in the spectrum, there are three promi-
nent features. The first one is at the bottom of the Rashba-Dresselhaus system
band where the conductance value starts to be non zero. The second one is at the
voltage value higher than the bottom of the Rashba-Dresselhaus system band by
Erp— EA, and the third one is at the voltage value being equal to zero. These can
be used to determine the Rashba-Dresselhaus energy (Egp). It can also determine
the En = W which is measured from the energy scale between the second
and the third points of the prominent features. Ex satisfied the different between
the two spin-orbit strengths. These three features are robust against the change
in Z.

The normalized spin polarization of conductance on the other hand, gen-
erally increases when Z increases. More specially, for eV < 0, the normalized
spin polarization conductance is hardly change with Z as shown in Figure 3.6.
Figure 3.7 shows both the total conductance and the normalized spin polarization
of conductance as a function of Z. The optimum point which give hight values
of both total conductance and normalized spin polarization of conductance is be-
tween Z = 0.6 and Z = 0.7.

We now plot the total conductance spectrum (Grote) as a function of ap-
plied voltage at various # when Z = 0. We show the conductance spectrum when
0 = 0,+7/4, the total conductance spectrum is dependence with 6, which is differ-
ent from the previous junction. When we rotate the crystallographic of the 2DEG,
the energy contour of the system is changed so the total conductance spectrum is
dependence with 6. Moreover, these prominent features in the spectrum are robust
against the change in 6 as shown in Figure 3.8. In addition, when we rotate the

crystallographic of the 2DEG, the spin state of the electron of the system is also



45

changed, the normalized spin polarization of conductance depends on 6 as well as
shown in Figure 3.9.

When consider the effect of the strength of Rashba spin-orbit coupling, we
fix the strength of Dresselhaus spin orbit coupling equal to 0.025¢r, and Z = 0.
As we can see in the Figure 3.10, when ky = 0 that is mean in this junction has
only Dresselhaus spin-orbit coupling. They show similarly results being satisfied
to the junction of metal and Dresselhaus system. The total conductance spectrum
gives the same values for various 0 (at ky = 0). Furthermore, the total conduc-
tance increases with increasing of the strength of the Rashba spin-orbit coupling,
until the strength reaches to a critical value, after which the conductance spectrum
decreases. In addition, the normalized spin polarization of conductance increases
when the strength of the Rashba spin-orbit coupling increases as shown in Figure
3.11. Both of the total conductance and the normalized spin polarization of con-
ductance also show the strange feature when Sy = k.

The calculation of the conductance spectrum as a function of # at various
values of applied voltage are shown in Figure 3.12. We set some parameters as
Z = 0.5, By = 0.025qp, and ky = 0.05qp. In calculation processing, we vary in
some angle which are § = 0, +%, £7, £%, and +7. As we can see, in eV > 0 re-
gion the conductance spectrum show an oscillation feature with period 7 rad which
satisfies to the expression that is a function of 260. The conductance spectrum has
a maximum value, when rotate the (100) crystal axis makes § = (2n + 1)7/4 and
minimum value at § = —(2n+ 1)7/4, where n = 0, 1,2, 3, ... In eV > 0 region, the
total conductance spectrum is slightly changed with the crystallographic orienta-
tion.

Figure 3.13 is the plot of the normalized spin polarization of conductance

as a function of # at various values of applied voltage. Both of eV < 0 and
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eV > 0 regions, show an oscillation feature with period 7 rad. In contrast, the
total conductance spectrum, in eV’ > 0 region, the normalized spin polarization of
conductance spectrum has a maximum value, when rotate the (100) crystal axis
makes § = —(2n + 1)7/4 and minimum value at § = (2n + 1)7/4. However in
eV < 0 region, it has a maximum value, when rotate the (100) crystal axis makes
0 = (2n + 1)7/4and minimum value at § = —(2n + 1)7 /4.

Finally, we also calculate the conductance of the electrons which move par-
allel to the junction(Greta xy). We found that there are not only the tunneling
conductance in z axis but in some angle of the crystal rotation also generate the
tunneling conductance in y direction. As shown in Figure 3.14 when # = 0 and
the applied voltage less than zero, the conductance spectra shows the negative
values that is mean the conductance of the electrons which move along —y direc-
tion is more than the electrons move along +y direction. The conductance spectra
gives the maximum value when eV = 0, and decreases when the applied voltage
increases. But when 6 = /4, there is no total conductance because of the energy
contour of this case is symmetry around k,. This means that there are the same
value of group velocity of the electron but it is different in +y and —y direction,

so the total conductance is becomes to zero.

3.4 Conclusions

In this chapter is the studied of a normal metal/Rashba-Dresselhaus sys-
tem junction. We use a so-called scattering method to calculate the conductance
spectra and the normalized spin polarization of conductance in the junction.

We found the total conductance spectra shows two distinctive features.
From the positions of these existing features, the Rashba and Dresselhaus couples

energy can be determined the Rashba-Dresselhaus energy and FEx. The Rashba-
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Dresselhaus energy can be determined from the beginning of the spectra to the
second discontinuity point, which relate to the sum of two spin-orbit coupling
strength. EA can be determined by the different scale between two discontinuity
points, which relate to the different value between two spin-orbit coupling strength.
And the total conductance spectrum is increased with the strength of the Rashba
spin-orbit coupling, until the strength reaches to a critical value, after which the
conductance spectrum is decreased with the strength.

Both of the conductance spectrum and the normalized spin polarization
of conductance, show an oscillation features with period 7= rad. The conduc-
tance spectrum has a maximum value, when rotate the (100) crystal axis makes
0 = (2n + 1)7/4 and minimum value at § = —(2n + 1)7/4, where n =0,1,2,3, ...
In the other hand, the normalized spin polarization of conductance has a maxi-
mum value, when rotate the (100) crystal axis makes § = —(2n + 1)7/4 with the
junction normal and minimum value at 6 = (2n + 1) /4.

Moreover, when we inject the electron across the junction along the x axis,
normally it generates the tunneling conductance along = axis. However in junction
which consists of both Rashba and Dresselhaus spin-orbit coupling, there is not
only the tunneling conductance in z axis but in some 6 also generate the tunneling

conductance in the direction parallel to the junction plane.
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Figure 3.2 The DOS of a 2DEG with Rashba and Dresselhaus spin-orbit coupling.
The dotted line represents the DOS of the electron in the £~ branch, the dashed
line represents the electron in the ET branch and the solid line represents the total

DOS, where Ep = o mpp = 0.05me, fo = 0.025qr, and ko = 0.05¢p.
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Figure 3.3 A Metal/Rashba-Dresselhaus system junction.
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Figure 3.4 The energy spectra of the electrons in a metal (left) and the Rashba-
Dresselhaus system (right). The arrows pointing left or right, represent the elec-
tron states that are considered in the scattering process. We assumed the incoming
state equal 1, 4 and r| are reflected states with spin-up and spin-down, and ¢,

and ¢_ are outgoing states of the electron with E* and E~, respectively.
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Figure 3.5 The total conductance spectrum as a function of applied voltage at
various values of Z, where kg = 0.05¢qr, 5y = 0.025qr, mgp = 0.05 m,, and

0 = —mn/4 rad.
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Figure 3.6 Plots of the normalized spin polarization of conductance as a function

of applied voltage at various values of Z, where mpgrp = 0.05 m,., ko = 0.05¢qF,

Bo = 0.025¢p, and 0 = —7 /4 rad.
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Figure 3.7 Plots of the total conductance and the normalized spin polarization of
conductance as a function of Z, where mgp = 0.05 m,, ko = 0.05¢gr, 5y = 0.025¢F,

and 0 = 0.
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Figure 3.8 The total conductance spectrum as a function of applied voltage at

various 0, where mpgrp = 0.05 m,, kg = 0.05qr, Sy = 0.025qr, Z = 0.0.
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Figure 3.9 Plots of the normalized spin polarization of conductance as a function
of applied voltage at various 6, where mgrp = 0.05 m., ko = 0.05qFr, 5y = 0.025qF,

and Z = 0.0.
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Figure 3.10 The total conductance spectrum as a function of Rashba spin-orbit

coupling strength at various values of 6, where mpgp = 0.05 m., By = 0.025qF,

Z =0.0, and 0 = —7 rad.
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Figure 3.11 Plot of the normalized spin polarization of conductance as a function
of Rashba spin-orbit coupling strength at various values of 6, where mgrp =

0.05 me, By = 0.025¢F, and 0 = —7 rad.
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Figure 3.12 Plot of the total conductance as a function of 6 at various values of

applied voltage, where mpzp = 0.05 m,, ko = 0.05gr, 5o = 0.025¢r, and Z = 0.0.
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Figure 3.13 Plot of the normalized spin polarization of conductance as a function
of 6 at various values of applied voltage, where mgrp = 0.05 m., kg = 0.05¢qF,

Bo = 0.025¢F, and Z = 0.0.
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Figure 3.14 The plot of the conductance perpendicular to the junction(Grota, xv)
as a function of applied voltage at various values of 6, where ky = 0.05¢r, 5y =

0.025gr, Z = 0.0, and 6 = 0 rad.



CHAPTER 1V

CONCLUSIONS

This thesis is a theoretical study of the particle and spin transport in
systems with Rashba and Dresselhaus spin-orbit coupling by using a scattering
method. According to both the energy contours and the spin states of the sys-
tem with both types of spin-orbit coupling are not invariant with respect to the
rotation about the z axis which lead to many interesting effects. This depen-
dence is more explored on the crystallographic orientation of the particle and spin
transport across the interface between a metal and 2DEG with both types of the
spin-orbit coupling. Two types of junction are considered: the first one is the
junction between a normal metal and a two-dimensional electron gas system with
only Dresselhaus spin-orbit coupling and the second one is the junction between
a normal metal and a two-dimensional electron gas system with both Rashba and
Dresselhaus spin-orbit coupling.

In this formalism, the junction is represented by an infinite system. Each
region in the system is modeled with a continuous Hamiltonian appropriate for
each material. The reflection and transmission amplitudes can be obtained by
applying the matching conditions for these wave functions at the interface. The
conductance spectrum and the normalized spin polarization of conductance can
be obtained as well. The effect of the crystallographic orientation of the 2DEG,
the spin-orbit coupling strength, and the potential barrier strength are studied.

In chapter II is the study of the particle and spin transport in the junc-

tion between a normal metal and a two-dimensional electron with only Dresselhaus
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spin-orbit coupling. The effect of the crystallographic orientation of 2DEG is stud-
ied, and found the total conductance spectra invariant with the crystallographic
orientation. On the contrary, the normalized spin polarization of conductance is
not invariant with the crystallographic orientation, they show an oscillation with
period m rad. The magnitudes of the normalized spin polarization of conductance
has a maximum value, when rotate the (100) crystal axis makes § = £(2n+1)7/4
and minimum value at £n7/2 where n = 0, 1,2, 3, .... In addition, both of the total
conductance spectra and the normalized spin polarization of conductance can be
enhanced by increasing the Dresselhaus strength, and be suppressed by increasing
the potential barrier strength. The Dresselhaus couples energy can be determined
from the beginning of the conductance spectra to the discontinuity point in the
conductance spectra.

In Chapter III is the study of the particle and spin transport in the junc-
tion between a normal metal and a two-dimensional electron gas system with both
Rashba and Dresselhaus spin-orbit coupling. The conductance spectrum shows
two distinctive features. From the positions of these exist features, the Rashba

and Dresselhaus couples energy can be determined the Rashba-Dresselhaus energy;,

Erp = %ﬁ, and Ean = }12(227;@0)2 The Rashba-Dresselhaus energy can be
determined from the beginning of the spectra to the second discontinuity point,
which relate to the sum of two spin-orbit coupling strength. Ea can be deter-
mined from the different scale between two discontinuity points, which relate to
the different value between two spin-orbit coupling strength. Both the conductance
spectrum and the normalized spin polarization of conductance are not invariant
with the crystallographic orientation. The conductance spectrum has a maximum

value, when the (100) crystal axis makes § = (2n 4+ 1)7/4 and minimum value

at @ = —(2n + 1)7/4, where n is non-negative integer. This is different from the
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normalized spin polarization of conductance, it has a maximum value, when the
(100) crystal axis makes § = —(2n+ 1)7/4and minimum value at § = (2n+1)7/4.

In case of fixed the Dresselhaus strength and varied the Rashba strength,
the total conductance spectra is increased with the strength of the Rashba spin-
orbit coupling, until the strength reaches to a critical value, after which the total
conductance spectrum is decreased with the strength. On the other hand, the
spin-polarization of conductance is increased with the Rashba spin-orbit coupling
strength. Moreover, the total conductance spectra can be suppressed by increasing
the potential barrier strength and the normalized spin polarization of conductance
can be enhanced by increasing the potential barrier strength. One more interesting
result is that there exists the current along the direction parallel to the junction
place.

The results found in this thesis indicated that the normalized spin polariza-
tion of conductance can be controlled by varying the potential barrier strength, the
applied voltage, and the spin-orbit coupling strength. Furthermore, by rotating the
crystallographic of the 2DEG, we can control the normalized spin polarization of
conductance. In the future, we expect to study more complex heterostructures that
contain Rashba-Dresselhaus system, for example M/RDS/M, Ferromagnetic/RDS,

Superconductor/RDS, DS/RDS, and RS/RDS junction.
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APPENDIX A

TUNNELING BETWEEN A NORMAL

METAL AND A 2DEG WITH ONLY RASHBA

SPIN-ORBIT COUPLING DOUBLE

JUNCTIONS

We modeled our junction (M/RS/M junction) as a two-dimensional infinite
system, in which a normal metal is in x < 0 and x < L, and a 2DEG with RSOC
isin 0 < x > L as shown in Figure A.1. It is assumed that the interface is smooth
and the barrier at the interface is represented by a Dirac delta-function potential,
Hi6(x = 0) and Hy0(x = L) where Hy is the scattering potential strength at

the interface. The Hamiltonian of the electron in M/RS/M junction is written as

ia R?koO(x
H(x) = 27712)(95) + Hid(x)+ Hyd(x — L)+ 731;)(%]{2 —o.k;)
— EFG(—JI) + @(ZL’ — L) — EFR@<I> — @(Z‘ — L), (Al)
where p = —ifi(Z 2 + 22) is the momentum operator, the effective mass m(z) =

me(O(—z)+0(z—L))+mg(60(x) — O(x — L)) which is position dependent, m, and
mp are the effective electron mass in the metal and in Rashba system, respectively,
O(z) is the Heaviside step function, EF is the Fermi energy of the metal, and Erg
is the Fermi energy of the Rashba system.

In the metal, the energy dispersion relation for both spin-up and spin-down
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Figure A.1 A Metal/Rashba system/Metal double junction.

are equal. The energy dispersion relation of the electron in the metal

h2q2
- 2m.’

E(q)

where ¢ is the wave vector of the electron in the metal, ¢ = \/q2 + ¢2

function of the electron in metal side takes form

1 == —1 '
Ui (Ge: 42:%) = 5 ¢l | Jigea
1 1
+ Ty e T | o14z2
1

is

(A.2)

. The wave

(A.3)

where the + in the first term refer to the electron with spin-up (the spin state point

to +z direction) and spin-down (the spin state point to —z direction) respectively.

The first term represents the incoming state, the second and third terms are the

reflecting state, where Ry and R| are the reflection probability amplitude of elec-

tron with spin-up and spin-down respectively, and ¢ = (¢, ¢.) is the wave vectors

of electron in the normal metal.
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here the magnitude of the wave vector g, as a function of energy is written as

2m.E

In the 0 < x < L region, the wave function is obtained as a linear combination of

two transmitted and two reflected eigenstates of the same energy and k.,

o : (e}
) cos 5 sin &
g; (l’, Z) — threizkw T + TjJre:sz:z T ezkz z
: o o
I Fsin 5 Fcos 5
sin g n Cos g - -
+ ti_e™e T + ri_e et et ®, (A.5)
coSs g sin g

where the upper and lower signs refer to the energy above and below Ujy re-
spectively, o and [ are the angles between of k*,k~ and the zaxis, respec-
tively. t,,_,ry/_ are the transmission and reflection amplitudes for electrons
in the plus/minus branch of the RSOC system. Because the wave vector along
the z axis is conserved, we have the following relations ¢, = kI = k., or

ktsina = k7 sinf8 = gsiny, where

2
k- :k0+\/kg+$(E—Uo), (A.6)
and
2m*

The + and - signs in equation (A.7) are for £ > 0 and E < 0, respectively.

In the x > L region, the electron wave function can be expressed as a
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transmitted eigenstate;

@DMR(:U z) = e el=? (A.8)

where ¢, is the transmission coefficient of the particle with spin o.
All the coefficients in Eqgs.(A.3)-(A.5), and (A.8) can be obtained from the

four boundary conditions at z =0 and x = L.

Vi, (= 0%, 2) = Yis(z = 07, 2) = $9(0), (A.9)
VR (0= L*,2) = vl (e = 17, 2) = $O(L), (A-10)

m o9 o) \| g m ()
(m* o " ox )| (20— iho o) w00, ()
3%(\2% BW%) — (of s+ ip T G (r A12
dr  m* Ox L_( r 2+Zom*02)’¢ (), (A-12)

mH,;
h2qr

where Z; = is the dimensionless parameter, referring to the interfacial scat-
teringat =0 fori=1and at x = L for i = 2. Z — 0 is in the high transparency
limit, whereas Z — o0 is in the low transparency, or tunneling, limit. The con-
ductance spectrum of the electron can be obtained from

ﬁ@

G(eV) = ’ 27r .

eV
dvcosy 1+—Z w(eVoy)+ T (eV,y)).  (A13)

where A is the total area of the metallic electrode and ~,, = sin™'[k~(E)/q(FE)]
is the maximum incident angle for the electron with energy E. T}, (eV, ) are the
transmission probabilities in case 7 with spin o.

We define the spin polarization of conductance GG p, which is the difference
between the up-spin and down-spin conductance normalized by the total conduc-

tance.
Gy(eV) — Gy(eV)

GP(eV) - G¢(€V) + GT((EV)

(A.14)
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We set the effective mass of the electron in Rashba system; mgr = 0.05m,
through this section, and the Rashba spin-orbit coupling strength; ky = 0.05¢p.

We calculate all of the conductance in the unit of %AQ%.

ﬂhl"} d T ¥ I " 1 ' I

. o
0.08 | 7 ]

0.06 | T i

GTMEI

0.02 I‘LI | Z=0.0

eVIE,

Figure A.2 The total conductance of the M/RS/M double junctions as a function
of applied voltage (eV') when we set Z; = Zy = Z , where kg = 0.05 gp, mr =

0.05 m., and L = 280/ /qp.

The plots of total conductance and normalized spin polarization of con-
ductance of the double junctions between a normal metal and a two-dimensional
electron with only Rashba spin-orbit coupling as a function of applied voltage
(eV) at various values of Z shown in Figure A.2 and Figure A.3. Both of the

conductance spectra and the normalized spin polarization of conductance show
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Figure A.3 The normalized of spin polarization of conductance of the M/RS/M
double junctions as a function of applied voltage (eV') when we set 71 = Zo, = Z

, where ko = 0.05 g, mgr = 0.05 m,, and L = 280//qp.

the oscillatory behaviors, reflecting the resonance due to the finite thickness of
the Rashba layer. The period of this oscillation is not affected by the interfacial
scattering potential. However, their magnitudes were suppressed by the interfacial
scattering potential which is similarly to the result of M/DS junction.

Figure A.4 shows the total conductance and the normalized spin polariza-
tion of conductance as a function of Z;. In both regions of the energy scales, the
total conductance decrease when Z; increases, but the normalized spin polariza-

tion conductance is slightly increase when Z; is increased. Moreover, when 7 is
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varied, the normalized spin polarization conductance is decreased as Z, is larger.
The plot of the total conductance and the normalized spin polarization of conduc-
tance as a function of Z5 are shown in Figure A.5. The total conductance decrease
when Z, increases for both energy scales. The normalized spin polarization of
conductance in eV = —0.5 Epy region is slightly increase when 7, is increased,
but in eV = Ejg region is decrease when 75 is increased. In addition, when 7 is
varied, the normalized spin polarization conductance is hardly changes with Z;.
We found that the normalized spin polarization conductance is much more sensi-
tive to Z5 than Z;. This result indicates that spin filtering in a double junction is

determined mainly by the second barrier potential.
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Figure A.4 The total conductance and the normalized spin polarization of con-
ductance of the M/RS/M double junctions as a function of the interfacial scatter-
ing potential between a normal metal and a 2DEG with RSOC (Z;) when fixed
Zy = 0, where ky = 0.05 gr, mg = 0.05 m,, and L = 280//qr. The left column
shows the total conductance and the right column shows the normalized spin po-
larization of conductance, when the top figure for eV = —0.5 Er and the bottom

figure for eV = FEj.
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Figure A.5 The total conductance and the normalized spin polarization of con-
ductance of the M/RS/M double junctions as a function of the interfacial scatter-
ing potential between a 2DEG with RSOC and a normal metal (Z3) when fixed
Zy = 0, where ky = 0.05 gp, mg = 0.05 m,, and L = 280//qr. The left column
shows the total conductance and the right column shows the normalized spin po-
larization of conductance, when the top figure for eV = —0.5 Er and the bottom

figure for eV = FEj.
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1. Introducion

The gencration of spin-polirised carriers is one of the man
fomuses in the new field “spintronics™, which aims to utilize the
spin degree of freedom of elecirons in dectrome devices. The
generation of spin polarization can be achieved in several ways,
for example, thrugh eprical pumping |1] and elearical spin
injection |2). Howeser, for device applications, elearical spin
injection inte semiconductor is more desirable | 3).

Spin injection from ferromagnetic metal into the semicondwc-
tor was first proposed by Aronov and Pkus |2]. Preliminary
experiments have resulted in very similar ways and the spin
injection effed measurcd was only about 1% [4=6]. In 2000,
Schmedt et al, revealed tha the conductivity mismatch between
the ferromagnetic metal and the semiconductor was the funda-
mental problem for injecting spins from metal 1 semdconduwc-
vars [7] In the same year, to sobee the problem of the mismatch in
the condudivities of a ferromagnetic metal and a semiconduotor,
the injection through tunnel contacts was proposed by Rashba | 8]
Then, the higher efficiency electrical spininjection from metal to
semiconducior was realized in different systems [9<13). Besides
the use of tunnel barriers, the spin injecton from the ferromag-
netlic semicondudor into the semiconductor has been demon-
strated, High degree of spin polarization has been achieved in this
way | 14=16], where there is no conduaivity mismatch problem
between 1wo semiconducions, However, fesearchers im many
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different arcas are stll trying to find akernative spinpolarized
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Eecently, there has been growing intensst in the clectron
transport propertics through a non-magnetic semiconductor after
i was found that birge spin polafzabon can be obtained n sudh a
struciure due to the spin—orbit coupling interctdon [ 17-25). The
spin—orbit coupling in semicondumors is induced by symmetny-
breaking. which & mainly dassified inte two ypes. One & the
Rashba spin-orbit coupling (RSOC) [26-28] which is due 1o the
structure-inversion asymmetry. The other is the spin splitting
mduged by the bulk-inversion asymmetry known as the DSOC
129]. However. the measurement of spin spligting still remains a
challenge. It has been studed using many different technigues,
which are briefly dizoussed in our previous work and references
therein [ 22]

In this paper, we deal with the junciion composed of a metal
and a vwo-dimensional electren gas (2DEG) with Dresselhaus-
ype spin—orbit coupling. We show that the in-plane tunneling
spectmscopy can also be used to measure the strength of DSOC as
well as that of the RSOC [22) We also find that large spin
polirization in the propagation direction is obtained in this
system. We also study how the interfacial scattering barrier
affects both the conductance spectrum and the spin polirization
of conductance,

2 Formulation

The 2DEGM junction is modeled 15 an infinite 2D gystem, Our
system lies on xz plane, where the Dresselhaus and the metal
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system oooupy the x <0 and x> 0, nespectively. The two regions
are separted by the Mat interface at x=0. The interfacial scatter-
ing is modeled by a Dirac delta-function potential [30]. We
describe our system by the following Hamiltonian:

T
H-Pmp*”m:-rl"h [L}]

Each term is 3 2 = 2 matrix acting on spinor states amd pis the
momenium operator. The effecive mass mix) is position depen-
dent: ie. [m{x)]~"=m~ "8 x)+{m")"" (@[ -x]L where m and m*
are effective electron masses in the metal and the Dresselhaus
system, mespectively, and &(x) is the Heaviside step fundion.
Lix.z) is also a position-dependent function and is modeled by the
expression

Ui,z = H3(3) 4+ Eg BN —x)— Er E(%) @)

where H represents the seattering potential a1 the interface; the
diagonal elements of H corresponding to the non-spin-fip seat-
tering potential, while off-diagonal dements govern the spin-lip
scattering |31} Eo is the energy difference between the Fermi
level and the crossing point of two branches in Dresselhaus
system, and Ex is the Fermi energy of the metal, The Dresselhaus
Hamiltorian is written as

Ho= %tﬂ'ﬂx"’xﬁd 3

where [ represents the DSOC strength.

From the Hamiltonian, one can obtain the eigenmergy lor
electrons in each megion The wave functon of elecrons with
energy E in the Dresselhaus system is written as a linear
combination of incident momentum state and reflected states of
the same energy and k. The energy dispersion of the system is
depicted in Fg. 1. There are two equal possibilities for an inddent
electron, Thus, the two wave functions in the Dresselhaus side
become

s (B ) ax
sinf2=-3 |©

F gk = ([ +he T:mi] P

—os(B—+ §
sin(+ )
¥ e = ([ Eoos(Ze-+ 5 etBinp, [ im{'—t’-l‘ﬂ]

by

h)o

sin(B=+5) Finr-g)
-—ctq:t=j'-+ﬂl el e
dnti‘Ha )H‘ )

where ¢y are the angles benwem l: and the x axis as shown in
Fig. 1. For E= Ea By and by are the ampBiudes of reflection of
electrons to the plus and minus branches. respectively. When
E <« Ea by and bz refer o the amplitudes of reflection of eledtrons
with smaller and larger & of the minus branch, respectively. The
upper and lower signs in Eq. (4) are for E <Es and E>Es,
respectively,

Similarly, in the meal system, the wave function is obtained
a5 1 linear combination ol two outgoing states of the same energy
and k. In order to observe the dectron spin in the x directon, we
choose the spins of transmitted elecirons © be along the x
direction. The corres ponding electmn wave function in the metal
is written as

Putxa- (S5 [ ]:H-'+

xr“"‘+b;_[

]-r'l-* H-‘ (5)

where £y and 3 are the ransmission amplinudes of electrons with
spin orientation in +x and —x, nespectively.

Wie obtain all the reflecdon and ransmission amplitudes from
the Following matching conditions that ensure the probability
conservation [32]:

Frx=02=Fyix=1072 (6}
(md'?'m- d?‘u)l ‘{‘—*ﬁd- qul:lﬂﬂj o
where 7 = mH,k*gr; the diagonal elements of 7 refer 1 non-spin-
Mip sattering strength () and off -diagonal dements refer to tha
of spindlip scattering (¢}

[resselhaus system i

Fig 1. Topsketches ase theenergy contours of the choceren i asneeal (i ghe) and the Drerelss symem (keft) The anghes ¢ and 0 a2e defined 31 thoae betwoen thex ads
and the ma ments of elecrand 16 the Dieuelui dyitem a5l the metal feipaativel y, The didlied baw 1has efodac bath 8 e ihowi the maneatimn 20 withithe ame ks,
The lewars 1brichet 25 the corrri pravhing energy spretrs By and £ aoe the offart reergy of the Deenelhawn iyitemn and the metal Fermi ey, feipectieely,
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From the transmision amplitudes, the differential condue-
lance at zero temperaure can be cakulaed from the fallowing:

2 LS
GieV)= :_;'.:[f* A8 cosC eV, A+ Caie M) (3]

where [¥ is the ara of the metal, G eV, Mand CoieV,iare the
transmission probabilities to states with spin +x and —x, respec-
tively, and fs is the maximum angle of the tmnsmission electron
in the metal (see Fig. 11

We can obtain the expression for the spin polarization of
conductance as

. _j:‘,n-N{m{tfl[df‘.ﬂJ—Ez{cV.ﬂ}J
155 dfcos MGyl eV )4 CeleV, 0

@

3. Results and discussion

In this section, we discuss the ffec of the imerfacial scatier-
ing on the dilferential conductance spectra and the spin polariza-
tion of conductance. In owr numerical alculation, for the purpose
of illustration, we set mim® =10 and kp=005ks. The main mesults
are not affected by the choice of these pammeters. In all
conductance plots. the conductance is in units of e {4 k)

The plot of the differential conductance as a function of
clectron enargy (eV]Er) is shown in Fig. 2. There are two distin-
guished features at the voltage cormes ponding to the bottom and
the branch crossing of the energy band. The energy spadng
betwoen them & equal to the Dresschhaus energy (Esl which is
the guantity of interest, This predicted behavior shoud be
displayed in the hybeid structure compased of metal and semi-
conductor-based heterostructures such as InSh [29], Gash |33,
InAsSh [34], and InSh-based alloys [35] since they exhibit Dres-
sefhaus spin=-orbit coupling.

The effect of the interfacial scattering on the overdl cond-
uciance can be seen in Fig 3. As expected. the spin-Ep scatier-
ing suppresses the onducdance in transparency junction (see
Fig- 3({a)L However, in the mnnding Emit (Z2=1), the results are
surprising. As can be seen in Fig. 3 (bl an increase in Zp (form
zero io 1) can enhance condudance. The conduciance spectrum,
which is wsually decreased in the presence of the interfacial
scattering. @an be enhanced by the combined effect of both
types of scatbering. This effect was also found in the previous
study of the tunneling conductance spectrum of a semico ndudior

L -
Eg /

]
i
T
1

0 . ] i L ] i 1 L
o e L] oie L] ol
Vi
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and supercondudtor hybrid structures by Zutic and Das Sarma
[31] as well as by Das Sarma et al. [36] In addition, not just in
ballistic junction, mterfacial spin=flip scatering was shown to be
ako important for spin injection in diffusive regime [37].
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Fig. & Densiy of states of each branch of J0IC with the Dresel haus spin-orbit
coupling. The contour plats on the lek and on the right are thase in e cxe where
E = Eg and E = B, respecevely. When E = E;, the ouber conpur is that of the mines
Brasch asd the immer ome i3 that of the plus branch. When E < E;, both energy
conber beivng s the — lranch The affows reprewent the gan deectien of the
sEtes with postive .

Ar last, plots of the spin polarization of the conductance as a
function of eV] £z are shown in Figs. 4 and 5. In the absence of both
types of scattening. large spin polarizaton is always positive. This
is because the density of states of the minus branch is larger than
that of the plus branch, and the spins of the incident states of the
minus branch are mostly oriented along the +x diredion. see
Fig. 6 Moreover, at enagy below the branches crossing, the
increase in Z or Zy from zero to 4 small value (from 0 1o ~0.3)
can enhance the spin polarization (see Fgs. 4 and 5] It is also
found in the absence of Z, when Zr is high, e.g. Zr=10 and 2.0,
that the spin polarizadon of the energy above Es is negative
(see Fig-4)

4. Condusions

In condusion, the spin-dependent transport properties of
2DEGM junction with Dnesselhaus spin-orbit coupling have been
investigated, We showed that the insplane tunneling conductance

spectrum can also be used 1o measure the Dresselhaus energy as
weell as obtained it in the system with Rasha spin-orbit coupling.
‘We find that the spin-flip scattering can enhance both conduc-
tance and the spin polarization of the ondudance in certain
conditions, and alss can change the sign of the spin polarization of
the condudtance when Zp is high It is found that non-£pin-ilip
sEMlefing can increase the spin poladzation of conductance in
certain onditions as well. Large spin polanzation found i this

system indicates the potential of unable spin-dependent elecric
devices sudh as spin switches and spin filers.
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Abstract

The conductance spectrum and the normalized spin polarization due to the
spin-dependent conductance of a metal/semiconductor/metal with Rashba
spin-orbit coupling junction are theoretically studied within a free electron
approximation and a scattering method. The effect of the first and the
second interfacial scattering potentials on the two quantities are considered,
especially when both of the potential strengths are not equal. While the
conductance is determined by the higher interfacial scattering potential, the
spin polarization is determined by the second interfacial barrier potential of
the junction.

Keywords: A metal/semiconductor/metal with Rashba spin-orbit
coupling, Tunneling conductance, interfacial scattering, spin polarization

1. Introduction

Understanding the mechanism of spin injection offers a huge potential for
many fundamental and practical applications in spintronics [1, 2, 3, 4, 5, 6,
7, 8, 9). Conventionally, the spin injection can be achieved by sourcing the
currents from ferromagnetic metal electrodes. Thus, much effort has been put
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Preprint submitted to Elsevier November 14, 201



towards the study of the spin transport across a ferromagenet /semiconductor
interface [10, 11, 12, 13]. It was found that there is a fundamental obstacle
for effective spin injection in this case, due to the conductivity mismatch
between the two materials [14, 11, 13]; however, a simple solution to this
problem is to insert an insulating barrier at the interface [15, 16].

Another way to overcome this problem is to avoid ferromagnets alto-
gether and instead use the spin filtering device based on the intrinsic proper-
ties of mesoscopic systems, such as strong spin-orbit interaction[17, 18, 19].
One of the heterojuctions that can be used as spin filtering devices is a
metal/Rashba spin-orbit coupling system/metal (M/RSOC/M) double junc-
tion. It was shown that the Rashba spin-orbit coupling in a semiconductor
heterostructure can help produce and control a spin-polarized current. As-
suming identical interfacial scattering potential strengths, on finds that the
transmission and spin polarization in such structures depend strongly on the
electron incident angle [20].

It is known that the interfacial scattering potentials have an important
impact on the particle and spin transmission across a heterostructure. It is
not easy to fabricate the double junction with the same interface scattering
strength. We, therefore, are interested in the impact of the inequality of
these two interfacial scattering strengths in the double junction on the spin
filtering. In this article, we theoretically examine the conductance and the
spin polarization of conductance of M/RSOC/M double junction, in which
the two interfacial scattering potential strengths may not be equal. In the
next section we present the assumptions and formalism used in this study.
Section 3 contains the results and discussion, and finally, the conclusion is
presented in Section 4.

2. Method and Assumptions

We model our junction as a two-dimensional system, which lies in the
xz plane. A semiconductor layer of thickness L with the Rashba spin-orbit
coupling is sandwiched between two identical metallic electrodes. We set
the first interface at x = 0 and the second one at * = L. We represent
each interfacial scattering barrier by a Dirac-delta function potential [21]. In
order to consider in the ballistic regime, the thickness of the Rashba system
is also set to be much shorter than the typical mean free path of an electron
in the system. The energy dispersion relation of the electron in each region
of the double junction is shown in Fig. 1.



We describe our system by the following Hamiltonian:

H = {pgyp + V@ + Has(@), (1)
where p = —ih(i’% + 73%) is the momentum operator. The effective mass

m(z) is position-dependent; i.e., [m(z)]t = m™'O(—z)+(m*)~'O(x), where
m and m* are the effective electron masses in the metallic and the Rashba
region, respectively. ©(xz) is the Heaviside step function. V(zx) is also the
position-dependent and is defined by the following expression.
V(z) = Hid(z)+Hed(z—L)—Er [0(—z) + O(x — L)|+U, [©(x) — O(z — L)],
(2)
where Hy, H, represent the scattering potential strengths at x = 0 and x = L
respectively. Uy is the offset gate voltage, which is much smaller than the
th%

Fermi energy, Fr = 5. F of electrons in the metallic electrodes. H Rrs 18 the

Rashba spin-orbit coupling term, which is expressed as [17, 18, 19|
Hps(x) = —\(z)[o x k] - J, (3)

where A\(z) = AO(z) and A is the Rashba spin-orbit coupling strength param-
eter, which can be tuned by applying the external electric field perpendicular
to the 2D plane [22, 23, 24, 25, 26, 27], J is a unit vector pointing in the di-
rection perpendicular to the plane of the junction, ¢ = (0,,0,,0,) are the

Pauli spin matrices, and k is the wave vector of the electron.
The electron energy dispersion relation in the Rashba system can be ob-

tained as )

E.(k) = [k £ 2kok]| + U, (4)

2m*
where k = \/k2 + k2 is the magnitude of the wave vector and kg = m*\/h is
the wave vector associated with the Rashba spin-orbit coupling.

We first consider the electrons in the x < 0 region. The wave function is
written as a linear combination of an incident state and a reflected state of
the same energy and k,. Because there are equal number of electrons with
opposite spin directions in a metal, there are two possibilities of the wave
function. That is,

P\ (x,2) = (l (1) ] Qi | l 1y ] ez‘qu> git=. 5)

r1y
W\ (x,2) = Q O 1 €= 4 l "2t 1 6_@~qu> e'e=*, (6)
1 T2y

3



where ¢, = qcos~y, q. = ¢sin~y, with v being the angle between the wave
vector and the x axis, and ¢ = /2m(Er — E)/h2. 1, is the reflection
coefficient for spin o, where j = 1,2 referring to the wave function of an
incident electron with up spin and down spin respectively.

In the 0 < x < L region, the wave function is obtained as a linear
combination of two transmitted and two reflected eigenstates of the same
energy and k.,

a

; cos & ot sin & gt g
%(:p,z) = (l qtsinZﬁ ] tipeXiheT 4 l ¢cosQﬂ ] rj+€]”k”> k= 2
2 2

i B
s 5 = CcOS - o
( l n % ] tj_ezk‘gc x l . ] ,rj_e—zk:x :c) ezkz z’ (7)
COS 5 S1n

where the upper and lower signs refer to the energy above and below U
respectively, a and /3 are the angles between of k7 ,k~ and the raxis, respec-
tively. t4,_,r4/_ are the transmission and reflection amplitudes for electrons
in the plus/minus branch of the RSOC system. Because the wave vector
along the z axis is conserved, we have the following relations ¢, = k' = k_,
or kT sina = k™ sin 8 = ¢gsin -y, where

o oo [

_ 2mx
k :k0+\/k§+?(E—Uo), (8)

and

=+ <k0—\/k3+222*(E—U0)> : (9)

The + and - signs in equation (9) are for £ > Uy and E < Uy, respectively.
In the x > L region, the electron wave function can be expressed as a
transmitted eigenstate;

Vi) (,2) = ([ ZI ] eW> ¢i:%, (10)

where t;, is the transmission coefficient of the particle with spin o.
All the coefficients in Egs.(5)-(7), and (10) can be obtained from the four
boundary conditions at x =0 and x = L.

Ui, (e = 0%, 2) = Uifs(e = 07, 2) = v9(0), (1)

4



D =L"2) =y§) (e =L, 2) =yY(L), (12)

o) gyl .
(::* g; — af’“ = <2k‘FZ1 — i%%gz) me(o)a (13)
0
o) m ol Lom ()
TR = (2/<:FZ2 +Zko%0z) Y (L), (14)
L

where Z; = Z;f;; is the dimensionless parameter, referring to the interfacial

scattering at x = 0 for + = 1 and at x = L for ¢ = 2. Z — 0 is in the high
transparency limit, whereas Z — oo is in the low transparency, or tunneling,
limit.

The differential conductance at a zero temperature is therefore

e? Agp [T [V &
G(eV) = W o drycosyy/1+ Ep ; (Ti1(eV,7) + Ty (eV,7)). (15)

—Ym

where A is the total area of the metallic electrode and 7,, = sin [k~ (F) /q(E)]
is the maximum incident angle for the electron with energy E. Tj,(eV, ) are
the transmission probabilities in case 7 with spin o.

We define the spin polarization of conductance P, which is the difference
between the up-spin and down-spin conductance normalized by the total
conductance
G‘L(GV) — GT(GV)
G¢<€V> + GT(€V> '

P(eV) = (16)

3. Results and Discussion

The numerical calculation results of the conductance spectrum in a unit of
e?Akp/mh and the spin polarization of conductance across the M/RSOC/M
junction are presented in this section. We focus on the effect of the interfa-
cial scattering potential on these two quantities. That is, the dimensionless
parameter Z; = mH, /qrh* and Zo = mH,/qph? will be varied, whereas the
electron effective mass in the Rashba layer is set to mx = 0.05m., where
me is the free electron mass. Also the thickness of the RSOC layer is set to
L =280/qp, ko = 0.05¢r, and the offset gate voltage is set to Uy = 2F).

The scattering potential at the interfaces generally limit the particle abil-
ity to transmit across the structures as can be seen in the following plots.



The conductance spectrum (G) as a function of bias voltage (eV') for various
values of 7, Z5 are shown in Fig. 2. In all plots, the oscillatory behaviors
are present, reflecting the resonance due to the finite thickness of the Rashba
layer. The period of this oscillation is not affected by the interfacial scat-
tering potential strengths. As seen in Fig. 2(a), when we consider the case
where both barriers have the same potential strength: 7, = Zy = Z, the
oscillation peaks are more prominent in the tunneling limit. When 7, Z,
are not equal, the conductance spectrum shows similar structures and the
value of the conductance depends on the interfacial scattering potential that
is higher.

The spin polarization of conductance P as a function of applied voltage
for various values of 71, Zs is plotted in Fig. 3. The plots contain similar
oscillations as seen in the conductance spectrum. When Z; = Zs = Z, P is
decreased as Z is larger. When Z; is fixed and Z, is varied, P is decreased
with the increase in Z,. However, when 7, is fixed and Z; is varied, P is
hardly changes. These results can be seen more clearly in the plots of P vs
Zy and Zy in Fig. 4. The values of P at the voltages either higher or lower
than U; is much more sensitive to Z, than Z;. This result indicates that
spin filtering in a double junction is determined mainly by the second barrier
potential.

4. Conclusions

The free electron model and the scattering method are used to calculate
the conductance and the normalized spin polarization of conductance across
a double junction, M/RSOC/M. The conductance is decreased as the inter-
facial scattering potential is increased and it is determined by the stronger
interfacial scattering potential. As for the case of the spin polarization, its
valued is surprisingly determined by the second barrier strength of the double
junction.
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Metal Rashba system Metal
x=0 x=1 X

Figure 1: The sketch of the energy dispersion relation of the electron in each region of
the double junction. Ep, Uy, and E) = h?k3/2m* are the Fermi energy of electron
in the metallic leads, the offset gate voltage and the Rashba spin-orbit coupling energy,
respectively.
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Figure 2: The plots of conductance spectra as a function of applied voltage, (a) for identical
barrier strength (Z; = Zy = Z), (b) for Z; = 0.3 and Z is varied, and (c) for Z, = 0.3
and Z; is varied.
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Figure 3: The plots of spin polarization of conductance as a function of applied voltage,
(a) for identical barrier strength (Z; = Zy = Z), (b) for Z; = 0.3 and Z; is varied, and
(¢) for Zo = 0.3 and Z; is varied.
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Figure 4: The plots of spin polarization of conductance as a function Z; and Z;. (a)
and (c) contain the plots of P at the applied voltage is slightly below Uy and (b) and (d)
contain the plots of P at the applied voltage is above Uj.
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