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The perturbative chiral quark model (PCQM) is used to study the elec-
troweak properties of octet baryons, where baryons are considered as the bound
states of three relativistic valence quarks while a cloud of pseudoscalar mesons,
as the sea-quark excitations, is introduced for chiral symmetry requirements. The
interactions between quarks and mesons are achieved by the nonlinear ¢ model
in the PCQM. To improve the PCQM, the relativistic quark wave function is ex-
panded in the complete basis of Sturmian functions and the expansion coefficients
are extracted by fitting the theoretical results of the proton charge form factor
to experimental data. We apply the PCQM with the predetermined quark wave
function to study the electromagnetic and axial form factors of octet baryons as
well as magnetic moments, charge and magnetic radii and axial charge. It is con-
cluded that the PCQM results, based on the predetermined quark wave function,

are in good agreement with experimental data.
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CHAPTER 1

INTRODUCTION

Form factors play an extremely important role in hadron physics since they
contain the information of the structure of hadrons, in particular their shape and
size. In addition, form factors describe the distributions of charge and current
in momentum space, which are intimately related to the internal structure of
hadrons: the constituents of hadron, their interaction and their wave functions.
Therefore, form factors are also significant touchstones for any model in hadron
physics. Among all form factors, the nucleon electromagnetic and axial form
factors have received much attention since they supply necessary information on
the electroweak nucleon structure, and also help us understand electromagnetic
and weak interactions. Until very recently, the nucleon electromagnetic and axial
form factors have been measured experimentally with high precision.

Experimentally, the proton charge G%(Q?) and magnetic G%,(Q?) form fac-
tors have been measured directly in the unpolarized ep elastic scattering using the
Rosenbluth separation technique (Rosenbluth, 1950). Experimental data from
such measurements were in high precision for G%,(Q?) with the squared momen-
tum transfer Q% € [0.01,2] GeV? (Berger et al., 1971; Price et al., 1971; Hanson
et al., 1973; Bartel et al., 1973; Borkowski et al., 1974; Murphy et al., 1974,
Borkowski et al., 1975; Andivahis et al., 1994; Walker et al., 1994) and G%,(Q?)
for Q? € [0.1,30] GeV? (Berger et al., 1971; Price et al., 1971; Hanson et al., 1973;
Bartel et al., 1973; Borkowski et al., 1974; Borkowski et al., 1975; Arnold et al.,

1986; Bosted et al., 1992; Andivahis et al., 1994; Walker et al., 1994). However,



the uncertainties on G%(Q?) grow rapidly as the squared momentum transfer ¢
increases. More precise data on the ratio of G%,(Q?%)/Gh,(Q?%) were extracted by
the polarizations of the beam electron and either the proton target pl(e,e’'p) (Mil-
brath et al., 1998; Gayou et al., 2002; Ron et al., 2011; Zhan et al., 2011) or
the scattered proton p(€, e'p) (Jones et al., 2006; Crawford et al., 2007), in which
the uncertainties are much smaller than those from unpolarization measurements.
The data obtained from polarization measurements clearly show that the ratio of
G%(Q?) /G4, (Q?) decreases linearly with increasing the squared momentum trans-
fer Q2.

Owing to the lack of free neutron, the data on the neutron charge
G7%(Q?) (Platchkov et al., 1990) and magnetic G',(Q?) (Anklin et al., 1994; Anklin
et al., 1998; Kubon et al., 2002; Lachniet et al., 2009) form factors were obtained
from quasi-elastic scattering off the deuteron. As in the case of proton electro-
magnetic form factors, the polarized measurement technique was applied to extract
more accurate data on the ratio of G'%(Q?)/G%;(Q?) from scattering polarized elec-
trons on polarized 3He (Herberg et al., 1999; Zhu et al., 2001; Warren et al., 2004;
Glazier et al., 2005; Plaster et al., 2006), although experimental data of G%(Q?)
is still small and less precise in general.

For the axial form factor of the nucleon, two methods are mainly applied,
namely (anti)neutrino scattering off protons (Ahrens et al., 1987) or nuclei (Kus-
tom et al., 1969) and charged pion electroproduction (Amaldi et al., 1970; Nambu
and Yoshimura, 1970; Amaldi et al., 1972; Bloom et al., 1973; Brauel et al., 1973;
Read, 1974; Guerra et al., 1976; Esaulov et al., 1978). For more details on the
nucleon electromagnetic and axial form factors, we refer to Refs. (Arrington et al.,
2007; Bernard et al., 2002).

Except for the nucleon N, there is no direct experimental data for light



hyperons (3, A and Z) electromagnetic and axial form factors. However, the
magnetic moments and axial charge of the octet baryons (the electromagnetic and
axial form factors at zero recoil) have been measured experimentally (Beringer
et al., 2012) and evaluated in Lattice QCD (Erkol et al., 2010). Recently, the
charge radius of the ¥~ has also been determined (Eschrich et al., 2001). These
data supply the primary information of the light hyperon form factors at low
momentum transfer and inspire theoretical studies on octet baryon form factors.

It is widely believed that Quantum Chromodynamics (QCD) is the right
dynamics of strong interaction and has been extremely well tested in the high-
energy region, i.e., in the perturbative QCD regime. In the confinement regime
where the momentum transfer is low, however, the strong coupling constant «; is
large (Beringer et al., 2012) and multi-loop perturbative calculations are needed.
Therefore, traditional perturbative approaches may not be applicable in solving
QCD confinement problems. Due to the fact that QCD may be is non-perturbative
at low energy, various approaches were employed to study properties of baryons

such as:

e Lattice QCD (Wilson, 1974): Lattice QCD is based on the first principles of
QCD to solve non-perturbative QCD problems. In lattice QCD, quark fields
are located at discrete space and time lattice sites, while gluon fields link
the neighboring sites. The continuum QCD is recovered when the spacing
of lattice sites is reduced to zero. Lattice QCD has already made successful
contact with many experiments, and it has also given some predictions, in

which lattice QCD calculations fully depend on computer power.

e Chiral perturbation theory (ChPT) (Scherer, 2003): The ChPT is an ef-
fective field theory at hadronic level. In the ChPT, the Lagrangian is con-

structed with all the physical symmetries, including the chiral symmetry.



The parameters of the Lagrangian can be determined by fitting theoreti-
cal results to experimental data. The ChPT is a powerful tool for nuclear
physics, even for hadron physics at the low energy regime, but it is not

suitable for revealing the internal structure of hadrons at the quark level.

o Effective quark model: Models are based on constituent (valence) quarks,
for example, three quarks for a baryon, two (quark and antiquark) for a
meson. The gluonic degrees of freedom are usually replaced by effective
interactions. In general, models are established with phenomenological as-

sumptions, which lead to a variety of versions.

In this thesis, we focus on the perturbative chiral quark model (PCQM) (Lyubovit-
skij et al., 2001b; Lyubovitskij et al., 2001¢; Lyubovitskij et al., 2002a) to study
the octet baryon electromagnetic and axial form factors at the low energy region.

Historically, MIT bag model (Chodos et al., 1974a; Chodos et al., 1974b;
DeGrand et al., 1975), proposed in 1974 by A. Chodos et al, provided a phe-
nomenological description of quarks being confined inside hadrons. The basic idea
of the model is to confine three relativistic massless quarks to a spherical cavity,
the so-called “bag”. Inside the bag, quarks are treated as non-interacting parti-
cles, which implies asymptotic freedom. The theoretical works in this model were
in good agreement with experimental data. Unfortunately, the MIT bag model
necessarily violated the chiral symmetry, which was considered to be one of the
best symmetries of the strong interaction.

Subsequently, two types of quark models were developed through intro-
ducing the pion cloud to the MIT bag model for the sake of restoring the chiral
symmetry. One was cloudy bag model (Théberge et al., 1980; Thomas et al.,
1981; Thomas, 1984) which was extended to include the interaction of the con-

fined quarks with the pion fields on the bag surface. The pion cloud was treated



perturbatively based on the MIT bag, and pionic effects generally improved the
description of nucleon observables. Nevertheless, the cloudy bag model still ad-
hered to “bag”. Later, the other model named chiral quark model was developed
where the rather unphysical sharp bag boundary was replaced by a finite surface
thickness of the quark core. Chiral quark models (Chin, 1982; Oset et al., 1984;
Gutsche and Robson, 1989) have played an important role in the description of
low-energy nucleon physics. Confinement is introduced through a static quark
potential of general form with adjustable parameters. The perturbative technique
allows a fully quantized treatment of the pion field up to a given order in accuracy.

Perturbative chiral quark model(PCQM) (Lyubovitskij et al., 2001a;
Lyubovitskij et al., 2001b; Lyubovitskij et al., 2001c; Lyubovitskij et al., 2002a;
Lyubovitskij et al., 2002b; Pumsa-ard et al., 2003; Cheedket et al., 2004; Khoson-
thongkee et al., 2004; Faessler et al., 2008) as a further development of chiral quark
models with a perturbative treatment of the pion cloud, is realized by relativistic
quark wave functions and static potential for confinement as well as the chiral
symmetry requirements. In the PCQM, baryons are considered as bound states of
valence quarks surrounded by not only the pion cloud but also other pseudoscalar
meson cloud, as imposed by chiral symmetry requirements. The interaction of
quarks with the pseudoscalar octet mesons (7, K, and n-meson) is introduced on
the basis of the nonlinear o-model (Lyubovitskij et al., 2001b). The confinement
of the quarks is achieved by a static potential, where the lorentz covariance is not
implied. The PCQM is one of the effective approaches to study the structure and
interactions of baryons in low-energy physics.

Compared to the previous similar models, the PCQM contains several new
features: (i) generalization of the phenomenological confining potential, (ii) SU(3)

extension of the chiral symmetry to include meson cloud contributions, (iii) con-



sistent formulation of perturbation theory both on the quark and baryon level
by using renormalization techniques and by taking into account excited quark
states in the meson loop diagrams, (iv) fulfillment of the constraints imposed by
the chiral symmetry (low-energy theorems), and (v) possible consistency with the
ChPT (Lyubovitskij et al., 2002a).

As an improvement to the PCQM, a manifestly Lorentz covariant ap-
proach (Faessler et al., 2005; Faessler et al., 2006a; Faessler et al., 2006b; Faessler
et al., 2006¢c) is considered by Pumsa-ard et al. The Lorentz covariant quark
model is motivated by the ChPT, where high order chiral corrections of p* are
included and the quark operators are dressed by the chiral fields. In a similar way
to the PCQM, the dressed quark operators are projected onto the baryonic level
in order to obtain hadronic matrix elements. By adjusting Low Energy Constants,
the physical observables are obtained. In Refs. (Faessler et al., 2005; Faessler
et al., 2006¢), electromagnetic form factors of nucleons are studied with including
vector-meson contributions. Electromagnetic properties of hyperons and N — A~y
transition are investigated in Refs (Faessler et al., 2006a; Faessler et al., 2006b).
The theoretical results are in good agreement with experimental data both at very
low momentum transfer and high energies.

The PCQM has been applied to study low-energy meson-baryon scatter-
ings (Lyubovitskij et al., 2001c), electromagnetic excitations of nucleon reso-
nances (Pumsa-ard et al., 2003), nucleon polarizabilities (Dong et al., 2006) and
neutron electric dipole form factor (Dib et al., 2006), etc. In Refs. (Lyubovitskij
et al., 2001a; Cheedket et al., 2004; Faessler et al., 2008) and Ref. (Khosonthong-
kee et al., 2004), electromagnetic form factors of the baryons and axial form factor
of the nucleon are derived in the PCQM, and the theoretical results are in good

agreement with experimental data only at very low momentum transfer. It is



noted that these works have employed a variational Gaussian ansatz for the quark

wave function,

uo(Z) = Noexp ( - 2RQ> | XX Xe (1.1)
i

where Ny is a normalization constant; x,, xs and x. are the spin, flavor and
color quark wave functions, respectively. R is the dimensional parameter and
p is the dimensionless parameter. As mentioned before, the internal structure
of hadrons dominates the form factors, and therefore we believe that it is the
Gaussian-type wave function of baryons which leads to the theoretical predictions
for the form factors of baryons consistent well with experimental data only at very
low momentum transfer. In this work we attempt to extract a more reasonable
quark wave functions in the PCQM. We expand the general quark wave function
in a completed basis of Sturmian functions (Rotenberg, 1970) with expansion
parameters determined by fitting the theoretical results of proton charge form
factor to experimental data. The electromagnetic and axial form factors of octet
baryons are studied in the PCQM with the fitted quark wave function.

This thesis is organized as follows. In Chapter II, we describe the details
of the PCQM and Sturmian completed basis. The theoretical expressions of elec-
tromagnetic form factors of octet baryons are given in Chapter III. We determine
the quark wave function and derive numerical results for the electromagnetic form
factors of octet baryons in this chapter. In Chapter IV, the axial form factors of
octet baryons are presented in the PCQM with the quark wave function fitted in

Chapter III. Finally, conclusions and discussions are given in Chapter V.



CHAPTER 11

PERTURBATIVE CHIRAL QUARK MODEL

The Perturbative Chiral Quark Model (PCQM) employed in this thesis is a
relativistic quark model, including relativistic quark wave functions, confinement
and chiral symmetry requirements. The valence quarks move in a self-consistent
field (static potential) Vig(r) = S(r)++°V (r), with r = |7, providing confinement,
which are supplemented by a cloud of Goldstone bosons (7, K, and 7). Goldstone
fields are treated as small fluctuations around the three-quark (3q) core. The

effective of the PCQM can be given by
‘Ceﬂ”(w) i £inV(I) + EXSB(:E)7 (21)

with Ly () being the chiral invariant Lagrangian

- : U+ Ut U-Uf
Linle) = w<x>{za V(1) — 5() | =+ }ww)
F2
+ T o.u0mU], (2.2)
and L ,sp(x) breaking the chiral symmetry explicitly
_ B 5o
Lasn(r) = —0(x) M () = 5 Tr [$(@)M], (2:3)

where () is the triplet of the u, d, and s quark fields taking the form

() = | d(z) | (2:4)



and the eight Goldstone bosons are most conveniently summarized in the matrix

U € SU(3) represented by the exponential parameterization

. AN 2
D 1(.9
~1l4+i=+=-|i=]| +---. (2.5)

A

U =exp Zf 7T 3|iF

In the above equations ® is the octet matrix of pseudoscalar mesons

w4+ V2t V2K

8
P=>PN=| or —n' 4 dn V2K | (2.6)
i=1
V2K~ V2K° =2

M = diag{m,, mg4,ms} is the mass matrix of current quarks, restricted to the
isospin symmetry limit m, = my = m. F and B are respectively the pion decay
constant in the chiral limit and the quark condensate constant. In our calculation,
we employ the following set of QCD parameters: m = 7 MeV, m,/m = 25,
F =88 MeV and B = —(0|uu|0) = —(0|dd|0) = 1.4 GeV. To the leading order of

the chiral expansion, the masses of the pseudoscalar mesons take the values,
™

2
M? = 2B, M3 = (1 + my)B, M} = g(m + 2m,) B. (2.7)

Note that the masses in Equation (2.7) satisfy the “Gell-Mann-Oakes-Renner”

relation and the “Gell-Mann-Okubo” relation as well
M? +3M; = 4Mj. (2.8)

With the unitary chiral rotation ¢ — exp [—iy?®/(2F)]t), the Lagrangian
in Equation (2.2) transforms into a Weinberg-type form £" containing the axial-

vector coupling and the Weinberg-Tomozawa term

LY (x) = Lo(x) + LY (z) + o(D?), (2.9)
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where

Lo() = D@)[ip V() — S(]wlx) — 30(x)(0+ M) (), (2.10)

and

1
2F

fijk n "
L, ()0, () (2)1 Aot ()

Li'(@) = 550uPi(x)e (@)1 Ne(a) +

(2.11)

is the quark-meson interaction Lagrangian, f;;; are the totally antisymmetric
structure constants of SU(3), and [0 = 0*0,,.
We expand the quark field ¢(z) on the basis of the potential eigenstates

¥(z) = 3 (batia(@) e + diva(E)e), (2.12)

«

where b, and df, are the single quark annihilation and antiquark creation operators.
In the above expansion u,(Z) and v,(Z) are respectively the single quark and
antiquark wave functions and &, are the single quark/antiquark energy, which are

derived from the Dirac equation
[ = 7"7 -V +1°S(r) + V(r) = Eaua(@) = 0. (2.13)

In previous works (Lyubovitskij et al., 2001a; Cheedket et al., 2004; Khoson-
thongkee et al., 2004; Faessler et al., 2008), Gaussian ansatz is applied to the quark
wave function, as shown in Equation (1.1). It is noted, however, that Gaussian-
type quark wave function of baryons results in the theoretical predictions for the
form factors of baryons consistent well with experimental data at very low mo-
mentum transfer Q. In principle, one could solve Equation (2.13) for a certain

potential numerically or by expanding the quark wave function in any complete
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basis. In this work, we study the form factors of baryons by employing a properly
adapted numerical method based on Sturmian functions.
The ground state quark wave function u(Z) may, in general, be expressed

as

up(Z) = atr) XsXfXer (2.14)

ic -2 f(r)

where x,, X and x. are the spin, flavor and color quark wave functions, respec-
tively. In our calculations, the quark wave function is projected from the quark
level to the baryon level, and the wave functions of octet baryons with the SU(3)
flavor, SU(2) spin and SU(3) color symmetries take the form as in (Close, 1979).
The radial quark wave functions g(r) and f(r), the upper and the lower com-

ponents in the ground state, are expanded in the complete set of the Sturmian

functions S, (r)

g(r) = ZAnS”i(T), (2.15)
f(r) = TZBTLS"OT(T), (2.16)
where
n! 2
Su(r) = [(""‘25"‘1)'] (20r) et L2 (20r), (2.17)

and L?71(x) are Laguerre polynomials. The details of Sturmian functions are
given in Appendix A. The expansion coefficients A,, and B,,, length parameter b
of Sturmian functions are determined by fitting theoretical results of proton charge
form factor to experimental data in Chapter III.

The calculation technique in the PCQM is based on the Gell-Mann and

Low theorem (see Appendix B), in which the expectation value of an operator O
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can be calculated from

(0) = “(6| i Ut [ e @) £ )0l (219

where the state vector |¢o)? corresponds to the unperturbed three-quark states
projected onto the respective baryon states, which are constructed in the frame-
work of the SU(6) spin-flavor and SU(3) color symmetry. The subscript ¢ in
Equation (2.18) refers to contributions from connected graphs only. £ (z) is the
quark-meson interaction Lagrangian as given in Equation (2.11).

By applying Wick’s theorem and appropriate propagators for quarks and

mesons, Equation (2.18) can be evaluated in a straightforward manner. In our

work the quark propagator Gy (z,y) is given by
iGy(z,y) = (@olT{e:(x)y(y)}|¢0)
= Ua(F)Ua(y) exp[—i€a(ro — 40)10(z0 — yo)- (2.19)
For the meson field, however, we use the free Feynman propagator

iNij(z —y) = (0]T{®:(x)®;(y)}0)

d*k  exp[—ik(z — y)]

= 5@ 3
) 2m)t M2 — k2 — e

(2.20)

where Mg is the meson mass.



CHAPTER III
ELECTROMAGNETIC FORM FACTORS

AND MODEL PARAMETERS

3.1 Electromagnetic Form Factors of Octet Baryons

In the framework of the PCQM, the charge and magnetic form factors of

octet baryons in the Breit frame are defined by
~ " —ig-x
XLS,XBSGg(QQ) = Bgo] Y E/é(t)d%d‘*xl---d‘la:ne a
n=0 """

<TIL] (1) -+ L1 (@a) i (@)][00),  (3.1)

GB(0?) — B nin/ﬁtdzl Ay - dhp, et
B e+ g 5 (@) <¢o|n§n! (t)d zd z Tne

XTILY (1) - L1 ()] (@)][do)E (3:2)

Here, GE(Q?) and G%,(Q?) are the charge and magnetic form factors of octet
baryons with the space-like squared momentum transfer )%, which is carried out
by the electromagnetic current. In the Breit frame, the initial momentum of the
baryons is p; = (E,—q/2), the final momentum is p; = (E,¢/2), and the four-

momentum of the photon is ¢ = (0,¢). Thus, Q* = —¢*> = ¢°.

mp is the mass
of baryons. xp, and X%, are the baryon spin wave functions in the initial and

final states, & is the baryon spin operator, £V (x) is the quark-meson interaction

Lagrangian in Equation (2.11), and j#(x) is the electromagnetic current

3" = Jy + Jo + Jye + 0dy, (3:3)
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which contains the quark current j{;(x), the charged pseudoscalar mesons current
Ju (), the quark-meson coupling current ji4 (), and djy,(x), a current arising from

the counterterm. The currents in the above equation take the forms,

. . 2 1- 1.
Jp = ¥y =i — gdyid = 35ys, (3.4)
L — g @ DD .
Jo = f3l] + \/§ i j
= |riott —wtiotn + KoMK - KHOMKT ), (3.5)
. [ fsij| @5 -
Jpe = |fai+ \% ﬁw’YMVSAiw7 (3.6)

it = (2 1)
— ;{2(2 — 1)ﬁry#u — (Z A 1)jfyl~‘d _ (ZS _ 1)57;15}’ (3.7)

where @ is the quark charge matrix @) = diag{2/3,—1/3,—1/3}, and the renor-

malization constants Z and ZS are defined as

A 3 o 1 2 1
7 = 1——/ ARk F2 (K (3.8
427 F)2 Jo i >lwg(1f2) DN 9w§’;(k2)] (3:8)

1 e | 1
Z, = 1- (27TF)2/0 dkk Fll(k)lw%<k2)+3w%<k2>], (3.9)

with wg (k?) = /M2 + k2 and the vertex function Fr;(k) for the gq® system taking

>

the form
Fii(k) =2rm /OO dr /7r dor?(g(r)? + f(r)*cos26)sinfe e’ (3.10)
0 0

In accordance with the interaction Lagrangian £}V (z) in Equation (2.11)
and the electromagnetic current j*(z) in Equations (3.4)-(3.7), there are five

Feynman diagrams, as shown in Figure 3.1, contributing to the electromagnetic
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Z —1

@) ()

© (d)

Figure 3.1 Diagrams contributing to the electromagnetic form factors: 3q-core
leading order diagram (a), 3q-core counterterm diagram (b), meson cloud diagram

(c), vertex correction diagram (d), and meson-in-flight diagram (e).
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form factors to the one-loop order. Detailed calculations, as shown in Appendix C

and Appendix D, lead to the contributions of these diagrams as follows:

(a) Three-quark core leading-order diagram (LO)

GR@)|,, = ofGH@)]

CH@),, = 2@,

where
G%(QQ)‘LO = 27T/0 d?"/o d@TQSine[g(r)z+f(r)2]eiQTCose’
47Tim = { 1 iQrcos
Gé\}(QQ)‘LO 0 N | d?‘/o dOr?sin(20) g(r) f (r)ei@rees?,

(b) Three-quark core counterterm (CT)

A

GR@)|,, = [F(Z-1)+af(Z —1)]|GHQ)|,,
GE(Q)|,, = [PF(Z-1)+bE(Z,=1)] =2Gh (%)

my LO’

(¢) Meson-cloud diagram (MC)

1 o0 !
RO = 2(27TF)2/0 dk/_ldgck2(k2—|—ka)
XFII(k)FII(k-i-)tg(kz’Q2’x)‘MC’7
5 o0 !
@), - 6(27:23)2/0 akk* [ da(1—a?)

x Fr (k) Frr(ko)ty (K, Q2 x>’Mc’

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)



where
BOQ% )| = aPCr(k, Q%) + af Ok (K, Q, @),
(W, Q%) = W Da(k Q% 2) + b Dic(k*, Q% ),
(,Q%0) = !
T wo (k2)we (k3)[we (k2) 4 we (k)]
2 2 ]‘
(k 7@7 ) = w2(k2)w2<k.2)’
by = \/k‘2—|—Q2:|:2/€\/Q2$
(d) Vertex-correction diagram (VC)
GH@) o = g [ R FERIGHR?)
ve 4( 27rF LO
B B B
Qg ar ag
X lwf;(k?) TR T wf;(kZ)]’
B 2 | 4 /4 2
@ = s, M TRRCHE)],,
b by by
. lwi(k?) TR "))
e) Meson-in-flicht diagram (MF
(e) g gram (MF)
B 2 _
GE(Q )‘MF == 07
B ()2 _ Mg o ! a1 .2
GE@QY)|, = (%F)Q/O dk/_lda;k (1—a?)
XF[](kZ)F][(k?.;,.)t]\B;[(l{?Q,Q2,$)’MF,
where
(K, Q% w)| | = b5 D<(k?, @, x) + by Dic (K, Q% ).
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(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)
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Table 3.1 The constants a? for the octet baryon charge form factors GE(Q?).

p n Xt »0 ¥ A =0 =

aq 1 0 1 0 -1 0 0o -1
as 1 0 4/3 1/3 —2/3 1/3 2/3 —1/3

as 0O 0 -1/3 —-1/3 —-1/3 —1/3 —2/3 —2/3

ag 1 -1 2 0 -2 0 1 —1
as 2 1 1 0 —1 0 -1 —2
ag 1 2 0 1 2 1 0 1

a; -2 —2 —2/3 —2/3 —2/3 —2/3 2/3 2/3

as 1/3 0 0 -1/3 -2/3 -1/3 —2/3 -1

The constants a? and b? are given in Table 3.1 and Table 3.2, respectively. It is
found in the above analytical expressions that the contribution of the meson-in-
flight diagram to the charge form factors of octet baryons vanish identically, that
is, only four Feynman diagrams (a)-(d) in Figure 3.1 contribute to the charge form
factors. For the magnetic form factors, however, the “meson-in-flight” diagram in
Figure 3.1(e) contributes.

In the non-relativistic limit, the mean-square charge radius of a charged

baryon is related to the baryon charge form factor as

6 d
)t = -5~ GR(Q : 3.29
For the neutral baryons, the mean-square charge radius is defined by
03)" = 6 GRQ) (3.30)
E dQQ E QQ:O. :
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Table 3.2 The constants b? for the octet baryon magnetic form factors G¥,(Q?).

P n xt »0 ¥ A =0 S
by 1 —2/3 1 /3 -1/3 -1/3 -2/3 —1/3
by 1 -2/3  8/9 2/9  —4/9 0 —2/9 1/9
bs 0 0 1/9 1/9 /9 -1/3 —4/9 —4/9
by 1 -1 4/5 0 —4/5 0 —1/5 1/5
bs 4/5  —1/5 1 3/5 /5  =3/5 —1 —4/5
b 1/18 —2/9 0 -1/9 -2/9 0 0 1/18
bs 1/9 1/9  5/2r 5/27 5/27 —1/9 —=5/27 —5/27
bs —1/18 1/27 —2/27 —1/27 0 -2/27 1/9 5/54
bo 1 -1 0 0 0 0 0 0
b1o 0 0 1 1 1 -1 -1 -1
In analogy, the mean-square magnetic radius is defined as
(30° =~ 1 205 @) (3:31)
G (0) dQ? Q?*=0

3.2 Quark Wave Function

The theoretical expressions in the above section reveal that the charge and

magnetic form factors are mainly determined by the wave function of the quark

core. In this work we fix the quark core wave function by adjusting our theoretical

result of the proton charge form factor to experimental data, considering that the

recent measurements of the proton charge form factor are in high precision, and

that only four Feynman diagrams in the PCQM contribute to the proton charge

form factor. For the sake of simplicity, we restrict our calculations to SU(2) flavor.
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Table 3.3 The normalized model parameters are determined by fitting theoretical

results of the proton charge form factor to the experimental data.

n Al B

0 0.21965608 0.13892063
1 —0.00817140 0.02905047
2 0.00072723 0.01024717
3 —0.01311738 0.00072182
1 —0.00853137 —0.00091915

We expand the quark wave functions g(r) and f(r) in the basis of Sturmian
functions in Equation (2.15) and Equation (2.16), respectively. It is found that
a basis of five Sturmian functions (n = 0,1,2,3,4) is good enough to let our
theoretical result of the proton charge form factor fit to experimental data. The
fitted model parameters for Sturmian function length parameter b = 0.5 GeV,
and the expansion coefficients A/, and B! are compiled in Table (3.3), where we
redefine A/, = A,b~%/2 and B!, = B,b=*/? to let the A’ and B! be dimensionless.

Shown in Figures (3.2) and (3.3) are respectively the radial wave functions
g(r) and f(r) for the quarks and the proton charge form factor G%(Q?) derived
with the fitted quark wave functions. It is seen in Figure (3.3) that the experi-
mental data are well fitted up to the squared momentum transfer Q% = 1 GeV2.
The charge radius of proton derived with Equation (3.29) is also consistent with
experimental data, as shown in Table 3.4.

Larger bases have been applied, but the fitted results of the quark wave
function appear the same as the one with the five bases. Note that in the calcu-

lation quark wave functions are normalized according to [ d*Zu’(Z)u(¥) = 1.
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Figure 3.2 The normalized radial quark wave functions for the valence quark:

solid line for the upper component g(r) and dashed line for the lower component

f(r).
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Figure 3.3 The fit of proton charge form factor compared to the measurements.
The experimental data are taken from (Janssens et al., 1966; Berger et al., 1971;
Price et al., 1971; Hanson et al., 1973; Murphy et al., 1974; Hohler et al., 1976;

Simon et al., 1980; Walker et al., 1994).
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Table 3.4 Numerical result for the proton mean-square charge radius (r%)?, and

the experimental data are taken from (Beringer et al., 2012) (in units of fm?).

PCQM  Exp.

(rZ)»  0.77  0.76 £ 0.02

3.3 Numerical Results

The quark wave function has been extracted by fitting the theoretical result
of the proton charge form factor to experimental data in the framework of the
SU(2) flavor symmetry. In this section, we study the electromagnetic properties of
the octet baryons in the PCQM, applying the predetermined quark wave function.
We extend the calculations to the SU(3) flavor symmetry, including kaon and
n-meson cloud contributions as well.

Listed in Table 3.5 are the charge radii squared of the octet baryons, which
are derived with Equations (3.29) and (3.30) for the charged and neutral baryons,
respectively. It is found that the 3g-core (LO and CT diagrams) dominates the
charge radii of the charged baryons (p, X%, ¥~ and =7), contributing more than
90% to the total values. As shown in Table 3.5, the theoretical p and ¥~ charge
radii are in good agreement with experimental values. The work predicts that the
charge radii of ¥t and =~ are contributed by a similar pattern, that is, about
90% from the 3q-core and meson cloud contributions and less than 10% from MC
and VC diagrams. In Figure 3.4, we present the Q? dependence of the charge
form factor of the charged baryons in the region Q%> < 1 GeV?, compared with
experimental data. It is seen in Figure 3.4 that the theoretical charge form factors
for the charged hyperons (X1, ¥~ and =7) are consistent with experimental data.

However, the theoretical charge radii of neutral baryons (n, X%, A and =°)
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Table 3.5 Numerical results for the octet baryon mean-square charge radii (r%)5.

The experimental data are taken from (Beringer et al., 2012) (in units of fm?).

3q Meson loops

Total Exp.
LO+CT  MC+VC

(r2.)p 0.710 0.057 0.767  0.76 & 0.09
(ra)m 0 —0.014  —0.014 —0.116 + 0.002
(rz)=" 0.701 0.080 0.781 —
(r2)="  —0.009 0.009 0 —
(r2)=" 0.718 0.063 0.781  0.6140.21
(r2)*  —0.009 0.009 0 —
(r2)="  —0.017 0.031 0.014 —
(r2)s"  0.727 0.040 0.767 —

listed in Table 3.5 are rather small. As seen, the neutron charge radii is much
smaller than the experimental data, while the contributions to the charge radii of
% and A by various diagrams counteract each other to zero. As expected, the
work also fails to reproduce the experimental data of the neutron form factor, as
shown in Figure 3.5. The reason might be that the quark propagator is restricted
to the ground-state only in our calculation. The meson cloud solely contributes
to the neutral baryon charge form factors as the leading-order contribution of the
3g-core vanishes. One may propose that it is necessary to include excited-state
quarks to investigate the neutral baryon charge form factors. More discussions
and results on the neutron charge radius including the excited quark propagator

are given in (Lyubovitskij et al., 2001a; Cheedket et al., 2004).
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Figure 3.4 Charge form factors G2(Q?) of charged baryons. The experimental
data on proton charge form factor are taken from (Janssens et al., 1966; Berger
et al., 1971; Price et al., 1971; Hanson et al., 1973; Murphy et al., 1974; Hohler

et al., 1976; Simon et al., 1980; Walker et al., 1994).
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Figure 3.5 Charge form factors GZ(Q?) of neutral baryons. The experimental

data on neutron charge form factor are taken from (Eden et al., 1994; Bruins et al.,

1995; Herberg et al., 1999; Ostrick et al., 1999; Passchier et al., 1999; Golak et al.,

2001; Bermuth et al., 2003; Madey et al., 2003; Warren et al., 2004; Glazier et al.,

2005)
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Table 3.6 Numerical results for the octet baryon magnetic moments pup with

chiral mass mp = 1.039 GeV. The experimental data are taken from (Beringer

et al., 2012) (in units of the nucleon magneton puy).

3q Meson loops
Total Exp.

LO+CT MC+VC+MF
Lp 2.290 0.445 2.735 2.793
Ln —1.527 —0.429 —1.956 —1.913
s+ 2.299 0.238 2,537  2.458 £0.010
[Ls0 0.773 0.065 0.838 —
ps-  —0.754 —0.107 —0.861 —1.160 £+ 0.025
LA —0.791 —0.076 —0.867 —0.613 +0.004
p=o  —1.564 —0.126 —1.690 —1.250+0.014
p=—  —0.800 —0.040 —0.840 —0.651 +0.080

In our evaluation of the charge form factor of octet baryons we have applied

an ansatz that the predetermined quark wave function is the same for u, d, and s

quarks. That is, we work in the SU(3) chiral symmetry limit. Therefore, baryon

masses should be restricted to the same order in the calculation of the magnetic

moments. We evaluate the magnetic moments with the baryon chiral mass mg =

1.039 GeV (Scherer, 2003). The numerical results for the magnetic moments,

which are the magnetic form factors in zero-recoil, and the magnetic radii of the

octet baryons derived with Equation (3.31) are given respectively in Table 3.6 and

Table 3.7. It is found that the theoretical results for the octet baryon magnetic

moments are consistent with the experimental data, while the nucleon magnetic

radii are a little bit larger than the experimental values. Note that meson cloud
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Table 3.7 Numerical results for the octet baryon mean-square magnetic radii
(r2,)B. The experimental data are taken from (Beringer et al., 2012) (in units of

fm?).

3q Meson loops
Total Exp.
LO+CT MC+VC+MF
(r2,)? 0.748 0.161 0.909 0.74 £ 0.10
(r2, )™ 0.698 0.224 0.922  0.76 + 0.02
(r2)" 0810 0.075 0.885 —
(r2)=  0.824 0.027 0.851 —
(r2)*  0.783 0.168 0.951 —
(r2 A 0.815 0.037 0.852 —
(r2 )= 0.827 0.044 0.871 —
(r2)2 0.851 —0.011 0.840 —

contributes around 20% to the total values of both the nucleon magnetic moments
and radii, while the meson cloud contributions for hyperons are rather small except
for the ¥~

It is noted that the constants by, bg, and by in Table 3.2 for hyperons,
which are relevant to the m-meson cloud contribution, are smaller than those for
the nucleon. This may indicate that the m-meson dominates the meson-cloud
contribution to the octet baryon magnetic properties.

The ? dependence of the magnetic form factors for the charged and neutral
octet baryons are shown respectively in Figure 3.6 and Figure 3.7, which are
normalized to one at zero-recoil. We also plot experimental data on the proton

and neutron magnetic form factors in the corresponding figures. It is clear that
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Figure 3.6 Normalized magnetic form factors G¥(Q?)/up of charged baryons.

The experimental data on proton magnetic form factor are taken from (Janssens

et al., 1966; Berger et al., 1971; Price et al., 1971; Bartel et al., 1973; Hanson

et al., 1973; Walker et al., 1994).
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Figure 3.7 Normalized magnetic form factors G¥,(Q?)/up of neutral baryons.
The experimental data on neutron magnetic form factors are taken from (Bartel
et al., 1973; Markowitz et al., 1993; Anklin et al., 1994; Bruins et al., 1995; Anklin
et al., 1998; Xu et al., 2000; Golak et al., 2001; Kubon et al., 2002; Madey et al.,

2003; Xu et al., 2003).
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the nucleon magnetic form factors are fairly consistent with experimental data,
and the magnetic form factors for hyperons behave the similar way.

The fact that the Q? dependence of the theoretical electromagnetic form
factors in the region Q? < 1 GeV? is consistent with experimental data implies that
the predetermined quark wave function is reasonable in the PCQM. We expect that
the determined quark wave function is applicable to the evaluation of the axial

form factors of octet baryons.



CHAPTER 1V

AXIAL FORM FACTORS

4.1 Axial Form Factors of Octet Baryons

Baryon axial form factors may be investigated through semileptonic decays
B, — Bylv, such as n — pe ., ¥~ — Xl 1, == — Z% 1, etc. In the specific

case of the neutron § decay, the matrix element of axial-vector current A% is given

by
(pl451p) = GY(@*) T ()35 5 Un(p), (4.1)
(nl45Jn) = G(Q*)Un(p)" 155 Un(p). (4.2)

Therefore, we may express the axial form factor of baryons more generally as

(BIA51B) = GR(Q*)Un(p)y" 5 Us(p), (4.3)

where GE(Q?) is the axial form factor of baryons with the squared momentum
transfer Q? which is carried out by axial-vector current A%, and Ug(p) is the
baryon spinors.

In the Breit frame, G§(Q?) is set up as

(o3

where xp, and XES/ are the baryon spin wave functions in the initial and final

—,

K
B(-1)) = b o m Ch@), ()

/d3fei@fgg(x)

states, & is the baryon spin matrix and 73 is the third component of the SU(2)

isospin matrix.
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At zero recoil (Q% = 0) the axial form factor satisfies the condition:
GE(0) =gz, (4.5)

where g% is the axial charge of octet baryons.
In the PCQM, the axial form factor of octet baryons is given by

3

LT 2 )
XES,UB?BXBSG,E(QQ) = B{gol Y n! / S(t)d wd ey - - - dwpe
n=0 """

<TILY (1) -+ L} (wa) A3(2)]|0) Z, (4.6)

with the interaction Lagrangian £}V (x) given in Equation (2.11), and the axial-

vector current AY taking the form

PR -
A = PO R — T e,
1 (7 L 5)\i 2
FOZ 17 S 4 0(@2). (1.7

2

According to the interaction Lagrangian L% (r) and the axial-vector
current A%, the axial form factors of octet baryons are contributed by the
following diagrams to the one-loop order: the three-quark core leading order
diagram (Figure 4.1(a)), the three-quark core counterterm (Figure 4.1(b)), the
self-energy diagram (Figures 4.1(c) and (d)), the exchange diagram (Figure 4.1(e))
and the vertex-correction diagram (Figure 4.1(f)). The corresponding analytical
expressions of the axial form factors of octet baryons (detailed calculations are

shown in Appendix E) are derived as follows:

(a) Three-quark leading order diagram (LO)

GR(QY),, = cF2r | dr / " d0r2sinflg(r)? + f(r)?cos(20)]d 9. (4.8)
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._____

Figure 4.1 Diagrams contributing to the axial form factor of octet baryons :
3q-core leading order (a), 3q-core counterterm (b), self-energy (c and d), meson

exchange (e), and vertex correction (f).
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(b) Three-quark counterterm (CT):

G QY. = (Z-1GR@)] .,

(c-d) Self-energy diagram I and II (SE)

GH@)|,, = GR@)|,,,+ @) spm

SE;I

_ (27T1F>2 [ [ 11 dek (1 — 22)Fyy(k) Fypr (k)

where GE(Q%)| = GE(Q?)

SE;I

.. and the vertex function for the quark-pion-

axial vector current Fy (k) is given by
Fri(k) = —Qiﬂ/ dr/ dOr?g(r) f (r)sin26e™*res? (4.11)
0 0

(e) Exchange diagram (EX)

1

G| = W/OOO dk/_ll k(1 — ) Fry (k) Fyrp(k_)

;2 [w(k) " wKuf)] (412)

(f) Vertex-correction diagram (VC)

1

R@ye = somm f, BHFHREN@)

The constants c? in the above equations are given in Table 4.1.
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Table 4.1 The constants ¢? for the octet baryons axial form factors G§(Q?).

N by =

. 5/3  4/3 —1/3
¢ 5/6  2/3 —1/6
¢ 8 0 0
a0 -

¢s —5/9 —4/9 1/9

4.2 Numerical Results

The axial form factors of octet baryons are evaluated with the quark wave
functions determined by fitting the theoretical result of the proton charge form
factor to experimental data, as discussed in Chapter I1I. Note that there is no any
free parameter in the study of the baryon axial form factors.

Presented in Table 4.2 are the numerical results from our calculations for
the axial charge of octet baryons B = N, ¥, and =. Except for the N, there is
no direct experimental data for the axial charge, thus we have the lattice-QCD
results (Erkol et al., 2010) shown in the table for comparison. The theoretical
results shown in Table 4.2 reveal that the meson cloud plays an important role
in the axial charge of octet baryons, contributing to 30%-40% of the total values.
The theoretical nucleon axial charge is consistent with the experimental data and
the theoretical ¥ and = axial charges are in good agreement with lattice QCD
results.

Finally, we show the Q? dependence of the axial form factors of octet
baryons in Figure 4.1, which are normalized to one at zero-recoil, with the ex-

perimental data for nucleon axial form factor plotted as well. As expected, the
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Table 4.2 Numerical results for the octet baryon axial charges ¢%. Lattice QCD

results are taken from (Erkol et al., 2010), and the experimental data are taken

from (Beringer et al., 2012).

3q Meson loops

Total Lattice Exp.
LO4+CT SE4+EX+VC
gy 0.823 0.478 1.301  1.314 1.269 4+ 0.003
g 0.658 0.269 0.927  0.970 -
g5 —0.165 —0.118 —0.283 —0.299 —

theoretical axial form factors fall off smoothly as the momentum transfer Q? in-
crease. It is also found that the theoretical result for the N axial form factor is in
good agreement with experimental data, and the axial form factors for ¥ and =
show a similar ? dependence.

The fact that the theoretical results of the axial form factors and axial
charges agree well with experimental data and lattice-QCD results indicates that

our quark wave functions are reasonable in the PCQM.



GE(@/d8

Figure 4.2 Normalized axial form factors G5(Q?)/g5 of octet baryons. The
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experimental data on nucleon axial form factor are taken from (Amaldi et al.,

1970; Nambu and Yoshimura, 1970; Amaldi et al., 1972; Bloom et al., 1973;

Brauel et al., 1973; Read, 1974; Guerra et al., 1976; Esaulov et al., 1978).



CHAPTER V

CONCLUSIONS

In this work, we have studied the electromagnetic and axial form factors
of octet baryons in the framework of the PCQM which, as a further development
of chiral quark model with a perturbative treatment of the meson (m, K and 7)
cloud, is realized by the relativistic quark wave function and static potential for
confinement as well as the chiral symmetry requirements. The quark wave function
is not derived by solving the Dirac equation for a certain potential and also not
proposed to be the Gaussian form usually employed by other works, but instead
derived by fitting the theoretical result of the proton charge form factor to the
existing experimental data. We have expanded the quark wave function in the
complete basis of Sturmian functions, and found that a basis of five Sturmian
functions is sufficient to reproduce the experimental data of the proton charge
form factor.

The electromagnetic and axial form factors of octet baryons are investi-
gated up to one-loop perturbation in the region @ < 1 GeV? in the PCQM with
the predetermined quark function. The charge and magnetic radii, the magnetic
moments as well as the axial charge of the octet baryons are also evaluated. It is
found that the theoretical results for all observables but the neutral baryon charge
form factors are in good agreement with the experimental data. Therefore, one
may conclude that the predetermined quark function reflects the physics suitable
and reasonable for the PCQM.

The failure to reproduce the neutral baryon charge form factors may be
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caused by the inclusion of only the ground-state quarks. The leading order 3q-
core contribution to the neutral baryon charge form factors vanishes, that is, the
neutral baryon charge form factors arise purely from the meson cloud. Therefore,
it may be necessary to include the excited-state quarks to investigate the neutral
baryon charge form factors as the leading-order contribution is fully suppressed.
The properties of decuplet baryons may also be studied in the PCQM with

the predetermined quark wave function in the future work.
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APPENDIX A

STURMIAN FUNCTIONS

The Sturmian function method was first used in atomic physics to eval-
uate the binding energy and the wave function of atoms. It was pointed out
that the method is more powerful than the approach using harmonic oscillator
and hydrogen wave functions. Subsequently, the method was applied to various
physical problems such as electromagnetic collisions, binding energies of nuclei
and bound and resonance states in special potentials. In Refs. (Suebka and Yan,
2004) and (Yan et al., 1997), the protonium and pionium problems have been suc-
cessfully investigated based on the Sturmian functions. The Sturmian functions
are very similar to the hydrogen wave functions, and are therefore, also named
Coulomb-Sturmian functions. In coordinate state space the Sturmian functions
Sni(r), which are used in the present work, satisfy the second order differential

equation

<d2_l(lt1)+2b(n+l+1)_62>Snl<r):07 A1)

dr? r r

which is quite similar to the radial Schédinger equation for hydrogen atom satisfied

u(r) =rR(r)

&I+ A, -
<d7’2 Sl + g k ) u(r) = 0. (A.2)

By solving Eq.(A.1), one finds

Sn(r) = [(n—i-;l‘—i-l)'] (20r) et L2 (20r), (A.3)
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where L2*1(x) are associated Laguerre polynomials defined as

L) = (1) (L (o). (A4)

that is

o1 n . n+20+1)!
L™ (2br) = 3. (1) (n—ng)!(Zl—i-l—gm)!m!

m=0

(2br)™. (A.5)

The Sturmian functions are orthogonal and form a completes set with respect to
the weight function 1/r, which follows from the corresponding 1/r potential term

in Equation (A.3)

/ " g S 1Sl 5 (A.6)
/0

T T r

Because almost all bound-state hydrogen state functions are close to zero
energy, the innermost zeros of the functions are insensitive to the principle quan-
tum number (see Figure A.1). This accounts for that the bound hydrogen functions
do not form a complete set; the continuum is needed to analyze the region between
the origin and the limiting first zero. Unlike hydrogen functions, the first node
of the Sturmian functions continues to move closer to the origin with increasing
the principle number n as shown in Figure A.2. This is the key point why a
short-ranged nuclear force can easily be taken into account for NN atomic state

problem by using complete sets of the Sturmian functions (Yan et al., 1997).
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Figure A.1 The [ = 0 hydrogen wave functions for n = 1, 2, 3, 4 and 5. The

innermost zeros of the functions are insensitive to the principle quantum number

n.
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APPENDIX B

GELL-MANN AND LOW THEOREM

The Gell-Mann and Low theorem was proved by Murray Gell-Mann and
Francis E. Low in 1951. It is a theorem in quantum field theory that allows one to
relate the ground (or vacuum) state of an interacting system to the ground state
of the corresponding non-interacting theory. We consider a system described by

the Hamiltonian H which might be written as
H = Hy+ Hy, (B.1)

where Hy and H; are respectively the free and interaction parts of the Hamiltonian.
Let |1)o) and |n) be the eigenstates of the free and full Hamiltonian, respectively.

One has
Hln) = E™|n),
Holtho) = Eolvo), (B.2)

hence

ety = 3 e E "V n) (nfy)

n

= e”ftwwrwmge1E<"”rn><nrwo>, (B.3)
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here we have rewritten ground eigenstate |0) and ground eigenvalue E© in the

above equation respectively as |¢)) and E, that is

H[p) = El). (B-4)

Multiplying the above equation by e'#°!, one derives

iEot i i(E— _i(E() —
ettt ghg) = SETE ) (o) + 3 TN n) (nfio).  (B.5)
n#0
Since E™ > E for all n # 0, we can get rid of all the n # 0 terms in the series
by sending t to oo in a slightly imaginary direction ¢ — oo(1 — ie). Then the

i(E—Eo)

exponential factor e™ ¢ dies slowest and we have

eiH(— —lHo |w >

) = t_}(};(r{l_ia) e—iE=E0)t (1) |4}
. ( —t)[o)
= lim B.6
t—oo(l—ie) e I(E—Eo)t <w|1/}0> ( )
here we have used

U(to, t) = el limto)gmiHolt=to), (B.7)

In the same way, we can derive

t

W= lim —AWlUO (B.8)

t—oo(1—ie) e~ {E=E0)t (¢)g|eh)

Now we evaluate the expectation value of the operator O(z) = O(2°, %) in the

state [))

oy e U0, 000, (U, 0)U (0, 1))
(W[O(=", Z)|¢) = t—)olo(l—ia) e—E=E)t (g [1h) e~ E=E) (1) [4)y)

lim (1o|U(t, 2°)Or(x)U (2°, —t)|1o)
t—00(1—ic) e~ A(E=Eo)t | (a[1)]2 '

(B.9)
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To get rid of the denominator in the equation, one may divide it by 1 in the form

(WolU (1, 0)U (0, ~0)[to)

1= <¢|¢> = t—>o1<igl—ia) 6_21(E_E0)t|<¢0|’(/)>|2 (BlO)
Then finally we derive
WO, Dy = tim  LelU G20 @U, =)o) (B.11)

t—00(1—ic) (1holU(t, —t)[10)

The above equation holds for a product of arbitrarily many operators, for example,

for two operators

o WOlT{O@)Pi(a) expl— [ d=Hi ()]} )
t—oo(1—ie) <¢0|T{6Xp[_i fit dZHI(Z)]}|¢0> '

(WYITO(z) P(2)]|v) =
(B.12)



APPENDIX C
CALCULATION OF THE DIAGRAMS FOR

THE CHARGE FORM FACTOR

In the framework of the PCQM, the charge form factors of octet baryons

in the Breit frame are defined by

2 o o
. GEQY) = Plool X = [ a0 dadiay - d'zyeT

n=0

XTILY (1) - L1 (20)7° (@)]] o) (C.1)

where xp, and XE , are the baryon spin wavefunctions in the initial and final states.

We assume they are spin-up states, so

In calculation, the upper and lower component quark wave functions are expanded
into a completed basis of Sturmian functions in Equations (2.15) and (2.16). We

employ the fermion and boson Feymann propagators as following:

V(E)(y) = (g T{e(x)P(y)}¢o)
= uo(Z)uo(¥) exp[—i&(zo — y0)]0(x0 — Yo), (C.3)

©i(z)®;(y) = (O[T{Pi(x)®;(y)}|0)

d*k  exp[—ik(z — y)]
@M MZ —k? —ic '

dij (C4)
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here the fermion propagator is restricted on the ground state only.

C.1 Leading Order Diagram (LO)

éq

Figure C.1 Leading order diagram.

GE@)|,, = Flo0lQ [ s(t)d e 15 () o)
= P(00lQ [ ()" e ()" () o)
= PGolthQ [ d e () ol ol o)
= Al GHQIE, (C5)

where

Gh(@)], =2 /0 S /0 " d0r2sin0[g(r)? + f(r)2]e9reot (C.6)
3
Gf) = B<¢0|ngf' Z Q(i)beo|¢o>B
i=1

= (BT ; Q(i)|B 1). (C.7)



C.2

where

Counterterm Diagram (CT)

GRQY|,,

Figure C.2 Counterterm diagram.

= Pon]Q [ a(t)atae 8 (@) o)

_ B(¢O|Q/5(t)d4:ce‘i’1%/3(:c)(Z — 1)7°¢()|g0)”

= [af(Z=1)+af (2. - 1)|GLQVIEL,

3
ay! O B<¢0|b$Xf/ZQ(i)beof¢o>B

i=1

= BT\ZQ )IB 1),

af = B{po|bhxs ZQS (4)x rbolo)®

= BTIZQs )|B 1),
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(C.8)

(C.10)
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2/3 0 0

Q =10 -1/30 |, (C.11)
0O 0 0
00 0

Q. =loo0o o |- (C.12)
00 —1/3

C.3 Meson Cloud Diagram (MC)

Figure C.3 Meson Cloud Diagram.

= PloulL [ S0t ane T (1) ()] l00)?

-1 .
= 4B<¢0]7/5(t)d4xd4x1d4xge"qm

xN{ [21]?8#4)12;7”75)\2'1/'1}9“ {(f?»kl + J:j%l)q)kqll]z [211,31/‘11#%7”’75)‘14 m}

ot
x| o)
—1 —iErfl e—’iEQ-i"Q
- B / By dProd e d*k
2F2(2r)8 7o O e R ey e ME — kS — e

X (fai5 + J:%”)UO(%)V 17" Nitte (1) U (2) 7 KoV kS A juo (22)
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y /dtdtldtgét@(tl _ tQ)e—iqte—iao(tz—tl)6—iaa(t1—tz)e—ik?(tl—t)e—ikg(t—tg)

X/d3$e—i(l§1—l€2—(f)-5b0|¢0>B

(f3”+f8U) t [ 3. 3. 13, 13
_W B (o |b /d 1B d e dhad (Fy — Ky — )
(kY — k3)
[wa (k) — (kY)? — de][wa (k3) — (K3)? — de][Acq + kY — ie]

X / kO kY
X[(’fg)suo( DY Nt (1)t (22)77° N juo ()

— (K)o (1)7"7" At (1)t (22)7 - K2y At (2)
— (K)o (21)7 - k1" Mstta (1) a(w2)y 7 Aguo (2)

+RGto (21)7 - K17 Nitta (1) (22) T - £27° Aj1to(w2) | bol o)

f3ij + {%
wa (k5) + wa (k3)][ws (k7)) + Acq][ws (k3) + Ae,]

m B (o0} / d’ k2
x { [wo(k)wo (k) + (wo (k) + wa (kD)) Ac]

8 /d3x1fa0(x1)7075)\1.%(561)6“%@1 /d%ma($2)’YO’75)\J‘U0($2)6’”;2'£2
e [ dario(en)y " Nata () [ B (2)T - By Agua(zz)e=
_Afa/d%l%(fﬂlﬁ"%75)\1‘%(901)6@2'51 /d3a:271a(332)7075)\]-160(3:2)@‘“32‘52
_/dsl'luo(l’l)?EQVS/\an(ffl)ei%'fl/d3$2ua($2)7'/5275/\jUO(x2)e‘iE2'52}

xbo| o) ”

' 3.
m ¢0|boXchXs/d
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1

*wa (k) + wo (k)] [wa (k) + Aco][wa (k) + Ac,)

x { (wa (K )wa (k) + (wa (k7)) + wa (k3)) Aca| Fra(ky) Fl, (k2)
Ao Fials) Fira (k2) = AcaFrra(k) Pl (k2) = Fira(ks) Flyo (ko) }

X (faij + %)[(5'%)&]0@[(5  E2)AjlaoXsX s Xcboldo) ? (C.13)

where Ae, = e4 — €0, kb = k1 + 7 and we(k2) = /M2 + k2,
/ dxiig (7)1 Mitta (7)™ = Fro (k) X! E - EAdo.aXsXXer (C.14)

/ A1t (2)7 - kv Nivta(2)e™™ = Frra (k)X - EAJoaxsxsxe,  (C.15)

with
Fiolk) = [ drrlon(o)fuln) = fu)gal0) o [ deC,Yi000,0),
(C.16)
Firak) = [ drrlgo(r)ga(r) = folr)ful0)] | d2 7€, Y10(6,0)

—2iaak /OOO drrfo(r)fa(r)/QdQCOS@eikTCOSOCaHao(Q,Cb)- (C.17)

We define z = cosf = L2 k = ks|, Q = |q] and

ke’
ke = |7tk = k2 + Q£ 2kQx, (C.18)
o) 1 2T
/ Phy = / Ak / dr [ do. (C.19)
0 —1 0
We obtain the expression of Gg(@%‘;o as
GHQ[ = —1/°° dkz/l dek? (k? + kQz)
E MC 22 F)? Jo -1
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{ wa (k3 Jwa (k) + (wa (k) + wa (k7)) Aca] Fra(ky ) Fl, (k)
~ Ao Fralhks ) Flro () = AcaFrra (k) Flu(k) = Firallis) oK)

B ol bt 3 (Fais + ZE)Nidixaxsxeboldo) P

X [wé(k%r) +w¢(k2)”w<l>(k2)+A€a][Wq>(k‘2) +A6a] (020)

In our calculation, the quark propagator is restricted on the ground state

only, i.e. @ = 0. Hence, we have Ae, = 0, Fyo(k?) = 0 and

Fri(k) =27 /OO dr /7r dor*(go(r)? + fo(r)*cos26)sinfe <’ (C.21)
0 0
Finally
1 o0 1
B2 _ 2(7.2
GEQ)|, . = 2(27TF)2/0 dk/_ldxk (K2 + kQz) Fyy (k) Frr(ky)
x[af Cr(k?, Q% 2) + af Cr (K*, Q?, 7)), (C.22)
where
2 2 1

wo (k2)we (k1) [we (k2) + wa (k)]

3 .
ay = Yy, <¢0|bOXf’_%(f3ij “fjli)A)\abet)Wo)B

i,j=1

= S UBIY 5+ BOMBAMIE,  (C20)

=1

o

foi |
(g + NN RIB). (C.25)

[\3\@.

7 3
a; = > (B Z
i,j=4 k=1
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C.4 Vertex Correction Diagram (VC)

Figure C.4 Vertex Correction Diagram.

G|
2
1 i .
= ool [o(d ed srd vae L (1) £ (w2)75/()]l60)”
— 2B<¢0|_21 / §(t)d* vd o d*wpe ™"

x{(gkaserend] [bral] [ran ] Yo

otk (#1—2)

= Z4B<¢0|bg/d3$d3$1d3$2d4kei@£]\4%._1€2_7;6

AF2(27)

Xo(21)7" Ky Nitta (1)t ()7 Quip () s (22)7 kv Astto (2)
x / dtdtidta6tO(t — 1)O(t — ty)e el gmicalti=h)

><e*’if—jﬁ(tftg)e*iko(t17t2)b0|¢0>B

- 4F2_<;>4B<¢0|b$d3:vd3x1d%gd%ewem—@)
m
1
X / — _ | |
[wa (k2) — (ko)? — ie][ko + Aeq — in)[ko + Acg — in]

xiig(21) (ko — 7 - K)y? Nt (1 )t (2)7° Quig ()

xtig(w9) (YKo — 7 - k)Y Astio () bo| o) P
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B(Q%)
= 8FQ(2’)LOB (o |b0XchXs/d3

o (k%)W k2) + Ac,?

X [wg () Fra (k) Fl, (k) = wa (k) Fra(k) P (k) = we (k) Frra(k) Fl, (k)
+Frra(B)Flra(B)][(7 - )Ailo.a Qaal (6 - F)Ailaoxs X pxeboldo) (C.26)

where

/ it ()7 Qus (1) = 0,5GH(Q%)| | xbxhxd Quaxoxsxe: (C.27)
Finally, we have
G|

_ m%(mﬂzo [ Ak [ (62) Fra (1) F (8)

~wo (k) Fra(k)Ff 1o (k) = wa (k) Fria (k) Fl, (k) + Fira(k) Fp (k)]

B (o bhxix I xEN QAixs X pxcbo| do) P

2
o (k) [wa (k) + A (C.28)
For the case a = 0, we obtain
1 [e’e)
B _ D 4
B B B
Qg ay ag
.2
: lw3<k2> ot w3<k2)]’ (€.29)

where

g = <¢ |b0XchXs)\ QAszXchboWo)

;<B\}€Z[MQM(’“)!B>
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(C.30)



APPENDIX D
CALCULATION OF THE DIAGRAMS FOR

THE MAGNETIC FORM FACTOR

The diagrams contributing to the magnetic form factor are the same ones as

for the case of the charge form factor and the meson-in-flight diagram in addition.

D.1 Leading Order Diagram (LO)

iG X q B ()2
X;B_; mj;ii% xB.G(Q )’LO

= P(00l@ [ s(t)atreTo7, ()| 60)”

= P{golb}Q [ daeTul()) Fuo(w)bol o)

0 ez g\r)f(r f A= o A
= 2, / Preidl ):C ( )B<¢o!b$XZfX}fX.L/Q(U X §)xsxfXcboldo)” (D.1)

here we restrict initial and final spin states to be in the same states, and define

G=17,3 X 4= —031+ o1k, we have
X b QG x @)xsxsxe = —xbxhxd Qosxsxsxei (D.2)
and
XTB;TMXBS = —2733XE;U3XBSE- (D.3)

Finally, the leading order of magnetic form factor can be obtained as

CH@),, = 7 2Gh@)],,



where

47TimN
Gﬁ\)/I(QQ)‘LO - Q

5119 = B <¢0‘ngi,x}lxil QUngXch‘¢O>B

L (B1]3°1Q0] M| 7).

D.2 Counterterm Diagram (CT)

X;g mj:j-(?;]’blB x5.GE(Q%) )CT

= 2(gulQ [ oty ze TS (w)on)”

= Poulb}Q [ dreTTul () (Z — 17 Fuo(w)tolen)”,

then

= [bB(Z = 1) +b8(Z, - 1)] @G%(Q2>’

cT mpy Lo’

GH(Q?)
where

3

by = B<¢0|b(T)XZ/X}’XLZ[QUS](k)XstchO|¢0>B
k=1

3
= (B1]Y[Qo3]*|B 1),
k=1

3
b8 = (B1|Y[Q.05)®|B 7).
k=1

/OO dr /7r dQTQSin(Q(‘))g(T)f(T‘)eiQTCOSO;
0 0
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(D.5)

(D.6)

(D.7)

(D.8)

(D.9)

(D.10)
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D.3 Meson Cloud Diagram (MC)
GH@[
= Blg —/(5 (t)d*vd*z d* voe™ ‘qu{EW(xl)EI (22)]o(x )}|¢0>B

1 .
= 4B<¢0|7/5(t)d4xd4$1d4x26_qu

XN{ [;;auql)ﬂ/wuf)\ﬂﬂ . {(f?)kl + {j%l) k(— VCIDZ)L{ ;&@j@lv”vf’)\j@b} m}
x|o)”
1 o—ik1-1 o~k

- B / P drad ke d ks

2F2(2m)8 MZ — k3 —ie M3 — k3 — ic

X (far + {j%l)Uo($1)wk1ﬂ5/\iua(xl)Ua($2)7yk2ﬂ5lg2/\juo($2)

% /dtdtldtgétG(tl Ly tQ)e—iqote—iao(tg—tl)e—iaa(t1—tg)e—ik?(tl—t)e—ikg(t—tg)

X/d3x€—i(El—E2—@-5b0‘¢O>B

(f3w+f8”) | 3. 3., 131 13
_ _W B (o|b /d o1 B dPly P lokad (k) — K — )
O(KY — k9)
wa (ki) — (k9)? — i€][wa (k3) — (K3)? — de][Acq + k) — in)]

X / kO dRY
X [(k3)2ﬁ0($1)7075/\z‘“a($1)ﬂa($2)7075/\ﬂ0($2)
— k810 (21)7"7" Mitha (1)l ()7 - B2y Ajio ()
—kgﬂo(xlﬁ : E175)\iua(x1)ﬂa(x2)7075/\ju0(x2)

Fiao(21)7 - 1y Mt (21) o (22)7 - 12275)\3‘“0(@)}’?0@0)]3
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faij + {%
wa (k5 )wa (k3)[wa (k) + Aco][was (k3) + Acd]

_ L g, ot [ B
R <¢0\bo/d koko

e

/d l’ﬂLO :1:1) Yy )\ Ua($1) k it

y {  Acqwo (k3w (K2)
W@(ké ) + wq> k2

wa (k5 )wa (k3)
wa (k) + wa (k3)

X /dsxzﬁa(m2)70fy5)\ju0(m2)e’“22"32 —

X /dgmlﬂo(ml)vowf’)\iua(xl)ei@'fl /d?’:pgﬂa(:vgﬁ-Eﬂ‘r’)\juo(mg)e_%@

wcp(/{ )wq) k2 B
_w¢>(7€§)+wé k32) /d%luo T1)7 - k§75/\iua(x1)e 2

wa (k') + wa (k3) + Aeq
we (k7)) + we (k3)

X /degﬂa(xg)'yOvS)\juo(xg)e_ikQ@ +

X /dsmlﬂO(@"lW'%75)\%(551)8%/251/d3$2ﬂa($2)’7-Ezv5kjuo(x2)e‘i’;2'52}

xbo| o) ”
= m ¢0 boXchXs/d3k2k2
1
X

wa (k7 )wa (k3)[we (k5) + Aca]lwae (k3) + Ac,)

9 2
x{ B Acwa (ki )wa (K >F1a(k§)F}La(k2)

wa (k) + we (k3)

wa (k5 )ws (k3)
we (k) + wa (K3)

wa (k5 )wa (k3)

Fro(K)F (k
Ia( 2) Ila( 2)+ wq>(k:§2)+wq><k§)

Fi1a(Ky) Fl, (ko)

we (k) + wa(k3) + Ac,
wa (k) + wa (K3)

< (g + Jjgw F)Moal@ - F)Njlooxexs Xeboldo)®

Fua(ké)F;za(b)}

_ ot o ! 41 .2
- 12(27TF)2/0 dk/—ldxk (=2
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 Acwe(k3)ws (k5) I\ ot
| = T o Pra()F (k)
wa (k5 )ws (k3) wa (k5 )wa (k3)

Fro(Ky) Fpo (ko) + Fi1a(Ky) Fl, (ko)

wa (k) + we (k3) wo (k5 + we (k3)

wo(k5) + we(k3) + Acq
wo (k) + we (k3)

Ffla(ké)Fsza(b)}

B (ol bt T2 (faig + ) AN osxax s xebold0) P
wa (k3 )wa (k?)[we (k1) + Aéa][wb(kQ) + Ay

(D.11)

When the quark propagator is restricted on the ground state, we obtain

5 00 1
GE@Y . = 6<27TF)2/0 dk/_l drki(1 — 22)

X Frr(k) Fr(ks)[by Dr(K*, Q% ) + b Dk (k*, Q°, )],

(D.12)
where

Dy (k*, Q% x) = ()RR’ (D.13)

B S\ B it Jsij B

by = > P{dolboxpxh — (f3w+ \/—)A)\U3X5be0|¢o>

ij=1

- ZBMZ 26U+ SN0 1), (D.14)
vP = Z BMZ f?,w fS"ﬂ')AiAjag,](kaT). (D.15)

i,j=4 \/g



75
D.4 Vertex Correction Diagram (VC)
e @,
— Blgll / 5(t)d ad a1 d e T [ LY (1)L (22)](2)][60)
- zB<¢>O|_21 / S(t)d zd e d pe 0"

<N { [Q;MLZ-WWWH i} v700] [Lamummoa

bio)?

2

ik (T — &)

4 iq-T
= 7B<q50|bg/d3$d3$1d31’2d4k’6q m
]

AF2(2m)

Xt (1)1 By Nt (1) o () YQug () s (2) 7 kv Astio (2)
x / dtdt dts0tO(t) — 1)O(t — ty)e e 0l gmica(tih)
Xe—i&‘g(t—tg)e—iko(tl—tz)bo|¢0>B

AF?(2m )
1
x /dko . &3 | |
[wa (k2) — (ko)? — i€][ko + Ay — in)[ko + Acg — in]

Xﬂo(%)ﬁok’o —q- E)75>\iua(xl)ﬂa(x)7guﬂ($)

X lig(22)(7 ko — 7 - k)Y* Mo (2) bo| po) P

1
k’2 a)q;. ]CZ) + A&Ta]

h(Q7)
= 8]72(2‘)LOB ¢0‘b0XchXs/d3

x| wi (%) Fra (k) Flo (k) — wa (k) Fra (k) 1 (k) — wa (k) Fira(k)F], (k)

-

+ Frra(k) P (8)| A Quai(F - B)(@ X F)(& - F)XoX s Xeboldo)
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A

= oM@ [ bR ) Fra ) FL ) = o 8%) i (8) o ()

—wo (k) Fria(R)FJ, (k) + Fria(k)Ffpo (k)]

" B{olbhxix XN Qaahiosxs X Xebo|do)®

D.1
we (k2)[we (k%) + A, )? ’ (D-16)
where
/ Bt ()T (2)e7F = 05 Glo(Q)[] | (D.17)
For the case o = 0, we obtain
GB (QQ)‘ _ #GF (Q?)‘ /OO dkkAFz (k2)
MY* lve 202 F)2 MY Lo Jo "
b¢ b7 by
X [wf;(k?) + (R + S32) ) (D.18)
where
af = BlolbhxIxExIN QNosxsxxcboldo)
3 3
= Z<B T | ZP\Z‘Q/\iUS](k)|B T>,
i=1 k=1
7 3
a? = Z(B T Z[)\iQAiO'?;](k”B 1,
i=4 k=1
3
ag = (BT[Y_ [AsQAsos]V[B 7). (D.19)

k=1
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D.5 Meson-in-Flight Diagram (MF)

Figure D.1 Meson-in-Flight Diagram.
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— k1o (1) - k1y® Muto (1)t (22)7°7° Ao (2)
o (1) - 1y Aitto (1) o (w2) T - Koy Ajuo ()| DG | 60)

1
= T 12/9.\3 <¢0‘bo TboT mTX?TX X TXmTXnT/d k2k2FH(k’2)FH(/<2)

XX X B | o) B
0P PIEXXELES

_ g N ,
N 2(27TF)2/0 dk /_1 dek*(1 — 2°)Frr (k) Frp(ks)

fSij)
V3

x B (olby by x?*xi”x?*x?*x?*x?* 7 i +

X[iiéil,]f )[ 20 ]g) XX TN A AT BB | o) 7, (D.20)

Finally, we have

G1]\34(Q2))MF = (277?5)2 /000 dk/_l1 duk* (1 — 2°) Fyy (k) Frr(ky)

x[bg' Dr (k?, Q% x) + biy D (k*, Q% @), (D.21)

where

A Z BT\Z)\al (Njoa) DB 1),

1,7=1 k=1
k#l

v = Z BT|ZA01 [X;00) V| B 1). (D.22)
i,j=4 k,l=1

kAl



APPENDIX E
CALCULATION OF THE DIAGRAMS FOR

THE AXIAL FORM FACTOR

In the PCQM, the axial form factor of the baryon octet is given by

3

T 2 i )
XES,UB?BXBSGE(Q2) = P{dol D E/é(t)d‘*xd‘lxl o drreie
n=0 """

XTILY (21) - LF (x0) As(2)]|60) 2 (E.1)

where xp, and X% , are the baryon spin wavefunctions in the initial and final states,

g is the spin matrix and 73 is the third component of the SU(2) isospin matrix.

On the baryon level

Xb, T8 2XB, = 5- (E.2)

E.1 Leading Order Diagram (LO)

Figure E.1 Leading order Diagram.

GR@Q|,,

= 284 [ e G ey () o)



where

E.2

= P{golbh [ dre ul @)™y Ao (w)bol o)
= 27 /OO dr /7r dor?sinf[g(r)* + f(r)*cos(26)]e@res?
0 0
X B<¢0|58XLX}/X1/(03)\3)X5Xchbo|¢o>B

= 2m /OOO dr /07r dfr’sinf[g(r)? + f(r)%cos(26)]ei@rees?

¢ = <¢0|b(T)XifX}/XZ/ (03)\3)X5Xchbo|¢0>B

3
= H(B1| Y losh] VB 7).
k=1

Counterterm Diagram (CT)

§2—1

a

Figure E.2 Counterterm Diagram.

= 2P (ool [ B)a e T D)2 — 1)y S ) 60)”

= (Z-1)GR@)),,
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E.3 Self-Energy Diagram I (SE;I)

Figure E.3 Self-energy Diagram I.

GR(QY)

SE;T

— 28(gli / S(t)diadiz e i

xN { UF%%@V’WSAW} J [ - J;’]j %3&%'%] x} |60)”

ik (@1 ~7)

M3 — k? — ie

2ifsij B | 3,93, A1 iqd
= W <¢0|b0/d xd .I'ld ke

X 1o (21)Y" kYN jtia (21) e () Ao ()

> /dtdt1(5t@(t1 o t)e—iqote—iso(t—tl)e—iea(tl—t)e—iko(tl—t)bo|¢0>B

. fi’nj T/33 81,010 i E-(#1-1)
= 2F2(an) Bloolb) | d*wvd®zid*ke’

x/dk 1
Olwo(k2) — k2 + i€][Acq + ko — 1]

(1) (7o — 7 - K)Y° Nt (21)a ()73 Nitto () bo o) 2

f32j
o (k2)[we (k2) + Acy]

_ ' 37
= m ﬁbo bOXchXs/d

Fra(l7— E!)[
7 — K|

€3mn kmo-n )\z] a,0

X [wo ) Erah) = Fira ()] (7 - Pl
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+W[\/@ — k3 + iESmnamknAi]a,O}XstchO|¢O>B7 (E.6)
where
/dgma($)73)\iUO($)€i(q_E)'f = w[%mnkm%/\i]mo
77
—I—W[\/@ — k3 + 1€3mnOmknAila0,
(E.7)
with
Frra(k) = —22—/ drrgo(r) fa(r /dQC Y, 0(0, ¢)etkreos?, (E.8)

Frva(k) = aak/ooo drr[ga(r) fo(r) —go(r)fa<r)]/QdQCaYao(e,¢)eikxcos9.
(E.9)

Finally, we get
GE(Q*);

SE;I

k) Fro(k) — Frro(k)
u.Jq> k'2 [a)cp(k2) —+ A&Ta]

1 ik(1 = 2*)Fra(k-) | Frva(ko) 2 2
x/_ldx{ F iy V@ + k(1 - 207

<¢0|boXchXs2f3w>\ Aio3X X rXeboldo)” (E.10)

For . =0
Fr(k) = —2ir | Tar / " d0r2g(r) f (r)sin20ereos, (E.11)
0 0

Frv(k) = 0. (E.12)
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Hence
G1(QY) ! /Oodk/l dak (1 = 22) Fyy () Fri ()
A SE;I (2rF)? Jo o 11 (k2
1 B B
E.13
= LuW) T (E.13)
where

l

3
0113 - Z B(¢U|ngix}xi f3ij)\j/\i0—3XstXCb0‘¢0>B
ij—=1

2
3
= (BT Y [oss]®[B 1), (E.14)
k=1
7 3 i
¢ = D ABTIX[Giios ™ B 7). (E.15)
i,j=4 k=1



E.4 Self-Energy Diagram IT (SE;II)

Figure E.4 Self-energy Diagram II.
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2F ’y ) J - 2F ©Em ’7 ’Y m . 0
Qifgij B T/ VWY - 61’13-(:2175:’)
= Tm2(od b | BPedPrd*ke T ———
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X ﬁo(:v)v“kruf)\jua ()t (21)7* Nivo (1)

y /dtdtlét@(t o tl)e—iqote—iso(hft)efisa(tftl)efiko(tftl)bo’¢O>B

f31 T 3,73 371. iG% ik (Z—&

= 2F2(2] Ji B go|b} /d rd3z dP kel T et (@)
x/dk 1

Olwe(k2) — k2 — i€][Aeq + ko — 1]

i (2) (Y ko — 7 - B)Y° Nt (2) T (21)7* Nitto (1) bo| o)

f3zy
o (k2)[we (k2) + Acy]

i 37
= m ¢0 bOXchXs/d

[€3mn kman/\z] 0,

X{Fma(|q_’+ k|)
|7+ K|

84



85
. R
_W[\/@ + k3 + iESmnamknAi]O’a}
q—+

x [wa (k) F, (k) = Fl1o(k)][( - F)Aj]a0xsXsXebold0) . (E.16)

It is similar to G]j(QQ)’:E.I, we can obtain

GR(@Q)

SE;IT

kBW‘I’ kQ FITa<k) FITIa(k)
we (k?)|we (k?) + Acy]

x /11 d@“{ik(l - yj,);”(m + Fvwf—“ Q2+ kﬂ}

<¢0\boXchX32f3w)\ Aios s X fXebolbo)”, (E.17)

where

Fya(k) = —zz— / drrga(r) folr / d0C, Y08, ¢)eeo?. (E.18)

When we restrict the quark propagator to the ground state,

GR@Q)|,,, = GR(@) (E.19)

SE;I SEII
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E.5 Exchange Diagram (EX)

Figure E.5 Exchange Diagram.

GR(@QY)|

— 28(gli / S(t)diadiz e i

xN{ {Qiﬂ@u&)m@/w“vf’)\mi/z] {— “?g¢73)\i¢‘£jh}|¢o>3

1

__ifsij B t t 5.y gs €ED
= SEG ((bo]bo(xl)bo(a:)/d T
X tio (1) 7" k> Ao (1) o (2) Y Miuo ()
X / dtdt,5te "0l R0 p ()b (1) | o) P (E.20)

Here, there is no quark propagator contribution to G% (QQ)‘EX, i.e., the ground

state gives contribution only. Equation (E.20) is similar to Equation (E.6) when

1

GE(Q2)‘EX = 1Ry /000 dk /_11 dek'(1 — 2®) Frr(k*)) Fri (K2)

" ﬁ? lw;w * wljv)] (.21)
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where
3 3
¢ = 2 (BTIX Frij€smnlomA] P oAV B 1), (E.22)
7’7]7m7n71 k];l;].
7 3
= Y (B futsmloa] P AOB Y. (B23)
i,j,m,n=4 k=1
kil

E.6 Vertex Correction Diagram (VC)

Figure E.6 Vertex Correction Diagram.
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= 8]:’2_(;)4 B<¢0|bgd%d‘()’xld3x2d3kei@feiﬁ~(ﬁ—fz)
s
1
X /dko 5 . | |
[wa (k2) — (ko)? — i€][ko + Acq — in][ko + Acp — in]

xiio(z1) (ko — 7 - K)y° Aitta (1) Ta(2)7° 7 Astug (2)

x5 (w9) (YKo — 7 - k)Y Astio () bo| o) P

1
o(k?)[we (k?) + Agy)?

36Y(@),

_ LO B (g 1ph /d3
10F2(2n) (ol bixIx Xt

X |wa (k) Fra (k) Ff, (k) — wo (k) Fra(k) Flro (k) — we (k) Fria(k) Fl, (k)

— —

+Frra(k)Ffpa ()] AAsA, /Q dQ(G - K)o - B)xsxrxeboldo) (E.24)

where

[ @ty s (@) = 25,5GH(Q) ! XXl dslasxox e (B.25)

Finally, we have

GR@Q)|

- 20(21ng (@)}, [ dkk![w3 (k) Fra (k) Fl (k)

~we (k) Fra(k)Fl 1o (k) = wa (k) Frra(k) Fl, (k) + Frra(k) 1 (k)]

B o bhxix I xINAsAios s x pxebol do) P

E.26
we (k?)[we (k?) + Ay )? ( )
For the ground state a = 0, we obtain
1 o0
GR@ve = g5 ON (@0 || akk Ff ()
B B
-l s
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et ) (=20



89

where

o = B<¢0|b(T)XZX}XlAz’/\s/\i%Xstcho|¢O>B
3 3
= Z<B ) ‘ Z[)\i)\3>\i03](k)|3 T)
=1 k=1
3
= (BT [\sos]W[B 1), (E.28)
k=1
3
g = (BT|Y [MsAshsos]™|B 1), (E.29)

k=1
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