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Properties of Particulate Solids

Part I.

Properties of Particulate Solids

1. Particle size distribution

1.1. Description of the size of a single particle

A particle size is some measure of the spatial extent of a particle. The particle size can be

characterized using various definitions which are divided into three groups: equivalent sphere

diameters, equivalent circle diameters and statistical diameters. In the first group, the size of

the particle is taken as the diameter of a sphere having the same property as particle under

consideration, as shown in Table 1 [1, 2].

Table 1: Definitions of particle size based on the equivalent sphere diameters.

Symbol Diameter Definition Formula
Equivalent Sphere Diameter
d, Volume Diameter of a sphere having the same volume V= gdﬁ
as the particle
ds Surface Diameter of a sphere having the same S = mwd?
external surface as the particle
dsy  Surface-volume Diameter of a sphere having the same ratio of  d, = (d3/d?)
(Sauter) external surface area to volume as the particle
dg Drag Diameter of a sphere having the same Fp = 3rdgnu
resistance to motion as the particle in a fluid
of the same viscosity (1) and at the same
velocity (u)
dy Free-falling Diameter of a sphere having the same free-
falling speed as a particle of the same density
in a fluid of the same density and at the
same viscosity
st Stokes Free-falling diameter in the laminar flow region dg; = +/d3/dy
Boris Golman Advanced Powder Technology



Properties of Particulate Solids 5

Consider a cubic particle with the side length of 1 mm, as shown in Fig. 1. The volume of this
particle is Ve = 1 mm?® and the surface is Sewe = (1 % 1) X 6 = 6 mm?. Then, the equivalent
volume diameter is the diameter of a spherical particle having the same volume as the cubic
one, i.e. Vignere = Vewre = 1 mm?®. As the volume of the sphere is Vigpere = 7d>/6 = 1 mm?, the
equivalent volume diameter is d, = 3/6/7 = 1.241 mm.

QMG’D
1 mm
y 3o

| mm

Cubic particle Equivalent spherical particle
V o ype = | mm’ V sphere =T d 6 mm’
5 cube 6 mm2 S sphere L d52 mm?
(S/V) e = 6 mum’! (S/V) phere = (6/dy,) mm”!

Figure 1: Illustration of equivalent sphere diameters.

Similarly, the equivalent surface diameter is defined as the diameter of a spherical particle
having the same external surface as the cubic one, i.e. Sihere = 7Td2 = Swpe = 6 mm?.
Therefore, the equivalent surface diameter is dy = \/6/_7r = 1.382 mm.

The equivalent surface-volume (Sauter) diameter is defined as the diameter of a spheri-
cal particle having the same surface to volume ratio as the cubic one, ie. (S/V) e =
w2, [l /6 = (S/V) :
diameter is d,, = 1 mm.

= 6 mm~'. Then, 6/d,, = 6 and the equivalent surface-volume

cube

In the second group of particle size definitions, the size of the particle is taken as the diameter
of a circle having the same property as particle under consideration, as shown in Table 2. To
illustrate the definition of equivalent circle diameter, consider a square particle with the side
length of 1 mm, as illustrated in Fig. 2. The surface of this particle is Siquere = 1 mm? and the
perimeter is Figuare = 4 mm.

The equivalent circle diameter is defined as the diameter of a circle having the same projected
area as the square particle, i.e. Sgre = Td2 = Syquare = 1 mm?, Therefore, the equivalent circle
diameter is d, = \/1/—71' = ().565 mm. Similarly, the equivalent perimeter diameter is defined

Boris Golman Advanced Powder Technology



Properties of Particulate Solids 6

as the diameter of a circle having the same perimeter as the square particle, i.e. Pyle = md, =
Piquare = 4 mm. Then, the equivalent perimeter diameter is d, = 4/7 = 1.273 mm.

Table 2: Definitions of particle size based on the equivalent circle diameters.

Symbol Diameter Definition Formula

Equivalent Circle Diamerer

dy Projected area Diameter of a circle having the same S = wdﬁ
projected area as the particle
in stable orientation

dp Projected area Diameter of a circle having the same ~ § = 7d
projected area as the particle
in random orientation

de Perimeter Diameter of a circle having the same P =nd,
perimeter as the projected outline
of the particle

Sieve Diameter

da Sieve Width of the minimum square aperture
throngh which the particle will pass

The third group of particle size distributions combines the so called statistical definitions of
particle size, as shown in Table 3. In this case, the size of particle is measured in many particle

orientations and then averaged to yield a mean value, as illustrated in Fig. 3.

Table 3: Definitions of particle size based on the statistical diameters

Symbol Diameter Definition Formula
Statistical Diameters

dp Feret  The distance between pairs of parallel
tangents to the projected outline of the
particle in some fixed direction

dps Martin  Chord length, parallel to some fixed
direction, which divides the particle projected
outline into two equal areas

dr Unrolled Chord length through the centroid of the
particle outline

Boris Golman Advanced Powder Technology
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1 mm

Square particle
S =1mm

square

square

Equivalent cycle

S
P

= 2 2
cycle nda mm

cycle =n dc mm

Figure 2: Tllustration of equivalent cycle diameters.

Feret diameter

Martin diameter

Unrolled diameter

Figure 3: [llustration of statistical diameters.
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Properties of Particulate Solids 8

1.2. Average sizes

The average size is used to represent the central tendency of a population of particles.
The mode, z,,, is the most commonly occurring value in distribution. It is the value at which
the frequency is a maximum, as shown in Fig,. 4.

0.160 -

0.075 -

0.050 -

fx), [% pm’']

0.025 +

0.000 . . , : :
Mode

x, [um]

Figure 4: Illustration of a mode of particle size distribution.

The median, xxg, is the size which divides the distribution into two equal parts. It is the 50%
size on the cumulative distribution curve, as illustrated in Fig. 5.

The mean, =, is the center of gravity of the distribution. Many different means can be defined
for a given size distribution.

Mean particle sizes defined according to the moment-ratio system are derived from ratios
between two moments of a particle size distribution. The j sample moment A of a random
sample containing /N elements from a population of particle sizes, «, is defined as

Zi nzrgnq

My = S,

(1.1)

where z,,, is the midpoint of the 7 interval, n; is the number of particles in the ¢ size bin and
N = Zz .

. , L ) - ; NViTm,;

The arithmetic sample mean M of the particle size « is defined as , 7 = M| = 2—1]\—%11—

Boris Golman Advanced Powder Technology
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1DO~‘

75

R(x), [ %]
g
!

25

0 T T T T T T T 7 T T 1
0 5 ] 15 20 25 30

x [um]

Figure 5: INustration of a median of particle size distribution.

The 7 sample moment about the mean T is

. —_ 7
.A/IJ =h Zz n'l-(s?'{?i :C) . (1‘2)

The mean size T, 4 of a sample of particle sizes is defined as power of the ratio of the

p and ¢ moments of the distribution of the particle sizes

1

m LT
2 ff‘(xmi ):L‘:?nl
g

—fﬂ:q = m lfp % q, (13)
> Frl@m, )i
i=1
and .
Z fT(a:mi)mf,;_’" In @y,
T,p, = exp | T it p=q, (1.4)
; Fr(@m ats!

where f,(z,,,) is the particle quantity in the 7 bin, r = 0, 1, 2, 3 represents the type of quantity,
i.e. number (r = 0), diameter (r = 1), surface (r = 2), volume or mass (r = 3), respectively,
and m is the number of bins. The sum p + ¢ is called the order of the mean size.

Relationships between mean sizes:

Boris Golman Advanced Powder Technology
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» Differences between mean sizes decrease according as the uniformity of the particle sizes
z increases

e Relationship useful for relating several mean particle diameters:

¢ The symmetry relationship:

=P
[T ]ﬁ—q _ xp,O
P.g o —:L,'-q
9,0
Tpg = Tgp

The nomenclature of main particle sizes is summarized in Table 4.

Table 4: Nomenclature for mean particle sizes Fp .

Notation | Nomenclature
T_ag harmonic mean volume diameter
T..2,1 diameter-weighted harmonic mean volume diameter
To12 surface-weighted harmonic mean volume diameter
T_og harmonic mean surface diameter
T 1, diameter-weighted harmonic mean surface diameter
T_ 10 harmonic mean diameter
Too geomelric mean diameter
T1,1 diameter-weighted geometric mean diameter
Tg9 surface-weighted geometric mean diameter
T3z volume-weighted geometric mean diameter
Tig arithmetic mean diameter
a1 diameter-weighted mean diameter
T3 surface-weighted mean diameter
T3 volume-weighted mean diameter
Zagp mean surface diameter
Ta1 diameter-weighted mean surface diameter
Tap surface-weighted mean surface diameter
Ts3 volume-weighted mean surface diameter
T30 mean volume diameter
T4, diameter-weighted mean volume diameter
T, surface-weighted mean volume diameter
T6,3 volume-weighted mean volume diameter

(1.5)

(1.6)

Estimation of mean particle sizes is illustrated in Table 5 by using an example of a micro-

scopic measurement of a sample of fine quartz. Calculated mean particle sizes are summarized

below:

Too = 4.75, Ty = 5.15, Tng = 5.55, Tgp = 5.95, Tap = 6.84, Ty 3 = 7.26, Tys = 7.64.

Boris Golman
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1.3. Particle size distributions

A population of particles is defined by a particle size distribution (PSD). PSD is used to describe
the size and frequency of particles in the population.
Common terms used in representation of size distributions:
fz) frequency distribution function of size variable =
or fractional density distribution
dF = f(x}dx fraction of the distribution found in the size range z to = + dx,
where F' is the cumulative distribution function
D(z) cumulative undersize distribution function
A(x) cumulative oversize distribution function
(Tmins Tmaz)  range of independent variable over which the distribution is defined and

normalized
The frequency function f(x) is normalized such that

Lrmax
/ flx)dz =1 {(1.7)
Tmin

The cumulative undersize distribution function is defined as a fraction of the total amount of

particles with size less than z
T

D(z) = flz)dx (1.8)

Tmin

The cumulative oversize distribution function is defined as a fraction of the total amount of
particles with size larger than x

R(z) = / f(z)dz (1.9)
The relationship between the cumulative oversize and undersize functions is as follows
R{z) =1 — D{z) (1.10)

The frequency function is related to the cumulative functions as

dD _ dR

T d dm

f(x) (1.11)

Therefore, the frequency function for any size = can be obtained as a slope of the cumulative
distribution function.

Boris Golman Advanced Powder Technology
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Tabular and graphical presentation of size distribution data.

A step-by-step guide to the tabular and graphical presentation of size distribution data {3]

1. Divide the entire size range into a series of successive particle size intervals (bins) where

interval limits are Tomin, 1, Tim1, Tiy Tizl, * * * 5 Trnaz-
The intervals should be contiguous and cover the entire range, i.e. the first bin is [, T1],

the second bin is @1, x4, the i bin is [z;_1, z;| and the last bin is [zn,—1, Tn,], Where Ny
is the number of bins.

The upper size limit of each interval coincides with the lower limit of the next interval.

The intervals can be uniform and nonuniform.

2. Measure each particle and add it to the corresponding bin.

If the size of a particle is exactly equal to the interval limit, add this particle to the higher
interval.

3. Count particles in each interval, n;, and the total number of particles, Nr = Zfi"l This

4. Calculate the mean of each interval, z,,,.

If the interval width is large, the geometric mean is used as the mean of the interval,
ie. Tm; = /Ty z;. For narrow interval, the arithmetic mean can be used, z,,, =
(1/2)(zimy + z5).

5. Calculate the relative frequency of each size interval, A;, by dividing each interval count
by the total number of particles, h; = n;/Nr.

The relative frequency is calculated in order to standardize for sample size (total number
of particles).

6. Calculate the frequency distribution function, f;, by dividing the relative frequency by the
interval width, f; = h;/(x; — z4-1).

The frequency size distribution is normalized by the interval width making it possible to
compare distribution data measured with different devices.

Plot the frequency distribution as a discrete or continuous function. The discrete fre-
quency function can be plotted as a histogram shown in Fig. (??tab:1-3)), where the
width of each rectangular represents the size interval and the height represents the rel-
ative frequency, The area under each rectangular is equal to the fraction of particles in

that size interval, f; - Az = h;, where Az = z; — x;.1. The total area is equal to one,

Sohi=3fi Az =1

Boris Golman Advanced Powder Technology



Properties of Particulate Solids 14

The continuous frequency distribution function can be plotted as a curve connecting val-

ues of frequency distribution at the mean of interval, as shown in Fig. (?2fig:PSD3)).

For the continuous distribution, the fraction of particles in size interval [Tio1, 2], A,

is represented by the integral under the distribution curve between these limits, h; =
T s Tmazx -

fo | f(z)dz. The total area is fores fz)de = 1.

The frequency distribution is plotted with f{%/pm) as an ordinate and the size as an
abscissa in linear case. For logarithmic scale, The ordinate is f(%/ log um) in order to
normalize the area under the curve to 100,

7. Calculate the undersize, D, and oversize, 1, distribution function.

The undersize cumulative distribution function for i bin is calculated by summing the
relatives frequencies starting from the first bin up to 7 bin, D; = Z;=1 hj - 100%. The
oversize cumulative distribution for 4 bin is &; = 100 — D,.

Example 1.

The equivalent circle diameter of particles, d,, were measured by an image analysis and
were used as representation of particle sizes. The size axis, z, was divided into 11 bins of
equal width of 1 pm and each particle was measured and added to the corresponding bin. The
number of particles in each bin was calculated and the results were summarized in the Table 6.
The arithmetic mean value of the bin boundaries is used as a bin midpoint z.,_. The histogram
of the particle size data is shown in Fig. 6.

Table 6: Particle size data for bins of equal width,

Bin No., Size range Bin midpoint size, | Number of particles in a bin,
i [~] initial [um] | end [pm] x; [pem] 1; [-]
1 0 1 0.5 0
2 1 2 1.5 7
3 2 3 2.5 29
4 3 4 35 55
5 4 5 4.5 91
6 5 6 5.5 99
7 6 7 6.5 88
8 7 8 7.5 73
9 8 9 8.5 44
10 9 10 9.5 14
11 10 11 10.5 0
Np =500

Usually, it is better to distribute the histogram bins geometrically other than linearly for
presentation of PSD, so that each subsequent histogram bin is a constant factor larger than

Boris Golman Advanced Powder Technology
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Figure 6: Histogram representation of particle size data for bins of equal width.

the previous one. This has two advantages:

1. The bin resolution is constant across the whole histogram. The resolution is defined as

a bin width divided by a bin midpoint size z,,,. Suppose we have a linear set of bins of

limit 1 gm, 2 pm, 3 pm, etc. The resolution of the bin in the range of 1 ~ 2 ym is

(width/midpoint) = 1 pm /1.5 pm = 0.67, while the resolution of the 15 ~ 16 ym bin is

1 pm/15.5 pm = 0.065. Consequently there is less detail in the small size end of the size

distribution than at the large size end. However, a geometric representation has the same

resolution for each bin, so the detail is uniformly distributed over the representation.

2. The geometric representation provides the maximum amount of detail for a given number

of bins.

The commercial instrument usually presents data using bins whose limits advance by the v/2

or v/2 per bin. Bin limits on /2 progression starting at 1 ym would be 1, 1.4, 2, 2.8, 4, 5.6,

8, 11.3, 16 pm. However, now we no longer have constant bin widths, so the shape of the

distribution becomes dependent on the particular bin sizes chosen. To illustrate this, we replace

the two bins labeled 3 ~ 4 um and 4 ~ 5 pm with a single bin, 3 ~ 5 pm. The original bins

contain 55 and 91 particles, so the new wider bin would contain 146 particles as illustrated in

Table 7. The graph of this data is shown in Fig. 7. Someone inspecting this graph could suggest

that there was an unusually large amount of material in this size bin, which is untrue because

the width of this bin is double of other bins. To overcome this difficulty we need to plot the

Boris Golman
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fraction or percentage of material per unit of bin width on y-axis.Table 8 and Fig. 8 illustrate

the correct form of the frequency distribution.

Table 7: Calculation of frequency distributions for bins of nonequal width.

Bin No., Size range Bin midpoint size, | Number of particles in a bin,
i -] initial [pem] | end [pmn] T, L] 725 [-]
I 0 1 0.5 0
2 1 2 1.5 7
3 2 3 2.5 29
4 3 5
5 5 6 55 99
6 6 7 6.5 38
7 7 8 7.5 73
8 8 9 8.5 44
9 9 10 9.5 14
10 10 11 10.5 0
Ny = 500
Table 8: Tabular presentation of frequency distribution function.
Bin | Sizerange | Binmid. | Number of part. | Rel. freq., % per pm
No., | initial | end size, in a bin
ng /N
i1 [pm] | {pm] | 2, [pm] ﬂz[—] n:/N [%] Wima [ !;Z“?:_J
1 0 1 0.5 0 0 0
2 I 2 L5 7 1.4 14
3 2 3 2.5 29 5.8 5.8
4 3 5 146 14.6
5 5 6 5.5 99 19.8 19.8
6 6 7 0.5 88 17.6 17.6
7 7 8 7.3 73 14.6 14.6
3 8 9 8.5 44 8.8 8.8
9 9 10 9.5 14 2.8 2.8
10 10 11 10.5 0 0 0
100

To plot correctly the cumulative distribution we can represent particle size data similar to

Table 9. Cumulative distributions plotted using these data are shown in Fig. 9.

Boris Golman
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Figure 7: Histogram representation of particle size data for bins of nonequal width.
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Figure 8: Frequency distribution function,
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Table 9: Tabular presentation of cumulative distribution function,

Bin No., Size range Bin mid. size, | Relat. freq., | Cumulative undersize
i[-] initial [em] | end [pm) Ty, [em] ni /N [%] D [%)]
1 0 I 0.5 0 0
2 1 2 1.5 1.4 1.4
3 2 3 2.5 5.8 7.2
4 3 5 4.0 292 36.4
5 5 6 5.5 19.8 56.2
6 6 7 6.5 17.6 73.8
7 7 8 7.5 14.6 88.4
8 8 9 8.5 8.8 97.2
9 9 10 9.5 2.8 100
10 10 11 10.5 0 100

100%

__ 1oo T [ ——
=
B -
= /
g’ 75 5
.;E
& 3507
-:,5 25
g
&

0 T 7/"* T+ — T T T 1

01 3 4 5 6 7 8 W
Particle size, x [um]
Figure 9: Cumulative undersize distribution function.
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The frequency of the particular value of a particle size  can be expressed in terms of the
number of particles, the diameters, surfaces or volumes of the particles. The corresponding
frequency distributions are called number, diameter, surface, or volume distributions.

¢ The number distribution, f,, is the distribution by number of particles as a function of
their sizes.

e The diameter distribution, f;, is the distribution by diameter of particles as a function of
their sizes.

¢ The surface distribution, f;, is the distribution by surface of particles as a function of their

sizes.

¢ The volume distribution, f,, is the distribution by volume of particles as a function of
their sizes.

The weight distribution, f,, is the distribution by weight of particles as a function of their sizes.
It is similar to the volume distribution, assuming that the particle density does not depend on
the particle size.

Conversion between different distributions

Assume that we need to convert the number distribution to the weight distribution. One

71'.’1;3

spherical particle of diameter 2 has a mass of m,, My = Ps 5 ) Here p, is the particle

density. In the size ratio, (x,x + dz) there are dV particles. According to the definition of the
number distribution,

dN = f,(z)dz - Ny
The mass of particles in the same size range is

T

dW = Ps (""é"“’“) : fn(.&"))d'l? « Nt
Also, by definition of the weight distribution,
dW = fy(z)dz - Wp

Combining two equations for dW results in

ps (%) - fal@)de - Np
W

fw(z)dr =

Boris Golman Advanced Powder Technology
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The total amount of particles is

Tmax Loz 3 Trnax
we= [ Taw= [T, (-”—6—) @i Ne = (5) vy [T (oo

Tmin min Emin

Therefore,
71'.'1}3
po () h@de Mo g e
ps (5) - N [ asfule)de 5 o fu(a)de

Train

fulz)dz =

The gereral formula for conversion of distributions is

i f (x)dz

fadz = — (1.12)
[ e fo(z)dz
o, B Description
0 number
1 length
2 surface
3 weight, volume
-1 | surface per volume

1.4. Standard forms of disiribution functions
1.4.1. Arithmetic normal distribution

The arithmetic normal frequency distribution is defined as [4]

2
flz) = d\;%exp (—% (m —G.’Em) ) (1.13)

where 1,, is the arithmetic mean of the distribution and ¢ is the standard deviation. This function

is symmetrical about the mean, as shown in Figs. 10 and 11.
The distribution is normalized on interval z in (—o0, +00), i.e.

-+00

(z)de =1 (1.14)
-0
The normal distribution is used seldom for the description of particle size distributions, be-
cause these distributions are typically very asymmetric as they are shifted to the lower value of
particle size range. Also the normal distribution is extended to the negative values of the size
coordinate z.

Boris Golman Advanced Powder Technology



Properties of Particulate Solids 21
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Figure 10: Illustration of arithmetic normal distribution for various standard deviations.
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Figure 11: Illustration of arithmetic normal distribution for various arithmetic means.

: T— - . dx
Introduce a new variable z, z = ~——=. Then, the derivative of z is equal to dz = \/_—2 and
o

V2o

dz is dz+/20. Substitution of z into Eq. (1.13) and the resulting equation together with dx into
Eq. (1.14) yields

+oo +00
1 2 _ L L2
[mm U@exp( z)\/ﬁadzwﬁ/_m exp (—2%)dz =

% [_\/fgi -erf(z)} = —;—(erf(—}-oo) — {erf(—o0)} = %(1 —(-1)) =1,

(1.15)

hadee
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where erf(z) is an error function defined as
erf(z) = 2 /z exp (—=*)dz;
V7 Jo ’
erf(—x) = —erf(z), erf(+o00) = 1, erf(—oo) = —1.
The cumulative distribution D is given by
D= f flz)dz (1.16)
—00
The cumulative distribution in terms of z is
1
D(z) = 5(1 + erf(z)) (1.17)

hecause

D(z) = % /;; exp (—z%)dz = % lg . erf(z)} ;o = -é—(erf(z) — erf{—oo))

= S(erf(z) — (~1)) = 5(1 +erf(2)),

Eq. (1.17) can be rearranged as

T T
2D 1 =erf(z) = erf U
@) (\/ﬁd)

Taking the inverse error function of the left and right sides of the above equation results in

T —Tm

V20

=erf' (2D - 1)
Expressing explicitly « gives
z =20 erf ' (2D — 1) + 2, (1.18)
This equation can be written in a linear form as
Y=aX+D (1.19)

where X = erf~'(2D — 1) and Y = x. The slope is a = /20 and the intercept is b = z,p.
Figure 12 illustrates the linear form of the normal distribution function.

Boris Golman Advanced Powder Technology



Properties of Particulate Solids 23

100
80
v 60
]
B
40 4
Linear fitting: Y =a - X+ b
20 :slope: a=+2-0
intercept: b =x_
o T f T i T T T i T * T

-8 -6 4 -2 0 2 I 4 I <] ‘ 8
X=ef" (2D-1)

Figure 12: Linear form of arithmetic normal distribution.

Properties of normal distribution function are summarized in Table 10.

1.4.2. Log-normal distribution

The log-normal distribution is simply a normal distribution in terms of In(z)

1 1/lnz —Inx,\>
I L S B Fa b Ot A , 1.20
f (ing) %Mgexp( (ot )) (1.20

where z, is the geometric mean of the distribution, i.e. the arithmetic mean of logarithms, and
04 is the geometric standard deviation, i.e. the standard deviation of logarithms. Figure 13
illustrates the log-normal distribution in terms of In(z).

The log-normal distribution in terms of x is

f(z) = 1 ex Mi(lnw—lnmg)g (1219
~:L'\/%lnag P 2 Ino, '

Figure 14 illustrates log-normal distribution in terms of z.

The fact that the mean =z, is the a geometric one can be illustrated by considering the mean
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Table 10: Properties of normal distribution function.

Frequency distribution

Domain, x

Fla) = 1 exp _1 (m)g

Cumulative distribution

D(z) = %(1 + erf(2))

where X = erf“l(QD ~1),Y =z,a=+20,b=x,

. . . T —

Dimensionless size, z g = 2T
\/’2_0

Linear form Y =aX+0,

Mean size, T
Mode size, x,,

Median size, Tsg

Tm

Tm

Tm

Standard deviation, o

g = Tgq — Tap ** Tsg — T1g = (3784 - 3?16)/2

Coeflicient of variation

a/Tm

Moments

Mg = 1,mM = Ty, Mo m:cfn-i—of?'

ma = 13 + 202, my = x4 + 6%z, + 30!

Frequency distribution, f{ln (x)}

Geomelric standard
deviation, a,

Geomelric mean,
¥ = 50 [lum}

35 40 45 50
Particle size, In {x)

Figure 13: IHlustration of log-normal distribution with respect to logarithm of particle size.
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Geometric standard
deviation, g,

1.1

Frequency distribution, £ (x) [um™]

Particle size, x [um]

Figure 14: Illustration of log-normal distribution for various standard deviations.

of just two numbers in distribution, z, and s,

Inz + Inazo
2

1/2

Inz, = =1In (21 - ©2)

or

g = (z1- 32)'/2

The log-normal distribution is normalized over the range Inz in {—c0, +00) or over the range
z in (0, +00).
Figures 14 and 15 illustrates effects of variation of geometric standard deviation and geomet-

ric mean on log-normal frequency distribution.

. Inz—Inzx
Introduce a new variable 2/, |2’ = ———~4
V2In o

v21Ino,d(2"). Taking into account that f(Inx} = dD/d(In ) and substituting d(In ) and In z
into Eq. {1.20) results in

_Then, lnzis v/21n o2’ +lnzgand d(lnz) =

2
dD 1 1{V2lno,z' +Inzy — Inz, 1 e
ﬁ] N eXp 1 =3 = exp(—z )
no,d(z’) 2rlno, 2 Ina, V2rlno,
Therefore, D
1
e = 7_7—rexp(—z’2)
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35
Geormnetric mean, x, fum]
3.0 20
g | — 40
25 60
= Geometric standard
Sy iati =
=2 204 deviation, a, 5
2
2
E 1.5 4
]
=
& 1.04
5
&
¢ 05+
&
0.0 ! i ¥ T T 1 ¥ ] v T
0 20 40 60 80 100

Particle size, x [um]

Figure 15: INustration of log-normal distribution for various arithmetic means.

The cumulative undersize distribution can be obtained by integration of above equation

D 1 z' 0
dD = ~—-——f exp(~2 *}dz'
| el b

and using the definition of error function as

D(z") = %(1 -+ erf(2")) (1.22)

Eq. (1.22) can be rearranged as

Inz—-Inz
2D 1 =erf(z =erf(——-m-——g)
() ﬂlndg

Taking the inverse error function of the left and right sides of the above equation results in

Inz—Inz,

e — el (2D - 1
\/ilnag ( )

Expressing explicitly In = gives

Ine=v2Inao, erf (2D — 1) +Inz, (1.23)
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This equation can be written in a linear form as

Y =aX +5b (1.24)

where X = erf™}(2D — 1) and Y = Inz. The slope is ¢ = v/2Ino, and the intercept is

b=Inz,.

Figure 16 illustrates the linear form of the log-normal distribution function.

5.0
45
4.0 -
3.5+
®
= 304
il
> 25
o Linear fitting: Y =a- X+ b
slope: a=+2-In (c,)
1.5 intercept: &=1n( xg)
1.0 T T T T E T g 7 T T T T
10 5 i -4

-2 4] 2
X=ef (2D-1)

Figure 16: Linear form of log-normal distribution.

Properties of log-normal distribution function
The mean is defined as

T = / f(z) - zda (1.25)
0
Introducing f(x) by Eq. (1.21) into Eq. (1.25) gives
a;—____l__fooex _E(M&)z dx (1.26)
‘ V27lino, Jo PA\TZ lno, . .

Assuming ¥ = Inz or z = ¥ and replacing the derivatives dz in Eq. (1.26) by dz = e¥dy

Boris Golman Advanced Powder Technology



Properties of Particulate Solids 28

results in
1 oo 1/y—In :.-;g> 2
T = exp | —=| =——+ edy
V2rina, f_oo p( 2( Inao, v (127
27
Vorn Og J—co P 2 Ino, vy
The limits of integration in Eq. (1.26) become z =0 — y = —coand z = +0c — y = +o0.
—Inz,)? - )2
The exponent — .(EQITTQL +y is represented as — (2yl Qa) +b, where ¢ and b are constants
n- o, n-o,
to be derived.
Therefore,
~(® +In*zy — 2ylnz,) +y - 200, _ W +a® - 2ay) +b- 20’0,
2In* g, 2ln’ g,
or
—In*zy, + 2w, +y 20’6, = —a® + 2ay + b- 2In’ o,
The above equation is satisfied if a = Inz, + In® 0, and b = Inz, + In® 5,/ 2:
LHS. = —In’z, 4+ 2ylnz, + 2yln®o,
RHS. = —a® + 2ay + 2bIn° o,
Expanding the terms in R H.S
a® = (Inzg + In® o) = Iz, + 2InzyIn* o, + Inte,
2ay = 2(lnz, + In® o)y = 2Inxyy +21In Ty
2 In® oy, 2 4
26In“o, = 2(Inz, + JIn®oy =2Inz,In"o, +In" g,
and substituting them into R.H.S gives
RHS. = -1n® T, — 2Inx, In? o,—In"o, +2In zgy + 2 In® oy + 2Inz,In’ o, + In* o,

=—In"z, + 2ylnz, + 2yln’ g,

or LHS.=RH.S.
Therefore,

21n? Tq 21n? Og

— {4 — 2 — 2 P 2
(y —Inz,) by (¥ — (Inzg +In"0oy)) +(In$g+ln o*g)
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and Eq. (1.27) becomes

1 Foo (y — (Inz, +In® og))2 ( n* o, )
T = —~ cexp | Inzy + —2% )dy (128
¢ V2rlna, /mm P ( 2In 0, P\ M T 2 y  (128)

Moving the constant outside integral yields

e 1 +eo (y—(lnrc +Info ))2
T = 1 gy, G - g 7 d 1.29
oo (e 251) (b [ oo (O ) 0

The integral in the parenthesis is the arithmetic normal distribution of variable y with the mean

Inz,+ In? o4 and the standard deviation In ;. This integral is equal to one similar to Eq. (1.14).

2
T == exp (111 Ty -+ hl;g)

Finally, the mean of the log-normal distribution funection is

Therefore,

1
T =z, exp (5 In* (Tg) (1.30)
To derive an expression for a mode size, the following equation should be solved for z =z,

@) _

0 1.31
S (1.31)

The differentiation of Eq. (1.21) with respect to z gives
dof _d { 1 } o _l(lnx—lnmg)z N
dz dr | 227 1n Oy B 2 In Tg

d 1 (lnm——lnmg>2 1
i exp ——— e e e ——
dx 2 Inog xv/27 In g

Derivatives in Eq. (1.32) can be written separately as

(1.32)

d 1 1

dx {m\/Q?rinag} N _:1:2\/27r1ncrg
i . _1 Inz —lIng, 2 B
dz | " P\ 73 Ino, B
d 1{lnz—-Ingz, 2 l1{lng—Inz, 2
— i — ————— —is » exp —— VA e e e ek
dz 2 Inoy, 2 Inog
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d l{Inz—1Inz, 2 1 d 5
dx {~§( Ino, ) }__2(11109)2'%(1”"1”9)

1 d
=— 2(111—%)2 . EE((IH )% — 2lnzInz, + (Inz,)?)

R d, d
= 3oy (dx(km) 21n:z:gd—m—(in:c))

_ 1 . 21n$—2lnmi
~ 2(Ing,)? z Yz

1
= W . (lnaz—ln:?:g)

Substituting derivatives back into Eq. (1.32) yields
a 1 o __ln(ina:—ln:cg) N
dx z2v2rlno, P73 Ino,
inm—lnxg) lna:—lnfvg
————— " - eX 1.33
( z(lno,)? P ( 2 Ino, N gg H33)

1 . (Inaz—ln:cg) [1+lnmwlnmg}
—_ e — . x —_——
2v2rlno, P2 Ino, Ingy,)

Solving Eq. (1.33) for x == ,,, yields

Inz, —Inz,

1+ =0  or —1n209=1n(-g:—m) and %ﬂzexp(—lnzag)
g

2
In” o, Tg

Finally, the mode of log-normal distribution is
T = T4 - exp (~1ng,) (1.34)

To derive an expression for the median size, the following equation should be solved for

L = Tso
In Isn — Ina,"g

\/§lnorg

Taking into account that erf(z) = 0 for z = 0, the median size could be found from

1
D(Z') = 5 (1 +erf(2')) = 0.5, where 2’ =

f 11’1.’,1350 — 11’1.’135.

V2In Og

Finally, the median size of the log-normal distribution is equal to the geometric mean

=0 or Inzsp—Inz,=0

50 = 4 (1.35)
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Properties of log-normal distribution function are summarized in Table 11.

Table 11: Properties of log-normal distribution function.

fa) = 1 o _1(1n:cw1n:cg)2
_—$m1nag P\72 Inoy

(0, +00)

Frequency distribution

Domain, x

1
Cumulative distribution D(z") = 5(1 + erf(2")}

_lnz-~Ing,
B v2Ina,

Y =aX+5b,

Dimensionless size, 2/ !

Linear form

where X = erf (2D — 1), Y =lnz,a = v2Ino, b=Inz,

1
Ty exp (§ In? Jg)

Mean size, T

Mode size, z,,

Median size, 5o

xz, exp (— In® o)

Lg

Standard deviation, o,

Ty = 3784/5650 B -’1350/3716 = (3734/1'16)

Coefficient of variation

\/exp (Inoy) — 1

Moments

3 1
m; = ;I]jq' exp (532 ln2 Jg)

1.4.3. Rosin-Rammler distribution

In 1933 Rosin and Rammler (J. Inst. Fuel 7, 29, 1933) introduced an empirical distribution
for description of particle sizes, which they obtained from the data describing the crushing of
coal and other materials. In 1939 Weibull (Weibull W., J. Applied Mechanics, 18, 293, 1951)
applied the same distribution to describe the life length of materials under fatigue and fracture
loads.

The cumulative oversize distribution is

R(z) = 1oo-exp{—(m%)n},

(1.36)
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where z. > 0 is the scale parameter and n > 0 is the shape parameter. The scale parameter
is the characteristic value of the distribution and the shape parameter controls the width of the
frequency distribution of sizes with the higher value corresponding to the narrower distribution,

as shown in Figs. 17 and 18.
100 z\"
R P Te ’

and taking natural logarithm from the left and right sides of above equation gives

100 z\"
In (?) e (m—‘a) (137)

Taking again logarithm from Eq. (1.37) results in

In (In (%)) =n-lnz—-—n Inzx. (1.38)

Eq. (1.38) is a linear equation of the form

Rearranging Eq. (1.36) as

Y =0a:X+b, (1.39)

100

where ¥ = In (ln (?)) and X = Inz. The slope is ¢ = n and the intercept is b =

—n - Inz,, as illustrated in Fig. 19.

100

Scale parameter, X,

B0

50 Shape parameter, n=1.5

40 ~

204

Cumulative oversize distribution, R (x) [%]

t. e

T ¥ i T T M E T
200 250 300 350 400
Particle size, x [pm]

Figure 17: Nustration of Rosin-Rammler distribution for various scale parameters.
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100

80 -] Yo

60 ~ YA

40 -]

20 4

Cumulative oversize distribution, R (x) [%]

50

U— T T T 3
150 200 250

Particle size, x [pm]

Figure 18: INlustration of Rosin-Rammler distribution for various shape parameters.

An alternative form of Rosin-Rammler distribution is

where ¢ and b are parameters.

R(z) = 100 x 107,

Taking the logarithm of Eq. (1.40) results in

2 —log,g R = az

Rearranging Eq. (1.41) and taking logarithm again yields

Eq. (1.38) is a linear equation of the form

Yzal-X+bl,

10810 (2 — logyo R) = logjga+b-logy, =

33
Shape parameter, n

1.0

------ 1.5

— 2.5

Scale parameter, x =170
360 3é0 ' 400

{1.40)
b (1.41)
(1.42)
(1.43)

where V' = log,, (2 — logyg B) and X = logyx. The slope is a; = b and the intercept is

by = logy, a.

Properties of Rosin-Rammler distribution function
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4
34
24
£
<
<
T 5l
=
E
not
s . ] '
2 Linear fitting: Y =a-X+ 5
slope: a=n
2l intercept: b= -n-in (x )
-4 T T T L T
i z 3 4 5 8
X=In(x)

Figure 19: Linear form of Rosin-Rammler distribution.

The mode size is derived by solving the following equation

4(z)

- =0 (1.44)

T=Tm

Taking the derivative of the frequency distribution defined as

o2 (2 el (2]
= =(n - 1)%33??»-2 exp {— h(

) bt () ) e - (2) )

— + —z —[— ) nzx expq— | —

T T bl Te Te
z\" Dn n’

—exp {__ (%) } ((” — ) 22 $2nx2n~2>

From Eq. (1.44) it follows that

resulis in

df{=z)

P
(n=1n ..o 1 5., _
n x T on Tm =0
:I:B ‘/L'E

Therefore,
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Finally, the mode of the Rosin-Rammler distribution is

1 {1/n)
Ty = T (1 - m) (1.45)

n

The median size is derived from equation R(xs;) = 50. Rearranging Eq. (1.36) as

@_Qm x Ts0 )"
50 P Ty
n2 = (‘“50)”
Ze

Finally, the median of the Rosin-Rammler distribution is

and taking logarithm results in

5o = we(In2) /™ (1.46)
Properties of Rosin and Rammler distribution function are summarized in Table 12.

1.4.4. Beta distribution

A modified beta distribution is defined as [5]

I‘(m(a N 1) = 2) Tam(l _ Zb)m (147)

1@ = frm+ T (m + 1)

or
mum(l o x)m

[y zom (1 — z)mda

f(z) = (1.48)

where 1 is the normalized size = = (T — Zpin)/(Tmae — Tmin) Suchas 0 < z < 1.

The characteristic parameters of this distribution are

mode: z, = ¢
a+1
mean: T == am + 1
U (a4 Dm 42

{am+1)(m+1)
((a+1)m+2)%((a+ 1)m+ 3)

variance: g2 =

1.5. Methods of particle size measurement
Methods used for measurement of particle size distribution can be classified as follows [6, 71:

1. Direct dimensional measurement
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Table 12: Properties of Rosin-Rammler distribution function,
Frequency distribution f(z) = abln 102! 102-as’
Domain, = (0, +o0)
Cumulative distribution R(z) =100 - exp {— (E—Z)n}
oo T
Dimensionless size, z = (..)
‘1:6
Linear form Y =aX + 0,
10
where X = Inz, Y =In (ln (—5)), a="n,0b=-—n-Inz,
. 1
Mean size, T T 1 (1 + -T—L)
-1/n
Mode size, T, (E)
Te
Median size, zso ze (In2)™
2 2
Coefficient of variation \/(F [n: ] /T2 [n: ] — 1)
(3/7) :
1
Moments m; = (——-) r [n * J}
Te n
Here, I is the gamma function of z defined as I'(n) = [~ " 'e7'dt, n >0

¢ Sieving

e Microscopy

2. Transport measurements

¢ Sedimentation

3. Rapid physical response measurements
¢ Electrical sensing zone
e Light scattering and diffraction

¢ Photon correlation spectroscopy

4. Surface area and porosity

¢ Permeatry

Boris Golman

Advanced Powder Technology



Properties of Particulate Solids 37

¢ (as adsorption

1.5.1. Sieving

The main features of the sieving method are summarized in Table 13.

Table 13: Features of sieving method.

' Principle Passage of particles through sieve
Size range from 5um to 125mm
Type of diameter Equivalent sieve diameter
Type of distribution | Mass{volume)

1.5.2. Microscopy

The main features of the microscopy method are summarized in Table 14.

Table 14: Features of microscopy method.
Principle Analysis of images
Size range depends on magnification
Type of diameter Often area based. but depends on choice
Type of distribution | Number

1.5.3. Sedimentation

Interaction between particles and fluid

# Settling of a single sphere under a gravitational force

Consider a spherical particle of diameter = and density p, settling freely in a fluid of
density py and viscosity s due to the gravity force. Here it is assumed that the particles
is a rigid sphere and there is no multiparticle and wall effects.

The forces of gravity F,, buoyancy F, and drag F; act on the particle. The drag force is
the resistive force exerted on the particle by fluid if a difference in velocity exists between
a particle and fluid surrounding it. The drag force acting upwards is

PV’
Fy=Cp Ap- .._2_

where Cp, is the drag coefficient, Ap, is the projected particle area, Ay == 7z?/4, and v is

the relative velocity. If fluid is stagnant, v = v,,, where v, is the particle velocity.
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The gravity force acting downwards is

TFQ:S
Fg:mp'gzpp'(‘_ﬁ—> g,

where m,, is the mass of the particle.

The buoyancy force acting upwards equals the weight of the fluid displaced

Tz
Fbmmf-9=pf-<~6—)-g

where my is the mass of fluid displaced.

The acceleration force F, is

du rzd\ dv
Fo=m, —2=p, [ —— ] =2
el TP (6) a’

The resulting force balance is

nz?\  du, ma? nz? P
Ay e, (Y (IR oA 1.4

Rewriting Eq. (1.49) in terms of particle acceleration yields

dvo _ pp— py 3py Y
e o, 0 o, R 1.50
&= YA P 420

Small particles quickly reach a constant ferminal velocity vg, derived from Eq. (1.50) by
equating dv/dt = 0 as

Alpp — pr)gs
o= I.51
Ust 3Pf Ch ( )
The drag coefficient is a function of a particle Reynolds number, Re == PI%% 1 the

i
laminar flow region, for Re — 0 the drag coefficient is Cp = 24/Re. Then, the drag
force is Fip = 3mzpv,.

Finally, the relationship between the particle diameter and its Stokes velocity is

8
T ﬂ_ (1.52)
(Pp — pi)g

where vg; is the particle terminal velocity in the laminar flow region.
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o Settling of a single sphere under a centrifugal force

The force balance for a spherical particle settling in a centrifugal field in the laminar flow
region is

ndd, d*r wdy 5 dr
(—6—) on=rr) gz =5 ) (o = pp) - wir — 3mpdg—, (1.53)

where r is distance from the axis to the particle, dr/dt is the outward velocity of the
particle, ds; is the Stokes diameter of the particle and w is the speed of rotation in radians
per second. At the terminal velocity d?r/dt* = 0, and the velocity is a function of radius
as

dr (pp — pr) g’ )

=\~ PAIsY 54
dt 18 " (1.54)

Rewriting Eq. (1.54) in integral form as

/’" dr _ f (pp = pr)dsw? o,
v T o 181

m{ ) = (pp = ps)dgw? "
Ts 18

where ¢ is the time for a particle of Stokes diameter dg; to settle from the surface of the

and integrating yields

liquid at radius r, to measurement radius r.

Finally, the Stokes diameter in the centrifugal field is

[ 18uin(r/rg)
doy = 4] o= ot (1.55)

The main features of the sedimentation method are summarized in Table 15.

Table 13; Features of sedimentation method.

Principle Particle dispersed in non-aqueous and aqueous media in
gravitational or centrifugal field
Size range Gravity: 300 — 10gm, Centrifugal: 10um - I nm

Type of diameter Stokes
Type of distribution | Volume
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1.5.4. Electrozone sensing

The schematic illustration of electrical sensing zone device is shown in Fig. 20 and the main

features of the method are summarized in

Fable 16,

Connection 10 pump which draws a spscific electrolyia
volume, containing particles, through the crifice

Mercury manometer used
1o achisve callbrated voiume

10 pass INrough orifice —w v d

*Kl Glassware containg an otifice,

;i of varlous sizes. theough which
o PANICIES passe. Positive elecirode in
glasswars ant nagative slecrode in
SUSpension resenvoir

Arplifer

| Particls counter |

- . and sizer

/ e
Particies suspendsd in elecirolyie resarvolr

Figure 20: ITlustration of electrical sensing zone measurement.

Table [6: Features of

electrical sensing zone method.

Principle Particle dispersed in electrolyte
pass through orifice

Size range from 1000um to 0.5um

Type of diameter Volume equivalent

Type of distribution | Number

1.5.5. Laser diffraction

The schematic illustration of laser light scattering device is shown in Fig. 21 and the main
features of the method are summarized in Table 17 .

Table 17: Features of laser light scattering method.

Principle Model-based distribution calculation
from angular pattern of scattered light intensity
Size range from 30004m to 0.1um
Type of diameter Equivalent light scatter diameter
Type of distribution | Volume
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Paricie Coliecting  Muti-element detector
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Figure 21: Illustration of laser light scattering measurement.

2. Particle shape

The shape of a particle can be characterized on various scales, such as macro, meso and mi-

croscales [7, 2}.

o Macroscale: the 3D form of particle, for example the ratio of main three dimensions

o Mesoscale: the roundness and angularity of particle outline

¢ Microscale: the smoothness of particle surface

The qualitative and quantitative descriptions of particle shape on macroscale level are fre-
quently based on the following definition of the thickness, breadth and length:

1. Thickness (T) is the minimum distance between two parallel planes which are tangential

to opposite surfaces of the particle with one plane being the plane of maximum stability

2. Breadth (B) is the maximum distance between two parallel planes which are perpendicu-

lar to the planes defining the thickness and are tangential to opposite sides of particle

3. Length (1) is the distance between two paraliel plane which are perpendicular to the

planes defining thickness and breadth and are tangential to opposite sides of the particle.

Figure 22 illustrates the definition of thickness, breadth and length.
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N

v
Thickness :
-

Figure 22: Nlustration of thickness, width and length of particle.

The qualitative description of particle shape is based on visual observation and classification
by comparison with standard samples. Frequently used definitions are summarized bellow and
are illustrated in Fig. 23.
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equant columnar  acicular fibrous
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angular irregular  rounded granular

Figure 23: Qualitative description of particle shapes.

Equant

Columnar
Acicular

Fibrous

Lath
Plate

Flake
Dendritic
Angular
Irregular
Rounded

Granular

particle with regular shape of similar length, breadth and thickness
(L:B:T=1:1:1), including cubes and spheres

long, thin particle (L.:B:T=(3-10): 1: 1)

slender, needle-shape particle of similar breadth and thickness, which are
much smaller than length (L:B:T=(10-100): 1: 1)

threadlike particle, which has a very large length/diameter ratio
(L:B:T=(>100). 1: 1)

Iong, thin and blade-like particle (1.:B:T=(10-50):(2-5): 1)

flat particle of similar length and breadth but with greater thickness than flake
(L:B:T=1: 1:(0.1-0.6))

thin, flat particle of similar length and breadth (L:B:T= 1: 1:(<0.1))

particle shape of pine tree structure

particle shape showing sharp edges or having approximately polyhedral shape
particle of about equal dimensions lacking any symmetry

particle of any shape, usually having similar length, breadth and thickness,
with rounded edges

particle shape is irregular but has about egqual dimensions
(L:B:T= ~1: ~1:(05-2))

Some quantitative descriptors are summarized below.

Boris Golman

Advanced Powder Technology



Properties of Particulate Solids 44

e Heywood ratios

— Elongation ration = L/B

~ Flakiness ratiom = B/T

e Hausner shape descriptors

— Elongation factor = a /b

— Bulkiness =
axb

Crz
12.64
where A is the projected area of a particle, C' is the actual perimeter of the particle, a and

— Surface factor =

b are the length of the sides of the minimum area embracing rectangle

Wadell shape factor
Surface area of a sphere having the same volume as the particle
Surface area of the particle

d\?
¢w s (d_s>

sphericity

— Sphericity Yw =

- Coefficient of angularity ==

Circularity

drx A d,

oy = T

where A is the projected area of particle outline, P is the perimeter of particle, d,, is the

Circularity =

diameter of circle having a same projected area as the particle in stable orientation, d, is
the diameter of circle having a same perimeter as the projected outline of the particle.

Circularity is equal to 1 for a circle and circularity decreases for non-spherical particles,

2.1. Particle shape characterization using Fourier analysis of

particle outline in radial coordinates

R(#) = ag + Z {a;cos (j8) + b;sin(j0}} = Ry o0 + ZAJ' cos {(70) — o}

a; = / R(0) cos (j6) d
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b; =/R(0) sin (70) d6/m
Aj =/ (a +b7)

O!j == t&l’lml (bj/ﬂ‘.j)

1 2n
Rgy = o R(8)d8 = C/2m = ay,

2m fo

where C' is the perimeter.

i 2n 1 o0 1 i
2
S:E/R(Q) d9=ﬁ{aog+—2'2(aj2+bj2)} =7 {Rw,avz‘Fa;Ajz]

0 j=1

2.2. Particle shape characterization using Fourier analysis of
particle outline in rectangular coordinates

A set of coordinate points is sampled along the particle outline (Pd.(n), Pd,(n),n=10,--- ,N—
1) of the perimeter corresponding to every incremental step angle 8;. Assuming that the particle
perimeter, L, corresponds to 27, the step angle become

2mg

Oui=~7 =01, N ~1,0< b4 < 2m (2.1)

Here Pd.(0), Pd,(0) are the coordinates of the starting point on particle outline.
Then, the Fourier transformations of functions z(,) and y(#;) can be independently written
as

M
z(04:) = g@ + Z {a.(7)cos(704:) + bs(7) sin{764:)} (2.2)
N — ay(0) < , o N e il
6a) = 2 1S (o, (1) cos(iBss) + by (3) sini00) 3
=1

The Fourier coefficients for the j-th harmonic of the z function are

N 2% 2]
a(j) = N Z Py (%) cos N
i=0
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2 pl 2mwig
by P —
0)= 5 2 Pt ()
and y function

N

a,(j) = Z Py, (i) cos (27”3 )
by(j) = zﬁmnm(”ﬂ

Using only the first harmonic, the ellipse approximated the particle outline is given with
coordinates

(0q:) = 02(1) cos(0y;) + by (1) sin{4;)

y(gd,i) = ay(l) COS(HG[,.,;) + by(].) sin(@d,i)

Xz

+ v
(BC — ADY*/(C? + D?)

(BC — AD)?/(A? + B?)

A =ag(1)cos B+ a,(1)sin 3
B =by(1}cosff+b,(1)sin
C = —a,(1)sinf +a,{1)cos 8
D = —by(1)sin 3 -+ by(1) cos 8

6=_§w4{ 2(ag(1)ay (1) + ba(1)8,(1)) }

(D7 +0,(1)° = a,(1)° = b,(1)*

o (BC ~ AD)?

=N T ey pE

(BC — AD)*
AQ -+ BQ

Tel,s =

The shape index is defined as

Vel,s
I{aei -

(2.4)
Telt
The coefficient of variation of distance from centroid of particle outline is

LS (R(Ba) —ra)’
Cors = \/NZ(T( )~ 7 (2.5)
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where R (8} is the radius of outline point, R (f,) = 1/ Pu.” + Pa,”, and r. is the radius of
equivalent ellipse.

S Teld el s
el — 2 3 2 9
Tel,l - (Tel,l - Tel,s) cos 9‘3-!

The radius of equivalent circle to ellipse perimeter is

9 vl r2
o = 2letd f 1— [ 1222 sin?g,d0, (2.6)
T Jo el

3. Particle and powder bulk densities

3.1. Particle density

Particle density, p, is defined as the total mass of the particle divided by its total volume. De-
pending on the definition of the particle total volume, the following densities are used [8]
¢ True particle density, p,;
The particle total volume excludes both open and closed pores as shown in Fig. 24.

This is the density of the solid material from which the particle is made,

/

=
Closed pore Open pore

Figure 24: Hlustration of density definitions.

* Apparent particle density, p,
The particle total volume excludes open pores but includes closed pores.
The apparent particle density is usually measured by the fluid displacement method.

~ Liquid pyknometry
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The calibrated 50 ml bottle shown in Fig. (25) is used for measurements. The mea-
surement procedure is as follows

(a) Weight empty bottle, my

(b) Weight bottle filled with liquid, m,

{c) Fill about 1/3 of empty bottle with particles and weight, m,
(d) Add liquid up to almost full

(e) Remove bubbles by evacuation, ultrasound or boiling

(fy Top up liquid and weight, my

The apparent density can be calculated as

Mass of particles ms — Mg
JOP»& = o r T,
Volume total of particles V;:mpty botile — Vgiquid added in a boitle with particles
My — Ty
Pra = mp — My _ Mg — Mg

P At

L (ms — mo)py
Ppa =
(my — mo) = (Mg — m;)
- (3as pyknometry

The schematics of the gas pyknometer is shown in Fig. 26.

At ambient pressure F, the state of the system is described as
»PaVC . nRTa: (3.1}

where 7 is the number of gas moles occupying volume Vi at P,.

When a sample of volume V/, is placed in the sample cell, Eq. (3.1) can be rewritten

as

Po(Vo — V,) = mRT,, 3.2)
where n, is the number of gas moles in the sample cell at F,.

When the system is pressurized to P, it is described by
Py(Ve — V,) = no RT,,, (3.3)

where n, is the number of gas moles in the sample cell at Ps.
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liquid, m,

(a) Weight empty bottle, m,
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R
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id up to
almost full

(d) Add liqu

with particles and weight, m_

(c) Fill about 1/3 of bottle

(f) Top up liquid and
weight, i,

{e) Remove bubbles by evacuation,
ultrasound and boiling

Advanced Powder Technology

Figure 25: Procedure of measurement of apparent particle density with liquid pyknometer.
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o

Gas Pycnometer Pressure
He gas input transducer

Vent hose
cennector

o 25 psig
relief valve
Sample cell
holder

Vent flow
control

Input flow Flow
control  on-off
toggle

Added
volunie

Figure 26: Schematics of gas pyknometer.

After switching the selector valve, the volume V4 is added to the system and the
pressure decreases to /. Then,

Pl(VC — 1/;, + V;l) = T?,QRTQ -+ ‘TEARTa, (34)

where n 4 is the number of gas moles in the added volume at /.

Substituting P,V for n4 RT, into Eq. (3.4) and combining with Eq. (3.3) results in
Pi(Ve =V, 4+ Vy) = PV — V) + PVy (3.5
Simplifying Eq. (3.5) yields
VolPL = Py} = Vo (Pr — Py) + Va(PL — Py

Solving the above equation for V,, results in

Pi_Pa

V., =
D VC+VAP1‘P2

(3.6)
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Assuming P, = 0, Eqg. (3.6) becomes

Voo 4 VDL v Va
= = 347

To measure V4 and V,, two experiments are carried out with empty sample cell

V.
V=0=Vot 5 (3.8)
11— =
P

and with calibrated spheres of known volume,V,,;, in the sample cell

1%
Vp = Vew = Vo + Api (3.9)
122
P,
From Eq. (3.8)
Vo = -4 (3.10)
d:
Py
Combining Eq. (3.10) with Eq. (3.9) results in
1 i
V::a = V 3 7
YT \diE
B P
and V4 can be evaluated as
Vy = Veal (3.11)
1 1
B_ B
b P
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Substitution of Eq. (3.11) into Eq. (3.10) gives

V’cal 1 Ifcm!
&_1 _}.32’_ Py 1_%—
BT 7ol
P — P
_ Ve _(32’_1) v P _ (P — P)PLPy
Py P\ P PP — BP,  ““PI(PP, — BP])
I B

Finally, Vi is
Py (P~ P))

Ve = F R ey ———
o=V "(PIP, — B,P])

(3.12)

¢ Effective particle density, g, .
The particle total volume includes both open and closed pores.
— Caking end point method
— Bed voidage method
— Bed pressure drop method

This method is based on measurement of bed pressure drop as a function of gas
velocity at two different voidages. The gas flow is assumed to be laminar,

The bed is first fluidized and then gently settled to get a maximum voidage. The

pressure drop is measured for at least four different velocities,

The bed is then tapped to reach voidage as low as possible and the measurements
repeated.

3.2. Powder bulk density
The powder bulk density, p, is defined as
Py = pp(l — €) + pue, (3.13)

where py, is the particle density, € is the bed voidage and p, is the air density. As the air density
is small comparative to the particle density, the second term on the right-hand side of Eq. (3.13)
can be neglected and the powder bulk density becomes

pv = pp(1 =€) (.14)
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There are various definitions of the powder bulk density depending on the state of compaction
of powder.

¢ Aerated powder bulk density, pp .

The aerated bulk density is defined as the bulk density after the powder has been aerated.
It corresponds to the most loosely packed bed. Figure 27 illustrates the equipment for
measurement of aerated powder density.

The powder is poured through the vibrating sieve and allowed to fall a fixed height ( 25
cm) through the stationary chute into the cylindrical cup to fill it in 20 to 30 seconds.

e Poured powder bulk density, g,

¢ Tapped powder bulk density, oy,

The tapped density is a powder bulk density attained after mechanically tapping a con-
tainer with the powder sample.

The volume of the powder sample of known weight is measured until further changes is
not observed.

The mechanical tapping is achieved by raising the cylinder and allowing it drop a specified

distance (3 mm) under its own mass using a cam at a rate of 250 taps per minute.

o Compacted powder bulk density, p;, .
3.3. Flow properties from powder bulk densities
The Hausner ratio is defined as the ratio of tap density to aerated powder bulk density [9].

HR= Pt (3.15)
Pb,o.

The powder flowability can be characterized by the Hausner ratio as summarized in Table 18 .

Table 18: Hausner flow ratio (HR) of free flowing and cohesive powder.

HR<1.28 free flowing
1.28<HR<1.57 | intermediate flowability
HR>1.57 cohesive

References
[1] Introduction to particle technology, Ed. Rhodes M., John Wiley & Sons, Second ed., 2008.
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Figure 27: Schematic illustration of equipment for measurement of aerated gas density.
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Figure 28: Schematic illustration of equipment for measurement of poured gas density.

Figure 29: Equipment for measurement of poured gas density using Scott volumetric method.
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Figure 30: Equipment for measurement of tapped gas density.
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Part Il.
Fluid-Solid Separation

4. Efficiency of Particle Separation

Feed QOverflow {fine)
e | e e
M ’f M]r:j:r.‘
Separator

Underflow {coarse)
Me. fe

Figure 31: Notation of efficiency of particle separation.

The total mass balance of separator, assuming no accumulation of material in the equipment,
is
M = Mg+ Mg, 4.1

where M is the mass flow rate of the feed [kg - s“‘], M 1s the mass flow rate of the coarse

material in the underflow [kg - s7!] and My is the mass flow rate of the fine material in the
overflow [kg - s7'].

The total separation efficiency, Er, is defined as

_ Mg _ M

- — 4.2
by == 7 (4.2)

The mass balance for any size fraction present in the feed, assuming no change in particle
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size of the solids inside the separator, i.e. no agglomeration or comminution, is
Moy nay = Mey, oy + Mpy, e,y 4.3)
The mass balance for each particle size z present in the feed is
M, = Mg, + Mp, (4.4)
or using the frequency distribution of particle sizes f{x)
M f(z)dx = Mg fe(z)dz + Mpfr(z)dz 4.5)
or using the cumulative distribution of particle sizes F'(x}
MdF(z) = McdFo(x) + MpdFe(z) (4.6)

The grade efficiency of separation of size x is defined as

Mg, Mg fo(z)

Glz) = M, M) 4.7
From Eq. (4.2) it follows that
Me = ErM and Mp = (1 — Epr)M (4.8)
Introduce Eq. (4.8) into Eq. (4.5)
M f(z) = ExM folz) + (1 — Ep)M fr(z) 4.9)

The relationships between particle size distributions of the feed, the coarse and fine products

are
(=} = BErfo(z) + (1 — Er)fr(z) (4.10)
F(xy) — F(21) = Er(Fe(z) ~ Fo{z1)) + (1 = Br)(Fr(zs) ~ Fr(z1)) (4.11)

Equation (4.12) can be rewritten as

5, = @) = Fr(a)

= Folz) = Frz) (4.13)
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Using Eq. (4.8), we can rewrite Eq. (4.7) as

o P _ o fel®)
G(w)—ETdF(x) o o (4.14)

The grade efficiency can be obtained from the size distribution of the feed F'(z) and the fine
product Fr(z) or from the fine and coarse products by using the following relationships

dFp(z)

Gle) =1~ (1= Br)my @.15)
and | 1 dFs(z)
. Loy ERt) :
Glz) L+ (ET 1) dFg(x) (*.16

Calculation of grade efficiency for the two processes in series
The flowchart of processes is illustrated in Fig. 32.

. b

Figure 32: Illustration of grade efficiency for two processes in series.

The amount of product in the feed stream for the second separator is
ﬂ/fm,m = Gl(fﬂ) - M,
'The amount of the course product of the size z in the second separator is
Mgz = Go(x) - Moy e = Go() - Gi(z) - M,

Mpz’m = (1 — Gz(m)) . Gl (CL') . A/fa

As G < 1, then Mga, < Mci,. Therefore, the more separation steps in the process, the
smaller the yield of desired product.

The typical grade efficiency curve is illustrated in Fig. 33. The grade efficiency curve is the
partition probability curve, i.e. the probability with which any particular size in the feed will
separate or leave with fluid.
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Figure 33: Typical grade efficiency curve,

Comparison of grade efficiency curves for two filters, A and B, is shown in Fig. 34. Filter A
is ~ 99% efficient at removing 1 pm particles. Filter B is only ~ 50% efficient at removing
1 pm particles, but it is ~ 99% efficient at removing 10 pem particles.

For an unsteady process such as filtration, the grade efficiency changes with time, as shown
in Fig. 35.

4.1. Cut size and sharpness of cut

Cut size (or the equiprobable size xs) is the size corresponding to 50% probability, i.e. the
particle size for which 50% of the particles exit the separation process in the coarse product
stream and 50% exit in the fines product stream, as shown in Fig. 36.

Limit of separation is the size %,,,, of the largest particles remaining in the overflow after the
separation (maximum particle size that would have a chance to escape). The grade efficiency is
100% for all z larger then 2,4,

Sharpness of cut can be defined as

e A ratio of particle sizes specified at two efficiencies, typically at 20% and 80%

Lgo

Igg/gg =—>1 4.17
T2
Toojso = ;—:‘; <1 (4.18)
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Figure 35: Grade efficiency curves for unsteady processes.
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o A slope of the grade efficiency curve

I, = %@ (4.19)
dr

Figure 36 illustrates various definitions of the sharpness of cut.
G(x) A

100 e

S]] EE A ——

X
xmax
cut size limit of separation

Y S
<

Figure 36: Illustration of sharpness of cut.

Determination of the total efficiency from the grade efficiency and the size distribution of the
feed
From Eq. (10)
Glz)dF = EpdFg

The size distribution of the feed material, dF(z)/dz must be known

Integration of above equation in the size range 0 Zq, gives

1 1
/ G(z)dF = By f dFg
[ 4]

since Ep is constant for a given application.

From the definition of the particles size distribution

1
/chzl
0
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Therefore, 1
Ep = f G(z)dF
0

5. Centrifuge Separators

Centrifuge separators, or cyclones, are widely used in industry to separate particles from gas. A
cyclone is a device that spins gas stream into a vortex to remove particles by centrifugal force.

Cyclones are simple and inexpensive to make, relatively economical to operate, and are adapt-
able to a wide range of operating conditions. Cyclones can be made to withstand extreme tem-
peratures and pressures, can accommodate high dust loadings, and can handle large gas flows.

Typical applications are found in mining and metallurgical operations, the cement and plastics
industries, pulp and paper mill operations, chemical and pharmaceutical processes, petroleum
production {cat-cracking cyclones), and combustion operations {(fly ash coilection). Typical
performance of conventional and high-efficiency cyclones is shown in Table 19.

Table 19: Cyclone Collection Efficiency.

Efficiency (% by wt.)
Particle | Conventional | High-efficiency

size (um) | cyclone (%) cyclone (%)

<5 - 50-80
5-20 50-80 80-90
15-20 80-95 90-99
>40) 95-99 95-99

In the conventional cyclone, as illustrated in Fig. 37, dirty gas tangentially enters the cyclone
and is forced into a constrained vortex in the cylindrical part of the cyclone. Particles tend to
move outward across the gas stream due to the centrifugal force. They may reach the outer
cyclone wall where it is carried by gravity and assisted by the downward movement of the outer
vortex and/or secondary eddies, toward the dust outlet at the bottom of the cyclone. The flow
vortex is reversed in the conical part and the cleaned gas then passes up through the center of
the cyclone (inner vortex) and out of the collector.

Consider a particle of diameter = and density p, rotating with tangential velocity v;,. Fig-
ure 38 shows the forces acting on a particle at radial position 7. The tangential velocities of
gas and small particle are assumed to be equal, v, = v, = v;. The particle moves radially
outward with velocity v .

Here we assume that

¢ particles are dispersed and there is no interaction effects
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Figure 37: Illustration of a conventional cyclone.
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Figure 38: Illustration of forces on a particle in a cyclone.
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particles are not influence on the gas velocity field

particles are spherical

separation is taking place when the particle reaches the outer wall of cyclone and particle
reentrainment is not considered

the influences of gas turbulence, Brownian forces and wall effects on the particle are
neglected

The centrifugal force, /7, acting on a particle is given as

az?\ vl
F.= | —= —E
( 6 )P;ﬂ -

The drag force, Iy, acting on a particle as it moves outward is described by Stokes law as

Fy = 3mpz(ve s — vep)

ard\ vl
n= ()
r

A force balance on the particle in the radial direction is

The buoyancy force, Fy, is

¢ in the radial direction

du,, itibe AN
My m( s )pp ) = =3 pz(vy — Vrp) (5.1)

¢ in the tangential direction

duy, T dvg,
My dtp = ( 5 )pp dtp = 3mpz(ve,; — Vop) (5.2)

¢ in the vertical direction

3

duv, vign
mpw’p =(p— pp) (? + 3npx (v, f — Uz,p)) (5.3)

Here, v, = dr/dt, v, = r-w = rdf /dt and v, = dz/dt, where w is the particle angular velocity.
References
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Part Ill.
Stresses in Bulk Solids

6. Introduction

The state of stress of a bulk solid under the load is described using the continuum or discrete
approaches. In the case of continuum approach, the forces are considered on the boundaries
of a bulk volume element which is much larger than a particle. In contrast, the forces on the
individual particles of the bulk solids are taking into account in the discrete analysis [1-4].

7. Analysis of stresses

In continuum mechanics, stress is a measure of average internal force per unit area of a surface
on which internal forces acts. The dimension of stress is that of pressure, i.e. Pa = N/m®
The concept of the stress is illustrated by considering an elementary cuboid with edges par-
allel to the co-ordinate directions, as shown in Fig. 39. The faces of such cuboid are named
according to the directions of their normals. The force acting on the z-face (dydz plane) is
denoted by F,.. This force can be resolved into components in the three co-ordinate directions,
such as F;, I, and F,,. Here, the force component F,, acts normal to the z-face, and force

components Fy, and F; act parallel to the z-face in directions of y and z axis, correspondingly.

y—lface z-face
oy 'y
F_
A 7 .
-dg.'.__l__’; Fly
Y x-face F“
ay 4—|—x-face
V o ¥ Y A 1
z-face y-face

Figure 39: Definition of forces acting on the face of elementary cuboid.

Then, the normal stress can be defined as
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and the shear stresses are
Tay = me/A:::a Tz == ETZ/A:IH (7.2)

where A, is the area of the z-face, A, = dy - d=.

The stress components in a rectangular co-ordinate system are as follows

Toe Tay Tez
Tyz Oyy Tyz

Tex  Tay Ozz

The diagenal elements of this matrix are the normal stresses o;;,¢ == j, and all other elements
are the shear stresses 7;;. In this formulation, the first subscript refers to the face on which the
stress acts and the second subscript to the direction in which the associated force acts. The
second subscript for normal stresses is often omitted, i.e. o, = Ty,

7.1. Two-dimensional analysis of stresses

Sign notation for granular materials:
e the compressive stress is taken as positive

o the shear stress is taken as positive when acting on the element in an anticlockwise direc-
tion

The directions of the positive stresses are shown in Fig. 40.

The stresses acting on a plane inclined at angle & anticlockwise from the z-face are illustrated
in Fig. 41.

This plane will form a wedge-shaped element having faces parallel to the 2 and y coordinates
and a face tilted to the = axis, as shown in Fig. 42(a). The stresses and forces acting on the
element are illustrated in Fig. 42(b).

Take the element depth normal to the paper and the area of the hypotenuse plane to be unity,
h =1and A = h-1l = 1. Therefore, the hypotenuse is of unit length, { = 1. The area of
the z-face will be k- (Icos(f)) = 1-1-cos(f) = cos(f) and the the area of the y-face will
be h - (Isin(f)) =1 1-sin(8) = sin(#). Thus the forces on the z-face are o, cos{f) and
Ty €08 () and those on the y-face are o, sind and 7, sin 8, as shown in Fig. 42(c}.

Assuming static equilibrium conditions, the force balance in the direction of ¢ is

T + Ty cos (0) sin (8) = o, sin (6) sin (8) + Ty sin (8) cos (0) + Gue cos (8) cos (8)  (7.3)

Boris Galman Advanced Powder Technology



Stresses in Bulk Solids 68
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Figure 40: Definition of two-dimensional stresses.
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Figure 41: Stresses acting on a plane inclined at angle ¢ from the z-face.
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g, o, sin(@)
T sin(@) -(-vm-
<, 7, c05(6)
4“&: Ty COS(8)
a
(b) o7 ©

Figure 42: Stresses and forces acting on a wedge-shaped element.

The force balance in the direction of 7 is
T + oy, 8in (8) cos (§) = 7, sin {#) sin (8) + 7y, c0s () cos () + 04y cos (8) sin{f)  (7.4)

Figure 43 illustrates the derivation of force balances in ¢ and 7 directions.

Taking moments about the axis normal to the paper we find that, for stability,
Toy = —Tya (7.5)
The following trigonometric relationships will be used in further derivation
cos (26) = 1 — 2sin® () = 2cos® () — 1 (7.6)

and
sin (26) = 2sin (8) cos (6) (1.7)

With minor rearrangement, Eq. (7.3) can be written as

o = 0y, 8in” (0) + 0y c0s? (8) + Ty 5in (6) cos () ~ Ty cos (6) sin (6) (7.8)
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Oyy sm (6) Oy €OS(0) sin(8)

Gy SIN(E) COS(0) | Gy Si(8) sin(8)
yy Y Oxx €0s(8) <

Oy €08 ( 6} cos(8)

g sin(®) sin(6)

Txy COS(G)
Tyx SII’E(Q)

Ty €08 (8) co5(6) rx; os(8) sin(0)

Tx sin EH) cos(@)

Figure 43: Derivation of force balances.

Substitation of Eq. (7.5) into Eq. (7.8) results in
0 = 0y 8in” (0) + 04y c0s® (8) — 7y 5in (0) cos (8) — 7, cos (8) sin () (7.9)
Using Eq. (7.7) yields
0 = gy, sin® (0) + 04, cos® (8) — 74y sin (26) (7.10)

Expansion of Eq. (7.10) gives

9 ] 1 1 1 1
o = gy, sin’ (8) + o,y cos® (f) — 74, 5in (260) + 3%~ 3% + 50ae ~ 50

1 i 1 1
= §ayy(2 sin® (6) — 1) + —Z—JM(Q cos® (8) ~ 1) — 7, sin (26) + 5% 50

1 . 1 , 1
= Wﬁgyy(l — 2sin® (8)) + 50:““(2 cos? () — 1) — 7, sin (26) -+ §(oyy + Opa)
Using Eq. (7.6) results in
i 1 ) 1
0 = =50y, COS (268) + 5 0w CO8 (20) — 7y sin (20) -+ §(aw + Oz

and finally

1 i
o= E(o’m — ayy) cos (20) + 5(01,1, A+ Opa) — Ty Sin (26) (7.1D)
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Equation (7.4) can be rearranged as
T = Typ 8i0° (A) + 7oy €0S” (0) + 0y cos (8) sin (0) — oy, sin (8) cos (6) (7.12)
Using Eq. (7.7), Eq. (7.12) is written as
T = Ty $In° () + 7oy cos? (6) + %(wa — a,,) sin (20) (7.13)

Expansion of Eq. (7.13) gives

T = %(Jm — Oyy) 8in (26) + 7y sin? (0) + Ty cos® (6) + %”"yw - %Tyw + %Tmy - %Tfﬂy
Using Eqs. (7.5} and (7.6) results in
1 ) 1 . 9 1 9 1 1
T = i(am ~ Tyy) 5in (28) + Enﬂ,(z sin® (@) ~ 1) + §T$y(2 cos® (0) — 1) + 37 + 5Te
e %(aw — 0y, sin (20) + %my(l — 2gin” (0)) + %’rﬂ,y(Z cos® (§) — 1) — % o %Tmy
= %(am — gy} sin(26) + %Tmy cos (26) + %—Try cos{20) — %sz -+ —12-'.71‘5,
and finally
r = 2 (0 — 0) 50 (26) + 7y c05 (26) (7.14)
Introducing the following notation:
1
p= —zz(cr.amc + Tyy) (7.15)
2
R’ = ("—;fiﬁ) i (7.16)
27,
tan (2)) = m (7.17)

Eq. (7.14) can be rearranged as
2

72— (%;M sin (26) 4 T,y cos (29))

2
- (%—é—@) sin® (26) + 2 (Jiz—gii> sin (20)7,, cos (26) + 72, cos” (26)

2
=72 [(M) sin® (26) + 2 (M) sin (26) cos (26) + cos? (26)

2Ty 2Tgy
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or

2
=12, <M> : [sin2 (20) + 2sin (28) cos (26) (ﬂm—)
vy

27—3:_7; Oy — O

W ?
+ cos? (26) (—A—w)
Tpg — Tyy

Using Eq. (7.17), the first term of the right hand side of Eq. (7.18) can be written as

2
72 Gee Ty} _ 2 1
B 2y " tan? (2)

2

(7.18)

(7.19)

=

1 2
S cos?(2)
WeinZ (20) (22)

Then, we can transform the trigonometric relation
1 = sin® (2A) + cos® (2))

as
1 cos? (2)) 1
e = o A
sin® (2)) y sin’ (2)) * tan? (2))

and using Eq. (7.17)

1 Tone — O, 2
— =1 A ke 7.2
sZ@y) T ( ) (7.20)

Substitution of Eq. (7.20) into Eq. (7.19) results in

2 2
72 Tox =~ Tyy 214 Oza — Oyy 1
xy 9 T oy 9

Tay Ty

2
. 2 [ Tza — Ty 2
= | Tay + Ty (—*———QTW ) } cos” (2A)

cos? (2))

2
= |72, + (wom Jyy) ]cos2 (2)2)

2Ty

Using the notation for B? by Eq. (7.16), Eq. (7.19) can be reformulated as

2
2 (M’lﬂ) = R?cos? (2)) (7.21)

27Tay
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Substitution of Eq. (7.21) into Eq. (7.18) yields

7° =R*cos? (2)) - [sin2 (26) + 2sin (26) cos (26} (—QT%-—> + cos? (20) (i”,iy.m) 2}

zz — Tyy

=R?.

cos? (2X) sin” (20) + 2sin (26) cos (26) (~—

Tax — Tyy

Tpg — T

cos? (26) (%) " cos? (2,\)}

Further simplification by introducing tan (2X) by Eq. (7.17) gives

sin (2A)

> _ o
T =R cos (2)

cos® (2A) sin® (20) + 2sin (26) cos (26) (

cos? (26) (%)2 cos® (2,\)]

) cos? (2X)+

=R® . | cos? (2)) sin® (20) + 2sin (26) cos (20) sin (2X) cos {2X)+

5 sin? (20)\?
cos” (26) (W) cos (2/\)}

=R? - [cos® (2)) sin® (26) + sin (2X) cos (26)]

Therefore,
T = It (cos® (2A) sin® (26) + sin (2)) cos (26))

and using the trigonometric relationship
sin (z + y) = sin{z) cos (y) + cos (z) sin (y)

we can finally write

7 = Rsin (20 +2))] (7.22)

Substitution of Eq. (7.15) into Eq. (7.11) gives

1
o=p+ §(am — Oyy) €08 (20) — 7, sin (29)] (7.23)
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The second term of the right hand side of Eq. (7.23) can be transformed as
Opz — O 2
[m—Qﬂ cos (20) — 7,y 8in (29)} =
2
= (g—%«#) cos? (26) — 2 (a‘ig—aﬁ’-) Tay €08 (20) sin (26) + 72, sin® (20)

2
=72, <M> cos® (26) — 272, (M> cos (20) sin (26) + 72, sin” (20)

27-:1:1} 27—-’»“!1
2 zx T Yy 2 : 2 )
=7z, (-J—J“’—li> [(:os2 (26) — 2sin (20) cos (26) (~»-—L) o+
27—:{:1} v T dyy

27, 2
sin® (26) (——m-i—)
Ozz — Oyy

Using Egs. (7.21) and (7.17) one can obtain

2
[%m—;%ﬁ cos (20) — Ty sin (29)] =

Tuz — Oyy gz — Tyy

=R* cos? (2)\) |:COSQ (26) — 2sin (26) cos (28) (_&I&y_ﬂ_) + sin® (26) <m27$y )T

= [0082 (2A) cos® (20) — 2sin (20) cos (20) cos® (21) (Sin (2/\)) +

cos (2X)
sin? (20) cos® (22) (:; EZ/;))) }

=R?| cos® (2)) cos® (20) — 2cos (2)) cos (26) sin (26) sin (2)) + sin® (26) sin® (2/\)}

2
=R cos (2)) cos (20) - sin (20) sin (2,\)]

Using the trigonometric relationship
cos (z + y) = cos (x) cos {y) — sin (z) sin (y)

we can write

2
= ; %Y o5 (26) — Tuy5in (26) | = R (cos (26 + 21))?
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Therefore, Eq. (7.23) becomes

o = p-+ R*(cos (26 + 2)\))° (7.24)

Equations (7.22) and (7.24) define a Mohr’s circle on (o, 7) axes with a center at the point
(p,0) and a radius R, as shown in Fig. 44. Every point on the circle represents the combination
of o and 7 on some plane, for example stresses (0., 7, ) on the z-plane and (oy,, 7,,) on the
y-plane are marked by the points X and Y, respectively. The stresses on a plane inclined at €
anticlockwise from the z-plane are given by the end of the radius inclined at 28 anticlockwise
from the radius to the point X. In particular, the stresses on the y-plane, for which 8 = 90°
are therefore given by the other end of the diameter from the point X . Therefore, the following
relationship should be kept, 7,,, = —7y,. The stresses on the u-plane (0 Tuy) &re given by the
point I/. The radius to the point U is inclined at angle 20 to the radius to point X. Thus, we
rotate Mohr’s circle in the same direction as we rotate our axes but through twice the angle.

TA U

S
i~
Q
Qy

Y(0,,, %)

Figure 44: Mohr’s circle for stresses.

The principal planes are the planes on which the shear stress is zero. The corresponding
stresses o and oy are called the major and minor principal stresses. From Fig. 44 it can be
seen that the major principal plane lies at an angle A clockwise from the @-plane and the minor
principal plane lies at an angle 90— A anticlockwise from the z-plane. Since the principal planes
les at opposite ends of a diameter, they are at right-angles to each other.
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Figure 45: Example of the use of Mohr’s circle.

An example of the use of Mohr’s circle is illustrated in Fig. 45. Let us consider a situation
in which g, = 12kNm™2, g,y = 4 kN m~* and Tay = 3 kN m~2.We can identify the points
X and Y since they have coordinates (12,3) and (4,-3) and plot them on a Mohr’s diagram.
Using Eqgs. (7.15) and (7.16), the center and the radius of the circle can be calculated as p(8, 0)
and R = 5kN m™. Thus the principal stresses are o; = 13kNm™2 and 65 = 3kNm™2
Also using Eq. (7.17), we found that tan (2) is 3/4 or an angle A is 18.43°. Thus the major
principal stress acts in a direction inclined at 18.43° clockwise from the z-axis. If we need to
find the stresses on a plane at 30° anticlockwise from the x-plane, we can construct the radius
at 2 x 30° = 60° anticlockwise from the radius to point X. The coordinates of the end of this

radius, (G, Ty ) are

Ouu = P + Rcos (20 +2)) = 8 + 5cos (60 + 36.86) = 7.40 kN m™>
Tww = Rsin (20 4+ 2A) = 4.96 kN m™?

and the stresses on the perpendicular plane are

Oy = 8 + 5 cos (60 + 36.86 + 180) = 8.60 kN m™
Tyw = Hsin (36.86 + 60 -+ 180) = —4.96 kN m™.
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8. Flow properties of bulk solids

The flow properties of bulk solids depend on particle size distribution, particle shape, chemical
composition of the particles, moisture, temperature, etc. {2].

"Flowing" means that a bulk solid is deformed plastically due to the loads acting on it, e.g.
failure of a previously consolidated bulk solid sample. The magnitude of the load necessary for
flow is a measure of flowability.

Consider a uniaxial compression test shown in Fig. 46. A hollow cylinder of cross-sectional
area A is filled with a fine-grained bulk solids. An internal wall of the cylinder is assumed to be
frictionless.

Figure 46: Uniaxial compression test.

The bulk solid is loaded by the stress ¢; in the vertical direction and compressed. This stress
is called consolidation or major principal stress. The more the volume of the bulk solid is
reduced, the more compressible the bulk solid. In addition to the increase in bulk density, the
strength of the bulk solid specimen will also increase. Hence, the bulk solid is both consolidated
and compressed through the effect of the consolidation stress.

After consolidation, the bulk solid specimen is relieved of the consolidation stress and the
hollow cylinder is removed. If subsequently the consolidated cylindrical bulk solid specimen
is loaded with an increasing vertical compressive stress, the specimen will break (fail) at a
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certain stress. The stress causing failure is called compressive strength, cohesive strength, or
unconfined yield strength, f, or o,.

In bulk solids technology one calls the failure "incipient flow", because at failure the consol-
idated bulk solid specimen starts to flow. Thereby the bulk solid dilates somewhat in the region
of the surface of the fracture, since the distances between individual particles increase. There-
fore, incipient flow is plastic deformation with decrease of bulk density. Since the bulk solid
fails only at a sufficiently large vertical stress, which is equal to its compressive strength, there
must exist a material specific yield limit for the bulk solid. Only when this yield limit is reached
does the bulk solid start to flow. The yield limits of many solid materials (e.g. metals) are listed
in tables. However, the yield limit of a bulk solid is dependent also on its stress history, i.e.,
previous consolidation: The greater the consolidation stress, oy, the greater are bulk density, ps,
and unconfined yield strength, f..

T /—"’T;
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Figure 47: Influence of consolidation stress, ¢y, on bulk density, p,, and unconfined yield
strength, f..

A plot of f. against o is the flow function (FF) for the powder, or instantaneous flow function
to emphasize that the strength is measured directly after consolidation.

Some bulk solids increase in strength if they are stored for a period of time at rest under a
compressive stress. This effect is called time consolidation or caking. Time consolidation is the
result of the increase of interparticle adhesive forces with time based on different mechanisms.
The instantaneous and time flow functions are shown in Fig. 48.

FF<1 not flowing
1<FF<2 | very cohesive
2<FF<4 cohesive
4<FF<10 | easy-flowing
10<FF | free-flowing
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time flow functions
Aq(timety) Ag(time tp>ty) .~
-~

A (time t=0)
instantaneous flow function

Gy

Figure 48: Instantaneous and time flow functions.

Flowability of a bulk solids can be characterized numerically by the ratio ff. = L The

larger ff., the better a bulk solid flows, as shown in Fig. 49. This figure illustrates that the
larger value of flowability of bulk solid A is obtained at a greater consolidation stress though an
unconfined yield also increases.

ﬁcz'l ﬁcmz
very cohesive

not flowing
cohesive
ff.=4

easy-flowing
ffs=10

free-flowing

Y G i

Figure 49: Instantaneous flow functions and lines of constant flowability.

The instantaneous flow function and time flow functions from Fig. 48 are shown in Fig.
50 along with the boundaries of the ranges, which follow from the classification of flowability
as outlined above. It can be seen that flowabilities measured at identical consolidation stress,
but after different consolidation periods, decrease with increasing consolidation time, ¢. The
decrease of flowability with consolidation period is shown in Fig. 50.b.

From the dependence of flowability, f f., on consolidation stress, oy, it follows that one can
compare the flow behavior of several bulk solids quantitatively using f f. only if all measure-
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o, Oy = % time t s——~
a. Example b.

Figure 30: Influence of storage period on flowability.

ments have been performed at identical consolidation stresses. In addition, the time consolida-
tion of different bulk solids can be compared only at identical consolidation stress and identical
consolidation time. Therefore, besides the f f. value, one must provide the consolidation stress
and the consolidation period values used. The consolidation stress and the consolidation period
selected for testing should reflect, as much as possible, the actual process conditions in which
the problem occurs (e.g. stress and storage period for storage in bags on pallets, stress near the
outlet opening of a silo, etc.).

With many applications the bulk solid flows by gravity, e.g. when flowing out from a bin or
silo. Two bulk solids with the same flowability value, f f., but a different bulk density, gy, will
flow differently because a larger gravitational force acts on the bulk solid with the larger bulk
density. This means, for all applications utilizing gravity flow of bulk solids (e.g. flow out of a
silo), that flow of a bulk solid with greater bulk density is supported by a greater force. Because
of the greater force of gravity at equal flowability the strength of the bulk solid with the greater
bulk density can be overcome more easily.

Sometimes one finds very strong differences between the bulk densities of samples to be
compared, particularly with very fine-grained products. Here bulk density must be considered
in order to reach conclusions about flowability under gravity flow. It might be useful then to
consider the dimensionless product of flowability, f f., and bulk density, p,, which is called the
density-weighed flowability:

Ffo=ff.- gﬂ .1

with p,, = 1000kg/m® (liquid water at 0 deg C, 1 bar).
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9. Design of storage vessel for bulk materials

9.1. Introduction

The design of storage vessel for reliable discharge of bulk materials is based largely on work of
Jenike [3, 4].

¢ Consideration in designing for mass-flow vessel
1. the hopper walls should be steep enough to ensure that particles slide along the walls

2. the discharge orifice should be large enough to prevent the formation of cohesive
arches

+ Consideration in designing for funnel-flow vessel

1. the discharge orifice should be large enough to prevent the formation of cohesive
arches and piping

The two basic causes for the formation of a stable arch at the outlet are by mechanical in-
terlocking of large (d, > 3000p) free-flowing particles or by the cohesive bulk strength of fine
grains (Figure 3.2). Mechanical arching may be avoided by having an outlet size that is several
times larger than the particle size. Cohesive arching is more common in industrial silos, and
its prevention in a given situation requires detailed information on material bulk and frictional
properties and the type of flow prevailing in the silo.

9.2. Flow patterns

Two primary flow patterns can develop when a bulk solid discharges from a bin: mass flow and
funnel flow. The mass flow is defined as a flow pattern in which all of the material is in motion
during withdrawal but not necessarily at the same velocity at a given height across the cross
section, as shown in Fig. 51.

Funnel flow, also called core flow, is defined as a flow pattern in which some material is
stationary while the rest is moving, as illustrated in Fig, 52.

Rotter (2005) further refined the definition of funnel flow into pipe flow and mixed flow. The
distinction between the two is whether or not the flow channel intersects any portion of the
walls of the bin (usually in the cylinder section). If there is no intersection (pipe flow), the flow
channel walls may be vertical (parallel pipe flow), converging from top to bottom (taper pipe
flow), vertical along the sidewall of the bin (eccentric parallel pipe flow) or converging along
the sidewalls of the bin (eccentric taper pipe flow) (see Fig. 53).

If the flow channel intersects the cylinder wall (mixed flow), the converging flow channel
may be symmetric about the centreline of the bin (concentric mixed flow), fully eccentric if
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Figure 51: Illustration of mass flow pattern.

Flowing mabeial s

Stagnant material ~

Figure 52: Illustration of funnel flow pattern.
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Figure 53: Forms of pipe flow.

the hopper opening is to one side of the vessel (fully eccentric mixed flow), or intersecting the
cylinder walls at varying elevations because of a partially eccentric outlet (partially eccentric
mixed flow) (see Fig. 54).

[ Ehactve targited, | ]

i |Flew channel
Brunidary
~ -

Y

{35 CONCRnINC mixas taw (D) Fily atoemrio miad flow {u) Pazishy sooannis mivad flow

Figure 54: Forms of mixed flow.

A third flow pattern, expanded flow, is a combination of funnel flow and mass flow (see Fig.
55). Usually this is achieved by placing a small mass flow hopper below a funnel flow hopper.
The mass flow hopper section expands the flow channel from the outlet up to the top cross
section of the mass flow hopper.

Problems with hoppers

¢ Ratholing
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F,unnel flow

Figure 55: Forms of mixed flow.

s Arching
o Insufficient flow

e Flushing

9.3. Mass-flow silos:flow/no flow criterion
o The pressure acting in the bulk solid and the cohesive strength of the powder
¢ Unconfined yield strength of cohesive materials

¢ Flow function (FF) for the powder

9.4. Stresses in a vertical bunker

The methed of differential slices developed by Janssen [3] is widely used for calculation of
stresses in a vertical bunker. Consider the stress distribution in the bunker containing cohesion-
less particles as shown in Fig. 56.

A cylindrical coordinate system with an origin at the center of the flat top surface is utilized
to formulate the force balance on a slice element of the thickness dz at depth z below the top
surface. Assuming an uniform vertical stress o across any horizontal plane, the force balance
on the slice can be written as
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Figure 56: Ilustration of 2 model of pressure distribution in a bunker.

{downward force on the top surface = A -a,} -+

{weight of particles within the slice = Adz - prg} —

{upward force on the base surface = A - (o, + do, )} —

{upward force on the slice side due to the wall shear stress = 7, - Cdz} = 0

Aoy +Adz-ppg— A-(oy +doy) ~ 1 - Cdz =0, (9.1)

where A is the cross-sectional area of the bunker, C is the bunker circumference, o + do is
the vertical solids pressure at the base suiface, p; is the bulk density, v is the shear (tangential)
stress at the wall due to the friction between particles and the vessel wall and g is the acceleration
due to gravity.

The Jateral stress ratio K, i.e. the ratio of the horizontal to the vertical solids stresses is
assumed to be constant everywhere in the slice and is independent of the stress value

k=2 (9.2)

Ty

where gy, is the normal (horizontal) stress at the wall.
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The wall friction is
"
Hw = tan(ﬁow) = —W; (9.3)
Th
where fu, is the particle-wall friction coefficient and ¢y, is the particle-wall friction angle.

Using Egs. (9.2) and (9.3) and expanding Eq. (9.1) results in

doy  puwKC _
e + a TV = Peg (9.4)

Equation (9.4) is a linear first-order differential equation in a standard form provided that the
bulk density is constant. To solve this equation, it should be multiplied by an integrating factor
exp ( f %chz) = exp (‘%«jz). The general solution is

Ty - exp (Hﬁfiﬁz} - f exp (“""jf%) psgdz + Cy, (9.5)

where C is the integration constant,

Integration of the right-hand side of Eq. (9.5) results in

pw KC B tw KC A
Ty - Xp ( ) z) = ppg exXp ( T ¢ KO + C1. (9.6)

The integration constant C is determined from the boundary conditions. Assuming that the
top surface of material is open to the atmosphere, the normal stress on it may be taken to be

Zero:
oy, =0atz=0 9.7)
Therefore, the integration constant is
pogA
= - ) 9.8
' KC ©8)

Substituting Eq.(9.8) into Eq. (9.6) and using Egs. (9.2) and (9.3), the variations of stresses
with bed depth are described as

_ _mgA e _JU’WI{C
oy = i EC {1 exp ( —a z {0.9)
K
o = Koy = Z"gé {1 — exp (W“WA Czﬂ (9.10)
W
T = Uy Op = pbgA {1 — exp (_#chz>] 9.11)
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For large values of 2z, z — oo, all three stresses tend exponentially to asymptotic values

oo = PogA - _mgA pgA
Vo0 )LLWI(O, h,o0 #WC” W00 I

9.12)

For cylindrical bunker, A = 7D?/4,C = 7D and A/C = D/4. Thus, at great depth the
stress normal to the wall, o, depends only on the bunker diameter, coefficient of wall friction,
bulk density and does not depend on the depth. The maximum possible stress is proportional
to the bunker diameter. The pressure on the smooth wall of large diameter bunker will be high.
All stresses vary linearly with the solid bulk density. The load on the bottom of the bunker is
only a small fraction of the total weight of the particles, as the most weight is supported by the
side walls.

The rate of approach to the asymptotic value is governed by the term exp (—z/z.), where z,

is the characteristic depth or the Janssen reference depth, z. =

. Therefore, z. is the
CuwkK
depth over which the departure from the asymptote decreases by a factor of e. The stresses will
reach 90% of their final values at a depth of about 2.5z

The asymptotic value of the stress normal to the wall, o}, ., does not depend on I, conform-
ing that Jansenn’s theory is correct for sufficiently deep beds even if the initial assumption of
constant K is not true. At great depth, conditions are stable and the stresses are constant. There-

fore, the weight of particles within the slice is equilibrated by the force due to the wall shear

stress.
At shallow depth as z — 0, the exponential term in Eqs. (9.9),(9.10) and (9.11) may be
related to e KC
exp (—-“WA z) L1l ﬂla—z (9.13)
Substitution of Eq. (9.13) in Eq. (9.9) results in
Tvo = Ppg2 (9.14)

which is the hydrostatic pressure. Egs. (9.10) and (9.11) become

oho = Kppgz; Twe = pw K ppgz. 9.15)

Using the definitions of asymptotic stresses and characteristic depth, Eqs. (9.9) - (9.11) can

Ty = Ty {1 — exp (—-ﬁ)} (9.16)
Ze
z

Th == Ohoo {1 - BX] (wz—>] (9.1

be rewritten as
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Tw = Tie [1 — exp <m§>} (9.18)

The typical pattern of the stress normal to the wall calculated by Eq. (9.17) is illustrated in Fig.
57.

Normalized normal stress, olo, [-]

0.0 0.2 0.4 0.6 0.8 10
0 1 L}n 2 1 r L i 1 i =
ea{- Slreg '
S dt gy
...... a]]Ow |
0.630 N\ oy, . |
1 h,w ------ '.(‘:’ |
Asympfiatic stress :“"
o at great degth o, ~..
W | 0860 =
N2 =
o
—
jo R
S
—8 0.95 G}l,m
3
3>
E
Q
Z 4 0'98 O‘:‘I =]
0.99¢
5 l‘l,w

Figure 57: Illustration of stress pattern in a bunker.

9.5. Stress distribution in a hopper

Consider the pressure distribution in a conical hopper of half-angle « containing a cohesionless
particles as shown in Fig. 58. The cylindrical coordinates {r, h) are used in this case with
distance h measured vertically upward from the apex of the hopper.

Assuming an uniform vertical stress o, across any horizontal plane, the force balance in a

vertical direction on a cylindrical slice of thickness dh at distance h from the apex can be written
as

{upward force on the base surface = o, - 772} +

upward force on the slice side due to the normal force at the wall =
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lcrmrrRZ
TN\ (o, +doymrrdr? [
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dh §
3 OEE-W
h, i
h
. z

Figure 58: Illustration of a model of stress distribution in a conical hopper.

ow sin (a) - i2m~ (coj?a)) } +

{upward force on the slice side due to the wall shear stress =

mmwwéw(dh)}_

i cos {a)
{downward force on the top surface = (o + doy ) - #(r + dr)?} —

{weight of particles within the slice = 7r2dh - pyg} =0
Here the weight of particles in the wedge ABC is neglected as its contribution to the powder

weight in the slice becomes small when dh — 0.

sy foe () I
oy - T 4 oy sin (o) {27?7‘ (COS @ + 7w cos (o) - 1277 o3 () (9.19)
(ov +doy) - 7(r +dr)? — aridh - pyg =0

Expanding the forth term in Eq.(9.19) and ignoring higher-order terms such as dr?, dodr
and do dr® results in

(o +doy) - w(r +dr)* = (o, + doy) - w(r® + 2rdr + dr?) =

oy r? + oy T2rdr + gerdie + doyrr? —%—W—FW = {9.20)

g mr® + oy 2rdr + doywr?
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Substitution of Eq. (9.20) into Eq. (9.19) yields

W+gwsin(a).[zﬂr( dh )]-i—rwcos(a)-[%r( dh )}

cos (a) cos {«)
— (o + oy w2rdr + doyrr?) — wridh - pyg = 0

Dividing by mr?, substituting r = htan (@) and rearranging results in

sin (o)  2dh 2 dh — 20, dh tan-{oe)

. —— e doy, — =
T oo (@) htan (@) " htan (a) nipatay ~ 40v g =0
Using 7y = oy - tan (¢4 ) yields
dh 2dh tan (o ) dh
A Gy L 95, oy, — -
20 h + O h  tan(a) Y h dov — dhprg
dh dh
Qmﬂ'w (tﬂﬂ (GL’) + tan ({PW)) i 20"/? — dU'V - dhpbg =0
Dividing by dh and multiplying by A results in
20'1.1/ dJV _
tan (0] (tan (@) -+ tan {py)) — 20y — h i ppgh =0
Using the hopper stress ratio [ defined as F' = o, /o, yields
2Fo doy
o (c:) (tan (o) -+ tan (py)) — 20y — h—;ﬁ;— — ppgh =0
Rearranging result in
R DS P N LG8
a —2F - 2F w2 =
dh v tan (o) ped
Finally, the ordinary differential equations is obtained as follows
do n
- = 30v = —hpyg, (9.21)
where n = |2 J.‘f"-‘r—l?’t—ELIM — 1)]
tan (o)
The initial condition is
oy =0y, ath = hg (9.22)

where oy, is the mean vertical stress in the solid at the transition of bunker to hopper parts.
Equation Eq. (9.21) is a linear first-order differential equation in a standard form. To solve
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this equation, it should be multiplied by an integrating factor exp ( f m—*—iﬁdh) =exp(-nln(h)) =
1
hm
The general solution is

g = / B (—pyg)dh + Cs, (9.23)

where C; is the integration constant, Integration of Eq. (9.23) yields

. hwn-}-l o6
ovh —_pbg—n+1+02_n~—1h h+ Cy
Rearranging result in
oy =9 p o onn (9.24)
n—1

Integration constant Cy is found by substitution the initial condition by Eq. (9.22) into Eq.

(9.24)
_ P9

Vi
n—1

hg

ho
s =

Substitution of (5 into Eq.(9.24) results in

Pug Pvg h\"
= h = A i
) * (Uv’ n—1 EO) (ho)

Therefore, the variation of the vertical stress with particle height in the conical hopper is

described by the following equation

_ AN\" owgho b B\"

The distribution of the normal stress at the wall is

_ _f_b_ " mgho _fj“__ fm "
o=l () +222 (-(8) )

The hopper stress ratio I is obtained from the Mohr circle representing the stress conditions

at the wall as shown in Fig. 59. The major principal stress is in the direction shown by ¢y and
the major principal plane is at right angles to it. 3 is the angle between the wall and the major
principal plane,

Assuming the switch from static to dynamic stress field occurs as soon as discharge is initi-
ated, and that the material yields within itself as it passes through the converging channel, the
stresses in the powder close to the wall are represented by a Mohr circle which just touches the
powder yield locus OM. Further, as mass flow prevails, the material must be slipping at the wall
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Figure 59: Stress conditions at hopper wall,

and therefore the wall stress are represented by a point on the wall yield locus ON. In the present
case of a converging channel, this is given by point e. Thus, OE represents the magnitude of the
normal wall stress oy,.

On the Mobhr circle, points H and V represent the horizontal and vertical directions, respec-
tively. The magnitude of the vertical stress, o, is represented by OD.

From the geometry of the Mohr circle of radius R:

R R
OD=0CH+CD = ———+ Rcos(£) = ———~ — Rcos (28 + 2u
sin (d)l) (6) sin (Qﬁz) ( ,8 )
while R
OE=0C+CE= Yo + Rcos (28)
therefore
aw OE  1+sin{¢;)cos(203)

oy OD 1—sin () cos (2 + 28) ©27)

An angle 5 can be expressed in terms of ¢y, and ¢; by referring to the geometry of the Mohr
circle and noting that

ow+ /24 Q2+ A=mand 28+ X+ 7/2 =,
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ie.
28 = ow + L
T
c
F
9, R
o o, C

Figure 60: llustration of derivation of hopper stress ratio.

Consider triangles OCT and OCe as shown in Fig. 60. From triangles OCF and CFC one can

write

. CF - CF
sin (@y ) = oF and sin (1) = T
Therefore, @
sin OC
sin (‘Pw) TR ©.25)
From triangle OCT
. R
sin (¢;) = it (9.29)
Combination of Eqs. (9.28) and (9.29) results in
sin (Q) = sin () and Q = sin™" sin (puw) (9.30)
sin (¢;) sin (¢;)
Thus,
_ .1 { sin (@w) .
28 = pw +sin (m——sin %) ) (9.31)

Finally, one can use Eq. (9.27) together with Eq. (9.31) for calculation of F.
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9.6. Discharge rate through a flat-bottomed hopper
9.6.1. Mono-sized particles

An empirical equation was proposed by Beverloo et al. (1961) for the prediction of the discharge
rate of mono-sized particles through a circular orifice in a flat-bottomed cylindrical hopper.

W = Cpy/G(Do — kd,)*"?, 9.32)

where W is the average solid discharge rate, C is the empirical discharge coefficient, k is the
empirical shape coefficient, g, is the powder bulk density, g is the gravitational acceleration, Dy
is the orifice diameter and d,, is the mean particle diameter. This equation is valid for particles
larger 0.500 mm.

A modified form of the Beverloo equation was developed for particles less than 0.500 mm
taking into account the pressure gradient generated by the self-entrained gas

dP }. 5
A = o A 2
W Cpb\/g -+ ( 3 )D b(D{) A.dp) z, (933)

where the pressure gradient (dP/dz}, is evaluated by Ergun’s equation as

-———dp 150 pHU'r?qf 1—¢y
- 7 34
<dz >0 (ngmfdp/(l KM/ 1 75) Lo el (9.34)

P

The coefficient & is found to be independent of particle size and equal to 1.5 4- 0.1 for mono-
sized spherical particles and in the range of 1 < & < 2 for different particle shapes.

The value of discharge coefficient C' was found to be dependent on the bulk powder density
and is in the range of 0.55 < ' < 0.65 [Beverloo et al, (1961)]. Later, Huntington and Rooney
(1971) argued that p;, depends also on the consolidation time requited to compact powder in a
bed and proposed to use the ratio of mass flow rate to volumetric flow rate instead of py,. They
found a range of modified discharge coefficient as 0.575 < C” < 0.590.

9.6.2. Binary mixtures

Tuzun et al. (1990) proposed a modified form of the Beverloo equation to predict the discharge
rate of fine binary mixture

, dP 1 g
W= Cpy(1 - ed)\/g N (d—) e (o = 2l ©35)
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where C" = 0.58, p, is the solid mass density of the mixture, ¢, is the flowing void fraction and

7' is the empty annulus width,
Z'(deff) = 2.1939dvy — 0.0009,

where the volume-moment mean diameter, dyy;, is calculated as

VM — Xm'd?

9.7. Discharge rate through a conical hopper
9.7.1. Polydisperse mixtures

e Fine particles

rajon

dPy 1
W = 0.58,05\/9 + (—) —(Dg — 1.5ds50)
dz /o oo

or Eq (9.35) and
Z'(degr) = 2.1939dyy — 0.00053,

e Coarse particles Eq. (9.38) or Eq (9.35) and Eq (9.36)
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