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The objective of this study is to assess the performance of sludge mixed with the
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Bang Khen water treatment sludge is used. The physical and chemical properties of the
sludge are examined. This research emphasizes on determining the minimum slurry
viscosity and appropriate strength of the grouting materials. The results indicate that the
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CHAPTER I

INTRODUCTION

1.1 Background of problems and significance of the study

The increasing amount of the water treatment sludge from the Metropolitan
Waterworks Authority (MWA) has called for a permanent solution to dispose of the
sludge from four water treatment plants, including Bang Khen, Samsen, Thonburi,
and Mahasawat. The water production report of the MWA (2007-2009) indicates that
the Bang Khen Water Treatment Plant produces the largest capacity of 3,200,000
m*/day. The sludge has been collected from the water treatment process (clarifying
water system and filtering water system). The increasing sludge is about 162 tons/day.
The sludge volume depends on the amount of sediment transported by rain water in
the Choa Phraya River basin (Raw water source). The MWA has high expenditure for
sludge disposal, especially during heavy rain years at which time there is more sludge
deposited and slowly dried. The increase of potable water utilization results in the
increase in size and duration of precipitation in sludge lagoon. The sludge in the
lagoon has been treated by turning over and drying by sunlight, then becoming sludge
cake. The sludge cake is usually taken to fill in abandoned land. After several years, it
results in an excessively high deposition. Utilization of the sludge for other purposes is
being considered in order to reduce the volumes of the sludge and the cost of disposal

One of the solutions is to mix the sludge with cement slurry for minimizing

the groundwater circulation in rock mass. Groundwater in rock mass is one of the key



factors governing the mechanical stability of slope embankments, underground mines,
tunnels, and dam foundation. A common solution practiced internationally in the
construction industry is to use bentonite-mixed with cement as a grouting material to
reduce permeability in fractured rock mass. (Castelbaum and Shackelford 2009; Joshi
et al. 2010; Malusis et al. 2009). The lack of a true understanding of the permeability
characteristics of the sludge-mixed cement in fractured rock makes it difficult to
predict the water flow in geological structures under the complex hydro-geological
environments. Knowledge and experimental evidences about the permeability of the

sludge-mixed cement in fractured rock under varied stress conditions have been rare.

1.2 Research objectives

The objectives of this study are to assess the performance of the Bang Khen
water treatment sludge mixed with the commercial grade Portland cement for
reducing permeability in saturated fractured rock in the laboratory and to compare the
results with the bentonite-mixed cement in terms of the mechanical and hydraulic

properties.

1.3 Research methodology

1.3.1 Literature review
Literature review is carried out to study the experimental researches on
the water treatment sludge, grouting materials, and permeability of single fracture.
The sources of information are from text books, journals, technical reports and

conference papers. A summary of the literature review will be given in the thesis.
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1.3.2 Sample collection and preparation

The grouting materials used in this research are 1) the water treatment
sludge with particle sizes less than 75 pm, 2) commercial grade bentonite for
comparing with the sludge test results, 3) commercial grade Portland cement type |
for mixing with the sludge and bentonite, and 4) sandstone samples from Phu
Kradung formation. Sample preparation is carried out in the Geomechanics Research
(GMR) Laboratory at Suranaree University of Technology. The fractures are
artificially made by applying a line load at the center to induce a splitting tensile crack
in 152.4x152.4x152.4 mm® blocks of sandstones. The fracture area is 152.4x152.4
mm?. A minimum of eighteen sandstone specimens is tested for the three portions of
sludge-mixed cement and bentonite-mixed cement under normal stresses ranging
from 0.25 to 1.25 MPa. The sludge is collected from the Bang Khen Water Treatment
Plant, the Metropolitan Waterworks Authority.

1.3.3 Permeability testing of fractures

Before grouting with sludge-mixed cement or bentonite-mixed cement
into the artificial fracture of the sandstone specimens, the fracture permeability
needed to be measured. The fracture permeability is used to compare with the
permeability of grouting materials for both sludge and bentonte. Constant head flow
tests are performed to determine the fracture permeability of sandstone specimens
under normal stresses. The normal stresses are ranging from 0.25 to 1.25 MPa.
Results simulate stress under various depths which can affect the permeability of

grouting materials in fractured sandstone.



1.3.4 Basic properties testing of grouting materials
The objective of basic property test is to determine the density,
viscosity, and permeability of sludge-mixed cement and bentonite-mixed cement.
Sludge and bentonite-mixed cement ratios vary from 1:10, 2:10, 3:10, 4:10, to 5:10
for selecting the optimum mixing content. Similarities and differences of the results
will be compared.
1.3.5 Uniaxial compressive strength testing of grouting materials
The objective of the uniaxial compressive strength tests is to determine
the uniaxial compressive strength and elastic modulus of grouting material specimens.
Grouting materials are sludge-mixed cement and bentonite-mixed cement. The test
procedure is similar to the ASTM standards (ASTM C938, D4832 and C39). Sludge
and bentonite-mixed cement ratios vary from 1:10, 2:10, 3:10, 4:10, to 5:10 for
determining the strength and the elastic modulus.
1.3.6 Sheared fracture testing of grouting materials
The objective of the sheared fracture tests is to determine the shear
strength of grouting material in sandstone fracture. Grouting materials are sludge and
bentonite-mixed cement. The experimental procedure is similar to the ASTM standard
(D5607). The constant normal stresses are 0.25, 0.5, 1.0 and 1.25 MPa. The shear
stress is applied while the shear displacement and head drop is monitored for every
0.2 mm of shear displacement. Similarities and differences of the results are compared
with other researches.
1.3.7 Permeability testing of grouting materials in rock fractures
The objective of permeability test of grouting materials in rock

fractures is to determine the permeability of sludge-mixed cement and bentonite-



mixed cement in artificial fractures. The grouting materials are used to fill the
fractures. The constant normal stresses are 0.25, 0.5, 1.0 and 1.25 MPa.
1.3.8 Data analysis and comparisons
The research results are analyzed to optimize the grout mix ratios in
terms of the mechanical and hydraulic properties. The results from the analysis are
used in the comparison with other researches.
1.3.9 Discussions and conclusions
Discussions of the results are described to determine the reliability and
accuracy of the measurements. Performance of the new grouting material is discussed
based on the test results. Similarities and discrepancies of the grouting material in
terms of the mechanical and hydraulic properties are discussed to apply the sludge-
mixed cement in the fields.
1.3.10 Conclusions and thesis writing
All research activities, methods, and results are documented and
complied in the thesis. The research or findings will be published in the conference

proceedings or journals.

1.4 Scope and limitations of the study

The scope and limitation of the research include as follows.

a. This research emphasizes on studying the mechanical and hydraulic
properties of water treatment sludge-mixed cement as a grouting material to reduce
permeability in fractured rock mass.

b. Laboratory tests of water treatment sludge-mixed cement include

constant head flow tests and uniaxial compression test.



c. Portland cement type I is used. (ASTM C150)

d. The particle sizes of the sludge are less than 0.075 mm (sieve no. 200).

e. The sludge-to-cement (by dry weight) ratios of 1:10, 2:10, 3:10,
4:10, and 5:10 are primarily selected.

f. Laboratory testing will be conducted on specimens from Phu
Kradung sandstone. The fracture area of the specimens is 152.4x152.4 mm

g. All tested fractures are artificially made in the laboratory.

h. The constant normal stresses on the fracture range from 0.25 to 1.25
MPa.

I. Mixing, curing and testing of the cement and mixtures follows, as

much as practical, the ASTM and the API standards.

1.5 Thesis contents

Chapter 1 introduces the thesis by briefly describing the background of
problems and significance of the study. The research objectives, methodology, scope
and limitations are identified. Chapter Il summarizes the results of the literature
review. Chapter 111 describes the sample and mixture preparations. Chapter 1V to VI
describes the results from the laboratory experiments. The experiments are divided
into 4 tests, including 1) Viscosity and density of mixtures tests 2) Uniaxial
compressive testing 3) Shearing resistance between grout and fracture 4) Permeability
of grouting materials and 5) Permeability of grouting materials in rock fractures.
Chapter VII and VIII discusses and concludes the research results, and provides

recommendations for future research studies.



CHAPTER II

LITERATURE REVIEW

2.1 Introduction

This chapter summarizes the results of literature review carried out to improve
an understanding of the permeability in fractured rock mass, which include recent

research results and utilization of the water treatment sludge.

2.2 Experimental researches on the water treatment sludge

Laothong (2003) studies the sludge cake from the water treatment process at
Wang Noi Power Plant. The results indicate that the sludge is a nonhazardous waste.
These are 300 tons of the sludge per month, costing 2.48 baht/kg or 460,000 baht per
month for disposal. The utilization of the sludge cake can reduce operation cost of the
power plant. The sludge is found to be loamy sand. Four sludge cake utilization
alternatives have been explored, including cement replacement in mortar, laterite
replacement in interlocking block, clay replacement in baked clay brick and ceramic
wares. The results indicate that the best alternative is laterite replacement in
interlocking block with the proportion of 2:2:5 by weight (cement:sludge:laterite).
The laterite at the optimum gives the 28 days compressive strength of 82.14 kg/m?,
which is greater than 70 kg/m? required by the Thai Industrial Standard (TIS). With
the interlocking block alternative, although the production cost of 3.83 baht/kg was

higher than disposal cost of 1.35 baht/kg, the product could be sold at the price of



about 6 to 8 baht. Utilization of sludge cake in making interlocking block is being
considered to be a feasible alternative.

Suriyachat et al. (2004) study the basic properties of the water treatment
sludge. The results indicate that the liquid limit is 77.96%, plastic limit is 50.76%,
shrinkage limit is 11.15%, the plasticity index is 27.20%, and the maximum density is
1.33 glcm®. The correlation between permeability coefficient and the moisture content
is found when the moisture content is low with high permeability coefficient. This is
probably a result of a rearrangement of molecules at the particle surfaces by the action
of adsorbing water leading to a formation of gain-soil bridges. The optimum moisture
content of 29% is suitable for the minimum coefficient of permeability. The
coefficient of permeability is similarly to the clay used in the ceramic industry.

The chemical compositions of the sludge and clay from the pottery in central
and northern parts of Thailand suggest that the sludge properties are similar to the
clay properties of these manufacturers. The analysis of chemical compositions shows
that the amount of Fe,Og3 is between 4 and 5%, including the optimal values of SiO,
and Al,Og3 as it is similar to red clay. This is an important raw material used in the
ceramic industry.

Laboratory experiments in ceramic product made of the sludge are in the areas
of pottery and jewelry. Those must be mixed with sand. To obtain a beautiful shape it
must have the sand portion of 30%, but it takes several times for fermentation of the
clay. The initially result showed that the water treatment sludge could be used as a
raw material in the ceramic industry. It makes to achieve a renewable and reused in

the manufacturing of integrated and sustainable natural materials.
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Bunjongsiri and Bunjongsiri (2005) studyd the content of clay mix with sludge
from community wastewater treatment to make brick. There are six ratios of clay and
sludge from community wastewater treatment: 3:1, 7:3, 6.5:3.5, 3:2, 5.5:4.5 and 3:7.
The experiment indicated the quantity of the heavy metal in the brick (mg/kg) and two
ratios of 1:3 and 3:7 by leachate extraction procedure. The quantities in mg/kg of the
heavy metal were 240.84 and 490.07 for copper, 17.66 and 59.16 for lead, 0.636 and
0.96 for cadmium, 667.87 and 973.28 for manganese, 167.44 and 157.45 for
chromium and 136.82 and 337.75 for zinc. The bricks could not reach the industrial
standard of TIS 77-2531. The ratio of 3:1 represents the best value close to the
industrial standard as the value of compressive strength was 15.05 kg/cm?® The
density was 1.10 g/cm®. Tolerance of length, wide, and thickness was 5.24, 6.16, and
9.35% respectively. The weight was 388.60 g and the absorber was 36.23%.

Poonsawat and Lertpocasombut (2006) study the properties of tile bodies to
produce clay plan roofing tile by using sludge from Bang Khen and Mahasawat water
treatment plants as a raw material. The tile bodies are consisted of 70 to 100% of the
sludge and 0 to 30% of quartz and feldspar. They are fired at 1,000, 1,050 and
1,100°C. The results indicate that the plasticity index of the sludge from Bang Khen
water treatment plant is higher than those from Mahasawat water treatment plant.
Temperature increases the strength, shrinkage and bulk density and decreases water
absorption and porosity. At 1,100°C, the ratios of 90:5:5 (Bang Khen
sludge:quartz:feldspar) and 85:5:10 (Mahasawat sludge:quartz:feldspar) are suitable
for making clay plan roofing tile.

Kongthong and Lertpocasombut (2006) study adsorption by using sludge from

Bang Khen water treatment plant. Research objective was aimed to reduce color
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remaining of effluent wastewater from dye industries. Fifty mg/l of three solutions
(basic, reactive, and disperse dyes) is used as initial concentration. Sludge ash which
is obtained after burning at 500°C and dried sludge is used as an adsorbent. The pH
results showed no effect on the adsorption of the basic and re-active dyes while
disperse to dye is effectively adsorbed at pH 4. Equilibrium time and isotherm of the
adsorption are determined and found that the dried sludge gave good results compared
to the sludge ash in basic dye adsorption. It is in contrast to the disperse dye
adsorption. The results are not found in re-active dye adsorption either using dried
sludge or sludge ash.

Adamant et al. (2006) determine the mechanical and durability of mortar to
replace cement with dry sludge ash from Bang Khen water treatment plant. This
research studies the chemical compositions and physical properties of the dry sludge
ash, including the flow value, and compressive strength. Durability against the
sulfuric attack which is tested by using a sulfuric solution with pH of 1.0, and sodium
sulfate (NapSO,). Binder materials containing various proportions between the sludge
ash and Portland cement, 0, 10, 20, and 30% by weight are prepared with the water to
the binder material ratios of 0.50, 0.55, and 0.60. The results indicate that the dry
sludge ash increased with decreasing flow value, compressive strength, and weight
loss due to sulfuric acid attack.

Sa-ngiumsak and Cheerarot (2008) determine the properties of artificial
aggregates made from the water treatment sludge. The aggregates containing various
proportions between the sludge and clay, 100:0, 80:20, 60:40, 40:60, 20:80 and 0:100
by weight were prepared by molding and firing at 800, 1,000, and 1,200°C for 24-

hour firing time. Then compressive strength of an artificial aggregate is tested. Some
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mixtures are chosen to test abrasion, stability in sodium sulfate, and absorption.
Finally, the compressive strength of concrete containing the artificial aggregates is
tested. The results showed that the compressive strength of the artificial aggregates
increased with increasing firing temperature and amount of sludge. The aggregates
with the ratio of sludge to clay of 60:40 fired at 1,200°C had the highest compressive
strength of 490 ksc. The aggregate fired at 1,200°C had the highest compressive
strength while the aggregate fired at 800 and 1,000°C gave similar compressive
strengths. When the amount of the sludge increased, the water absorption, abrasion,
and stability in sodium sulfate of the aggregates decreased. Comparing with natural
aggregates, the water absorption of all proportions of the artificial aggregates was
higher than that of the natural aggregates. The abrasion and stability in sodium sulfate
were low. The concrete containing the artificial aggregates had higher compressive

strength than the concrete containing natural aggregates.

2.3 Permeability of Single Fracture

The main factors controlling fluid flow through a single fracture are the
surface roughness, apertures, orientation of fractures, normal and shear stresses, and
unloading behavior. Out of these controlling factors, the aperture is the major
parameter, which is a function of external stress, fluid pressure and geometrical
properties of the fracture (Indraratna and Ranjith, 2001).

The conductivity of a single fracture is given by the ‘cubic law’: (Witherspoon

et al., 1980; Indraratna and Ranjith, 2001; Ranjith and Viete, 2011)

Ks = ge®/12vb (2.1)
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where K¢ = fracture conductivity (m/s), e = hydraulic aperture (m), g = acceleration
due to gravity (m/s?), v = kinematic viscosity, which is 1.01 x 10 (m?s) for pure
water at 20°C, and b is the spacing between fracture (m).

For a smooth, planar joint having an aperture of magnitude e, the fracture

permeability (k) for laminar flow is given by (Barton et al., 1985)

k=e%12 (2.2)

The joint aperture e is mainly dependent on the normal and shear stress acting
on the joint. Assuming the rock matrix to be isotropic and linear elastic, obeying
Hooke’s law, the following aperture-stress relationship can be formulated: (Rutqvist,

1995; Indraratna and Ranjith, 2001)

e=¢eptoe (2.3)

where gy is the initial joint aperture and de is the change of the joint aperture due to
stresses (i.e., both normal and shear components) acting on the joint. In conventional
rock mechanics, the normal deformation component is given by Jaeger and Cook

(1979):

den = (L/Ky)(o-cosp + opsinp) (2.4)

where K, = normal stiffness of discontinuity, o, = vertical stress applied to the
discontinuity, on = horizontal stress applied to the discontinuity, and 3 = orientation

of discontinuity.
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Considering the water pressure to be acting perpendicular to the joint surface,

the equation can be modified to obtain (Indraratna and Ranjith, 2001)

den = (1/K;)(o1€0sP - o3Sinp - pw) (2.5)

where p,, = water pressure within the discontinuity.
Combining the above equations for planar and smooth joints, the permeability

of a single fracture is given by

k = (eq + dey)?/12 (2.6)

Based on the initial hydraulic aperture and the closure of joint, Detoumay

(1980) suggested the following relationship to determine the fracture permeability:

k = eo®(1-v/vo)?/12 (2.7)

where ey = hydraulic aperture at zero stress, vo = closure of the joint when the
hydraulic aperture becomes zero and v =normal deformation of the joint.
Snow (1968) observed an empirical model to describe the fracture fluid flow

variation against the normal stress, as described by

k = ko + Kn(€%/5)( o - o0) (2.8)

where ko = initial fracture permeability at initial normal stress (oo), K, = normal

stiffness, s = fracture spacing and e = hydraulic aperture.
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Jones (1975) suggested the following empirical relation between the fracture

permeability and the normal stress:

k = Co[log(cen/oo)]’ (2.9)

where o¢, = confining healing pressure in which the permeability is zero and o, =
effective confining stress. The constant (Cy) depends on the fracture surface and the
initial joint aperture.

Nelson (1975) suggested the following empirical relation between the fracture

permeability and the normal stress:

k=A+Bo. " (2.10)

where A, B and m are constants which are determined by regression analysis. These
constants may vary from one rock to another, and even for the same rock type,
depending on the topography of the fracture surface.

Gangi (1978) reports a theoretical model for fracture permeability as a

function of the confining pressure, as represented by

k = ko[l - (co/P)™ (2.11)

where P; = effective modulus of the asperities and m = constant which describes the
distribution function of the asperity length. This expression gives a better prediction if
the effect of surface roughness on flow is negligible, which of course is not

reasonable in practice.
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2.4  Experimental researches on grouting materials

Huang (1997) investigates the properties of cement-fly ash grout mixtures as
barriers for isolation of hazardous and low-level radioactive wastes. The fly ash was
used to replace 30 percent by mass of cement. Three additives, including bentonite,
silica fume, and polypropylene fiber were used individually in the grout mixes to
improve the properties of the grouts in different aspects. The flow ability, bleeding,
and setting time of freshly mixed grouts were determined; and the unconfined
compressive strength, pore size distribution, and water permeability were determined
for hardened grouts at various curing durations up to 120 days. Finally, the durability
of cement-fly ash grouts was carefully examined in terms of the changes in their
physical properties after different levels of exposure to sulfate attack and wet-dry
cycles.

Owaidat et al. (1999) reported that the U.S. Army Corps of Engineers had
recently implemented a levee-strengthening program along the banks of the American
River in Sacramento, California. During the rainy season, the existing levee system
protected major commercial and residential areas of this metropolitan area. One of the
main components of this program was the construction of slurry walls through the
existing levee to improve stability by preventing seepage through and beneath the
levee. Since conventional soil-bentonite (SB) slurry walls had little shear strength,
which would jeopardize the stability, of the existing levees, and cement-bentonite
(CB) slurry walls were significantly more expensive, soil-cement-bentonite (SCB)
slurry walls were being utilized for this strengthening program. This research
described a case study on the design, construction and performance of an underground

SCB barrier wall, which was used to isolate river water seeping into the American
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River levee and its foundation soils. Challenges to barrier performance included
achieving a maximum allowable hydraulic conductivity of 5x107 cm/s while having a
minimum unconfined compressive strength of 15 psi.

Kashir and Yanful (2000) reported that the use of slurry walls to contain
oxidized tailings and provide cutoff below tailings dams were generally a cost-
effective way of preventing environmental degradation due to seepage of acid water
from tailing’s areas. Long-term environmental protection dictated that the slurry
wall materials been compatible with the acid water. Six percent bentonite by weight
was added separately to two natural soils to represent slurry wall backfill materials,
which were then permeated with several pore volumes of acid mine drainage
(AMD) in the laboratory. Results using both flexible wall and fixed wall
permeameters were similar. The carbonate-rich backfill gave an average hydraulic
conductivity (K) of 1x10® cm/s, buffered the AMD at circumneutral pH, and kept
effluent metal concentrations to very low values, for example, less than 0.05 mg/I
zinc. The carbonate-free backfill also maintained low K (average 3x10™° cm/s)
during AMD permeation, it could not neutralize the AMD as effluent pH decreased
to approximately 3.5, and metal concentrations reached those of the influent or
permeant after about 17 pore volumes.

Fransson (2001) describes a rock volume suitable for a grouting field test at
the Aspo Hard Rock Laboratory, Sweden. Fixed interval length transmissivities and
the corresponding number of fractures from geological mapping of a probe hole were
used to calculate a probability of conductive fractures for analyses of data from
individual boreholes. The transmissivity and specific capacity of the boreholes were

compared to examine the robustness of the specific capacity. From the findings of the
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study, the probability of conductive fractures from probe hole data, the specific
capacity and fracture frequency of individual boreholes were sufficient to construct a
simplified model of the fracture and the rock volume. The median specific capacity of
the boreholes was a good description of the effective cross-fracture transmissivity.
The field test was also carried out to demonstrate the usefulness of the methodology
for improving the analyses of data from the hydraulic tests and geological mapping
for a grouting fan.

Ryan and Day (2002) state that Soil-Cement-Bentonite (SCB) slurry walls had
been used with increasing frequency in recent years to provide barriers to the lateral
flow of groundwater in situations where the strength of a normal soil-bentonite (SB)
wall would be inadequate to carry foundation loads. The addition of cement to the
backfill blended allows the backfill to set and from a more rigid system that could
support greater overlying loads. Construction and quality control for the SCB wall
were more demanding than that needed for the SB walls. Backfill mixing, sampling
and testing of this type of wall involve more exacting procedures. Recommendations
were made for methods to carry out pre-job design mix testing and in-field quality
control testing for the most reliable results. Designing the SCB backfill was a
complex issue involving conflicting actions of the various materials involved. While
the SCB wall provides additional strength, permeability was one property that
generally suffers in comparison to the SB walls. A normal permeability specification
would be a maximum of 1x10° cm/sec. With special attention to materials and
procedures, a specification of a maximum 5x10” could be achieved. The results were

presented that the strengths of the SCB were in the range of 15-300 psi.
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Rahmani (2004) stated that grouting had been used over the past two centuries
to increase the strength, decrease the deformation and reduce the permeability of soils
or fractured rocks. Due to its significance in engineering and science predicting grout
effectiveness in fractured rocks was of interest. There were different approaches to
estimate the effectiveness of grouting, one of which was numerical modeling.
Numerical models could simulate a distribution of grout inside fractures by which the
effectiveness of grout could be estimated. Few numerical studies had been carried out
to model grout penetration in fractured rocks. Due to complexities of modeling grout
and fracture most of these studies had either used simplifying assumptions or been
bound to small sizes of fractures, both resulting in unrealistic simulations.

Then the current work is aimed to eliminate some of the simplifying
assumptions and to develop a model that could improve the reliability of the results.
In reality, grouts were believed to behave as a Bingham fluid, but many models did
not consider a full Bingham fluid flow solution due to its complexity. Real fractures
had rough surfaces with randomly varying apertures. However, some models
considered fractures as planes with two parallel sides and a constant aperture. In this
work the Bingham fluid flow equations were solved numerically over a stochastically
varying aperture fracture. To simplify the equations and decrease the computational
time the current model substituted two-dimensional elements by one-dimensional
pipes with equivalent properties. The model was capable of simulating the time
penetration of grout in a mesh of fracture over a rather long period of time. The
results of the model could be used to predict the grout penetration for different

conditions of fractures or grout (Rahmani, 2004).
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Baik et al. (2007) described that compacting bentonite had been considered as
a candidate buffer material in the underground repository for the disposal of high-
level radioactive waste. An erosion of bentonite particles caused by a groundwater
flow at the interface of a compacting bentonite, and fractured granite was studied
experimentally under various geochemical conditions. The experimental results
showed that bentonite particles could be eroded from a compacted bentonite buffer by
a flowing groundwater depending upon the contact time, the flow rate of the
groundwater, and the geochemical parameters of the groundwater such as the pH and
ionic strength. A gel formation of the bentonite was observed to be a dominant
process in the erosion of bentonite particles, although an intrusion of bentonite into a
rock fracture also contributed to the erosion. The concentration of the eroded
bentonite particles eroded by a flowing groundwater was increased with an increasing
flow rate of the groundwater. It was observed from the experiments that the erosion of
the bentonite particles was considerably affected by the ionic strength of a
groundwater, although the effect of the pH was not great within the studied pH range
from 7 to 10. An erosion of the bentonite particles in a natural groundwater was also
observed to be considerable, and the eroded bentonite particles were expected to be
stable at the given groundwater condition. The erosion of the bentonite particles by a
flowing groundwater did not significantly reduce the physical stability and thus the
performance of a compacted bentonite buffer. However, it was expected that an
erosion of the bentonite particles due to a groundwater flow will generate bentonite
particles in a given groundwater condition, which could serve as a source of the

colloids facilitating radionuclide migration through rock fractures.
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Butron et al. (2010) presented a new pre-excavation grouting concept to
prevent dripping and reduced the inflow into a railway tunnel. For this purpose, the
tunnel’s roof was driped-sealed using colloidal silica and the walls and invert of the
tunnel were grouted with cement. The grouting design process followed a structured
approach with pre-investigations of core-drilled boreholes providing parameters for
the layout. Water pressure tests and pressure volume time recordings were used for
the evaluation. Results showed that the design was successful: the total transmissivity
was reduced from 4.9x10® m%s to the measurement limit (1.6x10® m%s), and the
dripping was reduced to eight spots from the roof. Improved rock characterization
showed that the grout hole separation was within the transmissivity correlation length
and that grouting efficiency depends to a large extent on the dimensionality of the

flow system of the rock mass.



CHAPTER 111

SAMPLE PREPARATIONS

3.1 Introduction

This chapter describes basic characteristics of materials tested in this study.
Materials used in this experiment consist of sludge, bentonite, Portland cement and

sandstone samples.

3.2 Sludge preparation

Sludge samples used in this research have been donated by Metropolitan
Waterworks Authority. They are collected from sludge dewatering plant of Bang
Khen Water Treatment Plant located in Bangkok Metropolis (Figures 3.1). Sludge is
drained from the bottom of the clarifiers and backwash water from the filter beds.
Sludge is pumped to the sludge dewatering plant. Dried sludge is a moist, brown,
rough, fine-grained soil. Sludge samples are collected and packed in a moisture
barrier bag. The 1,000 kg in bags is transported to Geomechanics Research
Laboratory of Suranaree University of Technology, Nakhon Ratchasima province
(Figures 3.2).

Dried sludge cake is taken out and dried under sunlight (Figure 3.3). The
moisture is removed one more time in a hot-air oven at 140°C for at least 24 hours or
until its weight remains constant. The dried sludge is sieved through a mesh no. 200.

The packed sludge retaining on the mesh of the size is grounded by a milling machine
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(Figure 3.4), and sieved through the mesh again. Dried sludge from the oven
(Figure 3.5) is stored in a plastic box with a tight lid to prevent moisture.

One of the basic physical properties of the sludge is the distribution of the
grain size particles. The distribution of different grain sizes affects the engineering
properties of soil. Grain size analysis provides the grain size distribution, and it is
required in classifying the soil. This test is performed to determine the percentage of
different grain sizes contained within sludge. Sieve analysis is performed to
determine the distribution of the coarser particles, and the hydrometer method is used
to determine the distribution of the finer particles. Testing of these samples follows,
as much as practical, the ASTM standards (D4543). Results of these tests can be
shown in Figure 3.6. Comparison the grain sizes distribution obtained here with those
from the Department of Primary Industries and Mines (DPIM) shows that they are
slightly different due to the different sludge sampling periods. Sludge form Bang
Khen Water Treatment Plant is likely to have different properties for different
seasons. The test method of the ASTM standard (D854) used for determination of the
specific gravity of solids passing a sieve indicates that the sludge has a specific
gravity of 2.56.

The Atterberg’s limits are index properties of soil. Depending on the water
content of the soil, it may appear in four states: solid, semi-solid, plastic and liquid. In
each state the consistency and behavior of a soil is different and thus so are its
engineering properties. The Atterberg limits can be used to distinguish between silt
and clay, and it can distinguish between different types of silts and clays. Thus, sludge

has been tested to find these indexes by using the ASTM D4318 and D2487 (ASTM
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2010e, 2010f). The results are listed in Table 3.1. The sludge samples are classified
according to the Unified Soil Classification System is in the MH (elastic silt).

Sludge samples from sludge dewatering plan of Bang Khen contain more than
52 percent silicon dioxide (SiOz) and 24 percent aluminum oxide (Al,O3) that
chemical composition is determined based on X-ray fluorescence spectrometer
(reported from National Metal and Materials Technology Center, National Science
and Technology Development Agency database). X-ray fluorescence (XRF) is used
to study the chemical compositions of the materials. The objective of analysis is to
determine oxide concentrations in samples with X-ray fluorescence spectrometer,
Philips PW-2404. Samples used in this analysis are sludge and bentonite powders.
Test method is semi-quantitative X-ray fluorescence spectrometry analysis.
Laboratory conducted here are under 25+5°C and relative humidity of 60+10%. The
sample were mixed with binder (CsgH7sN2O,, sample:binder, 4:0.8 by weight). They
were pressed to form pellets with 3.2 cm diameter. Results of oxide concentrations in

the sludge samples are shown in Table 3.2.

3.3 Bentonites

Bentonite is an engineering material as excellent sealant material because of
its low permeability, desirable swelling and self-healing characteristic, sorptive
qualities and longevity in nature. Bentonite is used extensively for grouting material
to reduce permeability in fractured rock mass. Bentonite mixed with cement is made
to hold themselves, and not piping with the water pressure while curing in the rock
fractures (Akgiin and Daemen, 1999; Fuenkajorn and Daemen, 1996; Svermova et al.,

2003; Metcalfe and Walker, 2004). The bentonite used in this study is from American
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Colloid Company, United States of America. This is the widely used in the drilling
industry, oil exploration, natural gas and mineral deposits. Tables 3.1 and 3.2
summarize the chemical compositions and engineering properties of the bentonite

tested in this study.

3.4 Portland cement

Portland cement type | is used in conforms to the ASTM (C150). Portland
cement can be purchased readily, low cost and widely used in the construction
construction. Portland cement of INSEE Thong brand, bag cement 40 kg, used in this
study is from the City Cement Public Company Limited, Thailand. The cement is kept
in plastic box sealed to prevent moisture, cool-dry area.

Porland cement of INSEE Thong brand conforms to the ASTM C91 standard
which is autoclave expansion of 0.001%, setting time (by Gillmore Method) for initial
of 145 minutes and final of 245 minutes. The mortar compressive strength for 7 and
28 days is 13 and 15.5 MPa. The amount of air content in mortar is 15.5%, with water
retention value of 78.5% (percentage of original flow). Table 3.3 summaries the
chemical compositions of Portland cement type I, which is the same type used in this

study.

3.5 Rock samples

The selection criteria for rock sample are that the rock should be
homogeneous, low permeability and availability as much as possible. This is to
minimize the intrinsic variability of the test results. The sandstone samples are used

and collected from Phu Kradung formation. Sample preparations are carried out in the
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Geomechanics Research (GMR) laboratory facility at Suranaree University of
Technology. Sample preparations have been carried out for series for constant head
flow testing (Figure 3.7) and direct shear test (Figure 3.8).
3.5.1 Sample preparation for constant head flow test under various

normal stresses

Sandstone samples for the constant head test are prepared to have
prismatic blocks of sandstone. Preparation of these samples follows the suggested
methods proposed by Navarro (2010). The fractures are artificially made by applying
a line load at the center to induce a splitting tensile crack in 152.4x152.4x152.4 mm®
prismatic blocks. The fracture area is 152.4x152.4 mm?. The injection hole at the
center of the upper block is 8 mm in diameter. A minimum of sixty sandstone
specimens are tested for constant head flow test with both three portions of sludge-
mixed cement and bentonite-mixed cement under normal stress ranging from 0.25 -
1.25 MPa.

3.5.2 Sample preparation for direct shear test under various normal

stresses

Sandstone samples for the constant head test are prepared to have
cylindrical shape. Preparation of these samples follows the ASTM standards (D4543)
with a nominal dimension of 100 mm in diameter and 100 nm long. The fractures are
artificially made by applying a line load at the center of length to induce a splitting
tensile crack. The fracture area is 7,854 mm? A minimum of forty sandstone
specimens are tested for direct shear test under normal stress ranging from 0.25 - 1.25

MPa.
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Table 3.1 Atterberg’s limits and specific gravity of sludge and bentonite.

Atterberg Limits

Bentonite (Y%oweight)

Sludge (Yoweight)

suT? us? suT*? KU®
Liquid limit 357 478 55 69
Plastic limit 44 28 22 42
Plasticity index 313 449 23 28
Specific gravity 2.50 - 2.56 -

Note: 'SUT = Suranaree University of Technology Laboratory,

2after Castelbaum and Shackelford (2009)

%after Kanchanamai (2003)
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Table 3.2 Results of oxide concentrations in the bentonite and sludge samples.

Concentration (% weight)
Oxide Bentonite Sludge

sut! ACC? suT TU®
Na,O 1.63 2.2 0.22 0.37
MgO 2.44 1.3 0.96 1.43
Al,O3 19.85 19.8 23.47 25.76
SiO, 61.93 61.3 52.37 59.44
P,0s 0.05 - 0.34 0.30
SO, 1.27 - 0.55 0.37
of N/D* - 0.07 -
K,0O 0.44 0.4 1.55 2.39
CaOo 1.27 0.6 0.79 0.91
TiO, 0.19 0.1 0.79 0.83
V,0s5 N/D - 0.02 -
Cr03 N/D - 0.02 -
MnO 0.02 - 0.22 -
Fe,0; 4.45 3.9 6.33 7.84
CuO 0.01 - 0.01 -
Rb,0 N/D - 0.01 -
SrO 0.03 - 0.01 -
Y,0; 0.01 - <0.01 -
ZrO, 0.03 - 0.03 -
Nb,Os 0.01 - <0.01 -
BaO 0.03 - 0.01 -
CeO, 0.04 - N/D -
LOLl. at 1,025 °C 6.29 - 12.20 3.06
Total 100 - 100 -

Note: 'SUT = Suranaree University of Technology Laboratory,

2ACC = American Colloid Company Technical Data,

TU = Tummasart University Laboratory (after Hadsanan et al., 2006)

“N/D = Not detectable



Table 3.3 Results of oxide concentrations in Porland cement. (Ali, 2008)
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Silicon dioxide (SiOy) 20.58
Aluminum oxide (Al,O3) 571
Ferric oxide (Fe,03) 2.94
Calcium oxide (CaO) 64.76
Magnesium oxide (MgO) 0.87
Potassium oxide (K;0) 0.67
Sulfer trioxide (SO3) 2.63
Sodium oxide (Na,O) 0.14
Titanium Oxide (TiOy) 0.29
Phosphorus oxide (P20s) 0.06
Loss on ignition (LOI) 0.96




Figure 3.1 Sludge from sludge dewatering plant of Bang Khen Water Treatment Plant

located in Bangkok Metropolis.
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Figure 3.2 Sludge samples packed in a moisture barrier bag.



(b)

Figure 3.3 Sludge is dehydrated by drying under sunlight.
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Figure 3.4 Sludge cakes are cracked by a milling machine.
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Figure 3.5 Sludge in a hot-air oven at 140°C for at least 24 hours or until its weight

remains constant.
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Figure 3.6 Grain size distribution of water treatment sludge compared SUT and

DPIM test results.
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Tension-Induced Fracture

Figure 3.7 Some sandstone samples with 152.4x152.4x152.4 mm?® prismatic blocks

for series for constant head flow testing.
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Tension-Induced Fracture

Figure 3.8 Sandstone samples with a nominal dimension of 100 mm in diameter and

100 nm long for direct shear testing.



CHAPTER IV

GROUT PREPARATIONS

4.1 Introduction

This chapter describes the methods and results of laboratory experiments used

to determinate the most suitable mixing ratios for grouting in rock fracture.

4.2 Viscosity and density of mixtures

The objectives of these tests are to determine proportioning of mixtures and
methods to be used to test the mechanical and hydraulic properties in the next step.
These results lead to the determination that the most suitable mixing ratios of sludge-
mixed cement should be proportional for grouting in rock fracture. Viscosity
measurement follows, as much as practical, the ASTM standard (D2196). Apparatus
used in these experiment consist of :

1) Sludge (Figure 4.1),

2) Bentonite (Figure 4.2),

3) Porland cement (Figure 4.3),

4) Distilled water,

5) Digital weight scale with maximum capacity of 2,000 g and accuracy to
+0.01 g. (Figure 4.4),

6) Mixer, Kitchenaid Professional 600 6QT 575 watt stand mixer, with

maximum capacity of 5,000 cm® and 6 speed control (Figure 4.5),
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7) Viscometer,Bookfield viscometer RV 203 Watt 50 Hz (Figure 4.6)
8) Digital thermometer HIP C0905019480 with accuracy to £0.1°C (Figure 4.7).
4.2.1 Test methods

The preliminary selection in proportions of mixtures are determined
and given by using viscosity values. Proportions of mixtures, S:C and B:C, are 0:10,
1:10, 2:10, 3:10, 4:10, 5:10, 6:10, 7:10, 8:10, 9:10 and 10:10 with W:C ratios ranging
from 4:10, 8:10, 10:10 and 12.5:10. Slurry of mixtures in 1,000 cm® by weight used
here are shown in Table 4.1. Test procedure also follow:

1) Material balance of the four types defined, proportion. Then pack
into plastic bags type bag and tie securely (Figure 4.8).

2) The material is weighed and then put together in a plastic bag and tie
tightly. Make a homogeneous mixture by shaking several times.

3) Pour the distilled water in the bag to weigh it down and turn the
mixer speed up to 275 rpm. Mixing of all grouts is accomplished using a blade paddle
mixer as suggested in ASTM standard C938.

4) Pour the mixed material in Section 2) into the mix to run at the same
time. If there is additional material should be poured within a two-minute timer and
start pouring the mixture into distilled water. | measured the room temperature.

5) In a homogeneous mix for 3 minutes to complete mixing at 275 rpm,
then turn off the mixer.

6) Determine the density and viscosity of the mixture slurry by using
standard ASTM standard (D2196). Pour in a beaker with a volume of the mixture is

equal to exactly 500 cc (Figure 4.9).
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7) Weigh the beaker with the mixture. Subtract the weight of the
beaker from the results and then divided by the volume of the mixture (500 cc) is the
density of mixture slurry.

8) Specific gravity (SG) of the mixture is calculated from equation

SG= Pslurry /pw (4'1)

where psiury is @ density of mixture slurry, and py, is density of distilled water at the
time of measurement. The results of the test density and specific gravity are
summarized in Table 4.2.

Viscosity test is performed after the weighing of ingredients in the
measuring beaker with a volume of 500 cc, which is continuing immediately. The
viscosity of the mixture, which is resistant to flow, can be determined by a rotational
viscometer, Brookfield model RV dial reading viscometer. Spindle set (RV-1 through
RV-7) is selected for this test. Testing of viscosity follows the ASTM standard
D2196.

1) For the mixture of given viscosity, the resistance is greater as the
spindle size and rotational speed increase. The minimum viscosity ranged, is obtained
by using the largest spindle at the highest speed; the maximum range by using the
smallest spindle at the slowest speed.

2) The sample is placed in Glass Beaker (500 cm®) under viscometer
(Figure 4.10).

3) Weigh and temperature of each sample are recorded to determine a

slurry density.
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4) Releasing the brake once the viscometer is rotating smoothly and
time for 60 seconds. Brake firmly is depressed and the viscometer is turned off during
continuing to hold the brake down. Values on the viscometer gauge are read and
recorded. Recording the number of the spindles are used.

5) Calculating the viscosity in centipoises by multiplying the meter
reading by the multiplier corresponding to the particular spindle used.

The reading of the test Viscosity Brookfield is in units of centipoise
(cP) or equal mPa-s in dynamic viscosity. The dynamic viscosity is converted to the

Kinetic viscosity by equation (4.2).

n=pv (4.2)

where p is dynamic viscosity, v is the kinetic viscosity, and p is slurry density.
4.2.2 Test results
Figure 4.11 shows dynamic viscosity of bentonite-cement and sludge-
cement mixtures for different W:C ratios. The results of mixture ratios by weight of
the total volume of 1,000 cc are listed in Table 4.2. The results of slurry density tests
in beakers of 500 cc are listed in Table 4.2. The results of slurry viscosity tests are

listed in Table 4.3.



Table 4.1 Mixture ratios by weight of the total volume of 1,000 cc.
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_ S:C Weight ()
Binder We BO:rC Cement gleundtgﬁ i(t)er‘ Water

8:10 1:10 636 64 509

8:10 2:10 595 119 476

8:10 3:10 558 167 446

8:10 4:10 526 210 421

8:10 5:10 497 249 398

8:10 6:10 471 283 377

8:10 7:10 4438 314 359

10:10 1:10 564 56 564

10:10 2:10 531 106 531

10:10 3:10 502 151 502

10:10 4:10 476 190 476

10:10 5:10 452 226 452

10:10 6:10 431 258 431

Sludge 10:10 7:10 411 288 411
10:10 8:10 393 315 393

10:10 9:10 377 339 377

10:10 10:10 362 362 362

12.5:10 1:10 495 49 618

12.5:10 2:10 469 94 586

12.5:10 3:10 446 134 558

12.5:10 4:10 425 170 532

12.5:10 5:10 406 203 508

12.5:10 6:10 389 233 486

12.5:10 7:10 373 261 466

12.5:10 8:10 358 287 448

12.5:10 9:10 345 310 431

12.5:10 10:10 332 332 415




Table 4.1 Mixture ratios by weight of the total volume of 1,000 cc (continued).
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' S:C Weight (g)
Binder We Bo:rC Cement gleundtgi i(:(; Water

10:10 1:10 570 57 570

10:10 2:10 542 108 542

10:10 3:10 516 155 516

40:10 1:10 210 21 841

40:10 2:10 206 41 825

40:10 3:10 203 61 810

Bentonite 40:10 4:10 199 80 795
40:10 5:10 195 98 781

40:10 6:10 192 115 767

40:10 7:10 189 132 754

40:10 8:10 185 148 741

40:10 9:10 182 164 729

40:10 10:10 179 179 717

8:10 0:10 684 0 547

10:10 0:10 602 0 602

Cement

12.5:10 0:10 537 0 644

40:10 0:10 214 0 858




Table 4.2 Results of slurry density tests in beakers of 500 cc.
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' . S:.C Slurry Slu_rry Slur(y Watgr Specific
Binder W:C qr Temperature | Weight | Density | Density Gravity
B:C (°C) (9) (g/cc) | (glcc)

8:10 | 1:10 28.4 766.6 1.53 | 0.9961 | 1.54

8:10 | 2:10 28.7 777.6 1.56 | 0.9960 | 1.56

8:10 | 3:10 29.6 787.5 1.58 | 0.9958 | 1.58

8:10 | 4:10 29.3 825.3 1.65 | 0.9959 | 1.66

8:10 5:10 31 872.7 1.75 0.9953 1.75

8:10 | 6:10 315 836.4 1.67 | 0.9952 | 1.68

8:10 | 7:10 315 888.0 1.78 | 0.9952 | 1.78

10:10 | 1:10 28.6 7335 1.47 | 09961 | 1.47

10:10 | 2:10 30.4 734.6 1.47 | 0.9955 | 1.48

10:10 | 3:10 30.2 742.0 1.48 | 0.9956 | 1.49

10:10 | 4:10 315 774.8 1.55 | 0.9952 | 1.56

10:10 | 5:10 30.3 7945 1.59 | 0.9956 | 1.60

10:10 | 6:10 28.9 818.8 1.64 | 0.9960 | 1.64

Sludge | 10:10 | 7:10 30.6 811.9 1.62 | 0.9955 | 1.63
10:10 | 8:10 30.3 825.1 1.65 | 0.9956 | 1.66

10:10 | 9:10 30.6 846.9 1.69 | 0.9955 | 1.70

10:10 | 10:10 30.6 930.3 1.86 | 0.9955 | 1.87

12.5:10 | 1:10 27.6 685.6 1.37 | 0.9963 | 1.38

12.5:10 | 2:10 28.4 695.6 1.39 | 0.9961 | 1.40

12.5:10 | 3:10 28.8 725.9 1.45 | 0.9960 | 1.46

12.5:10 | 4:10 29.3 713.3 1.43 | 0.9959 | 1.43

12.5:10 | 5:10 30.9 760.4 1.52 | 0.9954 | 1.53

12.5:10 | 6:10 29.8 727.1 1.45 | 0.9957 | 1.46

12.5:10 | 7:10 29.3 728.6 1.46 | 0.9959 | 1.46

12.5:10 | 8:10 29.8 754.0 1.51 | 0.9957 | 1.51

12.5:10 | 9:10 30.3 762.7 1.53 | 0.9956 | 1.53

12.5:10 | 10:10 30.8 777.8 1.56 | 0.9954 | 1.56




Table 4.2 Results of slurry density tests in beakers of 500 cc (continued).
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_ . S:C Slurry Slu_rry Slurfy Wat(_er Specific
Binder w:C gr Temperature | Weight | Density| Density Gravity
BC | (°C) @ | (grce) | (glco)
10:10 | 1:10 28.2 7054 | 1.41 | 0.9962 1.42
10:10 | 2:10 27.9 725.0 | 1.45 | 0.9963 1.46
10:10 | 3:10 29.4 757.1 1.51 | 0.9958 1.52
40:10 | 1:10 28.9 584.9 | 1.17 | 0.9960 1.17
40:10 | 2:10 29.3 554.9 | 1.11 | 0.9959 1.11
40:10 | 3:10 28.8 5834 | 1.17 | 0.9960 1.17
Bentonite | 40:10 | 4:10 28.6 585.3 | 1.17 | 0.9961 1.18
40:10 | 5:10 29.8 577.6 1.16 | 0.9957 1.16
40:10 | 6:10 28.6 5715 | 1.14 | 0.9961 1.15
40:10 | 7:10 29.1 583.2 | 1.17 | 0.9959 1.17
40:10 | 8:10 29 5755 | 1.15 | 0.9959 1.16
40:10 | 9:10 29.1 586.9 | 1.17 | 0.9959 1.18
40:10 | 10:10 28.8 589.8 | 1.18 | 0.9960 1.18
8:10 0:10 29 769.5 | 1.54 | 0.9959 1.55
10:10 | 0:10 29.1 723.3 | 1.45 | 0.9959 1.45
Cement
12.5:10 | 0:10 27.6 7254 | 1.45 | 0.9963 1.46
40:10 | 0:10 27.9 584.7 1.17 | 0.9963 1.17




Table 4.3 Results of slurry viscosity tests.
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Temperature (°C)

S:C Slurry | Dynamic |Kinematic

Binder | W:C or Density | Viscosity | Viscosity

B:.Cc | AIr | Water | Slurry | (kg/m® | (mPa-s) |(10™* m%s)
810 | 110 | 276 | 275 | 284 | 153 | 14,260 0.93
8:10 | 210 | 276 | 275 | 287 | 156 | 20,360 1.31
8:10 | 310 | 281 | 275 | 296 | 158 | 31,350 1.99
8:10 | 410 | 279 | 278 | 293 | 165 | 91200 | 310
8:10 | 5:10| 283 | 286 | 31 1.75 | 72,000 | 4.13
8:10 | 610 | 313 | 288 | 315 | 1.67 | 99200 5.93
8:10 | 710 | 308 | 294 | 315 | 1.78 | 132,000 | 743
10:10 | 1:10 | 313 | 275 | 28.6 | 1.47 8,170 0.56
10:10 | 2:10 | 308 | 275 | 304 | 1.47 | 10,400 0.71
10010 | 3110 | 323 | 275 | 302 | 148 | 15750 | 106
10:10 | 410 | 311 | 275 | 315 | 155 | 25650 1.65
10:10 | 5:10 | 315 | 275 | 303 | 159 | 41,720 | 263
10:10 | 6:10 | 315 | 275 | 289 | 1.64 | 62330 3.81
Sludge | 10:10 | 7:10 | 298 | 288 | 306 | 1.62 | 92400 | 569
10:10 | 8:10 | 313 | 275 | 303 | 165 | 130320 | 790
10:10 | 9:10 ] 302 | 288 | 306 | 1.69 | 171,330 | 10.12
10:10 110:10) 31,7 | 275 | 306 | 1.86 | 260,000 | 1397
125:10 | 1110 | 287 | 275 | 27.6 | 1.37 2,360 0.17
125:10 | 2210 | 279 | 278 | 284 | 1.39 3,680 0.26
12.5:10 | 3:110 | 286 | 278 | 288 | 145 5,170 0.36
125:10 | 410 | 278 | 275 | 293 | 1.43 6,990 0.49
125110 | 510 | 318 | 275 | 309 | 152 | 10610 | 070
12.5:10 | 6:10 | 298 | 294 | 298 | 145 | 15700 1.08
125:10 | 72110 | 298 | 293 | 293 | 146 | 21,170 1.45
12.5:10 | 8:10 | 30.0 | 29.7 | 29.8 | 151 | 26970 1.79
12.5:10 | 9:10 | 30.1 | 29.4 | 30.3 | 153 | 38200 2.50
125110 |10:10] 306 | 295 | 308 | 156 | ©3.600 | 345




Table 4.3 Results of slurry viscosity tests (continued).
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S:C Temperature (*C) Slurry | Dynamic |Kinematic
Binder | W:C | or Density | Viscosity | Viscosity
B:C | Air |Water|Slurry | (kg/m®) | (mPa-s) |(10™ m?s)
10:10 | 1:10 | 27.8 | 27.8 | 28.2 141 30,930 2.19
10:10 | 2:10 | 27.7 | 275 | 27.9 1.45 106,000 7.31
10:10 | 3:10 | 28.7 | 288 | 29.4 1.51 346,400 22.88
40:10 | 1:10 | 30.1 | 27.5 | 28.9 1.17 480 0.04
40:10 | 2:10 | 30.5 | 275 | 29.3 1.11 960 0.09
40:10 | 3:10 | 30.5 | 275 | 28.8 1.17 1,380 0.12
Bentonite | 40:10 | 4:10 | 30.3 | 17.5 | 28.6 1.17 3,020 0.26
40:10 | 5:10 | 304 | 27.5 | 29.8 1.16 6,290 0.54
40:10 | 6:10 | 30.4 | 294 | 28.6 1.14 13,580 1.19
40:10 | 7:10 | 304 | 294 | 29.1 1.17 26,530 2.27
40:10 | 8:10 | 29.6 | 294 | 29.0 1.15 43,000 3.74
40:10 | 9:10 | 30.3 | 294 | 29.1 1.17 80,700 6.88
40:10 |10:10 | 29.6 | 29.4 | 28.8 1.18 160,670 13.62
8:10 | 0:10 | 314 | 275 | 29.0 1.54 10,380 0.67
Cement 10:10 | 0:10 | 30.8 | 279 | 29.1 1.45 6,230 0.43
12.5:10| 0:10 | 31.0 | 275 | 27.6 1.45 1,770 0.12
40:10 | 0:10 | 29.8 | 275 | 279 1.17 170 0.01




Figure 4.2 American Colloid Bentonite used in this study.
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Figure 4.3 Bag of Portland cement 40 kg is used in this study.

Figure 4.4 Digital weight scale with maximum capacity for 2000 grams and accuracy

to £0.01 gram.



Figure 4.5 Mixer, Kitchenaid Professional 600 6QT 575 watt stand mixer, with

maximum capacity for 5,000 cm?® and 6 speed control.

Figure 4.6 Viscometer, Bookfield viscometer RV 203 Watt 50 Hz.
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Figure 4.7 Digital thermometer HIP C0905019480 with accuracy to +0.1°C.
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(b)

(©

Figure 4.8 Grouting materials in plastic bags are prepared for mix proportion (a)
cement and water, (b) cement, water and sludge, and (c) bentonite,

cement and water.
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Figure 4.9 Slurry volume of 500 cc in beakers for the density and viscosity tests (a)

cement paste (b) sludge-cement slurry, and (c) bentonite-cement slurry.
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Figure 4.10 Brookfield model RV dial reading viscometer is used for viscosity and

slurry density tests.
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Figure 4.11 Dynamic viscosity of bentonite-cement and sludge-cement mixtures for

different W:C ratios.



CHAPTER V

MECHANICAL PROPERTIES TESTING

5.1 Introduction

This chapter describes the methods and results of laboratory tests used to
determinate the maximum compressive strength, elastic modulus, and Poisson’s ratio
for the six proportions of grouting materials selected from Chapter V. Pure cement is
tested in term of mechanical properties. Preparation of these samples follows, as much
as practicable, the ASTM standards (ASTM D7012). Direct shear testing is performed
to determine the maximum shear force occurs at the interface among the surfaces of

the grouting material and surface of fractured sandstone.

5.2 Uniaxial compressive strength testing

The objectives of the uniaxial compressive strength tests are, 1) to evaluate the
basic mechanical properties of grouting material specimens of two-inch in diameter at
three days curing. They are used as an index to confirm that the proportions of S:C
and B:C mixtures are appropriate selection of the viscosity of mixture slurry form
Chapter IV, and 2) to determine the uniaxial compressive strength, Poison’s ratio and
elastic modulus of grouting material specimens of four-inch in diameter at three days
curing. This is a part of the material characterization. The material parameters are
sample size, weight, density, failure load, and mode of failure, etc. These parameters
are monitored, recorded and analyzed. The suitable mixing ratios for the S:C and B:C

mixtures are selected and compared.
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5.2.1 Test methods

Preparation of these samples follows, as much as practical, the ASTM
D7012, C938 and C39 (ASTM 2010a, 2010b, 2010c). The uniaxial compressive
strength test is carried out at the ages of 3 days curing. Cylindrical specimens of 50.8
mm diameter are prepared for the basic uniaxial compressive strength test. During the
test, cylindrical specimens of 101.6 mm diameter, the axial deformation and lateral
deformation are monitored. The maximum loaded at the failure is recorded. The
compressive strength (oc), Poisson’s ratio (v), elastic modulus (E) are determined for
sludge and bentonite-mixed cement ratios vary from 1:10, 2:10, 3:10, 4:10, to 5:10.

Equipment and Apparatus

1) Rubber stopper for PVC pipe of 2 inches in diameter.

2) Point Loaded-Uniaxial Tester, model PLT-75, provide up to 30 tons
of load.

3) Cutter, model 51 ZE-L.G3-570A Tile Cutter, with speed 2,950 r/min
can be cut with a maximum 51 mm thick.

Initially uniaxial compressive strength test procedure follows as below:

1) The mixture slurry from the preparation in Chapter IV is placed in a
54 mm PVC mold with rubber stopper plugged at the bottom (Figure 5.1). Joint
connection should not leak out between PVC pipe and rubber stopper.

2) They are cured under water at room temperature (ASTM standard
C192).

3) All specimens are cured for three days before testing. They are out
of the mold and cut to a L/D ratio of about 2.0 to 2.5 (about 4 to 6 inches in length)

(Figures 5.2 and 5.3).
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4) Specimens are tested with a loading rate of 1 MPa/s for uniaxial
compressive strength test (Figure 5.4).

5) During the test, the failure modes are monitored (Figure 5.5). The
maximum loaded at the failure is recorded. The compressive strength (cc) IS
determined and compared for suitable mixing ratios.

The mixtures from the preparation (in Chapter 1V) and the results from
initially uniaxial compressive strength test are used for selected suitable mixing ratios.
The suitable mixing ratios for the S:C mixtures are 1:10, 3:10, 5:10 and for the B:C
mixtures are 1:10, 2:10, 3:10 both with the W:C of 1:1 by weight. Uniaxial
compressive strength test procedure follows as below:

1) The mixture slurry from the preparation (in section 5.1) is placed in
a PVC mold of 101.6 mm diameter and 203.2 mm long (Figure 5.6).

2) They are cured under water at room temperature (ASTM standard
C39).

3) All specimens are cured for three days before testing. They are out
of the mold and cut to L/D ratio of about 2.0. Summary of parameters and results for
basic mechanical testing are listed in Table 5.1.

4) Uniaxial compressive strength tests have been performed on
specimens with loading rate of 1 MPa/s (ASTM D7012).

5) During the test, axial and diametric deformations are monitored.
Dial gauges are the resolutions of +0.01 mm.

6) The maximum loaded at the failure is recorded. The cylindrical
specimen is loaded vertically using the compression machine shown in Figure 5.7.

Figure 5.8 shows failure modes for each specimen.
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The failure stress is calculated by dividing the axial load by the cross-
section area of specimen. The compressive strength (cc) is determined from the

maximum load (Ps) divided by the original cross-section area (A):

ce = PdA (5.3)

5.2.2 Test results

The results of the uniaxial compressive strengths for B:C and S:C
mixtures with W:C = 10:10, 8:10, 12.5:10, 40:10 at 3 days of curing are shown in
Figure 5.9. Parameters and results of uniaxial compressive strength test on the C, B:C
and S:C mixtures specimens of 50.8 mm and 101.6 mm diameter with W:C = 1:1 are
summarized in Table 5.2.

The results of the S:C and B:C show that the chemical reaction
between cement and water with the large cast are better than the small cast. Figures
5.10 and 5.11 show the uniaxial compressive strength and elastic modulus for the S:C
and B:C with W:C = 1:1. The uniaxial compressive strength and elastic modulus for
the specimens with the diameter of 101.6 mm are summarized in Tables 5.3 and 5.4.
The uniaxial compressive strength for the specimens with the diameter of 50.8 mm is
summarized in Table 5.5. The maximum compressive strengths for the S:C and B:C

mixtures are similar.

5.3 Shearing resistance between grout and fracture
The objective of the fracture shear test is to determine the direct shear strength
of grouting material in sandstone fracture. Grouting materials are sludge- and

bentonite-mixed cement. The experimental procedure is similar to the ASTM standard
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(D5607). The constant normal stresses are 0.25, 0.5, 0.75, 1.0 and 1.25 MPa. The
shear stresses are applied while the shear displacement and head drop is monitored for
every 0.2 mm of shear displacement. Similarities and differences of the results are
compared. The mixtures from the preparation in Chapter IV and the results from tasks
5.2 are used for selected suitable mixing ratios.
5.3.1 Test methods

Proportions of S:C mixtures are 0:10, 3:10, 5:10, and for B:C mixtures
are 1:10, 2:10, 3:10 with W:C ratio of 10:10 by weight. Preparation of these samples
follows, as much as practical, the ASTM C938 (ASTM 2010b). The PVC molded of
101.68 mm diameter is attributed to the rock samples with a nominal dimension of
100 mm in diameter and 100 nm long. The fractures are artificially made by applying
a line load at the center of length to induce splitting tensile crack. Some sandstone
specimens and surface sandstone of 101.6 mm diameter prepared for direct shear
testing are shown in Figures 5.12 and 5.13. The grouting material in the P\VC mold
has 50.8 mm thick that occur between the two rock samples (Figure 5.14). The
grouting materials are placed into the cylindrical PVC mold. The shear strength
tested, is carried out at the ages of 3 days curing. Laboratory arrangement for the
three-ring shear test equipment is shown in Figure 5.15 (Sonsakul and Fuenkajorn,
2013). The constant normal stresses used, are 0.25, 0.5, 0.75, 1.0 and 1.25 MPa. The
shear stressed, is applied while the shear displacement and dilation are monitored for
every 0.2 mm of shear displacement. The failure modes are recorded. The test results

are presented in forms of the shear strength as a function of normal stress as follows:

1= F2A (5.4)
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on = PIA (5.5)

where t is the shear stress, F is sheared force, A is cross section area, o, is normal
stress, P is normal load.

The results are presented in the form of the Coulomb’s criterion. The
line tangent to each of these circles defines the Coulomb’s criterion and can be
expressed by:

T = Cptotandy (5.6)
where t and o are the shear stress and normal stress, ¢, is the angle of internal
friction, and c; is cohesion.

5.3.2 Test results

Figure 5.16 shows some samples after testing. Table 5.6 lists the result
of shear strength. Shearing resistance between cement grout and fracture with
W:C=1:1 are shown in Figures 5.17 to 5.23. The results in the form of the Coulomb’s

criterion are shown in Figure 5.24. Table 5.7 lists the Coulomb’s parameters.



Table 5.1 Summary of parameters and results for basic mechanical testing.
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Types Sarzr;?le L((raTrllrgr]]t)h Di(?nmrﬁ;er LD V\ziigg)ht D(S?s(l:;y
C9-1 202.7 107.6 1.88 1.53 0.83
C9-2 201.0 106.9 1.88 1.50 0.83
C9-3 206.4 106.4 1.94 1.49 0.81
¢ C9-4 203.3 107.0 1.90 1.54 0.84
C9-5 202.6 107.6 1.88 1.55 0.84
BC20-1 204.3 107.8 1.89 2.46 1.32
BC20-2 204.7 106.2 1.93 2.45 1.35
B:C=0.1 BC20-3 204.1 107.7 1.90 2.43 131
BC20-4 204.3 105.9 1.93 242 1.34
BC20-5 205.0 105.6 1.94 2.54 141
BC21-1 202.0 107.1 1.89 2.60 1.43
BC21-2 204.4 106.5 1.92 2.56 141
B:C=0.2 BC21-3 196.8 106.8 1.84 243 1.38
BC21-4 205.6 106.8 1.93 2.44 1.32
BC21-5 207.5 106.3 1.95 2.50 1.36
BC9-6 207.5 106.3 1.95 2.45 1.33
BC9-7 207.5 106.3 1.95 2.50 1.36
B:C =0.3 BC9-8 207.5 106.3 1.95 243 1.32
BC9-9 207.5 106.3 1.95 244 1.32
BC9-10 207.5 106.3 1.95 2.43 1.32
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Table 5.1 Summary of parameters and results for basic mechanical testing (continued).

Types Sarzr;?le L(?r?r%t)h Di(?nmrﬁ;er LD V\ziigg)ht D(S?s(l:;y
SC40-1 202.7 105.4 1.92 3.50 1.98
SC40-2 202.9 106.3 1.91 3.30 1.83
S:C=0.1 | SC40-3 204.4 106.9 1.91 3.60 1.96
SC40-4 204.6 106.9 1.91 3.45 1.88
SC40-5 204.4 107.3 1.90 3.50 1.89
SC22-6 203.9 107.4 1.90 3.21 1.74
SC22-7 206.6 107.4 1.92 3.24 1.73
S:C=0.3 SC22-8 203.2 108.3 1.88 3.50 1.87
SC22-9 205.3 107.0 1.92 3.41 1.85
SC22-10 205.2 106.7 1.92 3.44 1.88
SC21-6 205.5 106.6 1.93 3.20 1.74
SC21-7 207.0 105.7 1.96 3.25 1.79
S:C=0.5 SC21-8 208.8 107.3 1.95 3.35 1.77
SC21-9 208.2 108.1 1.93 3.40 1.78
SC21-10 208.4 106.4 1.96 3.50 1.89




Table 5.2 Summary of uniaxial compressive strength test results on the C, B:C and

S:C mixtures specimens of 50.8 mm diameter.
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Binder wW:C S:CorB:C Number of | Uniaxial Compressive
8:10 1:10 S) 1.39+£0.19
8:10 2:10 15 2.77+0.20
8:10 3:10 8 2.75+0.12
8:10 4:10 5 2.72+0.14
10:10 1:10 2 0.79+0.12
10:10 2:10 13 0.95+0.11
10:10 3:10 3 1.22 +£0.10
Sludge 10:10 4:10 3 1.13+£0.17
10:10 5:10 3 1.10+0.34
10:10 6:10 3 1.02+ 0.00
10:10 8:10 3 0.88+ 0.01
10:10 10:10 3 0.81+0.00
12.5:10 2:10 5 0.62 £ 0.02
12.5:10 4:10 5) 0.52 +0.09
12.5:10 5:10 15 0.44 +0.01
10:10 1:10 10 1.05+0.10
10:10 2:10 7 1.83 £0.00
10:10 3:10 9 1.77 £0.09
_ 40:10 1:10 ) 0.19 £ 0.05
Bentonite 40:10 2:10 5 0.07 £ 0.03
40:10 3:10 ) 0.08 £ 0.02
40:10 4:10 5 0.04 £ 0.00
40:10 5:10 5) 0.05+0.02
8:10 0:10 5 1.1440.10
10:10 0:10 ) 0.85+0.00
Cement 12.5:10 0:10 5 0.70+0.10
40:10 0:10 ) 0.41+0.03




Table 5.3 Summary of uniaxial compressive strength test results on the C, B:C and

S:C mixtures specimens of 101.6 mm diameter with W:C = 1:1.
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Uniaxial Compressive

e s | Rao Swengi

C 5 0:10 1.40+0.27
B:C 5 1:10 1.59+0.28
B:C ) 2:10 2.09+0.26
B:C 5 3:10 1.92 +0.05
S:C 5 1:10 1.35+0.06
S:C 5 3:10 1.77+0.21
S:C 5 5:10 1.52+0.19

Table 5.4 Poisson’s ratio and elastic modulus from uniaxial compressive strength testing.

(MPa)

¢ 5 0:10 0.18 212
B:C 5 1:10 0.17 193
B:C 5 2:10 0.14 275
B:C 5 3:10 0.16 228
S:C 5 1:10 0.15 190
S:C 5 3:10 0.21 224
S:.C 5 5:10 0.16 261
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Table 5.5 Summary of uniaxial compressive strength test results on the C, B:C and

S:C mixtures specimens of 50.8 mm diameter with W:C = 1:1.

Types Number of Mixing Ratio Uniaxial Compressive
Samples Strength (MPa)

C 4 - 0.85+0.00
B:C 2 1:10 1.05+0.10
B:C 2 2:10 1.83 £ 0.00
B:C 2 3:10 1.77 £0.09
S:C 2 1:10 0.79+0.12
S:C 3 3:10 1.22 +£0.10
S:C 3 5:10 1.10+0.34

Table 5.6 Summary of direct shear strength test results on the C, B:C and S:C

mixtures specimens with W:C = 1:1.

Normal Peak Shear Stress (MPa)
(S,\t/{ b | Pue | sC | sc | sco| BC | BC | BC
Cement | =1:10 | =3:10 | =5:10 =1:10 =2:10 =3:10
0.25 0.62 0.36 0.31 0.34 0.37 0.22 0.25
0.50 0.68 0.49 0.42 0.46 0.53 0.34 0.37
0.75 0.77 0.62 0.55 0.60 0.65 0.43 0.47
1.00 0.86 0.74 0.68 0.71 0.77 0.52 0.56
1.25 0.90 0.83 0.77 0.80 0.85 0.63 0.67
1.50 0.93 0.90 0.83 0.86 0.90 0.74 0.80




Table 5.7 Summary of shear strength parameters calibrated from direct shear tests

using Coulomb’s criteria.
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Sample No. Cp (MPa) tandy ¢p (degrees) R

Pure Cement 0.563 0.263 14.7 0.962
S:C=1:10 0.275 0.436 23.6 0.985
S:C=3:10 0.213 0.435 23.5 0.988
S:C=5:10 0.255 0.428 23.2 0.985
B:C=1:10 0.306 0.424 23.0 0.968
B:C=2:10 0.121 0.410 22.3 0.998
B:C=3:10 0.143 0.430 23.3 0.996
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Figure 5.1 PVC mold has an inner diameter of 50.8 mm with a rubber stopper on the

bottom.

Figure 5.2 Core sample is cut to obtain the desired length with ZE-LG3-570A Tile

Cutter.
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Figure 5.3 Some specimens prepared for basic mechanical testing (a) sludge-mixed

cement, and (b) bentonite-mixed cement.
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Figure 5.4 Uniaxial compressive strength test with constant loading rate. The
cylindrical specimen is loaded vertically using the compression machine,

(a) cement, (b) sludge-mixed cement, and (c) bentonite-mixed cement.
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Figure 5.5 Specimens (a) sludge-mixed cement, and (b) bentonite-mixed cement after

failure under loading with constant stress rate of 1 MPa/s.
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Figure 5.6 PVC mold has an inner diameter of 101.6 mm with 203.2 mm in length.
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Figure 5.7 Uniaxial compressive strength test with constant loading rate.
The cylindrical specimen is loaded vertically using the compression

machine, (a) B:C = 2:10, (b) C:W =1:1, and (c) S:C =3:10.
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Figure 5.8 Specimens of 101.6 mm diameter (a) sludge-mixed cement, and (b)
bentonite-mixed cement after failure under loading with constant stress

rate of 1 MPa/s.
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Figure 5.9 Uniaxial compressive strengths for B:C and S:C mixtures with W:C =

10:10, 8:10, 12.5:10, 40:10 at 3 days of curing.
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Figure 5.10 Uniaxial compressive strengths for B:C and S:C with W:C = 1:1.
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Figure 5.11 Comparisons of elastic modulus between B:C and S:C mixtures.
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Tension-Induced Fracture "

Figure 5.12 Some sandstone specimens of 101.6 mm diameter prepared for direct shear

testing.

Figure 5.13 Surface sandstone specimen prepared for direct shear testing (left) and

surface sandstone model of laser scan (right).



Figure 5.15 Laboratory arrangements for three-ring direct shear test.
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Figure 5.16 Some specimens of grouting material in sandstone fracture after failure

under shearing between grout and fracture.
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Figure 5.17 Shearing resistance between cement grout and fracture with W:C=1:1.
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Figure 5.18 Shearing resistance between S:C=1:10 mixture grout and fracture with

W:C=1:1.
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Figure 5.19 Shearing resistance between S:C=3:10 mixture grout and fracture with

W:C=1:1.



81

c,=1.25 MPa

0.8
(]
o
=3
8 0 A-AAA-A 1 MPa
o
£ 0
(40
[0}
£
D 0.25 MPa

0- R T ¥ 1

8 10

Displacement (mm)

Figure 5.20 Shearing resistance between S:C=5:10 mixture grout and fracture with

W:C=1:1.
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Figure 5.21 Shearing resistance between B:C=1:10 mixture grout and fracture with

W:C=1:1.
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Figure 5.22 Shearing resistance between B:C=2:10 mixture grout and fracture with

W:C=1:1.
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Figure 5.23 Shearing resistance between B:C=3:10 mixture grout and fracture with

W:C=1:1.
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Figure 5.24 Normal stress and peak shear stress.



CHAPTER V

MECHANICAL PROPERTIES TESTING

5.1 Introduction

This chapter describes the methods and results of laboratory tests used to
determinate the maximum compressive strength, elastic modulus, and Poisson’s ratio
for the six proportions of grouting materials selected from Chapter V. Pure cement is
tested in term of mechanical properties. Preparation of these samples follows, as much
as practicable, the ASTM standards (ASTM D7012). Direct shear testing is performed
to determine the maximum shear force occurs at the interface among the surfaces of

the grouting material and surface of fractured sandstone.

5.2 Uniaxial compressive strength testing

The objectives of the uniaxial compressive strength tests are, 1) to evaluate the
basic mechanical properties of grouting material specimens of two-inch in diameter at
three days curing. They are used as an index to confirm that the proportions of S:C
and B:C mixtures are appropriate selection of the viscosity of mixture slurry form
Chapter IV, and 2) to determine the uniaxial compressive strength, Poison’s ratio and
elastic modulus of grouting material specimens of four-inch in diameter at three days
curing. This is a part of the material characterization. The material parameters are
sample size, weight, density, failure load, and mode of failure, etc. These parameters
are monitored, recorded and analyzed. The suitable mixing ratios for the S:C and B:C

mixtures are selected and compared.
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5.2.1 Test methods

Preparation of these samples follows, as much as practical, the ASTM
D7012, C938 and C39 (ASTM 2010a, 2010b, 2010c). The uniaxial compressive
strength test is carried out at the ages of 3 days curing. Cylindrical specimens of 50.8
mm diameter are prepared for the basic uniaxial compressive strength test. During the
test, cylindrical specimens of 101.6 mm diameter, the axial deformation and lateral
deformation are monitored. The maximum loaded at the failure is recorded. The
compressive strength (oc), Poisson’s ratio (v), elastic modulus (E) are determined for
sludge and bentonite-mixed cement ratios vary from 1:10, 2:10, 3:10, 4:10, to 5:10.

Equipment and Apparatus

1) Rubber stopper for PVC pipe of 2 inches in diameter.

2) Point Loaded-Uniaxial Tester, model PLT-75, provide up to 30 tons
of load.

3) Cutter, model 51 ZE-L.G3-570A Tile Cutter, with speed 2,950 r/min
can be cut with a maximum 51 mm thick.

Initially uniaxial compressive strength test procedure follows as below:

1) The mixture slurry from the preparation in Chapter IV is placed in a
54 mm PVC mold with rubber stopper plugged at the bottom (Figure 5.1). Joint
connection should not leak out between PVC pipe and rubber stopper.

2) They are cured under water at room temperature (ASTM standard
C192).

3) All specimens are cured for three days before testing. They are out
of the mold and cut to a L/D ratio of about 2.0 to 2.5 (about 4 to 6 inches in length)

(Figures 5.2 and 5.3).
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4) Specimens are tested with a loading rate of 1 MPa/s for uniaxial
compressive strength test (Figure 5.4).

5) During the test, the failure modes are monitored (Figure 5.5). The
maximum loaded at the failure is recorded. The compressive strength (cc) IS
determined and compared for suitable mixing ratios.

The mixtures from the preparation (in Chapter 1V) and the results from
initially uniaxial compressive strength test are used for selected suitable mixing ratios.
The suitable mixing ratios for the S:C mixtures are 1:10, 3:10, 5:10 and for the B:C
mixtures are 1:10, 2:10, 3:10 both with the W:C of 1:1 by weight. Uniaxial
compressive strength test procedure follows as below:

1) The mixture slurry from the preparation (in section 5.1) is placed in
a PVC mold of 101.6 mm diameter and 203.2 mm long (Figure 5.6).

2) They are cured under water at room temperature (ASTM standard
C39).

3) All specimens are cured for three days before testing. They are out
of the mold and cut to L/D ratio of about 2.0. Summary of parameters and results for
basic mechanical testing are listed in Table 5.1.

4) Uniaxial compressive strength tests have been performed on
specimens with loading rate of 1 MPa/s (ASTM D7012).

5) During the test, axial and diametric deformations are monitored.
Dial gauges are the resolutions of +0.01 mm.

6) The maximum loaded at the failure is recorded. The cylindrical
specimen is loaded vertically using the compression machine shown in Figure 5.7.

Figure 5.8 shows failure modes for each specimen.
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The failure stress is calculated by dividing the axial load by the cross-
section area of specimen. The compressive strength (cc) is determined from the

maximum load (Ps) divided by the original cross-section area (A):

ce = PdA (5.3)

5.2.2 Test results

The results of the uniaxial compressive strengths for B:C and S:C
mixtures with W:C = 10:10, 8:10, 12.5:10, 40:10 at 3 days of curing are shown in
Figure 5.9. Parameters and results of uniaxial compressive strength test on the C, B:C
and S:C mixtures specimens of 50.8 mm and 101.6 mm diameter with W:C = 1:1 are
summarized in Table 5.2.

The results of the S:C and B:C show that the chemical reaction
between cement and water with the large cast are better than the small cast. Figures
5.10 and 5.11 show the uniaxial compressive strength and elastic modulus for the S:C
and B:C with W:C = 1:1. The uniaxial compressive strength and elastic modulus for
the specimens with the diameter of 101.6 mm are summarized in Tables 5.3 and 5.4.
The uniaxial compressive strength for the specimens with the diameter of 50.8 mm is
summarized in Table 5.5. The maximum compressive strengths for the S:C and B:C

mixtures are similar.

5.3 Shearing resistance between grout and fracture
The objective of the fracture shear test is to determine the direct shear strength
of grouting material in sandstone fracture. Grouting materials are sludge- and

bentonite-mixed cement. The experimental procedure is similar to the ASTM standard
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(D5607). The constant normal stresses are 0.25, 0.5, 0.75, 1.0 and 1.25 MPa. The
shear stresses are applied while the shear displacement and head drop is monitored for
every 0.2 mm of shear displacement. Similarities and differences of the results are
compared. The mixtures from the preparation in Chapter IV and the results from tasks
5.2 are used for selected suitable mixing ratios.
5.3.1 Test methods

Proportions of S:C mixtures are 0:10, 3:10, 5:10, and for B:C mixtures
are 1:10, 2:10, 3:10 with W:C ratio of 10:10 by weight. Preparation of these samples
follows, as much as practical, the ASTM C938 (ASTM 2010b). The PVC molded of
101.68 mm diameter is attributed to the rock samples with a nominal dimension of
100 mm in diameter and 100 nm long. The fractures are artificially made by applying
a line load at the center of length to induce splitting tensile crack. Some sandstone
specimens and surface sandstone of 101.6 mm diameter prepared for direct shear
testing are shown in Figures 5.12 and 5.13. The grouting material in the P\VC mold
has 50.8 mm thick that occur between the two rock samples (Figure 5.14). The
grouting materials are placed into the cylindrical PVC mold. The shear strength
tested, is carried out at the ages of 3 days curing. Laboratory arrangement for the
three-ring shear test equipment is shown in Figure 5.15 (Sonsakul and Fuenkajorn,
2013). The constant normal stresses used, are 0.25, 0.5, 0.75, 1.0 and 1.25 MPa. The
shear stressed, is applied while the shear displacement and dilation are monitored for
every 0.2 mm of shear displacement. The failure modes are recorded. The test results

are presented in forms of the shear strength as a function of normal stress as follows:

1= F2A (5.4)
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on = PIA (5.5)

where t is the shear stress, F is sheared force, A is cross section area, o, is normal
stress, P is normal load.

The results are presented in the form of the Coulomb’s criterion. The
line tangent to each of these circles defines the Coulomb’s criterion and can be
expressed by:

T = Cptotandy (5.6)
where t and o are the shear stress and normal stress, ¢, is the angle of internal
friction, and c; is cohesion.

5.3.2 Test results

Figure 5.16 shows some samples after testing. Table 5.6 lists the result
of shear strength. Shearing resistance between cement grout and fracture with
W:C=1:1 are shown in Figures 5.17 to 5.23. The results in the form of the Coulomb’s

criterion are shown in Figure 5.24. Table 5.7 lists the Coulomb’s parameters.



Table 5.1 Summary of parameters and results for basic mechanical testing.
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Types Sarzr;?le L((raTrllrgr]]t)h Di(?nmrﬁ;er LD V\ziigg)ht D(S?s(l:;y
C9-1 202.7 107.6 1.88 1.53 0.83
C9-2 201.0 106.9 1.88 1.50 0.83
C9-3 206.4 106.4 1.94 1.49 0.81
¢ C9-4 203.3 107.0 1.90 1.54 0.84
C9-5 202.6 107.6 1.88 1.55 0.84
BC20-1 204.3 107.8 1.89 2.46 1.32
BC20-2 204.7 106.2 1.93 2.45 1.35
B:C=0.1 BC20-3 204.1 107.7 1.90 2.43 131
BC20-4 204.3 105.9 1.93 242 1.34
BC20-5 205.0 105.6 1.94 2.54 141
BC21-1 202.0 107.1 1.89 2.60 1.43
BC21-2 204.4 106.5 1.92 2.56 141
B:C=0.2 BC21-3 196.8 106.8 1.84 243 1.38
BC21-4 205.6 106.8 1.93 2.44 1.32
BC21-5 207.5 106.3 1.95 2.50 1.36
BC9-6 207.5 106.3 1.95 2.45 1.33
BC9-7 207.5 106.3 1.95 2.50 1.36
B:C =0.3 BC9-8 207.5 106.3 1.95 243 1.32
BC9-9 207.5 106.3 1.95 244 1.32
BC9-10 207.5 106.3 1.95 2.43 1.32
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Table 5.1 Summary of parameters and results for basic mechanical testing (continued).

Types Sarzr;?le L(?r?r%t)h Di(?nmrﬁ;er LD V\ziigg)ht D(S?s(l:;y
SC40-1 202.7 105.4 1.92 3.50 1.98
SC40-2 202.9 106.3 1.91 3.30 1.83
S:C=0.1 | SC40-3 204.4 106.9 1.91 3.60 1.96
SC40-4 204.6 106.9 1.91 3.45 1.88
SC40-5 204.4 107.3 1.90 3.50 1.89
SC22-6 203.9 107.4 1.90 3.21 1.74
SC22-7 206.6 107.4 1.92 3.24 1.73
S:C=0.3 SC22-8 203.2 108.3 1.88 3.50 1.87
SC22-9 205.3 107.0 1.92 3.41 1.85
SC22-10 205.2 106.7 1.92 3.44 1.88
SC21-6 205.5 106.6 1.93 3.20 1.74
SC21-7 207.0 105.7 1.96 3.25 1.79
S:C=0.5 SC21-8 208.8 107.3 1.95 3.35 1.77
SC21-9 208.2 108.1 1.93 3.40 1.78
SC21-10 208.4 106.4 1.96 3.50 1.89




Table 5.2 Summary of uniaxial compressive strength test results on the C, B:C and

S:C mixtures specimens of 50.8 mm diameter.
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Binder wW:C S:CorB:C Number of | Uniaxial Compressive
8:10 1:10 S) 1.39+£0.19
8:10 2:10 15 2.77+0.20
8:10 3:10 8 2.75+0.12
8:10 4:10 5 2.72+0.14
10:10 1:10 2 0.79+0.12
10:10 2:10 13 0.95+0.11
10:10 3:10 3 1.22 +£0.10
Sludge 10:10 4:10 3 1.13+£0.17
10:10 5:10 3 1.10+0.34
10:10 6:10 3 1.02+ 0.00
10:10 8:10 3 0.88+ 0.01
10:10 10:10 3 0.81+0.00
12.5:10 2:10 5 0.62 £ 0.02
12.5:10 4:10 5) 0.52 +0.09
12.5:10 5:10 15 0.44 +0.01
10:10 1:10 10 1.05+0.10
10:10 2:10 7 1.83 £0.00
10:10 3:10 9 1.77 £0.09
_ 40:10 1:10 ) 0.19 £ 0.05
Bentonite 40:10 2:10 5 0.07 £ 0.03
40:10 3:10 ) 0.08 £ 0.02
40:10 4:10 5 0.04 £ 0.00
40:10 5:10 5) 0.05+0.02
8:10 0:10 5 1.1440.10
10:10 0:10 ) 0.85+0.00
Cement 12.5:10 0:10 5 0.70+0.10
40:10 0:10 ) 0.41+0.03




Table 5.3 Summary of uniaxial compressive strength test results on the C, B:C and

S:C mixtures specimens of 101.6 mm diameter with W:C = 1:1.
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Uniaxial Compressive

e s | Rao Swengi

C 5 0:10 1.40+0.27
B:C 5 1:10 1.59+0.28
B:C ) 2:10 2.09+0.26
B:C 5 3:10 1.92 +0.05
S:C 5 1:10 1.35+0.06
S:C 5 3:10 1.77+0.21
S:C 5 5:10 1.52+0.19

Table 5.4 Poisson’s ratio and elastic modulus from uniaxial compressive strength testing.

(MPa)

¢ 5 0:10 0.18 212
B:C 5 1:10 0.17 193
B:C 5 2:10 0.14 275
B:C 5 3:10 0.16 228
S:C 5 1:10 0.15 190
S:C 5 3:10 0.21 224
S:.C 5 5:10 0.16 261
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Table 5.5 Summary of uniaxial compressive strength test results on the C, B:C and

S:C mixtures specimens of 50.8 mm diameter with W:C = 1:1.

Types Number of Mixing Ratio Uniaxial Compressive
Samples Strength (MPa)

C 4 - 0.85+0.00
B:C 2 1:10 1.05+0.10
B:C 2 2:10 1.83 £ 0.00
B:C 2 3:10 1.77 £0.09
S:C 2 1:10 0.79+0.12
S:C 3 3:10 1.22 +£0.10
S:C 3 5:10 1.10+0.34

Table 5.6 Summary of direct shear strength test results on the C, B:C and S:C

mixtures specimens with W:C = 1:1.

Normal Peak Shear Stress (MPa)
(S,\t/{ b | Pue | sC | sc | sco| BC | BC | BC
Cement | =1:10 | =3:10 | =5:10 =1:10 =2:10 =3:10
0.25 0.62 0.36 0.31 0.34 0.37 0.22 0.25
0.50 0.68 0.49 0.42 0.46 0.53 0.34 0.37
0.75 0.77 0.62 0.55 0.60 0.65 0.43 0.47
1.00 0.86 0.74 0.68 0.71 0.77 0.52 0.56
1.25 0.90 0.83 0.77 0.80 0.85 0.63 0.67
1.50 0.93 0.90 0.83 0.86 0.90 0.74 0.80




Table 5.7 Summary of shear strength parameters calibrated from direct shear tests

using Coulomb’s criteria.
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Sample No. Cp (MPa) tandy ¢p (degrees) R

Pure Cement 0.563 0.263 14.7 0.962
S:C=1:10 0.275 0.436 23.6 0.985
S:C=3:10 0.213 0.435 23.5 0.988
S:C=5:10 0.255 0.428 23.2 0.985
B:C=1:10 0.306 0.424 23.0 0.968
B:C=2:10 0.121 0.410 22.3 0.998
B:C=3:10 0.143 0.430 23.3 0.996
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Figure 5.1 PVC mold has an inner diameter of 50.8 mm with a rubber stopper on the

bottom.

Figure 5.2 Core sample is cut to obtain the desired length with ZE-LG3-570A Tile

Cutter.
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Figure 5.3 Some specimens prepared for basic mechanical testing (a) sludge-mixed

cement, and (b) bentonite-mixed cement.
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Figure 5.4 Uniaxial compressive strength test with constant loading rate. The
cylindrical specimen is loaded vertically using the compression machine,

(a) cement, (b) sludge-mixed cement, and (c) bentonite-mixed cement.
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Figure 5.5 Specimens (a) sludge-mixed cement, and (b) bentonite-mixed cement after

failure under loading with constant stress rate of 1 MPa/s.
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Figure 5.6 PVC mold has an inner diameter of 101.6 mm with 203.2 mm in length.
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Figure 5.7 Uniaxial compressive strength test with constant loading rate.
The cylindrical specimen is loaded vertically using the compression

machine, (a) B:C = 2:10, (b) C:W =1:1, and (c) S:C =3:10.
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Figure 5.8 Specimens of 101.6 mm diameter (a) sludge-mixed cement, and (b)
bentonite-mixed cement after failure under loading with constant stress

rate of 1 MPa/s.
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Figure 5.9 Uniaxial compressive strengths for B:C and S:C mixtures with W:C =

10:10, 8:10, 12.5:10, 40:10 at 3 days of curing.
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Figure 5.10 Uniaxial compressive strengths for B:C and S:C with W:C = 1:1.
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Figure 5.11 Comparisons of elastic modulus between B:C and S:C mixtures.
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Tension-Induced Fracture "

Figure 5.12 Some sandstone specimens of 101.6 mm diameter prepared for direct shear

testing.

Figure 5.13 Surface sandstone specimen prepared for direct shear testing (left) and

surface sandstone model of laser scan (right).



Figure 5.15 Laboratory arrangements for three-ring direct shear test.
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Figure 5.16 Some specimens of grouting material in sandstone fracture after failure

under shearing between grout and fracture.
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Figure 5.17 Shearing resistance between cement grout and fracture with W:C=1:1.
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Figure 5.18 Shearing resistance between S:C=1:10 mixture grout and fracture with

W:C=1:1.
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Figure 5.19 Shearing resistance between S:C=3:10 mixture grout and fracture with

W:C=1:1.
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Figure 5.20 Shearing resistance between S:C=5:10 mixture grout and fracture with

W:C=1:1.
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Figure 5.21 Shearing resistance between B:C=1:10 mixture grout and fracture with

W:C=1:1.
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Figure 5.22 Shearing resistance between B:C=2:10 mixture grout and fracture with

W:C=1:1.
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Figure 5.23 Shearing resistance between B:C=3:10 mixture grout and fracture with

W:C=1:1.
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Figure 5.24 Normal stress and peak shear stress.



CHAPTER VI

HYDRAULIC PROPERTIES TESTING

6.1 Introduction

This chapter describes the methods and results of laboratory tests to
determinate the permeability of grouting materials in artificial fractures from Phu
Kradung sandstone. The permeability of the mixture is an important factor to show
the hydraulic potential, otherwise the ability to reduce permeability of fractures in
sandstone. Hydraulic properties testing in this chapter is divided into three tasks: 1)
grout permeability tests 2) fracture permeability tests, and 3) permeability test of
grouting materials in rock fractures. The rock samples are prepared as described in

Chapter I11.

6.2 Permeability of grouting materials

The objective of the grout permeability tests is to determine the water
permeability of grouting material specimen using constant head flow tests. The
permeability of grouting material is the a factor to be used to determinate the most
suitable mixing ratios for grouting in rock. These tasks describe method for grout
permeability testing in the laboratory. Proportions of S:C mixtures are 0:10, 3:10,
5:10 and B:C mixtures are 1:10, 2:10, 3:10 with W:C ratio of 10:10 by weight.

Results of both mixtures are compared.
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6.2.1 Test methods
The procedure for determining the grout permeability is similar to the
ASTM C938 and C39 (ASTM 2010a, 2010c). Proportions of S:C mixtures are 0:10,
3:10, 5:10 and B:C mixtures are 1:10, 2:10, 3:10 with W:C ratio of 10:10 by weight.
These tests are conducted at 3, 7, 14 and 28 days of curing. The mold has an inner
diameter of 101.6 mm with a length of 152.4 mm. The prepared specimen is sealed
between two acrylic platens with the aid of O-ring rubber and epoxy coating (Figures
6.1 and 6.2). Inlet ports is installed at the end of the mold and connected to a water
pressure tube. Nitrogen compressed pressure gas about 13.8 kPa. Air bubbles are bled
out before measuring the permeability. Outlet ports is installed at another end and
connected to a high precision pipette for measuring the outflow (Figures 6.3 and 6.4).
The intrinsic permeability (k) is calculated from the flow rate based on the Darcy’s
law (Freeze and Cherry, 1979; Indraratna and Ranjith 2001).
6.2.2 Test results
The results of comparison of S:C mixtures, B:C mixtures, and C are
presented on Figure 6.5. Table 6.1 summarizes the results of permeability testing of

grouting material results at 3, 7, 14 and 28 days of curing.

6.3 Permeability of rock fractures

The objective of this task is to assess the permeability of rock fractures under
varying normal stresses. The fracture permeability is used to compare with the
permeability of grouting materials for both sludge and bentonte mixtures. Constant

head flow tests are performed. The normal stresses are different. Five specimens are
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prepared and tested. The rock samples in 152.4x152.4x152.4 mm?® prismatic blocks
are prepared as described in Chapter 111 (Figures 6.6 and 6.7).
6.3.1 Test methods

The constant head flow tests are performed. The normal stresses are
ranging from 1, 2, 3 and 4 MPa. Five specimens are prepared and tested. The
injection hole at the center of the upper block is 12 mm in diameter and 101.6 mm in
depth. The tests are conducted by injecting water. Injecting water conducted the tests
into the center hole of the rectangular block specimen. The laboratory arrangement of
the constant head flow test is shown in Figure 6.8. Water volume and time are
recorded that tend to decrease exponentially with the normal stress. The permeability
results (k) are plotted as a function of the normal stress (on) Iin Figure 8. The
equivalent hydraulic aperture (ey) for radial flow, hydraulic conductivity between
smooth and parallel plates (K), and intrinsic permeability (k) are calculated by (Tsang,

1992; Indraratna and Ranjith, 2001) :

en = {[(610)/ (xAP)] In (r/rg)}** (4.7)
K = ywen/12p (4.8)
k = en?/12 (4.9)

where p is the dynamic viscosity of the water (N-s/cm?), q is water flow rate through

the specimen (cm?/s), AP is injecting water pressure into the center hole of rectangular
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blocks of the specimen, r is radius of flow path (m), ro is radius of the radius injection
hole (m). yy is unit weight of water (N/m?).
6.3.2 Test results
Table 6.2 lists the result of permeability of rock fractures under normal
stresses ranging from 1, 2, 3 and 4 MPa. Figure 6.9 is shown relationship of intrinsic
permeability (K), hydraulic conductivity (K), and aperture (en) as a function of normal
stress (op) for fracture in Phu Kradung sandstone. The results show that the intrinsic

permeability of the fractures is less than 1.4x10° m%

6.4 Permeability of grouting materials in rock fractures

The objective of permeability test of grouting materials in rock fractures is to
determine the permeability of sludge-mixed cement and bentonite-mixed cement in
artificial fractures from Phu Kradung sandstone. Six mixture proportions of S:C and
B:C selected and prepared are similar Chapter IV. The grouting materials are used to
fill the fractures. The constant normal stresses are 0.25, 0.5, 1.0 and 1.25 MPa.

6.4.1 Test methods

The testing method is similar to that described above this task. The
grouting materials are injected into the fractures. The fractrue apertures are 2, 10, and
20 mm. The grouting materials are cured for 3 days. Figures 6.10 to 6.11 give the
laboratory arrangement. Constant head flow tests is performed. The constant head is
ranging between 13.8 and 551.7 kPa. The constant normal stresses are 0.25, 0.5, 1.0
and 1.25 MPa. The results show that the normal stress can reduce the permeability of
grouting materials in fractured sandstone. The intrinsic permeability (k) is calculated

from the measured flow rate (Q) as follows: (Indraratna and Ranjith, 2001)
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K = Q In(2mL/D)/2rLH. (4.10)

k = Kplyw (4.11)

where K is hydraulic conductivity, Q is flow rate of water flow through the mixture, m
is square root of the ratio between the conductivity perpendicular and parallel to the
hole (here, m is equal to 1), L is the thickness of grouting material in fracture apertures,
D is diameter of the injection hole at the center of the upper block, H. is the constant
head used for the test, p is dynamic viscosity (891x10°® kg/(m-s)) at temperature of
25°C, v, is unit weight of water (997.13 kg/m°).
6.4.2 Test results

The results of permeability of grouting material in rock fractures
aperture 2, 10, and 20 mm are summarized in Tables 6.3 — 6.5. Intrinsic permeability
(), hydraulic conductivity (K), and aperture (en) as a function of normal stress (op)

for fracture aperture 2, 10, and 20 mm are shown in Figures 6.12 — 6.14.
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Table 6.1 Summary of permeability testing of grouting material results at 3, 7, 14 and

28 days of curing.
. Intrinsic P bility (x1078 m?
Curing ntrinsic Permeability ( m°)
Time Pure S:C S:C S:C B:C B:C B:C
(days) | cement | =1:10 | =3:10 | =5:10 | =1:10 | =2:10 | =3:10
3 8,930.0 | 8,250.0 | 2,930.0 | 2,210.0 | 2,370.0 | 868.0 317.0
7 965.0 | 3,720.0 | 643.0 349.0 | 431.0 | 265.0 67.6
14 74.1 681.0 115.0 11.6 4140 | 228.0 49.0
28 0.441 249.0 62.0 6.8 356.0 | 208.0 41.3




Table 6.2 Summary of permeability of rock fractures results.

Sample | Normal stress K k €h
No. (MPa) (10° m/s) (10° m?) (um)

1 0.111+0.02 0.099+0.02 34.44+2.53
2 0.090+0.02 0.080+0.02 30.81+3.91

. 3 0.074%0.02 0.074+0.02 27.92+4.12
4 0.062+0.02 0.062+0.02 25.42+4.36
1 0.637+0.02 0.569+0.01 82.64+1.05
2 0.509+0.05 0.455%0.05 73.82+£3.59

? 3 0.412+0.01 0.369+0.00 66.50+0.36
4 0.304+0.00 0.271+0.00 57.06+0.05
1 1.167%0.52 1.043+0.47 109.54+25.34
2 0.914+0.39 0.817+0.35 97.03£21.90

’ 3 0.733+0.30 0.655+0.26 87.04+18.66
4 0.607%0.28 0.543£0.25 78.90+£18.89
1 1.571+0.46 1.403+0.41 128.55+19.88
2 1.141+0.23 1.019+0.20 110.16+£11.03

) 3 0.899+0.47 0.803+0.42 95.60+£25.01
4 0.662+0.27 0.592+0.24 82.86x£17.06
1 0.791+0.11 0.706+0.01 91.90+6.33
2 0.602+0.14 0.538+0.13 79.91+9.27

° 3 0.513+0.08 0.485%0.07 74.00+5.68
4 0.397+0.05 0.355+0.04 65.20+3.63
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Table 6.3 Summary of permeability of grouting material in rock fractures aperture 2 mm.

Binder Normal stress EI)( 1l§ , €n
(MPa) (10 m/s) (107 m") (um)
0.25 11.94:048 |  1.07+0.04 1.24+0.02
0.50 9.06+0.52 0.81+0.05 1.08+0.03
c 0.75 7.06+0.53 0.63+0.05 0.95+0.04
1.00 5.44+0.39 0.49+0.04 0.84+0.03
1.25 4.05+0.36 0.36+0.03 0.72+0.03
0.25 39.0245.17 |  3.49£0.46 2.24+0.15
0.50 28.98+2.71 |  2.59+0.24 1.93+0.09
A 0.75 2248+251 |  2.01%0.22 1.70+0.09
1.00 16.99+1.04 |  1.52+0.09 1.48+0.05
1.25 12.60+128 |  1.13+0.11 1.27+0.06
0.25 64441861 | 5.76+0.77 2.88+0.19
0.50 45.663.64 |  4.08+0.32 2.42+0.10
S8 0.75 34.37+1.85 | 3.07:0.17 2.10+0.06
1.00 26.05:2.67 |  2.33:0.24 1.83+0.09
1.25 19.51+155 |  1.74+0.14 1.58+0.06
0.25 16.70+0.90 |  1.49:0.08 1.47+0.04
0.50 12.28+0.43 |  1.10:0.04 1.260.02
oY 0.75 8.70:0.66 | 078:006 | 1.06£0.04
1.00 6.84+0.90 0.61+0.08 0.94+0.06
1.25 4.97+0.18 0.44+0.02 0.80+0.01
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Table 6.3 Summary of permeability of grouting material in rock fractures aperture 2 mm

(continued).

Binder Normal stress g( 1I§ , €h
(MPa) (10 m/s) (107 m?) (um)
0.25 191.03+23.65 17.07+2.11 4.95+0.30
0.50 129.69+7.87 11.59+0.70 4.08+0.12
o 0.75 88.27+1557 |  7.89+1.39 3.36+0.31
1.00 62.70+4.33 5.60+0.39 2.84%0.10
1.25 44,08+10.42 3.94+0.93 2.37+0.29
0.25 277.04+38.01 24.75+3.40 5.96+0.41
0.50 191.30£26.97 17.09+2.41 4.95+0.36
3?0 0.75 128.01+15.11 11.44+1.35 4.0510.24
1.00 83.42+9.32 7.45%0.83 3.27+0.19
1.25 51.78+3.82 4.63+0.34 2.58+0.10
0.25 141.51+10.42 12.65+0.93 4.27+0.16
0.50 103.12+11.08 9.21+0.99 3.64+0.20
:'33::(130 0.75 72.68+9.42 6.49+0.84 3.05£0.20
1.00 52.59+4.72 4,70£0.42 2.60+0.12
1.25 36.70£2.06 3.28+0.18 2.17+0.06
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Table 6.4 Summary of permeability of grouting material in rock fractures aperture

10 mm.

Binder Normal stress é( llé , en
(MPa) (107 m/s) (107 m?) (um)
0.25 38.94+1.75 3.48+0.16 2.24%0.05
0.50 25.08+0.97 2.24+0.09 1.80+0.03
C 0.75 16.89+1.61 1.51+0.14 1.47+0.07
1.00 10.69+1.28 0.95+0.11 1.17+0.07
1.25 6.79+0.89 0.61+0.08 0.93+0.06
0.25 29.45+0.38 2.63+0.03 1.95+0.01
0.50 19.43+0.75 1.74+0.07 1.58+0.03
=Sl::(i30 0.75 13.21+1.03 1.18+0.09 1.30+0.05
1.00 8.87+0.65 0.79+0.06 1.07+£0.04
1.25 5.98+0.49 0.53+0.04 0.88+0.04
0.25 3.83+0.46 0.34+0.04 0.70+0.04
0.50 2.77+0.24 0.25+0.02 0.60+0.03
:?3::C1:O 0.75 1.89+0.25 0.17+0.02 0.49+0.03
1.00 1.1940.09 0.11+0.01 0.39+0.01
1.25 0.81+0.09 0.07+0.01 0.32+0.02
0.25 25.37+0.73 2.27+0.06 1.81+0.03
0.50 16.81+0.57 1.50+0.05 1.47+0.03
285::?0 0.75 10.82+0.45 0.97+0.04 1.18+0.02
1.00 7.68+0.52 0.69+0.05 0.99+0.03
1.25 5.24+0.32 0.47+0.03 0.82+0.03
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Table 6.4 Summary of permeability of grouting material in rock fractures aperture

10 mm (continued).

Binder Normal stress g( 1I§ , €h
(MPa) (20”7 m/s) (107 m?) (um)
0.25 2.12+0.10 0.19+0.01 0.52+0.01
0.50 1.46+0.04 0.13+0.00 0.43+0.01
o 0.75 1012004 | 0094000 | 0.36+0.01
1.00 0.69+0.02 0.06+0.00 0.30+0.00
1.25 0.48+0.01 0.04+0.00 0.25+0.00
0.25 9.78+0.27 0.87+0.02 1.12+0.02
0.50 6.34+0.45 0.57+0.04 0.90+0.03
232:0 0.75 4.31+0.34 0.38+0.03 0.74+0.03
1.00 2.90+0.14 0.26+0.01 0.61+0.01
1.25 2.10+0.06 0.19+0.00 0.52+0.01
0.25 18.93+0.84 1.69+0.08 1.56+0.03
0.50 12.69+0.59 1.13+0.05 1.28+0.03
:2%0 0.75 8.60+0.14 0.77+0.01 1.05+0.01
1.00 5.88+0.57 0.53+0.05 0.87+0.04
1.25 3.91+0.25 0.35+0.02 0.71+0.02
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Table 6.5 Summary of permeability of grouting material in rock fractures aperture

20 mm.
Binder Normal stress é( 1‘; , €n
(MPa) (10 m/s) (107 m") (um)
0.25 148.68+28.60 13.29+2.56 4.36+0.43
0.50 90.45+14.07 8.08+1.26 3.40+0.26
C 0.75 57.104£9.01 5.10+0.81 2.71+0.21
1.00 33.09+6.42 2.96+0.57 2.06+0.20
1.25 20.75%2.34 1.85+0.21 1.63+0.09
0.25 108.50+18.42 9.70+1.65 3.73+0.32
0.50 60.90+5.01 5.44+0.45 2.80+0.11
=Sl::(i:O 0.75 40.20+4.65 3.59+0.42 2.27+0.13
1.00 23.97+0.72 2.14+0.06 1.76+0.03
1.25 15.22+1.39 1.36+0.12 1.40+0.06
0.25 39.28+1.37 3.51+0.12 2.25+0.04
0.50 24.16%1.64 2.16+0.15 1.76%0.06
:2:&:0 0.75 16.61+1.02 1.48+0.09 1.46%0.04
1.00 12.04+1.13 1.08+0.10 1.24+0.06
1.25 9.00+0.85 0.80+0.08 1.08+0.05
0.25 16.60+2.60 1.48+0.23 1.46%0.12
0.50 11.30+1.65 1.01+0.15 1.20+0.09
285::c1:0 0.75 8.15+1.14 0.73+0.10 1.02+0.07
1.00 6.50+0.49 0.58+0.04 0.91+0.03
1.25 4.87+0.04 0.44+0.00 0.79+0.00




Table 6.5 Summary of permeability of grouting material in rock fractures aperture

20 mm (continued).
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Binder Normal stress g( 1I§ , €h
(MPa) (20”7 m/s) (107 m?) (um)
0.25 9.42+1.18 0.84+0.11 1.10+0.07
0.50 6.95+0.60 0.62+0.05 0.94+0.04
jfo 0.75 5.33+0.51 0.48+0.05 0.83+0.04
1.00 4.04+0.38 0.36+0.03 0.72+0.03
1.25 3.24+0.38 0.29+0.03 0.64+0.04
0.25 73.26+11.81 6.55+1.06 3.06+0.25
0.50 42.9748.21 3.84+0.73 2.34+0.22
:2::50 0.75 28.37+8.14 2.54+0.73 1.90+0.28
1.00 17.73+2.51 1.58+0.22 1.51+0.11
1.25 12.34+0.55 1.10+0.05 1.26+0.03
0.25 7.05%0.60 0.63+0.05 0.95+0.04
0.50 4.94+0.31 0.44+0.03 0.80+0.03
:250 0.75 3.85+0.58 0.34+0.05 0.70+0.05
1.00 3.10+0.48 0.28+0.04 0.63+0.05
1.25 2.43+0.23 0.22+0.02 0.56+0.03
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Figure 6.1 PVC mold has an inner diameter of 101.6 mm for permeability testing of

grouting materials.

Figure 6.2 PVC mold has sealed between two acrylic platens with the aid of
O-ring rubber and epoxy coating for permeability testing of grouting

materials.
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Figure 6.3 Diagram of laboratory arrangement for permeability testing of grouting
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Figure 6.4 Laboratory arrangements for permeability testing of grouting materials.
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Figure 6.5 Intrinsic permeability as a function of time for pure cement (C), B:C, and
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Figure 6.6 Some sandstone specimens of 152.4 x 152.4 x 152.4 mm prepared for

permeability testing of rock fractures.

o

Figure 6.7 Fracture surface in sandstone specimen prepared for permeability testing

of rock fractures (left) and surface sandstone model from laser scan

(right).
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Figure 6.8 Laboratory arrangement for permeability testing of fractures.



102

1000 7

on (MPa)
10 7
5
w | 3-a .
g ! 4~
‘5'-’2 2
X 0.1 14‘\4\4\4
0.01 T T T 1
0 1 2 3 4
on (MPa)

10 1

(109 m2)
AN

0.1 ‘]—"l—\i\é\{

0.01

on (MPa)
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Figure 6.14 Intrinsic permeability (k), hydraulic conductivity (K), and aperture (en) as



CHAPTER VII

DISCUSSIONS

7.1  Viscosity and density of mixtures

The basic properties of the mixtures slurry are initially designed to select the
appropriate proportions of sludge-to-cement ratios. The sludge-mixed cement ratios
(S:C) of 0:10, 1:10, 2:10, 3:10, 4:10, 5:10, 6:10, 8:10 and 10:10 by weight are
prepared with water-cement ratios (W:C) of 0.8:1, 1:1 and 1.25:1. The bentonite-
cement ratios (B:C) are 0:10, 1:10, 2:10, 3:10, 4:10, and 5:10 by weight with W:C of
10:10 and 40:10. Mixing of all grouts is by using a blade paddle mixer as suggested
by ASTM C938 (ASTM 2010a). Viscosity measurement follows, as much as
practical, the ASTM D2196 (ASTM 2010d). The results are shown in Figure 4.12.
The suitable mixing ratios for the S:C are 1:10, 3:10, 5:10 and for the B:C are 1:10,
2:10, 3:10 with the W:C of 1:1 by weight. These proportions yield the lowest slurry
viscosity of 5 Pa-s.

Two parameters controlled the workability of mixtures. The first parameter, a
constant water to cement ratio (W:C) of 8:10, 10:10 and 12.5:10 are used. The second
parameter, the viscosity of mixture is increased by adjusting the quantity of mixing
sludge. Table 4.3 shows the test results, the viscosity of the mixture slurry in different
proportions. The effect of various ratios of W:C used in the mixture proportions are
shown in Figure 4.12. The proportion of cement decreased with slurry viscosity

increase exponentially as B:C or S:C more than 0.5. The proportion of water increase
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with the viscosity of the slurry mixture decreases. Comparing curves of viscosities
between S:C and B:C mixtures shows that are corresponding tend. For B:C mixture,
the proportion of W:C is not less than 1.0 because the mixtures is sticky and semi-
solid condition. Bentonite expands when wet, absorbing as much as several times its
dry mass in water. While sludge is used for the S:C mixture, it is largely ranging for
increasing and decreasing the quantity of water in proportion. The slurry of S:C
mixture can be tested the viscosity with the highest compressive strengths.

Proportion of the mixtures mentioned above, the water to cement ratio of
10:10 is used that does not sticky and can grout in fractures. Mixture of cement
proportions (S:C, B:C) be more than 5:10 is used to make the grouting material has
high viscosity and can flow in fractures effectively. The proportions of mixtures are
comparable to Garvin and Hayles (1999). They are the B:C proportion of 0.33. This
study uses the S:C mixtures of 1:10, 2:10 and 3:10, and the B:C mixtures of 1:10,

3:10 and 5:10.

7.2 Mechanical properties testing
7.2.1 Uniaxial compressive strength testing

The uniaxial compressive strength, elastic modulus, and Poisson’s ratio
of the grouting materials are determined. The results show that the suitable mixing
ratios for the S:C are 1:10, 3:10, 5:10 and for the B:C are 1:10, 2:10, 3:10 with the
W:C of 1:1 by weight (Tables 5.3 and 5.4). These proportions yield the lowest slurry
viscosity of 5 Pa-s and the highest compressive strength. Preparation of these samples
follows, as much as practical, the ASTM standards (D7012, C938, C39). All

specimens are cured for 3 days before testing. During the test, the axial deformation
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and lateral deformation are monitored. The maximum loaded at the failure is
recorded. The compressive strength (oc), Poisson’s ratio (v), elastic modulus (E) are
determined. The results of the S:C and B:C indicate that the chemical reaction
between cement and water with the large cast are better than the small cast.

Figure 5.10 shows uniaxial compressive strengths for B:C and S:C
ratios. The results show that the maximum uniaxial compressive strength of the S:C
and B:C are similar to W:C = 10:10. Larger mold allows a better chemical reaction
between cement and bentonite or cement and sludge that small mold. Figure 5.11
shows the elasticity modulus of the mixtures selected. The elastic modulus is in the
range between 200 MPa to 280 MPa. In particular, water portion tend to decrease with
increasing uniaxial compressive strength but is not more than 3 MPa. Then the slurry
viscosity is increasing which is not as beneficial as the grouting material used to fill in
rock fracture. When water portion tends to increase, W: C > 1:1, with the uniaxial
compressive strength is decreasing. The results of this study show that the initial W:C
= 1:1 is suitable to apply for this research.

7.2.2 Shearing resistance between grout and fracture

Figure 5.24 shows the relationship between the function of the shear
stresses and normal stresses. Table 5.7 lists the shear strength parameters calibrated
from direct shear tests using Coulomb’s criteria. The results show these friction angles
(¢p) from six proportions of mixtures are very similar and cohesions (c,) are differing

only slightly.

7.3 Hydraulic properties testing

7.3.1 Permeability of grouting materials
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Figure 6.5 shows the results of S:C mixtures and B:C mixtures for
grout permeability tests. The results indicated that intrinsic permeability tends to
rapidly decrease at 7 days curing time and it starts gradually decreasing after 14 to 28
days curing time. The intrinsic permeabilities of all mixtures are in the range of 10"
to 10™"° m% The mixture with the S:C of 5:10 by weight gives the lowest permeability.
Table 6.1 summarizes the results of permeability testing of grouting material results at
3, 7,14 and 28 days of curing.

7.3.2 Permeability of rock fractures

Hydraulic aperture (en) and permeability coefficient (K) and the
physical permeability (k) are plotted as function of the normal stress of fracture in
Figure 6.9. Result shows that permeabilities of five fracture sandstones are
comparable. Fracture permeabilites are decreased with the normal stresses on fracture
aperture increases. This tested concluded that sandstone surface is close fracture with
the aperture and the fracture permeability had very small value (less than value of
grouting material in this study). The close fracture does not affect the geo-structural
engineering. Therefore, it is not required grouting material to reduce the fracture
permeability.

7.3.3 Permeability of grouting materials in rock fractures

Figures 6.12 through 6.14 show fracture permeability and intrinsic
permeability for sixty-three samples. Those parameters are similar where the
corresponding results in tasks 6.2 and 6.3. It is found that the proportions of S:C
mixtures and B:C mixtures used here are similar ranges. This means that the S:C
mixtures have hydraulic properties equivalent to those of the B:C mixtures under the

most suitable mixing ratios for grouting in rock fracture.



CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS FOR

FUTURE STUDIES

8.1 Conclusions

The sludge is classified as elastic silt with over 90% of its particles smaller
than 0.047 mm. This studied, aim to determine the minimum slurry viscosity and
appropriate strength of the grouting materials. Grouting materials in the study are
contained sludge (S), cement (C), and water (W) for S:C mixtures and bentonite (B),
cement and water for B:C mixtures. The mechanical and hydraulic tests of mixtures
are determined to select the appropriate proportions of sludge-to-cement and
bentonite-to-cement ratios for grouting material in rock fractures. The results show
that the suitable mixing ratios for sludge-to-cement (S:C) are 1:10, 3:10 and 5:10, and
for bentonite-to-cement (B:C) are 1:10, 2:10 and 3:10, with water-cement ratio (W:C)
of 1:1 by weight that those strengths are about 2 MPa. For the sludge these
proportions yield the lowest slurry viscosity of 5 Pa-s and the highest compressive
strength. For S:C of 3:10, the compressive strength and elastic modulus are 1.22 MPa
and 224 MPa which are similar to those of the B:C. The direct shear tested, results
show that the shear strengths at the interface between the grout and sandstone
fractures varying from 0.22 to 0.90 MPa under normal stresses ranging from 0.25 to

1.25 MPa (Table 8.1 — 8.2).
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Permeability of the grouting materials measured from the one-dimensional
flow test with constant head is from 10" to 10™ m? and decreases with curing time.
The mixture with the S:C of 5:10 by weight gives the lowest permeability. The
permeability of the grouts measured by radial flow test in fractures with apertures of
2, 10 and 20 mm ranges from 10™ to 10™ m? under the normal stresses ranging from
0.25 to 1.25 MPa (Table 8.3). The permeability for all grout mixtures decrease by
increase normal stresses. The S:C mixtures have the mechanical and hydraulic
properties equivalent to those of the B:C mixtures which shows that the sludge can be
used as a substituted material to mix with cement for rock fracture grouting purpose.
Such applications can also minimize the disposal cost of the sludge and reduce the
environmental impact due to the landfill construction.

The sludge can be used as a substitute material for bentonite to be mixed with
cement and water to grout in rock fractures. Properties of the liquid mixtures
(viscosity and density) and properties of the solid mixtures (mechanical and hydraulic
properties) for both sludge and bentonite are closely similar. These studies is
conducted to compare the estimated economic cost of the liquid mixture per cubic
meter in rock fracture. Result is given in Table 8.4 for economic calculation. Sludge
preparation due to the application is uncomplicated process. Therefore, the cost
required is only the electric energy for drying and grinding the sludge. The electric
power is only about 326 Thai Baht per sludge 1,000 kg. Comparison between S:C
proportion and B:C proportion at 1:10 to save costs is equal to 650 - 23 = 627 Thai
Baht (per one cubic meter liquid mixture).

The results of laboratory studies aim at determining appropriate grout mixes

proportion from sludge-mixed cement for reducing permeability in saturated fractured
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rock under various stresses in the laboratory and to compare the results with the
bentonite-mixed cement in terms of the mechanical and hydraulic properties. Three
mixtures of S:C are 1:10, 3:10 and 5:10 that are closely similar in terms of the
mechanical and hydraulic properties. Those are some important differences in their
viscosity. The minimum and maximum viscosities of S:C are 1:10 and 5:10 by
weight. Recommended applications for sludge-mixed cement grout in rock fracture

are summarized in Table 8.5.

8.2 Recommendations for future studies

More grout mixtures are needed long-term performance and under in-situ
condition. The sludge can be obtained from both Bang Khen and Mahasawat Water
Treatment Plants. They should be collected from sludge lagoon in various seasons.
Testing time and curing time should be longer (months or years) for long-term testing.
The mechanical and hydraulic behavior of the grout in rock fractures is very
complicated and is affected by numerous factors. One should investigate the factors
affecting such behaviors, such as variations of the mineralogy, admixture content,
temperature, humidity and inclusions, etc. Sludge from other plants may be needed to
compare the results. The concept of sludge-mixed cement grout in rock fractures may

be improved by using cyclic loading test for earthquake.



Table 8.1 Mixture ratios with W:C = 1:1.
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>
-% O - %a % g é v
Y 5 _ | 6§~ | 2| &€ |55l 53T >E
Types | @26 | 82| €2 | 3| 22 |28 28| oo
= O = 3 m = > 22| Bo
S m = 5 5 S
n ) 1) I=
v
Cement - 301 301 0 693.7 | 470 | 1.47 | 0.43
1:10 | 371 371 37 765.8 | 560 | 1.37 | 2.19
Bentonite | 2:10 | 352 352 70 7298 | 480 | 152 | 7.31
3:10 | 336 336 101 7435 | 520 | 1.42 | 22.88
1:10 | 367 367 37 7728 | 510 | 151 | 0.56
Sludge | 3:10 | 326 326 98 7727 | 500 | 153 | 1.06
5:10 | 294 294 147 7645 | 490 | 156 | 2.63

Table 8.2 Summary of mechanical property results of mixture ratios with W:C = 1:1.

(5}
- |2
~— (%2}
=] O 2 e o > wn %]
o 85| ES |E3|s5g| | &
e | 25 g5 | 8% 12545 ‘5| &
= 9 (S8 TS5 = 2 ~ ~
%) =D w
D
Cement - 0.83 0.85+0.0 212 0.18 | 0563 14.7
1:10 1.35 1.05+0.1 193 0.17 0.306 23.0
Bentonite | 2:10 1.38 1.83+0.0 275 0.14 0.121 22.3
3:10 1.33 1.77£0.1 228 0.16 0.143 23.3
1:10 191 0.79+0.1 190 0.15 0.275 23.6
Sludge 3:10 181 1.22+£0.1 224 0.21 0.213 23.5
5:10 1.79 1.10£0.3 261 0.16 0.255 23.2
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Table 8.3 Summary of hydraulic property results of mixture ratios with W:C = 1:1.

Mixing | Cylindrical | | fracture k (x107 m?) at 5, = 0.25 MPa
T Ratio shape
ypes B:C or specimen Aperture Aperture Aperture
S:C k (x10™" m?) 2 mm 10 mm 20 mm
Cement - 893 107 348 1329
1:10 237 1707 19 84
Bentonite 2:10 86.8 2475 87 655
3:10 317 1265 169 63
1:10 825 349 263 970
Sludge 3:10 293 576 34 351
5:10 221 149 227 148

Table 8.4 Estimated quantities of mixture proportions and cost for grout in rock

fracture by fractured volume of 1 m®.

*Fractured Volume 1 m®
Mixing g g g g ozg Cost (Baht)
Types pate 1215 5| 5| & S o
B:C or = ) 'S T = IS = 2]
sc | 2| 2| 2 = | S| 2 s | £
E E (7p] > <5} 8 o
2 o = = > O 5 S
S| &5 2|2 |5 & | =
O o 9B
Cement 735 | 735 0 1470 | 1 | 1,838 - -
1:10 652 | 652 65 1369 | 1 | 1,630 - 650
Bentonite 2:10 691 | 691 138 | 1520 | 1 | 1,728 - 1,380
3:10 617 | 617 185 | 1419 | 1 | 1,543 - 1,850
1:10 719 | 719 72 1510 | 1 | 1,798 23 -
Sludge 3:10 665 | 665 | 200 | 1530 | 1 | 1,663 | 65 -
5:10 624 | 624 | 312 | 1560 | 1 | 1,560 | 102 -

*The preparation cost of 1,000 kg sludge is limit to 326 Baht (exclude shipping charges).
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Table 8.5 Recommended applications for sludge-mixed cement grout in rock fracture.

Types | Mixing Ratio Recommended applications

Suitable for grout in rock fracture that is narrow aperture
1:10 (less than 5 mm). The mixture slurry is low viscosity that
easily flowed in rock fracture.

Suitable for grout in rock fracture that moderate aperture
310 (5 mm to 20 mm). This mixture slurry is high

Sludge ' compressive strength after curing for enhancement of the
strength of the rock mass.

Suitable for grout in rock fracture that large aperture
(larger than 20 mm). The mixture slurry is high viscosity,
but there are advantages to use the highest proportion of
sludge.

5:10
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ABSTRACT

The objective of this study is to assess the performance of sludge mixed with the commercial grade
Portland cement type I for use in minimizing permeability of fractures in rock. The fractures are
artificially made in 3 rectangular blocks of sandstone by applying a line load to induce a splitting
tensile crack. The water treatment sludge tested comprises over 80% of quartz with grain sizes less
than 75 um. The results indicate that the mixing ratios of sludge:cement (S:C) of 1:10, 3:10, 5:10 are
suitable with water:cement ratio (W:C) of 1:1 by weight. For S:C =3:10, the compressive strength and
elastic modulus are 1.22 MPa and 224 MPa which are similar to those of bentonite mixed with cement.
The shear strengths between the grouts and fractures surfaces are from 0.22 to 0.90 MPa under normal
stresses from 0.25 to 1.25 MPa. The S:C ratio of 5:10 gives the lowest permeability. The permeability
of grouted fractures with apertures of 2, 10 and 20 mm range from 10™ to 10™* m” and decrease with
curing time.

Keywords: Rock fracture, Grouting, Permeability, Sludge, Cement

1. INTRODUCTION

The increasing amount of the water treatment sludge from the Metropolitan Waterworks Authority
of Thailand (MWA) has called for a permanent solution to dispose of the sludge from the Bang khen
Water Treatment Plants. The MWA report (2007-2009) indicates that the plant produces sludge with
the maximum capacity of 3.2x10° m® per day. The sludge has been collected from the water treatment
process. The increasing rate of the sludge is about 247x10° kg per day. One of the solutions is to
apply the sludge to minimizing groundwater circulation in rock mass. Groundwater in rock mass is
one of the key factors governing the mechanical stability of slope embankments, underground mines,
tunnels, and dam foundation. A common solution practiced internationally in the construction industry
is to use bentonite mixed with cement as a grouting material to reduce permeability in fractured rock
mass (Akgiin and Daemen, 1999; Fuenkajorn and Daemen, 1996). Knowledge and experimental
evidences about the permeability of the sludge-mixed cement in fractured rock under varied stress
conditions have been rare. The objectives of this study are to assess the performance of sludge mixed
with the commercial grade Portland cement for reducing permeability in saturated fractured rock under
various stresses in the laboratory and to compare the results with those of the bentonite-mixed cement
in terms of the mechanical and hydraulic performance.

2. GROUTS PREPARATION

The grouting materials used in this study are (1) sludge with particle sizes less than 75 um, (2)
commercial grade bentonite, and (3) commercial grade Portland cement type I for mixing with the
sludge and bentonite. The fractures in sandstone collcted from Phu Kradung formation are artificially
made by applying a line load to induce a splitting tensile crack. Two shapes of the sandstone samples
are 152.4x152.4x152.4 mm’ blocks and 100 mm diameter cylinder with 100 mm in length. Bentonite
is from America colloid company.
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Sludge and bentonite are tested for the Atterberg’s limits, specific gravity, and particle size
distribution. The equipment and test procedure follow the ASTM standards (D422, D854). The results
are summarized in Table 1. Figure 1 shows the particle size distributions of the sludge used here.

3. BASIC MECHANICAL PROPERTIES OF GROUTING MATERIALS

The basic mechanical propertics of the mixtures are determined to select the appropriate
proportions of sludge-to-cement ratios. The sludge-mixed cement ratios (S:C) of 0:10, 1:10, 2:10, 3:10
4:10, 5:10, 6:10, 8:10 and 10:10 by weight are prepared with water-cement ratios (W:C) of 0.8:1, 1:1
and 1.25:1. The bentonite-mixes cement ratios (B:C) are 0:10, 1:10, 2:10, 3:10, 4:10, and 5:10 by
weight with water-cement ratios (W:C) of 1:1, 4:1. Mixing of all grouts is accomplished using a blade
paddle mixer as suggested by ASTM C938. The mixtures are placed in a 54 mm PVC mold. They are
cured under water at room temperature (ASTM C192). Viscosity measurement follows, as much as
practical, the ASTM D2196. The results are shown in Figure 2.

The procedure for determining the grout permeability is similar to the ASTM standards (C938,
C39). The water flow tests are conducted at 3, 7, 14 and 28 days of curing. The mold has an inner
diameter of 101.6 mm with a length of 152.4 mm. The prepared specimen is sealed between two
acrylic platens with the aid of O-ring rubber and epoxy coating. Inlet port is installed at the end of the
mold and connected to a water pressure tube compressed by nitrogen gas at about 13.8 kPa. Air
bubbles are bled out before measuring the permeability. Outlet port is installed at the other end and
connected to a high precision pipet for measuring the outflow. The coefficient of permeability is
computed from the flow rate based on the Darcy’s law. The results are presented in Figure 3.
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Figure 1. Grain size distribution of water treatment sludge

Table 1. Atterberg’s limits and specific gravity of sludge and bentonite

brore Limi Bentonite (%) Sludge (%)
Atterberg Limits SUT! ACCE SUT! TU?
Liquid limit 357 478 55 69
Plastic limit 44 28 22 42
Plasticity index 313 449 23 28
Specific gravity - - 2.56 -

'SUT = Suranaree University of Technology Laboratory,
f ACC = American Colloid Company Technical Data,
* TU = Tummasart University Laboratory (after Hadsanan et al., 2006)
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Figure 2. Dynamic viscosity of S:C and B:C for different W:C ratio
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Figure 3. Infrinsic permeability as a function of time for pure cement (C), B:C, and S:C with W:C = 1:1

Table 2. Mechanical properties of grouting materials

Type Mix ratio N;S::’;;gf Aver(ag%sn(:f)n sity 1;;;1?203 6. (MPa) E (MPa)
C 0:10 5 0.83+001 0.18 1.40+£0.27 212
B:C 1:10 5 135+ 004 0.17 1.59+0.28 193
B:C 2:10 5 1.38+0.04 0.14 209+0.26 275
B:C 3:10 5 1334002 0.16 1.92+0.05 228
S:C 1:10 5 1.91+0.06 0.15 1.35+0.06 190
S:C 3:10 5 1.81+007 0.21 1.77+£0.21 224
S:C 5:10 5 1.79 + 0.06 0.16 1.52+0.19 261

4. UNIAXIAL COMPRESSIVE STRENGTH OF GROUTING MATERIALS

The uniaxial compressive strength, elastic modulus, and Poisson’s ratio of the grouting materials
are determined. The results indicate that the suitable mixing ratios for the S:C are 1:10, 3:10, 5:10 and
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for the B:C are 1:10, 2:10, 3:10 with the W:C of 1:1 by weight. These proportions yield the lowest
slurry viscosity of 5 Pa-s and the highest compressive strength. Preparation of these samples follows,
as much as practical, the ASTM standards (D7012, C938, C39). All specimens are cured for 3 days
before testing. During the test, the axial deformation and lateral deformation are monitored. The
maximum load at the failure is recorded. The compressive strength (6c), Poisson’s ratio (v), elastic
modulus (E) are determined. The results of the S:C and B:C indicate that the chemical reaction
between cement and water with the large cast are better than the small cast. Figure 4 shows the
uniaxial compressive strength for the S:C and B:C with W:C = 1:1. The uniaxial compressive strength
and clastic modulus for the specimens with the diameter of 101.6 mm are summarized in Table 2. The
maximum compressive strengths for the S:C and B:C are similar.

5. SHEARING RESISTANCE BETWEEN GROUT AND FRACTURE

The maximum shear strength of grouting material in sandstone fracture are determined by direct
shear testing. The test procedure is similar to the ASTM standard (D5607). Three-ring shear test
equipment is used. All specimens are cured for three days before testing. Laboratory arrangement
for the three-ring shear test equipment is shown in Figure 5. The constant normal stresses used are
0.25, 0.5, 0.75, 1.0 and 1.25 MPa. The shear stress is applied while the shear displacement and
dilation are monitored for every 0.2 mm of shear displacement. The failure modes are recorded. The
test results are presented in forms of the shear strength as a function of normal stress (Figure 6). The
angles of internal friction and cohesion for all mixtures are similar.

6. PERMEABILITY TESTING OF FRACTURES

The objective of this task is to assess the permeability of rock fractures under varying normal
stresses. The fracture permeability is used to compare with the permeability of grouting materials for
both sludge and bentonte mixtures. Constant head flow tests are performed. The normal stresses are
ranging from 1 to 4 MPa. The experimental procedure is similar to Obcheoy et al. (2011). Five
specimens are preapred and tested. The injection hole at the center of the upper block is 12 mm in
diameter and 101.6 mm in depth. The tests are conducted by injecting water into the center hole of the
rectangular block specimen. The laboratory arrangement of the constant head flow test is shown in
Figure 7. Water volume and time are recorded. Both tend to decrease exponentially with the normal
stress. The permeability results (k) are plotted as a function of the normal stress (c,) in Figure 8. The
equivalent hydraulic aperture (&) for radial flow, hydraulic conductivity between smooth and parallel
plates (K), and intrinsic permeability (k) are calculated by (Tsang, 1992; Indraratna and Ranjith, 2001) :

&, = {[(6uq)/ (RAP)] In (v/re)} " (1)
K="va7/12u )}
k=e¥12 (3)

where p is the dynamic viscosity of the water (N's/cm®), q is water flow rate through the specimen
(cm/s), AP is injecting water pressure into the center hole of rectangular blocks of the specimen, r is
radius of flow path (m), rq is radius of the radius injection hole (m). v, is unit weight of water (N/m?).
The results indicate that the intrinsic permeability of the fractures is less than 1.4x10° m’.

7. PERMEABILITY OF GROUTING MATERIALS IN ROCK FRACTURES

The permeability of sludge- and bentonite-mixed cement in artificial fractures is experimentally
determined. The testing method is similar to that described above. The grouting materials are injected
into the fractures. The fractrue apertures are 2, 10, and 20 mm. The grouting materials are cured for 3
days. Figure 9 gives the laboratory arrangement. Constant head flow tests is performed. The constant
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head is ranging between 13.8 and 551.7 kPa. The constant normal stresses are 0.25, 0.5, 1.0 and 1.25
MPa. The results indicate that the normal stress can reduce the permeability of grouting materials in
fractured sandstone. The intrinsic permeability (k) is calculated from the measured flow rate (Q) as
follows: (Indraratna and Ranjith, 2001)

K = Q In(2mL/D)/2rnLH, (€]

k=Kuwhy, ©)
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Figure 4. Uniaxial compressive strengths for B:C and S:C with W:C = 1:1

Figure 5. Laboratory arrangement for three-ring direct shear test
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sandstone

1482




144

] &3“

Acrylic Tube
i

Hzoﬁ : . { v
' S— —
. F

Figure 9. Permeability testing of grouting materials in rock fracture aperture 20 mm

where K is hydraulic conductivit, Q is flow rate of water flow through the mixture, m is square root of
the ratio between the conduuctivity perpendicular and parallel to the hole (in this case, m is equal to 1), L
is the thickness of grouting material in fracture apertures, D is diameter of the injection hole at the center
of the upper block, H, is the constant head used for the test, 1 is dynamic viscosity (891x 10 kg/(ms)) at
temperature of 25°C, Y, is unit weight of water (997.13 kg/m®). Figure 10 shows the intrinsic
permeability of grouting materials in fracture apertures in twenty-one samples.

8. DISCUSSIONS AND CONCLUSIONS

The sludge is classified as elastic silt with over 90% of its particles smaller than 0.047 mm. This
study aims to determine the minimum slurry viscosity and appropriate strength of the grouting
materials. The results indicate that the suitable mixing ratios for sludge-to-cement (S:C) are 1:10, 3:10
and 5:10, and for bentonite-to-cement (B:C) are 1:10, 2:10 and 3:10, with water-cement ratio (W:C) of
1:1 by weight. For the sludge these proportions yield the lowest slurry viscosity of 5 Pass and the
highest compressive strength. For S:C of 3:10, the compressive strength and elastic modulus are 1.22
MPa and 224 MPa which are similar to those of the B:C. The direct shear test results indicate that the
shear strengths at the interface between the grout and sandstone fractures varying from 0.22 to 0.90
MPa under normal stresses ranging from 0.25 to 1.25 MPa. Permeability of the grouting materials
measured from the one-dimensional flow test with constant head is from 10" to 10" m’ and
decreases with curing time. The mixture with the S:C of 5:10 by weight gives the lowest permeability.
The permeability of the grouts measured by radial flow test in fractures with apertures of 2, 10 and 20
mm ranges from 107 to 10™ m’. The S:C mixtures have the mechanical and hydraulic properties
equivalent to those of the B:C mixtures which indicates that the sludge can be used as a substituted
material to mix with cement for rock fracture grouting purpose. Such applications can also minimize
the disposal cost of the sludge and reduce the environmental impact due to the landfill construction.
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Laboratory assessment of mechanical and hydraulic
performance of sludge-mixed cement grout in rock fractures

K. Wetchasat & K. Fuenkajomn
Geomechanics Research Unit, Suranaree University of Technology, Thailand
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ABSTRACT: The objective of this study is to assess the performance of sludge mixed with
the commercial grade Portland cement type I for use in reducing permeability of fractures in
sandstone. The fractures are artificially made in Phu Kradung sandstone by applying a line
load to induce a splitting tensile crack in 0.15x0.15x0.15 m prismatic blocks. The Bang Khen
water treatment sludge is used. More than 80% of the sludge is quartz with grain size less than
75 um. This study aims at determining the minimum slurry viscosity and appropriate strength
of the grouting materials. The results indicate that the suitable mixing ratios for sludge:cement
(S:C) are 1:10, 3:10, 5:10 with water-cement ratio (W:C) of 1:1 by weight. These proportions
yield the lowest slurry viscosity of 5 Pa-s. For S:C = 3:10, the compressive strength and
elastic modulus are 1.22 MPa and 224 MPa which are similar to those of bentonite mixed
with cement. The shear strength of grouted fractures varies from 0.22 to 0.90 MPa under
normal stresses ranging from 0.25 to 1.25 MPa. Permeability of grouting materials is from
10" to 10" m’ and decreases with curing time. The S:C ratio of 5:10 gives the lowest
permeability. Permeabilities of grouted fractures with apertures of 2, 10 and 20 mm range
from 106 t0 10" m”.

1  INTRODUCTION

The increasing amount of the water treatment sludge from the Metropolitan Waterworks
Authority of Thailand (MWA) has called for a permanent solution to dispose of the sludge
from the Bang khen Water Treatment Plants. The MWA report (2007-2009) indicates that the
plant produces sludge with the maximum capacity of 3.2x10° m’ per day. The sludge has
been collected from the water treatment process. The increasing rate of the sludge is about
247x10° kg per day. One of the solutions is to apply the sludge to minimizing groundwater
circulation in rock mass. Groundwater in rock mass is one of the key factors governing the
mechanical stability of slope embankments, underground mines, tunnels, and dam foundation.
A common solution practiced internationally in the construction industry is to use bentonite
mixed with cement as a grouting material to reduce permeability in fractured rock mass
(Akgin & Daemen, 1999, Fuenkajorn & Daemen, 1996). Knowledge and experimental
evidences about the permeability of the sludge-mixed cement in fractured rock under varied
stress conditions have been rare. The objectives of this study are to assess the performance of
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sludge mixed with the commercial grade Portland cement for reducing permeability in
saturated fractured rock under various stresses in the laboratory and to compare the results
with those of the bentonite-mixed cement in terms of the mechanical and hydraulic
performance.

2 GROUTS PREPARATION

The grouting materials used in this study are (1) sludge with particle sizes less than 75 pm, (2)
commercial grade bentonite, and (3) commercial grade Portland cement type I for mixing
with the sludge and bentonite. The fractures in sandstone collected from Phu Kradung
formation are artificially made by applying a line load to induce a splitting tensile crack. Two
shapes of the sandstone samples are 152.4x152.4x152.4 mm® blocks and 100 mm diameter
cylinder with 100 mm in length. Bentonite is from America colloid company.

Sludge and bentonite are tested for the Atterberg’s limits, specific gravity, and particle size
distribution. The equipment and test procedure follow the ASTM standards (D422, D854).
The results are summarized in Table 1. Figure 1 shows the particle size distributions of the
sludge used here.

Table 1. Atterberg’s limits and specific gravity of sludge and bentonite.

" 0/ 0/
Atterberg Limits SUTBIentomte ( /(KCCQ SUT ISludoe ("’)TU 3
Liquid limit 357 478 55 69
Plastic limit 44 28 22 42
Plasticity index 313 449 23 28
Specific gravity - - 2.56 -

'SUT = Suranaree University of Technology Laboratory,
2 ACC = American Colloid Company Technical Data,
3TU = Tummasart University Laboratory (after Hadsanan et al., 2006)
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Figure 1. Grain size distribution of water treatment sludge.
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3  BASIC MECHANICAL PROPERTIES OF GROUTING MATERIALS

The basic mechanical properties of the mixtures are determined to select the appropriate
proportions of sludge-to-cement ratios. The sludge-mixed cement ratios (S:C) of 0:10, 1:10,
2:10, 3:10, 4:10, 5:10, 6:10, 8:10 and 10:10 by weight are prepared with water-cement ratios
(W:C) of 0.8:1, 1:1 and 1.25:1. The bentonite-mixes cement ratios (B:C) are 0:10, 1:10, 2:10,
3:10, 4:10, and 5:10 by weight with water-cement ratios (W:C) of 1:1, 4:1. Mixing of all
grouts is accomplished using a blade paddle mixer as suggested by ASTM C938. The
mixtures are placed in a 54 mm PVC mold. They are cured under water at room temperature
(ASTM C192). Viscosity measurement follows, as much as practical, the ASTM D2196. The
results are shown in Figure 2.

The procedure for determining the grout permeability is similar to the ASTM standards
(C938, C39). The water flow tests are conducted at 3, 7, 14 and 28 days of curing. The mold
has an inner diameter of 101.6 mm with a length of 152.4 mm. The prepared specimen is
sealed between two acrylic platens with the aid of O-ring rubber and epoxy coating. Inlet port
is installed at the end of the mold and connected to a water pressure tube compressed by
nitrogen gas at about 13.8 kPa. Air bubbles are bled out before measuring the permeability.
Outlet port is installed at the other end and connected to a high precision pipet for measuring
the outflow. The coefficient of permeability is computed from the flow rate based on the
Darcy’s law. The results are presented in Figure 3.

4  UNIAXIAL COMPRESSIVE STRENGTH OF GROUTING MATERIALS

The uniaxial compressive strength, elastic modulus, and Poisson’s ratio of the grouting
materials are determined. The results indicate that the suitable mixing ratios for the S:C are
1:10, 3:10, 5:10 and for the B:C are 1:10, 2:10, 3:10 with the W:C of 1:1 by weight. These
proportions yield the lowest slurry viscosity of 5 Pa-s and the highest compressive strength.
Preparation of these samples follows, as much as practical, the ASTM standards (D7012,
(938, C39). All specimens are cured for 3 days before testing. During the test, the axial
deformation and lateral deformation are monitored. The maximum load at the failure is
recorded. The compressive strength (oc), Poisson’s ratio (v), elastic modulus (E) are
determined. The results of the S:C and B:C indicate that the chemical reaction between
cement and water with the large cast are better than the small cast. Figure 4 shows the
uniaxial compressive strength for the S:C and B:C with W:C = 1:1. The uniaxial compressive
strength and elastic modulus for the specimens with the diameter of 101.6 mm are
summarized in Table 2. The maximum compressive strengths for the S:C and B:C are similar.

S SHEARING RESISTANCE BETWEEN GROUT AND FRACTURE

The maximum shear strength of grouting material in sandstone fracture are determined by
direct shear testing. The test procedure is similar to the ASTM standard (D5607). Three-ring
shear test equipment is used. All specimens are cured for three days before testing. Laboratory
arrangement for the three-ring shear test equipment is shown in Figure 5. The constant normal
stresses used are 0.23, 0.5, 0.75, 1.0 and 1.25 MPa. The shear stress is applied while the shear
displacement and dilation are monitored for every 0.2 mm of shear displacement. The failure
modes are recorded. The test results are presented in forms of the shear strength as a function
of normal stress (Figure 6). The angles of internal friction and cohesion for all mixtures are
similar.
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Figure 2. Dynamic viscosity of S:C and B:C for different W:C ratio.
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Table 2. Mechanical properties of grouting materials.
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Type | Mix ratio | Number of | Average density | Poisson o.(MPa) | E (MPa)
Samples (g/cm3) Ratio v

(@ 0:10 5 0.83+0.01 0.18 1.40+0.27 212
B.C 1:10 5 135+0.04 0.17 1.59+£0.28 193
B.C 2:10 3 1.38+0.04 0.14 2.09+0.26 275
B.C 3:10 5 1.33£0.02 0.16 1.92 £0.05 228
S:C 1:10 5 1.91+0.06 0.15 1.35£0.06 190
S:C 3:10 5 1.81 £0.07 0.21 1.77+£0.21 224
S:C 5:10 3 1.79 £0.06 0.16 1.52£0.19 261

Figure 5. Laboratory arrangement for three-ring direct shear test.
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Figure 6. Normal stress and peak shear stress.
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6  PERMEABILITY TESTING OF FRACTURES

The objective of this task is to assess the permeability of rock fractures under varying normal
stresses. The fracture permeability is used to compare with the permeability of grouting
materials for both sludge and bentonte mixtures. Constant head flow tests are performed. The
normal stresses are ranging from 1 to 4 MPa. The experimental procedure is similar to
Obcheoy et al. (2011). Five specimens are prepared and tested. The injection hole at the
center of the upper block is 12 mm in diameter and 101.6 mm in depth. The tests are
conducted by injecting water into the center hole of the rectangular block specimen. The
laboratory arrangement of the constant head flow test is shown in Figure 7. Water volume and
time are recorded. Both tend to decrease exponentially with the normal stress. The
permeability results (k) are plotted as a function of the normal stress (c,) in Figure 8. The
equivalent hydraulic aperture (e,) for radial flow, hydraulic conductivity between smooth and
parallel plates (K), and intrinsic permeability (k) are calculated by (Tsang, 1992; Indraratna &
Ranjith, 2001):

e = {[(6pg) (nAP)] In (/re)} (D
K = vy &n*/12u 2
k=e"/12 @)

Figure 7. Laboratory arrangement for permeability testing of fractures.
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Figure 8. Intrinsic permeability (k) as a function of normal stress (o,) for fracture in Phu
Kradung sandstone.
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where p is the dynamic viscosity of the water (N-s/em®), q is water flow rate through the
specimen (cm’/s), AP is injecting water pressure into the center hole of rectangular blocks of
the specimen, r is radius of flow path (m), 1o is radius of the radius injection hole (m). vy is
unit weight of water (N/m®). The results indicate that the intrinsic permeability of the fractures
is less than 1.4x10° m?.

7  PERMEABILITY OF GROUTING MATERIALS IN ROCK FRACTURES

The permeability of sludge- and bentonite-mixed cements in artificial fractures is
experimentally determined. The testing method is similar to that described above. The
grouting materials are injected into the fractures. The fracture apertures are 2, 10, and 20 mm.
The grouting materials are cured for 3 days. Figure 9 gives the laboratory arrangement.
Constant head flow tests is performed. The constant head is ranging between 13.8 and 551.7
kPa. The constant normal stresses are 0.25, 0.5, 1.0 and 1.25 MPa. The results indicate that
the normal stress can reduce the permeability of grouting materials in fractured sandstone.
The intrinsic permeability (k) is calculated from the measured flow rate (Q) as follows:
(Indraratna & Ranjith, 2001)

K = Q In(2mL/D)/2nLH, )
k=Ku/pw ®)

where K is hydraulic conductivity, Q is flow rate of water flow through the mixture, m is
square root of the ratio between the conductivity perpendicular and parallel to the hole (in this
case, m is equal to 1), L is the thickness of grouting material in fracture apertures, D is
diameter of the injection hole at the center of the upper block, He is the constant head used for
the test, u is dynamic viscosity (891x10° kg/(ms)) at temperature of 25°C, v, is unit weight
of water (997.13 kg/m?). Figure 10 shows the intrinsic permeability of grouting materials in
fracture apertures in twenty-one samples.
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Figure 9. Permeability testing of grouting materials in rock fracture aperture 20 mm.
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(a)2 mm (b) 10 mm and (¢) 20 mm in Phu Kradung sandstones.

150




155

Rock Mechanics, Fuenkajorn & Phien-wej (eds) © 2013

8  DISCUSSIONS AND CONCLUSIONS

The sludge is classified as elastic silt with over 90% of its particles smaller than 0.047 mm.
This study aims to determine the minimum slurry viscosity and appropriate strength of the
grouting materials. The results indicate that the suitable mixing ratios for sludge-to-cement
(S:C) are 1:10, 3:10 and 5:10, and for bentonite-to-cement (B:C) are 1:10, 2:10 and 3:10, with
water-cement ratio (W:C) of 1:1 by weight. For the sludge these proportions yield the lowest
slurry viscosity of 5 Pa-s and the highest compressive strength. For S:C of 3:10, the
compressive strength and elastic modulus are 1.22 MPa and 224 MPa which are similar to
those of the B:C. The direct shear test results indicate that the shear strengths at the interface
between the grout and sandstone fractures varying from 0.22 to 0.90 MPa under normal
stresses ranging from 0.25 to 1.25 MPa. Permeability of the grouting materials measured
from the one-dimensional flow test with constant head is from 10" to 10" m” and decreases
with curing time. The mixture with the S:C of 5:10 by weight gives the lowest permeability.
The permeability of the grouts measured by radial flow test in fractures with apertures of 2, 10
and 20 mm ranges from 10" to 10™ m’. The S:C mixtures have the mechanical and
hydraulic properties equivalent to those of the B:C mixtures which indicates that the sludge
can be used as a substituted material to mix with cement for rock fracture grouting purpose.
Such applications can also minimize the disposal cost of the sludge and reduce the
environmental impact due to the landfill construction.
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Abstract

The objective of this study is to assess the performance of
sludge mixed with the commercial grade Portland cement type
I for use in reducing permeability of fractures in sandstone. The
fractures are artificially made in Phu Kradueng sandstone by
applying a line load to induce a splitting tensile crack in
15#15#15 cm prismatic blocks. The Bang Khen water
treatment sludge is used. The physical and chemical properties
of the sludge are examined. This research emphasizes on
determining the minimum slurry viscosity and appropriate
strength of the grouting materials. The results indicate that the
suitable mixing ratios for sludge:cement (S:C) are 1:10, 3:10,
5:10 and for bentonite:cement (B:C) are 1:10, 2:10, 3:10 with
water-cement ratio of 1:1 by weight. These proportions yield the
lowest slurry viscosity of 5 Pars and the highest compressive
strength. For S:C = 3:10, the compressive strength and elastic
modulus are 1.77 MPa and 224 MPa which are similar to those
of bentonite mixed with cement. The shear strength of grouted
fractures varies from 0.36 to 0.90 MPa under normal stresses
ranging from 0.25 to 125 MPa. Permeability of grouting
materials are from 10" to 10" m’ and decrease with curing
time. S:C of 5:10 give the lowest permeability. Fracture
permeability under normal stress of 1 to 4 MPa ranges from
10* to 10" m’. Permeabilities of grouted fractures with

aperture of 0.2, 1.0 and 2.0 cm are about 10" m’.
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M3eA 2 panInagouusinaluunuRen

Type | Mix ratio G, (MPa) A% E (MPa)
C 0:10 1.40 0.18 212
B:C 1:10 1.59 0.17 193
B:C 2:10 2.09 0.14 275
B:C 3:10 1.92 0.16 228
S:C 1:10 1.35 0.15 190
S:C 3:10 1.77 0.21 224
S:C 5:10 152 0.16 261

MIeA 3 MARAIWNYMIUANYDI Coulomb

Sample No. c, (MPa) 1an¢p (1] : ©) R

2 0.563 0.263 14.7 0.962

S:C=1:10 0.275 0.436 236 0.985

S:C=3:10 0.213 0.435 235 0.988
S:C=5:10 0.255 0.428 232 0.985
B:C=1:10 0.306 0.424 230 0.968
B:C=2:10 0.121 0410 223 0.998
B:C=3:10 0.143 0.430 233 0.996
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Mechanical and Hydraulic Performance of Sludge-Mixed Cement Grout in

Rock Fractures

Khomkrit Wetchasat*
Kittitep Fuenkajorn

School of Geotechnology, Institute of Engineering, Suranaree University of Technology
University Avenue, Muang District, Nakhon Ratchasima 30000, THAILAND
Tel.: 66-44-224-443, Fax.: 66-44-224-448, *E-mail: d5340248@g.sut.ac.th

ABSTRACT: The objective is to assess the performance of sludge mixed with the commercial
grade Portland cement type I for use in minimizing permeability of fractures in rock. The
fractures were artificially made by applying a line load to sandstone block specimens. The
sludge comprises over 80% of quartz with grain sizes less than 75 pm. The results indicate that
the mixing ratios of sludge:cement (S:C) of 1:10, 3:10, 5:10 with water:cement ratio of 1:1 by
weight are suitable for fracture grouting. For S:C = 3:10, the compressive strength and elastic
modulus are 1.22 MPa and 224 MPa which are comparable to those of bentonite mixed with
cement. The shear strengths between the grouts and fractures surfaces are from 0.22 to 0.90
MPa. The S:C ratio of 5:10 gives the lowest permeability. The permeability of grouted fractures

with apertures of 2, 10 and 20 mm range from 10 to 10™ m? and decrease with curing time.

Keywords: rock fracture, grouting, permeability, sludge, cement

1  INTRODUCTION

The increasing amount of the water treatment sludge from the Metropolitan Waterworks
Authority of Thailand (MWA) has called for a permanent solution to dispose of the sludge
from the Bang khen Water Treatment Plants. The MWA report (2007-2009) indicates that the
plant produces sludge with the maximum capacity of 3.2x10° m* per day. The sludge has
been collected from the water treatment process. The increasing rate of the sludge is about

247x10° kg per day. One of the solutions is to apply the sludge to minimize groundwater
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circulation in rock mass. Groundwater in rock mass is one of the key factors governing the
mechanical stability of slope embankments, underground mines, tunnels, and dam
foundation. A common solution practiced internationally in the construction industry is to use
bentonite mixed with cement as a grouting material to reduce permeability in fractured rock
mass (Akgiin and Daemen, 1999; Papp, 1996). Knowledge and experimental evidences about
the permeability of the sludge-mixed cement in fractured rock under varied stress conditions
have been rare. The objectives of this study are to assess the performance of sludge mixed
with the commercial grade Portland cement for reducing permeability in saturated fractured
rock under various stresses in the laboratory and to compare the results with those of the

bentonite-mixed cement in terms of the mechanical and hydraulic performance.

2 GROUTS PREPARATION

The grouting materials used in this study are (1) sludge with particle sizes less than 75
um, (2) commercial grade bentonite, and (3) commercial grade Portland cement type I for
mixing with the sludge and bentonite. The fractures in sandstone collected from Phu Kradung
formation were artificially made by applying a line load to induce a splitting tensile crack.
Two shapes of the sandstone samples are 152.4x152.4x152.4 mm® blocks and 100 mm
diameter cylinder with 100 mm in length. Bentonite is from American Colloid Company.

Sludge and bentonite were tested for the Atterberg’s limits, specific gravity, and particle
size distribution. The equipment and test procedure follow the ASTM standards (D422,
D854). The results are summarized in Table 1. Figure 1 shows the particle size distributions

of the sludge used here.

3 BASIC MECHANICAL PROPERTIES OF GROUTING MATERIALS
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The basic mechanical properties of the mixtures were determined to select the
appropriate proportions of sludge-to-cement ratios. The sludge-mixed cement ratios (S:C) of
0:10, 1:10, 2:10, 3:10, 4:10, 5:10, 6:10, 8:10 and 10:10 by weight were prepared with water-
cement ratios (W:C) of 0.8:1, 1:1 and 1.25:1. The bentonite-mixes cement ratios (B:C) are
0:10, 1:10, 2:10, 3:10, 4:10, and 5:10 by weight with water-cement ratios (W:C) of 1:1, 4:1.
Mixing of all grouts was accomplished using a blade paddle mixer as suggested by ASTM
standard (C938). The mixtures were placed in a 54 mm PVC mold. They were cured under
water at room temperature (ASTM C192). Viscosity measurement follows, as much as
practical, the ASTM standard (D2196). The results are shown in Figure 2.

The procedure for determining the grout permeability is similar to the ASTM standard
(C938, C39). The water flow tests were conducted at 3, 7, 14 and 28 days of curing. The
mold has an inner diameter of 101.6 mm with a length of 152.4 mm. The prepared specimen
was sealed between two acrylic platens with the aid of O-ring rubber and epoxy coating. Inlet
port was installed at the end of the mold and connected to a water pressure tube compressed
by nitrogen gas at about 13.8 kPa. Air bubbles were bled out before measuring the
permeability. Outlet port was installed at the other end and connected to a high precision
pipette for measuring the outflow. The coefficient of permeability is computed from the flow

rate based on the Darcy’s law. The results are presented in Figure 3.

4  UNIAXIAL COMPRESSIVE STRENGTH OF GROUTING MATERIALS

The uniaxial compressive strength, elastic modulus, and Poisson’s ratio of the grouting
materials were determined. The results indicate that the suitable mixing ratios for the S:C are
1:10, 3:10, 5:10 and for the B:C are 1:10, 2:10, 3:10 with the W:C of 1:1 by weight. These
proportions yield the lowest slurry viscosity of 5 Pa-s and the highest compressive strength.

Preparation of these samples follows, as much as practical, the ASTM standard (C938, C39,
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D7012). All specimens were cured for 3 days before testing. During the test, the axial
deformation and lateral deformation were monitored. The maximum load at the failure was
recorded. The compressive strength (o), Poisson’s ratio (v), and elastic modulus (E) are
determined. The results of the S:C and B:C mixtures indicate that the chemical reaction
between cement and water with the large casts were better than the small ones. Figure 4
shows the uniaxial compressive strength for the S:C and B:C with W:C = 1:1. The uniaxial
compressive strength and elastic modulus for the specimens with the diameter of 101.6 mm
are summarized in Table 2. The maximum compressive strengths for the S:C and B:C are

similar.

5  SHEARING RESISTANCE BETWEEN GROUT AND FRACTURE

The maximum shear strengths of grouting material in sandstone fractures were
determined by direct shear testing. The test procedure is similar to the ASTM standard
(D5607). Three-ring shear test equipment was used. All specimens were cured for three days
before testing. Laboratory arrangement for the three-ring shear test equipment is shown in
Figure 5. The constant normal stresses used were 0.25, 0.5, 0.75, 1.0 and 1.25 MPa. The shear
stress was applied while the shear displacement and dilation were monitored for every 0.2 mm
of shear displacement. The failure modes were recorded. The test results are presented in the
forms of the shear strength as a function of normal stress in Figure 6. The angles of internal

friction and cohesion for all mixtures are similar.

6  PERMEABILITY TESTING OF FRACTURES
The objective of this task is to assess the permeability of rock fractures under varying
normal stresses. The fracture permeability is used to compare with the permeability of grouting

materials for both sludge and bentonte mixtures. Constant head flow tests were performed. The
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normal stresses are from 1 to 4 MPa. The experimental procedure is similar to Obcheoy et al.
(2011). Five specimens were prepared and tested. The injection hole at the center of the upper
block is 12 mm in diameter and 101.6 mm in depth. The tests were conducted by injecting water
into the center hole of the rectangular block specimen. The laboratory arrangement of the
constant head flow test is shown in Figure 7. Water volume and time were recorded. Both tend to
decrease exponentially with the normal stress. The permeability results (k) are plotted as a
function of the normal stress (ay,) in Figure 8. The equivalent hydraulic aperture (ep) for the radial
flow, hydraulic conductivity between smooth and parallel plates (K), and intrinsic permeability

(k) are calculated by (Tsang, 1992; Indraratna and Ranjith, 2001) :

1
7 \g
eh:J"“‘lmi\ i)
|n4P |, )
e2
k:.wﬁ )
k:elhz 3)

where p is the dynamic viscosity of the water (N-s/em?), q is water flow rate through the
specimen (cm/s), AP is injecting water pressure into the center hole of rectangular blocks of
the specimen, 1 is radius of flow path (m), 1y is radius of the radius injection hole (m). vy is unit
weight of water (N/m?). The results indicate that the intrinsic permeability of the fractures is

less than 1.4x10° m”.

7 PERMEABILITY OF GROUTING MATERIALS IN ROCK FRACTURES
The permeability of sludge- and bentonite-mixed cement in artificial fractures was
determined. The testing method is similar to that described above. The grouting materials

were injected into the fractures. The fracture apertures are 2, 10, and 20 mm. The grouting
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materials were cured for 3 days. Figure 9 shows the laboratory arrangement. Constant head
flow tests was performed. The constant head ranges between 13.8 and 551.7 kPa. The
constant normal stresses are 0.25, 0.5, 1.0 and 1.25 MPa. The results indicate that the normal
stress could reduce the permeability of grouting materials in sandstone fractures. The intrinsic

permeability (k) is calculated from the measured flow rate (Q) as follows (Indraratna and

Ranjith, 2001) :
= Q 1{%) ()
mlH, \ D
k= 1T )
Yw

where K is hydraulic conductivity, Q is flow rate of water flow through the mixture, m is
square root of the ratio between the conductivity perpendicular and parallel to the hole (in
this case, m is equal to 1), L is the thickness of grouting material in fracture apertures, D is
diameter of the injection hole at the center of the upper block, H is the constant head used for
the test, p is dynamic viscosity (89110 kg/(m:s)) at temperature of 25 °C, 7, is unit weight
of water (997.13 kg/m”®). Figure 10 shows the intrinsic permeability of grouting materials in

fracture apertures for twenty-one samples.

8  DISCUSSIONS AND CONCLUSIONS

The sludge is classified as elastic silt with over 90% of its particles smaller than 0.047
mm. This study aims to determine the minimum slurry viscosity and appropriate strength of
the grouting materials. The results indicate that the suitable mixing ratios for sludge-to-
cement (S:C) are 1:10, 3:10 and 5:10, and for bentonite-to-cement (B:C) are 1:10, 2:10 and
3:10, with water-cement ratio (W:C) of 1:1 by weight. For the sludge these proportions yield
the lowest sturry viscosity of 5 Pa-s and the highest compressive strength. For S:C of 3:10,

the compressive strength and elastic modulus are 1.22 MPa and 224 MPa which are similar to
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those of the B:C. The direct shear test results indicate that the shear strengths at the interface
between the grout and sandstone fractures varying from 0.22 to 0.90 MPa under normal
stresses ranging from 0.25 to 1.25 MPa. Permeability of the grouting materials measured
from the one-dimensional flow test with constant head is from 10" to 10™° m* and decreases
with curing time. The mixture with the S:C of 5:10 by weight gives the lowest permeability.
The permeability of the grouts measured by radial flow test in fractures with apertures of 2,
10 and 20 mm ranges from 10" to 10™ m®. The S:C mixtures have the mechanical and
hydraulic properties equivalent to those of the B:C mixtures which indicates that the sludge
can be used as a substituted material to mix with cement for rock fracture grouting purpose.
Such applications can also minimize the disposal cost of the sludge and reduce the

environmental impact due to the landfill construction.
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Figure 1. Grain size distribution of water treatment sludge

For Proof Read only

Page 12 of 23




181

Page 13 of 23 Songklanakarin Journal of Science and Technology SJST-2013-0170.R1 Wetchasat

aoo S:.C

w:C

OO~ WN—

Dynamic Viscosity (104 mPa.s)

17 . 0 2:10 4:10 6:10 8:10 10:10
18 B:C or S:C ratio

20 Figure 2.  Dynamic viscosity of S:C and B:C for different W:C ratio.

For Proof Read only




182

OO~ WN—

Songklanakarin Journal of Science and Technology SJST-2013-0170.R1 Wetchasat

1014 3 soo S:C
110 LemBC
105 52:1
310 . —g+1:10
-16 o
il 310
kot ]
107 3 510
10-15;
10 (R L AL R A G

0 5 10 15 20 25
Times (days)
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Figure 5. Laboratory arrangement for three-ring direct shear test.
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Figure 7. Laboratory arrangement for permeability testing of fractures.
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Figure 8. Intrinsic permeability (k) as a function of normal stress (on) for fracture in Phu

Kradung sandstone.
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Figure 9. Permeability testing of grouting materials in rock fracture aperture 20 mm.
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Figure 10. Intrinsic permeability (k) as a function of normal stress (on) for fracture apertures

(a) 2 mm (b) 10 mm and (¢) 20 mm in Phu Kradung sandstones.
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List of Tables
Table 1 Atterberg’s limits and specific gravity of sludge and bentonite.

. Bentonite (%) Sludge (%)
Atterberg Limits SUT” ACCT SUT ™
Liquid limit 357 478 55 69
Plastic limit 44 28 22 42
Plasticity index 313 449 23 28
Specific gravity - - 2.56

"SUT = Suranaree University of Technology Laboratory,
“ACC = American Colloid Company Technical Data,

$k%,

TU = Tummasart University Laboratory.
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Table 2 Mechanical properties of grouting materials.

Type Mix ratio N;E:):l;:f Aver(ag/%:n(lise; iy l;zltsiio: c.(MPa)  E(MPa)
C 0:10 5 0.83+0.01 0.18 1.40+0.27 212
B:.C 1:10 5 1.35+0.04 0.17 1.59+0.28 193
B:.C 2:10 5 1.38+0.04 0.14 2.09+0.26 275
B:.C 3:10 5 1.33+0.02 0.16 1.92+0.05 228
S:C 1:10 5 1.91+0.06 0.15 1.35+0.06 190
S:C 3:10 5 1.81+0.07 0.21 1.77+0.21 224
S:C 5:10 3 1.79+ 0.06 0.16 1.52+0.19 261
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