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THE VIOLATION OF THE OZI RULE/STRANGENESS OF THE NUCLEON

Apparent channel-dependent violations of the OZI rule in nucleon-antinucleon an-
nihilation reactions are discussed in the presence of an intrinsic strangeness com-
ponent in the nucleon. Admixture of ss quark pairs in the nucleon wave function
enables the direct coupling to the ¢ - meson in the annihilation channel without
violating the OZI rule. Three forms are considered in this work for the strangeness
content of the proton wave funetion, namely, the wud cluster with a ss sea quark
component, kaon-hyperon clusters based on a simple chiral quark model, and the
pentaquark picture uwudss. Nonrelativistic quark model calculations reveal that
the strangeness magnetic moment jus and the strangeness contribution to the pro-
ton spin o, from the first two models are consistent with recent experimental data
where us and o are negative. For the third model, the uuds subsystem with the
configurations [31]pg[211]p[22]s and [31] ps[31]F[22]s leads to negative values of p

and o.

With effective quark line diagrams incorporating the 3P, model we
give estimates for the branching ratios of the annihilation reactions at rest
pp — ¢oX (X = 7% n,p° w). Results for the branching ratios of ¢X pro-
duction from atomic pp s-wave states are for the first and third model found

to be strongly channel dependent, in good agreement with measured rates.
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CHAPTER 1

INTRODUCTION

The fundamental constituents of matter are quarks and leptons interacting
through gauge bosons which is the basis for the understanding of matter at the
level of 107! m (Halzen and Martin, 1984). The different kinds of quarks are
distinguished by a quantity usually called flavor. There are six flavors of quarks
(q), named up (u), down (d), strange (s), charm (¢), top (t), and bottom (b).
However, in experiments quarks have not been observed as isolated objects, but
are only seen as clusters of quarks called hadrons. All hadrons are made up of
quarks and antiquarks, with baryens-of-half integer spin being bound states of
three quarks, whereas the mesons with even numbered spins are quark-antiquark
configurations. The quarks. in the hadrons are bound by the strong interaction
mediated through gluons.

Quantum Chromodynamics (QCD) is the fundamental theory of the strong
interaction. QCD has registered remarkable success in the limit () — oo or at
very short distances where the effective QCD coupling, as(Q?) (Q? is the scale of
the four-momentum transfer squared) is very small and a perturbative calculation
is amenable. On the other hand, in the low energy limit where QCD cannot be
treated perturbatively, the vast amount of low energy data are usually explained
through constituent quark models (CQM) which are based on simplifying assump-
tions that all hadrons are made up of quarks and antiquarks (Thomas and Weise,
2001). In the CQM, the proton is made of two u quarks and a d quark while

the neutron consists of two d quarks and a u quark. A hyperon is any baryon



containing one or more strange quarks (s) while a meson containing one s or s
quark and a non-strange, light quark/antiquark is called kaon. The CQM has
been very successful in explaining many experimental data such as hadron spec-
troscopy data (Hendry and Lichtenberg, 1978), the neutron charge radius (Gupta
and Kaur, 1983), baryon magnetic moments, etc.

However, experimental results for the value of the pion-nucleon sigma term,
the strange magnetic moment g, the strangeness contribution to the nucleon
form factor (von Harrach, 2003) as well as the apparent violations in nucleon-
antinucleon annihilation reactions involving ¢ mesons (Amsler, 1992) indicate that
the proton might contain a substantial strange quark-antiquark (s$) component.
The strangeness sigma term appears to lie somewhere in the range of 2 — 7% of
the nucleon mass (Young, 2010). The substantial Okubo-Zwieg-lizuka (OZI) rule
violations in the NN ‘annihilation reactions involving the ¢ meson may suggest
the presence of an intrinsic s5 in the nucleon wave function (Ellis et al., 1995), for
instance, the presence of a/¢?s3(¢*s5) piecein the N(N) wave function. With such
an assumption, the ¢ meson could be produced in NN annihilation reactions via
a shake-out or rearrangement of the strange quarks already stored in the nucleon
without the violation of the OZI rule. There are other explanations of the OZI
rule violation without introducing a strange component in the nucleon such as the
resonance interpretation, instanton induced interactions (Kochelev, 1996), and
rescattering (Locher and Lu, 1995).

The European Muon Collaboration (EMC) spin experiment (Ashman et al.,
1988) on deep inelastic scattering of longitudinally polarised muons by longitudi-
nally polarised protons revealed the first time that the polarization of the strange
quark sea may contribute to the proton spin oy a significant negative value. This

experimental result was confirmed by the subsequent deep inelastic double polar-



ization experiments. Then, in Ref. (Ellis and Karliner, 1995) all the available data
were analyzed in a systematic way and a value of o5 = —0.10 & 0.03 was found.
Among a large number of theoretical works, Cheng and Li apply the chiral quark
model (ChQM) to explain the spin and flavor structure of the proton (Cheng and
Li, 1995). With the fluctuation of the proton into a kaon and a hyperon, they can
explain the negative polarization of the strange quark sea and get other theoretical
results consistent with the DIS experimental data.

However, the configuration ofstrange quarks in the nucleon is still an open
question. The strangeness magnetic moment u, can be extrapolated from the
strange magnetic form factor G4,(Q?) at the momentum transfer Q* = 0 mea-
sured in parity violation experiments of electron scattering from a nucleon (Diehl
et al., 2008). Most experimental measurements suggest a positive value for pg, in
contrast to the recent experiment data (Baunack et al., 2009) and most theoreti-
cal calculations which have obtained negative values for this observable (Beck and
McKeown, 2001; Lyubovitskij et al., 2002).~A recent work (An et al., 2006) has
proposed a different form for the strangeness content of the proton which has the
strange quark piece in terms of pentaquark configurations instead of the 5-quark
component which consists of a uud cluster and a ss pair proposed for solving the
puzzle of violation the OZI rule. Different pentaquark configurations that may
be contained in the proton may yield both positive and negative values for the
strangeness spin and magnetic moment of the proton.

The experimental results on ug, which is extracted from experimental data
on G5,(Q?), are rather uncertain due to the large uncertainties in G4,(Q?%) and
the extrapolation approach. So it is believed that the proton-antiproton reactions
involving ¢ production may be another platform to be applied to tackle the possible

configuration of strange quarks in the proton. In the present work we consider



the strange content in the proton wave function in three models, namely, the
uud cluster with a s5 sea quark component, kaon-hyperon clusters based on the
chiral quark model, and the pentaquark picture uudss. The theoretical oy, pus and
branching ratios of the reactions pp — ¢X (X = 7% n, p°,w) will be compared
to experimental data. We resort to the P, quark model (Le Yaouanc et al.,
1988) and the nearest threshold dominance model (Vandermeulen, 1988) to obtain
quantitative predictions for the branching ratios of the annihilation reactions from
atomic pp states with the relative erbital angular momentum L = 0 (Gutsche
et al., 1997).

This thesis is organized as follows. In Chapter [T we show some detailed
description of the violation of the OZI rule and experimental data that suggested
the presence of strange in the nucleon. detailed description of the proton wave
functions for each models-as mentions and their corresponding strangeness spin
and magnetic moment are presented in Chapter III. In Chapter IV we briefly
review the description of the.reaction pp —. ¢X “with a strange component in the
proton wave functions by using *Fy model, the possible quark line diagrams and
the model predictions of branching ratios in comparison with experimental data

are contained in this section. Finally, the conclusions are given in Chapter V.



CHAPTER II

STRANGENESS IN THE NUCLEON

The constituent quark model has been very successful in explaining not only
the nucleon magnetic moment but also the magnetic moments and masses of other
baryons. However, the model is still incomplete to explain some experimental
findings which indicate a possible, sizeable occurrence of strange quarks in the
nucleon. In this chapter we discuss experimental evidences and theoretical results

that support the knowledge of the presence of the strange quark in the proton.

2.1 The OZI Rule

The quark model has not only been applied to.predict the ratio of the proton
to neutron magnetic moments hut it-was also applied to predict the decay and
collision of hadrons by picturing/describing these processes in terms of interactions
of their constituent quarks. Accordingly, the quark line diagram was employed to
describe the processes explicitly in term of quarks. The decays and collisions of
hadrons with the strong interaction, represented by the quark line diagram, can
be classified in two main categories (the OZI rule forbidden and the OZI allowed
transitions) according to the quark line topology. Hence, if the transition from
initial to final state hadrons can only be separated by cutting a quark line the
diagram is classified to be allowed by the OZI rule. Otherwise, if the quark line
diagram can be divided without cutting a quark line the process is classified to be
OZI forbidden(Le Yaouanc et al., 1988). An explanation of the OZI rule can be

seen from the fact that the coupling constant in QCD decreases with increasing



energy (or momentum transfer). For the OZI suppressed channels the gluons
must have high Q? (at least as much as the rest mass energies of the quarks into
which they decay) and so the coupling constant will appear small to these gluons.
Consider for example the decay of the ¢ and w mesons. Among the nine lightest
vector mesons, the ¢ and w mesons are linear combinations of the singlet and the

isospin-zero octet state, that is
¢ = wgcost — wy sin @ (2.1)

W = wgsin @ -+ wcosd (2.2)

where wg and w; are the isogpin-zero octet state and the singlet state, respectively.

They contain the quark constituents as follows:
Wy =(uti +=dd~ 255)/vV/6 (2.3)

wy = (ut 4 dd +'s5) /3 (2.4)

The so-called ideal mixing angle‘is the one which leads to a pure ss configuration

of the ¢ meson. From Egs. (2.3) and (2.4), one finds the ideal mixing angle
0y = tan"'(1/V2) = 35.16° (2.5)

With the ideal mixing angle the ¢ and w meson states may be rewritten as follows:

_ Lo
¢ = (s5)cos(6y — 0) + ﬁ(uu + dd) sin(fy — 6), (2.6)

o L,
w = (s8)sin(fp — 0) + E(uu + dd)cos(bp — 6). (2.7)

The physical value of the mixing angle § may be estimated from the quadratic

Gell-Mann-Okubo mass formula (Okubo, 1977)

Amie. —m> = 3 (m3 cos’d + m, sin®f). (2.8)



Inserting into Eq. (2.8) the latest mass values of the Particle Data Group (Eidel-
man et al., 2004) for the neutral mesons, mg- = 1680 MeV, m, = 783 MeV, my =

1020 MeV, m,, = 783 MeV, we get
0 == 38.5° (2.9)

The mixing angle 6 is not far from the ideal mixing angle, therefore, the ¢ consists
predominantly of s5 quarks while the w consists predominantly of wi and dd
quarks. These two mesons have the.same quantum numbers J” = 1~ but ¢ has
a larger mass than the w and one would naively also expect a larger decay width.
But the experimental finding shows that the decay width of the w into 37 is about
fifteen times of the ¢ into the same decay channel. The mechanism in these decays
can be explained by the-OZI tule in terms of the quark line diagrams of Figure
2.1 (Hendry and Lichtenberg, 1978).

2 o o l;‘r‘
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Figure 2.1 Quark line diagrams demonstrate (a) the allowed decay of the w into

three pions, (b) the OZI rule-forbidden decay of the ¢ into three pions.

According to the constituent quark picture of w and ¢ with the nearly ideal
mixing angle, each quark line in Figure 2.1(a) is a part of two hadrons but the s
quark line of Figure 2.1(b) is by far dominant for the ¢. This is an illustration
of the OZI rule which states that any process which incorporates a disconnected

quark line diagram is forbidden.



A disconnected diagram can be defined as one in which one or more hadrons
can be isolated by a line which does not cut any quark lines. Therefore, the OZI

rule inhibits the decay ¢ — 37 while allowing the decays w — 3.

2.2 Apparent Violation of the OZI Rule

The OZI rule predictions hayve been tested many times in different reactions
but there is a long-standing problem of the apparent violation of the OZI rule, such
as in NN reactions involving the ¢.-meson in the final state, NN — ¢X. For the
collision involved in this work let us consider the creation of a ¢g pair in the

reaction of hadron annihilation
A+ B=C 44qq, for g= u,d, s, (2.10)

where A, B and C are hadrous. If the hadrons A, B have no strange quark com-

ponent then the OZI rtule demands that

. T(A+B— X + s5) _0 (2.11)
CT(A+B— X+4ua)+T(A+B— X +dd) '

where T(A + B — X + ¢q) is the amplitude of the corresponding process and X
stand for a non-strange meson. It means that if the ¢ meson is a pure ss state, it
could not have been produced in the interaction of hadrons composed from u and
d quarks only. The ratio of cross sections for production of the ¢ and w mesons in

case of A, B = N, N is derived in terms of the parameter ¢ as:

_ o(NN = X¢) .,
= GNNSxw) D (2.12)

R

with

5= e + tan(f — 6y)
1 —ctan(d — )’

(2.13)



where f is the kinetic phase space factor depending on the masses of final state
mesons. If it is true that the N and N have no strange quark components, then
the ¢ meson can only be produced by coupling to its non-strange components in
NN annihilation reactions. For instance, creation of the ¢ and w together with a
7 in the pp annihilation should be described by the quark line diagrams in Figure
2.2 (Nomokonov and Sapozhnikov, 2003). The quark lines of a s§ pair in the final
state are not connected with the quark lines of the initial state (Figure 2.2(a)),
this reaction should be suppressed in comparison with the production of the w

meson, Figure 2.2(b). The theoretically expected ratio of branching ratios is

¥ —>— 5. 1 u
P{ W\ __Fj:fé p{ i b

A
h

i \ @ o
d —1——] H \ d —-«1—J
}_?{H -_‘___-J \_’_E_Lﬂ' ﬁ{ u E}T
I —= «— 1! | T — [
(@) (b)

Figure 2.2 Quark line diagrams for the ‘¢ (a) and w (b)- meson production in pp

annihilation.

o(NN — X¢)
o(NN — Xw)

= B f~0.001 — 0.003. (2.14)

However, as shown in Table 2.1 experimental data by the ASTERIX Collabora-
tion at LEAR for the branching ratios of NN annihilations at rest show that the
¢ X /wX ratios are generally larger than the naive estimate of Eq. (2.14). Espe-
cially for the 23S, initial state, the BR(7¢)/BR(rw) of order 1/10 for the NN
annihilation from the 335, initial state indicates a considerable OZI violation. The
violation of the OZI rule was observed not only in the proton-antiproton annihi-
lation, but also in the reactions with protons pd — 3He¢ , pp — pp¢ and pions

¢op — ¢mp. The discrepancy with the OZI rule in these reactions was found to
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Table 2.1 Ratios for ¢,w production from S and P waves of the NN atoms.

Transition Ratios ¢ X /wX

BG— 1 , T W 0.077
1BS — 0o, nw 0.003
31— p°¢) pPw 0.018
1S wo,fww 0.019
BPses Pepi 0:006

be larger by a factor of 10 — 100. Large OZI rule violations in these reactions
may signal some interesting new physics. Naively, one would expect that the pres-
ence of intrinsic strangeness in the nucleon leads to an overall enhancement of ¢

production in NN annihilation, which is contrary to experimental data.

2.3 Strangeness of the Nucleon

The violation of the OZI rule in NN interactions could be evaded if there
is a sizable s5 component in the nucleon wave function. Then new classes of con-
nected quark line diagrams could be drawn for the production of the ¢ meson and
other ss mesons. Not only the apparent violation of the OZI rule but also several

different experimental indications, including theoretical considerations which were
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summarized in (von Harrach, 2005; Diehl et al., 2008; Nomokonov and Sapozh-
nikov, 2003; Beck and McKeown, 2001; Ellis, 2005), suggest that the nucleon wave
function contains a s§ component. For example, CCFR measures the fraction of
the nucleon momentum carried by strange quarks: P, = 4% at momentum transfer
Q? = 20 Gev?. One other prominent example is the strange scalar density which

is parameterized with the ratio

L 2(plssip)
(plua + dd|p)

(2.15)
which should be vanishing or very small for a nonstrange hadron such as the pro-
ton |p). This ratio is related to the pion-nucleon sigma term o which can be
extracted from the pion-nucleon scattering data. Analysis of the o term indicates
that the s5 pairs may. contribute ~15% to the-mass of the nucleon (Beck and
McKeown, 2001). Different groups have evaluated the sigma term making use of
different data sets and values for coupling constants.” From the values of o the
strangeness content is derived as y = 0.1 — 0.6 (von Harrach, 2005). Not only
mass and momentum fraction but also strange quark content has a contribution
to the spin and magnetic moment of the nucleon. The EMC and successor experi-
ments with polarized lepton beams and nucleon targets, and experiments on elastic
neutrino scattering gave indications that the ss pair in the nucleon is polarized
negatively with respect to the direction of the nucleon spin: As = —0.10 + 0.02
and —0.15 + 0.07, respectively. The intrinsic nucleon strangeness spins from
those experimental data are consistent with theoretical considerations. Such as,
the analysis of the baryon magnetic moment: As = —0.19 £ 0.05, the QCD lat-
tice calculation: As = —0.12 4+ 0.07 and the SU(3) flavor chiral quark model:
As = —(0.11 — 0.22) also indicated the negative polarization of strange quarks in
the proton (Nomokonov and Sapozhnikov, 2003). Other examples are the strange

form factors which can be extracted from parity violation in elastic electron scat-
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tering on a nucleon (Diehl et al., 2008). Experiments typically measure a linear
combination of the electric and magnetic form factors (G%, and G¥,) at a low value
of the momentum transfer. For example, the recent HAPPEX data, which have
significantly smaller errors than the other measurements, correspond at Q% = 0.109
GeV? to the linear combination G%, - 0.09G3, = 0.007 £ 0.011 = 0.006. At a mo-
mentum transfer of Q? = 0.077 GeV? it corresponds to the electric form factor

% = 0.002 £ 0.014 £ 0.007. Furthermore, the strangeness magnetic moment of

the nucleon can be obtained from the magnetic form factors with the relation
s = G (Q*=0). (2.16)

A variety of theoretical methods has been employed in efforts to compute the form
factor G including e A reasonably complete compilation of theoretical results
for p, are listed in Ref.(Beck.and MeKeown, . 2001). From most of the results
one should expect u, < 0 but with few exceptions, generally p, is in the range of
-0.8—0.0 nuclear magnéetons (py). A derivationsmaking use of additional exper-
imental input (Leinweber et al., 2005) has obtained a strange magnetic moment
of us = —0.051 + 0.021puy. Essentially, the same value p, = —0.048 4+ 0.012uy
has been obtained earlier in a chiral quark model (Lyubovitskij et al., 2002). The
experiments on parity violation in electron-proton scattering suggest a positive
value of ps (Spayde et al., 2004; Aniol et al., 2004; Maas et al., 2005; Arm-
strong et al., 2005). This is in contrast to a recent one (Baunack et al., 2009)
and the most of the theoretical calculations discussed above. However, the g
from the experimental data are rather uncertain due to the large uncertainties
in the measurement of the electromagnetic form factors and the extrapolation to
G5,(Q? = 0). For instance, an analysis from the SAMPLE collaboration indicates
G5;(Q%* = 0.1) = 0.14 £ 0.29 + 0.31 (the third error is related to uncertainties

in the electromagnetic form factor). This value is corrected to obtain a result
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for the strange magnetic moment: pu, = 0.01 £ 0.29 £ 0.31 4= 0.07 where the last
uncertainty accounts for the additional uncertainty associated with the theoretical
extrapolation to Q? = 0 (Beck and McKeown, 2001). From above discussion, the
apparent violation of the OZI rule and the other studies suggest that there could be
a sizeable strange quark component present in the nucleon. Therefore, the nucleon
wave function may be improved by taking the admixture of strange quarks into
account. In the next chapter we consider some possible models and give explicit

forms of the proton wave function containing strange quarks/antiquarks.



CHAPTER III

THE PROTON WAVE FUNCTIONS

The inclusion of strange quarks in the form of a s5 pair may not change the
proton quantum numbers. The constituent quark wave function of the proton in
the presence of the strange quark pair s§ may be constructed by including a qqqss
part in addition to the naive uud quark model component. In general, the proton

wave function may be written in the form
|p) = "Aluud) +'B|uudss) (3.1)

where A and B are the amplitudes for the 3-quark and 5-quark components in
the proton, respectively. “‘Recently, there is some evidence that the strange quark
contribution to the strangeness sigma term-appears to lie somewhere in the range
of 2 — 7% of the nucleon mass (Young, 2010). Therefore, the strangeness admixture
can be treated as a small perturbation in the proton wave function, that is, B <<
A?. However, the 5-quark component is the main contribution to the ¢ production
in pp annihilation. In this work we restrict ourselves to three models of the proton

wave function, where strange sea quarks are included.

3.1 Meson and Baryon Wave Functions

According to the intrinsic properties of quarks, in the quark model hadron
wave functions include a spatial, a spin, a flavor and a color part. Generally the

wave functions can be written as

¢hadron = Pspatial PspinP flavor Pcolor (32)
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The spatial part of a hadron wave function cannot be written down explicitly, as
its form depends on the unknown details of quark dynamics under the influence of
the strong interaction. However, the interaction between quarks can be assumed
to be basically confining, the lowest states will have a symmetric spatial wave func-
tion. A reasonable choice for the potential, associated with the strong interaction
between quarks, is the harmonic oscillator potential (Hendry and Lichtenberg,
1978). Not only because of its exact solvability and simplicity but also because
the energies of mesons are roughly equally spaced in energy (like for a harmonic
oscillator potential for instance) (Close, 1979) this first choice for the leading part
of the potential seems reasonable.

For the spin part, due to quarks are spin % fermions, the total spin S and
the third component S, of the quark systems can be obtained by the addition of
angular momentum. In case of mesons, the gq state is coupled to give a total
spin of S = 0 and S'= 1, which corresponds to the spin singlet and triplet states,

respectively. The composition of thesesstates

5,52 = (5 ® 5)ss.) (3.9

in terms of the standard Clebsch-Gordan coefficients is

1
0,0) = (14 = 1), (3.4)
1
1,00 = (1 + 41), (3.5)
1,1) =11, (3.6)
1, 1) =L, (3.7)

where 1 and | denote the single quark spin function with the third component %

and —%, respectively. For baryons the spin states of the qqq system are formed by
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combining 3 S = % objects:

1 1

15,5:) = (5 ® 5)s0 ® 3)s.5.)- (39

This scheme results in 23 = 8 independent states as follows:

33
515 =11t (3.9)
3 3
) = (3.10)
31 L 1 311
530 AT+ T+ ) (3.11)
3 1 1
573 = %mu W+ ) (3.12)
11 1
5450+ = %(2 (Rl N Y (3.13)
11 1
ity b e L (3.14)
sas AR EReARs L1 (3.15)
1 1 1
509250 = —ﬁ(ﬁi = 1) (3.16)

The subscript (+) denotes a state that is symmetric and (—) denotes a state that is
antisymmetric under the exchange of the spin of the first two quarks, these states
are known as mixed symmetric and mixed antisymmetric states, respectively.
According to the QCD quark-quark-gluon interaction that the strength is
flavor-independent the mass differences of the wu,d, s quarks are not very large,
therefore, in limit m, = mg = m, = m the Hamiltonian is then invariant under
SU(3) flavor transformations of the w,d, s quarks. Quarks are then assigned to
the 3 representation of SU(3) (antiquarks to the conjugate 3 representation). In
this representation the generators are the 3 x 3 Gell-Mann SU(3) matrices acting
on the 3-dimensional flavor space. It follows that the physical states, mesons and

baryons, will be collected into approximately degenerate multiplets corresponding
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to irreducible representations of SU(3). In the case of mesons, the combination
of qq from u,d and s quarks and antiquarks generates nonets of mesons. In the
framework of the flavor SU(3) symmetry, the SU(3) nonets can be reduced to an
octet and a singlet state as in group theory the product 3®3 = 8®1 reduces to the
irreducible representations 8 and 1. The meson nonets are classified according to
total angular momentum J = L + S (L is the relative orbital angular momentum)
and parity P = (—1)%"!. The nine lightest mesons with J& = 0~ and J¥ = 1~ are
known as pseudoscalar and vector mesons, respectively, which has been observed
and their corresponding wave functions are listed in Table 3.1 (Yan, 2006).

The baryons are constructed by forming qqq states. The direct product
of three flavor triplets leads to a symmetric decuplet (10g), one octet of mixed
symmetric (84), one oetet of mixed antisymmetric (8,,,) and a singlet of anti-
symmetric (1g) states:' 3 @3 @ 3 =105 @ 8y & 817, ® 1a. The explicit form of
the octet flavor wave functions, involved in the study of this thesis, is listed in the
Table 3.2 (Lichtenberg, 1978).

There is indirect evidence that quarks have, in addition to flavor, another
internal degree of freedom called color. The reason for introducing color has to
do with quark statistics. Quarks are supposed to be particles of spin 1/2. The
wave function of a collection of identical particles of half-integral spin must be
antisymmetric under the interchange of any two of them. But the wave function
of quarks inside a baryon (including just the usual quantum numbers) appears to
be symmetric under this interchange. A way out of the difficulty is to assume that
quarks carry a color degree of freedom and that the wave function is antisymmetric
in the color variable. A baryon contains three quarks, so it is natural to let the
color degree of freedom take on three values. In other words, a quark of a given

flavor comes in three colors, say red (R), green (G) and blue (B). A baryon then
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Table 3.2 Baryon octet wave functions constructed from three quarks.

Baryon Octet 8ar4 Octet 87,
p ﬁ (2uud — udu — duw) %(udu — duu)
n % (udd + dud — 2ddu) % (udd — dud)
0 \/%(2uds + 2dus — usd — dsu — sud —sdu) %(usd + dsu — sud — sdu)
st % (2uus — usu — suu) %(usu — suu)
AO %(usd + sud — dsu = sdu) \/% (2uds — 2dus + sdu — dsu + usd — sud)

is made up of three quarks, each-one with a different color in an antisymmetric
combination. Such a combination is a color singlet and is said to be colorless.
The color wave function can be-written dewn explicitly using the same method as

constructing the flavor part. Then the baryon color wave function is

1

V6

Likewise, the meson color wave function is

Beoior = — (RGB= RBG — GRB#-GBR — BGR + BRG). (3.17)

1

V3

The complete wave functions we consider in this thesis are the ones of the ground

Moo = —(RR + GG + BB). (3.18)

state octet of baryons. For an ordinary attractive interaction between quarks, the
bound state of lowest energy has a configuration in which the quarks are all in
relative S states (L = 0). It follows that the wave function of a baryon is symmetric
under the interchange of the spatial coordinates of any two quarks. Then, with
orbital angular momentum L = 0, the baryons of lowest mass should have total
angular momentum .J equal to the total spin (of either 1/2 or 3/2). Since the color

part is assumed to be a singlet, the remaining part of the baryon wave function
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(flavor and spin) is therefore totally symmetric under any interchange of quarks.

The symmetrized wave function in flavor and spin is expressed as

1
wflavor@bspin = E((éMSXMS + (bMAXMA)? (319)

where ¢ and y denotes the respective flavor and spin wave functions with the types
of symmetry under quark exchange. For the proton, which is the baryon of lowest
mass with I3 = 1/2 and J = 1/2; its flavor and spin wave function in case of a

spin-up proton (J. = +1/2) is then given by

drg = %(2uud — udu — duw), . | dpr, = z(/udu — duu), (3.20)
1 1
XMg = %(2 M ), = ﬁ(fiT — ). (3.21)

3.2 Spin Polarization-and Magnetic Moment of the Nu-

cleon in the Quark Model

From the flavor and spin parts as discussed in the previous section, the
explicit form in the quark spin flavor and spin structure of a spin-up proton is
given by

1
p1)= Zo@ututdd—utuldt-ulutdy), (3.22)

From this explicit wave function we can count the number (or probabilities) of
quark flavors with spin parallel (¢, ) or antiparallel (¢g_) to the proton spin:
5 2
Uy = —, U_ = dy=—-, d_=— 3.23
summing up to two u and one d quark. With the spin polarizations defined as:
Ag=q; —q- (3.24)

we also obtain the contribution by each of the quark flavors to the proton spin:

Au=- Ad=—-—- As=0, and AYX =1, (3.25)
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where AY, = Au + Ad + As is the sum of quark polarizations. These spin po-
larizations can be used to calculate the nucleon magnetic moment, an observable
successfully described in the quark model. With the constituent quarks the mag-

netic moment for a nucleon is defined as
w(N) = Aup, + Ad™ g + As™ g (3.26)

Thus, the magnetic moments of the proton and neutron are given by

4 1

Alp) = i — 1, (3.27)
4 1
p(n) = FHa 3 - (3.28)

The magnetic moment of a point-like spin—% particle of charge e is ¢/2m. Thus a

quark assumed to be point particle of charge ();e and mass m; has the magnetic

moment
20 = (3.29)
11 2m; ) '
In the limit that m, = mg; then u, = —2u4, so the quark model prediction is
ta/ e = —0.677 which is very well in agreement with the experimental result of

fa/ e = —0.68497945 £+ 0.00000058 (Halzen and Martin, 1984).

3.3 The Proton Wave Function with ss Sea-Quark Com-

ponents

For the 5-quark component, we first consider the idea that strange quarks
are in the form of a s5 sea-quark component in the proton state. This idea was
proposed for describing the production of ¢ mesons in nucleon-antinucleon anni-
hilation reactions (Ellis et al., 1995). Consequently, the production of a ¢ meson
can be interpreted in terms of the shake-out or the rearrangement of an intrinsic

s§ component of the nucleon wave function without the violation of the OZI rule.
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The corresponding 5-quark component for the proton can be written in Fock space

as (Henley et al., 1992)

\uudss) = ao|(uud)i/2(55)0)1/2 + ar|(uud)1/2(55)1)1/2 - (3.30)

The subscripts denote the spin coupling of the quark clusters, ay and a; represent
the amplitudes for the spin 0 and spin 1 components of the admixed ss pairs.
There are a number of possible quantum numbers of the s5 cluster in the nucleon
which can be considered (Ellis et al., 2000). The assumption that the ss has the
quantum numbers of a ¢ (the second term) may seem attractive a priori. One
would expect in addition that ¢ production is due to a shake-out of this cluster in

the transition process.

3.4 The Proton Wave Function from the Chiral Quark

Model

The chiral quark model (Ch@QM) was essentially developed to refine the
understanding in the successes of the CQM. The idea of the ChQM is based on the
picture that a quark inside a nucleon emits a quark-antiquark pairs as a Goldstone

boson (GB), for example
g =GB+, — (47) + ¢4 (3.31)

This process could be described in the effective Lagrangian valid below the chiral
symmetry breaking scale Acpgas, which involves quarks, gluons and Goldstone

bosons. The first few terms in this Lagrangian are (Shu et al., 2007):

. .- - 1
Longm = (D, + V)Y +igap Ay 'y — mapnp + 1 FTror210,5 + ... (3.32)

where D, = 0, + i9gG,, is the gauge-covariant derivative of QCD, G, the gluon

field, and ¢ the strong coupling constant. The dimensionless axial-vector coupling
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ga = 0.7524 is determined from the axial charge of the nucleon. The symbol m
represents the constituent quark masses due to the spontaneous breaking of chiral
symmetry breaking. The pseudoscalar decay constant is f, ~ 93 MeV. The ¥
field, vector V,, and axial-vector currents A, are given in terms of the Goldstone

boson fields ®,; as

% + % mt Kt

r = — 71'0 0
P 7 s+ K , (3.33)

3 0 —27

K K Tbl

2P

Y =exp(i ) (3.34)

I 1 ; ;

m

An expansion of the currents-in powers of @/, yields the effective interaction

). (3.36)

between GB and ¢

L= —%wa@mﬂ%w. (3.37)

This allows the fluctuation of a quark into a recoil quark plus a Goldstone boson.
The basic interaction causes a modification of the spin content because a quark
can change its helicity by emitting a spin zero meson. It causes a modification of
the flavor content because the GB fluctuation is flavor dependent. The spin flip
process makes it possible to understand the spin content of the nucleon, which
was not possible in the conventional constituent quark model. Nevertheless, in
the absence of interactions, the proton is made up of two u quarks and one d
quark. For example, let us consider the fluctuation of u quark with this interaction.

Suppressing all the space-time structure and only displaying the flavor content, the
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basic GB-quark interaction vertices are given by (Cheng and Li, 1995)
0

™

— 4 i)

V2 V6

Thus after one emission process the u quark wave function has the components

,C[:gg |:d7T_+SK_+U( :|U—|— . (338)

U (u) ~ {dn* FsKt 1 u(:;; n %)} . (3.39)

which can be entirely expressed in terms of the quark content by using 7+ = ud,
and K+t = us, etc. Hence, the parameter |gg|> denotes the probability for the
transition v — d 4+ 7. In the quark model, a hadron is built up from constituent
quarks. In accordance with the ChQM, a constituent quark should be treated as a
composite particle including suchicomponents ¢ and mesons. With the admixture
of mesons to the nucleon wave function, one findsthat only one third of the nucleon
spin is carried by the quarks. Moreover, for the other spin-flavor observables, such
as magnetic moments, sea quark distributions and the Gottfried sum rule, the
agreement with experimental data is also improved using this model (Gupta and
Kaur, 1983).

To obtain the proton wave function we consider the SU(3) invariant meson-

baryon interaction Lagrangian (Stoks, 1998)

Lr= _98\/§ (a[ci)Bq)BCI)M]F + (1 - Oé)[(i)B(I)B(I)M]D) - 91%@)3@3@1\4]5 (340)

where gg and g; are coupling constants, and « is known as the F/(F + D) ratio
with F' ~ 0.51, D ~ 0.76 (Thomas and Weise, 2001). The square parentheses

denote the SU(3) invariant combinations:
[(i)B(I)B(I)M]F = TI‘(CI)B(I)M(I)B> - Tl"((i)BCI)B(I)M) (341)

_ _ _ 2
[(I)BCI)B(I)M]D = TI'(q)BCI)M@B> + TI'((I)BCI)B(DM) — gTI‘((I)BCI)B)TI'((DM) (342)

[(I)BCDB(DM]S = Tr(Cf)B(I)B)Tr(CI)M) (343)
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where ®p is the baryon matrix

»0 A +
wts = p
- 0 A
(I)B b 2 + NG n (3'44>
= =0 __2A
—_ e \/E

Hence, the part of the interaction Lagrangian which allows the fluctuation of the

proton into kaons and hyperon is

_ _ 1 —do 14200 3
Ly = —gipmp + gs[pm’ + 7 s + 7 AK™ + (2a — 1)2°K

—\2nr + V220 - 1) K%p+ ... (3.45)

The final state resulting from pseudoscalar meson emission by the proton is

4oy 14 2«
U(p) ~ —ag1]pm)+ gs B lpns) + Jpr°) + /3 |AKT)

+(2a “B) 20K — V2t 4+ V2(2a — 1)|2TKY)). (3.46)

In the absence of fluctuations the proton is made up of the conventional two wu
quarks and one d quark. Thus W¥(p) may be interpreted as the 5-quark component

of the proton wave function which is.given by
luudss) "M = G lpmy) + Galpns) + Gs|ZOKT) + G4 ST KO 4 G5|A°K ™), (3.47)

where the G are the coefficients corresponding to each factor of ¥(p). Each com-

ponent in above equation can be represented in terms of a quark cluster as

Ips) = [(wud)1y2(s8)0)1/2, [E°KT) = [(uds)1/2(us)o)1/2,

S+ KO) = [(uus)1 2 (d5)o) 2, [ACK ) = [(usd)y o (us)o)y o. (3.48)

3.5 Proton Wave Function with Explicit Configurations of

the uuds Subsystem

There is another form for the 5-quark component proposed by An, Zou and

Riska (An et al., 2006). Instead of a meson coupling to a baryon cluster, they
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considered the 5-quark component in the configuration of a ¢*¢ pentaquark. This
idea was introduced for considering the possible values of the strangeness mag-
netic moment and spin of the proton. The flavor wave functions for the uudss
components are usually constructed by coupling uuds flavor wave functions to the
5 flavor wave function. In the language of group theory, there are four possible
flavor symmetry patterns for the wuds system: [4]p, [31]p, [22]F and [211]p charac-
terized by the Sy Young tableaux. Combination of these with the antiquark with

flavor symmetry [1]. leads to the following pentaquark multiplet representations

of SU(3):
[4]r @15 = 10,0 35, (3.49)
Bilr® [ =8 10,0 27, (3.50)
[22]0® [l}="8 &0, (3.51)
211]p @ (1} =16 8. (3.52)

However, the possible flavor-symmetry patterns for the uuds in the proton are
limited to [31]p, [22]F and [211]p because the proton belongs to the octet repre-
sentation. The corresponding independent flavor wave functions for these flavor

symmetry representations are as following:

Xpils, = —==(2uusd) + 2[suud) + 2[usud) — [sudu)

5~
oo

—|usdu) — |dusu) — |udsu)

—|dsuu) — |sduu)), (3.53)

1
X315, = E(6|uuds> — 3|duus) — 3|udus) — 4|dsuu)
—4|sduu) + 5|sudu) + 5lusdu) + 2|uusd)

—|suud) — |dusu) — |usud) — |udsu)), (3.54)



1
X1)s, = ——=(—3|duus) + 3ludus) — 3|dusu) + 3|udsu)

n

3

—2|dsuu) + 2|sduu) — |sudu) + |usdu)

—|suud) + |usud)),

1
X[22]p, = ﬁ@\uud@ + 2|uusd) + 2|dsuu) + 2|sduu)

—|duus) = |udus) — |sudu) — |usdu)
—|suud) — |dusu) — |usud) — |udsu)),
b

X[22] F, \/g
—lduus)—tfusdu) — [suud) — |udsu)),

(Judus) + |sudu)y++ |dusu) + |usud)

1
X[211)p, = Z(Q\uuds) — 2Juusd) — |duns) — |udus)
— |sudu) ~ Jusdu) + [suud)y~+ |dusu)

+lusud) + |udsu)),

1
X[211]p, = \/—4_8(3|udus> — 3|duus) + 3|suud) — 3|usud)

+2|dsuu) — 2|sduu) — |sudu) + |usdu)
+|dusu) — |udsu)),
1

X[211]p, = \/6
—|usdu) — |dusu) — |sduu)).

(|sudu) + |udsu) + |dsuu)

The flavor wave functions for the proton with zero strangeness is given by

xr(uudss) = 5xp, (uuds),

where 7 =\, p and 7.
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(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)
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For the color wave functions, according to group theory, the color part of the
antiquark in pentaquark states is a [11] antitriplet thus the color symmetry of all
the uuds configurations is limited to a [211] triplet in order to form a pentaquark
color singlet. That is, the color part of the pentaquark wave function must be a
[222] singlet. There are three independent color wave functions of the ¢* for the

[211] triplet

1
Xp1e, (RGB) = ﬁ(2|RRGB) — 2|RRBG) — |GRRB)
—|RGRB) — |BRGR) — |RBGR)
+|BRRGY + |GRBR) + |RBRG)
+|RGBR)), (3.62)
1
X1, (RGB) = \/7_8(3|RGRB) ~ 3|GRRB) + 3|BRRG)
—3|RBRG) + 2|GBRR) — 2| BGRR)
—|BRGR)+|RBGR) + |GRBR)
—|RGBR)), (3.63)
1
Xp11]e, (RGB) = %UBRGR) + |RGBR) + |GBRR)

—|RBGR) — |GRBR) — |BGRR)). (3.64)

Thus, the corresponding color singlet wave function x¢ of the pentaquark at color

symmetry pattern j = A, p,n is given by

1 - _ _
X[QQQ]CJ_ = ﬁ(Rx[zll]Cj (RGB) + GX[?ll}cj (GBR) + BX[211]Cj (BRG)) (365)

Since the pentaquark state should be antisymmetric under any permutation of the
four quark configuration with the spatial wave function being symmetric, hence

the spin-flavor part of uuds must be a [31] state in order to form the antisymmetric
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wave function of the pentaquark. The corresponding ¢* wave function may take

the form
1
x(uuds) = ﬁ(XC’AXSFp — X, XsFy + XC, XSF, ) (3.66)

here xsr; denote a spin-flavor triplet of the four quark configuration. For example,
the flavor symmetry representations [31] and [211] combine with the spin symmetry
states [22]g to form the mixed symmetry state [31]ps given by

1
|[31]rs, [31] p[22]5) = E(X[?)HFAX[QQ]SA + X[31]5, X[22]5, ) (3.67)

1
[31]Fs, [31]£[22]5) = 5(\@)([31]&)([22}5A £ X[31]5, X225, — X[31]s, X[22)s,): (3-68)
1
181] s, [31]F[22]s) = 5(\/§X[31]FAX[22]S,, — X[31]r, X[22]5, — X[31]m, X[22]s, )» (3.69)
1
|31]Fs, [211)p[22] s )= E(X[zll]F)\X[ZZ]SA + X211, X[22)s, ) (3.70)

1
|[31]ps, [211]p[22]5) = 5(_\/§X[211]an[22]sp + X2, X225, — X[211]m, X[22]s, )+(3.71)

1
|[31]rs, [211]F[22]5) = 5<X[211]F)\X[22]Sp + X[211)5, X[22]5, T \/§X[211}FnX[22]SA). (3.72)

The spin wave functions with the [22] symmetry are given by

1 1 1
X[22s, = ﬁ' M) = m| N — ﬁ' )

1 1 1
—m| T — ﬁ| D+ ﬁ' W, (3.73)
Xz, = 5 (1T = | L1 — | 140 + | 4144)) (374

Finally, to obtain the pentquark wave function we have to couple the spin state of
the anti-strange quark to the uuds spin. Hence, in case of the [22] spin symmetry

corresponding to spin zero, we have

_ 1 _
x(uudss) = ﬁ(xzz%A X22sp, — X222¢, X22sp, T X2220nX225Fn)5| Ty (3.75)
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The spin projection state of the anti-strange quark is denoted by | 1 ({)). The
construction of the spin, color and flavor wave functions of the four quark configu-
ration of the pentaquark states are shown in Appendix D. The detailed description
of the spin-flavor of the proton wave function with the 5-quark component for these
three models, and the corresponding strangeness magnetic moment and spin of the

proton are given in the next section.

3.6 Strangeness Spin and Magnetic Moment of the Proton

In the nonrelativistic' quark model the strangeness magnetic moment ji,

and the strangeness contribution to the proton spin ¢, operator are defined as

ANR\ Il ™=
RS X & (3.76)
Gy =540 (3.77)

where Zs and o, are the angular momentum and spin projection operators, respec-
tively. The operator §7 is the strangeness counting operator with eigenvalue +1
for s and —1 for an 5 quark and m; is the constituent mass of the strange quark.

For the first proton wave function, in which the ss sea-quark components
are in the S and P-states, the spin-flavor wave function can be constructed by
coupling the |s5);,—01 wave function with the |uud),/, wave function. However,
since the admixed meson carries negative intrinsic parity an orbital p-wave (¢ = 1)
has to be introduced into the proton quark cluster wave function. The spin-flavor
wave function for the proton state with spin +1/2 can then be written in the

general form:

1 1
i 5.mp = 5) = Al(uud)) g m,—1 +B > as

Js:3:=0,1

(55);, @€ = 11, @ (wud)y )y s

(3.78)

1
2
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with the normalization > |a;,;;|*> = 1. To evaluate the strangeness spin con-

Js,Ji=0,1
tribution we decouple the 5-quark component to be

|uudss Z Z ZOC]S]Z Jza]samzamuudl >

]S7]zm17muud]82 Y

<J57 1?]87 IU’|JZ7 My >|QQ>J Jsz

L p)|uud)y ,, (3.79)

1
3 Muud
where ( | ) are Clebsch-Gordon Ceefficients. The spin-flavor decoupled states in

above equation are given by

1 1
|55) ... 851(5 ® 5);',];2)
STETv j:17]82:17
NN J =1, =—1;

= (3.80)
SEAE WL sy G 1. =0;

L (s psprbit), = 0,4, =0,

1
|U’Ud>2,m“udaztl VG <¢Mg,| > PL ¢MA| 2>_) , (3.81)

the symmetry flavor ¢,/ , and spin states |3, 4%)+ are given by Eq. (3.20) and
Eq. (3.21) respectively, |1, i) denotes the relative angular momentum between the
quark clusters.

With the above three equations the probabilities of finding a strange quark

pair (s§) with spin parallel (1) and opposite (J.) to the proton spin are given by

1 1 a? a?
PsTET:’<5T5T’P;§>mp:§>’2: (%——\/_04110410-1- 5 )32 (3.82)

1 1 oF o3
PS¢5¢:|<s¢s¢\p;§,mp=§>\2=( ;0“‘ \/_a11a10+ 6 )32 (383)

_ 1 1
PsTEi = ‘(ST‘S\L ’p;_vmp = 5)’2
0401 1 0‘2

062
— ( 5 + 3061 00p,1 — _\/_061 1001 + — 6 %) B2, (384)
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o 1
Past =|{s 451 |ps 5,m, = §>|2

2 2 2
ag, 1 1 aig . O, 9
= : —V2 — 4+ — 1B 3.85
( 5 30(17()&0’1 + 3\/_041,1Ck071 + 6 + 6 > ( )

We then can calculate the strangeness contribution to the proton spin:

—1.22|af?| B (3.86)

Here, we have fixed the parameters as a; g = a;; = . Using the operator from

Eq. (3.76) we can drive the strangeness magnetic moment

= B*(uudss| i uudss)
eB?
G R (N (02)
e3?
~ o (2Fst5 + 2Ps1))

eB?

== —0.55(1/04071

Y

(3.87)

where (¢5) — (¢5) = 0 because both of the strange and antistrange quarks are in
same quark cluster.

Similarly, for the proton wave function from the chiral quark model, since
the s quark in 7 and kaons carries negative parity it is necessary that n and kaon
be in relative p-wave about the uud and the hyperon cluster. The spin-flavor wave

function of the 5-quark component with spin +1/2 can be expressed as

)

et = D Gill(0@); = ® € = 1] m, © (299)

i=1,5

NI

) Lmy=1 (3.88)
here j; = 0 because all of the (¢g)’ quark clusters are pseudoscalar mesons. The
5-quark component can be decoupled to be

7

. 1 11,
|UUdSS>§,mX:% => > G, §,M7m|§, §>|qq>0,o|1,u>|qqq>
i=1,5pu,m

. (3.89)

[N
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where

Gila@)ho = 10,0)7"Gilqq) lqqq)’

(

—g1lm)p(uud)) s ., i=1;
—0.266g8]778)]p(uud));m, i=2;
=S50 AN )y, = (390
—0.2798\K+>|20(uds)>%7m, i =4
| —0.381gs| K°)[2* (uud) L, ©=05.
The baryon clusters are
0060} sy =/ 5 (Sl E3N + b)), (3.91)

where the baryon octet wave functions are given by the explicit form as listed in
Table 2.3. The probability of finding strange quarks (ss) with spin parallel (1)

and opposite (}) tothe proton spin are as follows

B 1 1

Past = (s 43 £1p; 5 i 7 5>|2 = 0.277g3 B?, (3.92)
— 1 1 2 2 D2

Ps¢§¢ = |<8 i S \L |pa §7mp = §>| = 0382983 ’ (393)
- 1 1

PsTgi - |<S T S \L |pa §7mp = §>|2

1
= 632g3 +0.251B%g3 — 0.125B% ¢, gs, (3.94)

3 1 1
Pysy=1[(sl 571 |p;§7mp = §>|2

B%g? +0.405B%g2 — 0.125B8%g, gs. (3.95)

| =

The strangeness contribution to the proton spin for this case is found to be

oy = A, + Ay = —0.31¢2| B> (3.96)
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By using S;0,5|1, 1) = —u5|1, i) one obtains
(Sits) = —0.80g2 B, (3.97)

The expectation value for u, for this proton wave function is then

egz| BI?

fg = =1.1- (3.98)

2my

The negative value of the strangeness spin contribution of these two proton
wave functions is consistent with deep inelastic scattering with the polarization of
the strange quark helicity opposite to the proton spin.

For the configuration with a wuds subsystem the 5-quark states are con-
structed by coupling the uuds flavor wave function with the s flavor wave function.
According to the requirement of positive parity. for the proton wave function, if
the uuds system is in ground state thenshas to be in the P state. The spin-flavor
wave function of the 5-quark component of the proton state with spin +1/2 for

this configuration is given by

|uudss> 1 =1[(8)

sMyuds= b

@ =1 ® (uds))y s (399

9 sMyuds=

In configurations where the uuds quarks are in their ground state with spin .S = 0,

the spin-flavor wave functions may be written in the general form

|uudss) 1 — ZAmS ,ms)|1, 1)s
1
% ()(2220A X225p, — X222¢, X225r, T X222¢, X225Fn) (3.100)
where
1 11
A = = 1Lms pl=, =) 3.101
: ;<2 ms, il ) (3.101)

For this configuration, the spin symmetry of the uuds cluster are described by

[22]s corresponding to spin 0. Their spin-flavor part can be coupled to be a mixed
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symmetric state by using the mixed symmetry [31]rs. Namely, [31]pg[211]r[22]s
and [31] ps[31]r[22]s but it gives no contribution because the total spin of the uuds
cluster is zero. Thus, only the § quark contributes to ps and o, that is (An et al.,

2006)
L2 1
oy = B? (« - ) = —-B% (3.102)

and

1 (eB?
MS:<—§<6 ). (3.103)

214

There are other configurations that were considered for the corresponding
strangeness spin and magnetic moment contribution to the proton. For exam-
ple, [31]rs[211]r[31]s and [31]:5[22]#[31]s also give a ps which is negative, but
0 is positive in contradiction with-experiment. Therefore, in the consideration of
the branching ratios from the proton wave function with a uuds subsystem, we
consider only the configurations [31]rg[211]£[22]5 and [31]rs[31]r[22]s that also
yield negative values both for the strangeness spin and magnetic moment as the

other two models.



CHAPTER IV
PRODUCTION OF THE ¢ MESON IN

PROTON-ANTIPROTON ANNIHILATION

In this chapter we apply three types of proton wave functions, as given
in Chapter III, to study the proton-antiproton annihilation reactions pp —
dw, om0 ¢p° and ¢n. The strong interaction mechanism of pp annihilation into
two or more mesons is still not understood yet in detail. Since this process oc-
curs in the nonperturbative regime of QCD, phenomenological models have to be
applied. The 3Py quark model is one of the most attractive among a number of
quark models dealing with the strong interaction, because of its simplicity and
successes in studying baryon and meson decays. In this chapter we begin with the
formulation of the *F, model.Then we describe in the 3P, model the reactions
pp — ¢X with the strange components included explicitly in the proton wave
functions as discussed in the previous section. In the second subsection we work
out the relevant transition amplitudes. The model predictions for branching ratios

in comparison with experimental data are given in the last subsection.

4.1 The *P) Model

In the 3 Py model three possible quark line diagrams as shown in Figure. 4.1.
contribute to the process of pp annihilation into ¢pX with the 5-quark component
in the proton wave functions. Two ¢q quark pairs are destroyed with vacuum

quantum numbers JEC (1) = 07(07) or in the Py state. The ¢q ® P, interaction
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vertices are defined according to (Dover et al., 1992)
VY= 308 Yild — 35 (@ + 4) () I (11)
o

where Y3,(¢) = |q1)1,(q) represents the spherical harmonic in momentum space

and 1;1(0) is a unit matrix in flavor (color) space. The ¢ arises from the *P,

w
vertex indicating the coupling of the annihilated quark-antiquark pairs to spin 1.

The transition amplitude for the reaction pp can be written in general as
T+ {(#X101p) (42)

where O is the transition operator that involves the *Py vertex. With the pro-
ton wave function that consists of the 3- and 5-quark components, the transition

amplitude corresponding-to the ¢ produetion is then given by

T = AB(pX |O|uudss ® wud)

+AB{$X|0uud @ iudss) (4.3)

Since the 5-quark component can be treated as a small perturbative admixture
in the proton (B? << A?), the amplitude corresponding to B*(¢X|O|(uudss) &
(utidss)) can be ignored. In above equation the two terms are symmetric to each
other, therefore we need to calculate only the first term and multiply the result
by the factor 2. In momentum space representation the transition amplitude for

a quark diagram topology A; is given by

Ty — / oy dgsdqu. g (X |G- Gi)

(v G| O, |Gh--33) (G1--Gs| (uudss) & (aud)) (4.4)
where the operators Oy, for each diagram are given by

Oa, = 20,093 — @)8% (@ — )00 (@ — G)8™ (@ — @n)V>VT, (4.5)
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Figure 4.1 Quark line diagrams corresponding to the production of two meson
final states in pp annihilation. The dots refer to the effective operator O4, for
qq annihilation. The first diagram correspond to the effective quark line diagram
for the shake-out of the intrinsic ss component of the proton wave function (Ellis

et al., 1995; Gutsche et al., 1997).
O, = A, 0D (@ — )6 (G — @)6® (@ — G3)0™ (G — @)VVY . (4.6)
Ouy = A, 0(G — G)0D(Gs — )8 (G — Gy )6® (G5 — @) VPV . (A7)

The ¢-functions represent the noninteracting and continuous quark-antiquark lines
in the diagram. The constant A; is a free dimensionless pair annihilation parame-
ter that describes the effective strength of the transition topology and is fitted to
the experimental data. Here the factor 2AB can be included into the pair anni-
hilation parameter A\;, nevertheless, this factor will be fixed by experimental data

in evaluating the branching ratios.
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4.2 The Transition Amplitude of pp — ¢X Reaction

According to Eq. (4.4) the full wave functions of the involved hadrons,
consisting of spatial, flavor, spin and color parts, have to be used for calculating
the transition amplitude. In this work the internal spatial wave functions are taken
in the harmonic oscillator approximation. For the mesons M (¢ and X) the wave

function can be expressed in terms of the quark momenta as

L L R,
(M|@vqy) = om (G, )X p = Narexp {—8]”(%" — Qj’)2} XM (4.8)

with Ny = (R2,/7)%* and Ry is the meson radial parameter. The spin-color-

flavor wave function is denoted by x. The baryon wave functions are given by

— —

oo Y, df—d G + G — 24;
(B|G:q;qx) = ¢XB = NBGXP{—-QE[( . k)2+( J T 2k e xss  (4.9)

V2 V6

where Np = (3R%/7)%/2 and Ry isthe baryon radial parameter. In case of the s3
sea model and the ChQM, where a meson is coupled with a baryon wave function,
the full 5-quark component wave function is given by

<61@5)|UUd8§> - Souuds§(cjla 3] %)qudSE

2 — —

R _ -
= NVyudss€Xp {_7B[<u)2 + ( .

The radial parameter R and the spherical harmonic Y}, represented the internal
relative P-wave between the 3-quark and the 2-quark cluster, respectively. For

the pentaquark, a symmetric function of the coordinates of the uudss, where the
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strange antiquark has orbital angular momentum (1, x), may be written as

uudss (@1, - @) = Nuudsgexp{_TB[é(qQ — @)+ 5@+ - 20)°
+— (G + G+ G — 3%)2]}3/1#( SRR AL SRR 1)

12

Ry G+ ¢+ @+ G5 — 44,
eXp‘{-éB( SR LB e

where the first exponential term in above equation corresponds to the spatial part
of the the 4-quark cluster. By choosing a plane wave basis for the relative motion
of the proton and antiproton, the_initial state wave functions in the center of

momentum system (IZ =q H@ + @3+ g1 + @) are obtained as:

<@%|(UUdS§) Y (ﬂad)> - 9911,71,ds§,[7[X71,uds§ X Xﬁ]&sz (4-]-2)

with

-

Pundssp = Puudssipd " @O+ G4 B+ G+~ F)ONG+ &+ G+ k). (4.13)

The spins of the p and p are coupled to total spin S with projections .S,. Similarly,
the final state ¢.X wave functions in the center of momentum system are given by
(7= + G):

(@X|qv-..qur) = vo.x[Xo ® Xxljime (4.14)
with

Pox = Popx 0T — G — @)D (T + G + qw) - (4.15)

The spins of the two meson states are coupled to j; with projection m.. In a low-
momentum approximation the transition amplitude TY%; for the S to P transition
from the initial state ¢ to final state f with a quark line diagram A; is evaluated

as

Tri(q, E) = A, Fr—0,=19exp {—ngQ — Qrk*} (f1Oa, i) (4.16)
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The index 7 represents the initial state 2*125+1[; (L is the orbital angular mo-
mentum, S is the spin, J is the total angular momentum and [ is the isospin).
The final state f is represented by the set of quantum numbers f = {{;5J'} (s
is the relative orbital angular momentum). The coefficients Fj 1, QZ and Q3 are
geometrical constants depending on the radial parameters. The matrix element
(f|O4,l7) is the spin-flavor weight for a quark line diagram A;. The analytic eval-
uation of the expression of Eq. (4.16) and the numerical evaluations of (f|Oy4, i)
are summarized in Appendix A; B and . Since the proton and the neutron give
the same the spin-flavor weight, the ¢ production from the nucleon-antinucleon
annihilation at rest can be described by the transition amplitude Eq. (4.16) mul-
tiplied with factor v/2. Since we consider the pp system in annihilation at rest the
proton-antiproton wave function is strongly correlated. Thus the initial state inter-
action for the atomic state of the pp system has to be included into the transition

amplitude (Kercek et al., 1999), which results in

15150 L EREG Dyohs, (B, (4.17)

where ¢ ¢ J(E) is the protonium wave function in the momentum space for fixed

isospin 1.

4.3 The Branching Ratios

In particle physics, it well known that the likelihood of interaction between
particles can be expressed by using the concept of a cross section. For the case
of two particles the cross section is a measure of the interaction event between
the two particles when they are colliding with each other. Additionally, in high
energy physics experiments, not only the cross section but also the branching

ratio is measured to be compared with theoretical predictions. The branching
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ratio (branching fraction) is the fraction of events for the decay in a certain way of
a chosen particle measured; accordingly the sum of branching ratios for a particle
is one. The transition (the rate of number of events) depends on the corresponding
decay width. Hence, instead of the transitional fraction, the branching ratio can

be defined as the partial decay width divided by the total width

3E —= WPy +5x)0(E — Ey — Ex)|Trrss(@)?,  (4.18)

Fopoox = 2F, 2Ey

1 / dgpq‘) dng

where E is the total energy (E,= 1.876 GeV) and Ey x = ,/mix ‘*’15(2;5,)( is the

energy of the outgoing mesons ¢ and X with mass m, x and momentum py x.
With the explicit form of the transition amplitude given by Eqs (4.16) and (4.17),

the partial decay width for the S to P transition (L = 0, ¢y = 1) is written as

Copmox = X (@ X0 48) v (1, ), (4.19)

with
I, = | Fo. / Pk oL gy (Rosi [~ 2R} P | (4.20)

The kinematical phase-space factor is defined by

3
flo, X) = g_E exp {—2@3(12} . (4.21)

The spin-flavor weights of the different transitions including the three different
versions of the proton wave functions discussed previously were calculated and are
shown in the Appendix A, B and C. Due to the projection of the initial values of
J the statistical weight 1/4 and 3/4 has to be added for J = 0 and J = 1, the

branching ratio of S-wave pp annihilation to the final state ¢.X is then given by

(2] + Dypex

BR(¢, X) = ATy (J) ,

(4.22)

where T';,;(J) is the total annihilation width of the pp atomic state with fixed

principal quantum number (Dover et al., 1991). However, in order to evaluate the
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branching ratio, the model dependence in Eq. (4.19) might be reduced by choosing
a simplified phenomenological approach that has been applied in studies for two-
meson branching ratios in nucleon-antinucleon (Kercek et al., 1999) and radiative
protonium annihilation (Gutsche et al., 1999). To state it explicitly, instead of the
phase space factor of Eq. (4.21) that depends on the relative momentum and the
masses of the ¢ X system, a kinematical phase-space factor of following form was
used

f(6, X) = q exp§—1.2 GeV (s — s4x)/?} (4.23)

where sgx = (mg + mx)"? and /s = (m3 + ¢*)"/? + (mk + ¢*)"/2. Last form
was obtained from the fit of the momentum dependence of the cross section of
various annihilation channels (Vandermeulen, 1988). In addition, the functions
v(I,J), depending on the initial-state interaction, are related to the probability
for a protonium state to have isospin /-and spin J with the normalization con-
dition ~(0,J) + v(1,J) = 1. The probability for a protonium state v(/,.J) and
the total decay width T'y,;(J), which are obtained from an optical potential cal-
culation (Carbonell et al., 1989) and which is listed in (Dover et al., 1991), were
adopted in this work. The results for the branching ratios of Eq. (4.22) which
are compared with the experimental data are demonstrated in Table 4.1. The
calculation of branching ratios from a proton wave function with ss quark sea by
using this approach has been discussed in Ref(Gutsche et al., 1997). In case of ss
and wuds the annihilation process can be described by the quark line diagram A;
but the effective strength parameter A4, corresponding to each transition is not
known priori. Therefore, in the model predictions one entry (as indicated by *) is
normalized to the experimental number. In case of thhe ChQM, according to their
5g-components, we need to use all three quark line diagrams to describe the an-

nihilation process. However, the process via the diagram A; with the component
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Table 4.1 Branching ratios BR(x10%) for the transition pp — ¢X (X =
7% n, p°,w) in pp annihilation at rest. The results indicated by % are normalized

to the experimental values.

Transition BRe*» BR®3 BRChM  pRBUBLRZA - pRBUERIER2
USy—we 63 + 23  6.3* 6.3 % 6.3 % 6.3 %
8BS 1% 55 + 07 5.4 1.6 5.4 5.4
1G,— % 34 + 10 38 0.87 3.8 3.8
BS—ne 09 + 03 1.4=1.80.20-027 1.4-1.8 1.4-1.8

|pn) has no contribution to the transition because the vector meson ¢ cannot be
produced or shaken out from the pseudoscalar n cluster. Therefore, the annihila-
tion process can be described by the quark line diagrams A, and As. Nevertheless,
according to the same annihilation of two quark pairs in these two diagrams, the
two unknown strength parameter A4, and A4, can be taken to be equal. A model
prediction is also normalized to an experimental number. For final states with
X = n the physical n meson is produced by its nonstrange component 7,4 with
n= nud(\/WCose — \/msinG) where we consider a variation of the pseudoscalar
mixing angle € from § = —10.7° to § = —20°. As shown in Table 4.1, the model
predictions are in good agreement with the experimental data. In particular, ex-

cellent agreement is found in the case of the ss sea-quark (Gutsche et al., 1997)
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and the uuds subsystem. For both of these two cases, the annihilation processes

pp — ¢X are described with the quark line diagram A;.




CHAPTER V

CONCLUSIONS

Three models have been . studied for the proton involving intrinsic
strangeness in the form of a 5-quark component qggss in the wave function. In
particular, the proton wave function is made up of a uud configuration and a
uud cluster with a ss sea-quark component, kaon-hyperon clusters based on the
simple chiral quark model, or a pentaquark component uudss. We have calcu-
lated the strangeness magnetic moment p, and spin o for the first and second
models are able to generate negative values in line with recent experimental in-
dication. Similarly, for the third-model-we pick these uuds cluster configurations
[31]rs[211]r[22]s and [31]pg[31]r[22]s, where negative values for us and oy re-
sult (An et al., 2006). We further applied-quark line diagrams supplemented by
the 3P, vertex to study the annihilation reactions pp — ¢X (X = 79 n,p% w)
with the three types of proton wave functions. Excellent agreement of the model
predictions in the first and third models with the experimental data are found
for the branching ratios of the reactions of the L = 0 atomic pp state to ¢ X
(X =7%mn,p°, w). In this work we have supposed that the five quark component
in the proton wave function can be treated as a small admixture. However, we
have adjusted the parameter B with other model parameters together to experi-
mental data. Following the work here we may study other reactions to nail down
the size parameters and effective coupling constants first, and then estimate the
parameter B for each model. In the third model we have picked two uuds clus-

ter configurations [31]rs[211]r[22]s and [31]rs[31]r[22]s among a large number of
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configurations. Here, it might be interesting to check even other wave functions

for the X annihilation process.
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APPENDIX A
TRANSITION AMPLITUDE OF THE
PROTON WAVE FUNCTION WITH SS SEA

QUARKS

To describe the annihilation process of pp — ¢X where X = 7% n, p°, w
with the proton wave function with s§ sea quarks we consider the shake-out of the
intrinsic s5 component of the proton wave function as indicated in the diagram
A;. With the operator 04, and the full account of the spin-flavor-color-orbital

structure of the initial-and final'state; the transition amplitude can be written as

= A D R ot T A I ) (A.1)
VA
where
|Z> = |{X%,mpsg(UUdS‘§) ® X%,mﬁ (ﬂad—)}s,sz ® (L7 M)>J,Jz7 <A2)
1) = HX1ma (@) @ Xjmmy o (X) }jim, @ (Cpomp)) e, (A.3)

and the total angular momentum of the initial state |¢) (the final state |f)) are
coupled to J with projection J, (J' with projection J.). Subscripts refer to the
corresponding orbital structure. The spin-flavor-color content of the clusters is
denoted by x(= X, ® xr ® x¢). The 5-quark component XL mpas (uudss) is defined

as

X8 g (10055) = {0 (58) @ (€ = L, 1) jom, @ Xy (wtid)) s (AA)
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The spatial wave amplitude I35,

, 1s explicitly given by

§§atiaz = /d3Q1---d3Q8d3Q1'---d3Q4’¢¢7X02ﬁatial<ﬂuudss,p (A.5)

where

O;sqplatial — le)\<(j4 _ 677)5(5)((f4 4 (E)Y'ly((j‘g) . %)5(5)075 + q—é)

0N (q — qv)dPNa = 320 (a5 — @8 (G — dv)- (A.6)

By choosing a plane wave basis and the harmonic oscillator approximation for the
relative motions and the internal spatial wave functions, respectively, the spatial

wave functions in /5%

spatial AT glven by

—

@uudsE,ﬁ - <Puudg§%0p5(3) ((Tl + qa + (?5 + (74 4+ q_‘5 e 5)5(3) (CTG + @7 + qs + E)? (A7)

Vo.x = Pgox ONT=qr= oG+ G + Gu), (A.8)

Ry @ — 05 7+ & — 243
Puudss = 1Vuudss€XP {_QB[( )2 + (—)2]

ex —%*—*2 A9

p 3 (@ — @) ¢ (A.9)
_ Ry @5 — G\ J6 + G — 2G5\

oo = Nyoxp { 2B Ty (BEE 2Rl

Py = Nd,exp{—?(cﬁf —52')2}, (A.11)
} (A.12)
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Integrating dgqy:..dqydgsdq,; with the delta functions 6 (g —qs )6 (s —qy )64 (@u+

)6 + @s) 5 15, can be reduced to

spatia

_ 1 S
I patiar = /del---dg%d?’%NeXP(ﬂ(_3R2(—01 — G+ G+ G+ )
—2(3(¢h — @)* + (528 + G+ @)°) Ry — 2(3(G6 — ¢)°

— —

+(% + ¢ — 25)*) Ry = 6(0 — &)

=

2 —3(¢ — @)*Rp)
(—k+ Q4+ G+ d+a+3)0T+d)0(d+ )
0T 4@ + Q)oK + Go + G + @&)0(T— @1 — ¢&)

—

Vialds — @) Viu(=0"= @ + &+ @ + G)Y1.(0 — ¢7)  (A.13)

where N = NyNx N,yas:Np. Thedntegrals dqidgsdgs can be done with the delta

functions 0(¢— ¢ —q})é(—l;—k(fl + G2+ @3+ Ga+ )0 (G + 3+ G8), 80 I35, Decomes

I3 ol = / d3q1...d3q5d3q8N5<3>(G)exp(élz(—s(w? — 57k + 48 + 6
F6qu(—k + T+ @) + Gs(—6k + 97+ 61)) R,
=3((k=24) 2R ¥ (3% — 80 + 8¢ + Aqs(q

+35)) ) Yk — 2001, (240)

Via(k—7— G —q)) (A.14)

Applying the transformation ¢ = 75 + ok + BoF, Gz = T3 + 063]; + (3¢ and

qo = T4+ ok + B4q, the cross terms T; - k and Z; - ¢ in the exponent can be

eliminated by choosing

1
52257 az =0
By — Ry +4Rp R
T 2(R%, +3R%L) T R, +3RY
R%, + 2R% 1 R%

s . A15
M9 T 5 (R, 1 3RY) (A-15)

=1 (R2, + 3R2,)



The integral is reduced to

I3 ial = / Bayd®rsd®z, N6 (0)exp(— (1242R3,

24(R3, + 3R3%)
+4k*RER2, + 5¢°RELR2, — 4kqRLR%, + 3k*R*R?,
+12¢%R*R2, — 12kqR*R2, + 12R% 72R?,
+12R3B RS, + 84RLT5 RS, + 48RET Ry,

+A8RETs - T4R3, + 12¢° Ry + 9k*REL R?

+36¢> R4 R* — 36kqR% R? + 36 R% R2. i

+36RE R5T5 +144RE 15 + 144R 7 + 144R5 T - Ty))
YiA(2(4dsk — quk + & < §— T3 — T4 — @B — @Ba))
Yw(E =2q)Y1, (2(24 + ECM + qBs)).

To eliminate the crossterms @324 we apply the transformations 7y

and 7y = bps + py with b = —1/2, the spatial wave amplitude is reduced to

[jgatml /d3 2d pdd p4N5 ( )CXp( QikQ - Qg(jg - Q%qk q_'
_Qf)zﬁg - Zaﬁg - 1274]53)

Via(2—ask — aik +F = q— 2 = pi — 46 — 6,))

Y u( —29)Y1,(2 (—% + Py + ko + qB4))

where

0 — AR}, R% +9R*R%, + 3R, R?
F 24 (R%, + 3R%) ’

) 12R%, + 5R3,R% + 36 R?R% + 12R3, R?

Q; = :
a 24 (R3, + 3R%)
0 - _R?WRQB +9R?*R% + 3R3, R?
ha 6 (R3, + 3R%) ’
1272 = R?\/[’
2 _ 1 R2 R2
p3 5 ( v +3 B) )

Q> = 2R3

P4

o8

(A.16)

= P2, T3 = P3

(A.17)

(A.18)
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To described the annihilation process at rest, the partial wave amplitude can be
obtained by projecting the transition amplitude onto the partial wave correspond-
ing to S to P transition. So the spatial partial wave amplitude for the L = 0 to

(s = 1 transition is given by
]spatial,LZO,Ele - /koquygo(]%)yimf (qA)Ispatial- (Alg)

In order to integrate d<2y, dS2,, d*py, d*ps and d*p, we apply the spherical harmonic

-, —,

identity Y7 ,,(@+0) = Y1, (@) 4+ Y1, (b) and Y; ,, (@) = aV (@) with the Gaussian

integral

/d?’ﬁiexp(—Q;ﬁ?) = <72> 372, (A.20)

pi
[ Erei-Qii )+ f Wi -0 —o, (A.21)
o . . 3(—1)%/70q
/dgpiﬁ?exp(_Q;p?)yl,a(pi)yl,b(pi) \a <8 (> 2\/)_5/2’ °. (A.22)
Di

In a low-momentum approximation exp{quk = qF 2 jo( iqk -q) ~ 1 the integrals
can be done analytically. The spatial wave amplitude corresponding to the leading

order in the external momenta ¢ is given by

I;;jatial,o,l = qFOS,gl &51(”7 )‘7 22 mf)exp {_Q3q2 - szQ} . (A23)

The geometrical constant Fgj and the spin-angular momentum function
f53 (v, A, i, my) are given by

- | 3/ 3/ _
53 — 2N7T2 (_) 3/2 i 5(3) 0),
) @y @)

p2

(is_l<y7 )\7 M, mf) = (_1>V5V,—)\5,u,mf- <A24)

With the spatial wave amplitude 75

spatial the transition amplitude T{}g has the form

as Eq. (4.16) with the spin-flavor weight:

(1O ]i) = (1D (=1 0,0 N1 11 1E (1) 6,20y, [1). (A.25)
|79\
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To evaluate the spin-color-flavor weight (f|Oa4, i), for the S to P transition, firstly

we decouple the coupled spins and angular momenta form the spin of quark clus-

ters:

(FOaliy= > > Dgp D> > b LmemylJ'J.)

Me,Mf Mo ,M3,8 Mpss,Mp M Myp Mg, b VA

1 1

1 mo €

1
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 Mpss, M| J, J)
<717 "Liarrnp‘577nps§> <.787 17m87/'1’|ji7mi>

(=1)" A (=1)"6,,-20pm, (SCF)*>®
with the matrix element

<SCF>S§ = <X1,’m,(, (QS)ij,'m,yA/ (X) |

0% BT 14T N (55) X, (t0d) X

myp mﬁ

The spin-color-flavor wave function (x) takes the form

X = (Xoe® XE)X6"

(uud)).

(A.26)

(A.27)

(A.28)

The spin-flavor part x,xr wave functions for the mesons and baryons, that will

be used in calculating the matrix element (SC'F)® are given by
Xl,ma(¢) = XF(Qb) & XJ(L moz) = |s§>|1, ma>7

ij7m3/,4/ (X) = |(wa 7T0a PO; 77)> |jma m3’,4’>7

Xjs,ms (Sg) = |S§>|j5, ms>7

X, (i) = i (utd) @ xo@ my)
1
= 5 () |5 m) o + )| 5. m) ),

where

‘w> (uu + dd)‘l mg 4/)

%IH

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)
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|70y = %(uu — dd)[0,0), (A.34)
) = %(uu — )1, my g, (A.35)
In) = %(ua 4 dd — 255)(0,0), (A.36)
luud) . = %(Q/wud — udu — duw) (A.37)
luud) &= %(udu — duu) (A.38)
1 1 1
50m = 5l @ TH— 1t — 1) (A.39)
ERTES R SCIETS (A40)
> 2=~ /2
1 1 1
’§>mp 7 _§>+ = —%(2 W= =1 (A.41)
1 1 1
|§,mp = —§>_ = —E@Ti - 1) (A.42)
54 4 0 20 B (- 1) (A.43)
: 1
|Jsemy = Lmgay = Q) = %(TL +11) (A.44)
Jsem) = L msary = 1) =11 (A.45)
[Tsemy = 1 mis(zrany = =1) = (A.46)

The subscript (+) denotes a state that is symmetric and (—) denotes a state that
is antisymmetric under exchange of the spin or isospin of the first two quarks. The
quark indices 3’4" become 38 corresponding to the quark line in diagram A;.

For the color state wave function of meson and baryon that have to be

singlet, the corresponding color state wave function for each 2¢ and 3¢ is given by

volad) = %(RR + GG+ BB), (A 47)

1
xe(qqq) = %(RGB — RBG — GRB + GBR — BGR + BRG). (A.48)
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According to the Py model the matrix element (SC'F)*® can be evaluated by using

the two-body matrix elements for spin, flavor and color which are given by

(Ol |x;mz (i5)) = 0J10myy—o(—1)"V2, (A.49)
and
(01121 gAq%) = dap: (A.51)

where « and (8 are the color indices.

With the quark labeling as defined in the spatial part wave functions, we
have the matrix elements (SCF')*5 for each proton and antiproton spin projection
(m, and my):

(SCFYS ., = —9%/6 SN0, S e (36070080 s
—00,000,m3501, 701\ = 60_1 1ma500,701,,01 2

201 1m3401,701 1,013 — 601,00 701 1m3501,2

—40_1 01,701 mas01.1 + 300,700,100,m35 01,0

—00,300,m3501,701, + 300 700,100,101 mss

+500,100,001,701 mas — 601,200, 701,1,01 mys

451 20110101 )s (AL52)



(SCF)*® “Lm, = _—(_1>)\+V517j35ms,ma (300,760,100,1:00,5, 00,mss
+500,200,000,,, 01,700,mss — 30-1,000,700,5,, 01,100,m3s
—50-1,100,4,,01,701,200,mss — 30-1,200,700,,, 01,:00,mss
—50_1200,j,401,701,00,m35 + 990,700,200,401 5, 00,mss
+300,200,001, 101 4, 00,mss — 30—1.,00. 701 101, 00,mss
—50_1,,01,701 301 j,, 00,mss — 30-1,200,701,,01 5,,, 00,mss
—50-1,201 702,101 j3, 00,ms5 — 30—1,m3500,1700,501,301 5,
+0-1,m320001. 701001 j,, — 30-1,m3500,700,101,501 j,,,
+0-1,mss00001,701,,01,4,, — 30-1,,00,700,301,j,, O1,mss
—3021:200,700,,01 5701 msg- T 0—1,000301,701 5, O1,mg
+0_1.200,001,701 5, 01,mss )

1

3. 18V/3

+500.300.500 5,01 700.ms5 — 30-1.,00.700,5,, 01,100,mss

s8s
__1 =
Mmp=—735,Mp=

(SCF) (—1)’\+”51,j5 Oims mu300 760,300,100, 00,mss

N

—50_1,,00,4,,01,701,200,mss — 30-1,200,700,,, 01, 00,mss
—50-1,200,5,,01,701,00,m35 — 900,700,300,:01 5, 00,m35
—300.100.001.701 5,00 mss + 30-1.,00.701.101j,,00.mas

+50_1,,01,701,301j,,.00.m3s T 30—1,200,701,101 5, 00,mas

+50_1,201,701,1,01 j,,.00,m35 T 30—1,ms500,700,,01,101 j,,
—0—1,m3500,001,701,301 5, T 30—1,m500,700,301,,01 .,
—0_1,m3500,201,701 1,01 j,, + 30_1,,00 700101 5, 01 mas
+30-1,200,700,001,j,,01,m3s — 0—1,000,201,701 j,,01,m3s

_571,)\50,1161,T61,jm 51,m38)7
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(A.53)

(A.54)
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ifp:_%ﬁmﬁ:_% = _9_\/6(_1))\+V51,jm617j55m57ma(36—1,m3850,T50,)\50,V
+30_1,200,700,m435 00,0 + DI_1,mss00 101,700 »

—0-1.300,m3501,700. + 30-1,,00 700,100 mss

—0-1.500,100,m3501,7 — 60_1,,0_1 1mz500 701

—40 1,01, m3301,701\ — 601,20 _1,m3500,701,,

40 G A0 1mas 01,701, — 60130 _1,,00,701 mss

+20_120-1,,01.701 mas )- (A.55)
With the corresponding spin and/isospin quantum number of each meson X

W) = |jm = 1 Tss=0), JA8%.= |jm=0,T55 = 1),

10%) = [Jm =L Las = 1), ) = jm = 0, T35 = 0) (A.56)

the spin-flavor weight (f|Q4, |7) of the different transitions are calculated as listed

in Table A.1.



Table A.1 Spin-flavor matrix elements

6\’0\ 33 5.0
I)QSL..—J ¢ ‘—aﬁa’o",

Yaainalu
31S0— P% %
BS1— ne %
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(f104,]7) for the transition pp(L = 0) —



APPENDIX B
TRANSITION AMPLITUDE OF THE
PROTON WAVE FUNCTION FROM THE

CHIRAL QUARK MODEL

In case of the ChQM, where the annihilation process can be described by

the quark line diagrams A, and As, we obtain the transition amplitude as
ChQM Ch@QM ChQM
Tif :Tif i (OAz)Jf_Tif (OAs)' (Bl)

The corresponding transition amplitude forthe two quarks line diagrams are given

by

spatial,As

TSN (O,,) = NS L) RS P I 1y (B2)
(79N
and

spatial,As

TghQM(OAg) = A {f] Z(_l)u-&-kaiﬁyaii\liﬁ1};71%?1}1716%621\4 |7). (B.3)
(79N

The initial state |¢) and final state |f) have the form as defined by Eq. (A.2) and

Eq. (A.3), but the 5-quark component in this case is given by

3
X%,mKY (UJUdSE) = g8 Z biHX;“S,mS (q§)®(€ =1, M)}ji,mi®xi%,my (qqs»%,me: (B4)

=1

where ¢ = 1,2,3 represent the kaon-hyperon cluster K*X° K%Y+ and K+A°
respectively. The coefficients corresponding to each component are represented by

bii
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We first calculate the spatial partial wave amplitude I;Zgé‘f Ay
ChQM — — 13> — ial ChQM
]spagal,Ag = /d3Q1---d3Q8d3Q1’--~dSQ4’ ()0¢X0f4pgatm Souudng,ﬁ (B6)

where

O = Yir(dh — )0 (Gh + G) Vi (G — G6) 0D (T + @)
8 (g — @ )0 (@i— §)0® (G — G)0P (@ — du). (B.7)

Substituting the spatial wave functions as defined in Eq. (A.7)- Eq. (A.12) and

[ChQM

spatial, A becomes

integrating with the delta functions defined in above equation,

Igzgz]z\;{Ag = /d3Q1d3(J3d3(J4N5(3) (6)6Xp(214(_3R2(]; — 27— 2q1 + 2¢3)°
Ak —37< 333 +3—k + T+ ¢ + 24)*) R,

“A(CE+T+@ +20) +3(-k+7+ @

+2q4)*) R} —3(7+ 24:)°R3, — 3(7

=2q5) R = 3(—7+ ¢ + $3)°R3y))

Yia(2G)Y1u(k — 27 — 241 + 23)

Vi, (20— =G — @) (B.8)

Applying the transformations ¢ = ; + ok + b1q, @5 = T3 + ask + B3q, @4 =
Ty + 0@/2 + B4q, &1 = p1, @3 = p3 + asp; and Ty = py + aupy, the spatial wave

amplitude can be reduced to

Tonea a, = / PdPqsd®quN6® (0) exp(— QIR — Q¢ — Qi k- 7
—Q> 05 — Q215 — Q2,01 Y1.A(2(aspy + P + ko + @By))
YW(E —2¢—-2(p1 + ko + qB1) + 2(aspy + ps + kors + qBs))

Vi, (2(—ank — sk + k — §— aupy — 1 — pu — @81 — @B4)),  (B.9)
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where the constants depend on the size parameters as given by

1
Qz = ﬁ(8(4a% + (&3 + 60[4 — 5)&1 + (013 — 1)0./3 + 6(0(4 — 1)0./4 + Q)R%;

+3(4asR* + R* + (4R* + 5R3,)a% + (4R? + 5R3,)a;3
+ 204 ((R3, — 4R*)as =2RY))),

Q2 = (8457 + (B + 604 85 + 53 + s + 65u(Bu + 1) + 4R
+3((567 +2(8s + 1)1 + P3(505 — 6) + 3) R,
+ARY(B1 — B5 +1)%),

Q= 75(6(201 — 205 FI5 S 1) A 3(2(2(01 — a3)(B1 — o)
+ B3) R® + Rig(an (560 B3 + 1)+ az(B1 + 563 — 3)))
+ 4R} (=561 — Bs +as(Br + 2B; +4) — 654
+ 6oy (Br 204 4L+ ail8pL4 (30604 + 8) —5)),

2 = 2—14((121%2 + 8R% + 15R%,)ak + (8R% + 6(R3, — 4R?))as

+ 16(3ay(ay+ 1) + 2)R% + 3(4R*45R32))),

R?> R% 5R%
2 _ v Ap M
@, 2 + 3 8

, Q> = R% + R, (B.10)

pa

ay = (2R} +3R3,) (9R* + 4R} +6R3,) /A,

a3 = 2(4Ry +3RyR; — 9R’R3,) /A,

a1 = 2(4Rp+ 18R°Ry, 4+ IR, RE + 9R°Ry,) /A,

By = —4R3, (6R*+ R} +3R3,) /A,

B = —2(12R} + 36R*R} 4+ 29R3, R} + 6Ry, + 12R°R3,) /A,

By = 8R3, (6R®+4R3 + 3R3,) /A,
12R?* — 4R% — 3R3, 1

12R? + SR, + 15R2,” 7~ "2
A = 24R}y + T2R*R% + 66R3, R% + 36R), + T2R*R3,. (B.11)

as =
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Similarly, for the S to P transition in the low-momentum approximation, the spa-
tial partial wave amplitude corresponding to leading order in the external momenta

q takes the form

IChQM — qF6412f6412(V7 )‘7 H, mf)exp {_Q§q2 - szQ} ’ <B12)

spatial,0,1,As —

where the geometrical constant and thespin-angular momentum function are given

by

1 . 1 1 o
Fif% = —6gN1* (a5 — 1) a, (—) 32 m( 2)“/2(61+64+1) 5(0),

2
Q33 D1 j2t

f(ff(y7 )‘7 M, mf) - (_1>#5/\,mf5,u,—l/ + (_I)A(S)\,fuéu,mf + (_]-)ué,u,—)\éy,mf- (B]-S)

Substituting the obtained spatial wave amplitude (Eq. (B.12)) into the transition

amplitude Eq. (B.2), we obtain
T O00) = NgaFsiep (- Qd® — QiF*} (f104,l))  (B.14)

where

<f|OA2| f| Z z/+/\ '36 47 1561471 )6147f > (B15)

The spin-orbital coupling in {f |OA2 i) can be decoupled to be

UCILED DED DD DED DED DD B9 B(Cebit

Me,Mf M ,M1,8 Me,Mf TKY ,Mp i, Y Mg, U\
<j)17m€7mf|<],7J;><17jm7ma7m1,8|j7m€>

11 1 1
<2 5 MKy, My, J><Ji>§,mi7mY|§,me>

where (SC'F )ngM is given by

<SCF ChQM Z b Xl ma ij,ml,s (X)|

S TIEIIING, G, @090y (D). (BT
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The spin-color-flavor wave functions in above equation (x) also takes the form

as Eq. (A.28) with the spin-flavor wave function of the kaons x’_,, (¢5) and the

hyperons x4 my (qgqs) are given by
2 b}

1

xbo(a3) =i (a5) @ x0,0) = [KHO)—= (1) = 1),
j 1 ; 1 , 1
X%my(qqs) = 72{‘Xz(qq5)>+1§,my>+ + \Xz(qqs)>_|§,my)_},

where

) S = us
X2 (q8) = | K°) = ds,

I (qqs))y = |X°) 4 = (2uds +2dus —usd — dsu — sud — sdu),

DO

. 1
|X1:1(qqs)>_ Al IEO>_ /5 §<U,Sd +.dsu — sud — SdU),
. 1
’X272((]q(9)>+ = |Z+>+ =] %(QU’U/S —uUsuU — Suu),
)2 |
) = 1210 & gty — swu)

j— 1
IX"*(qqs))+ = |A%)4 = i(usd + sud — dsu — sdu),

A 1
IX=3(qqs))- = |A°)_ = ——=(2uds — 2dus + sdu — dsu + usd — sud),

V12

(B.18)

(B.19)

(B.20)
(B.21)
(B.22)
(B.23)
(B.24)
(B.25)
(B.26)

(B.27)

and the spin state wave functions |3, my )+ are given by Eq. (A.39)-Eq. (A.42).

By using the color wave function (Eq. (A.47) and Eq. (A.48)) and the

two-body matrix elements (Eq. (A.49), Eq. (A.50) and Eq. (A.51)) with the

quark labeling as defined in the spatial part wave functions, the spin-color-flavor

weights (f|Oa,|i) are calculated as listed in Table B.1.

For the transition amplitude of the quark line diagram As given by Eq.

(B.3), the corresponding spatial wave amplitude is given by

oo / B PGP Gy ... PGy psx O 2N

spatial,As = uudss,p

(B.28)
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Table B.1 The spin-color-flavor weights (f|O4,|i) corresponding to the transition

pp(L =0) = ¢X (¢ = 1) with the 5¢ component from the chiral quark model.

Transition (f1OA,7)

5(—4/2b14 2b5+4/6bs )

11
S0 W 541/6

38— 100 2= (b1 + V/2Dy + 33/3D3)

5(—v/2b1—2b5++/6bs )

31 0
SO% p ¢ 54\/6

13So— no & (bl —/2by + 3\/§b3)
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where

O = V(@ — &0 + @) Yiu @ — )0 (T + o)

(g — @)@ — @6 (qr — G) 0P (@ — qv). (B.29)

After integrating with the delta functions that are defined in (’)Zatwl, we have

spatial ,As —

e / @*q,d* gy’ qu NP (Dexp 214“332(’7”’ 2020+ 26)°
—2((k = 37— 30 +3(—k+ G+ 23 + @))RE —2((=k + @

@+ 205)° + 3R H TG + 2002 RY — 3(7 - 23)* RS,

30+ Gk @) RS — 30+ 20)°RY)) )

}/1,)\(2(71)}/1,”(]{ - 2(7_ 2(71 + 2(1:3)

Y1, 20k —7— ¢ — ) (B.30)

— —

By applying the transformations ¢ = a7 + ank + P, 3 = T3+ ask + Bsq,
qy = T4+ ok + Baq, Tv= pi, 13 = p3 + asp; and Ty = py + agpy, the spatial wave

amplitude is reduced to

[scngng,AQ = /dBQ1d3Q3d3(J4N5(3) (6) exp( - ngz - Qﬁq“g - qu];‘ q
—Q2 P — Q2. p5 — iﬁi) Y1 A(2(asphy + Py + kou + §Ba))

Yir(2(51 + kon + qB1))Ya,u(k — 24 — 251 + kay + ¢By)

+2(aspy + Ps + kag + @83)) Y (—=2(onk + ask

—k+ 7+ (as+ V) + Pa+ B+ 3B).  (B.31)
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The constants appearing in above equation are given by

1
Qi = ﬂ(8(4a% + (Oég + 60&4 — 5)0&1 + (&3 — 1)013 + 6(&4 — 1)0[4

+2)R% + 3((a? + 2030 + 503 + 403)R3,
+ R*(—2a; + 2a3 +1)%)),

Q% = 5 (8487 + (s Gkt 5)60 + 53 + 683 + B + 95
+4)RE + 3((67 +2(fs — 1)1 + B3(553 — 6) + 464

(Bs+ 1) + 3) Ry, +dR¥ B — B3 + 1)),

Q= 75 (A(-55y 7 B o (Bl 265 + 1) — 661+ 3au(2,

+ 4By + 3) 4 o1 (881 + B5 + 6581+ 5) — 5)Ry
+ 3(2(20[1 = 20&3 1 1)(ﬁ1 ' 53 s 1)R2
+ Riplon(BntBs= 1)+ ai( Bk 51;

—8) + 204(2f4 £ 1)),

1
2 = ﬁ(8(a§ + ag + 6ag(ay +1) £ RE + 3(4(as

—1)’R? + (4a3 + az(5az +2) + 1) R3))),
» _ R R 5RY

=3 Tt Y

_ % (AR + R2)) (B.32)
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1
s = 1 (2RE(8Rp + 2(9R” + 8R},) Ry + 3(Ry, + 5R°Ryy))),
1
g = Z((QR% + R3,)(8Ry — (4R% 4+ 3R*)R3))),
1

oy = —(16R% + 24(3R? + 2R2)R%, + 612,

>

(11R* + 4R35, R% + IR’ Ry,),
11

fr=—5~ K(?RQB(6R}§ + 3Ry + 2(5R% + 3R*)R3))),

s = % + i(—48R% — 14R3, Ry, + 4R3,(6R® + Ry;)RE + 6R*Ry,),
b= —i((mg + R3) (=38R, + 2(TR% + 6R*) Ry, + T2R%LR?)),
0 —4R% +12R¥+ 3R, 0 2R,

T BRZ + 12RYH I5RE, V4RZ + R2)
A =3RS, + 4(13R3 +06R?) R}y +24R% (5 R%,

+ 6RY Ry, +48(RS -+ 3R*RY). (B.33)

The spatial wave amplitude for S to P, in the low-momentum approximation, of

this diagram is given by

[;ZS%O’LAS = qFé?ff(ff(y, A, b, M )€XP {—ngQ — QikQ} ) (B.34)

The corresponding geometrical constant are coupled to the spin-angular momen-

tum:

F(fff(ff(Va A pmg) = Quag fra, + Qoay 2,45 + Q3,45 f3,45, (B.35)

where

D4y = 6gsN7* (a4 + 1) % (%) " (L2> 2 (61— B3+ 1)6(0), (B.36)

fl,As = (_1))\5A,7u5u,mf7 (B37)

1 1 1 ﬁ
Qo 4, = —6gs N7 (a3 — 1) (ag + 1) [ = (—2) 3/2 <—2> 325(0) (B.38)

p1 p3 P4
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f27A3 = (_1)M5>\,mf5u,—ua (B39)

O34, = —6gsN7" (a3 — 1) % (Lz) i ( 12 ) 82 (B1 + Ba+ 1) 6(0), (B.40)

p1 p3 Pa

and
f37A3 = (-1)11’5/17—)\51/7mf~ (B41)

Using the partial wave amplitude Eq. (B.34) the transition amplitude TChQM(O As)
can be written as
3
T M(0n,) = > Mg ayexp {—Q5a° — QiR } (FOali)r,  (BA2)
r=1

with the spin-color-flavor weight

<f|OA;’ flz V—i—)\ 06 17 156117106117frA3| > <B43)

As the procedure we have done in the first two diagrams, (f|O4,]i) can be decou-
pled to be

UCAUED DD IED DED DED DI 3D B(Cebin

Me,M§ Ma,M4,8 Me,Mf MKY MG MG, MY M, VA
- ! ! . .
(7, Lume,my|J', JY(L, Gimy Mg, Mo g|J, M)

11 1 1
(2 2 mKY7mp|J J><]i7§>mi,my\—,mm/>

(s 1y, s, i) froag (SCF) 1M (B.44)
where (SC'F )ZSQM is given by

<SCF ChQM Z b Xl ma ij7m4,8 (X)|

S TELTIBIN, N, (0090 (D). (B9

Similarly, with the quark labeling as used in the spatial wave functions, we have

(flOa4l1), as shown in Table B.2.
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Table B.2 The spin-color-flavor weight ([0 4,]i), corresponding to the transition

pp(L =0) = ¢ X ({; = 1) with the 5¢ component from the chiral quark model.

Transition (f10.4;i)1 (£1O4;i)2 (f10a,li)3
11 _ 3/2b1 —6ba+3+/6b3 wT/2b1 —14bs —3+/6b3
So— we 1624/6 162v/6 0
385, ¢ - 31/6b1 —4v/3by+9v/2bs  __ 3v/6b1 +4v/3b534+9v2bs  _ 9v6b1 —3V/2b3
1 4861/6 486v/6 4861/6
319 0¢ _ 2/6b3—6bo _ —61/2b1—14bo+2v6b3  _ /6b3—9v20;
0P 162/6 1626 1626
158, 25 noadh _ V/3b1—2b V31 —2b V2(V/2b1-2b2)
177 Tud 2432 2432 243




7

In order to combine the two transition amplitudes, we choose the radial
parameters for the baryons and mesons: Rp = 3.1 GeV ™!, Ry = 4.1 GeV !
(Gutsche et al., 1997) and the size parameter between the quark clusters as R =
4.1 GeV 1. According to the vertex in the two quark line diagram, the effective
strength can take the same value, that is A4, = A4, = Acnom. We have the total

transition amplitude Eq. (B.1) as
TF M = Nenou Fot “q ep {=22¢° — i} (f1Ocnquili),  (B46)

where Fy @M = Q42 =4.9x 107 GeV 1!, Z, ~ 2.3 GeV~' and Z; ~ 1.3 GeV L.

The total spin-color-flavor weight is given by

(f1Ochquli) = (f|Ou, i) 5+ 2({f1O0a; |01~ £F| O li)2 + (f|Oas]i)3),  (B.4T)

as listed in Table B.3.
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model.

13SO—> 77¢ 1.3




APPENDIX C
TRANSITION AMPLITUDE OF THE
PROTON WAVE FUNCTION WITH

PENTAQAURK CONFIGURATION

Finally the proton wave function with 5g component in form of pentaquark,
the ¢ production can only be described by the quark line diagram A;. Therefore,
the transition amplitude has the form as Eq. (A.1) but the 5-quark component

|uudss) is defined as

Xy (0tds5) = XA E0(3) @ (621D i, T (wuids))y . (C.1)

According to this configuration, which is constructed by coupling an 5 quark mo-
mentum ¢; to the 4-quark wuds momentum ¢ + ¢ + ¢y + ¢5 with orbital angular

momentum (1, i), the 5-quark component spatial wave function is given by

uudss (@1, - @) = Nuudsgexp{_TB[E(QQ — @)+ @+ a5 - 20)°
+—(+ G+ g — 3%)2]}3/1#( SRR AL SRR 1)

12 V20

R &+ &+ @+ & — 4G
exp{__B(QQ+Q3+Q4+(]5 ql)Q}' (C2)

2 V20

With the spatial operator O7" atail and the spatial wave function of the antiproton

and the mesons as defined in Appendix A, and integrating with the delta functions
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as done in the case of s5-sea quark , I{%?  can be reduced to

11k2
15

Igpﬂfal = /d3Q2d3Q3d3Q4N5(3)(6)exp<(— + 2(7]2 -2 — @& - 20

where N = NyNx N,ya5:Np. Applying the transformations ¢ = s + ang + (o4,

3 = T3+ gk + B3¢, @1 = Ty sk + Buq, Ty = pa, T3 = p3 and &y = bps + py with

b= —1/2, the spatial wave/amplitude-ecan be reduced to
Lpatial = / & pod’pasdpiN 0N (0)expl - QR — Q38" — Qi k- @

N\ }272]5% _ ;3252 - ]27415421)
agk +k =G+ pa + B — A(— P20+ ¢ — p2 — 7%‘042))
2v/5

—

Vi (2(—adf=aik s KT — 2 — i — g — 481)
Y1,u(2(—% + pia + ko + @By)). (C.4)

Yiu(

The constants depending on the size parameters are given by

7R3 R: 1 R2
2 B B 2 2 B
@=3 2(3RQB+R]2\4)’Q‘1 8 B( 3R2B+R§M)’
1 R? R3
2 _—p2f__tB 4 2 _ p2 , 'M
oz 2}h;(3R%+<R% )’ n = 5T
1
2 =5 (BRE+ RY), @2, = 2R3,
1 4R% + R?
B2:_7 a2207 ﬁ?):_ 5 M )
2 2 (3R% + R3))
R%, 2R% + R2,
= T T IBR T )
B M B M
1 2
oy = — RB . (C5)

2 2(3R% + R%)
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As in previous cases, the spatial partial wave amplitude for the S to P transition

in the low-momentum approximation is given by

I;Lpigfjal,o,l = qFU,lfO,l(Va )\7 22 mf)eXp {_QEQQ - Q%k2} ) (06)

with the geometrical constant and the spin-angular momentum function are given

by

L )B/2 g (L) 3/2
— § 4 L 3/2 <Q1274> o (QIQJ?,) _ 3/
Foq = 8\/5N7T ( 5 ) (Q%S) 7 (Q,QM) 52 (B2 — 1) (0),

p2
fO,l(Va )‘7/j“7mf) . | (71)1/51’7—)\5%77%" (07)

Decoupling the spin-color-flavor weight, { £, |i)“4*:

(FlOaliy® = 3= 1D DT 3TN S G L me,mgl T, J)

TNe, ML f Ma,M3,8 MipsssMp My, Sz Ms,[h VA

. ) 11
(s 5 M 18181 me)(i, 5 Mipss, M| S, J)

<]z/ S, Mg, SZ|77 mps§>< ) 17 ms, :u‘jla m2>

2 2
(DX (=1)"6, _20m, (SCF)™ =, (C.8)

so the corresponding matrix element is given by

(SCF)"™® = (X1,ma (6)Xjonms s (X))

o2 o P IEIE XL o (8) X5, (wtids) 1, (aud)).  (C.9)

The wave function (x 1 .m<(8)Xs,s. (uuds)) can be substituted by the spin-color-flavor
wave function which is given by Eq. (3.75). By using the explicit form of the spin-
flavor-color configurations |[31]rg[211]r[22]s) and |[31]rs[22]r[31]s) as given by
Eq. (3.67)— Eq. (3.70) with the two-body matrix elements and the quark labeling
as done in case of ss, the corresponding spin-flavor weights can be obtained as

shown in Table C.1.
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Table C.1 Spin-flavor matrix elements (f|O4,|i) for the transition pp(L = 0) —

¢ X (¢; = 1) which are described by quark line diagram A; with the 5-quark com-

ponent of a pentaquark.

Transition

[31][31]]22] 4,

(31][211][22] 4,

HSO—> OJ¢

335,30

35— PO¢

13Sl_> 77ud¢




APPENDIX D
THE CONSTRUCTION OF THE

PENTAQUARK WAVE FUNCTIONS

The spin, color and flavor wave functions of the ¢* configuration of the
pentaquark can be worked out in the the Yamanochi technique (Yan, 2006). Here
we present some detail description to illustrate how to construct the presentation
matrices of the irreducible representations of S;. For instance, there are three

Young tableaux for [3, Lj.with three corresponding basis functions:

i — 2R ),

IR T A3 20y,

g0 ; 3‘4‘:”3, 17(1121)), (D.1)
where qb[r;\] = |[A|(*n, 71, ..,72,71)) Tepresents the Yamanochi basis or standard

basis where r; stands for the row from which a box is removed. Thus, there are

three projection operators for the irreducible representations [3, 1]:
Wi = 5 (B eI IRE IEI)P
Wi = 5 (B0 Pl 1021 )) P
Wi, = 5 S0 10120 R, 1 12D) R 02

where P; stand for all the permutations of S, and the factor 3 is the dimension
of the representation [3, 1]. In order to evaluate the representation matrices for

the permutation P;, in case of permutation between object n — 1 and n , we apply
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the operation of the element (n — 1,n) on the standard basis which satisfies the

following;:

(n — 1,n)|N(r, 7,72, .., 79, 1)) = |\ (1,7, 72, .y 72, 1)),

(n—1,n)|[N(r,r— 1,7 9, ras1)) = =[N (r,7 — 1,7p_0,..,72,1)),  (D.3)
when |[A](r,r —1,7,_,..,75,1)) dose not exist, and

(Tl - 17 Tl)l[;\](ﬁ S, Tp—2, -+ 7’277ﬂ1)> = UT’SHE\K/Fv S, Tp—2, -+ T2,T1)>
F /1= 02| (8,7, Tnes, oy 72,m1)),  (DA)

where

1

(>\7‘ ¥ T) B (>‘9 — 5)7 (D5)

Ors =

for |[N(r, 8, 7n_2, .., 72, 71)) and-{{X|(s,7720,.., 79,71)) all exist and r # s. While

the matrices of the elements (4, n) can be obtained by using the relation
(tsm)y = (n —1,n)(i,n — )(n=1,n). (D.6)
For example, the matrix of the element (3,4) is:
(0 13ler) (o NBHIe ) (8134160
3,1 _ , ,
DRI =1 (ool (@M Ieolel @ Ieolel)
(001301 (oM IBNIe) (8134165
—1/3 2v2/3 0
=1 2v2/3 1/3 0 |- (D.7)
0 0 1
A cycle permutation can be resolved into a product of transpositions, where we

have
D(ijk) = D(ik)D(ij),

D(ijkl) = D(il) D(ik) D(ij). (D.8)
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By applying Eq. (D.6) and Eq. (D.8) with the matrix of the element (n — 1,n),

all of the permutation matrices D! can be obtained such as

1 0 0 1 0 O
D(123) =D(13)D(12) = | o 1 3 01 0
0 -¥ |1 00 —1
_1 V2 \/5
3 3 3
= V2 5 1
-5 5 (D.9)
2 1 1
3 23 2
D(1234) = D(14)D(13)D(12)
V2
-3 B9 —\/g b0 0 10 0
— V2 5 1 1 V3
T3 6 W 0 So0 5 01 0
2 1 1 V3
RN 2 o
1 2v/2
~3 azs
= _ V2 _1 V3 (D.10)
3 6 2
_\/E 13 1
3 43 4 2

Substituting <¢£3’1]\(34)]¢£3’1]> for all permutations into Eq. (D.2) we obtain the

projection operator

ngll}l) = %(Pl - %P1,4P2,3 — % 1,324 — éP1,2P3,4 +Piao+ P
—% + P53 — % - % + Pras— %P1,2,4 + P32
—% 1,34 — %P1,4,2 - %P1,4,3 - éP273,4 - %P2,4,3
—% 1,2,3,4 — %P1,2,4,3 - %P1,3,2,4 - %P1,3,4,2
1 1

—=P — -P, D.11
311423 7 3 1,4,3.2), ( )



1 2 1 1 P
W([féll}l) = g( 173 143 — 6P1,3P2,4 + §P1,2P3,4 + P — %
42 22 Pt
6 2 6 3 2T
1 1 5 1 2
T5f32 6P1’3’4 + 6P1’4’2 — 6P1’4’3 - §P2,3,4
2 1 1 2
—§P2,4,3 —gh2sa — gh2as — §P1,3,2,4
1 2 1
—— - -P — =P
g2~ 3ha23 ~ ¢ 14,3.2)
and
1 1 P P P.
W([filg]l) = g(Pl t3 1324 < PioB3q — Pra + ;’3 + ;’4 + ;’3
P 1 1 1 1
+% + P54 — §P1,2,3 Spltea T 5 + 51134
1 1 1 1
P — — = — =P,
54142 + o3 — 5 2sa = 5243
1 1
Sty > SO o)
pi1342 7 5 14,3.2),

86

(D.12)

(D.13)

where P denotes the permutation on the objects that, are labeled by the subscript.

Similarly, for the irreducible representation [2, 2|-and [2, 1, 1] which correspond

to the Young tableaux

(2] _
V=

= [[2,2](2211)),

112
314
(22 _|1]3
% 214

= [[2,2](2121)),

P2 = % 4‘— 12,1, 1](2111))

n =N - P )
3

[2,1,1] 1 2‘

BU T3 = 12,1, 1](1211)),
4

gl — ; o 12,1, 1)(1121))

P =N - ) )
4

(D.14)

(D.15)



we have

1
W([SQQH) = 24(2P1 + 2Py Pos + 2P 3Py + 2P 9Py + 2P 2 — P13
—Piy—Py3— Py +2P34—Pio3—Pios— Pi3p
—Pi3a— Piuo— Piuz— Pozy— Pauz— Piasa

—Pioa3+2P 304 — Pisso+2Pia2s — Pias2),

1
Wgé}l) 24(2P1 +2P 43+ 2P 3P 4 + 2P 2 P34 — 2P 5 + Py 3
+Pa+ P+ Py —=2P3, — Pios—Pioa—Pi3o
—Pi3u— Pras— Prag — Poza— Poysz+ Prosa

+Pyoag=2P 39441340 — 2P 403+ Pias2),

1 1 1 1
(2,11
W(gm) 8(P1_§P14P25—3P15P24—§P12P54—P12—P13
P4 Py Py 1
AR A Py~ —Pia,+ P
+ 3 28T 5 + 3 123~ 3 1,24+ 132
. 1 1 1
“yapmpall2® ;. _1p. . _1p
R 1B Fe = 3 P — 30534 — 3043
—|—1P —i—lP +1P
3f123a 32431 5824
+1P + 1P + 1P )
31342 3 23 T 3 a32),

1 1 Py P4 P
W([12§1111)]: (Pl+ P3Py — PioPss+ Pio— 13 14 -23

8 2 2 2 2
Py 1 1 1 1
- Py, ——-Po3—=Pio,— =P P,

5 34 5M23 5l — 5 132+2 1,34
1 1 1 1
——P —P —P —P
542 + 5143 + 541234 + 51243
1 1

-p -p
+2 1,3,4,24-2 14.3.2)5
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(D.16)

(D.17)

(D.18)

(D.19)
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1 2 1 1 P
W([1211211; = g(P1 3 1423 — 6 1,324 + 3 1234 — Pyo+ %3
5P, P. 5P P. 1 5
— 61’4 + ;’3 — 62’4 — ;)’4 — §P1,2,3 + g2
1 1 5 1
5 i3 6P1’3’4 + 6P1’4’2 — 6P1’4’3
1 2 1
Jré 1,243 T §P1,3,2,4 + 6P1’3’4’2
2 2 1
T3lesa T 3 a3 + gl 128
2 1
t3Piazs + 6P1’4’3’2>' (D.20)

By acting the obtained projection operators onto the four quark state uuds,
the flavor wave functions are obtained as given by Eq. (3.53)- Eq. (3.60). The
two corresponding spin wave functions x/(ao 53 and xp29 5, can be constructed by the
substitutions u <1 and d, s <#} in the flavor wave function, x|z Fk and x[22) £y with
an additional 1/4/2 i1l the normalization factor. In analogy, the color symmetry
[211] is constructed by replacing w <> R, d' ¢+ G and s <> B in the flavor wave
function x(o11j,.-

Finally, in order to complete the g* wave function we have to couple the
[211] color with [31] the spin-flavor wave function to be [31] spin-color-flavor wave
function for the uuds configuration. We write down all possible multiplications of
X[211]c, with x3q] rs,; in form of the linear combination

Xtlosr = D @i X@i1le, X[31]rs, (D.21)

1,J=X,p,n
where a;; is the coefficient for making the combination correspond to the [31]
symmetry of the spin-color-flavor wave function. There are only three components

that give the four quark configuration which is antisymmetric,

XBllosr = OpX 2110, XB1]rs, T G AX211c, X[31]rs, T GpnX211le, X[31)rs, - (D-22)
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Transforming x(si).s, With the corresponding permutation D(34), we have

(34>X[31]CSF = —axpX[211]c, X[31]rs,

2v/2 1 22

1
—l—ap,x( - gX[zu}cp + TX[QH]C") (§X[31}FsA + TX[?A]FS,,)

22 1 22 1

+amn(TX[211}cp 1 gX[211]C,,]>( 3 X[BlFs, — §X[31]FS,7)- (D.23)

The antisymmetric wave function require that

(34)X[31]CSF T ~X[Blesrs (D24)
this give the condition a, \ = —ay, while a, , is an arbitrary number. By choosing
ay, = 1 and normalizing x(31)..., With the obtained condition we get

1
X[3llcsr — %(X[211]CAX[31]FSP T XR_11]e, X[31iEs, + X[Qll}CnX[?)l]FSn)’ (D.25)

as given by Eq. (3.66). For the-spin-flavor xsi,, such as |[31]pg, [31]p[22]g) it

corresponds to the Young tableau

1243/
4

(D.26)

There are only two products of the spin X[ and flavor (31, wave functions,

that are consistent with the characteristic permutation of x (31,4

13\4\®13 12\3\®12

D.2
2 2[4 [4] 34 (D-27)
Hence, the spin-flavor |[31]rg, [31]#[22]s) can be assumed as
|[31] s, [31]F[22]s) = Ap,pX[31)r, X[22]5, T AANX[31], X[22]s, - (D.28)

The coefficients a,, and ay ) can be evaluated by acting the matrix DB (123)

(Eq. (D.9)) and

=
ot
w

DP2(123) = , (D.29)

mlﬂ o
w

|
N =
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onto the corresponding wave function of Eq. (D.28)

DP(123)|[31] ps, [31]£[22]5) = a,,, DPV (123) X311, D (123) x 122,

+ax aDP(123) x (31, DPF(123) X2, - (D.30)

We obtain
1 V3 1 V3
38rs, [31r[22]s) = ap,o (=X, T 5 Xous ) (-5 XR2s, = =5 X225,
1 V3 V3 1
Faa (=5 Xir, 5 X, ) (5 Xie2ls, — 5Xe2ls, ) (D-31)

Taking Eq. (D.28) equal to Eq. (D.31) andmormalizing gives a,, = ayx = 1/v/2

so we have the explicit form of the |[31]rg, [31]#[22]s) as given by Eq. (3.67).
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