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CHAPTER I

INTRODUCTION

1.1 Motivation

Spin transport is a relatively new area in condensed matter physics. It has
been extensively explored due to the possibility in using the spin degree of freedom
as carrier of information as well as combining the spin-dependent effect for new
generation of electronic devices (Barnas et al., 1990; Saibich et al., 1988; Oestreich,
1999; Wolf et al., 2001; Zutié¢ et al., 2004). The ability to polarize spin system,
to control the spin orientation, and to detect the spin are desired to further the
development of the application of spintronic devices.

The natural choices of materials that posses the spin polarization are fer-
romagnetic materials. They have nonzero net magnetic moment, or spontaneous
magnetization, in the absence of an external magnetic field. The examples of ferro-
magnetic metals are Fe, Co, and Ni, whereas those of ferromagnetic semiconductors
are GaMnAs, GaMnSb, InMnAs, and InMnSb. The net magnetic moment reflects
an imbalanced number of up spins and down spins in these systems. There are
many interesting behaviors that can occur in heterostuctures containing ferromag-
netic materials. For instance, the resistance of alternating layers of ferromagnetic
metals and non-magnetic metals depends strongly on the relative magnetization
directions of ferromagnetic layers. When the alternating spins are in parallel,
the resistance is lower than when they are opposite in direction (Julliere, 1975;
Moodera et al., 1995; Maekawa and Gafvert, 1982; Slonczewski, 1989). This phe-

nomenon leads to the Giant magnetoresistance (Barnas et al., 1990; Saibich et al.,



2DEG in quantum well
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Figure 1.1 Examples of Rashba spin-orbit coupling systems. (a) Surface alloys
such as Bi/Ag(111) and Pb/Ag(111). Light and dark circles represent each of
the two atomic species. (b) Two-dimensional electron gas in quantum well in

InGaAs/InAlAs interfaces.

1988), which is the change in electrical resistance of alternating ferromagnetic
layers in response to an applied magnetic field.

A material with Rashba spin-orbit coupling is also of interest for the
application of spin transport. This type of spin-orbit coupling arises from the
presence of a structure inversion asymmetry (Rashba, 1960a; Rashba, 1960b;
Bychhov and Rashba, 1984a), like surface alloys Bi/Ag(111) and Pb/Ag(111) (see
Figure 1.1a). A structure inversion asymmetry can also be caused by a confining
potential of a quantum well of a two-dimensional electron gas (2DEG) along
the perpendicular direction of the 2D plane, such as in the interface planes of
AlGaAs/GaAs (Lommer et al., 1988), InGaAs/InP (Schapers et al., 1998) and
InGaAs/InAlAs (Nitta et al.,, 1997) (see Figure 1.1b). For the latter type, the
Rashba spin-orbit coupling strength can be modulated by an external electric
filed (Nitta et al., 1997; Koga et al., 2002; Heida et al., 1998; Engels et al., 1997;

Sato et al., 2001; Hu et al., 1999).



In most theoretical studies of transport in a heterostructure of Rashba spin-
orbit coupling systems, a continuous model is often used. For instance, Larsen et
al. (2002) studied the electrical conductance modulation of a three-layer structure
of a two-dimensional electron gas sandwiched by ferromagnetic metals using a free
electron approximation and S-matrix method. They found that the conductance
can be modulated by either changing the magnetization direction in the ferromag-
netic layers, or the Rashba spin-orbit coupling strength. Mireles and Kirczenow
(2002) studied quantum spin-valve effect within the Landauer formalism and ex-
plored the interplay between spin injection and quantum coherence, which give
rise to a quantum spin-valve effect. The signature of this effect is found to be sen-
sitive to temperature. Grundler (2001a, 2001b) studied spin dependent electron
transmission at the interface and found that a fundamental effect due to band-
structure mismatch provides an intrinsic spin-dependent barrier, giving rise to the
magnetoconductance effect. Sun and Xie (2005) investigated electron transport
through a two-dimensional semiconductor with a non-uniform Rashba spin orbit
interaction and found that a spontaneous spin-polarized current could appear due
to the combination of the coherence effect and Rashba spin-orbit interaction in
the absence of magnetic field. Cai et al. (2008) showed that the spin-orbit cou-
pling influences a transmission probability of spin-up and spin-down electron and
the tunneling magnetoresistance (Julliere, 1975; Moodera et al., 1995; Maekawa
and Gafvert, 1982; Slonczewski, 1989). Matsuyama et al. (2002) found that the
spin-injection rate across the ferromagnetic materail/two-dimensional electron gas
interface depends on the carrier density of the electron gas and showed that the
spin filtering is enhanced by increasing the strength of elastic scattering potential
at the interface. Wu et al. (2003) studied the effect of the Rashba spin-orbit

coupling on the traversal time in a ferromagnet/semiconductor (SC)/ferromagnet



heterostructure. They found that the traversal time is decreased with the in-
crease of RSOC strength and showed that as the length of the semiconductor
layer increase, the traversal time does not increase linearly but appears a step be-
havior. Zhang et al. (2006) also calculated the spin-tunneling time in the similar
heterostructure as a function of the Rashba spin-orbit coupling strength and the
length of semiconductor layer. They found that the tunnel barriers have domi-
nant effects on the electronic properties of the spin-up and spin-down electron. As
the length of the layer increase, the spin-tunneling time shows behavior of slight
oscillation. They also showed that as the spin-orbit coupling and the tunnel bar-
rier becoming stronger, the spin-tunneling time will increase. Furthermore, the
in-plane tunneling spectroscopy of the hybrid structure composed of a metal and
the two-dimensional electron gas with Rashba spin-orbit coupling was studied by
Srisongmuang et al. (2008). It was found that the Rashba spin-orbit coupling
energy can be measured from the conductance spectrum and that an increase in
spin-flip scattering probability in some circumstance can enhance the tunneling
conductance.

In addition to a continuous model, a tight binding model is also applied
to study particle and spin transport in the heterostructures containing two-
dimensional electron gas with the Rashba spin-orbit coupling, along with the
Green’s function method (Pareek and Bruno, 2001; Molenkamp et al., 2000). For
instance, Mireles and Kirczenow (2001) studied the effect of the spin-orbit cou-
pling on the spin-transport properties of narrow quantum wire. They showed that
the strong coupling can change the spin-polarized electron injected into ballistic
narrow wire and induce a dependence of the spin precession of the inject electron.
Yang et al. (2009) investigated the proximity effect in the interface between a

conventional superconductor and two-dimensional electron gas with the Rashba



spin-orbit coupling. It was found that an injection of a quasiparticle from the
superconductor perpendicular to the interface can induce singlet superconductiv-
ity correlation in the electron gas region, and the Rashba spin-orbit coupling has
a little effect on the Cooper pair penetrating into the electron gas region from
the superconducting lead. Wang et al. (2006) studied the nonequilibrium spin
accumulation in the interface between two Rashba systems in a quantum wire and
found that the spin accumulation concentrates on the two lateral edged of the wire
in nonlinear transport regime. Yamamoto et al. (2005) investigated the numerical
expression of spin polarization transport in a T-shaped conductor with the Rashba
coupling and found that for stronger coupling, the spin-polarized of the current
becomes almost perfect.

One of the advantages of the lattice model is that it can reproduce more
realistic Fermi surface of each part of the heterostructure than the continuous
model; therefore, one can investigate the effect of the band structure in more
detail. Furthermore, the potential barrier at the interface can be modeled to have
arbitrary strength, ranging from a metallic contact to a tunneling limit. However,
most of the above-mentioned studies using the lattice model ignore the influence of
the interface quality and assume the interface potential barrier to be infinitely high,
i.e. only in a tunneling limit. It has been shown in many studies that the quality of
the junction can strongly influence the particle transport in a heterostructure. As
can be seen in the junction between a ferromagnet or a metal and superconductor,
when the potential interface barrier is low Andreev reflection can occur (Andreev,
1964a; Andreev, 1964b). This phenomenon enhances the charge transport across
the junction.

In this thesis, the particle and spin transport in a heterostructure consisting

of a metal and a Rashba system are theoretically studied in a lattice model. There



are two main aspects of the investigation: the effect of the band structure of the
Rashba system and the quality of the junction. The outline of this thesis is given

in the next section.

1.2 Outline of Thesis

This thesis is organized as follows. In Chapter II, some physical properties
of a Rashba system are investigated in two models: a continuous model and a
lattice model. In the continuous model, the electronic properties of the system of
interest is described by a free electron model. In the lattice model, the electronic
properties of the system are described by tight-binding approximation. In each
model, the energy dispersion relation, the density of states, and the carrier density
of the system are investigated.

In Chapter III, the theoretical investigation of particle transport across a
metal and a two-dimensional electron gas with the Rashba spin-orbit coupling in
a continuous model is given. The interface is modeled by a delta-function like
potential with arbitrary strength. The detailed calculation of the conductance
as a function of applied voltage of the junction is shown. The results of how
the conductance spectrum is affected by the interface potential, the strength of
the Rashba spin-orbit coupling and the carrier density of the Rashba system are
included.

The development of a lattice model to describe particle and spin transport
across a metal /Rashba system junction and the related results are in Chapter IV.
The eigenfunction and eigenenergy of the Rashba system, the appropriate match-
ing conditions of the electronic wave functions of the metal and the Rashba system,
the current density across the junction, and the formula for the conductance are

also obtained in this chapter. Also, the effect of the band structure and the in-



terface barrier potential are shown through the plots of conductance spectra and

spin polarization of conductance spectra. The conclusion of this thesis is given in

Chapter V.



CHAPTER 11

ELECTRON DESCRIPTION OF RASHBA

SPIN-ORBIT COUPLING SYSTEM IN TWO

MODELS

In this chapter, we describe a two-dimensional electron gas (2DEG) with
Rashba spin-orbit coupling (RSOC) using two different models: a free electron
model and a lattice model. In particular, we will consider the density of states

and the carrier density of the system.

2.1 Free Electron Model

A free electron approximation is the simplest way to represent the electronic
structure of a system. In this model, the interaction of conduction electrons with
ions of the lattice and the interaction between the conduction electron are included
into the electronic effective mass. That is the total energy of the system is a
summation of the energy of each electron. This energy is the kinetic energy and the
Rashba spin-orbit coupling interaction. In order to obtain a better understanding
of the atomic contributions to spin-orbit coupling interaction at the surface, a
tight-binding model will be considered.

The one-electron Hamiltonian of the 2DEG with RSOC in a free electron

model can be written as (Rashba, 1960a; Rashba, 1960b; Bychhov and Rashba,



1984a),

2
_P A
H—Zm*+h(axﬁ>

N>

(2.1)

where the electrons are confined to move in the xy plane. The first term of Eq.(A.2)
is the kinetic energy of an electron with the effective mass m*. The second term
is the Rashba spin-orbit coupling interaction, where A\ is the parameter describing
a strength of the spin-orbit coupling, ¢ denote the Pauli matrix vector, p is the
momentum operator, and Z is a unit vector perpendicular to the 2DEG plane.
The dispersion relation obtained from the Hamiltonian is more detailed in

an Appendix A. The eigenvalues are

Wk h?
Eg = 5 F M= o ((k+ ko)* — k), (2.2)

m* m
where ko = @, the £ sign correspond to the + and - branches in Figure 2.1(a),
respectively. The free electron energy dispersion is split into two branches due to
the RSOC. In the figure, the dotted line is shifted by +Ak, while the solid line
shifted by —Ak. The two branches meet at £ = 0. The energy at this point is called

”crossing point”. Notice that the bottom of the - branch is lower in energy than

h2k2

T The two concentric circles

the crossing point by the Rashba energy: FE), =

in Figure 2.1(b) and Figure 2.1(c) represent the energy contour lines above and
below the crossing point, respectively. The arrows shown in the figure indicated
the spin orientations that are always perpendicular to the electron momentum.

The eigenfunction of the electron in the Rashba system with the momentum
k= k2 + k,y for each branch is written as

R 1 1

\/§ R /k2+k2

ikzty




Figure 2.1 Schematic illustration of the energy-momentum dispersion of Rashba
system (a). The energy contours in the momentum space, (b) above the crossing

point, (c) below the crossing point. The arrows represent the direction of electron

spin at the corresponding momentum on the contours.

2.1.1 Deunsity of States (DOS)

The total density of states of the system is defined as:

D(E) = % Z 5(E — Ey), (2.4)

where A is the area, k is the wave vector, the sum runs over all possible values of

k. For the 2DEG in the polar coordinate system form an integral:

1 o0
D(E) —/ kdk - 0(E — Ey). (2.5)
T Jo
By changing the integral variable, we have
m* [F k
D(E)=— — | dE - 0(E — Ep). 2.
®) -5 [ (o) 4o - £ 26

Where Ej is the lowest energy. When the zero energy is set to be at the crossing

point, as shown in Figure 2.1(a), the DOS of each branch can be calculated and

10
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obtained as follows. For £ > 0,

prE)="[1F ko : (2.7)
7Th2 2m;E —|—k§
h

where DT (E) and D™ (E) are the DOS for the + and - branches, respectively.

Thus, the total DOS for E > 0 is the sum of D™(E) and D~ (F) and equal to

D>(B) = 2™ (2.8)

- wh?’
which is a constant similar to the DOS of the two-dimensional free electron gas.

For £ < 0, the DOS is deviated from the 2D free electron system. Below the

crossing point, there is only one branch, the DOS is

* k
D™ (E) = — C_F1], (2.9)
2m*E 2
+k
h2 0

where the F are for the states with |k| < kg and |k| > ko, respectively. This leads

to the total DOS below the crossing point to be

om* k
D<(E) = ’ZQ 0 , (2.10)
T QW;QE 4 kg
diverging at F\ = —Z:ﬁ, as a van Hove singularity (see Figure 2.2 (a)).

2.1.2 Carrier Density at Zero Temperature

One can obtain the carrier density (n) at zero temperature as a function of
energy by integrating the DOS over the energy range from the bottom to top of

the band:
E / i
n(E) = (E)dE, (2.11)

Ey

where FE), is the energy level at bottom of the band, and E is the energy corre-

sponding to the filling level. The expression of the carrier density for the energy
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o
T
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Density of States (DOS)
D
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w
T

Carrier Density (n)
= N

Figure 2.2 (a) Plots of — branch (solid cerves), + branch (dashed curve), and
total (thick-solid curve) density of states in unit of m*/wh? (b) and the total

electron density in unit of k2 /7.

below crossing point (E < 0) is obtained as

k’o 2m* K
(BE) = —\[k2 + —— 2.12
ne(B) =\ (212
and the carrier density for the energy above the crossing point (£ > 0) is
() = E K (2.13)
- Th? T '

The plot of the carrier density is shown in Figure 2.2(b).
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2.2 Lattice Model

The simplest tight binding Hamiltonian that includes the influence of
Rashba spin-orbit coupling in a square lattice was given by Mireles and Kirczenow
(Mireles and Kirczenow, 2001). This Hamiltonian is obtained by discretizing the

*

free electron Hamiltonian: p*/2m* + \(oyp, — o.p,), m* is the electron effective
mass and p is the electron momentum, A is the Rashba parameter, o,,0, are the
Pauli’s matrices. It can be written as

Hpg = Z(Gnma - N)Cjzmacnma —tr Z(CTTL—H,moCnmU + Crt,m+1,acnm0 +H.C)

nmo nmao

—tw Y {CZHM (i0) 3o Cramo — C' 15/ (100) g Crime + H.C.}. - (2.14)

n,m

/
nmoo

Where we assume only nearest-neighbor interactions, the subscripts n and m in-
dicate the column and row indices of the square lattice. €,,,, is the on-site energy,

p is the chemical potential, Cf (C,,.,) is the creation (annihilation) operator of

nmo
an electron at site (nm) at lattice site with spin o, tgp = h?/2m*a is the hopping
energy for a lattice constant a (see Figure 2.3), t,, = A/2a denotes the RSOC
strength in the lattice representation.

The calculations of an eigenvalue and eigenstates of Rashba Hamiltonian

are described in more details in an Appendix B. There, we write down the energy

dispersion relation of electron in the Rashba system as

E(k) = Ey(k) £ 2t,,1\/sin’(k,a) + sin®(k,a), (2.15)

where Ey(k) = (eg — p) — 2t g (cos(kza) + cos(kya)) is the eigenenergy for a 2DEG
without spin-orbit coupling. The plus and minus signs are for the plus and minus

branch. k., k, are the wave vector in x and y direction, respectively.
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Figure 2.3 Schematic illustration of the square lattice of the 2DEG with RSOC,
tR( (o' o) 50" 0" (00)) AN Lso(Lro’ (o 5) s o (00'y) L€ the normal hopping energy and

the ROSC strength.

Figure 2.4 The energy-momentum dispersion of RSOC in a lattice model, when

k, = 0. Ebobtor = tf—;“, Eri(ky), and Egs(k,) are defined in the text.

The eigenstates can be obtain as

isin ki a+sin kya

eik% an 12 \/sin2 k;‘: a+sin? kya eikyma' (2 ].6)
1

key, £
Ug

(n,m) =
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The illustration of energy dispersion is shown in Figure 2.4. It is splited by the
effect of Rashba spin-orbit coupling. The plus and minus branch meet when k, =
k, =0 and k, = 0,k, = £7/a. The E(k, = 0,k, = 0) is t:—;’: above the bottom
of the band, whereas E(k, = 0,k, = £m/a) is tj—;a below the top of the band.
These two levels are called the 1% and the 2"¢ crossing point of two branches,
respectively. Note that Egi(k,) = (eg — p) — 2tg(1 + cos(kya)) — 2ty sin(kya)
and Ero(ky) = (egr — p) — 2tr(—1 + cos(kya)) + 2ts, sin(kya). The energy below

. . . 2
and above two crossing points is the Rashba energy; E%hoP = ;—": The contour

energy for different energy of the plus and minus branch was showed in Figure 2.5.

kya kya
3 ] T T T T T 3 mJ T T T K
2t | 7 N
7/ N
1r /7 LYk .
k a k a
X X

0 0
-1r S AR ]
2t {1 -2r -
3k 1 1 1 1 In 3k \ 1 1 ; L O

3 2 1 0 1 2 3 3 2 1 0 1 2 3

@ (b)

Figure 2.5 Plots of the energy contour of Rashba system, (a) the energy slightly
above the 1! crossing point, (b) the energy slightly below the 2" crossing point.

The solid line and dotted line are for the minus and plus branch, respectively.
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Figure 2.6 Density of states of Rashba system is in a unit of A/872tx, where A

is the area of the system.

2.2.1 Deunsity of States (DOS)

According to the total density of states for 2DEG in Eq.(2.4), the summa-

tions between a double integral:

D(E) = 2%2 / dk,a / dkya - 0(E — Ey). (2.17)

By changing the integral variable, we have

dE+/sin?(k,a) + sin®(k,a)

dlya = . (2.18)
2tp sin(k,qa)[v/sin? (k,a) + sin?(k,a) & 2t,,c08(k.a)]
Substitute Eq.(2.18) into Eq.(2.17), we obtain
kTa 12 s 02
D(E) = 1 / dieya V/sin?(k,a) + sin? (k,a) ,
4mtR Jo sin(k,a)[v/sin?(kya) + sin®(kya) & (ts0/tr)cos(k,a)]
(2.19)

where

1 (tgr(2tp — F 12 (412 + 4Et2 — E?
COS(KZi(I) = — % :l: SO( SO2+ so , (22())
2 tR + t.go (tR + tgo)Q
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and

2
N 1 [t2, (483 + 612 — E? — AdtgEcos(kya) — 2 (2t% + t2,) cos(2k,a))
(th +12,)° |

1 (tr(E+ 2t k
cos(kya) = ( a —;2 _fi(2)8< ya)))
R so

2

(2.21)

The plus and minus signs in Eq.(2.18) - Eq.(2.21) are for plus and minus branch.
The numerical solution of the DOS of RSOC system as shown in Figure 2.6.

The numerical solution of the DOS in Eq.(2.19), it seen that the DOS of
Rashba system in this model shows strong energy dependence. There are four van
Hove singularities in the DOS, the top and the bottom of the band, and the two
points near the half-filled level (see Figure 2.6). Each of the two later points is Ej,
below and above the half-filled level. Figure 2.7 is the DOS when t,, = 0. Notice

that in this case there is only one van Hove singularity at the half-filled level only.

10

Density of States (DOS)
(62}
|

Energy

Figure 2.7 Density of states of 2DEG without RSOC is in a unit of A/87%ty.
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2.2.2 Carrier Density at Zero Temperature

The carrier density of the 2DEG with RSOC system is plotted in Figure
2.8. In the Rashba energy, the carrier density is similar with obtained by the
continuous model. Beyond the crossing the carrier density change its slope at
the energy equivalent to around the half-filled level. While the carrier density

investigated by a continuous model is linearly.

sl Zind crossing point —> |
=
> |
-
& |
22 ]
2 | —5 B
O o
s
= 1F S
ko
o
: s / §
¢ < 1 crossing point :
O 1 ; . 1 L 1 L I L Il L Il . Il
-12 -8 -4 0 4 8 12
Emin E/tSO Emax

Figure 2.8 The plot of carrier density of particle of the 2DEG with RSOC system

in a lattice model.



CHAPTER III
A METAL/RASHBA SYSTEM JUNCTION IN

A CONTINUOUS MODEL

We now consider the particle transport across the junction between a metal
and a 2DEG with the RSOC. In particular, we will calculate the conductance spec-
trum of the junction and look into how the conductance depends on the physical
properties of the junction, such as the insulating barrier at the interface, the RSOC
strength, and the density of the carriers in the Rashba system. In this work we an-

alyze the conductance in the continuous model and in the next chapter the lattice

model.
YV
N
1 Ll
v, <--4-- +
1} lavss «
Metal 0  Rashba system

Figure 3.1 Example of a metal/Rashba system junction in a 2-dimensional sys-

tem.

3.1 Model and Assumptions

We model our junction as a 2D system, which lies on an zy plane. This

junction consists of a 2DEG with the RSOC and a metal as show in Fig 3.1.
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We assume that the interface is smooth, and the barrier at each interface can be
represented by a Dirac-delta function potential (Blonder et al., 1982) at x = 0.
We use the free electron model to describe the electronic properties of each side of
the junction.

We describe our system in the continuous model using the following Hamil-
tonian:

H = {ps——p+V(2,y)H + Hrs(z). (3.1)

2m(z)
I is a 2 x 2 unity matrix. p = —ih(2 2 + @8%). The effective mass m(z) is
position dependent: [m(z)]™' = m™1O(—z) + (m*)~'O(x), where m and m* are
the effective electron mass in the metal and the Rashba system, respectively, and
O©(x) is the Heaviside step function. V(z,y) is also a position dependent function

and is modelled by the expression
Viz,y) = Hi(z) = Ep (©(—2)) + Up (6(z)), (3.2)

where H represents the scattering potential matrix of the barrier. The diagonal el-
ements of H, H™ and H", correspond to the spin-conserving scattering potential,
whereas the off-diagonal elements, H™ and H*T, correspond to the spin-flip scat-

tering potentials. Uj is the offset energy which is assumed to be much smaller than

the Fermi energy Ep = % of the metal. ﬁRS(x) is the RSOC term that is ex-

pressed as (Rashba, 1960a; Rashba, 1960b; Bychhov and Rashba, 1984a; Bychhov

and Rashba, 1984b)

fIRS:%(%[8xﬁ].é+[6xfo]-é>\(g)), (3.3)

where A(z) = AO(z) is the spin-orbit coupling parameter, which can be tuned by
applying an external electric field perpendicular to the 2D plane (Nitta et al., 1997;

Koga et al., 2002; Heida et al., 1998; Engels et al., 1997; Sato et al., 2001; Hu et al.,
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1999), 2 is the direction perpendicular to the plane of motion, o = (0,,0,0,) is
the Pauli spin matrix vector, and k is the wave vector of electron.

The electron energy on the metallic side (z > 0) is therefore

E(q) = e Ep, (3.4)

2m

where ¢ = /q2 + ¢2 is the magnitude of the electron wave vector.

The electron energy dispersion relation on the Rashba side (z > 0) is

2

h
Es(k) = 5— [k* & 2kok] + U, (3.5)

where k = |/k2+ k2 is the magnitude of the electron wave vector and ko =
m*A/h is related to the strength of the RSOC. Figure 3.2 shows the electronic
energy dispersion relation of each side of the junction and the corresponding energy
contour.

The goal is to find the current density as a function of applied voltage across
the junction by using the scattering method. In this method, we first consider an
incoming electron from one side of the junction, and calculate the reflection and
transmission probabilities, which are later used to obtain the current density of
the junction. Thanks to the principle of microscopic reversibility (Datta, 1995;
Askerov, 1994; Thomas, 2004), we can freely choose which side of the incoming
electron comes from, and in our case we consider it coming from the metal in
region z < 0.

The wave function of the electron on the metal side with energy E' is there-
fore written as a linear combination of incident momentum state and reflected
states of the same energy and the momentum along the surface hk,. Because there
are equal number of electrons with opposite spin directions, there are two possibil-
ities of the wave function. That is, in general, the two possibilities of the spin part

of and incoming electron are: |§) = cosd [1)+sind |}) and |§) = —sind [1)+cosd |1),
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Figure 3.2 The sketches of the energy spectra of the metal (on the left) and the
Rashba system (on the right). Er, Uy, and Ey = h?k2/2m* are the Fermi energy,

the Rashba offset energy and the Rashba energy, respectively.

where 0 is the angle of the spin direction with respect to the = axis. Because we
only consider the system in zero applied magnetic field, we can freely choose the
direction of the electron spin in the metal to be in the +y and —y direction, i.e., by
setting 6 = 0. The wave function of the electron in the metal side can be written

in two cases, depending on the spin orientation of the incident electron, as:

cos , T1q . :
o it emite | oy (3.6)
sin ¢ Ty
—sin 0 , T . .
¢§\? — e 4 i e =T | 'Y (3.7)
cos o T2y

where ¢, = gcosy and g, = ¢sin~y, where v is the angle between ¢ and z axis and
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q = V/2m(Er — E)/h2, 1, is the reflection coefficient for the reflected electron
with spin o in case j of the incident electron.

In the RSOC region (z > 0), the wave function is obtained as a linear
combination of two outgoing states of the same energy and k,. Because of the
different nature of the states with energy above and below the crossing point, we
have two forms of the electronic wave functions for the Rashba system, dependent
on the energy of the electron. For E > U,

G(E>Uy) = 7 o el (3.8)

iky T ikyy
ti_e e,

N L
iky +ky
for £ < Uy,
1 1 ikt
(J) (E < U()) = E . tj+6 ks (39)
ik tky
1 _—
| tj_ezkz x ezkyy
L
ihs +ky

In both equations above, The k, is parallel momentum of the electron and
k, = q, due to the conservation of the momentum along the interface. ¢;; and ¢;_
are the transmission amplitudes for plus (minus) branch of RSOC for the incident
electron case j from the metal side, and k7 = k*cosa and k; = k™ cosf3, where
a and 8 are the angle k™ and k£~ with respect to the x axis (see Figure 3.2 for

function of o and 3). k* depends on energy as

k™ (E) = ko + \/k: + 2h (E —Up), (3.10)

and

() = + (ko _ \/kg + 2;;* (F - U0)> | (3.11)
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The + and — signs in Eq.(3.11) are for F < Uy and E > Uy, respectively.
Notice that k¥ can also be written as a function of electron density. That

is, for £ > U, it can be obtained as

K (E) = /K + 2m(n(E) — n.) F ko, (3.12)

where n, = 0.5ng, ng is the carrier density at Fermi energy. The corresponding
group velocities are vig = I /2n(E)m + k2. The + and — signs in the equation
are for the plus and minus branches, respectively.

For £ < Uy, the wave vector is obtained as

E) — u
K(E) = ko F ((E) = nu)m (3.13)
ko
The corresponding group velocities are v} = - n(fo )™ The — and + signs in the

two previous equations are for ky < |k| < 2k and —ko < |k| < 0, respectively.
We now apply the matching conditions to the wave functions on both sides

to obtain the transmission and reflections amplitude: the continuity of the wave

function and the discontinuity in the slope of the wave function (0¢/dx), due to

the delta-function like barrier at the interface. That is,

Ui (e =07, y) = vRy(e = 07,y) = ¥0(0), (3.14)

m 0v0) o) L m ~
m _ :2]<;Z_Ig—>(])0, 3.15
(25820 - -z,
where Z = g;g that determines the strength interfacial scattering. The diagonal
components Zy = 72212 Land Z), = TZQZ = We assume Zy = Z), = Zo. The off-
diagonal components Z;, = 7;;2[;’ L= = ";QZ L = Zp. TFrom these matching

conditions, we can calculate the reflection and transmission amplitudes (7, ;,),

and their corresponding probabilities can also be obtained as follows:
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Rjy = I1j6]%, (3.16)
m FkT + kocosa
T = |t [P0 3.17
= el P E R, (3.17)
m k~ — kocos3
T = —|t; (———), (3.18)

where j = 1,2 correspond to the spin orientation of the incident electron. R;, are
the reflection probabilities of spin-o states and 7} and T}_ are the corresponding
transmission probabilities for the two branches. Also, the upper and lower signs
in T, are for £ < Uy and E > Uy, respectively. The matching conditions ensure
that Ry + Ry + Tpy + Tj- = 1.

Because the current density is the same for all planes parallel to the inter-
face, we can consider only the current density in a metal. That is, the current

density of electron in the x direction is given by

= anvme, (3.19)
k

2
where ny is the density of electrons, ie., ny = > (1 — Riy — R;)) f(E), where

i=1

f(E) is the Fermi Dirac distribution function, v, is the x component of the group
velocities, and e is the electron charge.
As a function of applied voltage V as follows, we can write the current

density as

2

V)= evle— it — Ri) f(E) x (f[E(q) — V] = fIE(q)]). (3.20)

q2>0,q2

By transforming the summation into the integration and considering at the zero

temperature, we can obtain the expression for the electric current density as

oV

o e Ag ”
Jje(eV) = 5 27TF /dE dycosyq/1 + Z Ri+ — R;)), (3.21)
—Tm
0
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where A is the area of the metal and 7, = sin™'[k~(E)/q(F)] is the maximum
angle incident electron from the metal.

The differential conductance, G(V') = dj5/dV, can be found to be

G(V)= %% drycosyy /1 —i— — Z Riy — Ry)). (3.22)
_'V

In the next section, we show and discuss the results from these equations.

3.2 Results and Discussion

In this section, we consider the effect of the following physical properties
on the conductance: the spin-conserving and non-conserving interfacial scattering
strength, the RSOC strength, and the carrier density of the Rashba system. All
numerical solutions of conductance are plotted in a unit of e A%qr/mh. We set
the offset energy; Uy = 0.5EFr. Unless we state otherwise, we set m/m* = 20
and ky = 0.05¢r, which are the values similar to those obtained in experiments
in RSOC systems (Hirahara et al., 2006; Ast et al., 2007; Ast et al., 2008). Also,
in all plots of the conductance spectra (G vs eV/), we assume the Rashba band is
empty; so that, the spectra occur in the positive applied voltage region.

The conductance spectra G as a function of applied voltage for different
Zy, when Zp = 0 are shown in Figure 3.3. One can see that the conductance
is zero until the applied voltage equal to the bottom of the Rashba band, where
eV = E). For eV > F,, the conductance rapidly increases with large slope and
then slowly increases until eV = 2F),, the crossing point of the two branches.
After that the conductance linearly increases. The two features of energy different
between the onset and the discontinuity in the slope of the conductance spectra
can be used to determine the Rashba energy; F), (Srisongmuang et al., 2008).

Also, in the absence of spin-flip scattering, the presence of the spin-conserving
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Figure 3.3 Differential conductance spectra G as a function of applied voltage
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Figure 3.5 Differential conductance spectra G as a function of applied voltage

for different Zr in case of Z; = 0.5.
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Figure 3.6 Plots of normalization of discontinuity of conductance at the crossing
point (NDG) of Figure 3.4 (dashed line) and of Figure 3.5 (solid line), depends on

the spin-flip scattering Zp.
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scattering at the interface suppresses the conductance spectrum. It should be
noted that the slope of the conductance spectra, when the voltage is higher than
the corresponding energy at crossing point, is decreased with the increase in Zj.
In Figure 3.4 and Figure 3.5, the plots of tunneling conductance spectrum
as a function of applied voltage for different spin-flip scattering strength Zr, when
Zy = 0 (high transparency) and Z; = 0.5 (intermediate transparency) are shown,
respectively. In these two cases, the conductance spectra are suppressed with an
increase in Zr. Notice that the discontinuity of the conductance spectrum at the
crossing point (NDG) can be prominently seen for large value of Zp. In Figure
3.6, we plot (G(eV = 2E) — (eV = 2E}))/(G(eV = 2EY) + (eV = 2E})), the
normalized discontinuity of the conductance at the crossing point as a function of

Zp.
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Figure 3.7 Plots of conductance spectrum as a function of applied voltage for

different values of ky. In these plots, we set Zy =0, Zp = 0.
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Figure 3.9 Plots of conductance spectrum as a function of applied voltage for

different values of m*. In these plots, we set Zy =0, Zp = 0.
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The plots of conductance spectra as a function of applied voltage for differ-
ent values of ky are shown in Figure 3.7. Changing ky means changing the Rashba
energy and increasing ko can enhances the conductance. Figure 3.8 shows the plot
of conductance as a function of ky for different apply voltages when Zy = Zp = 0,
for low apply voltage the conductance increase with a larger slope than the high
apply voltage. When Z,, Zr are non zero the conductance also increases but its
magnitude is smaller.

In Figure 3.9, we plot the conductance spectra for different values of m* (in
these plots, Zg = 0, Zr = 0). As can be seen, the variation of m* does two things
to the conductance spectrum. First, it changes the Rashba energy, as appeared
in the plots via the different voltage separation of the two distinguished features.
Second, the effective-mass variation causes the similar effect to that of the spin-
conserving interface scattering, i.e., we can see this effect via the change in the
slope of the conductance spectrum after the crossing point.

We now plot the conductance at the Fermi level (or zero applied voltage)
of the Rashba system as a function of the carrier density in Figure 3.10. Exper-
imentally, one can control the density by applying the gate voltage. As can be
seen, the conductance depends quite strongly on the carrier density. There is a
kink in the spectra occurring at a critical value n* corresponding to the filling of
the energy band up to the crossing point of the band. This kink was not found
in the report on the ferromagnet/Rashba system junction in 1D (Grundler, 2001)
and 2D (Matsuyama et al., 2002) system. Previous works did not see this kink
because they ignored the change in sign of one of the wave vectors of the minus
branch below the crossing point. Fig 3.11 shows the dependence of n* on k.

Figure 3.12 shows the dependence on the strength of the Rashba spin-

orbit coupling of the conductance at zero voltage for various values of the carrier
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Figure 3.12 Differential conductance at zero voltage G as a function of strength
of Rashba spin-orbit coupling k, for different n in case of Zy = 0 (a), Zy = 0.5 (b),

and Zp = 1.0 (c¢). All plots set Zp = 0.

density and the interface barrier strength. In the absence of the interface spin-flip
scattering and for Zy < 0.5 (high and intermediate transparency), one can see
that the conductance is decreased with kg, until kg reaches a critical value after
which the conductance can be increased with ky. After the conductance reaches a
maximum value, it is again decreased with ky. For junctions with low transparency,

i.e. Z1 =1, one can increase the conductance with the RSOC strength.
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3.3 Conclusions

In this chapter, we used the continuous model and the scattering method
to calculate the conductance across a metal/Rashba system junction. The con-
ductance spectra provide us the method to determine the Rashba energy. Both
spin-conserved and spin-flip interfacial scatterings strongly affect the conductance
spectra.

The conductance at zero voltage is also found to be affected by the carrier
density. We found that there is a kink in the relationship between the conductance
and the carrier density. This kink occurs when the carrier density of the Rashba
system is at the level of the crossing point.

We also found that in the case of a transparent junction the conductance is
generally decreased with the strength of the RSOC. One needs to make a junction

with low transparency in order that the conductance is increased with the strength

of the RSOC.



CHAPTER IV
A METAL/RASHBA SYSTEM JUNCTION IN

A LATTICE MODEL

In this chapter, we look into the transport properties of carriers in a het-
erostructure consisting of a metal and a 2DEG with the RSOC by using the tight
binding approximation. Similar to the continuous model, we need to find appro-
priate matching conditions between the electronic wave functions of both sides, in
order to obtain the reflection and transmission probabilities and hence the con-
ductance across the junction. We then show and discuss the results for those
probabilities and the conductance. We will also look into the spin polarization of
conductance in the metal side, to see how the interface scattering can affect the

imbalance of spins in the supposedly spin-balanced system.

4.1 Model and Assumptions

In a lattice model, we represent both the normal metal and the RSOC
with an infinite 2D square lattice in an zy plane (see Figure 4.1). The system
has a translational symmetry along the interface (the y direction), meaning the
momentum hk, is conserved within the reciprocal lattice vector.

As in the continuous model, we use the scattering method to calculate the
conductance spectrum in this system. That is, we assume an incoming electron
from the normal metal side, write down suitable electronic wave functions for

both sides of the junction, and obtain appropriate matching conditions for them
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to calculate the reflection and transmission probabilities.

Following the above-mentioned procedure, the electronic wave function of
electron with the energy E in the metal is written as a linear combination of
incident momentum state and reflected states of the same energy and k,. Based
on the spin part of the wave function, we again have two equally likely incident
states. In the absence of the applied magnetic field, we write the two cases of the

wave function in the metal side as

. 1 v 1 ,
U]]f}”l(n,m) = |e' " + e~ ' ethyma (4.1)
0 11
. . T2 .
U]lfj’g(n, m) — | gitean 4+ e~igwan + ezkyma’ (4.2)

where n, m represent the indices of the columns and rows of the lattice points,
¢z = tcos™' [(E — ey + p+ 2tycos(kya)) / — 2ty] is the wave vector along the x
direction with |¢,;| < 7/a and |k,| < 7/a. 1}, is the reflection amplitudes of spin-o
state in case j.

In order to focus our attention on the effect of the Rashba system on the
particle transport across the junction, we set the hopping energy along the surface
in the metal to be smaller than that along the direction perpendicular to the
surface, i.e., ty = 0.1ty. This choice of the parameter results in the energy
contours as shown in Figure 4.3. The parameter Fy = (ey — p)/2(ty + ty) is
called the filling parameter. In this work, we use the half-filling Fermi surface
(Fn = 0) represented as the thickest energy contour in the figure. Also, in most
cases the energy band width of a metal is about an order of magnitude larger
than that of a Rashba system, we therefore set our energy parameters accordingly.
That is, we set the hopping energy in the Rashba system to be tg = 0.1ty. The

spin-orbit coupling energy that causes the spin-splitting states is t,,, which is set
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Figure 4.1 Schematic illustration of the square lattice representing the
metal/Rashba system junction. This system is the same lattice constant a, and
n, m indicate the column and row indices of the lattice, respectively. The energy

at on-site €, is for metal and erg is for RSOC system.

to be ty, = 0.4tg = 0.04ty, unless we state otherwise. Similarly, we define the
filling parameter for the Rashba system as Fre = (1 — €g)/4ts. Each filling level
is shown in Figure 4.4, where the left panel is for the plus branch and the right
panel is for the minus branch.

There are three forms of the electronic wave function, depending on the

energy. For £ < Ep(k,),

isin(—k¥ a)+sinkya

Ull;y (n’ m) _ threi(—k;)an 1 \/sinz(—k;ﬁ'a)+sin2 kya

V2 1

isin(ky a)+sinkya

+ tj,eik; ani B \/sinQ(k; a)+sin? kya eikyma7 (43)

V2 1
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7

Metal 0 Rashba system x

Figure 4.2 The sketches of the energy dispersion relations of an electron in the
metal (left) and the Rashba system (right) for k, = 0. The dashed line represents
the same energy. Ey,qq, Emin, Eri, and Egy are dependent on k, and are defined

in the text.

for ERl(k?y) < E < ERQ(ky)a

isin k3 a+sin kya
\/Sin2 ki a+sin? kya

1

Ugy (n,m) = tj+eik;“”

Sl

__isin(ky a)+sinkya

+ tj_eik;ani \/sin2(k;a)+sin2 kya eikyma’ (44)

V2 1
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Figure 4.4 Plots of energy contours of the Rashba system. On the left is for the

plus branch and on the right is for the minus branch.

for £ > ER2(ky)7

isin k¥ atsin kya

\/sin2 ki atsin? kya

1

Ug’ (n,m) = tj+eik;“"

Sl -

isin(—kz a)+sinkya
\/sin2(—k:; a)+sin? kya eik:yma7 (45)
1

+ tj_ei(—k;)an

Sl
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where Egi(ky) = er — 2tr(1 + coskya) — 2t,,sinkya and Egps(k,) = eg — 2tr(1 +
coskya) + 2ts, sin kya, j = 1,2 refer to the two cases of different incoming states in

the metal, and k= are defined as

1 (tr(E + 2tgcos(kya))
cos(kza) = 5 ( 2P Y
R S0

N 1 [82, (4% + 612, — E? — dtgEcos(kya) — 2 (2t% + t2,) cos(2k,a))
(th+82,)° |

2

(4.6)

The = signs are for the plus and minus branch, and ¢;4 correspond the transmission
amplitudes of plus and minus branch in case j, respectively.

Now to obtain the matching conditions for the wave functions, we follow
the procedure used to obtain the conditions for a metal/superconductor junction

in a lattice model by Pairor and Walker (Pairor and Walker, 2002).

4.2 Boundary Conditions

Here, we describe how we obtain the matching conditions for electron in at
the interface of a metal and a Rashba system in our lattice model. These conditions
are obtained by considering the Hamiltonian, which described the junction. We
use the lattice network to present our junction as shown in Figure 4.1. On each

side and at the interface, we have the following set of the equations

EUpy(n < =2,m) = ey Uy (n,m) —tn[Uy(n £ 1,m) + Upy(n,m£1)], (4.7)

EUM(TZ = —1,m) = eMUM(n,m) — tN[UM(—Z,m) -+ UR(O,m)] — tNUM(—l,m + 1),

(4.8)
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EUR(TL = O,m) = (GRS — V)UR(O,m) — tNUM(—l,m) — tRUR(l,m)
— tRUR(O, m =+ 1) + thSOUR(l,m)

+ 10,tso[Ur(0,m + 1) — Ur(0,m — 1)], (4.9)

EUgr(n = 1,m) = egsUr(n,m) — tg[Ur(n £ 1,m) + Ur(n,m £+ 1)]
+ 0,t5Ur(n +1,m) — Ug(n — 1,m)]

+i0,tso|Ur(n, m 4+ 1) — Ur(n,m — 1)], (4.10)

where n and m are the column and low indices as shown in the Figure 4.1, o, is
the spin Pauli matric. Uy (p) is the eigenstate of a metal in the left side (the RSOC
in the right hand side), ¢ty and ¢ are the hopping energy in nearest-neighbor of
metal and non spin splitting in Rashba system, respectively and ¢, is the hopping

energy for Rashba spin orbit coupling. €1, €5 are the energy at on-site for metal and

Vo Vr
Rashba system, respectively. V = is the scattering potential at the

Ve Vo
interface. The diagonal elements of V, Vj = V4 = V|| are non-spin-flip scattering

potentials, and the off-diagonal elements are denoted by Vi = V; = V|4, which
are the spin-flip scattering potentials.
With the translational symmetry along the interface, the wave functions of

both side can be written in the following form.
Un,m) = ™% (n), (4.11)

where —m/a < k, < 7/a. So, the 2D equations above are reduced to the following

1D equations.

EUY (n < =2) = eqyUb (n) — ty Uy (n £ 1) — 2tycos(kya)Urt (n),  (4.12)

EUY(n = —1) = e Ut (=1) — ty[US(—2) + UL (0)] — 2t ycos(k,a)Ust (—1),

(4.13)
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EUR (n=0) = (eps — V)U (0) — tn[Ups(~1) — trUg" (1))

— 2t peos(kya) U (0) £ opt U (1) — 042t sin(kya)Urr (0), (4.14)
EUY(n = 1) = eqsUp (n) — trUp (n % 1) — 2t geos(k.a) ULz (n)
+ 0utoo[UN (n 4 1) — U (n — 1)] — 0,2t sin(k,a)Ur (n).  (4.15)

Eq.(4.12) and Eq.(4.15) describe the bulk states of the metal and the
Rashba system respectively. Eq.(4.13) and Eq.(4.14) provide us with the matching

conditions between Uﬁ}’(n) and U;;y (n). First Eq.(4.13) gives:

EUM(=1) = enUy} (1) = ty[Upf (=2) + Uy (0)] — 2tncos(kya)Upt (—1)

+ U (0) — 2t ycos(kya) ULt (—1). (4.16)

The sum of the underline terms is equal to £ Ufj’(—l). Therefore,
ky ky
Ug (0) = Un (0) =0, (4.17)
Eq.(4.14) gives:

EUM(0) = egsUp (0) — tn UL (—1) + tnUL (—1) — tgUR (—1)

— VU (0) 4+ VU (0) — 2t geos(kya)Un (0) £ oato[UR (1) — UL (—1)]

— 0,240 sin(kya)Up (0). (4.18)

The sum of the underline terms is equal to E U}];y(O). Therefore,
tnUM (=1) — trUR (—=1) 4+ VoU R (0) T oatsoUp (—1) = 0, (4.19)
which can be written as

tnUnt(—1) — TooUg! (—1) + VU (0) = 0, (4.20)
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where T, =

After substituting the electronic wave functions of both sides by using the
boundary conditions Eq.(4.17) and Eq.(4.20), we obtain the transmission (T') and

reflection (R) probabilities for £ < Eg(k,) as

Ry = |ry|”, (4.21)
Rj, = |rul, (4.22)
trsin(—kla tsosin(—k;a)cos(—kfa
Ty =ty P x (SRR Chajeosthn) ) (g0

sin(g,a) sin(q,a)\/sin?(—k;a) + sin®(k,a)
trsin(k; a tsosin(kla)cos(k, a
T =ty x (om0 Urojeosthon) ) - (499)
sin(g,a) sin(g,a)/sin?(k; a) + sin?(k,a)

for ER1<ky) < E g ERl(ky)a

Rjy = |rpl?, (4.25)
Ry = [ryl, (4.26)
trsin(kla tsosin(kfa)cos(kfa
Tjr = |tje]” x R‘- ks ) : ( 5 Joo! . )2 , (4.27)
sin(gza) sin(gza)+/sin*(kfa) + sin®(k,a)
trsin(k, a tsosin(kfa)cos(k, a
T =ty x (ot (pajosthn) )y 99
sin(q.a) sin(g,a)+/sin’(k; a) + sin(k,a)
and for E > Epo(ky),
Ry = |rjpl, (4.29)
Rjy = |ry [, (4.30)
trsin(kia tsosin(kfa)cos(kta
Ty =iy, x () LoShlbojeotba)l ) g,
sin(g,a) sin(q,a)+/sin?(k}a) + sin®(k,a)
trsin(—k, a) tsosin(—k;fa)cos(—k, a
T R . hraeoslhia) ) g
sin(q,a) sin(q,a)+/sin?(—k; a) + sin?(k,a)

where R, are the reflection probabilities of spin-o states in case j, and T4 are
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the transmission probabilities for the plus and minus branch in case j respectively.
The matching conditions ensure that Ry + R;y + T4 +T;- = 1.

4.3 Electric Current Density and Conductance Formula
The current density flowing across the junction is given by
J=>_enc,, (4.33)
k

where e is the charge on an electron, n. is the carrier density, and v, is the z
component of the group velocity. Changing the summation to an integration, we

have

Ly /d/{im/dkyﬁk'T(E) (f(Ei —eV) = f(Er))

)
= 6([2/:5’29 /d/{: /dklﬁk “T(E)(f(Ex —eV) — f(E)), (4.34)

where f(FE) is the Fermi distribution function,

dk,\?
dky = dk, /1 4.35
H Y + (dky) ) ( )
and
= 4B
(dE/dky)
dF
= (4.36)
| VE |

Substitute Eq.(4.35) and Eq.(4.36) into Eq.(4.34)to obtain

eL L dk:
/ a1+ dk / S TE) (= o)~ (). (457)

The energy dispersion of normal metal is given by

E(k) = ey — 2tycos(kya) — 2tycos(kya). (4.38)
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Consider
‘ Vi | = ﬁ (% + Uy
2ty sin(k,a) t'y sin(kya)
= ——"4/1 —— 4.39
ah \/ N <tN sin(k,a) )’ (439)
thus

@Z)Q - (%)2 (4.40)

The group velocity along x direction can be obtained

1 OF

" T ah ok,
_ tysin(k,a)
r ah

(4.41)

Substitute Eq.(4.39), Eq.(4.40) and Eq.(4.41) into Eq.(4.37) and obtain

e

i) = Gt [k, [ap 1@ -ev) - pE). @)

At zero temperature, thus the conductance is

dj
eQLmLy
IR / dk,T(E). (4.43)

We also consider the spin polarization of conductance (Srisongmuang et al.,
2008) to investigate the spin imbalance that occurs during the current flow on
the metal side. The spin polarization of the conductance P(FE) is defined as the
difference in the number of spin carriers crossing a plane normal to x in unit time,

normalized to the total particle current at energy F,

’

Zqz>07qy (]l‘,T - ]$,\L)

P(E) = 7 . . )
Zqz>0,qy (]J»’,T + ]x,i)

(4.44)

where j,, is the particle current density with spin o. The Z/ indicates that

the summations are over ¢,, ¢, with a specific value of energy E. In metal, this



46

spin polarization of the conductance can be written in terms of the reflection

probabilities as

w/a 2
dk - (—Rnx+ R;
PM(E) _ f—fr/a Yy Z]-l( 3T Ji) (445>

fl{?a dk, 32 (Rj+ + Ryy)

One can see that P(E) depends on the relative difference in the net number of the

carriers with spin up and spin down.

4.4 Results and Discussions

In this section, we show and discuss the result of the transmission probabil-
ities, the conductance spectrum G(FE), and the spin polarization of conductance
P(FE). We emphasize on the effect of the potential barrier height, both non-spin-
flip part and spin-flip part.

The main features of the total transmission probability and the conductance
spectrum at the bottom of the band are not much different to those investigated
by the continuous model. However, because of the nature of the lattice model, we

now too have features around the top of the band to consider.

4.4.1 Transmission Probability

We plot the total transmission probability as a function of energy T'(E, k)
for different values of k, in Figure 4.5. For each value of k,, T'(E, k,) was zero
until the energy reach the lowest energy for that k,. Beyond this point, it increases
with decreasing until it reaches a maximum value at the middle point of the band
for that k,. After that, it decreases and reaches zero at highest energy for that £,,.
For k, # 0, T(E, k,) reveals two kinks near a lowest and highest energy as can be

seen in Figure 4.5(b)-4.5(d). We show the magnified pictures of the two kinks for
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Figure 4.5 Plots of total transmission probability as a function of energy for

different k,a.

k, = 0.02/a and k, = 0.05/a in the insets of Figure 4.6 and Figure 4.7 respectively.
The energy width (AE) of the kink depends on k, as AE = 4t,,sin kya.

Now we break down the transmission probability into two terms T (E, k,)
and T~ (E, k,) as shown in Figure 4.8 and Figure 4.9. It can be seen that for
k, = 0 both of transmission probabilities of plus and minus branch are always
equal. However, when k, is non-zero, the T%(E, k,) and T~ (E, k,) are different
in two particular ranges of the width AFE near the bottom and top of the energy
band. One can see in Figure 4.8 and Figure 4.9 that in the range near the bottom
T*(E,k,) > T~ (E,k,), but near the top of one T*(E, k,) < T~ (E,k,). The en-
ergy range AF corresponds to the energy gap at k, = 0 between the two branches
near the bottom and the top of the Rashba energy band (see in Figure 4.10). This
splitting, caused by the two dimensionality, is similar to the splitting due to mag-

netic field in the previous work by Stieda and Seba’s on the 1D junction of two
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Figure 4.6 Plots of transmission probability as a function of energy for k, =

0.02/a.

Figure 4.7 Plots of transmission probability as

0.05/a.
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2DEG with RSOC (Stfeda and Seba, 2003).
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Figure 4.8 Plots of T"(E, k,) and T~ (E, k,) as a function of energy for k, =

0.02/a near bottom of the Rashba band.
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Figure 4.9 Plots of T"(E, k,) and T (E, k,) as a function of energy for k, =

0.05/a near top of Rashba band.
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Figure 4.10 Sketch of RSOC energy dispersion is split by &, the range of energy

splitting is 4¢,, sin kya.

4.4.2 Differential Conductance

By assuming the energy band of the Rashba system is empty, we use Eq.
(4.43) to calculate the conductance for different values of interfacial scattering
potential at column n = 0. We consider two kinds of scattering: V[ which is
the spin-conserving scattering potential, and V is the spin-flip scattering poten-
tial. All conductance spectra are plotted as a function of energy in the unit of
e?a?/(2m)?.

Figure 4.11 shows the conductance spectra for the voltage range equivalent
to the whole band width of RSOC system, when Vy = 0, Vy = 0.5ty, Vo = 1.0ty
and Vy = 2.0ty. The conductance is zero until the applied voltage reach the
bottom of the Rashba band. It is increased and reached the maximum near the
middle of the band, which appears as two double peaks symmetric in voltage
positions around the middle of the band, and then decreased to zero at the top
of the band. We also zoom the conductance spectra in three regions, i.e., the

voltage near the 1° crossing point, the middle of the band, and near the 2
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Figure 4.11 Plots of conductance spectra as a function of energy for V, = 0 and

Vo = 0.5ty. Vp is zero in these plots.

crossing point. The conductance spectrum was suppressed with increased either
spin-conserved scattering or spin-flip scattering potential as can clearly seen in
Figure 4.12. Unlike in the continuous model, one can see that there is no kink in
the spectrum at the crossing points when either Vi or V; is zero (see Figure 4.12
and Figure 4.13).

For a small value of V (V5 = 0.5ty), the increase in Vg, suppresses the
conductance spectrum. The kinks also appear at the energies corresponding to
the crossing points. The higher the value of V, the more prominent the kinks.
It should also be noted that the kink near the voltage close to the bottom of the
band is dip-like or pointing down, similar to the kink in the conductance spectrum
in the continuous model, whereas the kink near the top of the band is sharp and
pointing upward. The different natures of the kinks reflect the difference in nature

of the electron-like (close to the bottom) and hole-like (close the the top) energy
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Figure 4.12 Magnified plots of conductance spectra as a function of energy for
several values of Vj near the bottom, middle, and top of the band. V% is zero in

these plots.

contours of the energy band.

The effect of the presence of both Vi and Vy can also be seen around
the energy corresponding to the middle of the band, i.e., the double peaks of
conductance spectrum near the maximum point are shifted towards the bottom
of the band. They are no longer symmetric around the middle of the band (see
Figure 4.14). When Vg > 1.0ty, the double peaks are invisible. For high barrier
strength, i.e., Vo = 1.0ty (see Figure 4.15) and Vi = 2.0ty (see Figure 4.16), the
conductance reaches maximum value when of Vp ~ V4.

We also plot of conductance at the five different voltages as a function of
Vo (see Figure 4.18 and Figure 4.17): eV = —10.125t,, (just below the 1° crossing
point), eV = —9.5t, (just above the 1% crossing point), eV = 0 (the middle of

the band), eV = 9.5t,,(just below the 2"® crossing point), and eV = 10.125t,,



53

Conductance

Figure 4.13 Plots of conductance spectra as a function of energy for several values

of Vi and Vj is taken to be zero.
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Figure 4.14 Plots of conductance spectra as a function of energy for several values

of Vr in case of Vi = 0.5ty.
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Figure 4.15 Plots of conductance spectra as a function of energy for several values

of Vr in case of V) = 1.0ty.
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Figure 4.16 Plots of conductance spectra as a function of energy for several values

of Vr in case of Vy = 2.0ty.
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Figure 4.17 Differential conductance at applied voltage eV = —10.125t,, (top
panel) and eV = —9.5t,, (bottom panel) plotted as a function of the barrier

strength V; for different Vi, the maximum conductance is occurred at the value

of Vo ~ Vg.

(just above the 2"¢ crossing point). One can see that for the small value of Vp
the conductance is decreased with Vj as expected. But for Vg is higher than
around 0.3ty, the conductance is surprisingly increased with Vj, until it reaches
its maximum at Vy >~ V. When Vj is more than V, the conductance is suppressed.
The increasing of Vg and Vj values lead to the maximum tunneling conductance
as show in Figure 4.19. It seen that resulting of the slope, the V; is slightly larger

than the V value.
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Figure 4.18 Differential conductance at applied voltage eV = 0 (top panel),
eV = 9.5ts, (middle panel), and eV = 10.125t,, (bottom panel) plotted as a
function of the barrier strength Vj for different Vg, the maximum conductance is

occurred at the value of Vy ~ V5.
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Figure 4.19 Plots of the spin-flip Vr and the spin-conserving V{ scattering values
lead to the maximum tunneling conductance. The square is for the apply voltage
equivalent to the energy around the 1% crossing point and the circle is for the
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Figure 4.20 Differential conductance plotted as a function of t,, for different

values of applied voltages.



o8

The conductance at different values of the applied voltages as a function of
tso is shown in Figure 4.20. One can see that the conductance is increased with t,
for most values of the voltages except those equivalent to the middle of the band.

The different results between the lattice model and the continuous model
can be seen by comparing in the second boundary condition in Eq.(4.20) and the
discontinuity of the slope of the wave function at the interface in the continuous
model. The second term of the right hand side of Eq.(4.46) for the lattice model
is included effect of the nearest-neighbor in the metal side. The corresponding

reduce the potential barrier effects.

T(UR (0) = U (=1)) = tn (Uy; (0) = Upy (=1)) = (V — tx = T)Uy (0) — 265Uyt (1)

m* Ox m Ox

(i Mg 1 Oy )

_ <%—FZ _ ikoi*gy> (0) (4.47)
0 m

4.4.3 Spin Polarization of Conductance

We now investigate the dependence of spin polarization of conductance on
the interface scattering potentials. In Figure 4.21, we plot the spin polarization
of conductance as a function of applied voltage for different values of V}, and set
Ve = 0. When the voltage is equivalent to the energy around the 1% crossing
point of the Rashba energy band, the spin polarization of conductance is negative,
meaning there are more carriers with spin down than spin up. The maximum
magnitude occurs at the crossing point. When the voltage is equivalent to the
energy around the 2" crossing point, the spin polarization of conductance is
also negative, and the maximum magnitude occurs at the crossing point. For eV
around the half-filled level, the spin polarization of conductance is a small value.

The spin polarization of conductance does not depend on V.
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Figure 4.21 Spin polarization of conductance in the metal side plotted as a func-
tion of eV for different values of Vj in case of Vi = 0. The upper panel is for eV
equivalent to the energy around the lower crossing point and lower panel is for eV

equivalent to the energy around the higher crossing point.
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When V5 is non-zero, things are more interesting. The spin polarization of
conductance shows strong dependence on Vg. As can be seen in Figure 4.22, Figure
4.23, and Figure 4.24, the change in sign of the spin polarization can occur, when
Vg is bigger. However, the spin polarization of conductance near the half-filled
band still show weak depend on both Vi and V4.

The spin polarization of conductance as a function of spin-conserving scat-
tering Vp (see Figure 4.25) and a function of spin-flip scattering (see Figure 4.26)
for three apply voltages. At the eV is lower the 1% crossing point and eV is higher
the 2"¢ crossing point, the small increase Vp does not much affect on the spin
polarization of conductance. For eV at the half-filled level, the spin polarization

of conductance is weakly dependent on Vy and V.

4.5 Conclusions

In this chapter, we investigated the particle and spin transport across
metal /Rashba system junction in the lattice model, using a scattering method. We
obtained appropriate matching conditions to calculate the reflection and transmis-
sion probabilities, which were used to obtain the conductance and spin polarization
of conductance of the junction.

The results of these calculation showed us that the conductance spectrum
depends on the barrier potential. Increase in either spin-conserving or spin-flip
scattering generally suppressed the conductance. However, one can enhance it by
increasing the spin-conserving barrier potential in the presence of spin-flip scat-
tering potential.

The conductance also depends on the Rashba coupling strength. The cou-
pling strength enhances the conductance at the voltages equivalent to the energy

around the two crossing points in the Rashba energy band, but slightly suppresses
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the conductance at the voltages equivalent to the energy around the middle of the
band.

As for spin polarization of conductance in the absence of spin-flip scattering
potential, the maximum magnitude occurs at the voltages equivalent to the two
crossing points in the Rashba energy band. The spin polarization of conductance
does not strongly depend on the spin-conserving interface scattering potential, but
strongly depend on the spin-flip one. In the voltage region, where the spin polar-
ization is negative in the absence of spin-conserving interface scattering potential,
the increase in the spin-flip interface scattering potential can flip the polarization

of conductance to positive sign.
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Figure 4.22 Spin polarization of conductance in the metal side plotted as a func-
tion of eV for different values of Vi in case of Vj = 0. (a) is for eV equivalent to
the energy around the 1% crossing point, (b) is for eV equivalent to the energy

around half-filled level, and (c) is for eV equivalent to the energy around the 2"¢

crossing point.
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Figure 4.23 Spin polarization of conductance in the metal side plotted as a func-
tion of eV for different values of Vi in case of Vi = 0.5ty. (a) is for eV equivalent
to the energy around the 1% crossing point, (b) is for eV equivalent to the energy
around half-filled level, and (c) is for eV equivalent to the energy around the 2"¢

crossing point.
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Figure 4.24 Spin polarization of conductance in the metal side plotted as a func-
tion of eV for different values of Vi in case of Vi = 2.0ty. (a) is for eV equivalent
to the energy around the 1% crossing point, (b) is for eV equivalent to the energy

around half-filled level, and (c) is for eV equivalent to the energy around the 2

crossing point.
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Figure 4.25 Spin polarization of conductance in the metal side plotted as a func-
tion of spin-conserving scattering V; for different values of V. (a) is for eV equiv-
alent to the energy below the 1% crossing point, (b) is for eV equivalent to the
ond

energy at half-filled level, and (c) is for eV equivalent to the energy above the

crossing point.
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Figure 4.26 Spin polarization of conductance in the metal side plotted as a func-
tion of spin-flip scattering Vp for different values of V4. (a) is for eV equivalent to
the energy below the 1% crossing point, (b) is for eV equivalent to the energy at
half-filled level, and (c) is for eV equivalent to the energy above the 2" crossing

point.



CHAPTER V

CONCLUSIONS

This thesis is a theoretical investigation of particle and spin transport across
a 2D heterostructure consisting of a metal and a 2DEG with Rashba spin-orbit
coupling. By employing a scattering method in a continuous model and a lattice
model, we calculate the conductance and spin polarization of conductance, and
consider the influence of the scattering barrier potential and the spin-orbit coupling
strength on such physical properties of the junction. In the lattice model, the
appropriate matching conditions, used in the scattering method to calculate the
transmission and reflection probabilities and hence the conductance, are developed.

In both models, it is shown that the conductance spectrum of the junction
provides us the method to determine the Rashba energy, and both spin-conserved
and spin-flip interfacial scattering strongly affect the conductance spectra. An
increase in either spin-conserving or spin-flip scattering generally suppressed the
conductance. However, one can enhance it by increasing the spin-conserving
barrier potential in the presence of spin-flip scattering potential. It also is found
that the conductance at zero voltage is affected by the carrier density. There
is a kink in the relationship between the conductance and the carrier density,
where the carrier density of the Rashba system is at the level of the crossing
point. The conductance also depends on the Rashba coupling strength. The
coupling strength enhances the conductance at the voltages equivalent to the

energy around the crossing points in the Rashba energy band.
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The attachment to a Rashba system affects the spin balance in the metal.
In the absence of spin-flip scattering potential, the maximum magnitude occurs at
the voltages equivalent to the crossing points in the Rashba energy band. The spin
polarization of conductance does not strongly depend on the spin-conserving inter-
face scattering potential, but strongly depend on the spin-flip one. In the voltage
region where the spin polarization is negative in the absence of spin-conserving
interface scattering potential, the increase in the spin-flip interface scattering po-
tential can flip the polarization of conductance to positive sign.

It should be emphasized that the results in this thesis obtained by setting
the temperature of the system to be zero. The finite temperature is expected
to smooth out sharp features, however, as long as the temperature is not too
high, the features should still be noticeable. The positions of the features in the
conductance spectrum are not affected by finite temperature. It should also be
pointed out that in the lattice model, only the nearest neighbor hopping integrals of
a square lattice are considered to describe the electronic properties of the junction.
Including the next nearest neighbor terms will not change the number of van Hove
singularities in the DOS of the the system but may change the position in the
energy spectrum. This means one will obtain the same main results as nearest
neighbor approximation.

Experimentally, angle-resolved photoelectron spectroscopy can be used to
measure the Rashba energy of a semiconductor-based heterostructure that in-
cludes, for example, InAs (Grundler, 2000; Matsuyama et al., 2000), InGaAs
(Koga et al., 2002; Fujii et al., 2002), InSb (Khodaparast et al., 2004a; Kho-
daparast et al., 2004b), and in surface alloys such as Li/W(110), Pb/Ag(111), and
Bi/Ag(111) (Hirahara et al., 2006; Ast et al., 2007; Ast et al., 2008; Pacilé et al.,

2006). The conductance spectrum measurements of these systems are still rare.
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Fundamental understanding of spin current is important to application of
spintronic devices. As found in this thesis, the maximum of spin polarization of
conductance of metal/Rashba system junction for an applied voltage equivalent
to the energy at the crossing point can be tuned by the strength of RSOC. This
may lead to an efficient method to design a spin-filter device in the absence of
ferromagnetic materials or without applying external magnetic field.

In the future, we expect further calculation of the spin polarization on the
RSOC system, effect of the surface orientation of RSOC system, the effect of the
RSOC in graphene, and the transport properties in a double junction with the

RSOC system.
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APPENDIX A
HAMILTONIAN AND EIGENENERGY OF
THE RSOC SYSTEM IN A CONTINUOUS

MODEL

The one-electron Hamiltonian with RSOC is written as

2
AL L
= i + h(cr X p)-Z. (A.1)

Where the first term is the kinetic energy with the electron effective mass m*. The
second is the RSOC term, the electron propagate with momentum p = Rk in an
electric field (point towards the z-axis). ¢ denote the Pauli matrix vector. We

rewrite the Rashba Hmiltonian in the form;

0 0 2
Hrs=A| o, Oy O (A.2)
ke ky ke
0 ik, —ky
= A . (A.3)
iky+k, 0

The full wave function of an electron can be written as:

o, . . a
D(R) = eherribey | T (A4)
a2

To determine the eigenvalues of the Hamiltonian, one has to solve the sys-

tem of homogeneous equation, the determinant of the coefficient has to be zero,

det(Hy — EI) =0 (A.5)



79

or

Eo— By ik, — k,
’ ! —0. (A.6)
ik, + ko By — B

Hence, the eigenenergies are

E* = Ey £\ /K2 + k2, (A7)

a
where Ey = gjﬂ—kQ We can now find the phase ratio of the spin function '
a2
First, consider the state with F = E" and obtain
—Ek2+ k2 Ak, — k) aq
v ' =0, (A.8)
—A(iky + ko) —y/kZ+ k] s
aq Zk’y — kx
—_— = ——. A9
az kit k; (4.9)
After normalizing it, we get
+ 7 1 1 tkyx+ikyy
Vrs(k) = E Nz € : (A.10)
iky—Fz
Similarly, we obtain for the state with £ = E_,
- 1 1 . .
Y~ RS(k) = — etkzrtikyy (A.11)

iky—Fkz



APPENDIX B
HAMILTONIAN AND EIGENENERGY OF

THE RSOC SYSTEM IN A LATTICE MODEL

The following show details of how it obtain the energy dispersion relation
and eigenstate of a Rashba system in the lattice model. Below is the Hamiltonian
of a Rashba system in a square lattice with up to nearest neighbour interactions:

HRS = Z(Snma - ,U)Clmacnma — 1R Z(Cl-s—l,maonma + Cl,mﬂ,acnma + H'C-)

nmao nmao

—tw Y {C:LH,W' (i0y) g Crome — O;mﬂp, (i02) 5o Cume + H.C.}.  (B.1)

’
nmoo

The subscripts n and m indicate the column and row indices of the square lattice.

Cf

nmo

(Cpmeo) is the creation (annihilation) operator of an electron at indices (nm)
of the lattice site with spin o,&,,,, is the on-site energy; tg = h*/2m*a is the
nearest neighbour hopping energy for a lattice constant a and electronic effective
mass m*, and p is the chemical potential. « is the Rashba spin-coupling parameter.
O4(y) is the Pauli’s matrix and ¢,, = o/2a denotes the RSOC strength in the lattice
representation. To start with considering the second term of the Hamiltonian.

Hy, = ~tr Y {(CloCrmsro + HCy) + (ClnCoiime + HCL) ). (B2)

nmao

We can transform into the momentum space by using the Fourier transform

1 T
Crimo = —= Y  Crpoe'FH. B.3
5 2 G (B3



81
We first consider the component on the x direction and obtain

tr » 0
Hipo=—— Z (Ck maCk;,erl,ae than | gitkan H.C.y)

Ny
nmo'kzkz
(Climmack;maeiikzn ’ eik;(n+1) + HOI)
t . /
= ]\? (Clizmack;,m—i—l,ae_ln(kz_kz) + HCy)
nmakxkz
(O o O o™ " HeFe)ee 4 H.C ). (B.4)
Using the fact that
1 —ian(x—x,)/N
N2ue = b, (B.5)

n

thus,

Hipo=—tr »_{(C} .0Chrmire + HC) + (CL ., Chomee™ + H.C.,)},

mkyzo
(B.6)
_ 2mx,
where k, = P
Similarly, we also obtain
HtR,y - _FR Z kxkya kq;kl e lkymezky(erl) +HC. )
mkakykyo
+ (C’,IzkyaCkzk/ae_ikymeikymeik” +H.C,)} (B.7)
Z { k kyo kzk o€ m(ky_ky)eiky + HOZJ)
mkzkyk o

+ (Clogyo Cropg g™ B e 4 [.C.,)} (B.8)
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Thus,

HtR = HtR,CB + HtR,y

= —tR Z {CkayaCkzkya(eiky + e*iky) + (Cl:r:,ckyackzkya<€ikz + eiikz)}

kekyo
= —2tg Y {CL . ,Choryo(cos(kzao) + cos(kyao))}
kekyo
= > {CL1ekChakyo ) (B.9)
kekyo
where €, = —2tp(cos(k,ao) + cos(kyap)) and k, = Zﬁ;

Now consider the second term of the Hamiltonian. We can rewrite it by

_ . 0 1 0 —i
using the relation o, = and o, = . Thus,
1 0 t 0

Hso = _tso Z {(_CJLJrl,maCnm& + C;errl,m&CnmU + HCQ)

nmoao

- Z-(C(:’rz,7’rz+1,cfCY?W”«& Y C’:rz,m—l—l,&CnmU + HCZ/)}7 (BlO)

where & is the opposite spin direction. After repeating the similar procedure used
for the first term of the Hamiltonian, we obtain

Huy = ~tu D {Ch 1o Cruo(€ — ) i(eh 7))

00kyky

Oyt (%0 — ¢70) — (eihe — =ik

= 2w > Cl 4 rsChikyor(Fisin(kza) — sin(kyao)) (B.11)
0Gkyky
= Z C/IzkyaﬁEsUkamky057 (B12)
ockyky

where E97 = ETHH 5 2, (i sin(k,ao) F sin(kyao)).

The Hamiltonian in momentum space is therefore

Hps =Y Cl 1 oBinCribo + Y Cl oy 0EW Chinyos, (B.13)

kykyo kekyoo



where B, = €0 + €, = €9 — 2t(cos(kzag) + cos(kyao)).
To find the eigenstates with eigenenergies E at lattice index (n,m), we

write

A ) ai
’(/)(’I’L, m) — ezk’xan—i—zkyam ’ (B14)
a2

and solve the eigen equation Hrgy = E. This equation gives

det(Hpst) — EI) =0 (B.15)
or
E, —F —2tgo(isink,a — sin kya)
" l=o. (B.16)
2t5o(isin kya + sin kya) E,, — FE
Hence, the eigenenergies are
E* = By, + 2tgon/sin® kya + sin? kya. (B.17)
ai
We can now obtain the corresponding spin part . First, consider the state
a2
with £ = E* and obtain
—2tor/sin kya + sin® k,a 2t (1sinkya + sin kya aq
v . ) =0, (B.18)
—2tso(isinkya —sinkya)  —2t,, \/sin2 k,a + sin® kya as
ar _ (isinkga +sinkya) (B.19)

as \/sin2 k.a + sin® kya'
After normalizing it, we get

(isin kza+sinkya)
wgs<n’ m) — i \/Sin2 kya+sin? kya eikzan-l—ik’yam. <B20)

V2 1

Similarly, we obtain for the state with £ = F_|

(isin kya+sinkya)

1 T - ) )
wiRS(n7 m) - \/sm2 kya+sin? kya ezkzan+zkyam. <B21)

V2 1
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