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บทคัดย่อ
ชุดโครงการวิจัยนี้ประสบความสำเร็จในการศึกษาอะตอม 𝑝𝐷 พายออเนียม และเคออนิก

ไฮโดรเจน โดยวิธีทางฟังก์ชันสเตอร์เมียน กล่าวคือคำนวณพลังงานยึดเหนี่ยว ความกว้างการ
สลายตัวและโดยเฉพาะฟังก์ชันคลื่นได้อย่างแม่นยำ รายละเอียดดังนี้

งานวิจัยในส่วนของอะตอม 𝑝𝐷 ได้ทำการคำนวณการเลื่อนพลังงานและความกว้างการ
สลายตัวของอะตอม 𝑝𝐷 ที่สถานะ 1𝑠 และ 2𝑝 ด้วยศักย์แบบ 𝑁𝑁 และได้ผลสอดคล้อง
กับการทดลองเป็นอย่างดี ยกเว้นการเลื่อนพลังงานของสถานะ 2𝑝 ซึ่งผลการทดลองแสดงถึง
ระดับพลังงานเฉลี่ยเลื่อนขึ้นเนื่องจากผลของอันตรกิริยาอย่างแรงเช่นเดียวกันกับสถานะ 1𝑠 แต่
ผลการคำนวณที่ได้พบว่าระดับพลังงานเฉลี่ยมีการเลื่อนลง ซึ่งหมายถึงผลของอันตรกิริยาอย่าง
แรงของ 𝑁𝑁 ส่งผลกระทบอย่างมากต่อการเลื่อนพลังงานของสถานะ 2𝑝 นั่นคืออะตอม 𝑝𝐷 จะ
เป็นเครื่องมือที่สำคัญที่ใช้ปรับแต่งศักย์แบบ 𝑁𝑁 โดยเฉพาะที่พลังงานศูนย์

งานวิจัยในส่วนของพายออเนียม ได้ทำการศึกษาในอันตรกิริยาอย่างแรงหลากหลายรูป
แบบ พบว่าอันตรกิริยาในแบบจำลองการแลกเปลี่ยนเมซอนชนิด 𝜖 ที่คู่ควบแบบสเกลาร์ ไม่
เหมาะสมกับระบบพายออเนียม ซึ่งมีลักษณะเฉพาะต่อการคู่ควบแบบเกรเดียนต์ของการแลก
เปลี่ยนเมซอนชนิด 𝜖 และคู่ควบอย่างอ่อนต่อการแลกเปลี่ยนเมซอนชนิด 𝜌 ใน 𝑡-channel ทั้งนี้
อาจจะใช้ศักย์พายออน-พายออนจากทฤษฎีไคแรลเพอร์เทอร์เบชันซึ่งสามารถให้ผลคำนวณ
สอดคล้องกับผลการทดลองการกระเจิงของพายออนกับพายออนและพายออเนียม และสามารถ
ประยุกต์ใช้กับระบบสหพายออนเช่นแก๊สพายออนที่เกิดจากการชนของไอออนหนักที่พลังงาน
สูง

สำหรับงานวิจัยในส่วนของเคออนิกไฮโดรเจน ได้ทำการคำนวณการเลื่อนพลังงาน ความ
กว้างการสลายตัวและฟังก์ชันคลื่นของเคออนิกไฮโดรเจนโดยใช้ศักย์ในหลากหลายรูปแบบ
พบว่าผลการคำนวณความกว้างการสลายตัวด้วยศักย์แบบ 𝐾𝑁 เท่านั้นที่ใกล้เคียงกับผลการ
ทดลอง DEAR อย่างไรก็ดีผลการคำนวณด้วยศักย์แบบ 𝐾𝑁 เพียงอย่างเดียว และผลการคำนวณ
ด้วยศักย์ที่มีพื้นฐานจากสมมาตรไคแรล SU(3) ต่างใกล้เคียงกับผลการทดลองของ KEK ทั้งนี้
ผลการทดลองของ DEAR และ KEK ค่อนข้างขัดแย้งกัน จึงเป็นเรื่องยากที่จะระบุศักย์ที่เหมาะ
สมได้ ซึ่งต้องรอผลการทดลองของการทดลอง SIDDHARTA ที่จะให้ผลการตรวจวัดเคออนิก
ไฮโดรเจนที่แม่นยำกว่านี้
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ABSTRACT IN ENGLISH

pD atoms, piomium and kaonic hydrogen are successfully studied in the work in the Sturmian

function approach, with binding energies, decay widths and especially wave functions evaluated

accurately.

The energy shifts and decay widths of the 1s and 2p pD atomic states are calculated

with NN potentials which reproduce NN scattering data well. Our theoretical predictions

are not in line with experimental data for the energy shifts of the 2p pD atomic states. The

experimental data show that the averaged energy level of the 2p pD atoms is pushed up by the

strong interaction, the same as for the 1s pD atoms, but the theoretical results uniquely show

the averaged energy level shifting down. The investigation of the pD atoms may provide a good

platform for refining the NN interaction, especially at zero energy since the energy shifts of the

2p pD atomic states are very sensitive to the NN strong interactions.

The pionium is studied in various strong interactions. It is found that the interaction in

the meson-exchange model with the scaler coupling for the "-exchange is unreasonably strong for

the pionium system. The pionium system favors the gradient coupling for the "-exchange, and

demands a much weaker coupling for the t-channel ½-exchange. A practical pion-pion potential

may be derived from the chiral perturbation theory, which can reproduce both the pionium and

pion-pion scattering data and is applicable to other multi-pion systems, for example, the pion

gas probably produced in high-energy heavy-ion collisions.

The energy shift, decay width and wave function of the kaonic hydrogen are evaluated

with various potentials. We found that expect for the decay width derived the phenomenological

KN potential, all other theoretical values are much larger than the DEAR data. However, the

theoretical results for both the pure phenomenological potential and the chiral SU(3) symmetry

based potentials are fairly consistent with the KEK measurements, considering the large error of

the KEK values of the 1s kaonic hydrogen decay width. At this moment, however, it is difficult

to conclude whether the equivalent potentials based on chiral SU(3) models are reasonable since

the KEK and DEAR data are so inconsistent each other. One may have to wait for the more

accurate measurement of the 1s kaonic hydrogen by the SIDDHARTA collaboration.
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Chapter 1

Introduction

Exotic atoms are Coulomb bound states which do not exist in the nature but produced in

laboratory. Among them are, for example, positronium (electron-position bound states), pro-

tonium (proton-antiproton atomic states), pionium (pion-pion atomic states), muonic atoms

(muon-nucleus atomic states), pionic atoms (pion-nucleus atomic states), and kaonic atoms

(kaon-nucleus atomic states). The investigation of exotic atoms has opened up new windows

in nuclear and particle physics. These atomic states allow one to study the interference of QED

and QCD on the one hand, and the strong interaction (QCD) at zero-energy, with unprecedented

sensitivity, on the other hand. In the last three decades muonic and pionic atoms have been the

focus of much theoretical and experimental efforts at various pion factories such as LAMPF, PSI,

and TRIUMF. The investigation of antiprotonic atoms, pionium and kaonic atoms has recently

become of particular interest as more and more experimental data have been getting available.

In principle, one may solve an eigenstate problem through expanding the wave function

in any complete set of orthonormal functions. The complete set of harmonic oscillator wave

functions is widely applied to bound state problems since they have analytical forms both in

coordinate and momentum spaces. Bound state problems with only the strong interaction or

only the Coulomb force can be well solved in the regime of harmonic oscillator wave functions, by

choosing the oscillator length being of order 1 fm or 100 fm, respectively. Detailed investigations

[1], however, have shown that the harmonic oscillator wave function approach fails to describe

NN atomic states which are dominated by the long-ranged Coulomb force and influenced by

the short-ranged strong interaction. The reason is that two very different oscillator lengths are

involved to describe the NN deep bound state and the atomic state.

The NN atomic problem was studied accurately in Ref. [2] the first time, employing the

1

 

 

 

 

 

 

 

 



CHAPTER 1. INTRODUCTION 2

Sturmian function approach, to account for both the strong sℎort range nuclear potential (local

and non-local) and the long range Coulomb force and provides directly the wave function of the

protonium system and of the NN deep bound states with complex eigenvalues E = ER − iΓ2 . In

this work we employ the same numerical approach to investigate antoprotonic atoms, pionium

and kaonic atoms.

The report is arranged as follows: In Chapter II we briefly discuss the main mathematical

method, the Sturmian function approach which is applied to our evaluation of various exotic

atoms. Antoprotonic atoms, pionium and kaonic atoms are respectively studied in Chapter III,

IV, and V. Discussion and conclusions are given in Chapter VI.

 

 

 

 

 

 

 

 



Chapter 2

Complete set of Sturmian

Functions

The Sturmian function method was first used in atomic physics to evaluate the binding energy

and wave function of atoms [3, 4]. It was pointed out that the method is much more powerful than

the approach using harmonic oscillator and hydrogen wave functions. Subsequently, the method

was applied to various physical problems such as electromagnetic collisions [5], binding energies of

nuclei [6, 7] and bound and resonant states in special potentials [8, 9]. The Sturmian functions are

very similar to the hydrogen wave functions, and are, therefore, also named Coulomb-Sturmian

functions. In coordinate space the Sturmians Snl(r), which are used in the present work, satisfy

the second order differential equation [5]

(
d2

dr2
− l(l + 1)

r2
+

2b(n+ l + 1)

r
− b2

)
Snl(r) = 0 . (2.1)

By solving Eq. (2.1), one finds

Snl(r) =

[
n!

(n+ 2l + 1)!

] 1
2

(2br)l+1exp(−br)L2l+1
n (2br) , (2.2)

where L2l+1
n (x) are associated Laguerre polynomials defined as

Lk
n(x) = (−1)k

dk

dxk
[Ln+k(x)] (2.3)

3

 

 

 

 

 

 

 

 



CHAPTER 2. COMPLETE SET OF STURMIAN FUNCTIONS 4

that is

L2l+1
n (x) =

n∑
m=0

(−1)m
(n+ 2l + 1)!

(n−m)!(2l + 1 +m)!m!
xm (2.4)

The Sturmians are orthogonal and form a complete set with respect to the weight function 1/r,

which follows from the corresponding 1/r potential term in Eq. (2.1),

∫ ∞

0

r2 dr
Snl(r)

r

1

r

Sn′l(r)

r
= ±nn′ . (2.5)

Thus radial functions Rl(r) can be expanded in the complete set of the Sturmian functions

Snl(r),

Rl(r) =
∑
n

anl
Snl(r)

r
. (2.6)

The Sturmian functions can be defined in momentum space as

Snlm(p⃗) ≡ Snl(p)Ylm(µp, Áp)

=
1

(2¼)3/2

∫
dr dΩSnl(r)Ylm(µ, Á)e−ip⃗⋅r⃗ (2.7)

One can derive the momentum form analytically

Snl(p) =
[
24l+3 (n+l+1)n! (l!)2

b (n+2l+1)!

]1/2

⋅ (p/b)l

[(p/b)2+1]l+1C
l+1
n

(
(p/b)2−1
(p/b)2+1

)
(2.8)

where Cs
t (x) are the Gegenbauer polynomials.

As the Sturmians have analytical forms in momentum space, one is allowed to deal with

strong interactions in momentum space with the complete set of the Sturmians as easily as

with the set of the harmonic oscillator wave functions. The matrix elements of the Coulomb

interaction as well as the kinetic term can be evaluated analytically according to Eq. (2.1) and

Eq. (2.5).

Because almost all bound-state hydrogentic wave functions are close to zero energy, the

innermost zeros of the functions are insensitive to the principle quantum number. This accounts

for that the bound hydrogen functions do not form a complete set; the continuum is needed to

analyze the region between the origin and the limiting first zero. Unlike hydrogen functions, the

first node of the Sturmian functions continues to move closer to the origin with increasing the

principle number n. This is the key point why a short-ranged nuclear force can easily be taken

 

 

 

 

 

 

 

 



CHAPTER 2. COMPLETE SET OF STURMIAN FUNCTIONS 5

into account for exotic atom problems by using complete sets of the Sturmian functions.

The parameter b is the length scale entering the Sturmian functions in eqs. (2.1) and

(2.2), in the same way as the corresponding parameter enters the harmonic oscillator functions.

For NN (nucleon-antinucleon) deep bound states, for example, one should use 1/b of order 1

fm while the atomic states without strong interactions require 1/b of order 102 fm. However,

for protonium accounting for both the strong interaction and the Coulomb force, one must use

a 1/b between the two values used for the above cases. Using a complete basis of, for example,

200 Sturmian functions (100 for the L = J − 1 wave, and another 100 for the L = J + 1) with

1/b = 5−500 fm, one can precisely reproduce the analytical 1s and 2p wave functions of the NN

system subject to only the Coulomb interaction. Using the same basis with 1/b = 0.1 − 30 fm,

the wave functions of NN deep bound states can be precisely evaluated. The NN deep bound

states can be evaluated in the complete set of the harmonic oscillator wave functions, and also

in the complete set of Sturmian functions with a more suitable length parameter, for example

1/b = 1 fm. It is found that a length parameter 1/b around 20 fm is suitable for the protonium

problem.

We have compared our numerical method with the traditionally used method, namely

the Numerov approach [10], applied to the NN atomic problem in for example the Kohno-Weise

potential. The binding energies and widths presented in Ref. [10] for the states 1S0,
3P0,

3S1 and

3SD1 are well reproduced in the Sturmian function approach. Wave functions for these states are

also compared in the two approaches. It is found that at short distance the outputs in the two

approaches are quite consistent, and that the discrepancies between the wave functions evaluated

in the two methods become more and more obvious as the relative distance between nucleon and

antinucleon increases, especially the imaginary part of the 1S0 and 3S1 wave functions.

Finally, it should be pointed out that the Numerov method can not be applied to a non-

local potential, for example the Bonn potential which is given in momentum space, and it is not

easy to handle atomic states with higher angular momentum [11], for example the state 3PF2.

Therefore it is essential to use a precise numerical method, applied not only to local but also

to non-local potentials, to handle the NN atomic state problem from a more general point of

view. In principle, there is no limit to the accuracy in the evaluation of the NN atomic states

in the Sturmian function approach. One is allowed to use larger and larger complete bases of

the Sturmian functions until the theoretical results converge. And the NN atomic states with

higher angular momenta can be easily handled in the approach.

 

 

 

 

 

 

 

 



Chapter 3

Protonic Atoms

The simplest antiprotonic atom is the antiprotonic hydrogen atom known as protonium. In

recent years several experiments have been carried out at the low-energy antiproton ring LEAR

at CERN to study the properties of protonium. In these experiments low energetic antiprotons

are captured into the Coulomb field of the proton via Auger electron emission, after deceleration

to a kinetic energy of a few eV [12]. In the case of hydrogen, p are captured into orbits of

np ≈ 40 and cascade rapidly to the 1s and 2p levels (by X-ray emission), from which the pp

system annihilates mostly into multi-meson final states (occasionally those multi-meson states

are observed to be correlated via ¼f2, ¼¼f2 etc). The strong interaction shifts the Coulombic

binding energies of the 1s and 2p states and adds a finite width describing the annihilation from

this state. For a pp atom the purely Coulombic 1s Bohr radius is calculated to be 57.6 fm with

a binding energy of E1s = 12.49 keV. The electromagnetic energies for the Lyman K®(2p → 1s),

Balmer L®(3d → 2p) and Paschen M®(4f → 3d) transitions have been calculated; they are

9.367, 1.735 and 0.607 keV, respectively. The strong interaction splits the 1s state into 1S0

and 3S1, and the 2p state into 3P0,
3P2,

1P1 and 3P1. In principle, these energy levels can be

determined by measuring the emitted X-rays in the electromagnetic transitions. It is, however,

extremely difficult to measure such small energy splittings (less than 0.5 keV). Therefore, the

first experiments [13] delivered only spin-averaged data, since the experimental resolution was

not sufficient to separate the transitions to the 1S0 and 3S1 levels. Recent measurements [14]

at LEAR yielded the first information on the spin dependence of the 1s protonium energy shift

and width.

Theoretical interest in the properties of protonium arose long before the first experiments

were performed. Bryan and Phillips [15] first studied the scattering lengths of the pp annihilation
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CHAPTER 3. PROTONIC ATOMS 7

at rest in their model of NN interaction. From the scattering lengths, the energy shifts and

widths of NN atoms can be derived via Truemans’ formula [16]. Later, the energy shift and

width of protonium states were investigated by other groups using the either original Truemans’

formula [17, 18] or an improved Truemans’ approach [19], or a WKB approximation [20] or an

iteration technique which, however, neglected the nn component [21]. More accurate studies of

the protonium properties were carried out in the matrix Numerov algorithm [10, 22]. All these

theoretical predictions for the energy shifts and widths of protonium states are consistent with

available experimental data. In order to quantitatively evaluate the photon and pion emission

in the reaction of protonium decay to NN deep bound states, Dover et al. [23] explicitly worked

out the wave function of the NN 1S0 and 3S1 atomic states in the Numerov approach. In their

calculation, the coupling of the 3D1 and 3S1 states is neglected. Using the numerical method

developed in Ref. [10], they recalculate, in a later work [24], the wave functions of NN atomic

states with the tensor coupling included. However, the wave function of NN atomic states for

non-local NN potentials has not yet been evaluated in an accurate numerical method which

takes into account the two length scales involved, the pp and nn component coupling and the

tensor coupling of the nuclear force.

The NN atomic problem was studied accurately in Ref. [2] the first time, employing the

Sturmian function approach, to account for both the strong sℎort range nuclear potential (local

and non-local) and the long range Coulomb force and provides directly the wave function of the

protonium system and of the NN deep bound states with complex eigenvalues E = ER − iΓ2 .

The second simplest antiprotonic atom is the antiprotonic deuteron atom pD, consisting

of an antiproton and a deuteron bound mainly by the Coulomb interaction but distorted by the

short range strong interaction. The study of the pD atom is much later and less successful than

for other exotic atoms like the protonium and pionium. Experiments were carried out at LEAR

just in very recent years to study the properties of the pD atom [25, 26]. Even prior to the

experiments some theoretical works [27, 28, 29] had been carried out to study the pD atomic

states in simplified pD interactions. Recently, a theoretical work [30] proposed a mechanism

explaining the unexpected behavior, of the scattering lengths of NN and pD system, that the

imaginary part of the scattering length does not increase with the size of the nucleus.

In the theoretical sector, one needs to overcome at least two difficulties in the study of

the pD atom. First, the interaction between the antiproton and the deuteron core should be

derived from realistic NN interactions, for example, the Paris NN potentials [31, 32, 33], the

Dover-Richard NN potentials I (DR1) and II (DR2) [34, 35], and the Kohno-Weise NN potential
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[36]. Even if a reliable pD interaction is in hands, the accurate evaluation of the energy shifts

and decay widths (stemming for the strong pD interactions) and especially of the nuclear force

distorted wave function of the atom is still a challenge. It should be pointed out that the methods

employed in the works [27, 28, 29] are not accurate enough for evaluating the wave functions of

the pD atoms.

3.1 Dynamical Equation for NN Atomic States

A correct treatment of NN atomic states must include the coupling of the proton-antiproton (pp)

and neutron-antineutron (nn) configurations. We define the Hilbert spaces of proton-antiproton

and neutron-antineutron as P1 and P2 spaces, respectively. The Hilbert space of two- and three-

meson channels is defined as Q space. The corresponding projection operators P1, P2 and Q

satisfy the relation:

P1 + P2 +Q = 1 , (3.1)

P1P2 = P2P1 = 0 , (3.2)

P1Q = QP1 = 0 , (3.3)

P2Q = QP2 = 0 . (3.4)

The Hamilton operator of the full coupled-channel problem is given by H with the corresponding

wave function ∣Ã⟩ defined in the complete Hilbert space. Analogous to the procedure of Chapter

3, we eliminate the two- and three-meson channels resulting in the coupled set of equations for

the pp and nn wave function:

(E − P1HP1)P1 ∣ Ã ⟩ = P1HQGQHP1 P1 ∣ Ã ⟩

+ P1HP2 P2 ∣ Ã ⟩+ P1HQGQHP2 P2 ∣ Ã ⟩ (3.5)

(E − P2HP2)P2 ∣ Ã ⟩ = P2HQGQHP2 P2 ∣ Ã ⟩

+ P2HP1 P1 ∣ Ã ⟩+ P2HQGQHP1 P1 ∣ Ã ⟩ (3.6)
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where E is the energy eigenvalue and G is the Greens function for two- and three-meson inter-

mediate states, defined as:

G =
1

E −QHQ
. (3.7)

The interaction terms in eq.4.3 and eq.3.6 are given as:

P1HP1 = Hp
0 + Vc + Vp̄p→p̄p , (3.8)

P2HP2 = Hn
0 + Vn̄n→n̄n , (3.9)

P1HP2 = P2HP1 = Vp̄p→n̄n , (3.10)

where

Vp̄p→n̄n = Vp̄p→p̄p , (3.11)

Hp
0 =

√
m2

p + k2 , (3.12)

Hn
0 =

√
m2

n + k2 , (3.13)

Vp̄p→p̄p =
1

2
(V 0 + V 1) , (3.14)

Vp̄p→n̄n =
1

2
(V 0 − V 1) , (3.15)

where Vc is the Coulomb interaction, V 0 and V 1 are the potentials due to meson-exchange for

the isospin I = 0 and 1 NN states, respectively. The mass of the proton and neutron are denoted

as mp and mn.

PiHQGQHPj are the optical potentials Wij for NN annihilation into two and three
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mesons given in the isospin basis as:.

Wp̄p→p̄p = P1HQGQHP1

= P2HQGQHP2

=
1

2
(W 0 +W 1) , (3.16)

Wp̄p→n̄n = P1HQGQHP2

= P2HQGQHP1

=
1

2
(W 0 −W 1) , (3.17)

where W 0 and W 1 are the annihilation potentials for isospin I = 0 and 1 NN states in the A2

and A3 model, respectively.

As an example, we give the final equation for spin-triplet NN states in the {J, L, S} basis

as

⎛
⎜⎝

H11 H12

H21 H22

⎞
⎟⎠

⎛
⎜⎝

Ψpp

Ψnn

⎞
⎟⎠ = Eb

⎛
⎜⎝

Ψpp

Ψnn

⎞
⎟⎠ (3.18)

with

H11 =

⎛
⎜⎝

P 2/2¹+ V L1L1
c + V L1L1

p̄p→p̄p +WL1L1
p̄p→p̄p V L1L2

p̄p→p̄p

V L2L1
p̄p→p̄p P 2/2¹+ V L2L2

c + V L2L2
p̄p→p̄p +WL2L2

p̄p→p̄p

⎞
⎟⎠

H12 =

⎛
⎜⎝

V L1L1
p̄p→n̄n +WL1L1

p̄p→n̄n V L1L2
p̄p→n̄n

V L2L1
p̄p→n̄n V L2L2

p̄p→n̄n +WL2L2
p̄p→n̄n

⎞
⎟⎠

H21 =

⎛
⎜⎝

V L1L1
p̄p→n̄n +WL1L1

p̄p→n̄n V L2L1
p̄p→n̄n

V L1L2
p̄p→n̄n V L2L2

p̄p→n̄n +WL2L2
p̄p→n̄n

⎞
⎟⎠

H22 =

⎛
⎜⎝

P 2/2¹+ 2± m+ V L1L1
p̄p→p̄p +WL1L1

p̄p→p̄p V L1L2
p̄p→p̄p

V L2L1
p̄p→p̄p P 2/2¹+ 2± m+ V L2L2

p̄p→p̄p +WL2L2
p̄p→p̄p

⎞
⎟⎠
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and

Ψpp =

⎛
⎜⎝

ΨL1

pp

ΨL2

pp

⎞
⎟⎠ , Ψnn =

⎛
⎜⎝

ΨL1

nn

ΨL2

nn

⎞
⎟⎠ , (3.19)

where ± m = mn −mp, ¹ = mp/2, Vc = −®/r, L1 = J − 1, L2 = J + 1, J is the total angular

momentum and Eb = E − 2mp, the binding energy of NN atomic states. nucleus.

3.2 pD interactions in terms of NN potentials

We start from the Schrödinger equation of the antiproton-deuteron system in coordinate space

Ã
P 2
½

2M½
+

P 2
¸

2M¸
+ V12(r⃗2 − r⃗1) + V13(r⃗3 − r⃗1) + V23(r⃗3 − r⃗2)

)
Ψ(̧⃗ , ½⃗) = EΨ(̧⃗ , ½⃗) (3.20)

where ̧⃗ and ½⃗ are the Jacobi coordinates of the system, defined as

̧⃗ = r⃗3 − r⃗1 + r⃗2
2

, ½⃗ = r⃗2 − r⃗1 (3.21)

M½ = M/2 and M¸ = 2M/3 are the reduced masses. Here we have assigned, for simplicity,

the proton and neutron the same mass M . Eq. (3.20) can be expressed in the form, where the

strong interaction is expressed in the isospin basis,

Ã
P 2
½

2M½
+

P 2
¸

2M¸
+ VS + VC

)
Ψ(̧⃗ , ½⃗) = EΨ(̧⃗ , ½⃗) (3.22)

where VS and VC stand for the nuclear interaction and Coulomb force, respectively, and take the

forms

VS = V 0
NN (r⃗2 − r⃗1)+

1

4
[V 0

NN
(r⃗3 − r⃗1)+V 0

NN
(r⃗3 − r⃗2)]+

3

4
[V 1

NN
(r⃗3 − r⃗1)+V 1

NN
(r⃗3 − r⃗2)] (3.23)

VC =
1

2
[VC(r⃗3 − r⃗1) + VC(r⃗3 − r⃗2)] (3.24)

V 0 and V 1 in eqs. (3.23) and (3.23) are the isospin 0 and 1 nuclear interactions, respectively.

Note that we have assigned r⃗12 as the relative coordinate of the deuteron core.

One may express the interactions VC and VS in eq. (3.23) eq. (3.24) in terms of the
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interactions of certain NN states. In the ∣JMLS⟩ basis of the pD states

∣JMLS⟩ = ∣(L½ ⊗ L¸)L ⊗ (S12 ⊗ S3)S⟩JM (3.25)

we derive
(
H0 +WC(¸, ½) + V 0

NN (½) +WS(¸, ½)
)
Ψ(¸, ½) = EΨ(¸, ½) (3.26)

with

H0 =
P 2
½

2M½
+

P 2
¸

2M¸
(3.27)

WC and WS in eq. (3.26) are respectively the Coulomb force and strong interaction between

the antiproton and deuteron, and V 0
NN the interaction between the proton and neutron in the

deuteron core. WC and WS are derived explicitly as

WC(¸, ½) =
1

2

∫ 1

−1

dxVC(r13) (3.28)

WS(¸, ½) =
1

2

∫ 1

−1

dx
∑

Q,Q′
⟨P ∣Q⟩ ⟨Q∣ VNN (r⃗13) ∣Q′⟩ ⟨Q′∣P ′⟩ (3.29)

with

VNN (r⃗13) =
1

2
V 0
NN

(r⃗13) +
3

2
V 1
NN

(r⃗13) (3.30)

r13 ≡ ∣r⃗1 − r⃗3∣ =
(
¸2 + ½2/4− ¸½x

)1/2
(3.31)

where x = cosµ with µ being the angle between ̧⃗ and ½⃗. In eq. (3.29) ∣P ⟩ ≡ ∣JMLS⟩ and

∣P ′⟩ ≡ ∣JML′S⟩ are as defined in eq. (3.25) while the states ∣Q⟩ and ∣Q′⟩ are

∣Q⟩ = ∣∣(L¾ ⊗ S13)J¾ ⊗ (L° ⊗ S2)J°

〉
JM

(3.32)

∣Q′⟩ =
∣∣(L′

¾ ⊗ S13)J¾ ⊗ (L° ⊗ S2)J°

〉
JM

(3.33)
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Here ¾⃗ and °⃗ are also the Jacobi coordinates of the system, defined as

°⃗ = r⃗2 − r⃗1 + r⃗3
2

, ¾⃗ = r⃗3 − r⃗1 (3.34)

So defined the states ∣Q⟩ and ∣Q′⟩ is based on the consideration that the NN interactions can

be easily expressed in the ∣J¾M¾L¾S13⟩ basis of the NN states. Note that ⟨P ∣Q⟩ depends on

not only the quantum numbers of the states ∣P ⟩ and ∣Q⟩, but also ¸, ½ and the angle µ between

̧⃗ and ½⃗ resulting from the projection of the orbital angular momenta between different Jacobi

coordinates. We listed the integral kernels in eq. (3.29),
∑

Q,Q′ ⟨P ∣Q⟩ ⟨Q∣ V (r⃗13) ∣Q′⟩ ⟨Q′∣P ′⟩,
for the lowest pD states in the approximation that the deuteron core is assumed in the S-state,

as follows:

∣P ⟩ = ∣P ′⟩ = ∣2S1/2⟩ : 3
4VNN (1S0) +

1
4VNN (3S1)

∣P ⟩ = ∣P ′⟩ = ∣4S3/2⟩ : VNN (3S1)

∣P ⟩ = ∣P ′⟩ = ∣2P1/2⟩ : F 2
1 ⋅ [ 1

12VNN (3P0) +
3
4VNN (1P1) +

1
6VNN (3P1)

]

∣P ⟩ = ∣P ′⟩ = ∣4P1/2⟩ : F 2
1 ⋅ [23VNN (3P0) +

1
3VNN (3P1)

]

∣P ⟩ = ∣P ′⟩ = ∣2P3/2⟩ : F 2
1 ⋅ [34VNN (1P1) +

1
24VNN (3P1) +

5
24VNN (3P2)

]

∣P ⟩ = ∣P ′⟩ = ∣4P3/2⟩ : F 2
1 ⋅ [56VNN (3P1) +

1
6VNN (3P2)

]

∣P ⟩ = ∣P ′⟩ = ∣4P5/2⟩ : F 2
1 ⋅ VNN (3P2)

∣P ⟩ = ∣P ′⟩ = ∣4D3/2⟩ : F 2
3 ⋅ [12VNN (3D1) +

1
2VNN (3D2)

]

∣P ⟩ = ∣P ′⟩ = ∣2F3/2⟩ : F 2
2 ⋅ VNN (3F2)

∣P ⟩ = ∣P ′⟩ = ∣4F5/2⟩ : F 2
2 ⋅ [49VNN (3F2) +

5
9VNN (3F3)

]

∣P ⟩ = ∣4P3/2⟩, ∣P ′⟩ = ∣4F3/2⟩ : F1F2 ⋅ 1√
6
VNN (3PF2)

∣P ⟩ = ∣4P5/2⟩, ∣P ′⟩ = ∣4F5/2⟩ : F1F2 ⋅ 2
3VNN (3PF2)

∣P ⟩ = ∣4S3/2⟩, ∣P ′⟩ = ∣4D3/2⟩ : F3 ⋅
[

1√
2
VNN (3SD1) +

1√
2
VNN (3SD2)

]

(3.35)

where ∣P ⟩ ≡ ∣JMLS⟩ and ∣P ′⟩ ≡ ∣JML′S⟩ are the pD atomic states. Both the pD and NN

states in eq. (3.35) are labelled as 2S+1LJ with S, L and J being respectively the total spin, total

orbital angular momentum and total angular momentum. The potentials VNN , being functions

of r13 =
√
¸2 + ½2/4− ½¸x, stand for the NN interactions for various NN states as indicated

in the brackets.
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The F1, F2 and F3 in eq. (3.35) are functions of only ¸ and ½, taking the forms

F1 =

⎧
⎨
⎩

1− 1
12

½2

¸2 , ½ < 2¸

4¸
3½ , ½ > 2¸

(3.36)

F2 =

⎧
⎨
⎩

(
1− ½2

4¸2

)2

, ½ < 2¸

0, ½ > 2¸
(3.37)

F3 =

⎧
⎨
⎩

2F
1(1,− 3

2 ,
3
2 ,

½2

4¸2 ), ½ < 2¸

5
8 − 3½2

32¸2 +Artanh
(

2¸
½

) [
3¸
4½ − 3½

8¸ + 3½3

64¸3

]
, ½ > 2¸

(3.38)

where 2F
1(®, ¯, °, x) is the hypergeometric function and Artanh(x) the inverses hyperbolic tan-

gent function.

3.3 Energy shifts and decay widths of pD atoms

It is not a simple problem to accurately evaluate the energy shifts and decay widths, especially

wave functions of exotic atoms like protonium, pionium and antiproton-deuteron atoms, which

are mainly bound by the Coulomb force, but also effected by the short range strong interaction. In

this work we study the pD atoms in the Sturmian function approach which has been successfully

applied to our previous works [2]. Employed for the NN interactions are various realistic NN

potentials, namely, the Paris NN potentials of the 1994 version [31], 1998 version [32] and

2004 version [33], the Dover-Richard NN potentials I [34] and II [35], and the Kohno-Weise

NN potential [36]. In this preliminary work, we just limit our study to the approximation of

undistorted deuteron core. However, one may see that the main conclusions of the work are free

of this approximation.

Shown in Table I are the energy shifts and decay widths, which stem from the Paris98, DR2

and KW NN interactions, in the approximation of undistorted deuteron core. The theoretical

results for other interactions like Paris84, Paris04 and DR1 are quite similar to the ones listed in

Table I. The wave function of the undistorted deuteron core is evaluated in the Bonn OBEPQ

potential [37]. It is found that the theoretical results for the 1s pD atomic states are more or less

the same by all the employed NN potentials. The predicted energy shifts are roughly as twice
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Paris98 DR2 KW Data
ΔE Γ ΔE Γ ΔE Γ ΔE Γ

2S1/2 -2445 1781 -2673 2380 -2478 2450
4SD3/2 -2680 2822 -2668 2390 -2503 2469
2P1/2 -186 584 17 896 99 657
4P1/2 265 402 47 846 101 785
2P3/2 -128 515 14 897 98 643

4PF3/2 282 477 21 887 97 648
4PF5/2 244 814 21 877 101 660

ΔE1s, Γ1s
-2602 2475 -2670 2387 -2494 2463 −1050± 250 1100± 750

2270± 260

ΔE2p, Γ2p 124 602 22 883 99 668 −243± 26 489± 30

Table 3.1: The energy shifts ΔE and decay widths of the 1s and 2p antiproton-deuteron atomic
states in the approximation of undistorted deuteron core. The minus sign of the energy shifts
means that the strong interaction is repulsive. The units are eV and meV for 1s and 2p states,
respectively. Experimental data are taken from [25, 26].

large as the experimental data. However, one may expect that the predictions of the potentials in

question could be improved to some extent by solving the pD dynamical equation in eq. (3.26)

without any approximation. A better treatment of the deuteron core will yield lower 1s pD

atomic states, hence smaller energy shifts. The theoretical results for the decay widths of the 1s

pD atoms are also larger than the experimental data though not as far from the data as for the

energy shifts. The predictions for the decay widths are also expected to be improved by treating

the deuteron core more properly.

The theoretical predictions for the energy shifts of the 2p pD atomic states are totally

out of line for all the NN potentials employed. The experimental data show that the averaged

energy level of the 2p pD atoms is pushed up by the strong interaction, the same as for the 1s

pD atoms, but the theoretical results uniquely show the averaged energy level shifting down. It

is unlikely to improve, by treating the deuteron core more accurately, the theoretical predictions

of the NN potentials in question for the 2p pD energy shifts since a more accurate treatment of

the deuteron core will lead to deeper 2p pD atomic states.

All the NN potentials employed in the work reproduce NN scattering data reasonably,

but badly fail to reproduce the energy shifts of the 2p pD atoms. The investigation of the pD

atoms may provide a good platform for refining the NN interaction, especially at zero energy

since the energy shifts of the 2p pD atomic states are very sensitive to theNN strong interactions.

The research here is just a preliminary work, where a frozen, S-state deuteron is employed.

The work may be improved at two steps, considering that the numerical evaluation is time-

consuming. One may, at the first step, solve the pD dynamical equation in eq. (3.26) by
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expanding the pD wave function in a bi-wave basis of the Sturmian functions, where a realistic

nucleon-nucleon potential is employed but the deuteron core is assumed to be at the S-state. Such

an evaluation is still manageable at a personnel computer but it may take a week or longer. We

may compare the results of the improved work with the results here to figure out how important

an unfrozen deuteron core is.

One may also consider, at the second step, to solve the pD dynamical equation in eq. (3.26)

by expanding the pD wave function in a bi-wave basis of the Sturmian functions without any

approximation, where realistic nucleon-nucleon and nucleon-antinucleon potentials are employed

and the deuteron core is allowed to be at both the S- and D-waves. It is certain that the

numerical calculation will take longer time but, anyway, we will do it after we complete the

first-step improvement.

 

 

 

 

 

 

 

 



Chapter 4

Pionium

Pionium is an exotic atom of ¼+ and ¼−, bound mainly by the Coulomb force. The strong

interaction between the two pions also play a role, leading to an energy shift from the Coulomb

energy (E = -1.86 keV) and distorting the hydrogen-like wave function at short distance (a

few fm). Pionium decays predominantly into ¼0¼0 via strong interaction, which probes the low

energy interactions of the pions. It has been believed that pionium might be employed to test

more accurately the predictions of chiral perturbation theory. The investigation of pionium is

the only mean to study the pion-pion strong interaction at zero energy.

The investigation of pionium has recently become of particular interest due to the pionium

DIRAC experiment [38, 39, 40]. The aim of the DIRAC experiment at CERN is to measure

the lifetime of 1s pionium with 10% precision. Such a measurement would yield a precision

of 5% on the value of the S-wave ¼¼ scattering lengths combination ∣a0 − a2∣. The DIRAC

spectrometer was commissioned at the end of 1998, and the first results [40] have been published

recently based on part of the collected data. The preliminary result of the pionium lifetime is

¿1S = 2.91+0.49
−0.62 × 10−15 seconds.

The nonrelativistic formula of the pionium lifetime in the lowest order of electromagnetic

interactions was first evaluated by Deser et al. [41] and later reanalyzed by others [42]. It reads

Γ0 =
2

9

64¼ p

M3
∣Ã(0)∣2 ∣a0 − a2∣2 (4.1)

where M is the mass of the ¼¼ system, p is the center-of-mass momentum of the ¼0 in the

pionium system, Ã(0) is the pionium S-wave function at the origin (r = 0), and a0 and a2 are

the S-wave ¼¼ scattering lengths for isospin I = 0 and 2 respectively. In the approximation of

17
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the pionium wave function Ã in eq. (4.1) to the hydrogen-like wave function, one derives the

chiral perturbation result at leading order [42]

Γ =
2

9
®3 p ∣a0 − a2∣2 (4.2)

where ® is the fine structure constant.

An evaluation of the relativistic, strong interaction and higher-order electromagnetic cor-

rections to the nonrelativistic formula in eq. (4.1) has recently been done in the frameworks of

quantum field theory and chiral perturbation theory. These works have led to similar estimates,

of the order of 6%, of these corrections [43, 44, 45, 46]. The strong interaction of the pion-pion

system with respect to the bound state wave equation has been treated perturbatively though

the methods employed in these works are quite different.

However, it is arguable to treat the pion-pion strong interaction as a small perturbation

as well as to approximate in the lowest order the pionium wave function to the hydrogen-like one

at small distance. In the work we tackle this issue by evaluating accurately the pionium wave

functions in realistic pion-pion strong interactions.

4.1 Sturmian Function Method Applied to Pionium

Any reasonable prediction of the pionium lifetime in the potential model (or say, in the quantum

mechanics regime) must be based on accurate knowledge of the wave function of the pionium

state. The evaluation of the pionium wave function has been a challenge to numerical methods.

Required is an approach, which is able to overcome the longstanding problem, that is, accounting

for both the strong short-range interaction and the long-range Coulomb force. The pionium

problem is more difficult than the more popular protonium problem in term of evaluating the

wave functions since the Bohr radius of pionium is much larger than the one of protonium. In

this section we verify the Sturmian function approach, which has been successfully applied to

the protonium problem [2], is powerful to handle the pionium problem.

A correct treatment of pionium must include the coupling of the ¼+¼− and ¼0¼0 config-

urations. The dynamical equations of the (¼+¼−, ¼0¼0) system take the form

(E −H0
¼+¼−)Ã¼+¼− = (Vc + V11)Ã¼+¼− + V12 Ã¼0¼0

(E −H0
¼0¼0)Ã¼0¼0 = V22 Ã¼0¼0 + V21 Ã¼+¼− (4.3)
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where E is the energy of the (¼+¼−, ¼0¼0) system, H0
¼+¼− and H0

¼0¼0 are respectively the free

energies of the ¼± and ¼0, Vc is the coulomb interaction between ¼+ and ¼−, and Vij are the

strong interactions of the system. The strong interactions take, for example, for pionium in

S-waves the form in the isospin basis

V =

⎛
⎜⎝

2
3 V

0 + 1
3 V

2
√
2
3 (V 2 − V 0)

√
2
3 (V 2 − V 0) 1

3 V
0 + 2

3 V
2

⎞
⎟⎠ (4.4)

where V 0 and V 2 are respectively the isospin 0 and 2 strong interactions of the ¼¼ system. In

principle, one could solve Eq. (4.4) through expanding the pionium wave functions Ã¼+¼− and

Ã¼0¼0 in any complete set of orthonormal functions.

To guarantee the accuracy of the numerical method employed here, we have followed in

our numerical calculations the procedures as follows:

(1) Employ a hadronic potential to the pionium problem. The interaction should be strong

enough to provide at least one deep bound state for the ¼¼ system. Solve the pionium problem

in any numerical method (for example, expanding the pionium wave function in the complete

basis of the harmonic oscillator functions or Sturmian functions) to obtain the binding energy

and wave function of the deep bound states of the ¼¼ system.

(2) Solve the pure Coulomb pionium problem in the complete basis of Sturmian functions, with

the length parameter b as large as possible, to numerically reproduce the analytical hydrogen-like

wave functions in high accuracy.

(3) Solve the pionium problem in (1) in the complete basis of Sturmian functions employed in

(2). The binding energy and wave function in (1) must be accurately reproduced in the present

basis, or one has to employ a larger basis with larger b in (2).

A basis worked out by following the steps mentioned above enables one to accurately

evaluate the binding energy and wave function of pionium. For comparison we have resolved the

simplified pionium problem in Ref. [47] where the ¼0¼0 component is ignored and the strong

interaction is simply a Yakawa form. It is quite an easy job to solve such a simplified pionium

problem in the Sturmian function method. The relative correction to the binding energy of the

pionium ground state due to strong interaction is derived in our work as

´ =
E − E0

E0
= 0.0021543718. (4.5)

where E and E0 are respectively the ground state binding energies of the pionium and the ¼¼
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Figure 4.1: Ratios of the 1s pionium state wave function to the 1s hydrogen-like wave function
in our calculation (solid line) and the work [47] (long-dashed line).

system with only the Coulomb interaction. The pionium 1s energy level is slightly shifted lower

compared to the pure Coulomb interaction. The approach employed here is so powerful that the

binding energy of the pionium ground state can be evaluated to an accuracy better than 10−8.

The relative correction derived in Ref. [47] is ´ = 0.0020256 [?]. We would say that the method

employed in Ref. [47] needs to be improved since an accuracy of 10−4 guaranteed in Ref. [47] is

not good enough for the pionium problem. But, as realized by the authors [47], the calculation

of the pionium wave functions is not a simple problem.

Shown in Fig. 1 are the ratios Ã¼+¼−(r)/Ãc(r), derived respectively in our calculation

and Ref. [47], of the 1s pionium state wave function to the 1s hydrogen-like wave function. The

pionium ground state wave function in our work is a little bit higher than that in Ref. [47] at

short distances, which is consistent with that our binding energy of the pionium ground state is

larger.

4.2 Pionium in Realistic Interactions

Since Pionium has a small ¼0¼0 component, the coupling of the ¼+¼− and ¼0¼0 configurations

must be properly treated. The dynamical equations of the (¼+¼−, ¼0¼0) system may take the

general form as shown in eq. (4.3). As the pion mesons are finite, we describe the charge
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distribution of ¼+ and ¼− by the form factor

F (q) =
1

1 + q2/a2
, (4.6)

with a = 0.77 GeV.

The pionium problem is more difficult than other exotic problems, for example, the pro-

tonium problem in term of evaluating the wave function of exotic atoms since the Bohr radius of

pionium is much larger than the one of protonium. Here we solve the pionium dynamical equa-

tion in eq. (4.3) by expanding the pionium wave function Ψ in the complete basis of Sturmian

functions.

Table 4.1: Energy shift of the 1s pionium compared to the pure Coulomb interaction level.

Model B Model C Model D Model E Data

ΔE(eV ) -1.36 -2.97 -3.93 -2.87 –

¿(10−15s) 1.10 2.68 2.59 2.24 2.91+0.49
−0.62

Studied first in the work is the pion-pion interactions in the work [48], which are worked

out in the meson-exchange model and reproduce well the pion-pion phase shift data. The work

considers the contributions of the ½-exchange in the t-channel and the exchanges of ½, f2 and " (a

scalar meson) in the s-channel for the very low energy pion-pion scattering. For the " exchange

both the scalar coupling and the gradient coupling are studied. For our convenience, we may

call the interaction with the " scaler coupling Model A and the one with the " gradient coupling

Model B. It is found that the pion-pion potential in Model A supports a number of pion-pion

deep bound states which have never been observed. The deep bound states stem mainly from

the large contribution of the " scaler coupling at zero energy. The predictions for the energy shift

and the pionium lifetime in Model B are shown in Table 5.1 while the pionium S-wave function

is plotted in Fig. 4.2 as the dash-dotted curve. The lifetime in Model B and also in other models

below is evaluated using eq. (4.1) with the scattering length a0 and a2 taken from [49]. Although

Model B does not support any deep bound state, it is obvious that the interaction in the model

is also too strong at zero energy. The main contributor to the pion-pion interaction at zero

energy in Model B is the t-channel ½-exchange. The pion-pion potentials in both Model A and

B reproduce very well the pion-pion scattering data, but both of them fail to give reasonable

predictions for the pionium properties.

The pion-pion interaction has been studied intensively in the chiral perturbation theory

(ChPT) and considerable successes have been achieved in the regime. However, the ChPT success
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Figure 4.2: Squared 1s radial wave functions for the ¼+¼− component of pionium. For compar-
ison the pure Coulomb interaction wave function is also plotted. All the wave functions have be
multiplied by a factor 108.

in reproducing pion-pion experimental data does not necessarily guarantee a practical potential

which is applicable to, for example, the pionium problem where the off-shell effects have to be

considered. In this work we apply the pion-pion potentials derived in the chiral Lagrangian to

the pionium problem. In analogy to the works [50], where meson-meson potentials provided by

the lowest order chiral Lagrangian combined with Lippmann-Schwinger equations are applied

to study the reactions of °° to two mesons and two mesons to two mesons, and the derivation

of the nucleon-nucleon interaction in chiral perturbation theory [51], we impose a cutoff of the

momentum on the pion-pion potentials derived in the chiral perturbation theory. Devoted to

Model C is the potential derived from the tree diagram of the leading order Lagrangian ℒ2 in [52]

with the cutoff Λ = 0.1 GeV for all momenta and to Model D is the potential derived from the

tree diagrams of the chiral Lagrangian ℒeff = ℒ2 +ℒ4 +ℒ6 in [52] with the same cutoff. Shown

in Table 5.1 are the predictions of Model C and D for the energy shifts and lifetimes of pionium,

and the long dashed and dotted curves in Fig. 4.2 are the pionium S-wave functions. All the

parameters of the potentials are taken from the works [52]. It is found that the predictions of

Model C and D are fair good with a reasonable cutoff Λ = 0.1 GeV, hence it is possible to

construct a pion-pion potential in the framework of the chiral perturbation theory. Of course,

to get a practical pion-pion potential one needs to reproduce not only the pionium data but

also the pion-pion scattering data by solving Lippmann-Schwinger equations for both bound and

scattering problems.

The last model interaction we study here is a simple, local potential which has been widely
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employed for studying the influence of the hadronic interaction on pionium wave functions [53].

The potential is independent of both the energy of the pionium system and pion masses, and

reproduce very well the phase shifts given by two-loop chiral perturbation theory [52]. For

convenience, we may call the pion-pion interaction here Model E. In consistence with the works

[53], we solve for the (¼+¼−, ¼0¼0) system here the coupled Schrödinger equations employed in

the works [53].

The predictions of Model E for the energy shift and lifetime of the 1s pionium state are

listed in Table 5.1 while the evaluated 1s radial wave functions for the ¼+¼− component of

pionium is plotted in Fig. 4.2 as the dashed curve. It is clear that the ground state pionium

wave function in Model E is considerably different from the hydrogen-like one at small distances,

and the 1s pionium lifetime is much shorter than the experimental value.

The pionium has been studied in various strong interactions, which may lead us to some

points. The interaction in the meson-exchange model with the scaler coupling for the "-exchange

is unreasonably strong for the pionium system. The pionium system favors the gradient coupling

for the "-exchange, and demands a much weaker coupling for the t-channel ½-exchange. A

practical pion-pion potential may be derived from the chiral perturbation theory, which can

reproduce both the pionium and pion-pion scattering data and is applicable to other multi-pion

systems, for example, the pion gas probably produced in high-energy heavy-ion collisions. The

local pion-pion potential, which has been widely applied to the pionium system, is indeed too

strong at zero energy though it reproduces well the pion-pion phase shift data.

 

 

 

 

 

 

 

 



Chapter 5

Pionic and Kaonic Atoms

The simplest pionic atom is the pionic hydrogen, a bound state of negatively charged pion and

the proton combined mainly by Coulomb interaction and effected also by the short ranged strong

interaction. Due to the hadronic interaction the electromagnetic ground state (1s) of this atom

is shifted in energy and is unstable: it can decay into an uncharged pion and a neutron. The

finite life time due to this decay and the energy shift can give information on the hadronic

interaction between pions and nucleons [54]. The measurement of the pion-nucleon scattering

lengths constitutes a high-precision test of the methods of Chiral Pertubation Theory, which is

the low-energy approach of QCD. The pion-nucleon s-wave scattering lengths are related to the

strong-interaction shift and width of the s-states of the pionic hydrogen atom. Shift and width

are determined from the measured energies and line widths of X-ray transitions to the 1s ground

state when compared to the calculated electromagnetic values. A new experiment [55], set up at

the Paul-Scherrer-Institut, has completed a first series of measurements and the primary analysis

yields "1s = +7.120± 0.017 eV. The result is consistent with the previous precision experiment

[56] with "1s = +7.108 ± 0.047 eV and Γ1s = 0.868 ± 0.078 eV. To extract the pion-nucleon

scattering lengths from the experimental energy shift "1s and width Γ1s of the pionic hydrogen,

one needs the accurate knowledge of its wave function. However, the wave function of the pionic

hydrogen has not yet been evaluated for non-local potentials, for example, the interaction derived

in the Chiral Perturbation Theory, which is in momentum space and non-local.

Kaonic hydrogen is mainly the Coulomb bound state of a K− and a proton but is affected

by the strong interaction at small distances. The strong interaction couples the K−p state to the

K̄0n, ¼Σ, ¼Λ, ´Σ and ´Λ channels and results in the ¼Σ and ¼Λ decaying modes. It is believed

that the study of kaonic hydrogen effectively probes the low-energy, especially zero energy strong

24
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kaon-nucleon interaction. Inspired by the recent precise determination of the energy and decay

width by the DEAR Collaboration [57], kaonic hydrogen has been extensively studied in the

theoretical sector, mainly in effective field theory [58, 59, 60, 61, 62, 63, 64, 65, 66].

The kaonic hydrogen may be formed with a much shorter time than the lifetime of the

charged kaons which is 1.24× 10−8 seconds with the main decay mode:

K− → ¹− + º¹ (5.1)

K− → ¼− + ¼0 (5.2)

K− → ¼− + ¼− + ¼+. (5.3)

The involved time scales for the formation of the kaonic hydrogen are; first for slowing a kaon

down and capturing it into an atomic orbit about 10−12 to 10−19 s, then for Coulomb de-

excitation and Auger processes about 10−12 to 10−15 s and finally, for radiative transitions

about 10−15 to 10−17 s. Thus the charged kaon in the kaonic hydrogen atom can be considered

a practically stable particle. Despite its short lifetime, kaonic hydrogen can be considered as a

quasi-stable bound state, because the charged kaon travels many times around the proton before

decaying.

5.1 Dynamical Equations of K−p System

A correct treatment of kaonic hydrogen atomic states must include the couplings of the K−p,

K̄0n, ¼0Λ, ¼0Σ, ¼−Σ+ and ¼+Σ− configurations. We define the Hilbert spaces of the K−p, K̄0n,

¼0Λ, ¼0Σ, ¼−Σ+ and ¼+Σ− configurations as P1, P2, P3, P4, P5 and P6 spaces, respectively. The

Hilbert space of other channels is defined as Q space. The corresponding projection operators

P1, P2, P3, P4, P5, P6 and Q satisfy the completeness relation

P1 + P2 + P3 + P4 + P5 + P6 +Q = 1 (5.4)

P 2
i = Pi, Q

2 = Q (5.5)

as well as orthogonality

PiPj(i ∕= j) = 0, PiQ = QPi = 0. (5.6)

The Hamilton operator of the full coupled-channel problem is given by H with the corre-
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sponding wave function ∣Ψ⟩ defined in the complete Hilbert space. To construct the dynamical

equations of kaonic hydrogen atoms, we start from the Schrödinger equation

(E −H)∣Ψ⟩ = 0. (5.7)

Starting from the K−p channel, we get

EP1∣Ψ⟩ − P1H ∣Ψ⟩ = 0

EP1∣Ψ⟩ − P1H(P1 + P2 + P3 + P4 + P5 + P6 +Q)∣Ψ⟩ = 0

EP1∣Ψ⟩ − P1HP1∣Ψ⟩ − P1HP2∣Ψ⟩ − P1HP3∣Ψ⟩ − P1HP4∣Ψ⟩

− P1HP5∣Ψ⟩ − P1HP6∣Ψ⟩ − P1HQ∣Ψ⟩ = 0.

By using the properties of the projection operators above, we can write

EP1∣Ψ⟩ − P1HP1P1∣Ψ⟩ − P1HP2P2∣Ψ⟩ − P1HP3P3∣Ψ⟩ − P1HP4P4∣Ψ⟩

− P1HP5P5∣Ψ⟩ − P1HP6P6∣Ψ⟩ − P1HQQ∣Ψ⟩ = 0.

Hence, the dynamical equation of the K−p channel is

(E − P1HP1)P1∣Ψ⟩ = (P1HP2)P2∣Ψ⟩+ (P1HP3)P3∣Ψ⟩+ (P1HP4)P4∣Ψ⟩

+ (P1HP5)P5∣Ψ⟩+ (P1HP6)P6∣Ψ⟩+ (P1HQ)Q∣Ψ⟩
(5.8)

with P1∣Ψ⟩ = ΨK−p, P2∣Ψ⟩ = ΨK̄0n, P3∣Ψ⟩ = Ψ¼0Λ, P4∣Ψ⟩ = Ψ¼0Σ, P5∣Ψ⟩ = Ψ¼−Σ+ and

P6∣Ψ⟩ = Ψ¼+Σ− . E is the energy eigenvalue and G is the Greens function for all possible

intermediate states, defined as:

G =
1

E −QHQ
(5.9)

By using the same method, we derive the dynamical equations

(E − P2HP2)P2∣Ψ⟩ = (P2HP1)P1∣Ψ⟩+ (P2HP3)P3∣Ψ⟩+ (P2HP4)P4∣Ψ⟩

+ (P2HP5)P5∣Ψ⟩+ (P2HP6)P6∣Ψ⟩+ (P2HQ)Q∣Ψ⟩,
(5.10)
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for the K̄0n channel,

(E − P3HP3)P3∣Ψ⟩ = (P3HP1)P1∣Ψ⟩+ (P3HP2)P2∣Ψ⟩+ (P3HP4)P4∣Ψ⟩

+ (P3HP5)P5∣Ψ⟩+ (P3HP6)P6∣Ψ⟩+ (P3HQ)Q∣Ψ⟩,
(5.11)

for the ¼0Λ channel,

(E − P4HP4)P4∣Ψ⟩ = (P4HP1)P1∣Ψ⟩+ (P4HP2)P2∣Ψ⟩+ (P4HP3)P3∣Ψ⟩

+ (P4HP5)P5∣Ψ⟩+ (P4HP6)P6∣Ψ⟩+ (P4HQ)Q∣Ψ⟩,
(5.12)

for the ¼0Σ channel,

(E − P5HP5)P5∣Ψ⟩ = (P5HP1)P1∣Ψ⟩+ (P5HP2)P2∣Ψ⟩+ (P5HP3)P3∣Ψ⟩

+ (P5HP4)P4∣Ψ⟩+ (P5HP6)P6∣Ψ⟩+ (P5HQ)Q∣Ψ⟩,
(5.13)

for the ¼−Σ+ channel,

(E − P6HP6)P6∣Ψ⟩ = (P6HP1)P1∣Ψ⟩+ (P6HP2)P2∣Ψ⟩+ (P6HP3)P3∣Ψ⟩

+ (P6HP4)P4∣Ψ⟩+ (P6HP5)P5∣Ψ⟩+ (P6HQ)Q∣Ψ⟩,
(5.14)

for the ¼+Σ− channel and

(E −QHQ)Q∣Ψ⟩ = (QHP1)P1∣Ψ⟩+ (QHP2)P2∣Ψ⟩+ (QHP3)P3∣Ψ⟩

+ (QHP4)P4∣Ψ⟩+ (QHP5)P5∣Ψ⟩+ (QHP6)P6∣Ψ⟩.
(5.15)

for all other channels. Eq. (5.15) may be written formally as

Q∣Ψ⟩ = 1

E −QHQ
(QHP1)P1∣Ψ⟩+ 1

E −QHQ
(QHP2)P2∣Ψ⟩

+
1

E −QHQ
(QHP3)P3∣Ψ⟩+ 1

E −QHQ
QHP4)P4∣Ψ⟩

+
1

E −QHQ
(QHP5)P5∣Ψ⟩+ 1

E −QHQ
(QHP6)P6∣Ψ⟩

= G(QHP1)P1∣Ψ⟩+G(QHP2)P2∣Ψ⟩

+G(QHP3)P3∣Ψ⟩+G(QHP4)P4∣Ψ⟩

+G(QHP5)P5∣Ψ⟩+G(QHP6)P6∣Ψ⟩

(5.16)

By eliminating the Q channel, we derive the dynamical equations for the coupled channels K−p,
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K̄0n, ¼0Λ, ¼0Σ, ¼−Σ+ and ¼+Σ−,

E Pi∣Ψ⟩ =
6∑

j=1

(PiHPj)Pj ∣Ψ⟩+
6∑

j=1

(PiHQ)G(QHPj)Pj ∣Ψ⟩ (5.17)

with i = 1, . . . , 6. Pi∣Ψ⟩ are the wave function of the Pi channel, that is, P1∣Ψ⟩ = ΨK−p,

P2∣Ψ⟩ = ΨK̄0n, P3∣Ψ⟩ = Ψ¼0Λ, P4∣Ψ⟩ = Ψ¼0Σ, P5∣Ψ⟩ = Ψ¼−Σ+ and P6∣Ψ⟩ = Ψ¼+Σ− .

The factor PiHPi in Eq. (5.17) includes the free energy and the direct interaction of the

Pi channel, taking the forms

P1HP1 = Hp
0 +HK−

0 + Vc + VK−p→K−p

P2HP2 = Hn
0 +HK̄0

0 + VK̄0n→K̄0n

P3HP3 = H¼0

0 +HΛ
0 + V¼0Λ→¼0Λ

P4HP4 = H¼0

0 +HΣ
0 + V¼0Σ→¼0Σ

P5HP5 = H¼−
0 +HΣ+

0 + Vc + V¼−Σ+→¼−Σ+

P6HP6 = H¼+

0 +HΣ−
0 + Vc + V¼+Σ−→¼+Σ−

(5.18)

where Vc is the Coulomb interaction. Hp
0 =

√
m2

p + k⃗2, Hn
0 =

√
m2

n + k⃗2, HΛ
0 =

√
m2

Λ + k⃗2,

HK−
0 =

√
m2

K− + k⃗2, HK̄0

0 =
√
m2

K̄0 + k⃗2, H¼0

0 =
√
m2

¼0 + k⃗2, H¼−
0 =

√
m2

¼− + k⃗2, H¼+

0 =√
m2

¼+ + k⃗2, HΣ
0 =

√
m2

Σ + k⃗2, HΣ−
0 =

√
m2

Σ− + k⃗2, and HΣ+

0 =
√
m2

Σ+ + k⃗2 are the free

energies of the proton, neutron, lambda, negatively charge kaon, neutral antikaon, neutral pion,

negatively charge pion, sigma, positively charge sigma and negatively charge sigma, respectively.

The masses of the proton, neutron, lambda, negatively charge kaon, neutral antikaon, neutral

pion, negatively charge pion, sigma, positively charge sigma and negatively charge sigma are

denoted as mp, mn, mΛ, mK− , mK̄0 , m¼0 , m¼− , m¼+ , mΣ, mΣ− and mΣ+ , respectively.

PiHPj (i ∕= j) in Eq. (5.17) stand for the exchange interactions between two different
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channels, taking the forms

P1HP2 = P2HP1 = VK−p→K̄0n

P1HP3 = P3HP1 = VK−p→¼0Λ

P1HP4 = P4HP1 = VK−p→¼0Σ

P1HP5 = P5HP1 = VK−p→¼−Σ+

P1HP6 = P6HP1 = VK−p→¼+Σ−

P2HP3 = P3HP2 = VK̄0n→¼0Λ

P2HP4 = P4HP2 = VK̄0n→¼0Σ

P2HP5 = P5HP2 = VK̄0n→¼−Σ+

P2HP6 = P6HP2 = VK̄0n→¼+Σ−

P3HP4 = P4HP3 = V¼0Λ→¼0Σ

P3HP5 = P5HP3 = V¼0Λ→¼−Σ+

P3HP6 = P6HP3 = V¼0Λ→¼+Σ−

P4HP5 = P5HP4 = V¼0Σ→¼−Σ+

P4HP6 = P6HP4 = V¼0Σ→¼+Σ−

P5HP6 = P6HP5 = V¼−Σ+→¼+Σ−

(5.19)

(PiHQ)G(QHPj) in Eq. (5.17) are optical potentials, stemming from annihilations to

other channels represented by Q. We express the optical potentials for various channels explicitly
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as follows:

WK−p→K−p = (P1HQ)G(QHP1)

WK̄0n→K̄0n = (P2HQ)G(QHP2)

W¼0Λ→¼0Λ = (P3HQ)G(QHP3)

W¼0Σ→¼0Σ = (P4HQ)G(QHP4)

W¼+Σ−→¼+Σ− = (P5HQ)G(QHP5)

W¼−Σ+→¼−Σ+ = (P6HQ)G(QHP6)

WK−p→K̄0n = (P1HQ)G(QHP2) = (P2HQ)G(QHP1)

WK−p→¼0Λ = (P1HQ)G(QHP3) = (P1HQ)G(QHP1)

WK−p→¼0Σ = (P1HQ)G(QHP4) = (P4HQ)G(QHP1)

WK−p→¼−Σ+ = (P1HQ)G(QHP5) = (P5HQ)G(QHP1)

WK−p→¼+Σ− = (P1HQ)G(QHP6) = (P6HQ)G(QHP1)

WK̄0n→¼0Λ = (P2HQ)G(QHP3) = (P3HQ)G(QHP2)

WK̄0n→¼0Σ = (P2HQ)G(QHP4) = (P4HQ)G(QHP2)

WK̄0n→¼−Σ+ = (P2HQ)G(QHP5) = (P5HQ)G(QHP2)

WK̄0n→¼+Σ− = (P2HQ)G(QHP6) = (P6HQ)G(QHP2)

W¼0Λ→¼0Σ = (P3HQ)G(QHP4) = (P4HQ)G(QHP3)

W¼0Λ→¼−Σ+ = (P3HQ)G(QHP5) = (P5HQ)G(QHP3)

W¼0Λ→¼+Σ− = (P3HQ)G(QHP6) = (P6HQ)G(QHP3)

W¼0Σ→¼−Σ+ = (P4HQ)G(QHP5) = (P5HQ)G(QHP4)

W¼0Σ→¼+Σ− = (P4HQ)G(QHP6) = (P6HQ)G(QHP4)

W¼−Σ+→¼+Σ− = (P5HQ)G(QHP6) = (P6HQ)G(QHP5)

(5.20)

For the kaonic atom problem, one may further eliminate the ¼0Λ, ¼0Σ, ¼−Σ+ and ¼+Σ−

channels by substituting P3∣Ψ⟩, P4∣Ψ⟩, P5∣Ψ⟩ and P6∣Ψ⟩ formally derived in Eqs. (5.11), (5.12),

(5.13) and (5.14) into Eqs. (5.8) and (5.10).
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5.2 Kaonic Hydrogen Atoms

The success of the effective field theory applied to kaonic hydrogen makes it possible to con-

struct equivalent local KN potentials which may be conveniently applied to computations of K-

nuclear few body systems and hyper-nucleus productions [67]. The solution of the Schrödinger or

Lippmann-Schwinger equation with such an equivalent potential should approximate as closely

as possible the scattering amplitude derived from the full coupled-channel calculation of the

effective field theory.

In the work we study kaonic hydrogen with local potentials which are purely phenomeno-

logical or based on chiral SU(3) models. After eliminating the ¼0Λ, ¼0Σ, ¼−Σ+ and ¼+Σ−

channels in Eq. (5.17), one derives the dynamical equations for the K−p and K̄0n system, with

the radial part of such equations taking the form,

[
− 1

r2
d

dr

(
r2

d

dr

)
+

l(l + 1)

r2
−Q2 + f V

]
R(r) (5.21)

with

Q2 =

⎛
⎜⎝

q2c 0

0 q20

⎞
⎟⎠ , f =

⎛
⎜⎝

fc 0

0 f0

⎞
⎟⎠ , (5.22)

V = Vem +Vℎ, (5.23)

Vem =

⎛
⎜⎝

V em 0

0 0

⎞
⎟⎠ , (5.24)

Vℎ =

⎛
⎜⎝

1
2 (V

ℎ
1 + V ℎ

0 ) 1
2 (V

ℎ
1 − V ℎ

0 )

1
2 (V

ℎ
1 − V ℎ

0 ) 1
2 (V

ℎ
1 + V ℎ

0 )

⎞
⎟⎠ , (5.25)

R(r) =

⎛
⎜⎝

RK−p(r)

RK̄0n(r)

⎞
⎟⎠ , (5.26)

q2c =
[E2 − (Mp −MK−)2][E2 − (Mp +MK−)2]

4E2
, (5.27)

q20 =
[E2 − (Mn −MK̄0)2][E2 − (Mn +MK̄0)2]

4E2
, (5.28)

fc =
E2 −M2

p −M2
K−

E
, (5.29)

f0 =
E2 −M2

n −M2
K̄0

E
(5.30)
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Table 5.1: 1s kaonic hydrogen energy shift ΔE1s (ΔE0
1s) and decay width Γ1s (Γ0

1s) derived by
directly solving eq. (5.21) with (without) the mass difference between the K−p and K̄0n states
considered.

ΔE0
1s [eV] Γ0

1s [eV] ΔE1s [eV] Γ1s [eV]
AY [75] -268 312 -384 288
ORB [76] -255 534 -348 646
HNJH [76] -248 527 -336 648
BNW [76] -220 544 -288 674
BMN [76] -197 517 -297 622

where V em is the electromagnetic potential, V ℎ
0 and V ℎ

1 are respectively the isospin I = 0

and 1 strong interactions of the KN system, RK−p(r) and RK̄0n(r) are respectively the K−p

and K̄0n components of the radial wave function of the KN system. Eq. (5.21) embeds into

the Schrödinger equation the relativistic effect and the mass difference between the K−p and

K̄0n components. The relativistic modification of the Schrödinger equation to eq.(5.21) has

been discussed in the works [68, 69, 70, 71, 72, 73]. The strong interactions V ℎ
0 and V ℎ

1 are

complex, taking into account the contributions of the direct interactions of the KN system and

the couplings of theKN system to the channels ¼0Λ, ¼0Σ, ¼−Σ+ and ¼+Σ− which are eliminated

during the derivation of the above equations.

The local potentials considered here in the work are the phenomenological KN potential

taken from the work [74, 75] and the various effective potentials which are worked out in Ref.

[76]. The interaction [74, 75] is constructed by fitting the free K̄N scattering data [77], the KpX

data of kaonic hydrogen by the KEK Collaboration [78] and the binding energy and decay width

of Λ(1405), which is regarded as an isospin I = 0 bound state of K̄N .

In Ref. [76] an effective local potential in coordinate space is constructed such as the

solution of the Schrödinger or Lippmann-Schwinger equation with such a potential approximates

as closely as possible the scattering amplitude derived from the full chiral coupled-channel calcu-

lation. Four versions of effective potentials referred to as ORB, HNJH, BNW, BMN have been

constructed in Ref. [76], based respectively on the chiral SU(3) models [59, 60, 64, 66].

The accurate evaluation of energy shifts, decay widths and especially wave functions of

exotic atoms has been a challenge to numerical methods [72, 79]. An approach is required,

which is able to account accurately for both the strong short-range interaction and the long-

range Coulomb force. The numerical approach based on Sturmian functions [5] has been found

effective and accurate. In this work we use the numerical method which has been carefully

studied and discussed in [5, 2, 80] to study kaonic hydrogen.
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The 1s kaonic hydrogen energy shift ΔE1s and decay width Γ1s shown in Table 5.1 are

derived by solving eq. (5.21) in the above mentioned Sturmian function approach [5, 2, 80], with

the mass difference between the K−p and K̄0n channels treated as shown in eqs. (5.21) to (5.30).

The negative energy shift in Table 5.1 means that the 1s energy level is effectively pushed up

by the strong interaction since there exists one deep bound state, the Λ(1405). Shown in Table

5.1 are also the energy shift ΔE0
1s and decay width Γ0

1s in the isospin symmetry limit, where the

mass of proton is applied for both the proton and neutron and the mass of K− for both the K−

and K̄0.

It is found from Table 5.1 that the theoretical results in the approximation of the isospin

symmetry limit are rather different from the full results where the mass difference between the

K−p and K̄0n channels is properly treated as shown in eqs. (5.21) to (5.30). Except for the decay

width for the phenomenological KN potential [74, 75], the isospin symmetry approximation

largely underestimates both the energy shift and decay width of the 1s kaonic hydrogen. On

average, the theoretical result for the energy shift in the isospin symmetry limit is smaller by a

factor of about 28% than the full result. For the equivalent local potentials referred to as ORB,

HNJH, BNW, BMN in Table 5.1 which are constructed in the work [76], based respectively on

the chiral SU(3) models [59, 60, 64, 66], the isospin symmetry approximation for the decay width

of the 1s kaonic hydrogen is about 18% smaller than the result where the mass difference between

the K−p and K̄0n channels is considered.

The most recent experimental values on the energy shift and decay width of the ground

state of kaonic hydrogen are respectively

ΔE1s = −193± 37 (stat)± 6 (syst) eV (5.31)

and

Γ1s = 249± 111 stat)± 30 (syst) eV (5.32)

obtained by the DEAR Collaboration [57], by a factor of almost 2 smaller than the experimental

values measured by the KEK Collaboration [78]

ΔE1s = −323± 63 (stat)± 11 (syst) eV (5.33)

and

Γ1s = 407± 208 (stat)± 100 (syst) eV (5.34)
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Table 5.2: K−p scattering lengths aK−p derived with local single-channel potentials [75, 76]
compared with the K−p scattering lengths ãK−p (taken from [74, 76]) derived with the multi-
channel effective interactions [59, 60, 64, 66, 74].

aK−p [fm] ãK−p [fm]
AY [75] −0.678 + i 0.506 −0.70 + i 0.53
ORB [59] −0.586 + i 0.844 −0.617 + i 0.861
HNJH [60] −0.566 + i 0.829 −0.608 + i 0.835
BNW [64] −0.487 + i 0.838 −0.532 + i 0.833
BMN [66] −0.426 + i 0.788 −0.410 + i 0.824

It is clear that except for the decay width derived with the phenomenological KN potential

referred to as AY in Table 5.1, all other theoretical values are much larger than the DEAR

data. However, the theoretical results shown in Table 5.1 for both the pure phenomenological

potential and the chiral SU(3) symmetry based potentials are fairly consistent with the KEK

measurements, considering the large error of the KEK values of the 1s kaonic hydrogen decay

width.

It is difficult to conclude whether the equivalent potentials based on chiral SU(3) models

are reasonable since the KEK and DEAR data are so inconsistent each other. One may have

to wait for the more accurate measurement of the 1s kaonic hydrogen by the SIDDHARTA

collaboration.

One may argue that the theoretical results of the 1s kaonic hydrogen energy shifts and

decay widths derived in the work with the the local, equivalent single-channel potentials may

not reflect well the original equivalent interactions. To clear this issue, we compare the K−p

scattering lengths derived with the effective multi-channel interactions [59, 60, 64, 66, 74] with

the ones evaluated with the local single-channel potentials [75, 76] using

aK−p =
1

2
(aI=0 + aI=1) (5.35)

in the isospin symmetry limit where the mass of proton is applied for both the proton and neutron

and the mass of K− for both the K− and K̄0. Shown in Table 5.2 are the K−p scattering lengths

aK−p derived with the local single-channel potentials [75, 76] which are employed here in this

work to evaluate the energy shifts and decay widths of the 1s kaonic hydrogen and the K−p

scattering lengths ãK−p derived with the multi-channel effective interactions [59, 60, 64, 66, 74].

It is found that the average discrepancy between aK−p and ãK−p is less than 5%, much smaller

than the effect resulted from the mass difference between the K−p and K̄0n channels. One

 

 

 

 

 

 

 

 



CHAPTER 5. PIONIC AND KAONIC ATOMS 35

may conclude that the local single-channel potentials [75, 76] applied to the KN system well

approximate the original multi-channel effective interactions.

 

 

 

 

 

 

 

 



Chapter 6

Discussion and Conclusions

pD atoms, piomium and kaonic atoms are successfully studied in the work in the Sturmian

function approach, with binding energies, decay widths and especially wave functions accurately

evaluated. We summarize the main points of the work as follows:

The theoretical predictions for the energy shifts of the 2p pD atomic states are totally

out of line for all the NN potentials employed. The experimental data show that the averaged

energy level of the 2p pD atoms is pushed up by the strong interaction, the same as for the 1s pD

atoms, but the theoretical results uniquely show the averaged energy level shifting down. It is

unlikely to improve, by treating the deuteron core more accurately, the theoretical predictions of

the NN potentials in question for the 2p pD energy shifts since a more accurate treatment of the

deuteron core will lead to deeper 2p pD atomic states. All the NN potentials employed in the

work reproduce NN scattering data reasonably, but badly fail to reproduce the energy shifts of

the 2p pD atoms. The investigation of the pD atoms may provide a good platform for refining the

NN interaction, especially at zero energy since the energy shifts of the 2p pD atomic states are

very sensitive to the NN strong interactions. The research here is just a preliminary work, where

a frozen, S-state deuteron is employed. The work may be improved at two steps, considering that

the numerical evaluation is time-consuming. One may, at the first step, solve the pD dynamical

equation by expanding the pD wave function in a bi-wave basis of the Sturmian functions, where

a realistic nucleon-nucleon potential is employed but the deuteron core is assumed to be at the

S-state. Such an evaluation is still manageable at a personnel computer but it may take a week or

longer. We may compare the results of the improved work with the results here to figure out how

important an unfrozen deuteron core is. One may also consider, at the second step, to solve the

pD dynamical equation by expanding the pD wave function in a bi-wave basis of the Sturmian

36
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functions without any approximation, where realistic nucleon-nucleon and nucleon-antinucleon

potentials are employed and the deuteron core is allowed to be at both the S- and D-waves. It is

certain that the numerical calculation will take longer time but, anyway, we will do it after we

complete the first-step improvement.

The pionium has been studied in various strong interactions, which may lead us to some

points. The interaction in the meson-exchange model with the scaler coupling for the "-exchange

is unreasonably strong for the pionium system. The pionium system favors the gradient coupling

for the "-exchange, and demands a much weaker coupling for the t-channel ½-exchange. A

practical pion-pion potential may be derived from the chiral perturbation theory, which can

reproduce both the pionium and pion-pion scattering data and is applicable to other multi-pion

systems, for example, the pion gas probably produced in high-energy heavy-ion collisions. The

local pion-pion potential, which has been widely applied to the pionium system, is indeed too

strong at zero energy though it reproduces well the pion-pion phase shift data.

It is clear that except for the decay width derived with the phenomenological KN poten-

tial, all other theoretical values are much larger than the DEAR data. However, the theoretical

results for both the pure phenomenological potential and the chiral SU(3) symmetry based po-

tentials are fairly consistent with the KEK measurements, considering the large error of the KEK

values of the 1s kaonic hydrogen decay width. However, it is difficult to conclude whether the

equivalent potentials based on chiral SU(3) models are reasonable since the KEK and DEAR

data are so inconsistent each other. One may have to wait for the more accurate measurement

of the 1s kaonic hydrogen by the SIDDHARTA collaboration.
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The reaction π+π− → π+π− is studied in the non-relativistic quark model with the
3P0 quark–antiquark dynamics. The cross section of the reaction π+π− → π+π− is well
reproduced even for rather high energies.

Keywords: Pion–pion scattering; non-relativistic quark model.

1. Introduction

The study of the low and intermediate pion–pion scattering as well as other strong

interaction processes lies within the domain of non-perturbative QCD. Due to the

lack of effective methods in obtaining solutions to QCD in the non-perturbative

confinement region, we have to resort to the development of effective models. Meson-

exchange models, non-relativistic quark models and chiral perturbation theories are

among the most successful approaches in studying the strong interaction at low and

intermediate energies.

The meson-exchange models have made tremendous successes in the inves-

tigation of the nucleon–nucleon, meson–nucleon and meson–meson and nucleon-

antinucleon interactions at low and intermediate energies,1–6 and even in the study

of the elastic nucleon-nucleon scattering at high energies.7,8 The models, however,

have many free parameters involved, which is the unavoidable shortcoming of the

meson-exchange models.

The chiral perturbation theory, which is the effective field theory of the Standard

Model below the scale of spontaneous chiral symmetry breaking, has become a well-

established method for describing the low-energy interactions of the pseudoscalar

octet. Elastic pion–pion scattering at low energies is a good example of mesonic

chiral perturbation theory. A complete analytical calculation of the reaction ππ →
ππ at the two-loop order has been performed.9 However, it is difficult to use the

∗This work was supported in part by the Suranaree University of Technology grants SUT 1-105-
46-12-44 and SUT 1-105-48-36-12.
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method to describe reactions with higher energies, for example, for the reaction

ππ → ππ at an energy around the f2(1270) threshold.

In the non-relativistic constituent quark model, quarks and antiquarks are kept

as the relevant degrees of freedom whereas the interaction between the quarks, par-

ticularly the confinement, is described by effective, QCD inspired potentials. The

advantage of the quark model over the meson exchange model is based on the fact

that a large number of experimental observables can be understood qualitatively

and quantitatively by a low number of free parameters. An overview of the various

quark models with a detailed discussion can be found in Ref. 10. The processes of

meson decays, baryon decays, meson–baryon reactions and baryon–antibaryon anni-

hilations have been successfully described in the non-relativistic quark models11–17

in the 3P0 quark–antiquark dynamics which has been proven to be the dominant

Q̄Q dynamics in the non-relativistic quark models.

The reaction ππ → ππ at the isospin I = 2 channel has been successfully

studied in the non-relativistic quark model,18 where the 3P0 quark diagrams have

no contribution. We will now study the ππ → ππ reaction in the non-relativistic

quark model where the 3P0 quark diagram dominates.

2. Reaction π+π−
→ π+π− in 3P0

The success of the 3P0 quark–antiquark dynamics in studying the reactions e+e− →
π+π− and e+e− → N̄N suggests that the reactions are completely dominated by

the intermediate vector mesons.19 We may also expect that in the 3P0 quark–

antiquark dynamics, the processes shown in Fig. 1 would dominate the reaction

π+π− → π+π−, where a π+π− pair annihilates into a virtual time-like meson, then

the virtual meson decays into a π+π− pair. The transition amplitude for the two

step process takes the form

T = 〈ππ|V †
67|Ψm〉 1

E − M
〈Ψm|V23|ππ〉 , (1)

ρ, f2, f0

π−

π+

�p1

�p2

�p3

�p4

�p5

�p6

�p7

�p8

π−

π+

Fig. 1. π+π− → π+π− in the 3P0 quark model.
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where E is the center-of-mass energy of the two π system. Ψm and M are respec-

tively the wave function and mass of the intermediate mesons. 〈ππ|V †
67|Ψm〉 and

〈Ψm|V23|ππ〉 are respectively the transition amplitude of the intermediate meson

annihilation into two pions and the one of two pions annihilation into a virtual

time-like meson. Vij is the quark–antiquark 3P0 vertex defined as

Vij = λσij · (pi − pj)F̂ij Ĉijδ(pi + pj)

= λ
∑

µ

√

4π

3
(−1)µσµ

ijy1µ(pi − pj)F̂ij Ĉijδ(pi + pj) (2)

where y1µ(q) = |q|Y1µ(q̂), σij = (σi + σj)/2, pi and pj are the momenta of quark

and antiquark created out of the vacuum. F̂ij and Ĉij are the flavor and color

operators projecting a quark–antiquark pair to the respective vacuum quantum

numbers. The derivation and interpretation of the quark–antiquark 3P0 dynamics

may be found in the literature.11,12

The evaluation of the transition amplitudes of one meson to two mesons in

the quark–antiquark 3P0 dynamics is straightforward (see details in Appendix A).

There are two free parameters, the size parameter of the mesons and the effective

strength parameter λ in the quark–antiquark 3P0 vertex. The size parameter b

may be nailed down by the reaction ρ0 → e+e−, as done in Ref. 19, where we get

b = 3.847 GeV−1.

The effective strength parameter λ may be determined by the reaction ρ0 →
π+π−. The decay width of the reaction takes the form

Γ =
π

2
Mρk

(

Mπ

Eπ

)2

|Tρ→π+π− |2 , (3)

where Tρ→π+π− is the transition amplitude given in Eq. (A.5) in Appendix A. k

is the momentum of the final pion mesons in the center-of-mass system. We consider

the final pions to be rather relativistic. We associate each pion with a “minimal rela-

tivity” factor (Mπ/Eπ)1/2.2 With the size parameter b = 3.847 GeV−1, determined

from the reaction ρ0 → e+e− in Ref. 19, the experimental value Γ = 150 MeV for

the decay width of ρ0 → π+π− requires the effective strength parameter λ to take

the value λ = 2.73.

The differential cross section for the reaction a + b → c + d takes, in the center-

of-mass system, the form21

dσ

dΩ
=

vf

vi
|M(p,k)|2 , (4)

with

M(p,k) = −(2π)2
EcEd

Ecm
T (p,k) , (5)

where vf ≡ Ef /dp and vi ≡ dEi/dk are the final and initial speeds of the pions,

respectively. k and p are the incoming and outgoing momenta, respectively. The
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total cross section for the reaction π+π− → π+π−, in terms of the partial wave

transition amplitudes, is

σ = (2π)4
E2

cm

16

∑

L

|TL(k)|2 , (6)

with the partial wave transition amplitudes TL(p, k) defined as

TL(p, k) = 2π

∫ π

0

T (p,k)

√

2l + 1

4π
PL(cos θ) sin θ dθ , (7)

where θ is the angle between the momenta k and p. For the reaction π+π− → π+π−,

the partial wave transition amplitudes TL in Eq. (6) are linear combinations of the

amplitudes in the isospin basis, that is

T2n =
2

3
T2n(I = 0) +

1

3
T2n(I = 2) ,

T2n+1 = T2n+1(I = 1) ,

(8)

where I is the isospin of the ππ system.

Figure 2 shows the predictions for the cross section of the reaction π+π− →
π+π− in the diagram in Fig. 1. The dashed line is the prediction for which only

the ρ and f2(1270) mesons20 are involved as the intermediate states. There is no

free parameter in the calculation. The length parameter b of the ρ meson is fixed in

the reaction ρ → e+e− and for simplicity we assign the meson f2(1270) the same

length parameter. The effective strength parameter λ of the 3P0 quark–antiquark

0.2 0.4 0.6 0.8 1 1.2 1.4

E
cm

(GeV)

20

40

60

80

100

120

140

V
�(

m
b

)

Fig. 2. Predictions for the cross section of the reaction π+π− → π+π− in the 3P0 quark model
with the ρ and f2(1270) mesons as the intermediate states (dashed line) and with the ρ, f2(1270)
and f0(600) mesons as the intermediate states (solid line). Experimental data (solid circles) are
taken from Refs. 22 and 23.
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vertex is fixed in the reaction ρ → ππ. It is found that the prediction is reasonable

at the resonance region of the reaction π+π− → π+π−, that is the center-of-mass

energies from 0.6 to 1.4 GeV. However, it is noticed that the prediction for the low

energy region (lower than 0.6 GeV), with only the ρ and f2(1270) mesons involved

as the intermediate states, is much lower than the experimental data.22,23

The solid line in Fig. 2 stands for the model prediction where the ρ, f2(1270) and

f0(600) mesons20 are considered as the intermediate states in Fig. 1. In this work,

all the three mesons are assigned the same length parameter b = 3.847 GeV−1, as

determined in the process ρ → e+e−. We employ the effective strength parameter

λ = 2.73 for the processes π+π− → ρ → π+π− and π+π− → f2(1270) → π+π−, and

λ = 2.0 for the process π+π− → f0(600) → π+π−. It is noticed that the application

of the same strength parameter λ = 2.73 to all the three processes leads to poor

predictions for the low energy region. Although the contribution of the f0(600)

intermediate state is negligible for the higher energy region (over 0.6 GeV), the

involvement of the f0 meson is very much necessary for understanding the reaction

π+π− → π+π− at the low energy region (lower than 0.6 GeV).

3. Discussions and Conclusions

The cross section of the reaction π+π− → π+π− is well reproduced in the 3P0 quark

model in which there is only one free parameter involved. The reaction π+π− →
π+π− at higher energies is dominated by the processes π+π− → ρ → π+π− and

π+π− → f2(1270) → π+π−, while the process π+π− → f0(600) → π+π−, is the

dominant one at lower energies.

The parameters for the processes ρ0 → e+e− and ρ0 → π+π− work well with

the meson f2 but are not applicable to the meson f0(600). This may indicate that

ρ and f2(1270) are mesons of the same kind while f0(600) is something else.

Appendix A. One Meson Annihilation Into Two Mesons in the
3P0 Model

We study the reaction of one meson annihilation into two mesons shown in Fig. 3 in

the quark–antiquark 3P0 vertex of Eq. (2). The σij in the vertex can be understood

as an operator projecting a quark–antiquark pair onto a spin-1 state. It can be easily

proven that

〈0, 0|σµ
ij |[χ̄i ⊗ χj ]JM 〉 = (−1)M

√
2δJ,1δM,−µ . (A.1)

Concerning SU(2) flavor a quark–antiquark pair which annihilates into the vac-

uum must have zero isospin. So the operator F̂ij has the similar property

〈0, 0|F̂ij |T, Tz〉 =
√

2δT,0δTz,0. For the color part, we simply have 〈0, 0|Ĉij |qi
αq̄j

β〉 =

δαβ , where α and β are color indices. The transition amplitude for a meson decay

into two mesons in the 3P0 model is defined as T = 〈Ψi|V †
45|Ψf 〉, where |Ψi〉 and

|Ψf 〉 are the initial and final states, respectively. The initial state is simply the one
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ρ, f2, f0

�p1

�p2

�p3

�p4

�p5

�p6

π−

π+

Fig. 3. A meson annihilation into a π+π− pair in the 3P0 quark model.

meson wave function (WF) having the form

|Ψi〉S = NS e−
1
8
b2(p1−p2)

2

[

1

2

(1)

⊗ 1

2

(2)
]

Si

[

1

2

(1)

⊗ 1

2

(2)
]

Ti

, (A.2)

for the S-wave meson (for example, the ρ meson), and

|Ψi〉P

= NP e−
1
8

b2(p1−p2)
2

[

y1µ(p1 − p2) ⊗
[

1

2

(1)

⊗ 1

2

(2)
]

S′

]

Si

[

1

2

(1)

⊗ 1

2

(2)
]

Ti

,

(A.3)

for the P -wave mesons (for example, the f2(1270) meson), where y1µ(q) = |q|Ylµ(q̂).

We have spin Si = 1 and isospin Ti = 1 for the ρ meson (the isospin projection

Tz = 0 for ρ0), spin Si = 2 and isospin Ti = 0 for the f2(1270) meson, and spin

Si = 0 and isospin Ti = 0 for the f0(600) meson. Here we have employed the

harmonic oscillator interaction between quark and antiquark. The final state |Ψf 〉
is formed by coupling the WFs of the two final mesons. For two S-wave mesons we

have

|Ψf 〉 = NsNse
− 1

8
b2(p3−p4)

2

e−
1
8

b2(p5−p6)
2

[[

1

2

(3)

⊗ 1

2

(4)
]

S1

⊗
[

1

2

(5)

⊗ 1

2

(6)
]

S2

]

Sf ,Mf

×
[[

1

2

(3)

⊗ 1

2

(4)
]

T1

⊗
[

1

2

(5)

⊗ 1

2

(6)
]

T2

]

T,Tz

. (A.4)

The transition amplitude is derived as
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Tρ→π+π− = λ
24

33
√

3π1/4
b3/2ke−

1
12

b2k2

(−1)mY1m(k̂) ,

Tf2(1270)→π+π− = λ
24
√

3

34
√

5π1/4
b5/2k2e−

1
12

b2k2

(−1)mY2m(k̂) , (A.5)

Tf0(600)→π+π− = λ
23

34π1/4
b1/2e−

1
12

b2k2

(2b2k2 − 9) ,

where k is the momentum of the outgoing π mesons in the center-of-mass system.

Note that we have, for simplicity, set the ρ, f2(1270), f0(600) and π mesons to have

the same size parameter b, that is NS = (b2/π)3/4 and NP = (2b5/3π1/2)1/2.
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Strong interactions in pionium∗
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111 University Avenue, Nakhon Ratchasima 30000, Thailand

Pionium is investigated in various pion-pion strong interactions which reproduce well
the pion-pion scattering data. It is found that the ground-state pionium wave functions in
those realistic pion-pion strong interactions are considerably different from the hydrogen-
like one at small distance. One may suggest that some pion-pion interactions may need
to be largely improved before applied to the pion-pion atomic system.

1. INTRODUCTION

Pionium is the π+π− atomic state, bound mainly by the Coulomb force and effected by
the strong interaction between the two pions. Pionium decays predominantly into π0π0 via
strong interaction, which probes the low energy interactions of the pions, in particular, at
zero energy. It has been believed that pionium might be employed to test more accurately
the predictions of chiral perturbation theory. The investigation of pionium has recently
become of particular interest due to the pionium DIRAC experiment. The preliminary
result [1] of the pionium lifetime, based on part of the collected data, has been published

as τ1s =
[

2.91 +0.49
− 0.62

]

× 10−15 seconds.
The nonrelativistic formula of the pionium lifetime in the lowest order of electromagnetic

interactions reads [2]

Γ0 =
2

9

64π p

M3
|ψ(0)|2 |a0 − a2|2 (1)

where M is the mass of the ππ system, p is the center-of-mass momentum of the π0 in
the pionium system, ψ(0) is the 1s pionium function at the origin (r = 0), and a0 and a2

are the S-wave ππ scattering lengths for isospin I = 0 and 2, respectively.
Any reasonable prediction of the pionium lifetime in the potential model (or say, in

the quantum mechanics regime) must be based on the accurate knowledge of the wave
function of the pionium state. The evaluation of the pionium wave function has been a
challenge to numerical methods. Required is an approach, which is able to overcome the
longstanding problem, that is, accounting for both the strong short-range interaction and
the long-range Coulomb force. In this work we apply the numerical approach, which has
been successfully applied to the protonium problem [3], to study the pionium problem
here. The aim of this work is to reveal whether the pion-pion interactions, which reproduce
well the pion-pion scattering data, are applicable to pionium.

∗Supported in part by SUT grants

Nuclear Physics A 790 (2007) 402c–405c

0375-9474/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.nuclphysa.2007.03.071

 

 

 

 

 

 

 

 



2. STRONG INTERACTIONS IN PIONIUM

Since Pionium has a small π0π0 component, the coupling of the π+π− and π0π0 config-
urations must be properly treated. The dynamical equations of the (π+π−, π0π0) system
may take the general form

EΨ = (H0 + Vc + Vs)Ψ (2)

with

Ψ =

(

ψπ+π−

ψπ0π0

)

, H0 =

(

H0
π+π− 0
0 H0

π0π0

)

, Vc =

(

Vc 0
0 0

)

(3)

where Vc is the coulomb interaction between extended charges of pions. The charge
distribution of π+ and π− is described by the form factor F (q) = 1/ (1 + q2/a2), with
a = 0.77 GeV. The strong interaction matrix Vs takes, for example, for S-wave pionium
the form

Vs =

(

2
3
V 0 + 1

3
V 2

√
2

3
(V 2 − V 0)√

2
3

(V 2 − V 0) 1
3
V 0 + 2

3
V 2

)

(4)

where V 0 and V 2 are respectively the isospin 0 and 2 strong interactions of the ππ system.
The binding energy of pionium is derived as Eb = E − 2mπ with mπ the mass of π±.

The pionium problem is more difficult than other exotic problems, for example, the
protonium problem in term of evaluating their wave functions since the Bohr radius of
pionium is much larger than the one of protonium. Here we solve the pionium dynamical
equation in eq. (1) by expanding the pionium wave function Ψ in the complete basis of
Sturmian functions [4].

Table 1
Energy shift of the 1s pionium compared to the pure Coulomb interaction level.

Model B Model C Model D Model E Data

ΔE(eV ) -1.36 -2.97 -3.93 -2.87 –

τ(10−15s) 1.10 2.68 2.59 2.24 2.91+0.49
−0.62

Studied first in the work is the pion-pion interactions in the work [5], which are worked
out in the meson-exchange model and reproduce well the pion-pion phase shift data. The
work considers the contributions of the ρ-exchange in the t-channel and the exchanges of
ρ, f2 and ε (a scalar meson) in the s-channel for the very low energy pion-pion scattering.
For the ε-exchange both the scalar coupling and the gradient coupling are studied. For
our convenience, we may call the interaction with the ε scaler coupling Model A and
the one with the ε gradient coupling Model B. It is found that the pion-pion potential
in Model A supports a number of pion-pion deep bound states which have never been
observed. The deep bound states stem mainly from the large contribution of the ε scaler
coupling at zero energy. The predictions for the energy shift and the pionium lifetime in

Y. Yan et al. / Nuclear Physics A 790 (2007) 402c–405c 403c
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Figure 1. Squared 1s radial wave functions for the π+π− component of pionium. For
comparison the pure Coulomb interaction wave function is also plotted. All the wave
functions have be multiplied by a factor 108.

Model B are shown in Table 1 while the 1s radial wave function for the π+π− component
of pionium is plotted in Fig. 1 as the dash-dotted curve. The lifetime in Model B and
also in other models below is evaluated using eq. (1) with the scattering length a0 and a2

taken from [6]. Although Model B does not support any deep bound state, it is obvious
that the interaction in the model is also too strong at zero energy. The main contributor
to the pion-pion interaction at zero energy in Model B is the t-channel ρ-exchange. The
pion-pion potentials in both Model A and B reproduce very well the pion-pion scattering
data, but both of them fail to give reasonable predictions for the pionium properties.

The pion-pion interaction has been studied intensively in the chiral perturbation the-
ory (ChPT) and considerable successes have been achieved in the regime. However, the
ChPT success in reproducing pion-pion experimental data does not necessarily guaran-
tee a practical potential which is applicable to multi-pion systems where the off-shell
effects play important roles. In this work we study the pionium system in the pion-
pion potentials derived in the chiral Lagrangian [7]. In analogy to the works [8], where
meson-meson potentials provided by the lowest order chiral Lagrangian combined with
Lippmann-Schwinger equations are applied to study the reactions of γγ to two mesons and
two mesons to two mesons, and the derivation of the nucleon-nucleon interaction in chiral
perturbation theory [9], we impose a cutoff of the momentum on the pion-pion potentials
derived in the chiral perturbation theory. Devoted to Model C is the potential derived
from the tree diagram of the leading order Lagrangian L2 in [7] with the cutoff Λ = 0.1
GeV for all momenta and to Model D is the potential derived from the tree diagrams of
the chiral Lagrangian Leff = L2 +L4 +L6 in [7] with the same cutoff. Shown in Table 1
are the predictions of Model C and D for the energy shifts and lifetimes of pionium, and
the long dashed and dotted curves in Fig. 1 are the 1s radial wave functions for the π+π−

Y. Yan et al. / Nuclear Physics A 790 (2007) 402c–405c404c

 

 

 

 

 

 

 

 



component of pionium. All the parameters of the potentials are taken from the works [7].
It is found that the predictions of Model C and D are fair good with a reasonable cutoff
Λ = 0.1 GeV, hence it is possible to construct a pion-pion potential in the framework of
the chiral perturbation theory. Of course, to get a practical pion-pion potential one needs
to reproduce not only the pionium data but also the pion-pion scattering data by solving
Lippmann-Schwinger equations for both bound and scattering problems.

The last model interaction we study here is a simple, local potential which has been
widely employed for studying the influence of the hadronic interaction on pionium wave
functions [10]. The potential is independent of both the energy of the pionium system and
pion masses, and reproduce very well the phase shifts given by two-loop chiral perturbation
theory [7]. For convenience, we may call the pion-pion interaction here Model E. In
consistence with the works [10], we solve for the (π+π−, π0π0) system here the coupled
Schrödinger equations employed in the works [10].

The predictions of Model E for the energy shift and lifetime of the 1s pionium state are
listed in Table 1 while the evaluated 1s radial wave functions for the π+π− component of
pionium is plotted in Fig. 1 as the dashed curve. It is clear that the ground state pionium
wave function in Model E is considerably different from the hydrogen-like one at small
distances, and the 1s pionium lifetime is much shorter than the experimental value.

3. SUMMARY AND CONCLUSIONS

The pionium system has been studied in various strong interactions, which may lead
us to some points. The interaction in the meson-exchange model with the scaler coupling
for the ε-exchange is unreasonably strong for the pionium system. The pionium system
strongly favors the gradient coupling for the ε-exchange, and demands a much weaker
coupling for the t-channel ρ-exchange. A practical pion-pion potential may be derived
from the chiral perturbation theory, which can reproduce both the pionium and pion-
pion scattering data and is applicable to other multi-pion systems, for example, the pion
gas probably produced in high-energy heavy-ion collisions. The local pion-pion potential,
which has been widely applied to the pionium system, is indeed too strong at zero energy
though it reproduces well the pion-pion phase shift data.
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Abstract

The p̄D atoms are studied in various realistic, popular N̄N potentials. The small energy shifts and decay widths of the atoms, which stem
from the short-ranged strong interactions between the antiproton and deuteron, are evaluated in a well-established, accurate approach based on the
Sturmian functions. The investigation reveals that none of the employed potentials, which reproduce the N̄N scattering data quite well, is able to
reproduce the experimental data of the energy shifts of the 2p p̄D atomic states. The energy shifts of the 2p p̄D atomic states are very sensitive
to the N̄N strong interactions, hence the investigation of the p̄D atoms is expected to provide a good platform for refining the N̄N interaction,
especially at zero energy.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The second simplest antiprotonic atom is the antiprotonic
deuteron atom p̄D, consisting of an antiproton and a deuteron
bound mainly by the Coulomb interaction but distorted by the
short range strong interaction. The study of the p̄D atom is
much later and less successful than for other exotic atoms like
the protonium and pionium. Experiments were carried out at
LEAR just in very recent years to study the properties of the
p̄D atom [1,2]. Even prior to the experiments some theoretical
works [3–5] had been carried out to study the p̄D atomic states
in simplified p̄D interactions. Recently, a theoretical work [6]
proposed a mechanism explaining the unexpected behavior, of
the scattering lengths of N̄N and p̄D system, that the imagi-
nary part of the scattering length does not increase with the size
of the nucleus.

* Corresponding author.
E-mail address: yupeng@sut.ac.th (Y. Yan).
0370-2693/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.physletb.2007.11.085
In the theoretical sector, one needs to overcome at least two
difficulties in the study of the p̄D atom. First, the interaction
between the antiproton and the deuteron core should be derived
from realistic N̄N interactions, for example, the Paris N̄N po-
tentials [7–9], the Dover–Richard N̄N potentials I (DR1) and II
(DR2) [10,11], and the Kohno–Weise N̄N potential [12]. Even
if a reliable p̄D interaction is in hands, the accurate evalua-
tion of the energy shifts and decay widths (stemming for the
strong p̄D interactions) and especially of the nuclear force dis-
torted wave function of the atom is still a challenge. It should
be pointed out that the methods employed in the works [3–5]
are not accurate enough for evaluating the wave functions of
the p̄D atoms.

In the present work we study the p̄D atom problem employ-
ing a properly adapted numerical method based on Sturmian
functions [13]. The method accounts for both the strong short
range nuclear potential (local and non-local) and the long range
Coulomb force and provides directly the wave function of the
p̄D system with complex eigenvalues E = ER − i Γ

2 . The pro-
tonium and pionium problems have been successfully investi-
gated [14,15] in the numerical approach. The numerical method
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is much more powerful, accurate and much easier to use than
all other methods applied to the exotic atom problem in his-
tory. The p̄D interactions in the work are derived from various
realistic N̄N potential, which is state-dependent. The work is
organized as follows. The p̄D interactions are expressed in Sec-
tion 2 in terms of the N̄N interactions. In Section 3 the energy
shifts and decay widths of the 1s and 2p p̄D atomic states are
evaluated. Discussions and conclusions are given in Section 3,
too.

2. p̄D interactions in terms of N̄N potentials

We start from the Schrödinger equation of the antiproton–
deuteron system in coordinate space(

P 2
ρ

2Mρ

+ P 2
λ

2Mλ

+ V12(�r2 − �r1) + V13(�r3 − �r1)

(1)+ V23(�r3 − �r2)

)
Ψ (�λ, �ρ) = EΨ (�λ, �ρ)

where �λ and �ρ are the Jacobi coordinates of the system, defined
as

(2)�λ = �r3 − �r1 + �r2

2
, �ρ = �r2 − �r1,

Mρ = M/2 and Mλ = 2M/3 are the reduced masses. Here we
have assigned, for simplicity, the proton and neutron the same
mass M . Eq. (1) can be expressed in the form, where the strong
interaction is expressed in the isospin basis,

(3)

(
P 2

ρ

2Mρ

+ P 2
λ

2Mλ

+ VS + VC

)
Ψ (�λ, �ρ) = EΨ (�λ, �ρ)

where VS and VC stand for the nuclear interaction and Coulomb
force, respectively, and take the forms

(4)

VS = V 0
NN(�r2 − �r1) + 1

4

[
V 0

N̄N
(�r3 − �r1) + V 0

N̄N
(�r3 − �r2)

]
+ 3

4

[
V 1

N̄N
(�r3 − �r1) + V 1

N̄N
(�r3 − �r2)

]
,

(5)VC = 1

2

[
VC(�r3 − �r1) + VC(�r3 − �r2)

]
V 0 and V 1 in Eq. (4) are the isospin 0 and 1 nuclear inter-
actions, respectively. Note that we have assigned �r12 as the
relative coordinate of the deuteron core.

One may express the interactions VC and VS in Eqs. (4) and
(5) in terms of the interactions of certain N̄N states. In the
|JMLS〉 basis of the p̄D states

(6)|JMLS〉 = ∣∣(Lρ ⊗ Lλ)L ⊗ (S12 ⊗ S3)S
〉
JM

we derive(
H0 + WC(λ,ρ) + V 0

NN(ρ) + WS(λ,ρ)
)
Ψ (λ,ρ)

(7)= EΨ (λ,ρ)

with

(8)H0 = P 2
ρ

2Mρ

+ P 2
λ

2Mλ

 

 

 

 

 

 

 

WC and WS in Eq. (7) are respectively the Coulomb force and
strong interaction between the antiproton and deuteron, and
V 0

NN the interaction between the proton and neutron in the
deuteron core. WC and WS are derived explicitly as

(9)WC(λ,ρ) = 1

2

1∫
−1

dx VC(r13),

WS(λ,ρ)

(10)= 1

2

1∫
−1

dx
∑
Q,Q′

〈P |Q〉〈Q|VN̄N(�r13)|Q′〉〈Q′|P ′〉

with

(11)VN̄N(�r13) = 1

2
V 0

N̄N
(�r13) + 3

2
V 1

N̄N
(�r13),

(12)r13 ≡ |�r1 − �r3| =
(

λ2 + ρ2

4
− λρx

)1/2

where x = cos θ with θ being the angle between �λ and �ρ. In
Eq. (10) |P 〉 ≡ |JMLS〉 and |P ′〉 ≡ |JML′S〉 are as defined in
Eq. (6) while the states |Q〉 and |Q′〉 are

(13)|Q〉 = ∣∣(Lσ ⊗ S13)Jσ ⊗ (Lγ ⊗ S2)Jγ

〉
JM

,

(14)|Q′〉 = ∣∣(L′
σ ⊗ S13)Jσ ⊗ (Lγ ⊗ S2)Jγ

〉
JM

.

Here �σ and �γ are also the Jacobi coordinates of the system,
defined as

(15)�γ = �r2 − �r1 + �r3

2
, �σ = �r3 − �r1.

So defined the states |Q〉 and |Q′〉 is based on the consider-
ation that the N̄N interactions can be easily expressed in the
|Jσ Mσ Lσ S13〉 basis of the N̄N states. Note that 〈P |Q〉 depends
on not only the quantum numbers of the states |P 〉 and |Q〉,
but also λ, ρ and the angle θ between �λ and �ρ resulting from
the projection of the orbital angular momenta between different
Jacobi coordinates. We listed the integral kernels in Eq. (10),∑

Q,Q′ 〈P |Q〉〈Q|V (�r13)|Q′〉〈Q′|P ′〉, for the lowest p̄D states
in the approximation that the deuteron core is assumed in the
S-state, as follows:

|P 〉 = |P ′〉 = ∣∣2S1/2
〉
:

3

4
VN̄N

(1S0
) + 1

4
VN̄N

(3S1
)
,

|P 〉 = |P ′〉 = ∣∣4S3/2
〉
: VN̄N

(3S1
)
,

|P 〉 = |P ′〉 = ∣∣2P1/2
〉
:

F 2
1 ·

[
1

12
VN̄N

(3P0
) + 3

4
VN̄N

(1P1
) + 1

6
VN̄N

(3P1
)]

,

|P 〉 = |P ′〉 = ∣∣4P1/2
〉
: F 2

1 ·
[

2

3
VN̄N

(3P0
) + 1

3
VN̄N

(3P1
)]

,

|P 〉 = |P ′〉 = ∣∣2P3/2
〉
:

F 2
1 ·

[
3

4
VN̄N

(1P1
) + 1

24
VN̄N

(3P1
) + 5

24
VN̄N

(3P2
)]

,

|P 〉 = |P ′〉 = ∣∣4P3/2
〉
: F 2

1 ·
[

5
VN̄N

(3P1
) + 1

VN̄N

(3P2
)]

,

 

6 6



Y. Yan et al. / Physics Letters B 659 (2008) 555–558 557
Table 1
The energy shifts 	E and decay widths of the 1s and 2p antiproton–deuteron atomic states in the approximation of undistorted deuteron core. The minus sign of
the energy shifts means that the strong interaction is repulsive. The units are eV and meV for 1s and 2p states, respectively

Paris98 DR2 KW Data

	E Γ 	E Γ 	E Γ 	E Γ

2S1/2 −2445 1781 −2673 2380 −2478 2450
4SD3/2 −2680 2822 −2668 2390 −2503 2469
2P1/2 −186 584 17 896 99 657
4P1/2 265 402 47 846 101 785
2P3/2 −128 515 14 897 98 643
4PF3/2 282 477 21 887 97 648
4PF5/2 244 814 21 877 101 660
	Ē1s , Γ̄1s −2602 2475 −2670 2387 −2494 2463 −1050±250 [1] 1100±750 [1]

2270±260 [2]
	Ē2p , Γ̄2p 124 602 22 883 99 668 −243±26 [2] 489±30 [2]

 

 

 

 

 

 

 

|P 〉 = |P ′〉 = ∣∣4P5/2
〉
: F 2

1 · VN̄N

(3P2
)
,

|P 〉 = |P ′〉 = ∣∣4D3/2
〉
: F 2

3 ·
[

1

2
VN̄N

(3D1
) + 1

2
VN̄N

(3D2
)]

,

|P 〉 = |P ′〉 = ∣∣2F3/2
〉
: F 2

2 · VN̄N

(3F2
)
,

|P 〉 = |P ′〉 = ∣∣4F5/2
〉
: F 2

2 ·
[

4

9
VN̄N

(3F2
) + 5

9
VN̄N

(3F3
)]

,

|P 〉 = ∣∣4P3/2
〉
, |P ′〉 = ∣∣4F3/2

〉
: F1F2 · 1√

6
VN̄N

(3PF2
)
,

|P 〉 = ∣∣4P5/2
〉
, |P ′〉 = ∣∣4F5/2

〉
: F1F2 · 2

3
VN̄N

(3PF2
)
,

|P 〉 = ∣∣4S3/2
〉
, |P ′〉 = ∣∣4D3/2

〉
:

(16)F3 ·
[

1√
2
VN̄N

(3SD1
) + 1√

2
VN̄N

(3SD2
)]

where |P 〉 ≡ |JMLS〉 and |P ′〉 ≡ |JML′S〉 are the p̄D atomic
states. Both the p̄D and N̄N states in Eq. (16) are labelled as
2S+1LJ with S, L and J being respectively the total spin, total
orbital angular momentum and total angular momentum. The
potentials VN̄N , being functions of r13 = √

λ2 + ρ2/4 − ρλx,

stand for the N̄N interactions for various N̄N states as indi-
cated in the brackets.

The F1, F2 and F3 in Eq. (16) are functions of only λ and ρ,
taking the forms

(17)F1 =
{

1 − 1
12

ρ2

λ2 , ρ < 2λ,

4λ
3ρ

, ρ > 2λ,

(18)F2 =
{

(1 − ρ2

4λ2 )2, ρ < 2λ,

0, ρ > 2λ,

(19)

F3 =
⎧⎨
⎩ 2F

1(1,− 3
2 , 3

2 ,
ρ2

4λ2 ), ρ < 2λ,

5
8 − 3ρ2

32λ2 + Artanh( 2λ
ρ

)[ 3λ
4ρ

− 3ρ
8λ

+ 3ρ3

64λ3 ], ρ > 2λ,

where 2F
1(α,β, γ, x) is the hypergeometric function and

Artanh(x) the inverses hyperbolic tangent function.
3. Energy shifts and decay widths of p̄D atoms

It is not a simple problem to accurately evaluate the energy
shifts and decay widths, especially wave functions of exotic
atoms like protonium, pionium and antiproton–deuteron atoms,
which are mainly bound by the Coulomb force, but also effected
by the short range strong interaction. In this work we study the
p̄D atoms in the Sturmian function approach which has been
successfully applied to our previous works [14,15]. Employed
for the N̄N interactions are various realistic N̄N potentials,
namely, the Paris N̄N potentials of the 1994 version (Paris84),
1998 version (Paris98) and 2004 version (Paris04), the Dover–
Richard N̄N potentials I (DR1) and II (DR2), and the Kohno–
Weise N̄N potential (KW). In this preliminary work, we just
limit our study to the approximation of undistorted deuteron
core. However, one may see that the main conclusions of the
work are free of this approximation.

Shown in Table 1 are the energy shifts and decay widths,
which stem from the Paris98, DR2 and KW N̄N interactions, in
the approximation of undistorted deuteron core. The theoretical
results for other interactions like Paris84, Paris04 and DR1 are
quite similar to the ones listed in Table 1. The wave function of
the undistorted deuteron core is evaluated in the Bonn OBEPQ
potential [16]. It is found that the theoretical results for the 1s

p̄D atomic states are more or less the same by all the employed
N̄N potentials. The predicted energy shifts are roughly as twice
large as the experimental data. However, one may expect that
the predictions of the potentials in question could be improved
to some extent by solving the p̄D dynamical equation in Eq. (7)
without any approximation. A better treatment of the deuteron
core will yield lower 1s p̄D atomic states, hence smaller energy
shifts. The theoretical results for the decay widths of the 1s p̄D

atoms are also larger than the experimental data though not as
far from the data as for the energy shifts. The predictions for
the decay widths are also expected to be improved by treating
the deuteron core more properly.

The theoretical predictions for the energy shifts of the 2p

p̄D atomic states are totally out of line for all the N̄N poten-
tials employed. The experimental data show that the averaged
energy level of the 2p p̄D atoms is pushed up by the strong
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interaction, the same as for the 1s p̄D atoms, but the theoret-
ical results uniquely show the averaged energy level shifting
down. It is unlikely to improve, by treating the deuteron core
more accurately, the theoretical predictions of the N̄N poten-
tials in question for the 2p p̄D energy shifts since a more
accurate treatment of the deuteron core will lead to deeper 2p

p̄D atomic states.
All the N̄N potentials employed in the work reproduce N̄N

scattering data reasonably, but badly fail to reproduce the en-
ergy shifts of the 2p p̄D atoms. The investigation of the p̄D

atoms may provide a good platform for refining the N̄N inter-
action, especially at zero energy since the energy shifts of the
2p p̄D atomic states are very sensitive to the N̄N strong inter-
actions.

The research here is just a preliminary work, where a frozen,
S-state deuteron is employed. The work may be improved at
two steps, considering that the numerical evaluation is time-
consuming. One may, at the first step, solve the p̄D dynamical
equation in Eq. (7) by expanding the p̄D wave function in a bi-
wave basis of the Sturmian functions, where a realistic nucleon–
nucleon potential is employed but the deuteron core is assumed
to be at the S-state. Such an evaluation is still manageable at a
personnel computer but it may take a week or longer. We may
compare the results of the improved work with the results here
to figure out how important an unfrozen deuteron core is.

One may also consider, at the second step, to solve the p̄D

dynamical equation in Eq. (7) by expanding the p̄D wave func-
tion in a bi-wave basis of the Sturmian functions without any
approximation, where realistic nucleon–nucleon and nucleon–
antinucleon potentials are employed and the deuteron core is

 

 

 

 

 

 

 

allowed to be at both the S- and D-waves. It is certain that the
numerical calculation will take longer time but, anyway, we will
do it after we complete the first-step improvement.

Acknowledgements

This work is supported in part by the National Research
Council of Thailand through Suranaree University of Technol-
ogy and the Commission on Higher Education, Thailand (CHE-
RES-RG Theoretical Physics).

References

[1] M. Augsburger, et al., Phys. Lett. B 461 (1999) 417.
[2] D. Gotta, et al., Nucl. Phys. A 660 (1999) 283.
[3] S. Wycech, A.M. Green, J.A. Niskanen, Phys. Lett. B 152 (1985) 308.
[4] G.P. Latta, P.C. Tandy, Phys. Rev. C 42 (1990) R1207.
[5] G.Q. Liu, J.-M. Richard, S. Wycech, Phys. Lett. B 2602 (1991) 15.
[6] V.A. Karmanov, K.V. Protasov, A.Yu. Voronin, Eur. Phys. J. A 8 (2000)

429.
[7] M. Pignone, M. Lacombe, B. Loiseau, R. Vinh Mau, Phys. Rev. C 50

(1994) 2710.
[8] B. El-Bennich, M. Lacombe, B. Loiseau, R. Vinh Mau, Phys. Rev. C 59

(1998) 2313.
[9] S. Wycech, B. Loiseau, AIP Conf. Proc. 796 (2005) 131.

[10] C.B. Dover, J.M. Richard, Phys. Rev. C 21 (1980) 1466.
[11] J.M. Richard, M.E. Sainio, Phys. Lett. B 110 (1982) 349.
[12] M. Kohno, W. Weise, Nucl. Phys. A 454 (1986) 429.
[13] M. Rotenberg, Adv. At. Mol. Phys. 6 (1970) 233.
[14] Y. Yan, R. Tegen, T. Gutsche, A. Faessler, Phys. Rev. C 56 (1997) 1596.
[15] P. Suebka, Y. Yan, Phys. Rev. C 70 (2004) 034006.
[16] R. Machleidt, K. Holinde, Ch. Elster, Phys. Rep. 149 (1987) 1.

 



April 15, 2009 15:45 WSPC/Guidelines-MPLA 00026

Modern Physics Letters A
Vol. 24, Nos. 11–13 (2009) 901–906
c© World Scientific Publishing Company

ACCURATE EVALUATION OF WAVE FUNCTIONS OF PIONIUM

AND KAONIUM

Y. YAN∗, C. NUALCHIMPLEE, P. SUEBKA, C. KOBDAJ and K. KHOSONTHOGKEE

School of Physics, Suranaree University of Technology,

111 University Avenue, Nakhon Ratchasima 30000, Thailand
∗yupeng@sut.ac.th

Pionium and kaonium are studied in an accurate numerical approach based on Sturmian
functions. It is found that the ground-state wave functions of the exotic atoms in re-
alistic strong interactions, particularly for kaonium, are considerably different from the
hydrogen-like ones at small distances. The kaon-kaon scattering length derived from the

1s energy shift of kaonium by applying the Deser-Trueman formula is strongly inconsis-
tent with the one derived directly by solving the Schödinger equation. The theoretical
results indicate that it is arguable to treat kaonium perturbatively.

Keywords: Pionium; kaonium; Sturmian functions; low energy strong interaction.

PACS Nos.: 36.10.-k, 13.75.Lb

1. Introduction

Hadronic exotic atoms are bound mainly by the Coulomb force, but the strong

interaction also plays a role, leading to an energy shift from the pure Coulomb

energy and distorting the hydrogen-like wave function at short distance (a few fm).

Pionium and kaonium are among the simplest hadronic exotic atoms since they

couple to only few other channels. Pionium decays into only the π0π0 pair via the

strong interaction while kaonium decays to the ππ and ηπ channels. One may link,

after a simple calculation in the quantum field theory, the decay branching ratio

of pionium and kaonium to the corresponding scattering amplitude. For pionium

decaying to the π0π0 pair, for example, we have

Γ =
64π

M3
p

∣

∣

∣

∣

∣

∫

d~k

(2π)3
ψ1s(~k) f0(k, p)

∣

∣

∣

∣

∣

2

(1)

where M is the mass of the exotic atom, p is the momentum of the final π0, f0 is the

S-wave scattering amplitude of the process π+π− → π0π0 at zero energy, and ψ1s(~k)

is the 1s wave function of pionium in momentum space and normalized according to
∫

d~k
(2π)3 |ψ1s(~k)|2 = 1. In the approximation that the scattering amplitude f0(k, p)
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is estimated by its on-shell form f0(0, p), one derives

Γ =
64π

M3
p |ψ1s(0)|2 |f(0, p)|2 (2)

where ψ1s(0) is the 1s pionium wave function at the origin. The above equation is

just the widely referred Trueman formula.1

It is clear that the wave function of hadronic exotic atoms plays a crucial role

in linking the life time of the atoms to the scattering lengths of the corresponding

systems. For pionium, its wave function might be reasonably approximated by the

hydrogen-like one since the pion-pion strong interaction is believed to be relatively

weak, compared to other hadron-hadron interactions. But for kaonium, it could

be another story since the kaon-kaon strong interaction can be strong enough to

support deep bound states. It is arguable that the wave function of kaonium can

be well approximated by the hydrogen-like one.

The evaluation of wave functions of exotic atoms has been a challenge to numer-

ical methods. Required is an approach, which is able to account accurately for both

the strong short-range interaction and the long-range Coulomb force. The numer-

ical approach based on Sturmian functions has been found effective and accurate.

In this work we use the numerical method which has been carefully studied and

discussed in the work2 to study pionium and kaonium. The paper is arrange as fol-

lows: Pionium and kaonium are studied in Section 2 and 3, respectively. Discussion

and conclusions are given in Section 4.

2. Pionium

Pionium is mainly a Coulomb bound state of π+ and π−, coupled strongly with

π0π0 due to the strong interaction at small distance. The strong interaction between

the two pions leads to an energy shift from the Coulomb energy (E = -1.86 keV)

and a distortion to the hydrogen-like wave function at short distance (a few fm).

Pionium decays predominantly into π0π0 via strong interaction, which probes the

low energy interactions of the pions, especially at zero-energy.

Among all hadronic exotic atoms, pionium is the simplest and has been studied

the best up to now. The DIRAC experiment at CERN has been commissioned since

1998 to measure the pionium lifetime and the first results have been published

recently based on part of the collected data. The result of the pionium lifetime is

τ1S = 2.91+0.49
−0.62×10−15 seconds.3 In the theoretical sector, pionium has been studied

extensively in various models. As expected, the results of the chiral perturbation

theory is in line with the experimental data.

In the approximation of the pionium wave function ψ1s in Eq. (2) to the

hydrogen-like wave function, one derives the chiral perturbation result at leading

order

Γ =
2

9
α3 p |a0 − a2|2 (3)
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where α is the fine structure constant, and a0 and a2 are respectively the isospin

I = 0 and I = 2 S-wave scattering lengths of the pion-pion reaction. The chiral

perturbation theory has a NLO prediction for the pionium lifetime,

Γ =
2

9
α3 p |a0 − a2|2(1 + δ) , (4)

with δ = 0.058 ± 0.012.4 Inserting into Eq. (4) |a0 − a2| = 0.265 ± 0.004, the

O(p6) result of the chiral perturbation theory,5 one gets the pionium lifetime τ =

(2.9 ± 0.1) · 10−15 s.

That the chiral perturbation theory reproduces the pionium lifetime data per-

fectly implies that a pion-pion strong interaction applicable to the pion-pion dy-

namics equation in the quantum mechanism regime must give a pionium wave

function which differs not much from the hydrogen-like one. In another word, the

pion-pion strong interaction is rather weak, compared with strong interactions for

other hadronic systems, for example, the NN system.

As mentioned in the works,6,7 the evaluation of pionium wave functions is not

an easy task. It is more difficult than other exotic problems, for example, the pro-

tonium problem since the Bohr radius of pionium is much larger than the one of

protonium. Employed here is a numerical approach based on Sturmian functions.8

The numerical method is much more powerful, accurate and much easier to use

than all other methods applied to exotic atom problems in the quantum mecha-

nism regime in history. For the details of the numerical method and the accuracy

in the hadronic exotic atom problem, we refer to the works.2,8,9

In this work we have no intention to study various versions of pion-pion strong

interactions, but instead just to demonstrate the problem with one of the sim-

plest forms of pion-pion strong interactions. The investigation of pionium with

various pion-pion strong interaction models, in both local and nonlocal forms, may

be found in the work.10 Employed here for the purpose of demonstration is the

pion-pion strong interaction which has been widely employed for calculating of the

electromagnetic corrections in low energy pion-nucleon scattering and for studying

the influence of the hadronic interaction on pionium wave functions.6 The potential

is independent of both the energy of the pionium system and pion masses, and

reproduce very well the phase shifts given by two-loop chiral perturbation theory.

Shown in Fig. 1 as the solid line is the 1s radial wave function for the π+π−

component of the pionium in the pion-pion strong interaction taken from the works.6

In the calculation we have employed the non-relativistic Schödinger equation for the

(π+π−, π0π0) system where the mass difference has been considered between the

π+π− pair and the π0π0 pair. It is found that the difference is not much between

the full pionium wave function (solid line) and the hydrogen-like one (dashed line).

The energy shift is derived as ∆E1s = 3.04 eV, indicating that the energy level is

pulled down by the strong interaction, compared to the pure Coulomb interaction.

The lifetime of the pionium is estimated in the potential model to be 3.15× 10−15

and 2.35× 10−15 seconds, where the hydrogen-like and full pionium wave functions
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Fig. 1. π+π− component of full and pure-Coulomb 1s radial pionium wave functions.

are applied to Eq. (3), respectively. The theoretical results of the pionium lifetime

shows the importance of the pionium wave function in potential models or quantum

mechanics regime. It is believed that the application of Eq. (1) with the full pionium

wave function and full scattering amplitude in the pion-pion interaction6 will lead

to a pionium lifetime close to the DIRAC data.

3. Kaonium

Kaonium is the hadronic atom of K+ and K− mixed with the K0K0 component

at small distance. It is bound mainly by the Coulomb force, but affected by the

strong interaction at small distance. The kaonium can not decay into a K0K0 pair

due to the kinetic reason, but may decay into ππ and ηπ via strong interaction.

Unlike the pionium, there are few works12–15 on this exotic atom.

We study the kaonium first in the K−K+ interaction taken from the work.14

The interaction is derived under the assumption that K+K− forms quasi-bound

states in I = 0 and I = 1, which correspond to f0(980) and a0(980), respectively.

Since the interaction gives two molecular states f0(980) and a0(980), it must be

much stronger than the pion-pion strong interaction. Shown in Fig. 2 (left panel)

are both the real and imaginary parts of the K−K+ component of the kaonium in

the interaction14 (Model A). It is found that the K+K− real part of the kaonium

wave function differs considerably from the hydrogen-like one at small distance, and

also has a node at r ≈ 1.5 fm since there exist deep bound states. At small distance

the imaginary part of the pionium wave function is not negligible.

Recently there has been a work studying kaonium in the strong interac-

tion generated by vector meson exchange within the framework of the standard

SU(3)V ⊗SU(3)A invariant effective Lagrangian.15 Since the imaginary part of the

interaction is in the δ-function form which is not suitable for quantum mechanics
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Fig. 2. 1s radial wave functions of kaonium in Model A (left panel) and Model B (right panel).

calculations, we apply only the real part of the interaction to evaluate the kaonium

wave function. Shown in Fig. 2 (right panel) are the derived kaonium wave func-

tions, with the K+K− component largely different from the hydrogen-like one and

having a node at r ≈ 1.5 fm and the K0K0 part also rather large.

To see further how safe it is to approximate the kaonium wave function to the

hydrogen-like one, we compare the scattering length evaluated directly by solving

the Schrödinger equation with the one derived from the kaonium energy shifts by

applying the Deser-Trueman formula,1,11

−∆E1s + i
Γ1s

2
= 2α3 µ2 fK+K−

0 (0) (5)

where µ is the reduced mass of the K−K+ pair, ∆E1s and Γ1s are respectively the

energy shift and decay width of the 1s kaonium state due to strong interaction, and

fK+K−

0 (0) is the S-wave K−K+ scattering amplitude at zero energy.

Shown in Table 1 are the energy shifts (the second column) evaluated with only

the real part of the interactions in both Model A and B, the scattering lengths (the

third column) derived from the energy shifts listed in the second column by applying

the Deser-Trueman formula, and the scattering lengths (the fourth column) derived

directly14,15 by solving the Schrödinger equation. The negative energy shifts in

Table 1 mean that the 1s energy level is pushed up by the strong interactions. It is

found that in the same interaction the scattering length derived directly by solving

the Schrödinger equation is considerably different from the one derived from the 1s

energy shift of the kaonium by applying the Deser-Trueman formula.

Table 1. 1s kaonium energy shifts and kaon-kaon scatter-
ing lengths in unit of M−1

K
.

∆E1s(eV ) aK
+

K
−

(M−1

K
) aK

+
K
−

(M−1

K
)

Model A -548 5.7 7.8
Model B -354 3.69 2.72
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4. Discussion and Conclusions

Pionium and kaonium are studied in an accurate numerical approach based on Stur-

mian functions. It is found that the ground-state wave functions of the exotic atoms

in realistic strong interactions, particularly for the kaonium, are considerably differ-

ent from the hydrogen-like ones at small distances. The kaon-kaon scattering length

derived from the 1s kaonium energy shift by applying the Deser-Trueman formula

is strongly inconsistent with the one derived directly by solving the Schrödinger

equation. The theoretical results indicate that it might not be safe to treat the

kaonium perturbatively.
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1 Introduction

Kaonic hydrogen is mainly the Coulomb bound state of a K− and a proton but
is affected by the strong interaction at small distances. Furthermore, the strong
interaction couples the K− p state to the K̄0n, π�, π�, η� and η� channels and
results in the π� and π� decaying modes. It is believed that the study of kaonic
hydrogen effectively probes the low-energy, especially zero energy strong kaon-
nucleon interaction. Inspired by the recent precise determination of the energy
and decay width by the DEAR Collaboration [1, 2], kaonic hydrogen has been
extensively studied in the theoretical sector, mainly in effective field theory [3–7].

One may link, after a simple calculation in quantum field theory, the decay
branching ratios of kaonic hydrogen to the π� and π� channels to the corresponding
scattering amplitudes. In the rest frame of kaonic hydrogen, one has the decay
branching ratios defined as

� = 64π

M3
p

∣∣∣∣
∫

dk
(2π)3

ψ1s(k) f0(k, p)

∣∣∣∣
2

, (1)

where M is the mass of the kaonic hydrogen atom, p is the relative momentum of the
final state particles, f0 is the S-wave scattering amplitude of the processes K− p →
π� and K− p → π� at zero energy, and ψ1s(k) is the 1s wave function of kaonic
hydrogen in momentum space and normalized according to

∫ dk
(2π)3 |ψ1s(k)|2 = 1. In

the approximation that the scattering amplitude f0(k, p) is estimated by its on-shell
form f0(0, p), one derives

� = 64 π

M3
p |ψ1s(0)|2 | f (0, p)|2, (2)

where ψ1s(0) is the 1s kaonic hydrogen wave function at the origin. The above
equation is widely referred as the Trueman formula [8].

It is clear that the wave function of kaonic hydrogen plays a crucial role in
linking the lifetime or decay branching ratios of the atom to the scattering lengths
of the corresponding system. For pionium its wave function might be reasonably
approximated by the hydrogen-like one since the strong pion-pion interaction is
believed to be relatively weak, compared to other hadron-hadron interactions.
But for kaonic hydrogen it could be another story since the strong kaon-nucleon
interaction can possibly support at least one deep bound state, the �(1405) near
threshold. In this case it is arguable that the wave function of kaonic hydrogen can
be well approximated by the hydrogen-like one.

The evaluation of wave functions of exotic atoms has been a challenge to numer-
ical methods [9, 10]. An approach is required, which is able to account accurately
for both the strong short-range interaction and the long-range Coulomb force. The
numerical approach based on Sturmian functions [11] has been found effective and
accurate. In this work we use the numerical method which has been carefully studied
and discussed in [11–14] to further study kaonic hydrogen. The paper is arranged
as follows: kaonic hydrogen is studied with realistic potentials in Section 2. The
discussion and conclusions are given in Section 3.
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Fig. 1 1s radial wave functions
of kaonic hydrogen with the
interaction of [15]. The
pure-Coulomb kaonic
hydrogen wave function is
plotted as a dotted curve
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2 Kaonic hydrogen with realistic interactions

We study kaonic hydrogen first with the interaction taken from the work [15]. The
interaction is constructed by fitting the free K̄N scattering data [16], the KpX data of
kaonic hydrogen by the KEK Collaboration [17] and the binding energy and decay
width of �(1405), which is regarded as an isospin I = 0 bound state of K̄N. Since
the interaction gives one molecular state �(1405), it must be much stronger than the
strong pion-pion interaction.

Shown in Fig. 1 are both the K− p and K̄0n components of the kaonic hydrogen
with the interaction [15]. It is found that the K− p part of the kaonic hydrogen wave
function differs considerably from the hydrogen-like one at small distances, and also
has a node at r ≈ 1.5 fm because there exists one deep bound state. Also at small
distances the K̄n part of the kaonic hydrogen wave function is not negligible.

Based on the coupled-channel interaction [15], equivalent single-channel K̄N
potentials are derived with imaginary parts in energy-independent forms [18]. With
this single-channel interaction, the kaonic hydrogen is investigated in the present
work. In Fig. 2 (lower panel) we plot the various components of the kaonic hydrogen
wave function with the complex K̄N potentials [18]. One finds again that the
K− p component differs considerably from the hydrogen-like kaonic hydrogen wave
function at small distances and, again, the K̄0n component is not negligible.

The kaonic hydrogen is also studied in various versions of effective local potential
[19], which is constructed such as to reproduce the full scattering amplitude of the
chiral SU(3) coupled-channel framework. It is found that the different versions of
the potential [19] give quite similar results. The wave functions derived with the
effective potentials [19] are also similar to the one derived with the interaction of
Ref. [18]. As an example, in Fig. 2 (upper panel), we plot the various components
of the kaonic hydrogen wave function evaluated with the equivalent local HNJH
potential of [19]. In summary, the kaonic hydrogen wave function derived with the
interactions of [15, 18, 19] has a main feature that the K− p component is largely
different from the hydrogen-like one and has a node in the region from 1 to 2 fm,
and the K̄0n component is also rather large at small distances.

To further see how safe it is to approximate the kaonic wave function to the
hydrogen-like one, we compare the scattering length evaluated directly by solving
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Fig. 2 1s radial wave functions
of kaonic hydrogen: Upper
panel with the HNJH potential
of [19] and left panel with the
interaction [18]. The
pure-Coulomb kaonic
hydrogen wave function is
plotted as a dotted curve
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the Schrödinger equation with the one extracted from the kaonic energy shifts by
applying the Deser-Trueman formula [8, 20]:

�E1s + i
�1s

2
= 2α3 μ2 aK− p. (3)

In the above expression μ is the reduced mass of the K− p system, �E1s and �1s

are the energy shift and decay width of the 1s kaonic hydrogen due to the strong
interaction, and aK− p stands for the S-wave K− p scattering length.

The theoretical results are shown in the first and second rows of Table 1 for the
single-channel K̄N potential [18] and the equivalent local HNJH potential of [19],
respectively. The K− p scattering lengths aK− p in the first and second rows of Table 1
are taken from the works [18, 19] where the isospin symmetry limited is applied. For
consistence, we have also evaluated the energy shift �E1s and decay width � of the
1s kaonic hydrogen in the isospin symmetry limit where the mass of proton is applied
for both the proton and neutron and the mass of K− for both the K− and K̄0. The
negative energy shifts in Table 1 mean that the 1s energy level is pushed up by the
strong interaction since there exists one deep bound state, the �(1405). Listed in
the last column of Table 1 are the K− p scattering length (ãK− p) which are extracted
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Table 1 �E1s and � evaluated in the work with the strong interactions from [18] (first row) and [19]
(second row) and taken from [1, 2] (third row)

�E1s [eV] �1s/2 [eV] aK− p [fm] ãK− p [fm]

−268 173 −0.678 + 0.506i −0.650 + 0.420i
−248 292 −0.608 + 0.835i −0.602 + 0.709i
−194 ± 40 125 ± 56 −0.78 ± 0.15 + i(0.49 ± 0.28) −0.468 ± 0.090 + i(0.302 ± 0.135)

aK− p taken form [18] (first row), [19] (second row) and [16] (third row). ãK− p extracted from the
energy shifts and decay widths in Column 1 and 2 by applying the Deser-Trueman formula of (3)

from the energy shifts and decay widths in Column 1 and 2 by applying the Deser-
Trueman formula of (3). For comparison, experimental data [1, 2, 16] are shown in
the third row of Table 1, with the energy shift and decay width determined by the
DEAR experiment [1, 2] and the K− p scattering length aK− p by Martin [16]. The
scattering length ãK− p in the third row is extracted by the DEAR Collaboration [1, 2]
from the measured energy shift and decay width of kaonic hydrogen by applying the
Deser-Trueman formula of (3).

It is clear that with the same interaction [18, 19] the scattering length derived
directly by solving the Schrödinger equation is rather different from the one ex-
tracted from the 1s energy shift of kaonic hydrogen by applying the Deser-Trueman
formula. From Table 1 one finds that the error for the imaginary part of the extracted
scattering lengths is almost 20%, compared to the directly-derived scattering lengths
with the interactions of [18, 19].

3 Discussion and conclusions

Kaonic hydrogen is studied with various versions of realistic interaction potentials,
which are directly evaluated in the framework of a Schrödinger equation involving
in addition the Coulomb interaction. The ground-state wave function of kaonic
hydrogen, derived for various K̄N interactions, is shown to be largely different from
the hydrogen-like one at small distances. The K− p scattering length extracted from
the 1s energy shift of kaonic hydrogen by applying the Deser-Trueman formula
is strongly inconsistent with the one derived directly by solving the Schödinger
equation. Our work strongly supports the argument [6, 7] that the DEAR data of
the K− p scattering length, which are extracted with a Deser-Trueman formula from
the measured 1s energy shift and decay width, are not accurate.
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Kaonic hydrogen atoms with realistic potentials
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Kaonic hydrogen is studied with various realistic potentials in an accurate numerical approach based on
Sturmian functions. It is found that the mass difference between the K−p and K̄0n channels has a considerable
effect on theoretical results of the energy shift and decay width of kaonic hydrogen. On average, the theoretical
result in the isospin symmetry limit is smaller by a factor of about 20% than the full result where the mass
difference between the K−p and K̄0n channels is properly treated. The theoretical results based on realistic local
potentials, which reproduce well scattering data, are inconsistent with the recent measurement of the energy shift
and decay width of the 1s kaonic hydrogen state by the DEAR Collaboration.

DOI: 10.1103/PhysRevC.81.065208 PACS number(s): 36.10.Gv, 13.75.Jz

Kaonic hydrogen is mainly the Coulomb bound state of
a K− and a proton, but is affected by the strong interaction
at small distances. The strong interaction couples the K−p

state to the K̄0n, π�, π�, η�, and η� channels and results
in the π� and π� decaying modes. It is believed that the
study of kaonic hydrogen effectively probes the low-energy,
and especially zero-energy, strong kaon-nucleon interaction.
Inspired by the recent precise determination of the energy and
decay width by the DEAR Collaboration [1], kaonic hydrogen
has been extensively studied in the theoretical sector, mainly
in effective field theory [2–10].

The success of the effective field theory applied to kaonic
hydrogen makes it possible to construct equivalent local KN

potentials, which may be conveniently applied to computations
of K-nuclear few-body systems and hyper-nucleus produc-
tions [11]. The solution of the Schrödinger or Lippmann-
Schwinger equation with such an equivalent potential should
approximate as closely as possible the scattering amplitude
derived from the full coupled-channel calculation of the
effective field theory.

In this work, we study kaonic hydrogen with local
potentials, which are purely phenomenological or based on
chiral SU(3) models. The 1s kaonic hydrogen energy shift and
decay width are derived by solving the dynamical equation[

− 1

r2

d

dr

(
r2 d

dr

)
+ l(l + 1)
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− Q2 + fV

]
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Q2 =
(

q2
c 0

0 q2
0

)
, f =

(
fc 0

0 f0

)
, (2)

V = Vem + Vh, (3)

Vem =
(

V em 0

0 0

)
, (4)

Vh =
(

1
2

(
V h

1 + V h
0

)
1
2

(
V h

1 − V h
0

)
1
2

(
V h

1 − V h
0

)
1
2

(
V h

1 + V h
0

)
)

, (5)

*yupeng@sut.ac.th

R(r) =
(

RK−p(r)
RK̄0n(r)

)
, (6)

q2
c = [E2 − (Mp − MK− )2][E2 − (Mp + MK−)2]

4E2
, (7)

q2
0 = [E2 − (Mn − MK̄0 )2][E2 − (Mn + MK̄0 )2]

4E2
, (8)

fc = E2 − M2
p − M2

K−

E
, (9)

f0 = E2 − M2
n − M2

K̄0

E
, (10)

where V em is the electromagnetic potential, V h
0 and V h

1 are
respectively the isospin I = 0 and 1 strong interactions of
the KN system, and RK−p(r) and RK̄0n(r) are respectively
the K−p and K̄0n components of the radial wave function
of the KN system. Equation (1) embeds into the Schrödinger
equation the relativistic effect and the mass difference between
the K−p and K̄0n components. The relativistic modification
of the Schrödinger equation to Eq. (1) has been discussed in
Refs. [12–17].

The local potentials considered herein are the phenomeno-
logical KN potential taken from Refs. [18,19] and the various
effective potentials which are worked out in Ref. [20]. The
interaction [18,19] is constructed by fitting the free K̄N

scattering data [21], the KpX data of kaonic hydrogen by
the KEK Collaboration [22] and the binding energy and decay
width of �(1405), which is regarded as an isospin I = 0 bound
state of K̄N .

In Ref. [20], an effective local potential in coordinate space
is constructed such as the solution of the Schrödinger or
Lippmann-Schwinger equation with such a potential approx-
imates as closely as possible the scattering amplitude derived
from the full chiral coupled-channel calculation. Four versions
of effective potentials referred to as ORB, HNJH, BNW, BMN
have been constructed in Ref. [20], based respectively on the
chiral SU(3) models [3,4,8,10].

The accurate evaluation of energy shifts, decay widths, and
especially wave functions of exotic atoms has been a challenge
to numerical methods [16,23]. An approach is required which
is able to account accurately for both the strong short-range
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TABLE I. 1s kaonic hydrogen energy shift �E1s (�E0
1s) and

decay width �1s (�0
1s) derived by directly solving Eq. (1) with

(without) the mass difference between the K−p and K̄0n states
considered.

�E0
1s [eV] �0

1s [eV] �E1s [eV] �1s [eV]

AY [19] −268 312 −384 288
ORB [20] −255 534 −348 646
HNJH [20] −248 527 −336 648
BNW [20] −220 544 −288 674
BMN [20] −197 517 −297 622

interaction and the long-range Coulomb force. The numerical
approach based on Sturmian functions [24] has been found
effective and accurate. In this work, we use the numerical
method which has been carefully studied and discussed in
Refs. [24–26] to study kaonic hydrogen.

The 1s kaonic hydrogen energy shift �E1s and decay width
�1s shown in Table I are derived by solving Eq. (1) in the above-
mentioned Sturmian function approach [24–26], with the mass
difference between the K−p and K̄0n channels treated as
shown in Eqs. (1) to (10). The negative energy shift in Table I
means that the 1s energy level is effectively pushed up by the
strong interaction since there exists one deep bound state, the
�(1405). Shown in Table I are also the energy shift �E0

1s and
decay width �0

1s in the isospin symmetry limit, where the mass
of proton is applied for both the proton and neutron and the
mass of K− for both the K− and K̄0.

It is found from Table I that the theoretical results in the
approximation of the isospin symmetry limit are rather differ-
ent from the full results where the mass difference between
the K−p and K̄0n channels is properly treated, as shown in
Eqs. (1) to (10). Except for the decay width for the phenomeno-
logical KN potential [18,19], the isospin symmetry approxi-
mation largely underestimates both the energy shift and decay
width of the 1s kaonic hydrogen. On average, the theoretical
result for the energy shift in the isospin symmetry limit is
smaller by a factor of about 28% than the full result. For the
equivalent local potentials referred to as ORB, HNJH, BNW,
BMN in Table I, which are constructed in Ref. [20], based
respectively on the chiral SU(3) models [3,4,8,10], the isospin
symmetry approximation for the decay width of the 1s kaonic
hydrogen is about 18% smaller than the result where the mass
difference between the K−p and K̄0n channels is considered.

The most recent experimental values on the energy shift
and decay width of the ground state of kaonic hydrogen are,
respectively,

�E1s = −193 ± 37 (stat) ± 6 (syst) eV (11)

and

�1s = 249 ± 111 (stat) ± 30 (syst) eV (12)

obtained by the DEAR Collaboration [1]. These values
are smaller by a factor of almost 2 than the experimental
values measured by the KEK Collaboration [22], which are,

TABLE II. K−p scattering lengths aK−p derived with local
single-channel potentials [19,20] compared with the K−p scattering
lengths ãK−p (taken from Refs. [18,20]) derived with the multichannel
effective interactions [3,4,8,10,18].

aK−p [fm] ãK−p [fm]

AY [19] −0.678 + i0.506 −0.70 + i0.53
ORB [3] −0.586 + i0.844 −0.617 + i0.861
HNJH [4] −0.566 + i0.829 −0.608 + i0.835
BNW [8] −0.487 + i0.838 −0.532 + i0.833
BMN [10] −0.426 + i0.788 −0.410 + i0.824

respectively,

�E1s = −323 ± 63 (stat) ± 11 (syst) eV (13)

and

�1s = 407 ± 208 (stat) ± 100 (syst) eV. (14)

It is clear that except for the decay width derived with the
phenomenological KN potential referred to as AY in Table I,
all other theoretical values are much larger than the DEAR
data. However, the theoretical results shown in Table I for
both the pure phenomenological potential and the chiral SU(3)
symmetry-based potentials are fairly consistent with the KEK
measurements, considering the large error of the KEK values
of the 1s kaonic hydrogen decay width.

It is difficult to conclude whether the equivalent potentials
based on chiral SU(3) models are reasonable since the KEK
and DEAR data are so inconsistent with each other. One may
have to wait for the more accurate measurement of the 1s

kaonic hydrogen by the SIDDHARTA Collaboration.
One may argue that the theoretical results of the 1s kaonic

hydrogen energy shifts and decay widths derived in the work
with the the local, equivalent single-channel potentials may not
reflect well the original equivalent interactions. To clear this
issue, we compare the K−p scattering lengths derived with the
effective multichannel interactions [3,4,8,10,18] with the ones
evaluated with the local single-channel potentials [19,20] using

aK−p = 1
2 (aI=0 + aI=1) (15)

in the isospin-symmetry limit, where the mass of proton is
applied for both the proton and neutron and the mass of K−
for both the K− and K̄0. Shown in Table II are the K−p

scattering lengths aK−p derived with the local single-channel
potentials [19,20], which are employed here in this work to
evaluate the energy shifts and decay widths of the 1s kaonic
hydrogen and the K−p scattering lengths ãK−p derived with
the multichannel effective interactions [3,4,8,10,18]. It is
found that the average discrepancy between aK−p and ãK−p is
less than 5%, much smaller than the effect resulted from the
mass difference between the K−p and K̄0n channels. One
may conclude that the local single-channel potentials [19,20]
applied to the KN system well approximate the original
multichannel effective interactions.
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