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This thesis studies a new method to implement the multi-channel two
dimensional (2-D) optical wavelet transform by using wavelength multiplexing.
The proposed method uses grating to produce multiple images and takes an
advantage of the Fourier optics, where a spectrum of an object scene placed at
the front focal plane of a lens could be obtained at the back focal plane with its
spatial size inversely proportional to the wavelength of the illuminating light
source. In its optical implementation, the system is constructed by cascading
two 4-f optical setups where the first setup produces multiple images of the
input scene to be analyzed, while the second one performs multi-channel
wavelet transformations by using the Morlet wavelet. Experimental results and
computer simulations together with the analysis of the system performance are
presented. The results show that the proposed method could work in a good

agreement with the theory.
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Chapter I

Introduction

1.1 Introduction

The wavelet transform (WT) is a relatively new concept of signal
transformation. The WT has become the subject of considerable theoretical
and practical developments in a wide variety of science and engineering fields
such as turbulent flow, data compression, signal representation, fingerprint
recognition, speech analysis, image processing etc (Hubbard, 1995). The WT,
an extension of Fourier analysis, is used to overcome a problem of
simultaneous time/space-frequency representation of non-stationary signals. In
the field of signal processing, a method for analyzing non-stationary signals
by using a WT is of principal interest because use of the WT provides a multi

resolution joint time/space-frequency signal representation.

1.2 Historical Review

The WT can be computed by using either digital or optical processing.
In comparison with the optical processing, the digital calculation of the WT is
relatively slow, especially when we deal with two-dimensional (2-D) signals.
On the other hand, optical processing techniques provide a simple and

e f f e c t 1 A\ e



approach for implementing the WT for signal representations. In the field of
optics, the implementation of the WT can be easily done by using a well
known 4-f optical setup (Lu, et al., 1992). The optical wavelet
transformation's concept was first introduced in 1982 by Freysz et al., in order
to analyze fractal aggregates (Hubbard, 1995). Later several optical WTs have
been reported by different research groups (Szu, Sheng and Chen, 1992;
Medlovic and Konfoti, 1993; Mendlovic, Ouxieli, Kiryuschev and Marom,
1995; Sheng, Lu, Roberge and Caulfield.,1992; Sheng, Roberge and Szu,
1992; Lu et al., 1992; Zalevsky 1998; Widjaja, 1999).

According to the work of Sheng et al., (1992), optical implementation
of the 1-D WT was accomplished by using a bank of wavelet filters. The
wavelet filter was made of an optical transmittance mask. In order to compute
simultaneously the multi-resolution signal analysis, a bank of wavelet filters
was constructed by stacking several 1-D wavelet filters with different dilation
in vertical direction. The 2-D optical implementation of the WT by using a
computer generated multi-reference matched filter and Dammann grating has
been reported by Mendlovic et al., in 1995. The Dammann grating was used
for replicating a spectrum of the input pattern into separate channels. By using
a conventional VanderLugt correlator (Goodman, 1996) and a multi-reference
daughter wavelet synthesized as matched filter, each daughter wavelet was
processed separately. At the output plane, a set of WTs was spatially

multiplexed and simultaneously displayed in real time. However, this



approach required an accurate alignment of a reference beam used for
encoding the daughter wavelet.

In order to avoid the problem of alignment of the matched filter, the
implementation of a continuous 2-D on-axis optical WT by using white light
source has been proposed by Zeev Zalevsky in 1998. In this method, the white
light source was used as an illuminating light source. The WT was performed
by taking advantage of the nature of the Fourier optics where the spectrum
size of the input image is inversely proportional to the wavelength of the
illuminating light. Since only the mother wavelet is used, there is no problem
of overlapping between the WT output of different daughter wavelets.
Although this proposed method could perform the WT of 2-D signals, but the
multi resolution analysis could only be achieved by putting sequentially
different color filters in the output plane.

Widjaja, J. (1999) has suggested a different method for implementing
the multi channel 2-D WT. In this method, the multiple images of the input
scene were first generated by using a binary phase grating. The multi-channel
2-D WT was then performed in parallel by using a holographic lens array.
Although this method can generate a real time 2-D optical WT, but the

fabrication of the holographic lens array may not be easily done.

1.3 Purpose of the thesis

The purpose of this thesis is to study the optical implementation of the

multi channel 2-D WT by using wavelength multiplexing. The idea behind this



study is to combine the method for generation of multiple images of the input
scene (Widjaja, 1999) and the use of white light source (Zalvesky, 1998). The
wavelength multiplexing can be easily done by using polychromatic light
source. Due to unavailability of the white light source, in our proposed
method, a combination of the coherent light sources is constructed to obtain
the wavelength multiplexing. Our setup consists of two cascaded 4-f optical
setups. The first setup is used for producing the multiple images, while the
second one is for performing the multi channel 2-D WT. To obtain the multi
resolution analysis, multi color filters correspond to the desired wavelength

scales are used at the output plane.

1.4 Hypothesis

According to Fourier optics, multi-channel processing can be realized
by using the 4-f optical setup as follows: The input pattern to be replicated is
placed on the object plane. By putting a grating at the Fourier plane, multiple
images of the input pattern can be generated at the output plane. Therefore, by
cascading two 4-f optical setups, the first for the multiple imaging and the
second for the correlation operation, the multi-channel optical correlation
could be implemented. Finally, if the wavelength of the illumination light
source is multiplexed then a multi-channel 2-D optical WT could be
performed The WT output produced by a scaling with a shorter wavelength

consists of high spatial frequency components, while as for the longer



wavelength the resultant output consists of lower spatial frequency

component.
1.5 Organization of the thesis

Chapter 1 of this thesis presents the background of this research work
where the optical implementation of the 2-D WT by using wavelength
multiplexing is studied.

Chapter 2 discusses the WT 's philosophy, its definition and properties.
A Morlet wavelet, a widely used wavelet function, will be introduced. An
effect of the scaling factor on the wavelet is illustrated by using the Morlet
wavelet.

Chapter 3 discusses the fundamentals of the Fourier optics. The
discussion starts with a Fourier transform (FT) and its important properties.
The FT properties of thin lenses and the coherent optical processing with
spatial filtering will be presented.

Chapter 4 the main part of this study: the optical implementation of the
2-D WT by using wavelength multiplexing. Mathematical analysis of the
proposed method will be first presented and then followed by the experimental
verifications. The experimental results will be analyzed and compared with
the computer simulations. The system performance will also be evaluated.

Chapter 5 summarizes the thesis.



Chapter 11

Wavelet Transform

2.1 Why the Wavelet Transform ?

Mathematical transformations are used in the analysis of signals in
order to obtain a further information from the original signal that is not readily
available in its raw format. For example, when we plot a time-domain signal
we will obtain a temporal amplitude representation of the signal. This
representation is not always the best representation of the signal because some
information is hidden in the frequency content of the signal. In many cases of
signal analysis, the frequency spectrum of the signal plays an important role.
The frequency content of the signal can be analyzed by using the Fourier
transform (FT). The FT is a reversible transformation that transforms the
time-amplitude representation of a signal into the frequency-amplitude
representation and its reverse as shown in Fig. 2.1. The FT of a time signal

x(¢) is defined by (Papoulis, 1962)

X(f)= [x(0)exp(=j2myt)dt, (2.1)
while its inverse FT is given by

x(t) = [X(/)exp(j21yt)df . (2.2)



The FT gives frequency information of the signal by providing which

frequency



exists in the signal but does not reveal when this frequency occurs. This can
be clearly seen from Figs 2.2 and 2.3. Figures 2.2(a) and 2.3(a) show the

stationary cosine signal x,(¢) and the non-stationary cosine signal x,(¢),

respectively.

A Amplitude A Amplitude

FT

—>

-
nverse

FT
r '
Time Frequency

Fig. 2.1 Relationship between the FT and its inverse FT

The stationary signal x () having two frequency components of 1 Hz and 10
Hz all time can be mathematically represented as

x,(¢) = cos(2r t) + cos(2m10¢) .
The non-stationary signal x,(¢#) also consists of the same two frequency
components but these components do not exist all the time. They occur at

different times as the following:

cos(2rtt) ;0<t<1000ms
x, (1) = {

cos(2rr10¢) ;1000ms< ¢ <2000 ms
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Fig. 2.3 A non-stationary cosine signal x,(¢) (a) in time domain

and (b) its spectrum
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Although x,(¢) and x,(z) are two different time signals, but their FTs shown
in Fig. 2.2(b) and 2.3(b) give the same frequency information of 1 and 10 Hz,
where the noise between the peaks in Fig.2.3(b) coming from the nature of the
non-stationary could be neglected. Thus the FT cannot provide time frequency
information simultaneously. Note that the graph of the Fourier spectrum is
symmetric with respect to the midline of the frequency axis due to the
symmetric property of the FT of a real signal.

However, in many cases of signal analysis, non-stationary signals
whose frequencies vary with time need to be frequently analyzed. The short
time Fourier Transform (STFT) has been developed to solve this problem. The
basic concept of the STFT is to analyze small portions of the non-stationary
signal which are assumed stationary one at a time. This is performed by
multiplying the small portion of the signal by a window function. The
resulting product is then Fourier transformed in order to obtain its spectrum.
The next step is to shift this window function to the next portion of the signal
and again take the FT of the product between the signal and the window
function. The process continues until the end of the signal is reached. This
will give simultaneously time/space-frequency representation of the entire

signal. The STFT of the analyzed signal x(¢) can be mathematically expressed

as (Burrus, 1998)

STFT" (', f) = }x(t)w* (t —t")exp(~j21)dt, (2.3)
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where w(f) and ¢ are the window function and the time shift parameter,

respectively. Equation (2.3) shows that the STFT is the FT of the signal
multiplied by the shifted window function.

Although the STFT can represent time/space and frequency information
simultaneously, it has a resolution problem, since the width of the window
function is fixed once it is chosen. Thus the STFT has a fixed resolution at all
the time. According to the Heinsenberg uncertainty principle (Mallat, 1997),
the accuracy of time resolution will decrease when the accuracy of frequency
resolution is increased. Therefore, one cannot obtain accurately both time and
frequency information at once at arbitrary accuracies. Figures 2.4(a) and (b)
show time and frequency resolution of the narrow and the wide window
functions, respectively. The narrow window function gives a good time
resolution and poor frequency resolution, while the wide window produces
poor time resolution but good frequency resolution.

In order to overcome the above limitations of the STFT, a multi-
resolution signal analysis by using the WT was developed. The WT is a
method for analyzing non-stationary signals with variable resolution as shown
in Fig. 2.5. The WT gives good time resolution and poor frequency resolution
at high frequencies, while it gives good frequency resolution but poor time
resolution at low frequencies. We define the wavelet transform in the next

section.



Frequency

Time

(a)

Fig 2.4 Time-frequency plane of STFT for (a) narrow

and (b) wide windows (Burrus et al., 1998)

Frequency
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Frequency

Time

Fig. 2.5 Time-Frequency plane of the WT (Burrus et al., 1998)

2.2 Definition of Wavelet Transform

For image processing purposes, the 2-D spatial signal f(x,y)

frequently used and its WT is defined as (Burrus et al., 1998)

18
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00 00

W,.(a,,a,b,b,)= I I F O aaps, (X, y)dxdy, (2.4)

—00—00

where a, and a, are the scaling factors along the horizontal and vertical
directions, respectively, while b, and b, are the translation parameters along

the horizontal and vertical directions, respectively. Here h'uauss, (x,y) is the

complex conjugate of the daughter wavelet derived from the mother wavelet

h(x,y) by dilation and translation:

b, e b,
aabb(xy)_\/— EK H (2.5)

Equation (2.4) shows that the WT can be seen as taking the correlation

between the original signal f(x,y) and the daughter wavelet function
haxaybxby (x,»). In many cases, a symmetrical scaling factor a =a, =a, is widely

used. By using the symmetrical scaling factor Eq. (2.5) becomes

- -b
By, (%.9) :éhg’%,ya y% (2.6)

According to Eq. (2.6), when a <1, the mother wavelet /(x,y) is compressed,

while a >1 gives a dilation operation. The factor 1/a corresponds to the

normalization factor. In frequency domain, the WT can be written as

0 ©co

W(a,b,.b,) = aI J'F(u,v)H*(au,av) exp{j2m(bu +b,v)}dudy, (2.7)

where F(u,v) and H (au,av) are the FTs of f(x,y) and the daughter wavelet,

respectively.

2.3 The Morlet Wavelet
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The field of signal processing widely uses the Morlet wavelet. The
Morlet wavelet was developed by Jean Morlet, a geophysicist with the French
oil company Elf-Aquitaine, as a tool for oil prospecting (Hubbard, 1995). It is

a cos-Gaussian function (Mendlovic et al., 1995)
2 24172 (x2 + yz)
h(x,y) =cos[ 217, (x" + y~) "~ Jexp ET— (2.8)

where f, is the center frequency of the wavelet. The Fourier spectrum of the

Morlet wavelet can be written as

H(u,v) = 2mmexp{-2m°[(u*> +v*)"* = £, T’}. (2.9)

Table 2.1 illustrates the effect of the scaling factor in spatial/time and
frequency domain of the Morlet wavelet. The use of a small scale produces a
narrow width of the window function, while a large scale gives a wider width
of the function. In the frequency domain, the effect of scaling can be
explained as follows: According to the property of the FT, the narrow width of
window caused by the small scaling parameter provides a higher frequency
response in comparison with the use of the larger scaling parameter. We can
see that the peak of the both spectra in table 2.1 are not the same, depending
on the normalization constant 1/a in Eq. (2.6), in such a way that when the
wavelet function is compressed, its height will be lower in comparison with
the dilated version.

Table 2.1 Morlet wavelet and its spectrum
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Chapter 111

Fourier Optics

3.1 Introduction

Fourier optics is widely used for processing of 2-D optical data or
images. In Fourier optics, the principal components of optical processors are
often a combination of several thin lenses and a light source where the FT is
spatially performed by each thin lens. The optical signal processors can be
either coherent or incoherent, depending on the type of source used. Recently
many scientists are interested in using optical processing because it can
perform parallel processor and achieving 3-D interconnection.

The concept of the optical processor is based on the diffraction effect,
caused by the deviation of propagated light beam from its predicted
geometrical optics (Jenkins and White, 1976). There are two distinct types of
diffraction: Fraunhofer and Fresnel. The Fraunhofer diffraction is used when
the distance of a light source from the diffracting aperture and the distance
between the observation plane and the aperture are effectively infinite, while
the Fresnel diffraction is used when these distances are finite (Jenkins and
White, 1976). In both cases, the field distribution in any position must derived

by using the diffraction theory.
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The coherent optical processor can be performed by using a well known
4-f optical setup (Goodman, 1996). The spatial filtering can be performed by
inserting a spatial filter in the Fourier plane of the 4-f optical setup. Stops and
slits are typical example of such filters. The transmittance of stops and slit

represent zero and unity, respectively (Karim, 1990).

3.2 Fourier Analysis in Two Dimensions

3.2.1 Definition

In Section 2.1, the FT has been defined for the 1-D signals. However
in the field of optics and image analysis, we deal mostly with the 2-D spatial
patterns. Therefore, in order to have a better understanding of our study, it is

important to define mathematically the FT of the 2-D pattern f(x,y) as

(Goodman, 1996)

E(f )= [ [ y)expl=j2n(f.x + f,y)ldxdy . (3.1)

—00—00

Its inverse FT can be written as

fy)= [[F( f)expli2n(fx+ f,v)ldf . df, - (3.2)

—00—00

Here, f, and f, are the number of waves per unit length or the spatial

frequencies in the x and y directions, respectively.
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3.2.2 Fourier transform theorems

In this section, the basic properties of the FT are reviewed as follows:

3.2.2.1. Linearity theorem.
Flag + Bg} =a F{gi+BF{h}. (3.3)
Equation (3.3) shows the FT of a weighted sum of two or more functions, can
be simply found by the identically weighted sum of their individual

transforms. Here, the symbol "F " denotes the FT operator.

3.2.2.2. Similarity theorem. If F {g(x,y)} = G(f,, f,), then

F{g(ax,by)} ZQG%,%E (3.4)

This theorem shows that a scaling of the signal g(x,y) in the space domain

results in an inverse scaling in the frequency domain, and also changes the
amplitude of the spectrum.

3.2.2.3. Shift theorem. If F{g(x,y)}=G(f,,f,), then
Figlx—a,y=b)} =G(f,. [, exp[-j2n(f.a + [ b)]. (3.5)

Equation (3.5) shows that a translation in the space domain gives a linear

phase factor in the frequency domain.

3.2.2.4. Rayleigh ' s theorem (Parseval ' s theorem). If F

(8(6 1)} =G(f,.f,), then

[ fleCeydsdy = [ (G, dr.a, (3.6)

—00—00 —00—00
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This theorem shows that the energy contain in the signal g(x,y) represented

by the integration on the left term is equal to the energy density in the

frequency domain on the right term.

3.2.2.5. Convolution theorem. If F{g(x, )} =G(f,,f,) and F{A(x,y)

=H(f.,f,), then

I:IDO [e0]
FD”g(E,n)h(x—E,y—n)dfdn%: F{g(x,») 0 h(x,y}
(1% 2 =

=G(fo, fOH(f 5 1)) (3.7)

where the symbol " [1" denotes the convolution operator (Papoulis, 1962). The
FT of the convolution of two functions in the space domain is equivalent to
the multiplication of the Fourier spectrum of each individual function.

3.2.2.6. Autocorrelation theorem. If F {g(x, )} =G(f., f,), then

F E} }g(fa"l)g*(f - x,n - )/)a’fdn%: F{g(x,y) O g*(—x,—y)}
Fes &

=G(f,,./,)G (f.. )

2
=G ) - (3.8)
This theorem may be regarded as a special case of the convolution theorem in

which g(x,y) and its complex conjugate g (—x,—y) are convolved.

3.2.2.7. Cross correlation theorem. If F{g(x,y)} =G(f,,f,) and F

h(x,y); = H(f,,[,), then
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F E} }g(f,n)h*(f - x,n - y)d&dn %: F {g(x,y) 0 h*(—x,—y)}
et g

=G(f. [H (f,, /) (3.9)

We can seen that the correlation output can be found by using the convolution
operation.
3.2.2.8. Fourier integral theorem. This theorem points out that for

each point of continuity of g,
-1 __ -1 _
FF g, )i =F Fig(x )} =g(x,»). (3.10)

This theorem shows the successive transformation and inverse transformation
of a function. The expression in the Eq. (3.10) is satisfied for every
continuous points, while at a discontinuous point, two successive transforms

replace g(x) by the average values of g in a small neighborhood of that point

The above theorems are frequently used in order to find solutions of
Fourier analysis problems. These basic properties of the FT will also be used
for realizing the WT because the WT could be considered as the convolution
of the input signal and the wavelet function. The convolution theorem that
relates the spatial and frequency domain information is the main technique for
performing the optical signal processing and the optical WT. The Fourier

integral theorem (3.2.2.8) shows that the FT is a reversible transform. In the
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field of optics, the performance of the FT and its inverse can be clearly shown

in the 4-f optical setup.

3.3 The Huygens-Fresnel Principle and Diffraction

Theory

In order to find the field distribution under the diffraction theory, the
Huygens-Fresnel principle is used (Goodman, 1996). Figure 3.1 shows the
geometry for finding the field distribution at the observation point due to a
diffracting aperture. Let us assume that the diffracting aperture lies in the
plane (&,n) with the area size of X, while the observation is being made at the
plane (x,y), which is parallel to the (¢,n) plane at normal distance z from the
aperture. The vector position pointing from the observation point Py to a point

on the diffracting aperture P, is represented by 7,. n is the outward normal

vector at point Py, while 0 is the angle between the outward normal 7 and the

vector 7.

Fig. 3.1 Diffraction geometry
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The expression of the field distribution at the observation point U(F,)
in the term of the field distribution at the diffracting aperture U(F) is defined

as

U(P)—— I!U(P)eXp(]krm)cosGds, (3.11)

01

The distance of the vector 7, between the observation point and a point in a

diffracting aperture can be found by

=2 (=& +(y-n)* . (3.12)

From the Fig. 3.1, the term cos@ is given by

cosg:i, (3.13)

To1

therefore the Huygens-Fresnel principle in Eq. (3.11) can be rewritten as

U= f U U)Mdf dn. (3.14)

To reduce the Huygens-Fresnel principle to a more simple and usable

expression, the binomial expansion is applied to approximate the distance 7,

between Py and P; (Goodman, 1996)

01~zﬂ+—H’C—S Bﬂgé (3.15)

1
8 20 z 20 =z
By applying the binomial expansion, Eq. (3.14) reduces to

Ute) =S8 [ fu@menlyole-87 + 0 Jdean G.16)

—00—00
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The superposition integral is subject to infinite limits due to the boundary

conditions and U(¢é,n) is nonzero only within the aperture. Eq. (3.16) can be

considered as the convolution

00 00

U(x.y) = [ [UEMAGx =&y =mdE dn, (3.17)

—00—00

with the convolution kernel

_ exp(jkz) Djk
h(x,y) = ——— Az E(X ty )E (3.18)

By expanding these quadratic terms, the field disturbance at point P, can thus

be expressed as

) =2 exp g L (52370 [UGE Moo 3@ )
k
xexpprjo (e + ypgEdn. (3.19)

If the phase factors outside the integration in Eq. (3.19) are not the main

consideration, the field distribution at Py can be found by taking the FT of
U(E,mexp[jmé* +n°)/(Az)], provided the spatial frequencies are given by
f.=x/Az and f, =y/Az, respectively, with the wave number k =27/

Under the so-called Fresnel approximation, either the source or the
observation point is close enough to the diffracting aperture so that the
wavefront curvature is not negligible. However there is a second type of
diffraction referred to as the Fraunhofer diffraction. It is realized when the

distances between the source and the diffracting aperture and between the
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aperture and the observation point are both very large (Jenkins and White,
1976). Thus in the Fraunhofer diffraction, the curvature of both the incident
and diffracted waves is negligible. The Fraunhofer diffraction is obtained if

the condition (Goodman, 1996)

2 2
z >> Maxg-[mg

(3.20)
o A 0O
is satisfied. In this case the quadratic phase factor of Eq. (3.19) reduces to

unity, thus Eq. (3.19) becomes

Ux,y) = exp(jkz)

eXpEy' k (xz+y2)D
: — 0
JAz 02f 0

x [ [UEmexpl=j2m(f,& + f,mldédn . (3.21)

—00—00

Consequently under the Fraunhofer approximation, the field at Py is

obtained simply by taking the FT of U(&,n), and evaluated at spatial
frequencies: f, =x/Az and f, = y/Az. The Fraunhofer diffraction happens to

be a special case of the Fresnel diffraction. The analytical expression derived
thus can be used to predict the field amplitude distribution across the
diffraction pattern for any given aperture. The square of the amplitude can be
used as its corresponding intensity distribution. The intensity distribution is
more widely used in optical measurements since it corresponds to what would

be detected by any detector, including our eyes.

3.4 Fourier Transform Properties of Lenses
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It was stated earlier that the lens functions as an important element
of the optical data processor. In this section, we concern with the effect of the

thin lens on an input optical beam.

3.4.1 The thin lens as phase transformation

The lens is composed of an optically dense material, usually glass
with a refractive index of approximately 1.5 (Goodman, 1996), in which the
propagation velocity of optical disturbance is less than the velocity in air. The

lens is said to be thin if a ray entering at coordinates (x,)) on one face exits at
approximately the same coordinates on the opposite face, i.e. if there is
negligible translation of a ray within the lens. Thus the thin lens simply delays
an incident wave front by an amount proportional to its thickness.
According to Fig. 3.2, A, represents the maximum thickness of the
lens on its axis, while A(x,y) represents the thickness at coordinates (x,y).
The total phase delay introduced by the wave at coordinates (x,y) in passing
through the lens may be written as
@(x,y) = knl(x, y) + k[A, —A(x, )], (3.22)
where n is the refractive index of the lens material. knA(x,y) and
k[A, —A(x,y)] are the phase delays introduced by the lens and the region of
the free space between the two planes, respectively. The phase transformation

of the lens #,(x,y) can be expressed by

t,(x,y) = exp[jkD, Jexp[jk(n = DA(x, y)]. (3.23)
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If U,(x,y) and U,(x,y) represent the complex fields incident on a plane

immediately in front of the lens and the complex field across a plane
immediately behind the lens, respectively, the relationship of these two

complex fields can be expressed as
Ui(x,y) =1,(x, U, (x, ). (3.24)
We need to find the mathematical expression of the thickness function A(x,y),

in order to see the effect of the lens.

Ay
A(x,y)

ey
b
o

(a) (b)
Fig. 3.2 The thickness function. (a) Front view, (b) side view

(Goodman, 1996)

3.4.2 The thickness function

Before specifying the forms of the phase transformations introduced by

a many types of lenses, we first define a sign convention: as rays travel from
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left to right, each convex surface is taken to have a positive radius of
curvature, while each concave surface is taken to have a negative radius of
curvature. Thus in Fig. 3.2(b) the radius of curvature of the left-hand surface
of the lens is a positive number R,, while the radius of curvature of the right-
hand surface is a negative number R,. To find the thickness A(x,y), the lens

is split into three parts, as shown in Fig. 3.3 and the total thickness function

can be written as the sum of three individual thickness functions,
Alx,y) =D, (x,y) + A, (x,y) +A5(x, ). (3.25)
By considering the geometry in Fig. 3.3, the thickness function A, (x,y) can be

written as

Al(xay):Am_(Rl_VRlz_xz_yz)
2 2
=D, -RH- -2 d (3.26)
R; H

The second component comes from a region of glass of constant thickness

A,,. And the third component is given by

A;(x,y) =0y — (R, +VR22 -x’ _yz)

2 2
:A03+R2E— eSS (3.27)

R; H
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(x,y) f

\
Ap2

“= Ry-/Ry2-x2-y2

- e — -

Apq

(a) (b)

H2 |
/ i
I

Ra/Rp2 x2y2 /

A03 _

(c)
Fig. 3.3 Calculation of the thickness function (a) geometry for A,

(b) geometry for A,, (c) geometry for A, (Goodman, 1968)

Consequently the total thickness A(x,y) can be found by combining the three

thickness components as

A(x,y):AO—RIE— 1—"2”2%&%— -5ty E (3.28)

where A, =A), +A, +4;.
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3.4.3 The paraxial approximation

The expression of the thickness function can be simplified if analysis is
restricted to portions of the wavefront that lie near the lens axis: the paraxial
approximation is concerned. Thus we will consider only the values of the

coordinates x and y which are sufficiently small to allow the following

approximations to be accurate:

- _¥ +y (3.29)

x +y x +y
/ . 3.30
R; 2R; ( )

In this way, the spherical surfaces of the lens are approximated by parabolic

surfaces. Therefore the thickness function becomes

x*+y* 1 1
A(x,y)=4A, - ER———E (3.31)
’ 2 1 R2

3.4.4 Phase transformation and its physical meaning

Substitution of Eq. (3.31) into Eq. (3.23) gives the following

approximation to the lens transformation:

. i x
t,(x,y) =exp[ jknlA,]expt jk(n—1)
0

y’Hl 1
% R2% (3.32)
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The physical properties of the lens which consists of the variables n, R, and
R, can be combined in a single number f called the focal length. The focal

length of the lens is defined as

Lol _ 1
R

If the constant phase factor is neglected, the phase transformation may be

written as
0 .k O
t,(x,y)=expT j—(x" + ) (3.34)
0" 2f |

This equation will serve as the basic representation of the effect of a thin lens

on an incident optical disturbance. If the field distribution U, in front of the

lens is unity, then a substitution of Eqgs. (3.34) into (3.24) yields the following

expression for U, behind the lens:

, O .k O
U/(x,y)=expTj—(x" +y°)Qg (3.35)
0" 2f 0

This expression can be interpreted as a quadratic approximation to a spherical
wave. If the focal length is positive, then a spherical wave is converging

towards a point on the lens axis at a distance f behind the lens, while for a
negative focal length, the spherical wave is diverging from a point on the lens
axis at a distance f in front of the lens as illustrated in Fig. 3.4. Thus the lens
with the positive focal length is called as the positive or converging lens,

while the negative focal length is called as the negative or diverging lens.
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f=0

(b)
Fig. 3.4 Effects of (a) a converging lens and (b) a diverging lens on a normally

incident plane wave (Goodman, 1996)

3.4.5 Fourier transformation by a positive lens

The arrangement for performing the FT operation by using the positive
lens is shown in Fig. 3.5. The input transparency having an amplitude

transmittance ¢,(x,y) is placed a distance d in front of the converging lens

with the focal length of f. The input transparency is illuminated by a
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monochromatic plane wave of amplitude A. The field distribution transmitted
by the input transparency is

U =At,. (3.36)

Input

Fig. 3.5 The geometry for performing the Fourier transform by

a positive thin lens

Due to the finite extent of a lens can be expressed in terms of the pupil

function P(x,y):

1 ; inside the lens aperture
P(x,y) =

0 ; otherwise.
(3.7)
The derived field distribution is limited on this function. Let F,(f,,f,)

represent the Fourier spectrum of the light transmitted by the input

transparency, and F;(f,,f,) represents the Fourier spectrum of the light

incident on the lens U, ; that is

Ey(foo f,)=F {42}
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E(f. f,)=F{U,}
Assuming that the light propagation over distance d is valid for the Fresnel or
the paraxial approximation, then relationship between the F, and F, can be
expressed as
Fi(for f,) = Fy(fo f, ) exp(jkz)exp[=jmM (f7 + f1)], - (3.38)
where the exponential term corresponds to the transfer function of propagation

through free space over distance d. If the constant phase factor is dropped,

Eq. (3.38) becomes
Fi(for f,) = Fo(foo f) expl=jmMd (f + )] (3.39)
To find the field distribution U, (u,v) in the back focal plane of the lens, the

Fresnel diffraction formula in Eq. (3.19) is used. By neglecting the finite
extent of the lens, letting P =1 and setting z = f, we obtain

O O

exp Ey'zk(u2 +v?)

___ O Up (v
Uf(lxl,V)— ]Af Fl(/\f,Af)’

(3.40)

where f, =u/Af and f, =v/Af. By substituting Eq. (3.39) into Eq. (3.40), we

have
k d. ..
explj ——(A-—)u +v7)]
_ 2f _f u v
U, (u,v)= Y FO(/\f’/\f)
or

explj X (1= Dy +v2)]

U, (u,v) = L jm{
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[ U
<[t it ErmEan. 341

It is now clear that the distribution of amplitude and phase at the back focal
plane (u,v) are again related to the spectrum of the input image. For the
special case d = f, the quadratic phase factor which precedes the integral

vanishes. Evidently when the input image is placed at the front focal plane of

the lens, the phase curvature disappears, leaving the exact FT relation as

U, (u,v) = —”r (&.mexp[- J—(Eu+nv)]dédn

—00—00

- L pR ,LE (3.42)
NN

Equation (3.42) shows that the spectrum of the input transparency ¢, is
actually a function of the wavelength of the illuminating light. By varying the
wavelength, scaling of the size of the spectrum could be achieved.

Furthermore, in case of a polychromatic light, Eq. (3.42) can be rewritten as

S()

Uy == | [ra&. n)exp[-J—(Eu +nv)|dg dn

—00—00

_sA) E{\i L% (3.43)
M IR N

where s(A) represents the spectral distribution of the polychromatic light.

Thus, multi-scaled spectra of the input transparency can be simultaneously

obtained by using the polychromatic light. This interesting characteristic of
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the optical FT has been employed by Zeev Zalvesky (1998) for the optical

implementation of the 2-D WT.

3.5 Coherent Optical Information Processing System

with Spatial Filtering

The performance of the optical system is often characterized by its
impulse response. The impulse response can be defined as the output of the
system to which an impulse signal is applied. The impulse response function
can be used to estimate the output characteristics of the system for every input
signal.

Let the impulse response of an optical system be described by #4(x,y),
where the image plane is in the xy plane. Consider a distributed source that is
positioned in the object plane. A distributed source can always be considered
as an ensemble of an infinite number of point sources. For simplicity, let the
amplitude due to all of these point sources at (£,1) be represented by u, (&,n).

The resultant output field amplitude is obtained by adding the amplitude

contributed by all constituent point sources

u,(x,y)= jjun(é,n)h(x —-&,y—-n)dédn

—00—o00

=u,(x,y)Uh(x,y). (3.43)
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Accordingly, the amplitude of the output image for any input can be

determined from the impulse response A(x,y). The output intensity
distribution of a coherent optical system is found by

10x6,) =|u, (x, ) O h(x, )| (3.44)

The FT of the impulse response H(f,,f,) is referred as the amplitude

transfer function (OTF). By using the convolution property of the FT in Eq.

(3.7), Eq. (3.42) can be rewritten as
U,(/.. £,)=U,f. [H(S S 1)) (3.45)
where U,(f,.f,) and U,(f,,f,) are the FTs of wu,(x,y) and u,(x,y),

respectively. The OTF is thus obtained simply as

Ui/, 1))

. 3.46
U,/ ] (3:40)

H(f..f,)=

A spatial frequency filtering is an information processing operation in
which certain desired spatial frequencies of an input image are removed or
modified by spatial filters placed at the Fourier plane of the optical processor.
Consider the coherent optical information processing system as shown in Fig.
3.6, where a coherent beam diverging from a pinhole spatial filter placed at
the front focal plane of a lens L; beam is collimated. This collimated beam is
used to illuminate the input object. A lens L, performs the FT of the input
image, which is located at its front focal plane. The frequency spectrum of the
input appears at the back focal plane of the lens L, which is referred as the
Fourier plane. The output image is obtained by retransformation the Fourier

spectrum by a lens L;. Such a system can be referred as the 4-f optical setup
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due to the length of the system is equal to four focal lengths. In order to
perform the spatial filtering, the spatial filter must be inserted in the Fourier
plane. The filtered output image appears at the output plane. The filter can be
fabricated either as a real optical transmittance mask or as a holographic

matched filter (Mendlovic et al., 1995).

Pinhale

==Y

}-—ﬁ—-! I——J:—*——f.-——ld—f-.—c—‘-'—ﬁ

Object Fourier
plane plan:

<

4

Fig. 3.6 A coherent optical information processing system (Karim, 1990)



Chapter IV

Multi-channel 2-D Optical WT

4.1 Introduction

In Chapter III, it has been shown that the spectrum of any object could
be scaled by varying the wavelength of the light source. Our study takes an
advantages of this scaling property of the wavelength of light as Zalvesky did.
However, our study has a better performance in that the multi-resolution 2-D
WT is simultaneously generated. Although automatic variation of the
wavelength, the so-called wavelength multiplexing, could be done by the
white light source, we instead use the combination of the red and green He-Ne
lasers as light sources for experimental verifications since a light source was
unavailable during the time this research was being conducted. Two cascaded
4-f optical setups are used for producing multiple images of the input scene to
be analyzed and for the multi-channel 2-D WT. In the experiments, the Morlet
wavelet and the roseta pattern are used as the analyzing wavelet and the input

object, respectively. The experimental results are verified by using Matlab.



4.2 Multi-channel 2-D Optical WT by Using
Wavelength Multiplexing

4.2.1 Generation of the multi-channel images by 2-D
gratings

Figure 4.1 shows the two cascaded 4-f optical setups. The first setup is
used for producing the multiple images, while the second one is for
performing the multi-channel 2-D WT. The input object u, (x,,»,) placed at a
front focal plane of a Fourier transforming lens L1 is illuminated by a
collimated light beam having a spectral width AA. Its Fourier spectrum

U, (u,v,) is diffracted by the 2-D grating positioned immediately behind

plane P2.
< Multi.ple_> Multi channel |
Imaging 2-DWT
Pl p2 Grating p3 P4 P5
N <
AL —>
—> | fVUf] f i f

> > > > <> > > <>
L2 multipleL3 L4
images

Fig. 4.1 Two cascaded 4-f optical setups

In order to reduce the complexity of the mathematical representation, the

sampling theory of the grating is expressed as (Widjaja, 1999)
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gluy,v) =Y, D 8(u, —mAu,)8(v, —nAv,). (4.1)

m=—N n=N
Here, Au,and Av, are the spatial frequencies of the grating in the horizontal
and vertical directions, respectively. The next equation, equation (4.2),
represents the 2-D comb function shown in Fig. 4.2. The optical field behind

the grating represented by O(u,,v,) can be expressed as

O(uy,v) =U,, (u;,v) i i6(“1 —mAu,)6(v, —nAv,). (4.2)

m=—N n=—nN
This may be considered as the product of the Fourier spectrum of the input
function U, (u,,v,) with the 2-D comb function. By using the Fourier
transform property of Eq. (3.7), the multiple images of the original input

object are obtained at the plane P3 as

N N
wy, (X5, 9,) =, (X5, ,) ® 2 25(x2—mAx2)5(y2—mAy2)

m=—N n=—N

N N
= ) D u,(x, —mAx,, y, —nAy,). (4.3)
m=—N

n=-N
Equation (4.3) shows that the multiple images are generated by the
convolution of the original input image with the FT of the 2-D comb function.
Here, Ax, and Ay, corresponding to the distance between centers of the
generated images in the horizontal and vertical directions are inversely
proportional to Awu, and Av,, respectively. This could be explained by
considering a general diffraction effect of the 1-D grating shown in Fig. 4.3.
The = first orders of the diffraction are separated from the zero order term by

the distance



Ax, =Az/d,

4.4)

where A and z are the wavelength of the light and the distance between the

grating and the observation plane, respectively. d is the spacing of the

grating.

Fig. 4.2 2-D comb function

By taking the grating spacing and the setup into consideration, the distances

between the generated images in the horizontal and vertical directions equal to

1

U,

Ax,=—=Af/d

and

Ay, = —afid.

Vi
Therefore Eq. (4.3) can be written as

, LR A
u, (X,,¥,) = 2 ”m(xz_mjf
N

m=—N n=—

A
9y2 _nz’ f)

7 .

(4.5)

(4.6)

(4.7)



It is clear that the position of the resultant multiple images depends on the
wavelength of light illumination. The longer wavelength generates wider
distance between the zero and the first order of the multiple images in

comparison with the shorter one.

> // +15t order

Plane 1 Ax
4(: 2
Wave vd ot order
/]
> 1 4
-1 order
1-D grating z

Fig. 4.3 The diffraction order of the grating

4.2.2 Multi-channel WT by using wavelength
multiplexing

After the generation of the multiple images by the method described in
Section 4.2.1, u, (x,,y,) is Fourier transformed by lens L3. Its generated

spectrum can be written as



Ui,n(uZ’VZ) = j {u;n(x2’y2)}

—j{z Zum(xz—m/l—f V) — g} (4.8)

m=—N n=—

At the back focal plane of L3, the wavelet filter H(u,,v,) is inserted, so the

optical field at this plane is the multiplication of the spectrum of the multiples
images with the wavelet filter as

O(u,,v,)=U, (u,,v,)H(u,,v,)

{2 2 um(xZ—m f Af }H(uZ,vz) (4.9)

By Fourier transforming O(u,,v,) using a lens L4, the optical field at the

output plane P5 can be expressed as

Uy (X3,13) = j{Ui,n (uy,v,)H (u, 7V2)}

N N
= u. (x, —mAx,, mA ®h—3&. 4.10
ZNZN (X —mAXy, y;, —mAy,) (lf lf) (4.10)

Equation (4.10) represents the multiple convolution between the input image
and the wavelet function which is the multi-channel optical wavelet

transforms. In each channel, the WT output can be written as

uout(x; ’yg):uin(x;’y;)®h(x3’y3)

- oy
=Hu,»,,(x;,y§)h{bx e It ]dx;dy;, (4.11)
a, a,

—oco—o0

where the coordinate (x;,y;) represent the position of the WT output in each

channel. As for the wavelength multiplexing, the scaling factor of the WT is

proportional to the wavelength, then each channel WT output becomes



’ ’ T ’ ’ bx_x’ bv_y, ’ ’
uout('xii’yiéﬁll)zs(i).l.J.uin(x37y3)h( /lf3 ’ ’Af : }xisdyZM (412)

—oo—oo

for uniform spectral distribution s(4), Eq. (4.12) can rewrite as

’ ’ T ’ ’ bx_x, b _y’ ’ ’
uout(x3ay3>/l): J.J.uin(x3>y3)h( /,Lfs s y/,{f3 }1)(?30’_)/3, (413)

—oco—o0

and its intensity can be represented as

2

’ ’ ’ ’ bx_x, b _y’ ’ ’
Im(xg,yg,ﬂ)=‘j ju,-,,(x3,y3)h[ TR 3}1x3dy3 .

(4.14)

4.3 Experimental Setup

Figure 4.4 shows a schematic diagram of the optical setup for
implementing multi-channel 2-D optical wavelet transform using wavelength
multiplexing. In our setup, the wavelength multiplexing is constructed by
combining the red and green He-Ne lasers with the wavelengths equal to 632.8
nm and 543 nm, respectively. The list of the equipment and the instrument is
shown in the following:

Equipment
1. Red He-Ne laser, A =632.8 nm

2. Green He-Ne laser, A = 543 nm

3. Beam Splitter
4. Reflected mirror

5. Microscope objective of 2.9 mm focal length



6. Achromatic planar convex lenses of 20 cm focal length

7. Roseta pattern with diameter of 7.5 mm

8. 1-D grating 80 lines/mm

9. Wavelet filter with 11 mm inner diameter and 56 mm outer diameter
10. Color filter with bandwidth of 450 nm

Instrument

1. Digital camera [Sony MVC-FD71]

In the experiments, the roseta pattern with the diameter of 7.5 mm
object as shown in Fig. 4.5 was used at the input object. The roseta pattern is
characterized as having spatial angular frequencies that decrease with the
radius (Russ, 1998). It is obvious that the inner part of the roseta pattern has a
higher angular spatial frequency in comparison with the outer part. The
transparency of a binary approximation of the Morlet wavelet shown in Fig.
4.5 was used as the mother wavelet and was installed at the plane P4. This
approximation could be done because the band pass filter may be considered
as having a ring-shaped spatial frequency response. In the experiment, the pass
band of the wavelet filter is shown in the Table 4.1. The 1-D amplitude
grating with 80 lines/mm was aligned along the vertical direction, in order to

produce the horizontal multiple images.
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Table 4.1 The pass band of the wavelet filter

Wavelength Pass band response
(lines/mm)
A=632.8nm 8.69~44.25
A=543 nm 10.13~51.56

Fig. 4.5 Roseta pattern




Fig. 4.6 The approximated ring wavelet filter

In order to collimate the light source beam, one set of beam expander
based on the Keplerian telescope configuration (Hecth, 1987), consisting of
the microscope objective and the planar convex lens with the focal lengths of
with 2.9 mm and 38.1 mm, respectively, was used. This produced
magnification of 13 times. Four achromatic lenses with the focal length of 200
mm and diameter of 50 mm were used as the Fourier transforming lenses L1,

L2, L3, and L4.

In order to verify the proposed 2-D WT, the output images of the multi-
channel optical WT were displayed on the screen. They were captured by the
digital camera as a bitmap file with resolution 640x480 pixels. In order to
obtain the multi-resolution wavelet analysis, the color filters were placed

simultaneously in each channel of the 2-D WT.



4.4 Experimental Results

The optical implementation of multi-channel 2-D WT by using
wavelength multiplexing was implemented by using the setup as shown in Fig.
4.4. In our experiment three channels of the 2-D WT corresponding to the
three diffraction order of the multiple images were produced as the
preliminary study. Figures 4.7(a), (b) and (c) show the output images of three
channel 2-D WT. Figure 4.7(a) is obtained by multiplexing the red and green
laser sources. Figures 4.7(b) and (c) correspond to the images of optical WT
when the green and red color filters were used at the output plane,
respectively. The generated multiple input scene appeared with a spatial

separation Ax, of 10.12 mm for 632.8 nm wavelength and 8.69 mm for 543

nm. This spatial separation could be obtained by using Eq. (4.5)



(b)

(©)

Fig. 4.7 Output of the multi-channel WT (a) for the combination of red and

green wavelength (b) for green wavelength (b) for red wavelength.



The captured outputs were rigorously analyzed by scanning their
intensity distributions. For simplicity, one segment of the output image of 16x
80 pixels as shown in Fig. 4.7 was analyzed. Figure 4.8(a) shows the selected
output corresponding to the wavelength of 543 nm, while Fig. 4.8(b)

corresponds to the 632.8 nm.

24th row

55t row

AL
(a) (b)
Fig 4.8 One segment of the single channel WT output for wavelength of

(a) 543 nm, and (b) 632.8 nm.

In order to scan the intensity distribution of the output image, the
stored bitmap file of the captured image was read into the symbolic program.
The scanned intensities were normalized in order to eliminate the different
intensity level of the red and green He-Ne lasers. The intensity distributions at
the 24" and the 55™ rows corresponding to the inner and the outer parts of the
wavelet transformed of the roseta pattern were scanned. Figures 4.9 and 4.10

show the scanned intensities on the 24™ and 55" rows, respectively. The solid



line corresponds to the scaling by using 543 nm wavelength, while the dash

line represents the scaling of 632.8 nm wavelength.

Normalized intensity
° o ° ° ° o o
w B (4] o ~ o ©
T

o
N

0.1}

Normalized intensity
o
(S

pixel

Fig.4.10 The scanned intensity distribution at 55" row



From the scanned intensities and the output images, it can be seen that
the WT corresponding to the scaling with 543 nm wavelength gives a stronger
edge enhancement in comparison with the 632.8 nm wavelength because the
small scaling factor gives the wavelet filter with higher spatial frequency
response in comparison with the larger scale. In Fig. 4.9, two peaks
corresponding to the both side of the edges of the roseta pattern at 24™ row
could be seen, while Fig. 4.10 contains four peaks because the inner part of
the roseta pattern consists of three segments as shown in Fig. 4.8(a).
Furthermore, the normalized intensity at 55 row is higher than the 24™ row
due to Gaussian characteristic of the laser beam that has a maximum
distribution around the optical axis.

The results displayed in Fig 4.7 show that the optical implementation of
the multi-channel 2-D WTs was successful. By using an appropriate color

filter, the multi-resolution WT analysis can be obtained in real time.

4.5 Computer Simulation.

The edge enhancement effect of the WT was verified by a computer
simulation. Since the intensity distribution of one segment of the roseta
pattern can be represented the rectangular function, the 1-D simulation was
performed. Figure 4.11 shows a flowchart of the simulation which is

consisting of 3 computation steps that are:



Step 1: The 1-D rectangular function is generated. The result is plotted as
shown in the Fig. 4.12.

Step 2: The Morlet wavelet for a given scaling factor is generated. The results
are shown in the Fig. 4.13.

Step 3: The WT of the rectangular function is computed. The resultant outputs

are plotted as in the Fig. 4.14.

Although the WT is the correlation between the input function and the
wavelet function, for the real and even wavelet function, the correlation output
can be calculated by using the convolution operation. In this simulation, the 1-
D rectangular function as shown in the Fig. 4.12 was used as an input
function. The WT with the scaling factors equal to 1 and 0.86 which is the
ratio of green and red wavelength were generated as shown in Fig. 4.13. The
simulation results are shown in Fig. 4.14. It is obvious that there are two
output peaks corresponding to the edges of the rectangular function in Figs.
4.14(a) and (b). The Morlet wavelet with a smaller scaling factor could be
regarded as having higher spatial frequency response in comparison with a
longer scaling factor. Therefore, the edge enhancement is stronger. This could

be confirmed by Fig. 4.14(b) where the separation between edges is wider.



Start

Generate the 1-D rectangular
function

Generate the 1-D Morlet wavelet for
a given scaling factor

Compute the WT

Stop

Fig. 4.11 The flowchart of the simulation program
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Fig. 4.12 The rectangular function that used as the 1-D input in the simulation
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Fig.4.13 The scaled Morlet wavelet (a) for a scaling factor = 1

(b) scaling factor = 0.86
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Fig. 4.14 The convolution output (a) corresponding to the 1 scaling factor

(b) corresponding to the 0.86 scaling factor.

As the summary, the experimental results are in a good agreement

with the theoretical prediction given by the computer simulation.

4.6 System Performance

In this experiment, the multi-channel 2-D optical WT using wavelength
multiplexing was successfully performed in real time. This method can reduce
the complexity of implementation of the WT by using only one of the
approximated spectrum of the wavelet filter placed on axis in the optical
setup.

In our method, the grating plays an important role in generating

multiple images. Here, the characteristic of the grating will be analyzed.



In case the input image has a diameter of D, the cross talk between
channels could be avoid if the grating used in the system must have minimum
spatial frequency of

D
fgmin _?

(4.15)
By using this setup with 7.5 mm of the input roseta pattern, the used grating
must have minimum spatial frequency equal to 69 lines/mm.

The possibility to extend the number of the channels in this setup
without the cross talk problem between each channel could be done by
increasing the number of gratings such as crossing the four 1-D grating,
oriented in the horizontal, vertical, 45° clockwise, and 45° counter clockwise
as shown in Fig. 4.15. As the result, 9 channels of the WT could be produced

as shown in Fig. 4.16, where the circular shapes represent the WT output in

each channel.

Fig. 4.15 4-crossed gratings with different angular orientation



Fig. 4.16 9 channels of the WT output produced by 4-crossed gratings



Chapter V

Conclusion

A new method for implementing the multi-channel 2-D optical WT by
using wavelength multiplexing has been proposed and demonstrated. Its
system performance has also been evaluated. This method consists of two
processes that are the optical generation of the multiple images by using
gratings and the second one is simultaneous computation of the multi-channel
WT. By wavelength multiplexing, several scaled analyzing wavelet could be
generated in parallel from a single wavelet filter. The multi-resolution
transformed outputs can be simultaneously obtained by putting the color filter
in each channel. Experimental results indicate that the proposed method works
in good agreement with the theoretical prediction. By increasing the number of
gratings such as crossing four 1-D gratings oriented in the horizontal, vertical,
45° clockwise, and 45° counter clockwise, the number of channels be
increased to as many as 9. To avoid cross talk problems between each channel,
the used grating must have a minimum spatial frequency of 69 lines/mm.

This study may be extended further in order to obtain finer resolution
analysis of the WT by using a white light source. Furthermore, in order to
have a real time optical WT, an electrically addressed spatial light modulator
(EASLM) could be used to display the wavelet filter. In order to do this, the

wavelet filter is first computed and its result is stored in the computer.



The EASLM could be connected to the computer via a hardware interface. By

using this EASLM, there is flexibility to modify the wavelet filter in real time.
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