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อารีรัตน  ดาวงษา : การศึกษาเชิงทฤษฏีของสเปกตรัมทะลุผานของรอยตอของโลหะ- 
ตัวนํายวดยิ่ง-โลหะ (THEORETICAL STUDY OF TUNNELING SPECTROSCOPY OF 
METAL-SUPERCONDUCTOR-METAL JUNCTIONS) 

  อาจารยที่ปรึกษา : รองศาสตราจารย ดร.พวงรัตน  ไพเราะ, 37 หนา. 
 
 
 

 วิทยานิพนธนี้เปนการศึกษาเชิงทฤษฎีของสเปกตรัมทะลุผานของรอยตอโลหะ-ตัวนํายวด
ยิ่ง-โลหะในสองมิติ ในการศึกษานี้ไดพิจารณาตัวนํายวดยิ่งแบบเอส-เวฟ (ไอโซทรอปก) และแบบ
ดี-เวฟ (แอนไอโซทรอปก) โดยใชวิธีการกระเจิงในการคํานวณหาคาสภาพความนําไฟฟาที่เปน
ฟงกชันของความตางศักยตกครอมระบบที่อุณหภูมิศูนยองศาสัมบูรณ สมบัติที่แปรเปลี่ยนไดหลาย
ตัวซ่ึงมีผลตอสเปกตรัมของสภาพความนําไฟฟาจะถูกศึกษา ซ่ึงรวมไปถึงปจจัยดังตอไปนี้ คือ      
ผลของความหนาของชั้นตัวนํายวดยิ่ง ความสูงของพลังงานของกําแพงศักยที่บริเวณรอยตอทั้งสอง 
และผลของการวางตัวของผลึกของตัวนํายวดยิ่งเทียบกับรอยตอ  
 ความหนาของชั้นตัวนํายวดยิ่งเปนตัวควบคุมขนาดของคาสภาพความนําไฟฟาในลักษณะ
ที่เห็นไดเดนชัดซ่ึงเปนที่เขาใจเปนอยางดี  เนื่องจากการแทรกสอดของคลื่นจากขอบเขตของรอยตอ
ทั้งสองขางของชั้นตัวนํายวดยิ่ง  ซ่ึงการแกวงกวัดของสภาพความนําไฟฟานี้จะขึ้นกับชั้นของความ
หนา ซ่ึงเรียกวา การแกวงกวัดแบบโทมัส   

ในคํานวณสเปกตรัมสภาพนําไฟฟาของเรา เราทําซ้ําการแกวงกวัดแบบโทมัสและเราเนนที่
จะระบุวาผลของการเปลี่ยนแปลงคาความสูงของพลังงานของกําแพงศักยที่บริเวณรอยตอทั้งสองมี
ผลอยางไรตอการกวัดแกวงโทมัส เราระบุไดวาทั้งและลักษณะเชิงคุณภาพของสภาพความนําไฟฟา 
รวมทั้งการกวัดแกวงโทมัสขึ้นอยูกับความสูงของกําแพงศักยบริเวณรอยตอดานซายมือและขวามือ 
(ในการศึกษานี้  พาหะประจุบวกจะเห็นกําแพงศักยทางดานซายมือสูงกวาเมื่อมีการใหความตาง
ศักยเปนบวก)  อิเล็กตรอนถูกยิงเขาไปในตัวนํายวดยิ่งจากโลหะทางดานซายมือ ในขณะที่โฮลถูก
ยิงจากโลหะทางดานขวามือ (พาหะประจุตรงกันขามจะตองถูกยิงออกมาในเวลาเดียวกันเขาสูตัวนํา
ยวดยิ่งเพื่อใหเกิดการอนุรักษของกระแสไฟฟา) ดวยเหตุนี้กําแพงศักยดานซายมือจึงสะทอน
อิเล็กตรอนออกมาสวนทางดานขวามือของรอยตอจึงสะทอนโฮลออกมา 
 หนึ่งในผลการศึกษาที่สําคัญอยางหนึ่งในงานวิจัยนี้คือ  ความสําคัญเชิงสัมพัทธของความ
สูงกําแพงศักยเปลี่ยนแปลงไปกับคาความตางศักยตกครอมระบบ  ทั้งกรณีของตัวนํายวดยิ่งแบบ
เอส-เวฟ และแบบดี-เวฟ เราพบวากําแพงศักยดานซาย (อิเล็กตรอน) มีอิทธิพลตอสภาพความนํา
ไฟฟาตลอดชวงของความตางศักยตกครอม  ในขณะที่กําแพงศักยทางดานขวามือ  (โฮล)
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มีผลกระทบตอสภาพความนําไฟฟาเมื่อความตางศักยตกครอมมีคามากกวาชองวางพลังงานสูงสุด
ของตัวนํายวดยิ่ง   
 แอนไอโซทรอปของตัวนํายวดยิ่งแบบดี-เวฟ ทําใหรอยตอโลหะ-ตัวนํายวดยิ่ง-โลหะที่มี
ตัวนํายิ่งยวดแบบดีเวฟเปนสวนประกอบมีความไวตอทิศทางการวางตัวของผลึกตัวนํายิ่งยวด 
ลักษณะของสเปกตรัมของสภาพความนําไฟฟาสะทอนความเปนแอนไอโซทรอปกของคาชองวาง
พลังงาน ตัวอยางเชน ยอดสูงที่คาความตางศักยตกครอมมีคาเปนศูนยในสเปกตรัมสภาพความนํา
ไฟฟาเกิดขึ้นเมื่อทิศทางของโมเมนตัมของชองวางพลังงานต่ําสุดขนานกับทิศที่ตั้งฉากผิวรอยตอ 
ความสูงและความกวางของยอดมีคาลดลงเมื่อผลึกมีทิศทางการหมุนการวางตัวดังกลาว             
และหายไปอยางสมบูรณเมื่อทิศทางของคาชองวางพลังงานที่สูงสุดตรงกับทิศที่ตั้งฉากกับระนาบ
ของรอยตอ 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 
สาขาวิชาฟสิกส ลายมือช่ือนักศึกษา  
ปการศึกษา  2552 ลายมือช่ืออาจารยที่ปรึกษา     



 
                        III 

 
 

AREERAT  DAWONGSA : THEORETICAL STUDY OF TUNNELING 

SPECTROSCOPY OF METAL-SUPERCONDUCTOR-METAL 

JUNCTIONS. THESIS ADVISOR : ASSOC. PROF. PUANGRATANA  

PAIROR, Ph.D. 37 PP.  

 

THEORETICAL STUDY OF TUNNELING SPECTROSCOPY OF METAL- 

SUPERCONDUCTOR-METAL JUNCTIONS 

 

This thesis is a theoretical study the tunneling spectroscopy of metal-

superconductor-metal double junctions (MSM) composed of two dimensional 

electronic materials. In this study, we considered two types of superconductors: those 

having s-wave (i.e. isotropic) and d-wave (anisotropic) gap symmetries. The zero-

temperature differential conductance was calculated by a scattering method. Several 

variable properties of junctions that affect the conductance spectrum have been 

studied. These include: the thickness of superconducting layer, the barrier height at 

both interfaces and the superconducting crystal orientation relative to the interface.  

The thickness of the superconducting layer controls the magnitude of the 

conductance in a distinctive manner that is well understood. Because of the 

interference of waves scattered from the two boundaries of the superconducting layer, 

there is an oscillatory dependence of the conductance on the layer thickness, the so 

called Tomasch oscillations.   

 Having reproduced the Tomasch oscillations in our calculation, our focus was 

to determine how these oscillations are affected by a variation in the relative barrier 

heights at the two metal-superconductor interfaces. We determined that both the 
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magnitude of the conductance and the qualitative spectral features, including the 

Tomasch oscillations, depend on the left and right barrier heights. (In our convention, 

a positive charge carrier sees a higher potential at the left barrier when the applied 

voltage is positive.) Electrons are injected into the superconductor from the metal on 

the left while holes are injected from the metal on the right (opposite charge carriers 

must be simultaneously injected into the superconductor to ensure current 

conservation). Therefore the left barrier scatters incoming electrons while the right 

barrier scatters incoming holes.    

 One of the remarkable results of this thesis is that the relative importance of 

the two barriers changes with the applied voltage. In both s-wave and d-wave 

superconducting junctions, we found that the left (electron) barrier influences the 

conductance throughout the range of the applied voltage, whereas the right (hole) 

barrier only affects the conductance when the applied voltage is larger than the 

maximum gap.  

 The anisotropy of a d-wave superconductor makes MSM junctions involving 

it sensitive to crystal orientation. The qualitative spectral features of the conductance 

reflect this gap anisotropy. For example, a broad peak in the conductance at zero 

voltage occurs when the momentum direction of the gap minimum is parallel to the 

surface normal. The height and width of this peak decreases as the crystal is rotated 

away from this orientation and the peak vanishes completely when the interface 

normal coincides with the direction of the gap maximum.       
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CHAPTER I  

INTRODUCTION 

 

1.1 Background and motivation 

In a double junction, a structure consisting of three layers of materials, particle 

waves moving to the left and to the right can interfere. The interference causes the 

particle transmission probability through the junction to oscillate with the particle 

energy.  In general, the period of the oscillation depends on the thickness and the 

physical properties of the middle layer (Shankar, 1994). One can observe the 

interference by measuring the current-voltage characteristics, or alternatively the 

conductance spectrum the first derivatives of the current with respect to the applied 

voltage vs the applied voltage of the double junction. In principle, one can extract 

information about an unknown material by studying these properties of a junction 

when the unknown material is in the middle. In this thesis, the materials of interest 

include conventional and high-temperature superconductors. 

Superconductors have remarkable properties. They are perfect diamagnets and 

perfect conductors. Most metals can become superconducting at very low 

temperatures, well below 77 K the boiling point of liquid nitrogen (Marder, 2000). In 

the ground state, the electrons in a superconductor are paired in bound states called 

Cooper pairs. For most conventional superconductors like Indium (In), Aluminum 

(Al), Lead (Pb), and Niobium-titanium (NbTi), the mechanism that binds electrons in 

Copper pairs is an attraction due to the electron-phonon coupling, which dominates 

 



2 
 

the Coulomb repulsion and electron kinetic energy at sufficiently low temperature. 

The minimum energy needed to break a Cooper pair is called the superconducting gap. 

The superconducting gap of a conventional superconductor is approximately 

momentum-independent, i.e. the same for all wave vectors k
K

, and is called isotropic  

s-wave. Certain unconventional superconductors exhibit different superconducting 

gap symmetries. High temperature superconductors are ceramic compounds 

consisting of at least one copper oxide plane, and are one of the most studied 

materials in existence (see Figure 1.1).   
 

 

 

 

 

 

 

 

 

Figure 1.1 On the left is the crystal structure of YBa2Cu3O7-x (YBCO), lattice 

constants of which are a = 3.82 Å, b = 3.89 Å, and c = 11.6802 Å, and on the right is 

the crystal structure of 2 x x 4La Sr CuO  − (LSCO) with lattice constants a = b = 3.78 Å, 

a n d  c  =  1 3 . 1 8  Å .  ( h t t p : / / h o f f m a n . p h y s i c s . h a r v a r d . e d u / m a t e r i a l s / 

Cuprates.php). 

 
 
 

 



 
 
 

3

The electrical conduction along the copper oxide planes can be orders of 

magnitude higher than that perpendicular to the planes (Tsuei and Kirtley, 2000). 

Therefore, one can model these materials as two dimensional (2D) systems.            

The superconducting gaps of these materials are found to be strongly momentum-

dependent within the 2D plane. They are 2 2x y
d

−
-wave (that is they are functions that 

have the same symmetry in momentum space as the function 2 2
x yk - k ). The gap 

magnitude goes to zero for wave vectors along the diagonals x yk = ± k  and has 

opposite sign on opposite sides of these diagonals.   

 In this masters thesis, a metal-superconductor-metal (MSM) double junction 

will be theoretically studied. Two types of superconductors are considered: isotropic    

s-wave and d-wave. The superconducting layer in an MSM junction causes 

oscillations in the electrical conductance spectrum. These oscillations called Tomasch 

oscillations after Tomasch, who measured the resistivity as a function of applied 

voltage of Al-Al2O3-Pb junction with variable Pb thicknesses between 2.9 to 9.7 

microns (Tomasch, 1965). The junction was cooled down below the superconducting 

transition temperature of Pb. He found that the relation between the first derivative of 

the voltage with respect to the current exhibited oscillations. The distance between the 

two adjacent peaks of oscillations is inversely proportional to the thickness of Pb 

(Tomasch, 1965). He also measured the resistivity spectrum of a similar junction with 

In as a superconducting layer and obtained similar results (Tomasch, 1966; Tomasch 

and Wolfram, 1966). The oscillating behavior was first explained by McMillan and 

Anderson in to be due to quasiparticle interference in the superconducting layer 

(McMillan and Anderson, 1966). They showed that the oscillation period depends on 



 
 
 

4

the thickness (L), the Fermi velocity ( Fv ), and the energy gap ( k∆ ) of the 

superconducting layer (McMillan and Anderson, 1966):  

   

                                     
2

2 F
n k

n vE
L

π⎛ ⎞= ∆ + ⎜ ⎟
⎝ ⎠

= ,                                   (1.1) 

 

where En is the position of each oscillation peak, n is an integer. By considering the 

Tomasch oscillations, one can therefore extract this information about the 

superconducting layer. The Tomasch oscillations can potentially be used to detect the 

gap anisotropies of anisotropic superconductors, like anisotropic s-wave and d-wave 

superconductors, as well. Lykken and his colleagues used the Tomasch oscillation to 

measure the anisotropy of the superconducting gap and the Fermi velocity of Pb along 

several crystal orientations such as [100], [110], [111], and [211] (Lykken, Geiger, 

Dy, and Mitchell, 1970; Lykken, Geiger, Dy, and Mitchell, 1971). As for the case of 

d-wave superconductors, one of the experimental work was done by Koren and his 

colleagues. They measured the Tomasch oscillations of YBCO film and found its 

energy gap and its Fermi velocity (Koren, Polturak, and Deutscher, 1996; Nesher and 

Koren, 1999).  

There has not also been much theoretical study of the Tomasch oscillations    

in a d-wave superconductor. Dong and his colleagues used the scattering method       

to study a metal-d-wave superconductor-metal junction. They calculated the 

conductance spectrum of the junction in two orientations. In one of the orientations, 

the direction of the gap maximum is oriented perpendicular to the interface planes. In 

another orientation the direction of the gap maximum is pointing 45D  from the 
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interface planes. In their calculation, they assumed the two metals are identical and 

the insulating barriers at both interfaces are the same (Dong, Zheng, and Xing, 2004).  

In this thesis, the Tomasch oscillations of two-dimensional (2D) isotropic          

s-wave superconductors and d-wave superconductors will be considered. The effects 

of the unequal insulating barriers and in the d-wave case the effect of the crystal 

orientation of the superconductor will also be considered. The superconducting gap is 

not constant and the crystal orientation of the d-wave superconducting plane other 

than the plane [100] and [110] gives a different phase angle. Except the case of [100] 

plane we have found the characteristic energy is equal to zero and gradually decrease 

until a specific level of energy. This feature is called zero-bias conductance peak 

(ZBCP) (Tanaka and Kashiwaya, 1995). From most of the studies, the junction is        

a single junction. For the study of the double junctions, it is found that they only 

considered two planes of crystal orientation of the superconductor, [100] and [110].  

 

1.2 Assumptions and method of calculation   

In this thesis, all MSM junctions are modeled as 2D infinite systems 

occupying the xy  plane. The two metals occupy the x < 0 and x > L regions and a 

superconducting layer is in between (as shown in Figure 1.2). The superconducting 

gap is taken to be position-independent, but can depend on the wave vector especially 

for a d-wave superconductor. Both interfaces are assumed to be smooth; so that, the 

component parallel to the surface of the momentum of the quasiparticle in each region 

is conserved.  
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Figure 1.2 Diagram of the geometry of an MSM junctions. Both metals occupy the 

spaces where x < 0, x > L and the superconductor occupies the space where 0 < x < L. 

The two insulating layers at x = 0 and x = L, which are represented by delta-function 

barrier potentials of height H1 and H2, L is the thickness of superconductor, k∆  is the 

superconducting gap. 

 

  The method used in this thesis is based on a scattering method analogous to 

that used in undergraduate quantum mechanics courses. This scattering formalism is          

a simple approach and now one of the formalisms widely used to study the particle 

transport in a heterostructure. It was first used by Blonder, Tinkham, and Klapwijk 

(Blonder, Tinkham, and Klapwijk, 1982) to calculate the current and conductance 

spectra of a metal-superconductor junction and is thus sometimes referred to as the 

BTK formalism. The starting point is to write down the Hamiltonian describing the 

junction in a free electron approximation. In this approximation, the energy dispersion 

relation of electrons in a conduction band of a metal is parabolic. On the 

superconducting side, the excitation energy in this approximation is 
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22 2
2

2k FS k
kE E
m

⎛ ⎞
= − + ∆⎜ ⎟

⎝ ⎠

= , where m is the mass of the electron, k
K

 is the wave vector, 

FSE  is the Fermi energy of the superconductor, and k∆  is the superconducting gap, 

which in case of a s-wave superconductor is taken to be 0k∆ = ∆ , where                   

0∆  is a constant, and in case of a d-wave superconductor is taken to be 

0 cos 2( )k kθ α∆ = ∆ − , where kθ  is the angle between the wave vector and the left 

interface normal, and α is the angle between the a-axis of the superconductor and the 

left interface normal (so the argument of the cosine describes the direction of k
K

 

relative to the crystal axis and results in a gap that has maximum magnitude along the 

square axes and vanishes along the diagonal). The gap is set to be zero in the normal 

metal and is assumed to be position-independent in the superconductor for simplicity 

(see Figure 1.2), i.e. we neglect the proximity effects. The insulating layers at both 

interfaces are represented by the delta-function barrier potentials 1 ( )H xδ  and 

2 ( )H x Lδ − , respectively.  

According to the work of Dong, Zheng, and Xing (2004), we consider the 

injection of the electron and hole together by injecting electrons from metal to the left 

and right side. We need to inject both electron and hole into the system in order to 

conserve electric current within the system. In this study, we calculate conductance of 

the junctions at zero temperature using the elastic scattering method.  
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1.3 Outline of research  

In this thesis, we consider MSM junctions, involving s-wave and d-wave 

superconductors. Our main focus is on the effect of interface quality on the 

conductance spectra of both types of junctions. For a d-wave superconductor junction, 

we also consider the influence of the superconducting crystal orientation on the 

spectrum. In the next chapter, we will present the method we use to calculate the 

conductance spectra of MSM junctions. We present the results for both s-wave and   

d-wave superconductor junctions in Chapter III. We finally provide a summary of 

main results and conclude in Chapter IV. 
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CHAPTER II 

METHOD OF CALCULATION 

 

In this chapter, the method used to calculate the conductance spectra of MSM 

junctions is presented. In this method, each of our junctions is represented by an 

infinite two-dimensional system, where a superconductor of thickness L is 

sandwiched by two identical metals. At each interface, we assign a delta-function 

potential to depict an insulating layer. We use a free electron model to describe the 

electronic properties of each region.  

 

 

 

 

 

 

 

 

Figure 2.1 The sketches of the geometry of MSM junctions. Both metals occupy the 

spaces where x < 0, x > L and the superconductor occupies the space where 0 < x < L. 

The two insulating layers at x = 0 and x = L, which are represented by delta-function 

barrier potentials of height H1 and H2, L is the thickness of superconductor.  
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*

( , ) ( , )
( , ) ( , )

( , ) ( , )
H x y x y

x y E x y
x y H x y

ψ ψ
∆⎡ ⎤

=⎢ ⎥∆ −⎣ ⎦
 

We follow the approach used by Griffin and Demers and also by                       

Blonder, Tinkham, and Klapwijk (Griffin and Demers, 1971; Blonder, Tinkham, and 

Klapwijk, 1982) to calculate the current and conductance spectra of our junctions. In 

this approach, the junction is described by the Bogoliubov de Gennes (BdG) 

equations: 

 

  (2.1) 

 

Where 
2 2

( ) ( ) ( ( ) ( )) ( )
2 FL FS FRH V x E x E x x L E x L

m
⎛ ⎞∇

= − + − Θ − − Θ −Θ − − Θ −⎜ ⎟
⎝ ⎠

=  is the 

Hamiltonian of an MSM junction and ( ) ( ( ) ( ))kx x x L∆ = ∆ Θ −Θ − . L is the thickness 

of superconducting layer. ( )xΘ  is the Heaviside step function. FLE  and FRE  are the 

Fermi energies of the metal on the left and right hand side, respectively. Because we 

take both metals to be identical, FL FRE E= . FSE  is the Fermi energy of the 

superconductor. 1 2( ) ( ) ( )V x H x H x Lδ δ= + −  is the insulating barrier potentials 

located at both interfaces. 1H  and 2H  can take different values. k∆  is the 

superconducting gap. In this thesis, we consider two types of superconductors, s-wave 

and d-wave superconductors. For s-wave superconductors, the superconducting gap   

is taken to be independent of the wave vector: 0k∆ = ∆ , where 0∆  is a constant.       

For d-wave superconductors, the gap is taken to be 0 cos 2( )k kθ α∆ = ∆ − , where kθ  is 

the angle between the wave vector and the interface normal (the x-axis in Figure 2.1).       

α is the angle between the a-axis of the superconductor and the interface normal. 
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( ),x yψ  is the two-component wave function ( , ) yik yk ikx

k

u
x y e e

v
ψ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, where ku  and kv  

are electron-like and hole-like quasiparticle amplitudes defined as follows: 

2 2
k

k

k k

Eu
E

ξ

ξ

+
=

+ + ∆
 and 

2 2
k

k

k k

v
E ξ

∆
=

+ + ∆
 where 2 2

k kk
Eξ = −∆ . E  is the 

energy of an excitation. 

 

 

 

    

 

 

 

 

Figure 2.2 The sketches of two types of superconducting gaps in the momentum 

space. The black circles represent the Fermi spheres. The solid lines represent the 

minimum energy contour of the excitations in an s-wave superconductor (left) and a 

d-wave superconductor (right). The plus and minus signs represent the phase of the 

gap. 

 

From the BdG equations, the excitation energy spectrum and the 

corresponding eigenfunction in each region can be obtained. For the metal on the left 

side (x < 0), the energy spectra for electron and hole excitations are 
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2 2 2( )

2
L y

ML FL

q q
E E

m
+

= ±
=

∓    (2.2) 

where the plus and minus signs are for electron and hole excitations, respectively.   

We consider two cases of particle injection: an injection of an electron from 

the left metal and that of hole from the right metal. The particle transmission 

probabilities in both cases are needed for the calculation of the conductance; so that 

the electric current is conserved in every plane of consideration (Dong, Zheng, and 

Xing, 2004).  

In the first case, the involving excited states of the electrons in the left metal 

are shown in Figure 2.3. Andreev and normal reflection coefficients are denoted by 

( hr ) and ( er ) in the figure. In the superconductor, electron-like and hole-like 

quasiparticle reflection coefficients are denoted by ( 2c ) and ( 2d ), and electron-like 

and hole-like transmission coefficients are denoted by ( 1c ) and ( 1d ) (as shown in 

Figure 2.4). In the left excited electron and excited hole transmission coefficients are 

denoted by ( et ) and ( ht ) (as shown in Figure 2.5). In the second case of the injection, 

one can figure similar states that are involved.  
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Figure 2.3 The sketch of the energy dispersion relation and the indications of the 

excitation states participating in the incoming and reflecting off the interface on the 

left side of an MSM junction, in the case where an electron is injected from the left. 

The solid curves represent the electron excitation spectrum and the dashed curves 

represent the hole excitation spectrum. The black (●) and white (○) dots represent 

electron and hole excitations that involve the incoming and reflection surface.  

 

The wave functions of the particle excitations in the left metal in both cases 

are 

 ( )

1 0 1
( , )

0 1 0
yL L L ik yiq x iq x iq x

ML e h ex y e r e r e eψ
+ − +−⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

  (2.3)  

 ( )

1 0
( , )

0 1
yL L ik yiq x iq x

ML h e hx y t e t e eψ
+ −−⎛ ⎞⎛ ⎞ ⎛ ⎞

= +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

  (2.4) 

where the wave functions with subscript e and h are for the case where an electron is 

injected from the left and where a hole is injected from the right, respectively. hr  and 

MLE  

FL
q  FL

q−  

Lq  0 

 

er  hr  

 

Incoming electron 

Lq−  Lq+  Lq+−  
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er  are the Andreev and normal reflection coefficients, respectively. et  and ht  are the 

electron-like and hole-like quasiparticle transmission coefficients, respectively. Lq+  

and Lq−  are the x-component of the wave vectors for excited electron and hole, 

respectively. 

For the superconductor region (0 < x < L), the excitation energy spectrum are 

 

 
22 2 2

2( )
2

y
S FS k

k k
E E

m
⎛ ⎞+

= + ∆⎜ ⎟⎜ ⎟
⎝ ⎠

=
∓   (2.5) 

               

 

 

 

 

 

 

 

 

 

Figure 2.4 Schematic illustration of the energy dispersion relation in the 

superconductor region. The black and white dots represent electron-like and hole-like 

quasiparticle excitations of the same energy. 
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The wave functions of the excitations in the superconducting layer in both 

cases are 

.

( ) 1 1 2 2( , ) yik yik x ik x ik x ik xk k k k
S e

k k k k

u u u u
x y c e d e c e d e e

v v v v
ψ

+ − + −+ − + −

+ − + −

− −− −

− −

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

  (2.6) 

.

( ) 1 1 2 2( , ) yik yik x ik x ik x ik xk k k k
S h

k k k k

u u u u
x y c e d e c e d e e

v v v v
ψ

+ − + −+ − + −

+ − + −

− −− −

− −

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

  (2.7) 

where the plus and minus signs in the superscripts of the wave vectors refer to 

electron-like and hole-like excitations, respectively. 1,c  1c  and 1,d  1d  are the 

electron-like and hole-like quasiparticle transmission coefficients, respectively. 2 ,c   

2c  and 2 ,d  2d are electron-like and hole-like quasiparticle reflection coefficients, 

respectively.  

Similar to that of the metal on the left, the excitation energy spectrum of the 

metal on the right region (x > L) are 

 

 
( )2 2 2

2
R y

MR FR

q k
E E

m
+

= ±
=

∓   (2.8) 
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Figure 2.5 The diagram of the excitation energy dispersion relation of the particles    

in the metal on the right. The black and white dots represent the transmitted excited 

electron and excited hole in the case where an electron is injected from the left side, 

respectively. 

 

The wave functions of the excitations in the metal on the right in both cases of 

injections are 

 ( )

1 0
( , )

0 1
yR R ik yiq x iq x

MR e e hx y t e t e eψ
+ −−⎛ ⎞⎛ ⎞ ⎛ ⎞

= +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

  (2.9) 

 ( )

0 0 1
( , )

1 1 0
yR R R ik yiq x iq x iq x

MR h h ex y e r e r e eψ
− − +−⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

   (2.10) 

where et  and ht  are the excited electron and excited hole transmission coefficients, 

respectively. hr  and er  are the normal and the Andreev reflection coefficients, 

MRE  

FR
q  FR

q−  

Rq  
0 

 

et  ht  

 

Rq+  Rq−−  
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respectively. Rq+  and Rq−  are the x-component of the wave vectors of the excited 

electron and hole in the metal on the right hand side, respectively. 

In this approach, the current and conductance are obtained through the 

transmission and reflections probabilities. We thus have to compute for all the 

transmission and reflection amplitudes from a set of equations referred to as 

appropriate matching conditions at each interface. The first set of matching equations 

is obtained from the fact that the wave functions are continuous at both interfaces, 

whereas the second one is obtained from the discontinuity of the slopes of wave 

functions at both interfaces due to the delta-function potentials representing the 

insulating layers. That is, 

 

 (   0) (   0)ML Sx xψ ψ= = =      (2.11) 

 (   ) (   )MR Sx L x Lψ ψ= = =    (2.12) 

 1(   0) - (   0)  2 (   0)S ML
F ML

d dx x k Z x
dx dx
ψ ψ ψ= = = =    (2.13) 

 2(   ) - (   )  2 (   )SMR
F MR

dd x L x L k Z x L
dx dx

ψψ ψ= = = =    (2.14) 

 

where 
2

1 1 FZ mH k= =  and 2

2 2 FZ mH k= =  are the unitless parameters characterizing 

the barrier strengths at left and right interfaces of a junction, respectively.  

From these equations, we can obtain the particle reflection and transmission 

coefficients, which we then use to calculate the corresponding particle transmission 

and reflection probabilities. From quantum mechanics the particle reflection or 

transmission probability is defined as the ration of the reflected or transmitted particle 
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current density and the incoming particle current density (Shankar, 1994). Thus, the 

Andreev reflection probabilities in both cases of injection are 

 
_

2( )( , ) ( , )hrefl r ML
h h

inc ML

j qR E r E
j q

θ θ +

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
   (2.15) 

and  
2( )( , ) ( , )erefl r

e e
inc

j
R E r E

j
θ θ= =    (2.16)   

The normal reflection probabilities in both cases of injection are 

 2( )( , ) ( , )erefl r
e e

inc

j
R E r E

j
θ θ= =    (2.17) 

and 
2( )( , ) ( , )hrefl r ML

h h
inc MR

j qR E r E
j q

θ θ
+

−

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
   (2.18)   

The electron-like quasiparticle transmission probabilities in both cases of injection are 

 2( )( , ) ( , )etrans t MR
e e

inc ML

j qT E t E
j q

θ θ
+

+

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
   (2.19) 

and 
2( )( , ) ( , )etrans t ML

e e
inc MR

j qT E t E
j q

θ θ
+

−

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
    (2.20) 

The hole-like quasiparticle transmission probabilities in both cases of injection are 

 
_

2( )( , ) ( , )htrans t MR
h h

inc ML

j qT E t E
j q

θ θ +

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
   (2.21) 

and  
_2( )( , ) ( , )htrans t ML

h h
inc MR

j qT E t E
j q

θ θ −

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
    (2.22) 

In each case of injection, at each interface the total incoming probabilities are equal to 

the total outgoing probabilities due to the conservation of the number of particle 

current. 
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,
k k

kx ky
I n v e= ∑  

The electric current density flowing to the right ( )I  is defined as 

   

   (2.23) 

 

where kn  is number of electron moving from left to right across the junctions,           

kv  is the group velocity, and e  is the electron charge. kn  is equal to  

(1 ( , ) ( , ) ( , ) ( , )) ( )k h e e hn R E R E T E T E f Eθ θ θ θ= + − + − , where ( )f E  is the Fermi-

Dirac distribution function. Because there is no net current flowing across the 

junction when there is no applied voltage, we can assume that there is an equal 

amount of electric current density flowing to from right to left as well. By changing 

the summation over the momenta along x  and y  direction to the integral over the 

momenta along y  direction and the energy, we have 

2

(1 ( , ) ( , ) ( , ) ( , )) ( )
2L R R L h e e h

e LI I dkdE R E R E T E T E f Eθ θ θ θ
π

∞ ∞

→ →
−∞ −∞

⎛ ⎞= = + − + −⎜ ⎟
⎝ ⎠ ∫ ∫=

   (2.24) 

When the voltage V is applied across the junction, the electric current flowing 

across junctions from left to right becomes, while that flowing from right to left stays 

the same. That is,  

2

(1 ( , ) ( , ) ( , ) ( , )) ( )
2L R h e e h

e LI dkdE R E R E T E T E f E eVθ θ θ θ
π

∞ ∞

→
−∞ −∞

⎛ ⎞= + − + − −⎜ ⎟
⎝ ⎠ ∫ ∫=

  (2.25)   

and  

2

(1 ( , ) ( , ) ( , ) ( , )) ( )
2R L h e e h

e LI dkdE R E R E T E T E f Eθ θ θ θ
π

∞ ∞

→
−∞ −∞

⎛ ⎞= − + + −⎜ ⎟
⎝ ⎠ ∫ ∫=

   (2.26)  
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Therefore, the net current crossing the junctions is  

  ( , ) L R R LI eV I Iθ → →= −    (2.27) 

2

( , )( , ) [(1 ( , ) ( , )
2 eeh T Ee LI eV dkdE R E R E θθ θ θ
π

∞ ∞

−∞ −∞

⎛ ⎞ +⎜ ⎟
⎝ ⎠

= + −∫ ∫=
 

  ( , ))( ( ) ( ))]hT E f E eV f Eθ− − −       (2.28)  

Since siny Fk k θ=  and then cosy Fdk k dθ θ=  

2 /2

/2

( , ) cos [(1 ( , ) ( , ) ( , )
2

F
h e e

ek LI eV d dE R E R E T E
π

π

θ θ θ θ θ θ
π

∞

− −∞

⎛ ⎞= + − +⎜ ⎟
⎝ ⎠ ∫ ∫=

 

 ( , ))( ( ) ( ))]hT E f E eV f Eθ− − −      (2.29)  

At zero temperature, the net current becomes  

2 /2

/2

( , ) cos (1 ( , ) ( , ) ( , ) ( , ))
2

F
h e e h

ek LI eV d R E R E T E T E eV
π

π

θ θ θ θ θ θ θ
π −

⎛ ⎞= + − + −⎜ ⎟
⎝ ⎠ ∫=

  (2.30) 

The conductance at zero temperature is therefore  

 ( , )( , ) dI eVG eV
dV

θθ =    (2.31)  

2 /2

/2

( , ) cos (1 ( , ) ( , ) ( , ) ( , ))
2 F h e e h
LeG eV d k R E R E T E T E

π

π

θ θ θ θ θ θ θ
π −

⎛ ⎞= + − + −⎜ ⎟
⎝ ⎠ ∫=

   (2.32)  

In the next chapter, we will present the results and discussion of our 

calculation for both s-wave and d-wave cases. 
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CHAPTER III 

CONDUCTANCE SPECTRA OF MSM JUNCTIONS 

 

In this chapter, we show and discuss the results of our calculation of the 

conductance in both s-wave and d-wave cases. We reconsider effects of the thickness 

of superconducting layer L, i.e. the Tomasch oscillations, and explore the influence of 

the heights of the barrier potentials representing by the parameters 1Z  and 2Z  in both 

cases of the superconducting gap. Also, because in d-wave cases the superconducting 

gap is anisotropic, we consider the effect of the crystal orientation on the conductance 

spectrum as well. 

 

3.1 The effect of the thickness of superconducting layer 

In the s-wave case, the thickness of superconducting layer affects of the 

oscillations in the conductance spectra. To be more specific, in the 0eV < ∆  region, 

the conductance spectra do not contain any oscillations. However, the height of the 

peak at the energy gap is increased with the thickness. In the 0eV > ∆  region, the 

oscillations of conductance spectra occur and strongly depend on L. The period of the 

oscillations is decreased with the increased in L, as shown in Figure 3.1.
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Figure 3.1 The conductance as a function of applied voltage ( 0/eV ∆ ) for three 

different thicknesses of the s-wave superconducting layer ( FLk ): (a) FLk  = 500,     

(b) FLk  = 1000, and (c) FLk  = 1500. Here, 0 / FE∆  = 0.01 and 1Z = 2Z = 1.0. The 

solid upright lines represent the positions of the minima of the oscillations in the 

conductance spectra. 
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0 1 2 3
0

0.5

1

1.5

2
Lk

F
 = 500

0 1 2 3
0

0.5

1

1.5

2

co
n

d
u

ct
an

ce Lk
F
 = 1000

0 1 2 3
eV/∆0

0

0.5

1

1.5

2

Lk
F
 = 1500

 

(a) 

(b) 

(c) 
1500FLk =  

500FLk =  

1000FLk =  

0/eV ∆  

co
nd

uc
ta

nc
e 



 
 
 

23

0eV > ∆  region, the conductance spectra contain similar oscillations to those in the   

s-wave case, as shown in Figure 3.2.  

 

 

 

 

 

 

 

 

 

Figure 3.2 The conductance as a function of applied voltage ( 0/eV ∆ ) for three 

different thicknesses of the d-wave superconducting layer ( FLk ): (a) FLk  = 500,     

(b) FLk  = 1000, and (c) FLk  = 1500. Here, 0 / FE∆  = 0.01, 1Z = 2Z = 1.0, and α = 0. 

The solid upright lines represent the positions of the minima of the oscillations in the 

conductance spectra. 
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Figure 3.2 The conductance as a function of applied voltage ( 0/eV ∆ ) for three 

different thicknesses of the d-wave superconducting layer ( FLk ): (a) FLk  = 500,     

(b) FLk  = 1000, and (c) FLk  = 1500. Here, 0 / FE∆  = 0.01, 1Z = 2Z = 1.0, and α = 0. 

The solid upright lines represent the positions of the minima of the oscillations in the 

conductance spectra. (Continued) 
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As shown by McMillan and Anderson (1996), the peak of these oscillations 

correspond to the excitation energy levels of the quasiparticles in the superconducting 

layer: 

   

 (2.32) 

 

where n = 1, 2, 3,…, and nE  is the position of each oscillation peak. Our results are 

consistent with this finding, that is, the position of nE  coincide with the minima of 

the oscillations in the conductance spectra.    

 

3.2 The effect of insulating barrier potentials  

In this section, we examine the effect of the insulating barrier potentials, 

which are characterized by the parameters 1Z  and 2Z . First, we consider the case 

where both potentials are equal and later on the case where they are unequal. 

When 1Z  and 2Z  are equal, in both s-wave and d-wave cases we find that the 

overall conductance spectra are suppressed as 1Z  and 2Z  are increased, as shown in 

Figure 3.3 (a) and (b). The barrier potentials do not affect the oscillation period. They 

however reduce the probabilities of particle transmission and hence the decrease in 

the conductance. 
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Figure 3.3 The conductance spectra of MSM junctions with the different values of 

1Z  and 2Z . Here, we take 0 / FE∆  = 0.01 and FLk  = 1000: (a) s-wave case and             

(b) d-wave case.    
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When 1Z  and 2Z  are unequal, things are more interesting. In the s-wave case, 

when 1Z  is fixed, the variation of 2Z  does not affect the conductance spectra in the 

0eV < ∆  region, whereas the conductance spectra in the 0eV > ∆  region is very much 

affected. That is, the spectra in this region are suppressed by the increase in 2Z  as 

shown in Figure 3.4.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 The conductance spectra of s-wave superconductor with different values 

of 2Z . We take 0 / FE∆  = 0.01, FLk  = 1000, and 1Z = 0.5. 
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In the 0eV > ∆  region, the conductance spectrum is affected in the same way as in the 

s-wave case. Again, the oscillation period is not affected by the change in the barrier 

potentials as shown in Figure 3.5. 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 The conductance spectra of d-wave superconductor with different values 

of 2Z . We take 0 / FE∆  = 0.01, FLk  = 1000, α = 0, and 1Z = 0.5. 
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difference can be used to distinguish the quality of the two interfaces of MSM double 
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Figure 3.6 The conductance spectra of s-wave superconductor with different values 

of 2Z . We take 0 / FE∆  = 0.01, FLk  = 1000, and 2Z = 0.7. 

 

 

 

 

 

 

 

 

Figure 3.7 The conductance spectra of d-wave superconductor with different values 

of 2Z . We take 0 / FE∆  = 0.01, FLk  = 1000, α = 0, and 2Z = 0.7.  
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3. 3 The effect of the crystal orientation of d-wave superconductor 

Now we consider the influence of the crystal orientation of a d-wave 

superconductor on the conductance spectrum of the double junction. The orientation 

is characterized by the parameter α , the angle between the a-axis of the crystal of the        

d-wave superconductor and the interface normal of the interface. As can be seen in 

Figure 3.8, the crystal orientation of the d-wave superconductor has a very strong 

effect on the whole range of the conductance spectrum. There is a zero-bias 

conductance peak (ZBCP) developing as α  is increased from 0 to / 4π . Specifically, 

there is no ZBCP when α = 0. As α  is increased, the ZBCP starts to appear.            

Its height and width are increased as α  approaches / 4π . The period of the 

oscillations in the conductance spectrum is also affected by the change in α . 

 

 

 

 

 

 

 

 

 

Figure 3.8 The conductance spectra of d-wave junctions with different values of     

α : 0, /π 8, /π 6, and /π 4. We take 0 / FE∆  = 0.01 and 1Z  = 2Z  = 1. 
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CHAPTER IV 

CONCLUSIONS 

   

We have theoretically investigated the conductance spectra of metal-

superconductor-metal (MSM) junctions, where the superconducting layer is either 

isotropic s-wave or d-wave. We use a scattering method to obtain the particle 

transmission and reflection probabilities, which are then used to calculate the electric 

current across an MSM junction as a function of the applied voltage. As is already 

well understood, changes in thickness of the superconducting layer give rise to 

oscillatory behavior in the conductance spectra, which are known as the Tomasch 

oscillations. The effect results the interference of waves scattered from the two 

boundaries of the superconducting layer (Tomasch, 1966 and Tomasch and Wolfram, 

1966).  These oscillations contained detailed information about the material properties 

of the superconductor and the metals in the junction.  In particular, they can be used 

to extract the Fermi velocity ( Fv ) and the energy gap of the superconductor 

(McMillan and Anderson, 1966). 

The effect of a variation in the relative barrier heights at the two metal-

superconductor interfaces on the conductance spectrum was our main focus in both 

cases of s-wave and d-wave gap symmetry. We found that the left (high voltage) and 

right (low voltage) barrier heights affect the conductance spectrum in a different way.   

In particular, the size of the left barrier (i.e. the barrier to incident electrons) 

determines the shape of the conductance across the entire range of the applied voltage.  
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As the left barrier increases, spectral features of the conductance are suppressed, 

resulting in an overall decrease in conductance. The right barrier (the barrier to 

incident holes) hardly affects the conduction a spectrum, when the applied voltage is 

smaller than the maximum gap. An increase in the height of the right barrier only 

affects the spectrum when the applied voltage is larger than the maximum gap. It 

decreases the conductance in this range.     

In addition to the effect of the two barriers, when we studied MSM junctions 

with d-wave superconductors, we also focus on the orientation-dependence of the 

conductance, we asked: how does the conductance spectrum depend on the angle 

between the superconductor crystal axis and the normal to the metal-superconductor 

interface?   

The band structure of our simple model of the superconductor is isotropic, so 

all orientation dependence came from the anisotropic superconducting gap. The              

d-wave gap (which is known to occur in high-temperature superconductors and other 

materials) vanishes along two perpendicular directions the nodal directions in the       

two dimensional momentum space.   

When the normal to the junction interface is parallel to the nodal direction, 

along which the gap vanishes, the conductance spectrum shows a prominent peak 

centered at zero voltage, similar to a single metal-d-wave superconductor junction 

(Tanaka and Kashiwaya, 1995). As the superconductor is rotated, this peak is 

suppressed. When the junction interface normal is parallel to the direction along 

which the gap is maximum (and thus makes a 45D  angle with the nodal direction) this 
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zero-voltage peak is absent. Other features of the conductance spectrum show             

a similarly strong dependence on crystal orientation, as discussed in detail above. 

In conclusion, we have identified new dependences of the MSM conductance 

spectrum on properties of the constituent materials. For s-wave superconductors, we 

have found that, depending on the range of applied voltage, one interface or the other 

(i.e. the high or low potential interface) dominates the conductance whereas the other 

plays a lesser role. This finding would allow experimentalists to isolate barrier effects 

involving two different metals by varying the voltage in order to disentangle the 

effects of the two interfaces. For d-wave superconductors we have detailed the 

dependence of the conductance on the junction orientation extending previous work 

by including all intermediate angles (previous studies typically concentrated on cases 

where the interface normal was either parallel to the nodal direction or the maximum-

gap direction). This could help experimentalists interpret results when the exact 

orientation of the interface is difficult to determine or control. 
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