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THEORETICAL STUDY OF TUNNELING SPECTROSCOPY OF METAL-

SUPERCONDUCTOR-METAL JUNCTIONS

This thesis is a theoretical study the tunneling spectroscopy of metal-
superconductor-metal double junctions (MSM) composed of two dimensional
electronic materials. In this study, we considered two types of superconductors: those
having s-wave (i.e. isotropic) and d-wave (anisotropic) gap symmetries. The zero-
temperature differential conductance was calculated by a scattering method. Several
variable properties of junctions that affect the conductance spectrum have been
studied. These include: the thickness of superconducting layer, the barrier height at

both interfaces and the superconducting crystal orientation relative to the interface.

The thickness of the superconducting layer controls the magnitude of the
conductance in a distinctive manner that is well understood. Because of the
interference of waves scattered from the two boundaries of the superconducting layer,
there is an oscillatory dependence of the conductance on the layer thickness, the so

called Tomasch oscillations.

Having reproduced the Tomasch oscillations in our calculation, our focus was
to determine how these oscillations are affected by a variation in the relative barrier

heights at the two metal-superconductor interfaces. We determined that both the



v

magnitude of the conductance and the qualitative spectral features, including the
Tomasch oscillations, depend on the left and right barrier heights. (In our convention,
a positive charge carrier sees a higher potential at the left barrier when the applied
voltage is positive.) Electrons are injected into the superconductor from the metal on
the left while holes are injected from the metal on the right (opposite charge carriers
must be simultaneously injected into the superconductor to ensure current
conservation). Therefore the left barrier scatters incoming electrons while the right

barrier scatters incoming holes.

One of the remarkable results of this thesis is that the relative importance of
the two barriers changes with the applied voltage. In both s-wave and d-wave
superconducting junctions, we found that the left (electron) barrier influences the
conductance throughout the range of the applied voltage, whereas the right (hole)
barrier only affects the conductance when the applied voltage is larger than the

maximum gap.

The anisotropy of a d-wave superconductor makes MSM junctions involving
it sensitive to crystal orientation. The qualitative spectral features of the conductance
reflect this gap anisotropy. For example, a broad peak in the conductance at zero
voltage occurs when the momentum direction of the gap minimum is parallel to the
surface normal. The height and width of this peak decreases as the crystal is rotated
away from this orientation and the peak vanishes completely when the interface

normal coincides with the direction of the gap maximum.
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CHAPTER |

INTRODUCTION

1.1 Background and motivation

In a double junction, a structure consisting of three layers of materials, particle
waves moving to the left and to the right can interfere. The interference causes the
particle transmission probability through the junction to oscillate with the particle
energy. In general, the period of the oscillation depends on the thickness and the
physical properties of the middle layer (Shankar, 1994). One can observe the
interference by measuring the current-voltage characteristics, or alternatively the
conductance spectrum the first derivatives of the current with respect to the applied
voltage vs the applied voltage of the double junction. In principle, one can extract
information about an unknown material by studying these properties of a junction
when the unknown material is in the middle. In this thesis, the materials of interest
include conventional and high-temperature superconductors.

Superconductors have remarkable properties. They are perfect diamagnets and
perfect conductors. Most metals can become superconducting at very low
temperatures, well below 77 K the boiling point of liquid nitrogen (Marder, 2000). In
the ground state, the electrons in a superconductor are paired in bound states called
Cooper pairs. For most conventional superconductors like Indium (In), Aluminum
(Al), Lead (Pb), and Niobium-titanium (NbT1i), the mechanism that binds electrons in

Copper pairs is an attraction due to the electron-phonon coupling, which dominates



the Coulomb repulsion and electron kinetic energy at sufficiently low temperature.
The minimum energy needed to break a Cooper pair is called the superconducting gap.
The superconducting gap of a conventional superconductor is approximately
momentum-independent, i.e. the same for all wave vectors K , and is called isotropic
s-wave. Certain unconventional superconductors exhibit different superconducting
gap symmetries. High temperature superconductors are ceramic compounds

consisting of at least one copper oxide plane, and are one of the most studied

materials in existence (see Figure 1.1).

13.18 A

c =

c=11.6802 A

-

Figure 1.1 On the left is the crystal structure of YBa2Cu307-x (YBCO), lattice
constants of which are a=3.82 A, b=3.89 A, and ¢ = 11.6802 A, and on the right is
the crystal structure of La, Sr CuO, (LSCO) with lattice constants a = b = 3.78 A,

and ¢ = 13.18 A. (http://hoffman.physics.harvard.edu/materials/

Cuprates.php).



The electrical conduction along the copper oxide planes can be orders of
magnitude higher than that perpendicular to the planes (Tsuei and Kirtley, 2000).
Therefore, one can model these materials as two dimensional (2D) systems.
The superconducting gaps of these materials are found to be strongly momentum-

dependent within the 2D plane. They are dxtyz -wave (that is they are functions that

. . 2 2
have the same symmetry in momentum space as the function k,”-k, ). The gap
magnitude goes to zero for wave vectors along the diagonals k, =tk  and has

opposite sign on opposite sides of these diagonals.

In this masters thesis, a metal-superconductor-metal (MSM) double junction
will be theoretically studied. Two types of superconductors are considered: isotropic
s-wave and d-wave. The superconducting layer in an MSM junction causes
oscillations in the electrical conductance spectrum. These oscillations called Tomasch
oscillations after Tomasch, who measured the resistivity as a function of applied
voltage of Al-Al,O3-Pb junction with variable Pb thicknesses between 2.9 to 9.7
microns (Tomasch, 1965). The junction was cooled down below the superconducting
transition temperature of Pb. He found that the relation between the first derivative of
the voltage with respect to the current exhibited oscillations. The distance between the
two adjacent peaks of oscillations is inversely proportional to the thickness of Pb
(Tomasch, 1965). He also measured the resistivity spectrum of a similar junction with
In as a superconducting layer and obtained similar results (Tomasch, 1966; Tomasch
and Wolfram, 1966). The oscillating behavior was first explained by McMillan and
Anderson in to be due to quasiparticle interference in the superconducting layer

(McMillan and Anderson, 1966). They showed that the oscillation period depends on



the thickness (L), the Fermi velocity (V; ), and the energy gap (A, ) of the

superconducting layer (McMillan and Anderson, 1966):

, [ mnhvg ’
E, =./A + - , (1.1)

where E, is the position of each oscillation peak, n is an integer. By considering the
Tomasch oscillations, one can therefore extract this information about the
superconducting layer. The Tomasch oscillations can potentially be used to detect the
gap anisotropies of anisotropic superconductors, like anisotropic s-wave and d-wave
superconductors, as well. Lykken and his colleagues used the Tomasch oscillation to
measure the anisotropy of the superconducting gap and the Fermi velocity of Pb along
several crystal orientations such as [100], [110], [111], and [211] (Lykken, Geiger,
Dy, and Mitchell, 1970; Lykken, Geiger, Dy, and Mitchell, 1971). As for the case of
d-wave superconductors, one of the experimental work was done by Koren and his
colleagues. They measured the Tomasch oscillations of YBCO film and found its
energy gap and its Fermi velocity (Koren, Polturak, and Deutscher, 1996; Nesher and
Koren, 1999).

There has not also been much theoretical study of the Tomasch oscillations
in a d-wave superconductor. Dong and his colleagues used the scattering method
to study a metal-d-wave superconductor-metal junction. They calculated the
conductance spectrum of the junction in two orientations. In one of the orientations,

the direction of the gap maximum is oriented perpendicular to the interface planes. In

another orientation the direction of the gap maximum is pointing 45" from the



interface planes. In their calculation, they assumed the two metals are identical and
the insulating barriers at both interfaces are the same (Dong, Zheng, and Xing, 2004).

In this thesis, the Tomasch oscillations of two-dimensional (2D) isotropic
s-wave superconductors and d-wave superconductors will be considered. The effects
of the unequal insulating barriers and in the d-wave case the effect of the crystal
orientation of the superconductor will also be considered. The superconducting gap is
not constant and the crystal orientation of the d-wave superconducting plane other
than the plane [100] and [110] gives a different phase angle. Except the case of [100]
plane we have found the characteristic energy is equal to zero and gradually decrease
until a specific level of energy. This feature is called zero-bias conductance peak
(ZBCP) (Tanaka and Kashiwaya, 1995). From most of the studies, the junction is
a single junction. For the study of the double junctions, it is found that they only

considered two planes of crystal orientation of the superconductor, [100] and [110].

1.2 Assumptions and method of calculation

In this thesis, all MSM junctions are modeled as 2D infinite systems

occupying the Xy plane. The two metals occupy the X < 0 and X > L regions and a

superconducting layer is in between (as shown in Figure 1.2). The superconducting
gap is taken to be position-independent, but can depend on the wave vector especially
for a d-wave superconductor. Both interfaces are assumed to be smooth; so that, the
component parallel to the surface of the momentum of the quasiparticle in each region

is conserved.



H,d(x) H,o(x-L)

Figure 1.2 Diagram of the geometry of an MSM junctions. Both metals occupy the
spaces where X < 0, X > L and the superconductor occupies the space where 0 < x <L.
The two insulating layers at X = 0 and X = L, which are represented by delta-function

barrier potentials of height H; and Hy, L is the thickness of superconductor, A, is the

superconducting gap.

The method used in this thesis is based on a scattering method analogous to
that used in undergraduate quantum mechanics courses. This scattering formalism is
a simple approach and now one of the formalisms widely used to study the particle
transport in a heterostructure. It was first used by Blonder, Tinkham, and Klapwijk
(Blonder, Tinkham, and Klapwijk, 1982) to calculate the current and conductance
spectra of a metal-superconductor junction and is thus sometimes referred to as the
BTK formalism. The starting point is to write down the Hamiltonian describing the
junction in a free electron approximation. In this approximation, the energy dispersion
relation of electrons in a conduction band of a metal is parabolic. On the

superconducting side, the excitation energy in this approximation is



2

n’k? . - .

E = ( S E | +A; , where m is the mass of the electron, Kk is the wave vector,
m

E.; is the Fermi energy of the superconductor, and A, is the superconducting gap,
which in case of a s-wave superconductor is taken to be A, =A,, where
A, is a constant, and in case of a d-wave superconductor is taken to be
A, =A,cos2(6, —a), where 6, is the angle between the wave vector and the left

interface normal, and « is the angle between the a-axis of the superconductor and the

left interface normal (so the argument of the cosine describes the direction of K
relative to the crystal axis and results in a gap that has maximum magnitude along the
square axes and vanishes along the diagonal). The gap is set to be zero in the normal
metal and is assumed to be position-independent in the superconductor for simplicity
(see Figure 1.2), i.e. we neglect the proximity effects. The insulating layers at both
interfaces are represented by the delta-function barrier potentials H,0(X) and
H,5(x—L), respectively.

According to the work of Dong, Zheng, and Xing (2004), we consider the
injection of the electron and hole together by injecting electrons from metal to the left
and right side. We need to inject both electron and hole into the system in order to

conserve electric current within the system. In this study, we calculate conductance of

the junctions at zero temperature using the elastic scattering method.



1.3 Outline of research

In this thesis, we consider MSM junctions, involving s-wave and d-wave
superconductors. Our main focus is on the effect of interface quality on the
conductance spectra of both types of junctions. For a d-wave superconductor junction,
we also consider the influence of the superconducting crystal orientation on the
spectrum. In the next chapter, we will present the method we use to calculate the
conductance spectra of MSM junctions. We present the results for both s-wave and
d-wave superconductor junctions in Chapter III. We finally provide a summary of

main results and conclude in Chapter IV.



CHAPTER Il

METHOD OF CALCULATION

In this chapter, the method used to calculate the conductance spectra of MSM
junctions is presented. In this method, each of our junctions is represented by an
infinite two-dimensional system, where a superconductor of thickness L is
sandwiched by two identical metals. At each interface, we assign a delta-function
potential to depict an insulating layer. We use a free electron model to describe the

electronic properties of each region.

H,4(x) H,o(x-L)

Figure 2.1 The sketches of the geometry of MSM junctions. Both metals occupy the
spaces where X < 0, X > L and the superconductor occupies the space where 0 < Xx <L.
The two insulating layers at X = 0 and X = L, which are represented by delta-function

barrier potentials of height H; and Hy, L is the thickness of superconductor.
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We follow the approach used by Griffin and Demers and also by
Blonder, Tinkham, and Klapwijk (Griffin and Demers, 1971; Blonder, Tinkham, and
Klapwijk, 1982) to calculate the current and conductance spectra of our junctions. In
this approach, the junction is described by the Bogoliubov de Gennes (BdG)

equations:

{H (X,y)  A(XY)

Kooy H y)}z/(x, V)= Ep(x,y) .1

2v72
Where H =(—h v
2m

j+V(x) — B O(=X)— Ers (O(X) —O(X— L))~ E,®(x—L) is the

Hamiltonian of an MSM junction and A(X) =A, (O(X)-—O(X—L)). L is the thickness
of superconducting layer. ©(X) is the Heaviside step function. E; and E; are the

Fermi energies of the metal on the left and right hand side, respectively. Because we

take both metals to be identical, E; = E ;. E is the Fermi energy of the
superconductor. V(X)=H,0(X)+H,56(x—L) 1s the insulating barrier potentials
located at both interfaces. H, and H, can take different values. A, is the

superconducting gap. In this thesis, we consider two types of superconductors, s-wave
and d-wave superconductors. For s-wave superconductors, the superconducting gap
is taken to be independent of the wave vector: A, =A,, where A, is a constant.

For d-wave superconductors, the gap is taken to be A, = A cos2(6, —«), where 6, is

the angle between the wave vector and the interface normal (the x-axis in Figure 2.1).

a is the angle between the a-axis of the superconductor and the interface normal.
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Uy

l//(X, y) is the two-component wave function w (X, Y) =( jeikxeikyy , where U, and v,
V

k

are electron-like and hole-like quasiparticle amplitudes defined as follows:

and v, = A where & = E’~A; . E is the
ﬂE+@|

2+|Ak|2

u = E+&,
N RN

energy of an excitation.

s-wave d-wave

Figure 2.2 The sketches of two types of superconducting gaps in the momentum
space. The black circles represent the Fermi spheres. The solid lines represent the
minimum energy contour of the excitations in an s-wave superconductor (left) and a

d-wave superconductor (right). The plus and minus signs represent the phase of the

gap.

From the BdG equations, the excitation energy spectrum and the
corresponding eigenfunction in each region can be obtained. For the metal on the left

side (X < 0), the energy spectra for electron and hole excitations are
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FE (22)

where the plus and minus signs are for electron and hole excitations, respectively.

We consider two cases of particle injection: an injection of an electron from
the left metal and that of hole from the right metal. The particle transmission
probabilities in both cases are needed for the calculation of the conductance; so that
the electric current is conserved in every plane of consideration (Dong, Zheng, and
Xing, 2004).

In the first case, the involving excited states of the electrons in the left metal
are shown in Figure 2.3. Andreev and normal reflection coefficients are denoted by

(r,) and (r,) in the figure. In the superconductor, electron-like and hole-like
quasiparticle reflection coefficients are denoted by (C,) and (d,), and electron-like
and hole-like transmission coefficients are denoted by (c,) and (d,) (as shown in

Figure 2.4). In the left excited electron and excited hole transmission coefficients are

denoted by (t,) and (t,) (as shown in Figure 2.5). In the second case of the injection,

one can figure similar states that are involved.
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EML
A
I, P - I, Incoming electron
T + _:,7 _______ T —\\__ A
—q L\|/ q Lo, q L
U »
/' 0 \\
—l, ‘\
/ e, e, kY

Figure 2.3 The sketch of the energy dispersion relation and the indications of the

excitation states participating in the incoming and reflecting off the interface on the

left side of an MSM junction, in the case where an electron is injected from the left.

The solid curves represent the electron excitation spectrum and the dashed curves

represent the hole excitation spectrum. The black (e) and white (o) dots represent

electron and hole excitations that involve the incoming and reflection surface.

The wave functions of the particle excitations in the left metal in both cases

arc

YMLce) (X, y)=

l//ML(h)(Xa y) =

t

e

e Y

Y o =(0)
g X +th gl
0 1

1) .. 0) .- 1) .
e +r | e+ e
0 1 0

ik, y

ik,y

e™ (2.3)

(2.4)

where the wave functions with subscript € and h are for the case where an electron is

injected from the left and where a hole is injected from the right, respectively. r, and
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r, are the Andreev and normal reflection coefficients, respectively. t_e and t_h are the
electron-like and hole-like quasiparticle transmission coefficients, respectively. ¢,

and q, are the X-component of the wave vectors for excited electron and hole,

respectively.

For the superconductor region (0 < X < L), the excitation energy spectrum are

2 (k2 +k2) ’
ES = (Ty$ EFS +Ai (25)

Figure 2.4 Schematic illustration of the energy dispersion relation in the
superconductor region. The black and white dots represent electron-like and hole-like

quasiparticle excitations of the same energy.
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The wave functions of the excitations in the superconducting layer in both

cases arce

V. V., Vv

,k*

—(Uu. oo —(u. Y. —(u.,,
Vs (X, Y)=| C Klexpd | (e e, K
V. v, v,

—k*

- u_ -
e—lkx_'_dz( k ]elkx

V_

k
[— N ¥ .
elkx+d2 k e—lkx

Vk,

e’ (2.6)

e’ (2.7)

where the plus and minus signs in the superscripts of the wave vectors refer to

electron-like and hole-like excitations, respectively. C, C_1 and d, d_1 are the

electron-like and hole-like quasiparticle transmission coefficients, respectively. C,,

c, and d,, d,are electron-like and hole-like quasiparticle reflection coefficients,

respectively.

Similar to that of the metal on the left, the excitation energy spectrum of the

metal on the right region (X > L) are

y

hz(q§+k2)_

(2.8)
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Figure 2.5 The diagram of the excitation energy dispersion relation of the particles

in the metal on the right. The black and white dots represent the transmitted excited

electron and excited hole in the case where an electron is injected from the left side,

respectively.

The wave functions of the excitations in the metal on the right in both cases of

injections are

Y MR(e) (X, y)=

N e (0) )
t| et | e [
0 1

0 igRx | 0 —igRX | 1 ighx
z//MR(h)(x,y): : e 41, : e+, 0 en

where t, and t, are the excited electron and excited hole transmission coefficients,

eikyy

(2.9)

(2.10)

respectively. r_h and r_e are the normal and the Andreev reflection coefficients,
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respectively. 5 and ¢y are the X-component of the wave vectors of the excited

electron and hole in the metal on the right hand side, respectively.

In this approach, the current and conductance are obtained through the
transmission and reflections probabilities. We thus have to compute for all the
transmission and reflection amplitudes from a set of equations referred to as
appropriate matching conditions at each interface. The first set of matching equations
is obtained from the fact that the wave functions are continuous at both interfaces,
whereas the second one is obtained from the discontinuity of the slopes of wave
functions at both interfaces due to the delta-function potentials representing the

insulating layers. That is,

yu (X = 0) =ps(x = 0) (2.11)
V(X = L) =py(x = L) 2.12)
dys dy/
——= (X =0) -—%=(x = 0)= 2k Zy, (X = 0) (2.13)
dx dx
Ay e dy
W =1y B (2 L= 2k Zpe(x = L) (2.14)
dx dx

where Z =mH, / hki and Z, =mH, / hki are the unitless parameters characterizing

the barrier strengths at left and right interfaces of a junction, respectively.

From these equations, we can obtain the particle reflection and transmission
coefficients, which we then use to calculate the corresponding particle transmission
and reflection probabilities. From quantum mechanics the particle reflection or

transmission probability is defined as the ration of the reflected or transmitted particle
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current density and the incoming particle current density (Shankar, 1994). Thus, the

Andreev reflection probabilities in both cases of injection are

EMLJ
O

R.(E,0) =

and R.(E,0) =

The normal reflection probabilities in both cases of injection are

R.(E,0)=

and R,(E,0) =

inc

JrefI ()

inc

Jreﬂ (re)

inc

Iinc

Jreﬂ(rh)

Jreﬂ )

|Q(E,0ﬂ2(

— 2
r,(E,0)

=|r.(E,0)

\E(E,e)\z(

.
Ome

Owr

(2.15)

(2.16)

(2.17)

(2.18)

The electron-like quasiparticle transmission probabilities in both cases of injection are

T.(E,0)=

and T.(E,0) =

Jtrans(te)

Jinc

Jtrans(g)

jinc

=|It.(E.0)

— 2
= [t.(E.0)

+
Owr

+
IV

.
Om

Aur

(2.19)

(2.20)

The hole-like quasiparticle transmission probabilities in both cases of injection are

T.(E,0) =

and T.(E,0)=

Jtrans(th)

inc

Jtrans(?h )

inc

L(E.0f (

ML

Owr
+

|th(E’0)|2 [ q

EIVE

Our

(2.21)

(2.22)

In each case of injection, at each interface the total incoming probabilities are equal to

the total outgoing probabilities due to the conservation of the number of particle

current.
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The electric current density flowing to the right (1) is defined as

I =2 nyve (2.23)
kx,ky

where n, is number of electron moving from left to right across the junctions,

v, 1s the group velocity, and e 1is the electron charge. n, is equal to
nk:(1+Rh(E,9)—Re(E,0)+'ITe(E,9)—'ITh(E,6))f(E) , where f(E) is the Fermi-
Dirac distribution function. Because there is no net current flowing across the
junction when there is no applied voltage, we can assume that there is an equal

amount of electric current density flowing to from right to left as well. By changing

the summation over the momenta along X and y direction to the integral over the

momenta along Yy direction and the energy, we have

27

I T =%[ = j T TdkdE(1+R_h(E,9)—E(E,9)+T6(E,¢9)—Th(E,9))f(E) (2.24)

—00

When the voltage V is applied across the junction, the electric current flowing
across junctions from left to right becomes, while that flowing from right to left stays

the same. That is,

e
LR :E

| (i] TTdkdE(l+Rh(E,H)—Re(E,0)+T_e(E,9)—T_h(E,49))f(E—eV) (2.25)
T —00 —0

and

|M=E(LJ TTdkdE(1—R_h(E,9)+E(E,9)+TQ(E,9)—Th(E,9))f(E) (2.26)
n\2r) 7 °
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Therefore, the net current crossing the junctions is

1(€V,0)=1_r—la,. (2.27)
2 o o
|(ev,9)=%(£j j jdkdE[(1+ R.(E,0)-R.(E,0)+T,(E,0)

“T,(E,0))(f(E—eV)— f(E))] (2.28)

Since k, =k sin@ and then dk, =k cos9d&

2 /2 0
|(ev,9)=%(ij [ docoso [ dE[(1+R,(E.0)-R,(E.0)+T,(E.0)

—/2
T(E.O)(f(E-eV)-f(E)) (229)
At zero temperature, the net current becomes

|(ev,9):%(i) j dOcosO(1+ R, (E,0)—R,(E,0)+T,(E,0)-T (E,0)eV (2.30)

-7/2
The conductance at zero temperature is therefore

dl(eV,0)

Gev,0)=— =

2.31)

G(ev,e):(%j j dok. cosO(1+R, (E,0) - R, (E,0) +T.(E,0)-T,(E,0) (2.32)

-r/2
In the next chapter, we will present the results and discussion of our

calculation for both s-wave and d-wave cases.



CHAPTER Il

CONDUCTANCE SPECTRA OF MSM JUNCTIONS

In this chapter, we show and discuss the results of our calculation of the
conductance in both s-wave and d-wave cases. We reconsider effects of the thickness
of superconducting layer L, i.e. the Tomasch oscillations, and explore the influence of
the heights of the barrier potentials representing by the parameters Z, and Z, in both
cases of the superconducting gap. Also, because in d-wave cases the superconducting
gap is anisotropic, we consider the effect of the crystal orientation on the conductance

spectrum as well.

3.1 The effect of the thickness of superconducting layer

In the s-wave case, the thickness of superconducting layer affects of the
oscillations in the conductance spectra. To be more specific, in the eV <A, region,
the conductance spectra do not contain any oscillations. However, the height of the
peak at the energy gap is increased with the thickness. In the eV > A region, the

oscillations of conductance spectra occur and strongly depend on L. The period of the

oscillations is decreased with the increased in L, as shown in Figure 3.1.
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(a) — Lk, =500

| | |
2 [ T | T | T |

conductance
T

/ \.l\

Figure 3.1 The conductance as a function of applied voltage (eV /A,) for three
different thicknesses of the s-wave superconducting layer ( Lk ): (a) Lk; = 500,
(b) Lk = 1000, and (c) Lk, = 1500. Here, A,/ E; = 0.01 and Z,=Z,= 1.0. The

solid upright lines represent the positions of the minima of the oscillations in the

conductance spectra.

In the case of a d-wave superconductor, unlike in the s-wave case, it is found
that in the eV <A, region, oscillations with small amplitudes can occur. They are
more prominent when the superconducting layer is thicker. These oscillations are
caused by the fact that the amplitude of a d-wave gap is not constant and oscillations

in all reflection and transmission probabilities can occur at all energies. In the
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eV > A, region, the conductance spectra contain similar oscillations to those in the

s-wave case, as shown in Figure 3.2.

T T T I T T I | T
(a)
— Lk, =500
05 T |

conductance
T
1

0 0.5 1 15 2 25 3

0.6

0.5

04

conductance

0.3

002

[EnY

eV /A,

Figure 3.2 The conductance as a function of applied voltage (eV /A,) for three
different thicknesses of the d-wave superconducting layer ( Lk:): (a) Lk. = 500,
(b) Lk. = 1000, and (c) Lk, = 1500. Here, A,/E; =0.01, Z,=Z,= 1.0, and a = 0.
The solid upright lines represent the positions of the minima of the oscillations in the

conductance spectra.
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Figure 3.2 The conductance as a function of applied voltage (eV /A,) for three

different thicknesses of the d-wave superconducting layer ( Lk-): (a) Lk. = 500,

(b) Lk. = 1000, and (c) Lk, = 1500. Here, A,/ E;. =0.01, Z,=Z,= 1.0, and a = 0.

The solid upright lines represent the positions of the minima of the oscillations in the

conductance spectra. (Continued)
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As shown by McMillan and Anderson (1996), the peak of these oscillations
correspond to the excitation energy levels of the quasiparticles in the superconducting

layer:

2
2nrE
E = || ——F | +A?
n \/(kFLCOSHJ K (2.32)

where n =1, 2, 3,..., and E_ is the position of each oscillation peak. Our results are
consistent with this finding, that is, the position of E, coincide with the minima of

the oscillations in the conductance spectra.

3.2 The effect of insulating barrier potentials
In this section, we examine the effect of the insulating barrier potentials,

which are characterized by the parameters Z, and Z,. First, we consider the case

where both potentials are equal and later on the case where they are unequal.

When Z, and Z, are equal, in both s-wave and d-wave cases we find that the
overall conductance spectra are suppressed as Z, and Z, are increased, as shown in
Figure 3.3 (a) and (b). The barrier potentials do not affect the oscillation period. They

however reduce the probabilities of particle transmission and hence the decrease in

the conductance.
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Figure 3.3 The conductance spectra of MSM junctions with the different values of

Z, and Z,. Here, we take A,/E. = 0.01 and Lk. = 1000: (a) s-wave case and

(b) d-wave case.
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When Z, and Z, are unequal, things are more interesting. In the s-wave case,
when Z, 1s fixed, the variation of Z, does not affect the conductance spectra in the
eV <A, region, whereas the conductance spectra in the eV > A, region is very much
affected. That is, the spectra in this region are suppressed by the increase in Z, as

shown in Figure 3.4.

conductance

O 1 | 1
eV /A,

Figure 3.4 The conductance spectra of s-wave superconductor with different values

of Z,. We take A,/ E; =0.01, Lk, =1000, and Z,=0.5.

In case of a d-wave superconductor, the overall spectra are affected by the

change in Z,. The effect of Z, on the conductance spectrum in the eV <A region of

a d-wave junction is more than that of an s-wave junction due to the gap anisotropy.
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In the eV > A, region, the conductance spectrum is affected in the same way as in the

s-wave case. Again, the oscillation period is not affected by the change in the barrier

conductance

Figure 3.5 The conductance spectra of d-wave superconductor with different values

of Z,. We take A,/ E; =0.01, Lk. =1000, =0, and Z =0.5.

When Z, is fixed, one can see that, in both s-wave and d-wave cases as

shown in Figures 3.6 and 3.7, respectively, the overall conductance spectra are

influenced by Z, more dramatically than in the case we considered above. This

difference can be used to distinguish the quality of the two interfaces of MSM double

junctions.
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conductance

| L | L
eV /A,

Figure 3.6 The conductance spectra of s-wave superconductor with different values

of Z,. We take A, /E. =0.01, Lk. = 1000, and Z,=0.7.

conductance

| I | I | I | I
0 0.5 1 15 2 25 3

eV /A,

Figure 3.7 The conductance spectra of d-wave superconductor with different values

of Z,. We take A,/ E; =0.01, Lk. =1000, =0, and Z,=0.7.
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3. 3 The effect of the crystal orientation of d-wave superconductor

Now we consider the influence of the crystal orientation of a d-wave
superconductor on the conductance spectrum of the double junction. The orientation
is characterized by the parameter « , the angle between the a-axis of the crystal of the
d-wave superconductor and the interface normal of the interface. As can be seen in
Figure 3.8, the crystal orientation of the d-wave superconductor has a very strong
effect on the whole range of the conductance spectrum. There is a zero-bias
conductance peak (ZBCP) developing as « is increased from 0O to 7z /4. Specifically,
there is no ZBCP when o = 0. As « is increased, the ZBCP starts to appear.
Its height and width are increased as « approaches 7/4 . The period of the

oscillations in the conductance spectrum is also affected by the change in « .

— oa=m/4

conductance

Figure 3.8 The conductance spectra of d-wave junctions with different values of

a:0,7/8, n/6,and 7/4. Wetake A,/ E. =0.0land Z, = Z, = 1.



CHAPTER IV

CONCLUSIONS

We have theoretically investigated the conductance spectra of metal-
superconductor-metal (MSM) junctions, where the superconducting layer is either
isotropic s-wave or d-wave. We use a scattering method to obtain the particle
transmission and reflection probabilities, which are then used to calculate the electric
current across an MSM junction as a function of the applied voltage. As is already
well understood, changes in thickness of the superconducting layer give rise to
oscillatory behavior in the conductance spectra, which are known as the Tomasch
oscillations. The effect results the interference of waves scattered from the two
boundaries of the superconducting layer (Tomasch, 1966 and Tomasch and Wolfram,
1966). These oscillations contained detailed information about the material properties
of the superconductor and the metals in the junction. In particular, they can be used

to extract the Fermi velocity (V. ) and the energy gap of the superconductor

(McMillan and Anderson, 1966).

The effect of a variation in the relative barrier heights at the two metal-
superconductor interfaces on the conductance spectrum was our main focus in both
cases of s-wave and d-wave gap symmetry. We found that the left (high voltage) and
right (low voltage) barrier heights affect the conductance spectrum in a different way.
In particular, the size of the left barrier (i.e. the barrier to incident electrons)

determines the shape of the conductance across the entire range of the applied voltage.
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As the left barrier increases, spectral features of the conductance are suppressed,
resulting in an overall decrease in conductance. The right barrier (the barrier to
incident holes) hardly affects the conduction a spectrum, when the applied voltage is
smaller than the maximum gap. An increase in the height of the right barrier only
affects the spectrum when the applied voltage is larger than the maximum gap. It

decreases the conductance in this range.

In addition to the effect of the two barriers, when we studied MSM junctions
with d-wave superconductors, we also focus on the orientation-dependence of the
conductance, we asked: how does the conductance spectrum depend on the angle
between the superconductor crystal axis and the normal to the metal-superconductor

interface?

The band structure of our simple model of the superconductor is isotropic, so
all orientation dependence came from the anisotropic superconducting gap. The
d-wave gap (which is known to occur in high-temperature superconductors and other
materials) vanishes along two perpendicular directions the nodal directions in the

two dimensional momentum space.

When the normal to the junction interface is parallel to the nodal direction,
along which the gap vanishes, the conductance spectrum shows a prominent peak
centered at zero voltage, similar to a single metal-d-wave superconductor junction
(Tanaka and Kashiwaya, 1995). As the superconductor is rotated, this peak is

suppressed. When the junction interface normal is parallel to the direction along

which the gap is maximum (and thus makes a 45° angle with the nodal direction) this
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zero-voltage peak is absent. Other features of the conductance spectrum show

a similarly strong dependence on crystal orientation, as discussed in detail above.

In conclusion, we have identified new dependences of the MSM conductance
spectrum on properties of the constituent materials. For s-wave superconductors, we
have found that, depending on the range of applied voltage, one interface or the other
(i.e. the high or low potential interface) dominates the conductance whereas the other
plays a lesser role. This finding would allow experimentalists to isolate barrier effects
involving two different metals by varying the voltage in order to disentangle the
effects of the two interfaces. For d-wave superconductors we have detailed the
dependence of the conductance on the junction orientation extending previous work
by including all intermediate angles (previous studies typically concentrated on cases
where the interface normal was either parallel to the nodal direction or the maximum-
gap direction). This could help experimentalists interpret results when the exact

orientation of the interface is difficult to determine or control.
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