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บริเวณดานทิศตะวนัตกของที่ราบสูงโคราชถูกขนาบดวยแนวเทือกเขา อายุพาลีโอโซอิก
ตอนปลายจนถึงอายุควาเทอรนารี แนวเทือกเขานับจากแมน้ําโขงทางดานทิศเหนือจนถึงบริเวณ
จังหวดัสระบุรีและจังหวัดนครราชสีมาทางดานทิศใต รวมระยะทางประมาณ 400 กิโลเมตร แนว
เทือกเขานี้รูจกักันในชื่อแนวหินคดโคงเลย (Loei Fold Belt; Bunopas, 1981) อยูทางดานขอบ
ตะวนัตกของแผนทวีปอินโดไชนา มีทิศทางการวางอยูในแนวเหนือ-ใต ประกอบไปดวยหินที่มกีาร
ลําดับชั้นและธรณีวิทยาโครงสรางที่หลากหลาย มนีักวจิัยหลายทานไดศึกษาสภาพการเปลีย่น
ลักษณะของแนวหนิคดโคงเลยหรือแนวหนิคดโคงเพชรบูรณ (Phetchabun Fold Belt) อยางไรก็
ตามความชัดเจนของสภาพภูมิศาสตรบรรพกาล (paleogeography) ในชวงอายุพาลีโอโซอิกตอน
ปลายยังขาดความชัดเจน จงึทําใหเกิดความหลากหลายของมุมมองทางดานธรณีวิทยา ดวยขอจํากัด
นี้เองการเพิ่มเติมขอมูลใหมจากงานวิจยันี ้ จะชวยแปลความหมายทางดานธรณีวิทยาในบริเวณพืน้ที่
ศึกษา และบริเวณภูมิภาคเอเชียตะวันออกเฉียงใตมีความชัดเจนมากยิ่งขึ้น 

งานวิจยันี้ทําการวิเคราะหแหลงกําเนิดตะกอนจากหินตะกอนของหมวดหนิน้ําดุก (Nam 

Duk Formation) และหินตะกอนอายุเพอรเมียนบริเวณพื้นทีจ่ังหวัดเลย สระบุรี และนครราชสีมา
โดยวิธีธรณีเคมี (geochemical analysis) และเทคนิค Cathodoluminescence เพื่อศึกษา
วิวัฒนาการดานธรณีวิทยาแปรสัณฐานของแองน้ําดกุ และแนวหินคดโคงเพชรบูรณ ผลการศึกษา
สรุปไดดังนี ้

จากผลการศึกษาธรณีเคมีของธาตุออกไซตหลัก (major elements) และธาตุหายาก (trace 

elements) พบวาหนวยหนิเพลาจิก (pelagic sequence) ของหมวดหนิน้ําดุก ตกตะกอนใน
มหาสมุทรบริเวณแนวรอยตอระหวางหมูเกาะรูปโคงในมหาสมุทร  (oceanic island arc) และ หมู
เกาะรูปโคงภาคพื้นทวีป (continental island arc) และบงชี้วาแหลงจายตะกอนหลักมาจากหนิเม
ตาเบสิก (metabasic) จากการศึกษาเมด็ตะกอนควอตซ (quartz grain) ที่ตกตะกอนในหนิปนู 
allodapic โดยวิธี Cathodoluminescence ใหสีน้ําเงินแสดงถึงแหลงกําเนิดที่มาจากหนิภูเขาไฟ
(volcanic) หนวยหินฟลิช (flysch sequence) และหนวยหินโมลาสส (molasse sequence) ซ่ึง
ประกอบไปดวยตะกอนซิลิซิคลาสติก (siliciclastic sediments) ช้ันหนา ตกตะกอนในลําดบั
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ตอมา จากแผนผังการจําแนกลักษณะการแปรสัณฐานโดยวิธีธรณีเคมีและลักษณะของธาตุหายาก
พบวา หนวยหินทั้งสองมีลักษณะทางเคมีที่คลายคลึงกันโดยมแีหลงกําเนิดตะกอนที่สําคัญไดแก 
หินอัคนีชนดิเมฟก (mafic igneous) หินเมตาเบสิก (metabasic) หินแกรนิตกิไนต (granitic 

gneiss) และหินแปรที่มีซิลิกาต่ํา อยางไรก็ตามหนวยหนิโมลาสส มีองคประกอบของเม็ดตะกอน
ควอตซจากหนิภูเขาไฟมากกวาหนวยหนิฟลิช โดยหนวยหินทั้งสองตกตะกอนในบริเวณหมูเกาะรูป
โคงภาคพื้นทวีป (continental island arc) 

 เมื่อเทียบลําดบัความสัมพันธกับหินอายพุาลีโอโซอิกตอนปลายบริเวณ แนวตะเข็บนาน-

อุตรดิตถ (Nan-Uttaradit Suture Zone) และบริเวณแนวหนิคดโคงเพชรบูรณ พบวาลําดับชั้นการ
ตกตะกอนมีความตอเนื่อง ซ่ึงสามารถสรางภาพการแปรสัณฐานในอดีตได โดยเริม่จากลําดับการ
ตกตะกอนของหินอัคนีในมหาสมุทร และหินเชิรต บริเวณแนวตะเข็บนาน-อุตรดิตถ ตอเนื่องมายัง 
หินเพลาจกิ หนิทรายเกรแวคกระแสน้ําขุนของหนวยหนิฟลิช และหนิคลาสติกน้ําตื้นของหนวยหิน
โมลาสส ในชวงอายุคารบอนิเฟอรัสตอเนือ่งถึงอายุเพอรเมียน 

ในดานธรณีวทิยาแปรสัณฐาน ตะกอนในแองน้ําดุกพฒันามาจากการเปดของแองทางดาน
ทิศตะวนัตกของแผนทวีปอนิโดซิเนีย (Indosinia craton) ซ่ึงเปนผลมาจากการปดตัวของทะเลเลย 

(Loei Ocean) ในชวงอายุระหวางดีโวเนยีนถึงคารบอนิเฟอรัส (Intasopa and Dunn, 1994) การ
เปดของแองน้าํดุกคาดวาเริ่มพัฒนาในชวงอายุคารบอนิเฟอรัสตอนกลาง (Kozar et al., 1992) โดย
มีตะกอนของหนวยหนิเพลาจิกซึ่งเปนตะกอนที่เกดิในแองน้ําลึกในมหาสมุทร โดยคาดวาการสะสม
ของตะกอนเพลาจิก อาจเริ่มตั้งแตชวงคารบอนิเฟอรัสตอนกลางถึงตอนปลายตอเนือ่งจนถึงเพอร
เมียนตอนตน โดยมีแนวสะสมตะกอนลานหินปนูผานกเคาและเขาขวาง (Pha Nok Khao and 

Khao Khwang Platforms) ซ่ึงในอดีตอาจเปนแนวเดยีวกัน วางตัวอยูทางทิศตะวนัออกหรอื
ทางดานทิศตะวันตกของแผนทวีปอินโดไชนา ในชวงบนเพอรเมียนตอนกลาง แผนทวีปอินโดไช
นา (Indochina craton) ไดเคล่ือนตัวมุดชนกับแผนทวปีฉาน-ไทย (Shan-Thai craton) ทางดาน
ทิศตะวนัตก โดยจายตะกอนประเภทหินอัคนีเมฟก และอัลตราเมฟก ใหกับหนวยหินฟลิช ใน
บริเวณแนวการพอกพูนซับซอน (accretionary complex) และตกตะกอนในสภาพแวดลอม
บริเวณดานนอกของรองโคง (outer or a fore-arc environment)  

การเปลี่ยนสภาพการตกตะกอนจากหินตะกอนของหนวยหินฟลิช ไปสูตะกอนของหนวย
หินโมลาสส อันเนื่องมาจากการปดตวัลงของแองน้ําดุก โดยมีตะกอนของหนวยหนิโมลาสสปดทับ
บริเวณแองรอบสวนหนาของแผนดิน (peripheral foreland basin) ซ่ึงในชวงเวลานี้เองคือการ
ส้ินสุดลงของแองมหาสมุทรโดยที่การแปรสัณฐาน หรือการเปลี่ยนลักษณะไดเกิดขึ้นอยางสูงสุด 
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หรือที่เรียกวาบรรพตรังสรรคชวงปลายวาริสกัน (Late Variscan orogeny; Helmcke and 
Lindenberg, 1983)  
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NAM DUK FORMATION/NAN-UTTARADIT SUTURE/PROVENANCE/ 

SILICICLASTIC/PERMIAN/TECTONIC 

  
The huge “Khorat Plateau” is bordered to the west by a belt of rock that 

reflects a complex Late Paleozoic to Quaternary history.  It includes mountain ranges 

that stretch from the Mekong River in the north to Saraburi and Nakhon Ratchasima in 

the south, a distance of approximately 400 km. These mountain belts are known as the 

Loei Fold Belt (Bunopas, 1981) which is located on the western margin of the 

Indochina plate.  These N-S elongated mountain ranges are characterized by a series 

of different stratigraphic sequences and varying structural histories.  Various 

researchers have studied on the deformation history of the Loei or Phetchabun Fold 

Belt.  The paleogeographic situation of the region during Late Paleozoic time is still 

not clearly understood.  Different scenarios have to be explored and it is expected that 

new data will provide a solution.  This solution must be compatible with the wider 

geological interpretation of mainland SE Asia. 

Provenance analyses of the siliciclastic sediments in the Nam Duk Formation 

and Permian sequences in Loei and Saraburi areas have been done based on 

geochemical and cathodoluminescence analysis.  The geodynamic evolution of the 
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Nam Duk Basin and the Phetchabun Fold Belt are proposed and discussed.  The 

results can be summarized as follows;  

The pelagic sequence of the Nam Duk Formation was formed in an oceanic 

setting between oceanic island and continental island arc environments according to 

the result of major and trace elements analyses.  The source of the quartz detritus in 

the allodapic limestone was from metabasic and volcanic provenance as indicated by 

geochemical and blue luminescence family quartz.   The subsequent deposition of 

flysch and molasse sequences consists of thick siliciclastic sediments.  Tectonic 

setting discrimination diagrams and trace elements characteristics of flysch and 

molasse siliciclastic sediments indicate similar geochemical characteristics.  The most 

important sources for both flysch and molasse were from mafic igneous, metabasic, 

granitic gneiss, and low-silica metamorphic sources.  However, the molasse contains 

more volcanic quartz grains and recycled sediments than the flysch.  Both sequences 

were deposited in a continental island arc setting. 

Correlation of the Late Paleozoic strata in the Nan-Uttaradit suture zone and 

the Phetchabun Fold Belt reveals a continuous sedimentary sequence which can be 

used for the paleotectonic reconstruction.  An idealized vertical sequence from 

oceanic igneous rocks and chert (ophiolite sequence) passing upward through pelagic, 

greywacke turbidite (flysch) to shallow marine clastic (molasse) deposits have been 

proposed.    

Tectonically, the Nam Duk Basin was formed as a back arc basin after the 

closure of small oceanic basin (Loei Ocean) in Indosinia continent during the 

Devonian-Carboniferous (Intasopa and Dunn, 1994).  This basin rifting probably 

occurred in Middle Carboniferous (Kozar et al., 1992) and subsequently the pelagic 
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sediments were accumulated during Middle – Late Carboniferous to lower Middle 

Permian in a deep sea basin.   The Pha Nok Khao and the Khao Khwang Platforms (or 

probably one coherent unit) were located in the eastern side of the Nam Duk Basin or 

the western margin of the Indochina plate.  The subduction of Indochina beneath the 

Shan-Thai cratons (on the west) towards west was started in the upper Middle 

Permian.  The provenance signature of the flysch sequence shows the mafic-

ultramafic igneous source which is interpreted as being derived from the accretionary 

complex and it was in an outer or a fore-arc environment.   

After the Nam Duk remnant ocean was closed, a peripheral foreland basin was 

formed with molasse sedimentation.  The changing of flysch to molasse sediments as 

the result of the termination of the oceanic basin indicates the maximum deformation 

or disturbance which is known as the Late Variscan orogeny (Helmcke and 

Lindenberg, 1983).  
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CHAPTER I 

INTRODUCTION 

 

 In this Chapter, the author likes to briefly describe the geological setting of 

Thailand and the results of geological investigations on the evolution of the mountain 

belt bordering the huge Khorat Basin of Northeastern Thailand to the west.  This 

mountain belt is known in Thai as “Dong Phaya Yen”.  Due to the formerly little 

developed infra-structure and the wide distribution of primary jungles in this 

mountainous region most of the data discussed here were collected only during the 

past 25 years. The main intention of this summary of data obtained till now is to 

characterize the open questions and problems which cause the ongoing scientific 

controversy, and to indicate necessary directions of future research. 

 

1.1 The physiographic and geological setting of Thailand   

 The physiography of Thailand is the consequence of the long complex 

geodynamic evolution during Phanerozoic time except for the Khorat Basin in 

northeastern part.  According to recent geological interpretation, it is believed that two 

micro-continental blocks named Shan-Thai in the west and Indochina in the east 

welded together along the Nan-Uttaradit suture (Bunopas and Vella, 1978; Bunopas 

and Vella, 1983).  The Shan-Thai terrane comprises eastern Myanmar, western 

Thailand, western peninsular Malaysia and northern Sumatra.  The Indochina terrane 

comprises eastern Thailand, Laos, Cambodia and parts of Vietnam.  A brief review of 
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the geology of both terrane are given here for the understanding and introducing of the 

study area.  A physiographic region of Thailand is given in Figure 1.1. A simplify 

geological map of Thailand is given in Figure 1.2. 
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Figure 1.1 Map of Thailand showing physiographic regions. (1 = Northern and 

Western mountains; 2 = Central plains; 3 = East-central hill ranges; 4 = 

Khorat Plateau; 5 = Southeast; 6 = South peninsular). 
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Figure 1.2  Simplified geological map of Thailand (simplified from Geological  

  Survey Division, Bangkok, 1987). 
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 1.1.1 The Precambrian  

 Only Shan-Thai terrane contains the Precambrian rocks.  In northwest 

Thailand, the first mention of “well-bedded quartzites up to 500 m thick lie 

stratigraphically below Ordovician limestones” belonging to the Precambrian age is 

reported by Baum et al. (1970).  Since then, all the high grade metamorphic rocks in 

the western mountain range which are characterized by evidences of migmatization, 

were all mapped as Precambrian or inferred Precambrian rocks (Mantajit, 1975; 

Dheeradilok, 1975; Mantajit, 1997).   

 1.1.2 The Paleozoic 

 The Paleozoic rocks are divided into three parts as lower, middle and 

upper Paleozoic.  According to Mantajit (1997), the Lower Paleozoic rocks in 

Thailand are well exposed in the south and on the main western range of the Shan-

Thai terrane.  There is no record of the Lower Paleozoic rocks in the Indochina terrane 

in northeast Thailand.  On Shan-Thai terrane, the lower Paleozoic rocks are divided 

into two conformable rock units: a lower siliciclastic unit, the Tarutao Group and the 

upper carbonate unit, the Thung Song Group.  They are closely associated with the 

Precambrian rocks and have often been repectively equated to the Cambrian and 

Ordovician.  The red sandstone and shale of the Tarutao Group is a shallow-shelf 

sequence periodically subjected to storm (Akerman, 1986) whereas the limestone of 

the Thung Song Group is a shallow to deep carbonate ramp deposit (Wongwanich and 

Burrett, 1983; Wongwanich et al. 1983). 

 The Middle Paleozoic rocks of Thailand during the Silurian to 

Devonian can be differentiated into three rock units from the west to the east: the 
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Thong Pha Phum Group, The Sukhothai Group (of Shan-Thai terrane) and the Pak 

Chom Formation (Mantajit, 1997).  The Thong Pha Phum Group is composed of back 

shale, chert, sandstone, siltstone and variegated nodular limestone and was deposited 

on shelf to back arc basin (Dheeradilok et al. 1992).  The Sukhothai Group (in 

Sukhothai fold belt) is composed mainly of metamorphic and metavolcanic rocks 

including amphibolite, mica schist, agglomerate, fine-grained tuff, marble and bedded 

chert (Bunopas, 1992).  The Pak Chom Formation (in Loei fold belt), the latest 

Silurian to Devonian sequence, crops out in east of Loei and west of Nong Bua Lam 

Phu and Udon Thani.  They consist of the Silurian schist, phyllite, quartzite, metatuff, 

and fossiliferous limestone and unconformably overlie metamorphic rocks of the 

Namo Group. 

 The Upper Paleozoic rocks consist of Carboniferous and Permian 

siliciclastics and limestones which lie conformably over the Middle Paleozoic and are 

widely distributed throughout Thailand.  In the west and the peninsula, the Thong Pha 

Phum Group continues from its uppermost Ordovician-Silurian-Devonian to 

Carboniferous without a break (Wongwanich et al. 1990 and Bunopas, 1991).  The 

pebbly sandstone and mudstone belonging to the Thong Pha Phum Group are named 

the Kaeng Krachan Group by some authors (Piyasin, 1975 and Raksaskulwong and 

Wongwanich, 1993).  In the north, the Mae Hong Son Formation is proposed for chert, 

sandstone and shale deposited near the cratonic axis whereas the sandstone, shale, 

graywacke and agglomerate of the Dan Lan Hoi Group were deposited in shallow 

marine condition further offshore.  The Wang Sapung Formation Formation is 

proposed for the nearshore siliciclastics rocks interbedded with limestone along 

western edge of the Khorat Plateau.  The Permian rocks of Thailand are dominantly 



  

7

limestones and range in age from Lower to Upper Permian and can be subdivided into 

three Groups.  The Permian karstic limestones in the west and the Peninsular are 

referred to as the Ratburi Group and in the north the Ngao Group. These two Groups 

belong to the Shan-Thai terrane.  Whereas the limestones interbedded with siliciclastic 

rocks and chert along western and southern edges of the Khorat Plateau are known as 

the Saraburi Group of the Indochina terrane (Bunopas, 1992). 

 1.1.3 The Mesozoic 

 The Mesozoic sequences in Thailand can be lithologically suddivided 

into two main facies: the marine facies and the non-marine continental facies.  

Chonglakmani (2002) divided the Triassic sedimentary rocks into four main facies as 

the continental facies, the continental platform facies, marine intra-arc facies and deep 

marine and oceanic facies.  The continental facies is widely exposed in northeastern 

Thailand along the edge of the Khorat Plateau.  The facies consists predominently of 

siliciclastics rocks deposited in alluvial fan, fluvial, and lacustrine environments.  It is 

known as the Huai Hin Lat Formation and was dated by fossils as Dictyophyllum- 

Clathropteris warm climate flora (Kon’no and Asama, 1973).  The continental 

platform facies consists of shallow marine clastics and carbonates.  It has no volcanic 

rocks.  The facies was deposited in two separate terranes, the Shan-Murgui and Chiang 

Mai terranes.  The marine intra-arc facies occurs only in the western part of the 

Sukhothai-Indosinia terrane.  It consists of shallow marine siliciclastic and carbonate 

strata, basinal turbidites, and rhyolitic and andesitic volcanic rocks.  These sequences 

are represented by the Scythian-Early Norian Lampang Group in the north.  The deep 

marine and oceanic facies occurs in two linear belts.  One belt is discontinuous 

between the Chiang Mai and Sukhothai-Indosinia terranes.  This belt originates in 
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Chiang Rai, where it occurs as isolated sheets of pelagic Fang Chert overthrust on 

shallow marine carbonate and siliciclastic strata of the Chiang Mai terrane. 

 The marine Jurassic rocks are exposed on the western and southern 

parts of Thailand.  Marine Jurassic strata are well exposed in the Mae Sot and 

Umphang areas and less extensively near Mae Hong Son, Kanchanaburi, Chumphon 

and Nakhon Si Thammarat in the north, west and south respectively (Meesook and 

Grant-Mackie, 1997).  The continental facies Khorat Group covers northeastern and 

some part of northern Thailand.  It consists of six formations in ascending order as 

Nam Phong, Phu Kradung, Phra Wihan, Sao Khua, Phu Phan and Khok Kruat 

Formations ranging from Latest Triassic to Upper Cretaceous.  In general, the group 

consisting predominantly of red sandstone, siltstone, and mudstone. In Upper 

Cretaceous, the remarkable giant evaporite deposits occurred in the Maha Sarakham 

Formation.  

 1.1.4 The Cenozoic 

 The Tertiary basins in Thailand are mainly N-S trending fault-bounded 

grabens which were developed by conjugate strike-slip faults orientating in NW-SE 

and NNE-SSW directions and by clockwise rotation of the Southeast Asia crustal 

blocks (Polachan and Sattayarak, 1991).  Over sixty Cenozoic basins are distributed in 

various parts of Thailand, both onshore and offshore except in the northeastern part, 

and are grouped in five main geographic regions: the Andaman Sea, Gulf of Thailand, 

Peninsular, Central and Northern Thailand (Chaodumrong et al.1983; Polachan et al. 

1991). 
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1.2 Geographic setting of study area 

 The Khorat Plateau covers an area of about 155,000 square km.  Surface 

elevations on the Plateau range from about 320 m in the northwest to about 100 m in 

the southeast and the range of elevation is about 90-200 m above sea level.  The 

terrain is rolling, and the hilltops generally slope to the southeast in conformity with 

the tilt of the land.  This tilting created ranges of low hills, small lakes and mountains 

along the western edges of the plateau.  The plateau is drained by the Chi and Mun 

rivers and is bounded by the Mekong River (north and east on the Laos border).  The 

Khorat Plateau was formed by uplifting along the western and southern parts.  As a 

result, the underlying sedimentary rocks were tilted rather than uniformly uplifted.  

The escarpments of these uplands overlook the plain of the Chao Phraya basin (central 

plain) to the west and the Cambodian plain to the south. 

 The Phetchabun mountain range forms a barrier between the Khorat Plateau 

and the lower northern region and the central plains.  The central part of this region is 

on the Pa Sak river basin with mountain ranges running along both the western and 

eastern sectors.  The name “Khao Kao” is made up of mountain ranges to the 

northwest of Phetchabun province about 1174 metres above mean sea level covered 

mainly by deciduous plants.  To the south of Phetchabun province, the continuity of 

mountain range covering the area of Lop Buri, Saraburi, Nakhon Ratchaisma, Prachin 

Buri, and Nakhon Nayok is locally named “Khao Yai” or “Khao Yai National Park”.  

The Khao Yai National Park covers an area of over 2,000 square km and includes one 

of the largest intact monsoon forests in mainland Asia. There are also several 

mountains of around 1000 meters including Khao Khieo and Khao Phaeng Ma.   
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  The study area is easily accessible from Bangkok by using highway No. 1 to 

Saraburi province.  At Saraburi junction, the study area starts when turning to highway 

No. 21 to the north and highway No. 2 to the east.  The highway No. 21 starts from 

Saraburi to Lom Sak and runs parallel with highway No. 201 from Nakhon 

Ratchasima to Loei. Both highways are crossed cut by the highway No. 205, 225, and 

12 from south to north in west-east direction respectively.  The geographical 

information is given in Figure 1.3, provincial boundary and highway network is given 

in Figure 1.4. 

 

1.3 Subdivision of the Loei-Phetchabun mountain belt 

 The mountain ranges to the west of the Khorat Plateau comprise the area of 

Loei, Phetchabun, Phitsanulok, Chaiyaphum, Lop Buri, Saraburi, Nakhon Ratchasima 

and Nakhon Nayok provinces.  In this thesis, we mention only the rocks bordering the 

Khorat Plateau to the west.  They are composed of marine Paleozoic and continental 

Mesozoic rocks.  The continental red beds which formed the plateau to the east are 

cropped out as outliers in these mountain ranges.   

 The study area comprises two fold belts, the Phetchabun fold and thrust belt in 

Phetchabun province and the Loei fold and thrust belt in Loei province.  The term 

Phetchabun fold and thrust belt is one sector of the Pak Lay-Laung Prabang and 

Phetchabun fold belt as proposed by Workman (1975).  According to Workman 

(1975), this fold belt includes the areas around the Lom Sak-Chum Phae highway and 

the area between Muak Lek and Pak Chong in Saraburi and Nakhon Ratchasima 

provinces.  The term Loei fold and thrust belt covers the region of Loei including the 

area around the Chiang Khan-Pak Chom-Sang Khom highway. 
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 The author has divided this region into seven parts as following, the mountain 

region NE of Loei, the mountain region NE of Phetchabun, the mountain region of 

Chon Dan, the mountain region of Nakhonthai, the mountain region of Saraburi, the 

area east of Phetchabun along Pa Sak River, and the area of Central Plain.  The 

geological and paleogeographical terms are based on the previous works, e.g., the Pha 

Nok Khao Platform (Wielchowsky and Young, 1985), the Khao Khwang Platform 

(Wielchowsky and Young, 1985), the Nam Duk Basin (Helmcke and Kraikhong, 

1982), the Phetchabun Basin (Chaodumrong et al. 1983), and the Nakhonthai terrane 

(Sattayarak et al. 1989). 

 The Pha Nok Khao Platform covers the area of Loei, Chaiyaphum and some 

part of Phetchabun provinces.  To the west of Pha Nok Khao Platform, the Nam Duk 

Basin exposes extensively along N-S direction covering the area of Phetchabun and 

western part of Loei provinces.  To the west of Nam Duk Basin, the Khao Khwang 

Platform is located and covers the area of Phetchabun, Lop Buri, and Saraburi.  The 

Tertiary Phetchabun Basin is located between the Nam Duk Basin and the Khao 

Khwang Platform blanketed by Quaternary sediments.  To the north of Khao Khwang 

Platform, the Mesozoic Nakhonthai terrane is located and covers the eastern part of 

Phitsanulok and western part of Loei provinces.   
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Figure 1.3  Simplified geographical map along the western margin of the Khorat  

Plateau (yellow flame, not to scale). 
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Figure 1.4  Provincial boundary and highway network in Thailand and adjacent  

              area. 
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1.4 Research objectives 

 The objectives of this study are as follows; 

1.4.1 To study the stratigraphy, sedimentology, and geologic 

structures of    the Late Paleozoic sequences within the 

Phetchabun Fold Belt. 

1.4.2 To establish the provenance of the Late Paleozoic siliciclastic 

sediments (Nam Duk Formation). 

1.4.3 To characterize and interpret the tectonic setting of pelagic, 

flysch, and molasse facies of Late Paleozoic age within the 

Phetchabun Fold Belt. 

1.4.4 To consider the paleogeography and geodynamic evolution of 

Thailand in relation to mainland Southeast Asia. 

1.4.5 To discuss implications for potential mineral resources within 

the Phetchabun Fold Belt. 

 

1.5 Scope and limitations of the study 

 The study area comprises the N-S elongated mountain belts located west of the 

Khorat Plateau and east of the Central Plain.  This study is focused mainly on the 

stratigraphy, sedimentology, provenance, and structural geology of Late Paleozoic 

sequences and associated volcanics, with a view to establish more coherent and 

definitive interpretation of the geological and tectonic history of the Phetchabun Fold 

Belt. 
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1.6 Research methodology 

 Research strategies and activities will be carried out in Thailand, Germany and 

China as follows:  

1.6.1 Field surveys in northeastern and adjacent area in Thailand to 

investigate the stratigraphic sequences and to collect rock 

samples.  Selected areas of stratigraphic, structural, and tectonic 

importance will be examined. 

1.6.2 Sample preparation and thin-sections for sedimentological 

analysis will be done.  Provenance analysis will be carried out 

by the cathodoluminescence method.   

1.6.3 Geochemical analysis of sedimentary rocks (of the Nam Duk 

Formation) for clarifying its tectonic setting will be done.  

1.6.4 The results of all data will be compiled and interpreted for 

reconstruction of the paleogeography and geodynamic evolution 

of this region.   

 

1.7 Area of study and localities of collected samples 

 Field work and sample collection were carried out on the exposures of the Nam 

Duk Formation along the highway No. 12 and the Permian section to the north in Loei 

province and to the south in Saraburi-Nakhon Ratchasima provinces.  Figure 1.5, 1.6, 

and 1.7 shows a simplified geological map and localities of collected samples.     
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Figure 1.5 (a) Simplified geological map of collected samples (modified from DMR, 

1998; Chonglakmani and Sattayarak, 1978). (b) Section of the Nam Duk 
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Formation along highway No. 12 (modified from Helmcke et al., 1985). 

Sample numbers for geochemistry and CL are indicated by milestone. 
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Figure 1.6  Geological map of the Loei area showing the distribution of rock types 

  and sample localities (modified after Geological Survey Report No. 95,      

  1989). 
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Figure 1.7  Geological map of the Saraburi-Pak Chong area and sample localities 

        (modified from Hinthong, et al., 1976; Chonglakmani, 2001). 



 
CHAPTER II 

GEOLOGICAL SETTING AND  

PLATE TECTONIC REVIEW 

 
 The geological study of northeastern Thailand was recorded more than forty 

years ago. The mountain belts bordering the Khorat Plateau to the west are highly 

complex during Upper Paleozoic to Tertiary time.  Many researchers have proposed 

the geodynamic evolution, the timing of the amalgamation and geo-history of these 

mountain belts. To clearly understand the geological history of the region, the review 

of geological setting bordering the Khorat Plateau will be presented.   

 

2.1 Geological setting 

 According to general geological subdivision in Chapter 1, more detail of each 

area is presented here and in Figure 2.1.  The Late Paleozoic stratigraphic correlation 

of mentioned area is given in Figure 2.2.  

  2.1.1 The area NE of Loei  (including Pha Nok Khao Platform) 

 The oldest rocks in this region belong to the Na Mo Group (Bunopas, 

1981).  They form the metamorphic basement and are composed of low grade 

metamorphic rocks of the upper green-schist facies (phyllite, chlorite and pelitic 

schists, metatuff, and quartzite).  The quartzites and phyllites were obviously affected 

by tectonic deformation and metamorphism much more intensively than all other 

rocks in this region (Chairangsee et al. 1990).  The Na Mo Group conformably 
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underlies the siliciclastics Silurian-Devonian Pak Chom Formation and is considered 

to be pre-Silurian in age.  

 The Pak Chom Formation comprises sediments deposited in a marine 

sedimentary basin on the metamorphic basement.  It consists of sediments deposited 

in shallow to deep marine environments.  Shallow marine strata are characterized by 

platform carbonates and shelf clastics (graywacke, shale and conglomerate).  Patches 

of coral reef represented by massive limestones of Devonian to Early Carboniferous 

age are also recorded in this sequence (Chairangsee et al. 1990).  Thin-bedded cherts, 

yielding radiolarian with intercalated tuffs, siliceous shale and siltstone, represent 

deep-sea sediments.  Basaltic lava characterized by pillow structures is found 

associated with the chert.  The chert is interpreted as oceanic sediment and was 

obducted as thrust sheets onto the platform sediments as a result of the Variscan 

Orogeny. 

 The Carboniferous Wang Sapung Formation has been proposed for the 

nearshore sandstone, shale, and limestone along western edge of the Khorat Plateau 

distributed mainly in Loei and some part of Udon Thani Provinces.  The Nam 

Maholan Formation (equivalent to the Pha Nok Khao Formation) has been proposed 

for the Lower Permian sequence located in the area southeast of Loei province.  At 

Ban Na Duang, east of Loei, the outcrops of Lower-Middle Permian were recorded by 

rich faunal assemblage (Fontain and Suteethorn, 1992).  It has been noted that, the 

boundary between the Permian and Carboniferous appears to be located in limestone 

(Fontaine, 2002; Charoentitirat, 1999).  This sequence was interpreted to have been 

deposited in the passive continental margin. 
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 To the east of Nam Duk Basin, the Permian sediments are represented 

by the Pha Nok Khao and the Hua Na Kham Formations.  The Pha Nok Khao 

Formation consists predominantly of massive to thick-bedded, gray limestone and 

dolomite.  Thin- bedded gray shale and black, nodular or thin-bedded chert may occur 

locally. They had been studied extensively from outcrops.  It represents all the main 

environments of shallow carbonate deposition, from reef to back reef, shoal, bio-

hermal, lagoonal, intertidal and tidal flat, beach deposits and supratidal environments.  

They range from Asselian to Middle Permian (Murgabian) (Yanagida, 1966; 1976; 

Igo, 1972; 1974; Kobayashi and Hamada, 1979; Fontain and Suteethorn, 1992; Ueno 

et al., 1993). 

 The Hua Na Kham Formation overlies conformably the Pha Nok Khao 

Formation and has been informally named the “Upper Clastics” (Mouret, 1994).  It 

consists of intercalated light and dark gray siltstone, sandstone, claystone, and 

limestone.  The fossil content and sedimentary structures suggest a shallow platform 

marginal marine environment of deposition.  Fusulinids from the limestone indicate 

Middle to early Upper Permian ages.  

 Altermann et al. (1983) pointed out that the sedimentation of the 

limestones (Pha Nok Kao Formation) ceased in Bolorian time and was followed by 

the sedimentation of the thick sequence of shallow marine clastics of the Hua Na 

Kham Formation of Bolorian to Kubergadian age.  This remarkable change in 

sedimentation is therefore older than the typical molasse strata (the Nam Duk Basin, a 

more detailed discussion will follow) of the area east of Lom Sak which are of 

Murgabian to Midian age. 
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 The outcrop of the thin-bedded fine-grained clastic sequence with 

predominant dark shale and siltstone representing the Pha Dua Formation is mapped 

by Chairangsee et al. (1990).  It yields a Late Permian floral assemblage (Asama et al. 

1968) and conformably overlies the E-lert Formation (equivalent to the Hua Na Kham 

Formation).  It is about 213 m thick and uncomfortably underlies the Late Triassic 

Phu Lop Formation (equivalent to the Huai Hin Lat Formation).  The basal part rests 

conformably on the Hua Na Kham Formation.  The unit comprises predominantly 

siltstone and claystone, often tuffaceous, with rare thin beds of sandstone, coal, and 

limestone (Mouret, 1994).  It was deposited mainly in upper delta to alluvial plain 

environments, with minor interruption of lower delta plain and bay facies. 

 In Pak Chom area, the radiometric age dating of basalts and rhyolites 

was reported by Intasopa and Dunn (1994).  They proposed two magmatic episodes at 

approximately 374 and 361 Ma.  The trace element and isotopic compositions of the 

rhyolites suggest that they were generated by partial melting of continental crust at 

374 Ma.  The ocean floor tholeiites basalts belong to a younger magmatic episode at 

361 Ma and located to the west of Devonian rhyolites (Fig. 15, page 178 in Intasopa 

and Dunn, 1994).   

 2.1.2 Subsurface data underneath the Khorat Plateau 

 During the last twenty five years, the prospecting activities were 

performed for hydrocarbon exploration within the sedimentary basins especially in the 

Permian limestone underneath the formations of the Khorat Group.  A number of deep 

wells have been drilled during the past years, mainly in the Khorat Basin.  The data 

from the wells and seismic interpretation have improved and provided much 

information on the geological history of the region.   
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 The Early Carboniferous rocks were drilled below the Variscan 

unconformity encountered undifferentiated volcanic, granite (329+3 Ma), meta-

sediments, and sedimentary rocks (Kozar et. al 1992 and Sattayarak et al. 1989).  

According to Kozar et al. (1992), they proposed the rifting probably began during the 

Late Carboniferous as the region was subjected to back-arc extension and the 

extension continued through Middle Triassic.  However, the rifting may have abated 

during the Late Permian time, and probably was rejuvenated in Early Triassic.  This 

rejuvenation allowed the Early to Middle Triassic sediments to deposit in the area.  

During the Permian, the rift system was fully developed in back arc setting and 

appeared to consist of three major deep grabens with intervening high stable horst 

blocks. These high platforms were vital locations for the carbonate accumulations.  

 The stratigraphy of Middle Carboniferous to Middle Triassic was 

complied by Mouret (1994) based on data from drilled wells.  The rocks comprise the 

Middle Carboniferous-Lowermost Permian (Asselian) “Lower Clastics”, the Permian 

Pha Nok Khao Carbonate, and the Upper Permian to Lower (?) Triassic “Upper 

Clastics” respectively.  The Lower Clastics have been drilled in the eastern end of the 

Phu Phan range by ESSO Non Sung-1 well.  The total thickness is 263 m and it shows 

thin beds of low energy sandstones and limestones scattered among siltstones and 

shales.  Tuffs or lavas form isolated 1 meter thick beds.  The Pha Nok Khao 

Carbonate known in TOTAL Phu Lop-1X well is thrust-truncated at the base.  The 

massive 132 m thick section was dated Murgabian to Midian, late Middle to early 

Upper Permian by fossil faunas.  The Sakmarian to Guadalupian Carbonate was 

reported in other well by Kozar et al. (1992).   
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 The Upper Clastics are overall regressive as shown by the 791 m thick 

sequence in TOTAL Phu Lop-1X.  The lowermost 95 m are shallow marine limestone 

interbeded with coal and organic shale both deposited in a lower delta plain to bay 

setting.  Above, 600 m of grey beds with a few thin intercalations of reddish brown 

beds at the top are comprised of alternated volcano-sedimentary sandstones, rare 

sandstones with no volcanic component, siltstones and shales both tuffaceous to a 

variable extent, organic shale and coal.  They were deposited in lower delta plain/bay 

grading upward to upper delta/alluvial environments.  Alluvial red beds (96 m) form 

the top of the formation, mostly siltstone and shale with some volcano-sedimentary 

sandstone.  The Dzulfian to Dorashamian (Upper Permian) age of the limestone and 

the huge thickness of the formation strongly suggest a Triassic age for the higher part 

of the section, especially Lower Triassic.  

 However, Mouret (1994) did not report the strong tectonic event 

during the Middle Carboniferous to Late Permian.  Only Middle Permian movement 

in the Phetchabun area represented by the relative sea level fall and some minor uplift 

was mentioned (Fig. 2, page 135 in Mouret, 1994). 

 2.1.3 The Phetchabun Fold Belt (Nam Duk Basin) 

 Based on Helmcke and Kraikhong (1982), the statigraphic succession 

in Permian Nam Duk Basin is composed of three units; pelagic facies, flysch facies 

and molasse facies related to pre-orogenic, syn-orogenic and post-orogenic events 

(Figure 2.3).  These facies are exposed between milestone 16.00-20.20, 20.20-21.30, 

and 34.0-42.20 respectively on highway No. 12 from Lom Sak to Chum Phae.  

 According to Helmcke and Lindenberg (1983), the oldest unit of rock 

comprises mainly cherts, tuffs, shales, and allodapic limestones.  The allodapic 
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limestones were transported from south and north in the direction of the axis of the 

basin (Winkel et al., 1983).  This facies represents a deep-sea depositional 

environment.  The second unit of rocks consists of greywackes alternated with shales.  

In the greywackes all features of the Bouma-cycle can be found, characterizing them 

as turbidites.  The third unit of rocks comprises a very thick sequence of clastic rocks, 

mainly sandstones and shales.  Some beds are very rich in fossil and plant remains.  In 

the upper part of this section limestone layers are intercalated.  These limestones are 

generally rich in foraminifers and sometimes contain corals.  Towards the east the 

limestones become thicker and more prominent.  The foraminiferal fauna in the 

limestone is certainly autochthonous.  The fauna can be assigned to a Middle to Upper 

Permian age. 

 Winkel et al. (1983) studied facies and stratigraphy of the lower Lower 

Permian strata of Phetchabun fold belt in central Thailand.  They found that the 

turbiditic limestones (pelagic facies) were derived from carbonate-platforms which 

are located in the eastern as well as in the western parts of the Phetchabun fold belt 

(Pha Nok Kao limestone of Chonglakmani and Sattayarak, 1978 and Khao Khwang 

platform of Wielchowsky and Young, 1985).  They proved that the pelagic regime 

encompasses the time interval of Upper Carboniferous? - Lower Permian to Lower 

Murgabian.  

 Altermann et al. (1983) proposed the timing of sudden onset of flysch 

sedimentation as upper part of Middle Permian.  From paleontological data, they also 

proved that the molasse sediments comprise not only Murgabian but also part of 

Midian, i.e. the molasse sedimentation prevailed into the lower part of the Upper 

Permain.  The study of fusulinoidean biostratigraphy by Charoentitirat (2002) 
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confirms that the molasse unit is in Midian age.  Coalification study by Tassanasorn 

(1990) indicated that high vitrinite reflectance in the flysch facies is likely due to 

subsidence to great depth and decreasing from west to east (flysch to molasse facies).  

This study also indicated that the coalification in the Nam Duk Formation was mainly 

before the deposition of Mesozoic Khorat Group. 

 Thanomsap (1992) studied the structural development on the Khorat 

Plateau and its adjacent western region.  From aerial photograph interpretation, he 

reported the thrust of Nam Duk Formation over the Khorat red beds occurred 

probably in the Cretaceous (?).  Heggemann (1994) mapped the Nam Duk Formation 

which thrusted on the Nam Phong Formation (Lower Jurassic) at kilometer 24 on 

highway 12 Lom Sak-Chum Phae.  Toward the west at kilometer 21, the cleavages 

were generated in sandstone (Nam Phong Formation) and the deformation was dated 

by K/Ar age in mineral fractions at 97 Ma (Ahrendt et al., 1993).   

 2.1.4 The area of Chon Dan (Khao Khwang Platform)  

 To the west of the Nam Duk Basin, the Khao Khwang platform is 

distributed in this area (Wielchowsky and Young (1985).  In Chon Dan, 

Chonglakmani et al. (1983) and Chonglakmani and Fontaine (1992) reported a very 

similar startigraphic section to those of Loei area.  The section starts from volcanic 

and chert layers.  The sediments are composed of limestone interbedded with shale 

and sandstone ranging from lower Visean to Lower Permian.  To the southwest of 

Chon Dan, massive limestones and clastic sediments are predominantly represented.  

They range from Lower Permian to lower Upper Permian.  Fossil woods have been 

reported from this area and have been identified as Dadoxylon (Chonglakmani and 

Fontaine, 1992).  Altermann (1989) pointed out that the strata in Chon Dan area were 
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generally younger from west to east.  At least two shallowing upward sequences are 

exhibited first in the Visean and second in the Visean to Lower Permian.  

 Charoentitirat (2002) reported the fusulinoidean zonations established 

in the Phetchabun, Lop Buri, and Saraburi ranging in age from middle-late Asselian, 

early Yakhtashian, and Murgabian to Midian, with some straigraphic breaks.  

Altermann (1989) also reported the Permian sandstones and conglomerates 

conformably overling the Murgabian massive limestone at Khao Khi Nok west of 

Wichianburi.  He proposed a coarsening upward sequence and an increase of 

hydrodynamic energy towards the top of this unit by the more likely regressive than 

the transgressive processes. 

 Fontaine et al. (1999) reported the new Carboniferous fossils at Ban Bo 

Nam north of Khao Somphot and east of Lam Narai.  They consist of calcispherids, 

algae, foraminifers and corals indicating mainly a late Moscovian age and locally 

extending to early Kasimovian.  Moreover, the interesting new information shows that 

the stratigraphic range of the sedimentary rocks of this area extends in continuity from 

Middle Carboniferous to the top of Middle Permain.  Altermann (1989) indicated that 

the massive limestones at Khao Somphot are in the stratigraphic range from Asselian 

to Midian.  Wielchowsky and Young (1985) reported the stratigraphic breaks by the 

lowstand sea level in the early Artinskian and again in the Ochoan (lower Upper 

Permian).  During that period, the carbonate accumulation apparently decreased. 

 2.1.5 The Phetchabun Graben 

 The Phetchabun Basin is located within a fold belt in the central 

portion of Thailand. The basin comprises a series of five half and full grabens located 

in a narrow, elongate (30 kilometres by 120 kilometres) intermontaine rift.  In general, 
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the Tertiary sediments are blanketed by Quaternary alluvial deposits and alkaline 

basalt flows throughout the basin and few outcrops are known.  The basin was formed 

in the Late Oligocene as a result of simple shear tectonics associated with right lateral 

movement on the NW-SE trending Mae Ping and Three Pagodas faults and left lateral 

movement along NNE-SSW trending conjugate strike-slip faults (Remus et al. 1993).   

  Following the Carnarvan Petroleum Report (2002), the subsidence of 

the basin began in the Late Oligocene as a broad rift valley. Initial deposits included 

alluvial and fluvial sediments deposited in a river system ancestral to the present day 

Pa Sak river.  By the beginning of the Miocene, increased rates of subsidence resulted 

in the formation of a series of lakes in the valley floor.  Thick, highly organic rich 

shales were deposited in the lakes proper, while deltas and alluvial fans encroached 

from the lake margins.  A period of tectonic activity at the end of the Early Miocene 

was followed by extensive fluvial deposition.  A second phase of tectonism and 

igneous activity marked the end of the Middle Miocene.  Lacustrine conditions were 

re-established throughout the basin.  Subsidence was halted by Pliocene time, and a 

fluvial system was established that persists to the present day. 

 2.1.6 The Saraburi region 

 In Saraburi-Pak Chong area, Hinthong et al. (1976) subdivided the 

Permian rocks into six formations; the Sab Bon, the Khao Khad, the Pang Asok, the 

Nong Pong, the Khao Khwang, and the Phu Phe Formations respectively in 

descending order ranging in age from Lower to early Upper Permian.  Dawson and 

Racey (1993) proposed the Permian strata of central Thailand as a sequence of 

supratidal to outer platform facies comprising a Lower-upper Middle Permian 

transgressive/regressive carbonate platform succession.   
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 Chonglakmani (2001), studied in detail of the Saraburi Group in the 

Saraburi-Pak Chong area.  He recognized the various facies belts representing the 

shelf or platform, basin margin and deep basin environments.  The platform facies 

comprises the Phu Phe, the Khao Khad, and the Khao Khwang Formations.  The Sap 

Bon, the Pang Asok and part of the Nong Pong Formations represent slope or basin 

margin facies.  The deep basin or basin plain facies are characterized mainly by fine-

grained sediments.  They consist of thin-bedded shales, cherts, argillaceous micrites 

and allodapic limestones which are typical of the Nong Pong Formation. 

 The Permo-Triassic Khao Yai Volcanics are distributed as dikes and 

sills in the Permian country rocks in the area south of Saraburi (Hinthong, 1981).  To 

the east of Pak Chong, the calcalkaline I-type granites with typical Rb/Sr dates of 260 

Ma are exposed (Beckinsale et al. 1979; Cobbing et al. (1986).  Charusiri et al. 

(1999a, quoted in Chutakositkanon et al., 2000) dated the hornblende from andesitic 

dikes which crosscut the Permian rocks close to Khao Pun area (north of Kaeng Khoi) 

by 40Ar/39Ar indicating the Early Jurassic age.  It probably indicates the younger 

phase of the more widely exposed Permo-Triassic plutonics (Phra Ngam Diorite, 

Hinthong, 1981) and volcanics (Khao Yai Volcanics). 

 2.1.7 The Nakhonthai region 

 Nakhonthai terrane (Sattayarak et al., 1989) or Nakhon Thai Block 

(Charusiri et al. 1999b; quoted in Chutakositkanon et al., 2000) covers the Dan Sai, 

Na Haew and Nakhonthai Districts. The Mesozoic Khorat Group conformably 

overlies the Upper Triassic Huai Hin Lat Formation.  The continental facies consists 

of six formations in ascending order as Nam Phong, Phu Kradung, Phra Wihan, Sao 

Khua, Phu Phan and Khok Kruat Formations.  They formed the synclinorium 
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structure and were more deformed than those of the Khorat Plateau.  On top of this 

section these formations are overlain by unnamed conglomerate and Phu Tok 

Formations respectively in asscending order (Heggemann, 1994).   

 2.1.8 The Central Plains 

 The large part of central Thailand is blanketed by Quaternary fluvial 

sediments which conceal a number of Tertiary Basins underneath.  This region 

consists of a number of north-south trending half grabens and grabens which are 

believed to be originated in the Late Oligocene (Chaodumrong et al., 1983).  More 

than ten small basins can be observed by seismic exploration.  These basin were 

formed in response to dextral shear on the Mae Ping and Three Pagodas Fault Zone 

systems during the Late Tertiary (Cooper et al., 1989). 
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Figure 2.1 Simplified geological map showing Late Paleozoic rock units and 

geological setting of the study area (modified from DMR. 1998). 
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Figure 2.3 Stratigraphic succession of Permian “Nam Duk Formation” in 

                             Phetchabun-Loei area. 

 

2.2 Plate tectonic review 

 International research during the last three decades has led to the recognition 

that the geological backbone of Southeast Asia consists of a series of continental 

fragments.  All fragments are derived from the ancient continent of Gondwanaland.  

After breaking off from the Gondwanaland continent in the Early Paleozoic, slices of 

continental crust moved northwards creating a succession of basins with attendant 

collision, rotation, accretion, and amalgamation at their respective present positions.  

The physiography of Thailand is the result of a long complex geodynamic evolution 

during Phanerozoic time.  According to modern geologic interpretation, it is believed 
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that two micro-continental blocks named Shan-Thai in the west and Indochina in the 

east welded together along the Nan-Uttaradit suture (Figure 2.4; Bunopas and Vella, 

1978; Bunopas and Vella, 1983). The mountain belts formed in response to 

convergent tectonics of the Shan-Thai and Indochina plates during closure of the 

Paleo-Tethys ocean during Middle Permian to Late Triassic time based on various 

argument (Helmcke and Kraikhong, 1982; Helmcke and Lindenberg, 1983; Sengör, 

1985; Sattayarak et al. 1989; Cooper et al. 1989; Kozar et al. 1992; Mouret, 1994).   

 The Shan-Thai terrane comprises eastern Burma, western Thailand, western 

peninsular Malaysia and northern Sumatra.  This terrane is an elongate continental 

block trending north-south and its basement consists of Precambrian rock.  The 

fossiliferous glaciomarine siliciclastic rocks of the Early Carboniferous to Early 

Permian Phuket Group (equivalent to Kaeng Krachan Group) of southern Thailand 

suggest that the Shan-Thai terrane did not rift from Gondwanaland until the Early 

Permain (Metcalfe, 1988; Hills, 1989; Shi and Waterhouse, 1991; Singharajwarapan 

and Berry, 2000).  The Indochina terrane comprises eastern Thailand, Laos, 

Combodia and parts of Vietnam.  It is also an elongate stable blocks and is composed 

mainly of Paleozoic and early Mesozoic marine strata, with a younger Mesozoic 

continental cover succession. 

 Plate tectonic models accounting for the collision between Shan-Thai and 

Indochina terranes have been proposed by a number of workers.  The timing of 

collision and the geometry of plate convergence are still debated.  In the recent 

literatures four main scientific hypothesises can be distinguished (Figure 2.5). 
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Figure 2.4  Map showing main tectonic elements in Thailand  

       (after Bunopas and Vella, 1978). 

 

  

 

 

 

 

 

 

 

 



  
 

37

 

 

Figure 2.5 Tectonostratigraphic terranes and proposed suture lines of Thailand. 

 

 

 

 

 

 

 

 

 



  
 

38

 2.2.1 Nan-Uttaradit Suture as the main Paleo-Tethys located between 

Shan-Thai and Indochina Cratons. 

 This scenario is based on the geological concept of “Gondwana” and 

“Cathaysia” or “Eurasia” provenance of mainland Southeast Asia.  According to this 

theory, part of Burma, Thailand, Malaysia and Sumatra (Sibumasu Continent, Burret 

and Stait, 1985; Cimmerian Continent, Sengör, 1985; Shan-Thai Craton, Bunopas, 

1981) drifted away most probably from NW Australian part of Gondwanaland in the 

Upper Paleozoic.  After crossing the Main Paleo-Tethys Ocean, this sub-continent 

collided with Cathaysia or Eurasia in the Triassic to Jurassic which caused the 

Indosinian orogeny.  This interpretation was based on the occurrence of the oceanic 

ribbon-bedded chert and shale sequences that have yielded graptolites, conodonts and 

radiolarians ranging in age from Lower Devonian to Upper Triassic.  These fauna can 

be traced from the Bentong-Raub suture zone of Peninsular Malaysia, the Nan-

Uttaradit/Sra Kaeo suture zone of Thailand and the Changning-Menglian suture zone 

of South China (Liu et al., 1996; Metcalfe, 1997; Spiller, 2002). 

 2.2.2Nan-Uttaradit Suture is a branch of the main Paleo-Tethys. 

 In this scenario, based on the scientists who did not accept that the Late 

Triassic “Indosinian orogeny” is the main orogenic event in Thailand and mainland 

Southeast Asia (Helmcke and Kraihong, 1982; Helmcke and Lindenberg, 1983; 

Helmcke, 1985).  According to their theory, Southeast Asia was formed by the 

Variscan orogeny during the Permian time.  For example, the orogenic event of 

Middle Permian age affected large areas of mainland Southeast Asia and the P.R. of 

China.  Nan-Uttaradit suture zone shows evidence of compressional deformation and 

subsequent uplift to an erosional level in the short period of Middle Permian 
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represented by the Nam Duk Formation of the Phetchabun fold and thrust belt 

(Helmcke and Kraikhong, 1982; Helmcke and Lindenberg, 1983). 

   The correlation of tectonopaleogeographic units of northern and 

northeastern Thailand with southern Yunnan was attempted (Chonglakmani et al., 

2003).  The Ailaoshan and Nan-Uttaradit sutures were considered to be the same 

orogenic belt to the east of Simao and Lampang-Phrae basins.  Recently, the 

discovery of an angular unconformity outcrop in Yunxian of Simao region is best fit 

for the orogenic event of Permian time (Qinglai and Helmcke, 2001).  The outcrop 

shows strongly deformed Carboniferous to Lower Permian sediments which were 

deposited in a deep basin and are separated by an angular unconformity from the 

overlying shallow marine strata of upper Middle Permian age (Qinglai and Helmcke, 

2001).   

 2.2.3 Chiang Mai “Cryptic” Suture is the main Paleo-Tethyan Ocean 

 The cryptic suture first proposed by Cooper et al. (1989) corresponds 

to the terms “Chiang Mai Volcanic Belt” (Macdonald and Barr, 1978; Barr et al., 

1990), “the Inthanon Zone” of Barr and Macdonald (1991) and “the Chiang Mai 

Suture” of Metcalfe (2002).  This suture proposed for the boundary between the Shan-

Thai and Sukhothai/Indosinian terranes to the east and bounded by Mae Yum Fault 

zone which corresponds to western I+S type granites line proposed by Cobbing et al. 

(1986) to the west.  The suture characterized by a metamorphic-plutonic basement 

with a structurally detached sedimentary cover of mainly Paleozoic age (Barr and 

Macdonald, 1991).  The discoveries of oceanic and seamount rocks associations in the 

Chiang Mai-Chiang Dao area of western Thailand ranging in age from Devonian to 

Triassic are interpreted by Metcalfe (2002) as representing the main Paleo-Tethys 
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Suture.  However, original stratigraphic succession was destroyed by various phases 

of metamorphism of the metamorphic core complex concept by several authors 

(Dunning et al., 1995).  The closing time of the basin and the geodynamic evolution 

of this belt are still debated.       

 2.2.4 The main Paleo-Tethys located along the western-most part of 

Thailand 

 For this scenario, the candidate for the main Paleo-Tethys ocean is 

located west of the cryptic suture as mentioned above.  This interpretation is based on 

the different faunas which are associated with the Gondwana and the Cathaysian 

domains (Figure 2.6).  The boundary is recognized by the stratigraphic sequence of 

Devonian-Early Permian glacio-marine diamictites with Gondwana-related 

brachiopod faunas (Phuket Group) succeeded by Middle to Late Permian carbonates 

(Ratburi Group) with poor foraminifera (Monodiexodina, Eopolydiexodina, and 

Shanita) and rare coral (Chonglakmani, 2002).  This boundary extends northwestward 

from the Three Pagoda Fault in western Thailand to Mae Sariang-Mae Hong Son and 

Mandalay in eastern Myanmar (Figure 2.7).  Recent study of radiolarian faunas in 

Mae Sariang area range in age from Early Carboniferous to Late Triassic (Caridroit, et 

al., 1993; Kamata et al., 2002; Qinglai et al., 2004).  The radiolarian results from Mae 

Sariang-Mae Hong Son suggest that there was a pelagic basin between the Shan-Thai 

terrane and the Gondwanaland during the Early Carboniferous until Late Triassic.  

However, the distributions of Devonian-Late Triassic radiolarian chert in northern 

Thailand (not only Mae Sariang-Mae Hong Son area) seem to be in conflict with this 

scenario.  This problem was explained by the tectonic slices concept which some 
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sheets were translated eastward from the western part of the Shan-Thai block 

(Chonglakmani, 2002). 

 

      

 

 

Figure 2.6 Comparisons of sedimentary facies and fauna between the Phuket-

Tenassarim Terrane and Inthanon (Northern Thailand) Terrane (From 

Toriyama, 1944; Konishi, 1953; Hahn and Siebenhuner, 1982; Fontaine 

and Suteethorn, 1988; Vachard et al., 1992; Ueno and Igo, 1997). 
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Figure 2.7  Map showing Paleo-Tethyan Belt dividing Cathaysia from Gondwana- 

            related terranes (Modified from Min et al., 2001). 

 

 



 
CHAPTER III 

GEOCHEMICAL AND  

CATHODOLUMINESCENCE TECHNIQUES 

 

 In this chapter, the author would review the methodology of geochemical and 

cathodoluminescence (CL) techniques on the siliciclastic sedimentary rocks.   

 

3.1 Geochemical analysis 

 Determination the provenance of clastic sedimentary rocks is often an 

important component of an investigation of any sedimentary sequences.  The 

composition of clastic sediments is controlled by many complex factors.  Detritus 

from the sources are rarely uninterrupted, because the path of clastic sediments from 

source rock to sedimentary rock formation is composed of several stages, including 

tectonic movement, weathering, erosion, transportation, and deposition.   

 It is generally accepted that certain geochemically immobile trace and rare 

earth elements are quantitatively transferred into siliciclastic sediments and thus 

preserve the record of the average upper crustal element abundances.   As far as 

sandstones are concerned considerable efforts have been made to extract provenance 

information from compositional and textural features of sandstone, and a thorough 

review of  the subject is given by Folk (1974), Pettijohn et al. (1987).  Standard 

petrographical approaches to the identification of source rock of sandstones are 
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investigation of types of feldspar present (Pittman, 1970) and rock fragments 

(Pettijohn et al. 1987).  Tectonic setting can be determined from the relative 

proportion of quartz, feldspar, and rock fragments (Dickinson, 1982; 1985). 

 3.1.1 Equipments and Analytical Method 

 The samples were crushed and splitted before grinding and sieving for 

powder.  Geochemical analyses were performed for major and trace elements.  Thirty 

samples of sandstone and shale of flysch and molasse sequences were analyzed for 

major elements by X-ray fluorescence spectrometer (XRF) at the laboratory of 

Suranaree University of Technology.  XRF using fusion discs prepared according to 

the method of Norrish and Hutton (1969).  Thirty-three samples of sandstone, shale, 

and allodapic limestone of all sequences were analyzed for trace element and rare 

earth elements by inductively coupled plasma mass spectrometry (ICPMS) at the Key 

Laboratory of the Lithosphere and Crustal Evolution, China University of Geosciences 

(Wuhan). 

 3.1.2 Major Elements 

 Major elements comprise of SiO2, TiO2, Al2O3, Fe2O3, MnO, MgO, 

CaO, Na2O, K2O, P2O5, and SO3.  The major element composition of siliciclastic 

sediments of the Nam Duk Formation at the type section and the sections further north 

and south of the Phetchabun Fold Belt are compiled in Appendix A.  The commonly 

used geochemical criteria of sediment maturity are the SiO2/ Al2O3 ratio (Potter, 

1978), which reflecting the abundance of quartz and the clay and feldspar content.  

According to Herron (1988), the Fe2O3/ K2O ratio is more successfully classified shale 

and sandstone and is also a measure of mineral stability, for ferromagnesian minerals 

they tend to be amongst the less stable minerals during weathering.  The SiO2/ Al2O3 
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and Fe2O3/ K2O ratios of the siliciclastic samples are plotted in order to distinguish the 

terrigeneous siliciclastic sediments in each formation. 

 3.1.3 Trace Elements   

 The geochemical data of trace elements for all rock units are tabulated 

in Appendix A.  Taylor and McLennan (1985), and Bhatia and Crooks (1986) regard 

REE, Y, Th, U, Sc, and Co as the most useful elements in determining upper crustal 

abundances from clastic sedimentary rocks and as discrimination of tectonic settings.  

This is because both strongly incompatible elements (LREE, Th, U) and strongly 

compatible elements (Sc, Co) are represented in this group.  All these elements tend to 

have low concentrations in ocean and river water, and residence times in the oceans 

are similarly low.  When these features are combined with the observation that they 

are not affected by diagenesis and metamorphism (Rollinson, 1993), the ratios of 

incompatible elements can serve as an index of differentiation (Taylor and MaLennan, 

1985).   

 3.1.4 Rare Earth Elements (REE) 

 The rare earth elements (REE) are the most useful of all trace elements 

and REE studies have important applications in igneous, sedimentary and 

metamorphic petrology.  The REE comprise the series of metals earth atomic numbers 

57 to 71 (La-Lu).  REE are not easily fractionated during sedimentation and 

diagenesis, thus sedimentary REE patterns reflect the REE pattern of the sources 

(Taylor and McLennan, 1985; McLennan, 1989; Condie, 1991).  It is generally 

accepted that mixing of various provenance components results in remarkable 

uniformity of the REE patterns in fine-grained sedimentary rocks (McLennan et al., 

1993; Singh and Rajamani, 2001).  Therefore, the REE’s are particularly useful in 
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provenance investigation and concentration in sedimentary rocks is usually normalized 

to a sedimentary standard such as North American shale composite (NASC), European 

shale, Post Archaean average Australian Shale (PAAS), and Upper crust.   

 3.1.5 Tectonic setting and Provenance 

 Several studies including Bhatia (1983) and Roser and Korsch (1986), 

led to the recognition of major elements that are useful discriminating parameters.  

The discrimination diagram for sandstone, based upon a bivariation plot of TiO2 and 

(Fe2O3 + MgO), was proposed by Bhatia, (1983). The fields display oceanic island 

arc, continental island arc, active continental margin, and passive margin.  Tectonic-

setting discrimination diagram using K2O/ Na2O ratio and SiO2 content (Roser and 

Korsch, 1986) are applied.  The diagrams are suitable for sandstone-mudstone and 

show the fields of a passive continental margin, an active continental margin and an 

island arc.    Ti and Al are generally considered to be chemically immobile 

constituents of weathering profiles, sediments and sedimentary rocks (Maynard, 

1992), and may be used as provenance indicators (Young and Nesbitt, 1998).  The 

TiO2 versus Al2O3 plot showing fields of alkali granite, granodiorite, and peridotite is 

presented.  A discrimination function diagram has been proposed by Roser and Korsch 

(1988) to distinguish between sediments whose provenance is primarily mafic, 

intermediate or felsic igneous and quartzose sedimentary rocks.  A plot of two 

discriminate functions, based upon the oxides of Ti, Al, Fe, Mg, Ca, Na, and K, 

differentiates most effectively the four provenances.   

 Trace elements, concentrations of trace element and their ratios can be 

useful discriminators of tectonic settings because some trace elements are considered 

to be immobile during sedimentation (Bhatia and Crook, 1986).  A simple two-
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component mixing model (ratio-ratio plots Co/Th vs La/Sc, Co/Th vs Sc/Th) using 

incompatible and compatible elements are plotted.  The ferromagnesian trace 

elements, Ni, Cr, and V are generally abundant in mafic and ultramafic rocks, and 

their enrichment in sedimentary rocks may be indicative of the presence of these rocks 

in the provenance area (McLennan, et al., 1993). The abundance of mafic and 

ultramafic rocks in the provenance can be further tested by Y/Ni ratios.  Cr/V ratios 

can also indicate the presence of chromite among the heavy minerals (McLennan, et 

al., 1993).  

 Amount of La, Th, Ba, Sc, Co, Cr and their element ratios such as 

La/Sc, Th/Sc, Ba/Sc, La/Cr, Th/Cr are useful indicators for discriminating basic and 

felsic source rocks (Andre et al., 1986; Cullers el al., 1988; Culler, 1994).  The 

immobile elements have also been used for the same proposed as major elements.  In 

general, there is a systematic increase in the light rare-earth elements (La, Ce, and 

Nd), in Th and Nb, and in a La/Y ratio; and a decrease in V and Sc in greywackes 

from oceanic island arc to continental island arc, to active continental margin and to 

passive continental margin.  The trace elements discriminators of tectonic settings and 

source composition of Nam Duk Formation are compared to those well study of 

Bhatia and Crook (1986) and Culler (1994).   Distinctive fields for four environments; 

oceanic island arc, continental island arc, active continental margin and passive 

margin are recognized on the ternary plots of La-Th-Sc, Th-Sc-Zr/10 and Th-Co-

Zr/10.  However, on a La-Th-Sc plot, the fields of active continental margin sediments 

and passive margin sediments are overlapped, but the Th-Sc-Zr/10 shows distinct 

separation. 
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3.2 Cathodoluminescence analysis 

 Cathodoluminescence (CL) is the visible light emitted by the surface of a 

mineral when bombarded with electrons in a vacuum.  The term cathodoluminescence 

designates the luminescence induced by electron bombardment.  The interaction of the 

electron beam with the sample gives rise to a number of effects: the emission of 

secondary electrons (SE), back-scattering of electrons (BSE), electron absorption 

(“sample current”), characteristic X-ray, and CL emission (Figure 3.1).  Most energy 

of the beam is converted into heat.  The penetration depth of electrons and 

accordingly, the excitation depth depend on the energy of the electrons (10-20 keV) 

and are in the range of 2-8 μm (e.g. Marshall, 1988).   

 3.2.1 Cathodoluminescence Microscope (HC3-LM) 

 The commercially produced hot-cathodoluminescence microscope 

(HC1-LM) after Neuser et al. (1995) is provided with a high-vacuum chamber (<10-5 

mbar) and uses an accelerlation voltage of 14 keV (Figure 3.2).  The HC1-LM is a 

development of the prototype constructed at the IGDL Göttingen in 1987 (Neuser, 

1988) according to the model of Zinkernagel (1978).  The electron gun operates as a 

“hot cathode”, i.e. the electrons are emitted from a heated filament.  The hot-cathode 

technique provides a considerably greater beam stability and CL intensity and thus is 

suitable for investigation of the weakly luminescent quartz.  The electron gun directs a 

focused beam upwards onto an inverted thin section; the CL is viewed through the 

sample from above.  The electron beam with a diameter of ca. 4.8 mm irradiates the 

thin section surface with a current density of ca. 10 mA/mm2.  The basis of the HC3-

LM is a polarization microscope model OLYMPUS BX30M with some modifications, 

for instance, the vacumm sample chamber is mounted in place of the sample stand.  
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The polarization objectives have a magnification/numerical aperture of 5x/0.15, 

10x/0.30, and 20x/0.40.  The high vacumm of the sample chamber is attained by a 

Diffstak oil diffusion pump combined with an Edwards rotary vane pump. 

 3.2.2 Sample Preparation 

 The samples used for CL measurement need the extremely smooth and 

highly polished thin section without cover slips.  The first stage of sample preparation 

consists of cutting the section, which was mounted on a glass slide with epoxy resin.  

Subsequent polishing was carried out with progressively finer grades of abrasive.  The 

final stage involves polishing with diamond paste with a grade of 0.3 μm.  The 

samples were thoroughly cleaned.  The polished surface was mounted on a standard 

glass slide (48x24x2.8 nm) with Akemi Mamorkitt 1000.  The other glass slide was 

removed and the procedure of polishing was repeated until a section thickness of 250 

μm was reached.  For sample temperature measurements during CL and FTIR 

spectroscopy the section was removed from the glass slide with Xylol.  In addition, a 

number of thin sections were chemically polished with a OP-S suspension of different 

granularities (1 μm and 3 μm) in order to test the effect of the surface quality on the 

CL properties. 

 Quartz being a non-conductor requires a conductive coating to prevent 

charging under electron bombardment.  The preferred coating for CL studies is 

carbon.  The coating was done at standard conditions to a thickness of about 15 μm to 

avoid variations in CL intensity.  The instruments and thin sections preparation were 

done at the Center of Geosciences, University of Göttingen, F. R. Germany.   
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Figure 3.1 Schematic representation of processes resulting from electron 

bombardment (modified after Potts et al. 1995).  Note that the 

emissions come from different depths e.g. CL and X-ray are 

emitted from deeper section levels than secondary electrons. 
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Figure 3.2 Cathodoluminescence equipment HC3-LM with TRIAX 320 spectrography 

and photographic Microflex attachment at the Center of Earth Sciences, 

Göttingen, (1) configuration for spectral analysis, (2) configuration for 

photographic documentation (after Müller, 2000).   

  

 3.2.3 Geological Application 

 Cathodoluminescence petrography is now a routine technique that can 

provide essential information on provenance, growth fabrics, diagenetic textures and 

mineral zonation, in addition to enabling more precise quantification of constituents 

and fabrics.  This CL method is very informative for trace element identification in 

minerals.  From the geological point of view, there are two main applications of CL.  

The first is the differentiation of detrital from diagenetic phase and the second provide 

information on mineral paragenesis.  
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 3.2.4 Provenance Interpretation of Quartz from CL 

 The CL color of quartz and feldspar in sandstone may provide a 

signature of the source rock from which individual grains, or populations of grains, 

were derived.  This information, in concert with conventional petrography, study of 

accessory minerals, and geochemistry, provided a broad base upon which to infer 

petrogenetic relations (such as shared source regions), provenance, and to some extent, 

paleotectonic setting (Owen, 1991). 

 Provenance studies of detrital quartz are one of the most important of 

CL on sandstone petrography (Zinkernagel, 1978; Matter and Ramseyer, 1985; Owen, 

1991; Götze and Simmerle, 2000; Richter et al. 2003).  However, there are three 

critical assumptions for interpretation which must be made before CL can provide 

legitimate provenance information (Owen, 1991). (1) CL color is characteristic of the 

grain and does not change with time or exposure to the sedimentary environment. (2) 

CL color is invisible to sedimentary processes such that grains are not segregated 

appreciably based on their CL color. (3) stratigraphic units under consideration are 

sufficiently well mixed so that CL color distributions are sensibly uniform over a 

broad area. 

   Owen (1991) defined the assumptions discussed above as “the relative 

abundance of quartz CL colors should remain essentially unchanged for a sand 

population as it experiences one or several cycles of uplift, erosion, and deposition.  In 

this way, the sand’s identity is preserved in a manner similar to the preservation of 

blood types or languages among migrating groups of people.  If sands become mixed 

with other sands during transportation, their petrogenetic signals will become mixed as 

well”. 
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 Based on his pioneering work, Zinkernagel (1978), presented an 

extensive discussion of quartz CL, with well reproduced color plates.  He defined 

three types of quartz, based on CL and original occurrence as follow: Violet-

luminescing quartz, from plutonic, volcanic, and contact metamorphic rocks or rocks 

which have undergone fast cooling; Brown-luminescing quartz, from low-grade 

metamorphic rocks, or from high-grade metamorphic rocks which have been slowly 

cooled; and Nonluminescing quartz, from authigenic.  The recent general classification 

of the CL behavior of the CL detrital quartz (Götze and Simmerle, 2000) distinguishes 

the following criteria: blue or violet, plutonic quartz as well as quartz phenocrysts in 

volcanic rocks, and high grade metamorphic quartz; red, matrix quartz in volcanic 

rocks; brown, quartz from regional metamorphic rocks; non or weakly luminescent, 

authigenic quartz; short-lived green or blue, hydrothermal and pegmatitic quartz. 

 Müller (2000) studied CL properties of magmatic quartz and has 

subdivided it into (1) euhedral quartz phenocrysts showing stable, dominantly blue CL 

and growth zoning related to Ti distribution and (2) anhedral matrix quartz with 

unstable red-brown CL and homogeneous trace element distribution.  Rhyolitic and 

granitic quartz phenocrysts also show similar growth textures.  Hydrothermal quartz 

shows similar growth patterns as magmatic quartz, but stepped zoning is dominant.  

The application of scanning cathodoluminescence (SEM-CL) imaging to characterize 

volcanic, plutonic, and metamorphic quartz was proposed (Seyedolali et al., 1997; 

Kwon and Boggs, 2002).  According to Seyedolali et al., (1997), the volcanic quartz is 

characterized by well-developed zoning in CL images.  Plutonic quartz may also be 

zoned, but much plutonic quartz is unzoned.  Metamorphic quartz is more complex; its 

characteristics depend upon whether metamorphism has been largely thermal (contact 
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metamorphism) or has resulted from regional tectonic forces.  Thermally 

metamorphosed quartz typically displays few internal features in CL images, other 

than a few late-stage fractures, or it has a kind of indistinct, ill-defined, mottled 

texture.  

 3.2.5 CL of carbonate mineral 

 For carbonate minerals, when activated, can exhibit intense CL.  The 

important ions affecting luminescence intensity in carbonate are Mn2+ and Fe2+, with 

the manganese activating luminescence and the iron quenching it.  Hence, variations 

in luminescence intensity usually reflect a variation in the ratio of Mn2+ to Fe2+ in a 

crystal.  The CL measurement of the various carbonate minerals usually ranges in 

color from green to red.  For example, calcite or dolomite cement often stands out 

clearly from the other minerals in a sedimentary sample.  One of widespread use of 

CL in carbonate studies is in cement stratigraphy using zoned cements.  The CL 

intensity which is an expression of the possible iron and manganese content may be 

used as a guide to deciding whether the sedimentary carbonate was formed under 

oxidizing or reducing conditions.   The uniformity or non-uniformity of conditions 

during deposition and post tectonic deformation can be revealed.   

 3.2.6 Statistical Analysis for Quartz Provenance 

 CL reveals petrogenetic relations between candidate sands (or 

sandstones) by demonstrating statistically significant similarity between their 

distributions of CL colors.  This is conceptually identical to linking two sands by 

means of modal analysis, except that CL may rely upon fewer variables (Owen, 1991).  

When comparing sandstones for possible a genetic connection, multiple CL point 

counts are required from each candidate stratigraphic unit.  Each point count, 
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consisting of CL color determination of grains per thin section, reduces to single 

value.  If one chooses the simple brown-blue CL color distinction, a value of “percent 

brown CL quartz” represents each thin section (Owen and Carozzi, 1986).  The 

collection of data sets for each formation or sampling site is amalgamated into a 

frequency histogram that shows the range and abundance of values held by each 

parameter.   

 As mentioned above, combination of all criteria to identify and 

interpret the provenance of detrital quartz grains are presented.  The statistical analysis 

by point counting was used.   CL point counts are required from each candidate 

stratigraphic unit.  Each point count, consisting of CL color determination of grains 

per thin section, reduces to single value.   

 

 

 

 



 
CHAPTER IV 

GEOCHEMICAL RESULT AND INTERPRETATION 

 

 This chapter presents the result of the geochemical analysis of the siliciclastic 

sediments from the Nam Duk Formation at the types section and the sections further 

to the north and south of the Phetchabun Fold Belt.   

 

4.1 Nam Duk Formation 

 4.1.1 Nam Duk Formation at Phetchabun 

 Field work and samples collection were carried out on the exposures of 

Nam Duk Formation along the highway cut across the forestry area of the Phetchabun 

and Loei provinces.  Samples are collected from the sequences of pelagic, flysch, and 

molasse at the localities indicated by the number of milestone from Lom Sak to Chum 

Phae Highway (Figure 1.5 in Chapter 1).  

 Major elements  

 All the flysch samples fall in the field of Fe-sand in the plots of SiO2/ 

Al2O3 and Fe2O3/ K2O (Figure 4.1).  Similarly the samples of molasse sequence are 

scattered and fall into the field of Fe-sand with somce in Wacke (Figure 4.2).  Both 

sequences have very high TiO2 and Fe2O3, but low Al2O3, and a wide range of CaO 

and K2O.  However, an average concentration of TiO2, Fe2O3, and Al2O3 of flysch 

samples are lower than molasse samples.  It seems to be less Na2O content than 

molasse samples, only a few ppm (two samples) can be detected.   
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 The tectonic-setting discrimination diagram using K2O/ Na2O ratio and 

SiO2 content (Roser and Korsch, 1986) was applied to flysch and molasse sequences.  

Due to small Na2O content in molasse sequences, only the data obtained from flysch 

sequence are plotted. They show indication of oceanic island arc margin to active 

continental margin setting (Figure 4.3).  The discrimination diagram based upon a 

bivariation plot of TiO2 and (Fe2O3 + MgO) is plotted.  Due to the high TiO2 content, 

only half of samples from flysch sequence can be plotted and they fall into the field of 

oceanic arc setting (Figure 4.4).  The provenance signature of siliciclastic sandstones 

from flysch and molasse are plotted by using discrimination diagram of Roser and 

Korsch (1988).  Scattering plots of both sequences show dominantly mafic igneous 

provenance (Figure 4.5).  The best-fit line of the TiO2 versus Al2O3 of flysch and 

molasse passes through the estimated peridotite end member which indicates an 

ultramafic-mafic provenance (Young and Nesbitt, 1998; Figure 4.6 and 4.7).   

 Trace elements  

 The trace elements of pelagic, flysch, and molasse sequences are 

compiled in Appendix A.  In the pelagic sequence, shales and micritic-limestones 

have been chosen for ICPMS.  Sandstones and shales are more prominent in flysch 

and molasse sequences and are used for trace elements analysis.  The plots of 

incompatible and compatible elements of La vs Sc, Th vs Sc, La vs Nb, and Th vs U, 

all samples show variable degrees of correlation (Figure 4.8).  The best correlation is 

recorded between Th and U.  Correlation trends of bivariate plots in sediments 

demonstrate that the detritus was well mixed especially in flysch and molasse 

samples.  The Y/Ni and Cr/V elemental ratios which are used to identify mafic-

ultramafic sources are plotted in Figure 4.9 (Hiscott, 1984).  Cr/V ratios of flysch and 
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molasses samples are higher than 1 which indicates the presence of chromite among 

the heavy mineral during deposition.  Y/Ni ratios in the flysch and molasse are low 

which confirms that the mafic and ultramafic rocks were abundantly present in the 

source area of the Nam Duk Formation.  Cr/V versus Y/Ni ratios is analyzed and they 

indicate mainly the ultramafic sources, although some samples are scattered.  The 

plots of the pelagic samples are scattered.  Some of them are similar to Post Archaean 

average Australian Shale (PAAS).  Two samples plotted are close to the field of 

ultramafic and one sample plotted close to the granite member. 

 Chondrite normalized REE and trace elements abundance patterns of 

pelagic, flysch, and molasse samples are plotted and compared with the sedimentary 

composition standard as shown in Table 4.1 (Figure. 4.10).  Flysch and molasse 

samples have higher concentration of Cr, Sr, Zr, Ba, and light rare earth elements 

(LREE, La through Eu) similar to pelagic samples but they have lower average values 

(Figure 4.11, 4.12, and 4.13).  Comparison of REE plot from well known source and 

the Nam Duk Formation including chert sample from Nan-Uttaradit Suture Zone is 

shown in Figure 4.14.   Summation of rare earth elements increases from oceanic 

island arc to continental island arc, and it is the highest in an Andean-type margin and 

a passive margin (Bhatia, 1985).  Summation of REE of the flysch is higher than 

molasse and is nearly the same as pelagic samples (Table 4.1).  In addition, these 

values are also less than the average summation of REE from NASC, PAAS, Upper 

Crust, and European shale.  The result indicates that the Nam Duk Basin was not 

derived from the Upper Crust and should have been deposited in the oceanic to 

continental island arc environments.  
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   According to the comparison data in Table 4.2, flysch and molasse 

samples show similarity of continental island arc setting (Bhatia and Crook, 1986) 

and indicate low-silica metamorphic sources (Culler, 1994).  Pelagic samples are not 

clearly defined.  They show values between oceanic to continental island arc setting 

and indicate low-silica metamorphic sources.  A La-Th-Sc and Th-Sc-Zr/10 ternary 

diagrams are plotted to discriminate tectonic setting and composition of source rocks 

as shown in Figure 4.15, 4.16, and 4.17 (Bhatia and Crook, 1986: Cullers, 1994).  

However, on a La-Th-Sc plot, the fields of active continental margin and passive 

margin sediments are overlapped, but the Th-Sc-Zr/10 shows distinct separation.  For 

pelagic sequence, the result of a La-Th-Sc ternary diagram plot falls into the field of 

oceanic island arc and continental island arc setting and it is derived mainly from 

metabasic source.  The sediments of flysch and molasse sequences are derived from 

mixed sources from metabasic and granitic gneiss and fall into the field of continental 

island arc setting.  In consideration of the Th-Sc-Zr/10 plots, most of pelagic samples 

fall into the fields of oceanic island arc and continental island arc setting.  On the 

contrary, only the field of continental island arc setting is plotted in flysch and 

molasse sequences.  This result is consistent with the low La, Th, U, Zr, and Nb 

concentrations in the sandstones and shales. 
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Table 4.1 Standard sedimentary compositions and Permian siliciclastic sediments 

from Phetchabun and Loei Fold Belt including Nan-Uttaradit suture zone 

used for normalizing the REE concentration in sedimentary rocks (in 

ppm). 

 

  
NASC PAAS Upper 

crust ES Pelagic Flysch Molasse Tha Li Chiang 
Khan 

Muak 
Lek 

Khon 
San 

Chert, 
Nan  

(REE) 1 2 3 4 5 6 7 8 9 10 11 12 

La 31.10 38.20 30.00 41.10 19.29 20.83 24.62 27.10 20.93 26.26 27.78 2.17 
Ce 67.03 79.60 64.00 81.30 33.08 36.88 46.20 50.80 37.66 51.20 49.44 2.97 
Pr  8.83 7.10 10.40 5.00 5.02 5.95 6.60 5.03 6.63 6.40 0.48 
Nd 30.40 33.90 26.00 40.10 20.47 18.39 22.19 23.80 18.87 24.83 23.02 1.79 
Sm 5.98 5.55 4.50 7.30 4.81 3.71 4.53 4.60 4.16 5.10 4.48 0.50 
Eu 1.25 1.08 0.88 1.52 1.05 0.81 1.00 1.00 0.98 1.12 0.89 0.16 
Gd 5.50 4.66 3.80 6.03 4.45 3.23 4.01 4.10 3.92 4.72 3.92 0.41 
Tb 0.85 0.77 0.64 1.05 0.77 0.54 0.69 0.70 0.67 0.80 0.65 0.08 
Dy 5.54 4.68 3.50  4.21 3.03 3.86 3.80 3.67 4.20 3.56 0.40 
Ho  0.99 0.80 1.20 0.87 0.60 0.77 0.80 0.76 0.77 0.66 0.09 
Er 3.28 2.85 2.30 3.55 2.24 1.68 2.11 2.20 1.99 2.10 1.88 0.28 
Tm  0.41 0.33 0.56 0.33 0.25 0.33 0.30 0.29 0.30 0.28 0.04 
Yb 3.11 2.82 2.20 3.29 2.32 1.78 2.28 2.40 2.12 2.11 1.95 0.28 
Lu 0.46 0.43 0.32 0.58 0.39 0.29 0.37 0.40 0.35 0.34 0.32 0.04 

Sum 154.50 184.77 146.37 197.98 99.28 97.04 118.91 128.60 101.40 130.47 125.22 9.70 

1 North American shale composite (Gromet et al., 1984)       
2 Post Archaean average Australian sedimentary rock (McLennan, 1981)     
3 Average upper continental crust (Taylor and McLennan, 1981) 
4 Average European shale (Haskin and Haskin, 1966) 
5 Average Pelagic sequence of the Nam Duk Formation (this study) 
6 Average Flysch sequence of the Nam Duk Formation (this study) 
7 Average Molasse sequence of the Nam Duk Formation (this study) 
8 Average Permian siliciclastic sediments sequence from Tha Li, Loei (this study) 
9 Permian siliciclastic sediments from Chiang Khan, Loei (this study) 

10 Permian siliciclastic sediments from Pang Asok Formation, Muak Lek, Saraburi (this study) 
11 Permian "Upper Clastic" from Hw.12 Km. 84+530, Khon San, Chaiyaphum (this study) 
12 Permian "Chert" from Nan-Uttaradit Ophiolitic sequence (this study) 
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Table 4.2 Trace element discriminators of tectonic settings and source composition. 

 

 

 Graywackes, Bhatia and Crook (1986) Culler (1994) Nam Duk Formation 
(this study) 

Trace 
ele. 

Passive 
margin 

Active 
continental 

margin 

Continental 
island arc 

Oceanic 
island arc 

high-silica 
metamorphic 

sources 

low-silica 
metamorphic 

sources 

Molasse 
(ave) 

Flysch 
(ave) 

Pelagic 
(ave) 

Discriminators decreasing toward oceanic island or low silica sources 

Pb 16.00 24.00 15.10 6.90   14.99 12.18 11.11 
Th 16.70 8.80 11.10 2.27 17.00 8.00 9.40 6.88 3.50 
Zr 298.00 179.00 229.00 96.00   210.36 185.98 159.35 
Hf 10.10 6.80 6.30 2.10 12.20 6.90 6.08 5.26 4.66 
Nb 7.90 10.70 8.50 2.00   9.44 7.58 6.47 
La 33.50 33.00 24.40 8.72 57.00 45.50 24.62 20.83 33.98 
Ce 71.90 72.70 50.50 22.53 127.00 87.00 46.20 36.88 54.86 
Nd 29.00 25.40 20.80 11.36   22.19 18.39 35.37 
Rb/Sr 1.19 0.89 0.65 0.05   0.353 0.133 0.078 
La/Y 1.31 1.33 1.02 0.48   1.134 1.188 0.757 
La/Sc 6.25 4.55 1.82 0.55 20.00 1.80 2.484 2.584 1.598 
Th/Sc 3.06 2.59 0.85 0.15 7.00 0.33 0.949 0.854 0.285 
Th/U 5.60 4.80 4.60 2.10   4.159 3.865 2.340 
Ba/Sc     268.00 29.50 19.037 17.019 10.557 
La/Cr     3.70 0.98 0.029 0.023 0.116 
Th/Cr     1.10 0.11 0.011 0.008 0.021 

Discriminators increasing toward oceanic island or low silica sources 

Ti 0.22 0.26 0.39 0.48      
Sc 6.00 8.00 14.80 19.50 4.50 31.00 9.910 8.060 12.070 
Co 5.00 10.00 12.00 18.00   13.700 14.250 11.470 
Zn 26.00 52.00 74.00 89.00   67.990 59.440 65.380 
Cr     18.50 113.00 840.760 899.050 166.890 
Ti/Zr 6.74 15.30 19.60 59.80      
Zr/Hf 29.50 26.30 36.30 45.70   34.599 35.357 36.342 
Zr/Th 19.10 9.50 21.50 48.00   22.379 27.029 29.052 
La/Th 2.20 1.77 2.36 4.26   2.619 3.028 5.608 
Sc/Cr 0.16 0.30 0.32 0.57   0.012 0.009 0.072 
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Figure 4.1 Classification of terrigeneous sandstones and shales of flysch samples 

(after Herron, 1988).  The plots fall into the field of Fe-sand. 
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Figure 4.2 Classification of terrigeneous sandstones and shales of molasse samples 

(after Herron, 1988).  The plots fall into the field of Fe-sand and Wacke. 
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Figure 4.3 Discrimination diagrams of Roser and Korsch (1986) for flysch sandstones  

       showing the field of oceanic island arc to active continental margin. 

 

     

 

Figure 4.4  Discrimination diagram for flysch sandstones based upon a bivariation 

plot of TiO2 versus (Fe2O3 + MgO) after Bhatia (1983). 
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Figure 4.5   Provenance signature of flysch and molasse siliciclastic sediments using          

major elements indicates a mafic igneous source of flysch and molasse 

sections (modified from Roser and Korsch, 1988). 

 

 

 

Figure 4.6 TiO2 versus Al2O3 plot for the flysch samples shows a positive correlation 

trend with peridotite end member (Young and Nesbitt, 1998). 
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Figure 4.7 TiO2 versus Al2O3 plot for the molasse samples shows a positive 

correlation trend with peridotite end member (Young and Nesbitt, 1998). 
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Figure 4.8   Bivariate plots of incompatible versus compatible trace elements of the Nam                 

Duk Formation (explanation; rhombic = pelagic, square = flysch, triangle = 

molasse). 

 

 

 

 

 

 

 

 

 



   
68

0.00

5.00

10.00

15.00

20.00

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

Y/Ni

C
r/

V

pelagic

  

0.00

5.00

10.00

15.00

20.00

0.00 1.00 2.00 3.00 4.00

Y/Ni

C
r/

V

flysch

 

    

0.00

5.00

10.00

15.00

20.00

0.00 1.00 2.00 3.00 4.00

Y/Ni

C
r/

V

molasse

 

 

Figure 4.9  Cr/V vs. Y/Ni diagrams of flysch and molasse samples show an 

ultramafic end member as indicated by high Cr/V and low Y/Ni ratios.  

Pelagic samples show scattering plot (Hiscott, 1984). 
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Figure 4.10    Chondrite normalized rare earth element distributions in pelagic, 

flysch, and molasse samples display similar characteristic especially 

for flysch and molasse.  
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Figure 4.11 Chondrite normalized trace elements and rare earth elements distribution in pelagic sample, Nam Duk Formation. 
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Figure 4.12  Chondrite normalized trace elements and rare earth elements distribution in flysch sample, Nam Duk Formation. 
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Figure 4.13  Chondrite normalized trace elements and rare earth elements distribution in molasse sample, Nam Duk Formation. 
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Figure 4.14  Chondrite normalized rare earth elements of average pelagic, flysch,         

molasse, and chert from Nan Suture in comparison with the standard 

sedimentary rocks (data from Table 4.1). 
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Figure 4.15  (a) La-Th-Sc ternary diagram for pelagic samples of the Nam Duk

Formation (after Bhatia and Crook, 1986; Cullers, 1994).  (b) Th-Sc-

Zr/10 ternary diagram for pelagic samples of the Nam Duk 

Formation (after Bhatia and Crook, 1986).  Explanation of tectonic 

setting and provenance are shown in each figure. 
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Figure 4.16  La-Th-Sc ternary diagram for flysch samples of the Nam Duk 

Formation (after Bhatia and Crook, 1986; Cullers, 1994).  Th-Sc-

Zr/10 ternary diagram for flysch samples of the Nam Duk 

Formation (after Bhatia and Crook, 1986).  Explanation of tectonic 

setting and provenance are show in each figure. 
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Figure 4.17 La-Th-Sc ternary diagram for molasse samples of the Nam Duk

Formation (after Bhatia and Crook, 1986; Cullers, 1994).  Th-Sc-

Zr/10 ternary diagram for molasse samples of the Nam Duk

Formation (after Bhatia and Crook, 1986).  Explanation of tectonic

setting and provenance are shown in each figure. 
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 4.1.2 Nam Duk Formation at Tha Li 

 On highway No. 201 at approximately 50 kilometer west of Chiang 

Khan, at junction 3 kilometer east of Ban Nong Phu, there are two open pits exposing 

well bedded sandstones interbedded with dark shales (Figure 1.6 in Chapter 1).  The 

samples were taken from 2 open pits east and west of the junction near the small 

military camp close to Thai-Laos border (sample no. THL 05-09).    Altermann (1989) 

reported this outcrop as Permian (P2) flysch sediments (Nam Duk Formation) which 

are a northern continuation more than 150 kilometer from the Lom Sak – Chum Phae 

Highway.  The flysch seems to be overthrusted above the P3 Formation (Pha Dua 

Formation), which crops out to the east.  Based on Altermann (1989), sandstones 

comprise up to 60% texturally immature fine-grained lithic graywackes with mainly 

sericitic-chloritic and some carbonate matrix.   

 Major elements  

  The major elements composition is compiled in Appendix A.  The 

SiO2/ Al2O3 and Fe2O3/ K2O plots of the collected samples fall mainly into the field of 

Fe-sand and wacke (Figure 4.18).  The samples contain very high TiO2 (ave. 1.57%) 

and Fe2O3 (ave. 19.62%), and low Al2O3 (ave. 7.57%), and overall values are more 

than those of type locality from Phetchabun Fold Belt.  The Na2O concentration is 

lower concentration similar to Phetchabun sample, only a few ppm (three samples) can 

be detected. 

   The tectonic-setting discrimination diagram using K2O/ Na2O ratio and 

SiO2 content (Roser and Korsch, 1986) is plotted.  Due to less Na2O content, only one 

sample (THL 07) is plotted and it shows indication of an oceanic island arc setting 

(Figure 4.19).  The discrimination of these samples, based upon a bivariation plot of 
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TiO2 and (Fe2O3 + MgO), cannot be plotted due to the high TiO2 content.  The 

provenance signature of siliciclastic sediments are plotted following discrimination 

diagram of Roser and Korsch (1988).  The plots are scattered and show dominantly 

mafic igneous provenance (Figure 4.20) with one sample falling into the field of felsic 

igneous provenance.  The best-fit line of the TiO2 versus Al2O3 passes through the 

estimated peridotite end member which indicates an ultramafic-mafic provenance 

(Figure 4.21).   

    Trace elements  

 The trace elements composition is compiled in Appendix A.  

Correlation trends of bivariate plots in sediments demonstrate that the detritus was 

well mixed.  The Y/Ni and Cr/V elemental ratios which are used to identify mafic-

ultramafic sources are plotted in Figure 4.22 (Hiscott, 1984).  Cr/V ratios of Tha Li 

samples are higher than 1 which indicates the presence of chromite among the heavy 

minerals during deposition.  Y/Ni ratios are low and confirm that abundant mafic and 

ultramafic rocks must have been exposed in the source area of the Tha Li siliciclastic 

sediments.  Cr/V versus Y/Ni ratios are analyzed and mainly indicate ultramafic 

sources, except for a sample THL 08 which is close to the filed of PAAS.   

 Chondrite normalized REE and trace elements characteristics of Tha Li 

samples are plotted in Figure 4.23.  The samples have higher concentration of Cr, Sr, 

Zr, Ba, and light rare earth elements (LREE, La through Eu) similar to flysch type 

section of Phetchabun area.  Summation of REE of the samples is higher than flysch 

and molasse but still lower than the average values of NASC, PAAS, Upper Crust and 

European Shale (Table 4.1).  The result indicates that the Tha Li siliciclastic sediments 
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were not derived from the Upper Crust and have a geochemical character similar to 

flysch and molasse sequences of the Nam Duk Basin. 

   According to the comparison data in Table 4.3, Tha Li samples show 

similarity of continental island arc setting (Bhatia and Crook, 1986) and indicate low-

silica metamorphic sources (Culler, 1994).  A La-Th-Sc and Th-Sc-Zr/10 ternary 

diagrams, which are plotted to discriminate tectonic setting and composition of source 

rocks, are shown in Figure 4.25 (Bhatia and Crook, 1986: Cullers, 1994).  The result 

of a La-Th-Sc ternary diagram shows that the samples fall into the field of continental 

island arc setting and were derived from metabasic and mixed granitic gneiss sources.  

The samples show a scattering Th-Sc-Zr/10 plot and mainly fall into the field of 

continental island arc setting.   

 

4.2 Pha Dua Formation 

 The sandstone sample THL-01 was collected from three kilometer west of 

Chiang Khan, on highway 2195 running along the border between Thai-Laos (Figure 

1.6 in Chapter 1).  The outcrop consists of fine-grained sandstone, siltstones, and 

mudstones in beds ranging from a few centimeters up to two meters thickness.  The 

beds show gradded bedding and plant fragments and are highly micaceous.  THL-04 

sample was collected from highway 203 at milestone 8+300 from Loei to Dan Sai 

(UTM: 47Q 0782182N, 1934720E).  The outcrop consists of silty, fine-grained 

sandstonse, and shales with one or two centimeter to over fifty centimeter thick.  THL-

14 sample was collected from a small quarry at approximately 10 kilometer from Loei 

to Tha Li on the eastern side of highway 2115.  The outcrop consists of thick sequence 

of thin-bedded siliceous shale containing Agathiceras ammonoid (Middle Permian).            
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 Major elements  

  The SiO2/Al2O3 and Fe2O3/K2O plots, THL-01, THL-04, and THL-14 

samples fall into the field of Fe-sand, Wacke to Askose, and Litharenite respectively 

(Figure 4.18).  The THL-01 and THL-04 samples display very high TiO2 but the THL-

14 sample is low in TiO2 (0.74%) content.  THL-04 sample contains low Fe2O3 (3.9%) 

which is the lowermost value of the siliciclastic samples from Loei area.  The tectonic-

setting discrimination diagram using K2O/Na2O ratio and SiO2 content (Roser and 

Korsch, 1986) is plotted.  Due to undetected Na2O content of THL-04 and THL-14, 

only THL-01 is plotted and it shows indication of an oceanic island arc setting (Figure 

4.19).  However, it seems to be inconsistency with the sedimentological evidence and 

the low SiO2 (41.41%) of the sample.  The discrimination, based upon a bivariation 

plot of TiO2 and (Fe2O3 + MgO), can not be plotted due to the high TiO2 content.  The 

provenance signature of siliciclastic sediments is plotted by using discrimination 

diagram of Roser and Korsch (1988) (Figure 4.20).  The THL-01 samples fall into the 

field of intermediate igneous provenance.  The THL-04 samples fall into the field of 

felsic igneous provenance.  The THL-14 samples are in the field of quartzose 

sedimentary provenance.  In contrast to the plotted of the TiO2 versus Al2O3 diagram, 

all samples pass through the estimated peridotite end member which indicates an 

ultramafic-mafic provenance (Figure 4.21).     

    Trace elements  

 The Y/Ni and Cr/V elemental ratios which are used to identify mafic-

ultramafic sources are plotted in Figure 4.22 (Hiscott, 1984).  Y/Ni versus Cr/V 

diagram displays a field of PAAS for THL-04 and THL-14 and is close to a field of 

ultramafic end member for THL-01 sample.  Chondrite normalized REE and trace 
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elements characteristics of Chiang Khan and north of Loei samples are plotted in 

Figure 4.24.    

 According to the comparison data in Table 4.3, THL-01, THL-04, and 

THL-14 samples are not clearly defined between continental to oceanic island arc 

setting (Bhatia and Crook, 1986) but indicate low-silica metamorphic sources (Culler, 

1994).  A La-Th-Sc and Th-Sc-Zr/10 ternary diagram are plotted to discriminate 

tectonic setting and composition of source rocks in Figure 4.25 (Bhatia and Crook, 

1986: Cullers, 1994).  The result of the plotted La-Th-Sc ternary diagram falls into the 

field of continental island arc setting with mainly metabasic source for the THL-01 

sample.  A plotted ternary diagram of THL-04 falls into the field of continental island 

arc setting with overlapping of metabasic and granitic gneiss mixed sources.  THL-14 

sample can not be plotted into a defined tectonic setting but is close to a continental 

island arc field.  In the Th-Sc-Zr/10 diagram, the THL-01 sample falls into the field of 

continental island arc setting and displays an oceanic island arc setting for THL-14 

sample.  THL-04 sample can not be plotted into a defined tectonic setting but is close 

to a continental island arc and passive margin.     
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Figure 4.18   Classification of terrigeneous sandstones and shales of Late Paleozoic 

samples from Loei area (after Herron, 1988). 
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Figure 4.19  Discrimination diagrams of Roser and Korsch (1986) for Loei and 

Saraburi sandstones showing the field of oceanic island arc to active 

continental margin. 
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Figure 4.20 Provenance signature of Loei siliciclastic sediments using major    

elements indicates mafic igneous to quartzose sources (modified from 

Roser and Korsch, 1988). 
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Figure 4.21    TiO2 versus Al2O3 plot for Loei samples shows a positive correlation  

 trend with peridotite end member (Young and Nesbitt, 1998). 
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Figure 4.22 Cr/V vs. Y/Ni diagram showing ultramafic, PAAS, and Granite member  

            of Loei samples (Hiscott, 1984).



   
87 

Table 4.3  Trace element discriminators of tectonic settings and source composition, comparison with Loei and Saraburi areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Graywackes, Bhatia and Crook (1986) Culler (1994) this study 

Trace 
ele. 

Passive 
margin 

Active 
continental 

margin 

Continental 
island arc 

Oceanic 
island arc 

high-silica 
metamorphic 

sources 

low-silica 
metamorphic 

sources 

Tha Li 
(P2) 

Chiang 
Khan 
(P2) 

Loei-Dan 
Sai (P3) 

Loei-Tha 
Li (P3) 

Pang 
Asok Fm. 

Khao 
Khad Fm. 

Hua Na 
Kham Fm. 

Discriminators decreasing toward oceanic island or low silica sources 

Pb 16.00 24.00 15.10 6.90   10.50 8.55 17.21 16.06 17.52 19.45 10.29 
Th 16.70 8.80 11.10 2.27 17.00 8.00 9.95 6.78 12.97 2.62 11.91 6.51 11.15 
Zr 298.00 179.00 229.00 96.00   278.00 166.80 520.23 54.84 225.07 176.05 217.72 
Hf 10.10 6.80 6.30 2.10 12.20 6.90 7.90 4.88 13.88 1.56 6.65 5.48 6.47 
Nb 7.90 10.70 8.50 2.00   9.71 8.19 11.22 4.16 11.00 6.40 8.05 
La 33.50 33.00 24.40 8.72 57.00 45.50 27.10 20.93 33.99 21.28 31.11 67.73 27.78 
Ce 71.90 72.70 50.50 22.53 127.00 87.00 50.80 37.66 65.71 17.18 60.71 34.54 27.78 
Nd 29.00 25.40 20.80 11.36   23.80 18.87 30.46 19.25 29.29 89.48 23.02 

Rb/Sr 1.19 0.89 0.65 0.05   0.577 0.366 1.490 1.212 0.896 0.094 0.592 
La/Y 1.31 1.33 1.02 0.48   1.173 0.889 1.504 1.275 1.176 1.639 1.495 
La/Sc 6.25 4.55 1.82 0.55 20.00 1.80 2.533 2.069 3.301 2.281 2.841 2.943 2.138 
Th/Sc 3.06 2.59 0.85 0.15 7.00 0.33 0.930 0.671 1.262 0.281 1.088 0.283 0.862 
Th/U 5.60 4.80 4.60 2.10   4.061 3.809 4.262 2.426 4.093 3.519 4.706 
Ba/Sc     268.00 29.50 18.598 17.129 25.437 10.707 24.438 31.043 16.308 
La/Cr     3.70 0.98 0.038 0.058 0.197 0.112 0.107 1.663 0.070 
Th/Cr     1.10 0.11 0.014 0.019 0.075 0.014 0.041 0.160 0.028 

Discriminators increasing toward oceanic island or low silica sources 

Ti 0.22 0.26 0.39 0.48          
Sc 6.00 8.00 14.80 19.50 4.50 31.00 10.70 10.07 10.34 9.34 10.95 22.97 13.03 
Co 5.00 10.00 12.00 18.00   12.30 9.12 2.78 4.85 12.33 7.69 13.19 
Zn 26.00 52.00 74.00 89.00   58.30 55.23 24.71 23.68 68.40 83.40 72.12 
Cr     18.50 113.00 719.00 359.97 173.21 191.15 290.66 40.68 396.25 

Ti/Zr 6.74 15.30 19.60 59.80          
Zr/Hf 29.50 26.30 36.30 45.70   35.190 34.221 37.410 35.128 33.845 32.117 33.694 
Zr/Th 19.10 9.50 21.50 48.00   27.940 24.631 40.000 20.916 18.898 27.035 19.464 
La/Th 2.20 1.77 2.36 4.26   2.724 3.083 2.615 8.130 2.612 10.399 2.482 
Sc/Cr 0.16 0.30 0.32 0.57   0.015 0.028 0.060 0.049 0.038 0.565 0.033 
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Figure 4.23  Chondrite normalized trace elements and rare earth elements distribution in Tha Li samples, north of Loei. 
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Figure 4.24  Chondrite normalized trace elements and rare earth elements distribution of the Pha Dua Formation. 
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Figure 4.25 (a) La-Th-Sc ternary diagram for Late Paleozoic samples of Loei area 

(after Bhatia and Crook, 1986; Cullers, 1994).  (b) Th-Sc-Zr/10 

ternary diagram for Late Paleozoic samples of Loei area (after Bhatia 

and Crook, 1986). Explanations of tectonic setting, provenance and 

sample locality are shows in each figure. 
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4.3 Pang Asok Formation 

 The sandstone sample THS-10 was collected from a road cut, three kilometer 

from Muak Lek to Pak Chong of Friendship Highway (no.2) (Figure 1.7 in Chapter 

1).  The outcrop is exposed approximately 500 meter on left hand side and opposite to 

a limestone mountain.  This outcrop consists of thin-bedded fine-grained sandstone 

and tuffaceous sandstone intruded by younger volcanic dike.  Hinthong et al. (1976) 

reported this outcrop belonging to the Pang Asok Formation (P2).  The shale sample 

THS-15 was collected from a large quarry for dimension stone in Pak Chong area.  

The outcrop is located at the left hand side of Friendship Highway from Muak Lek to 

Pak Chong opposite to animal check point station (Khao Bandai Ma).  Thin to thick 

shale and slate and interbedded fine-grained sandstone is prominent in the quarry.  

They belong to the Pang Asok Formation (P2). 

 Major elements  

 The SiO2/Al2O3 and Fe2O3/ K2O plots of THL-10 and THL-15 samples 

fall into the field of Fe-sand and Fe-shale respectively (Figure 4.26).  The samples 

contain very high TiO2 (THL-10, 1.52% and THL-15, 1.70%).  The tectonic-setting 

discrimination diagram using K2O/ Na2O ratio and SiO2 content (Roser and Korsch, 

1986) can not be plotted due to undetected Na2O content.  The provenance signature of 

siliciclastic sediments are plotted following discrimination diagram of Roser and Korsch 

(1988) (Figure 4.27).  The plots show a mafic igneous provenance.  The best-fit line of 

the TiO2 versus Al2O3 passes through the estimated peridotite end member which 

indicates an ultramafic-mafic provenance (Young and Nesbitt, 1998; Figure 4.28).  
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  Trace elements 

 The trace elements composition is compiled in Appendix A.  The Y/Ni 

and Cr/V elemental ratios which are used to identify mafic-ultramafic sources are 

plotted in Figure 4.29 (Hiscott, 1984).  Y/Ni versus Cr/V diagram displays between a 

field of PAAS and ultramafic.  Chondrite normalized REE and trace elements 

characteristics of the Pang Asok samples are plotted in Figure 4.30.    

 According to the comparison data in Table 4.3, the samples clearly 

defined as a continental island arc setting of low silica metamorphic sources.  A La-Th-

Sc and Th-Sc-Zr/10 ternary diagram are plotted to discriminate tectonic setting and 

composition of source rocks in Figure 4.31 (Bhatia and Crook, 1986: Cullers, 1994).  

The result of the plotted La-Th-Sc ternary diagram falls into the field of continental 

island arc setting with mainly overlapping of metabasic source and granitic gneiss mixed 

sources.  In the Th-Sc-Zr/10 diagram, the sample falls into the field of continental island 

arc setting. 

 

4.4 Hua Na Kham Formation 

 The sandstone sample THP-13 was collected at kilometer 84+530 on Highway 

No. 12 from Lom Sak to Chum Phae of the Khon San area (Figure 1.5 in Chapter 1).  

This outcrop belongs to the Hua Na Kham Formation (P2) or Upper Clastic sequence 

of Loei-Phetchabun area.   

 Major elements  

 The SiO2/Al2O3 and Fe2O3/ K2O plots of THP-13 sample fall into the 

field between Fe-sand and Fe-shale (Figure 4.26).  The samples contain very high TiO2 

(1.54 %).  The tectonic-setting discrimination diagram using K2O/Na2O ratio and SiO2 
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content (Roser and Korsch, 1986) cannot be plotted due to undetected Na2O content.  

The provenance signature of siliciclastic sediments are plotted following discrimination 

diagram of Roser and Korsch (1988) (Figure 4.27).  The plots show a mafic igneous 

provenance.  The best-fit line of the TiO2 versus Al2O3 passes through the estimated 

peridotite end member which indicates an ultramafic-mafic provenance (Young and 

Nesbitt, 1998; Figure 4.28).   

 Trace elements  

 The trace elements composition is compiled in Appendix A.  The Y/Ni 

and Cr/V elemental ratios which are used to identify mafic-ultramafic sources are 

plotted in Figure 4.29 (Hiscott, 1984).  Y/Ni versus Cr/V diagram displays between a 

field of PAAS and ultramafic.  Chondrite normalized REE and trace elements 

characteristics of the Hua Na Kham sample are plotted in Figure 4.30.    

 According to the comparison data in Table 4.3, the plotted sample 

between oceanic island arc and continental island arc setting and indicates low silica 

metamorphic sources.  A La-Th-Sc and Th-Sc-Zr/10 ternary diagram are plotted to 

discriminate tectonic setting and composition of source rocks in Figure 4.31 (Bhatia and 

Crook, 1986: Cullers, 1994).  The result of the plotted La-Th-Sc ternary diagram falls 

into the field of continental island arc setting and it was derived from a metabasic 

source.  In the Th-Sc-Zr/10 diagram, the sample falls into the field of continental island 

arc setting. 
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Figure 4.26 Classification of terrigeneous sandstones and shales of Late Paleozoic 

                  samples from Saraburi and Chaiyaphum areas (after Herron, 1988). 
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Figure 4.27 Provenance signature of Saraburi and Chaiyaphum siliciclastic sediments            

using major elements indicates mafic igneous sources (modified from 

Roser and Korsch, 1988). 
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Figure 4.28 TiO2 versus Al2O3 plot for the sandstone from Saraburi and Chaiyaphum            

shows a positive correlation trend with peridotite end member (Young 

and Nesbitt, 1998). 

 

 
 

Figure 4.29 Cr/V vs. Y/Ni diagram showing ultramafic and PAAS end member of    

Saraburi and Chaiyaphum samples (Hiscott, 1984). 
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Figure 4.30  Chondrite normalized trace elements including rare earth elements distribution in Saraburi and Chaiyaphum  

                      samples. 
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Figure 4.31   La-Th-Sc ternary diagram for Late Paleozoic samples of Saraburi and 

Chaiyaphum areas (after Bhatia and Crook, 1986; Cullers, 1994) and 

Th-Sc-Zr/10 ternary diagram for the same area (after Bhatia and Crook, 

1986).  Explanations of tectonic setting, provenance and sample 

locality are shown in each figure. 



 
CHAPTER V 

CATHODOLUMINESCENCE RESULT  

AND INTERPRETATION 

 

 The cathodoluminescence characteristics of quartz grains in several units of 

sandstones and allodapic limestone can be observed.  These data are essential for 

interpretation of the provenance of the detrital quartz grains in the investigated 

stratigraphic units.  The result can contribute to a better understanding of the plate 

tectonic evolution of the study area during the Late Paleozoic.   

 

5.1 Nam Duk Formation 

 The allodapic limestone samples were collected from pelagic sequence at 

milestone 17+100, 17+120 and 17+227 (Figure 1.5 in Chapter 1).  Sample numbers 

indicate milestone at the sampling locality along highway No. 12.  Thin sections 

under ordinary light and cathodoluminescence for each sample are given in Figures 

5.1, 5.2, 5.3, 5.4, 5.5 and 5.6.  In general, photomicrographs of all samples are 

crystalline packstones comprising skeletal fragments.  Some foraminifera (fusulinid), 

deformed quartz and feldspar grains can be observed.  Thin-section under CL shows 

syn-sedimentary elements of clastic and biogenic components.  The alteration rim of 

calcite and quartz grains with overgrowth of authigenic quartz is well observed.  

Micro-vein, which is invisible from ordinary light, and younger calcite vein (growth 

zonation) with associated opaque mineral are well developed.  Most of the quartz 
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grains show typical blue color and some grains were deformed before deposition.  A 

zoned structure of blue luminescence quartz with an authigenic vein is clearly shown 

in Figure 5.6.  In addition, fine-grained crystalline quartz texture is represented by 

dark brown luminescence.  A more detail explanation is given in Figure 5.1, 5.2, 5.3, 

5.4, 5.5 and 5.6.   

 From the result of CL analysis, the detrital quartz grains from the allodapic 

limestone of the pelagic facies display the blue CL which indicates the volcanic and 

plutonic sources.  The presence of brown crystalline quartz indicates its derivation 

from Low-T hydrothermal influence associated with acidic volcanics.   
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Figure 5.1 Thin section under CL of pelagic sample no. 17+100, comparing 

between ordinary light (left) and cathodoluminescence (right),  (a) 

volcanic detrital grains are represented by dark blue luminescence in the 

allodapic limestone (dark yellow to orange), (b) tabular shape of detrital 

volcanic quartz grains (left position on CL image) and metamorphic 

detrital quartz grains are represented by dark brown CL (right position on 

CL image),  (c) detrital quartz luminescence showing violet and blue 

color indicates its derivation from plutonic and volcanic sources. 
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Figure 5.2 Thin section under CL of pelagic sample no. 17+100, comparing 

between ordinary light (left) and cathodoluminescence (right), (a) fine-

grained, blue (left and right position) and crystalline dark brown (lower 

right corner) CL quartzes indicate its derivation from two component 

sources,  (b) this figure clearly shows alteration rim of violet CL quartz 

from original dark blue detrital quartz with zoned feature,  (c) authigenic 

(dark CL) overgrowth in original dark blue CL quartz indicates low 

temperature of crystallization. 
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Figure 5.3  Thin section under CL of pelagic sample no. 17+120, comparing between 

ordinary light (left) and cathodoluminescence (right),  (a) the figure 

displays two calcite grains (bright yellowish CL) with micro-veins pass 

through from left to right which can be observed by CL image,  (b)  the 

figure displays an opaque mineral in a younger dark CL vein (free of 

Mn2+ and Fe2+),  (c) the figure displays a bright zone containing Mn2+

activator and a dark zone more or less free of Mn2+ and Fe2+ indicating a 

second phase of diagenesis. 
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Figure 5.4  Thin section under CL of pelagic sample no. 17+120, comparing between 

ordinary light (left) and cathodoluminescence (right),  (a) the figure 

shows bright yellowish CL and calcite vein.  (b) authigenic quartz is well 

developed around original dark blue to violet detrital CL quartz grain,  

(c) deformed detrital quartz with replacement of authigenic quartz vein. 
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Figure 5.5 Thin section under CL of deformed pelagic sample no. 17+227                

comparing between ordinary light (left) and cathodoluminescence 

(right),  (a) the figure shows dark yellowish and yellow luminescence 

with scatter of feldspar (dark blue), (b) sparitic texture displays the 

second phase of diagenesis (dark yellowish to bright yellow, round shape 

at the center),  (c) calcite grain displays bright yellow    luminescence 

while the cement shows dark luminescence. 
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Figure 5.6 Thin section under cathodoluminescence of quartz properties; (a) 

deformed detrital volcanic quartz in allodapic limestone of sample 

no.17+120 displays blue CL with zoned feature and healed authigenic 

quartz,  (b) overgrowth of authigenic quartz in an original volcanic 

quartz grain of sample no. 17+120. 
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 The sandstone samples of flysch facies were collected from milestone 18+720, 

20+375, 20+550, and 21+050 (Figure 1.5 in Chapter 1).  The sandstones are identified 

under normal thin section as immature lithic greywacke.  They are very fine- to 

medium-grained, angular to sub-rounded sandstones.  From percentage point 

counting, thin-section under CL shows approximately typical 55% dark brown and 

brown, 45% blue and violet CL color of quartz grains and dominant calcareous and 

siliceous cements.  It contains less than 2% of feldspars and zircons.  Sample no. 

18+720 from the lower part of flysch sequence displays mainly brown luminescence 

with calcite cement.  Sample no. 20+375 displays inhomogeneous mixed CL color of 

blue and violet in the same grain.  Younger calcite vein is well observed in sample no.  

21+050.   A more detail explanation is given in Figure 5.7 to 5.10. 

 The result of detrital quartz CL in flysch facies shows brown and blue color.  

Detrital quartz grains of sample no. 18+720 (lower part of flysch sequence) show 

mainly brown color and some of them display crystalline texture indicating a regional 

low-grade metamorphic provenance.  Blue CL quartz grains are increasing and more 

prominent in the upper part of the section and interpreted as derived mainly from high 

temperature quartz of plutonic/volcanic origin.  No internal feature of detrital quartz is 

found.    
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Figure 5.7   Thin section under CL of flysch sample no. 18+720 comparing between 

ordinary light (left) and cathodoluminescence (right),  a. and b. fine- 

grained sandstone shows the majority of brown quartz while the minority 

is blue luminescence.  Calcareous cement is dominant. 
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Figure 5.8   Thin section under CL of flysch sample no. 20+375, comparing between 

ordinary light (left) and cathodoluminescence (right).  Detrital quartz 

grain shows mixed composition of violet, light purple, blue, and brown 

luminescence with calcite cement,  (a) some quartz grain displays mixed 

color in the same grain,  (b) zircon grain is indicated by bright 

luminescence,  (c) light purple quartz shows irregular shape with pinkish 

streak color indicating a cooling phase or hydrothermal process. 
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Figure 5.9  Thin section under CL of flysch sample no. 20+550, comparing between 

ordinary light (left) and cathodoluminescence (right).  The sample is 

fine- to medium-grained sandstone with quartz cement and carbonate 

matrix. Quartz crystalline texture in ordinary light displays mainly 

brown color in CL image.  (a) The majority of quartz is brown while the 

minority is blue and light purple.  The matrix is carbonate,  (b) bright 

pinkish luminescence and pinkish purple quartz are well observed,  (c)  



  
 

111

upper left corner displays deformed quartz with healed brown CL,  a few 

feldspar grains with shined azure are scattered in the section. 

 

 

 

Figure 5.10 Thin section under CL of flysch sample no. 21+050 comparing                

between ordinary light (left) and cathodoluminescence (right).  The 

sample shows deformed fine- to medium-grained sandstone with 

siliceous cement,  (a) younger calcite vein is well presented,  the 

majority of quartz is brown while the minority is blue color,  (b) 

authigenic quartz vein together with calcite vein indicates filling of 

carbonate mineral after authigenic vein generated. 
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 Sandstone samples of molasse facies were collected from milestone 34+600, 

34+750, 35+175, 36+650, 37+550, and 40+400 (Figure 1.5 in Chapter 1).  The 

sandstone samples are identified as immature fine- to medium-grained, angular to 

sub-rounded lithic greywacke and lithic arenite under normal thin section.  From 

percentage point counting, thin-section under CL shows approximately typical 48% 

dark brown to brown, 52% blue and violet CL color of quartz grains and dominant 

calcareous and siliceous cements.  The CL image displays blue luminescence streak 

and healed pinkish and non-luminescence fractures.  Patchy mottled texture with 

pinkish violet luminescence is also present.  A zoned feature in quartz grain is well 

shown and the quartz grains display blue, purple and yellowish brown luminescence.  

A more detail explanation is given in Figure 5.11 to 5.16.  Zonation of quartz pattern 

in molasse samples is given in Figure 5.17.    

 In molasse sequence, quartz CL population seems to be similar to flysch 

sequence but represents more variety of quartz provenances.  CL characteristic of 

internal quartz grain such as zoned, mottled, and streak structures is well presented.  

For example, sample no. 40+400 represents a variety of detrital quartz family and 

indicates its derivation from volcanic, plutonic, and hydrothermal quartzs.  

 The percentage of quartz population from flysch and molasse sequences is 

summarized in Figure 5.18. 
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Figure 5.11  Thin section under CL of molasse sample no. 34+600, comparing 

between ordinary light (left) and cathodoluminescence (right),  (a) the 

majority of quartz is brown while the minority is blue with carbonate 

matrix and cement,  left figure demonstrates a mixture between 

ordinary light and CL light,  (b) mottled texture in the pinkish coarse 

grains indicates thermally metamorphosed quartz. 
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Figure 5.12  Thin section under CL of molasse sample no. 34+750 comparing           

between ordinary light (left) and cathodoluminescence (right),  (a)  the 

sample displays light purple and dark blue CL in coarse grains and 

brown CL in fine grains, a few pinkish CL and carbonate matrix are 

presented,  (b) brown quartz grains are dominant in the sample,  a few 

coarse quartz grains are blue and light purple in carbonate matrix. 
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Figure 5.13  Thin section under CL of molasse sample no. 35+175, comparing 

between a mixture of ordinary light and CL (left) and 

cathodoluminescence (right),  (a) greywacke sandstone displays mainly 

brown and light purple CL,  feldspar is scattering in matrix and vein, 

red and reddish orange spots probably indicate dolomitic composition,  

(b) some authigenic quartz is present in vein with replacement of blue 

CL material.    
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Figure 5.14  Thin section under CL of molasse sample no. 36+650, comparing 

between a mixture of ordinary light and CL (left) and 

cathodoluminescence (right).  The sample displays very fine-to fine-

grained grewwacke sandstone.  (a) The majority of quartz is brown 

while the minority is light purple and pinkish blue in carbonate matrix.  

(b) Fine-grained brown quartz is dominant in the rock,  a few coarse 

quartz grains are blue and pinkish blue. 
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Figure 5.15  Thin section under CL of molasse sample no. 37+550 comparing 

between ordinary light and CL (left) and cathodoluminescence (right).  

(a) The majority of quartz is blue and violet color while the minority is 

brown.  Deformed detrital quartz represented by blue CL.  (b) The 

majority of quartz is brown and brownish blue.       
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Figure 5.16  Thin section under CL of molasse sample no. 40+400 comparing 

between ordinary light (left) and cathodoluminescence (right).  (a) The 

majority of quartz is blue and violet color while the minority is brown.  

Carbonate grain is well defined by bright yellowish and scattered 

feldspar is dark blue.  (b) The majority of quartz is brown while the 

minority is blue.  K-feldspar (azure color) is at the left between quartz 

grain and scattering all over.  (c) Low temperature hydrothermal quartz 

displays stepped zoning.   
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Figure 5.17  (a) Zoned pattern of quartz grain in molasse sample no. 40+400 displays 

stepped zoning of violet-light blue-dark blue.  (b) Zoned pattern of 
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quartz grain in molasse sample no. 40+400 displays growth sector with 

initially light reddish brown, light purple, violet, light reddish brown.  (c) 

Zoned pattern of quartz grain in molasse sample no. 34+750 displays 

stepped zoning of light purple with non luminescent deflecting near the 

center.  (d)  Zoned pattern of quartz grain in molasse sample no. 34+750 

displays stepped zoning of light blue with pinkish point and micro-vein.   
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Figure 5.18 Bar plot showing percentage of metamorphic, plutonic and volcanic 

quartz grains in sandstone samples from flysch and molasse sequences of 

the Nam Duk Formation. 
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5.2 Nong Pong and Pang Asok Formations 

 In Saraburi area, allodapic limestone sample was collected from the Nong 

Pong Formation (PC-02) and sandstone sample from the Pang Asok Formation (THS-

10) (Figure 1.7 in Chapter 1).  The PC-02 sample was collected along the road from 

Muak Lek to Ban Sab Noi Nua (UTM 47P; 0759480N, 1640614E).  The outcrop 

approximately 300 meter wide is on a small hill and composed of thin-bedded 

allodapic limestones, siliceous shales, and cherts.  These rocks belong to the Nong 

Pong Formation (Hinthong et al., 1976).  The THS-10 sample was collected from a 

road cut three kilometer from Muak Lek to Pak Chong of Friendship Highway (No.2).  

The outcrop is exposed approximately 500 meter wide on left hand side and opposite 

a limestone mountain. 

 In general, PC-02 sample under thin section CL displays bright yellowish 

luminescence indicating a homogeneous texture (Figure 5.19 a).  Detrital quartz 

grains are scattered and display light purple color.  The result indicates a volcanic 

provenance similar to the pelagic sequence of the Nam Duk Formation.  THS-10 

sample is a fine-grained sandstone with calcareous cement (Figure 5.19 b).  Detrital 

quartz shows mainly brown with minor blue color.  Its source interprets as derived 

mainly from the low-grade regional metamorphic terrane.             

 The Nong Pong and the Pang Asok Formations show indication of a southern 

continuation from the Nam Duk Formation of the Phetchabun Fold Belt based on 

cathodoluminescence result.   
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5.3 Hua Na Kham Formation 

 The THP-13 sandstone sample was collected from kilometer 84+530 of 

Highway No. 12 from Lom Sak to Chum Phae of the Khon San area (Figure 1.5 in 

Chapter 1).  This outcrop belongs to the Hua Na Kham Formation (P2) or Upper 

Clastic sequence of Loei-Phetchabun area. THP-13 sample shows sub-angular to sub-

rounded fine- to medium-grained sandstone.  CL image displays very clear brown and 

light blue quartz luminescence (Figure 5.19 c).  A metamorphic quartz grain is 

indicated by crystalline texture and brown luminescence.  Slightly overprinting of 

deformed texture is well observed by CL.  

 Sandstone of the Upper Clastic sequence (Hua Na Kham Formation) of the 

section from Chum Phae-Lom Sak shows CL petrography of different quartz 

characteristic to the molasse sequence on the west.  The quartz grains could be 

derived from different provenances as they consist mainly of detrital quartz from 

metamorphic terrane.   

 

5.4 Pha Dua Formation 

 The outcrops of the thin-bedded, fine-grained clastic sequence with a 

preponderance of dark shale and siltstone in Chiang Khan, Loei area were mapped by 

Chairangsree et al. (1990) as the Late Permian Pha Dua Formation.  The unit 

comprises predominantly siltstone and claystone, often tuffaceous, with rare thin beds 

of sandstone, coal, and limestone (Mouret, 1994). It was deposited mainly in upper 

delta to alluvial plain environments, with minor interruption of lower delta plain and 

bay facies. 
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 The sandstone samples were collected from western part of Chiang Khan, 

north of Loei Province along the border between Thai-Laos border (Figure 1.6 in 

Chapter 1).  Three kilometer west of Chiang Khan on Highway 2195, the outcrop of 

fine-grained sandstone, siltstones, and mudstones in beds ranging from a few 

centimeters up to two meters thickness was studied and the sandstone sample was 

collected.  The sandstone 03TH01 sample is identified as immature lithic greywacke 

from thin-section.  Photomicrograph shows 50% very fine-grained quartz with sub-

angular to sub-rounded grains 10% feldspar and 40% lithic fragments.  Thin-section 

under cathodoluminescence shows dominant calcareous cement and typical 80% dark 

brown to brown color and 10% blue and light purple color of quartz grains (Figure 

5.20).  From the CL result, these sediments are interpreted to be derived from a 

regional metamorphic region and a few from high temperature source such as a 

volcanic rock.  The result clearly indicates a source area of metamorphic terrane. 
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Figure 5.19  Thin section under CL of the Nong Pong and the Pang Asok Formations 

in Saraburi-Pak Chong areas and from Upper Clastics “Hua Na Kham 

Formation” of the Khon San, Chaiyaphum.  (a) Sample PC-02 of the 

Nong Pong Formation shows bright yellowish color and homogeneous 

texture with volcanic detrital quartz grain represented by light purple 

color.  (b) Sample THS-10 of the Pang Asok Formation shows the 

majority of quartz is brown while the minority is blue and light purple 
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luminescence in calcite cement.  (c) Sample THP-13 of the Hua Na 

Kham Formation shows typical brown and blue quartz luminescence 

color.  Crystalline quartz texture from ordinary light is represented by 

brown color indicating the metamorphic sources.   

 

 

 

Figure 5.20 Thin section under CL of Pha Dua Formation, west of Chiang Khan, 

comparing between ordinary light (left) and cathodoluminescence 

(right). (a) Thin section shows very fine- to fine-grained sandstone with 

micaceous fragments. (b) CL micrograph shows the majority of quartz is 

brown while the minority is blue and light purple luminescence in calcite 

cement.  

 



 
CHAPTER VI  

TECTONIC EVOLUTION OF THE NAM DUK BASIN 

 

 In this chapter, the geodynamic evolution of the Nam Duk Basin and 

Phetchabun Fold Belt based on geochemical analysis, cathodoluminescence and field 

investigations including data from published literature are proposed and discussed.  

  

6.1 Provenance and Tectonic setting of the Nam Duk Formation 

 The evolution of the Nam Duk Basin started from the pelagic sequence which 

consists predominantly of pelagic shale and allodapic limestone.  This sequence was 

formed in an oceanic setting between oceanic island and continental island arc 

environments according to the result of major and trace elements analyses.  The 

source of the quartz detritus in the allodapic limestone was from metabasic and 

volcanic provenance as indicated by blue luminescence family quartz.   

 The subsequent deposition of flysch and molasse sequences consists of thick 

siliciclastic sediments.  Tectonic setting discrimination diagrams and trace elements 

characteristics of flysch and molasse siliciclastic sediments indicate similar 

geochemical characteristics.  The most important sources for both flysch and molasse 

were mixed mafic igneous, metabasic, granitic gneiss, and low-silica metamorphic 

sources.  Both sequences were deposited in a continental island arc setting.  The 

detrital quartz grains in the flysch sequences show characteristic of regional low-

grade metamorphic sources in the lower part and mixed between low-grade 
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metamorphic and volcanic/plutonic quartzs in the upper part of the section.  Quartz 

luminescence composition of molasse shows similarity to flysch sequences but has 

more variety of volcanic provenances as indicated by well developed internal zoned 

structure.  Detail of provenance and tectonic setting of the Nam Duk Formation is 

given in Figure 6.1. 

 Comparisons of geochemical and cathodoluminescence characteristic of the 

sections north and south of the Nam Duk Formation at its type section have been 

done.  The result shows that the Tha Li siliciclastic sediments approximately 150 

kilometers north of the Lom Sak and the Pang Asok Formation in the Saraburi region 

to the south can be correlated with the flysch sequence.  This indicates that the axis of 

the Nam Duk Basin is at least 400 kilometers long in a N-S direction along the 

western margin of the Khorat Plateau.  

 

 

 

Figure 6.1   Detailed stratigraphic succession of the Nam Duk Formation including its                     

provenance and tectonic setting based on geochemical and 

cathodoluminescence data. 
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6.2 Geodynamic model of the Phetchabun Fold Belt 

 From geochemical and cathodoluminescence results including the published 

data from various authors, the possible evolution and paleotectonic reconstruction of 

the Nam Duk Formation is summarized as following. 

 The Nam Duk Basin was formed as a back arc basin after the closure of small 

oceanic basin (Loei Ocean) in Indosinia continent during the Devonian-Carboniferous 

(Intasopa and Dunn, 1994).  This basin rifting probably occurred in Middle 

Carboniferous (Kozar et al., 1992) and subsequently the pelagic sediments were 

accumulated during Middle – Late Carboniferous to lower Middle Permian in a deep 

sea basin (Figure 6.2).  This deep sea oceanic basin was bordered on both sides by 

shallow marine sea.  The geochemical and cathodoluminescence results indicate that 

the pelagic facies of a deep sea basin was formed close to an oceanic island and on an 

oceanic crust.   

 The Pha Nok Khao and the Khao Khwang Platforms (or probably one 

coherent unit) were located in the eastern side of the Nam Duk Basin or the western 

margin of the Indochina plate.  The subduction of Indochina beneath the Shan-Thai 

cratons (on the west) towards west was started in the upper Middle Permian.  During 

subduction the accretionary complex comprising mixture of pelagic sediments 

including radiolarian chert and mafic-ultramafic rocks was formed at the eastern 

margin of the Shan-Thai block.  This ophiolite belt has been known as the Nan-

Uttaradit Suture Zone.  Erosion of the accretionary complex produced the influx of 

siliciclastic or flysch sediments to the Nam Duk Basin.  The provenance signature of 

the flysch sequence shows the mafic igneous source which is interpreted as being 

derived from the accretionary complex.   
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 The result of geochemical analysis of flysch sequence as discussed in the 

previous chapter indicates that it was deposited in a continental island arc setting.  It 

could be interpreted that it was in an outer or a fore-arc environment.  Upon the 

oceanic crust was completely consumed the Indochina collided with the Shan-Thai 

terranes causing the Variscan Orogeny (Helmcke and Lindenberg, 1983).  The basin 

was shallowing, the siliciclastic sediments were continuously supplied from the same 

sources representing the molasse sediments.  The geochemical and 

cathodoluminescence results confirm that both flysch and molasse sequences show 

similar characteristics representing the same provenance and tectonic setting.  

However, the molasse contains more volcanic quartz grains than flysch and more 

recycled sediments. 

 A geodynamic model based on geochemical and cathodoluminescence 

analysis is shown in Figure 6.2.  
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Figure 6.2   Tectonic model and evolution of the Nam Duk Basin and adjacent region        

during Late Paleozoic - Triassic based on geochemical and 

cathodoluminescence analysis including data from various publications. 
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6.3 Discussion 

 The discovery of detrital chromain spinels in the flysch and molasse sequences 

of the Nam Duk Formation was reported by Chutakositkanon et al. (1999).  However, 

interpretation of the provenance of the chromain spinels from the Loei ultramafic 

located in eastern edge of Nam Duk Basin is unlikely and inconsistent with the 

geologic evolution of the region (Chonglakmani and Helmcke, 2001; Chonglakmani 

et al., 2001).  The present study confirms that the sources of the chromian spinels is 

likely to be derived from the ultramafic accreted to the subduction complex in the 

west.  This provenance contributed the siliciclastic sediments of flysch and molasse 

sequences including detrital chromian spinels.   

 The sandstone sample from Chiang Khan (Middle-Late Permian Pha Dua 

Formation) displays mainly detrital quartz grains derived from metamorphic sources.  

This could be related to the denudation of metamorphic terrane on the east of the Nam 

Duk Basin.  The metamorphic sources could be the older orogen deformed during 

Late Devonian-Early Carboniferous (Intasopa and Dunn, 1994). 

 Correlation of the Late Paleozoic strata in the Nan-Uttaradit suture zone and 

the Phetchabun Fold Belt reveals a continuous sedimentary sequence which can be 

used for the paleotectonic reconstruction.  Figure 6.3 displays an idealized vertical 

sequence from oceanic igneous rocks and chert (ophiolite sequence) passing upward 

through pelagic, greywacke turbidite (flysch) to shallow marine clastic (molasse) 

deposits.  Interpretation of vertical sequence are the result of seafloor spreading to 

form an oceanic crust (pillow basalt, gabbro, and peridotile) followed by chert 

sequence in Nan and part of the pelagic facies in the Nam Duk Formation.  These 

were subsequently followed by terbidite limestone and flysch sedimentation in a 
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remnant ocean basin.  After the remnant ocean was closed, a peripheral foreland basin 

was formed with molasse sedimentation.  The changing of flysch to molasse 

sediments as the result of the termination of the oceanic basin indicates the maximum 

deformation or disturbance which is known as the Variscan orogeny (Helmcke and 

Lindenberg, 1983).  

From an economic point of view, volcanic and plutonic activities during 

Permo-Triassic in the Phetchabun Fold Belt may contribute significantly for mineral 

exploration targets.  However, from the basin evolution and tectonic interpretation, 

this region is considered as a peripheral foreland basin with typical late and uplift 

stage of plutonic (post orogeny S-type granite) and intermediate to acidic volcanic 

rocks.  It seems to be contradictory with the result of 260 Ma calcalkaline I-type 

granites dated by Beckinsale et al. (1986).  Therefore, mineralization in this belt is 

considered to be not prospective.  Even though the epithermal gold and silver deposits 

have been found in Phichit-Phetchabun area but they cannot be correlated with the 

Permo-Triassic igneous rocks along the western margin of the Khorat Plateau.  Thick 

column of siliciclastic sediments of the peripheral foreland basin in the Phetchabun 

Fold Belt especially the Permian upper clastic sequences (molasse) can be considered 

as reservoir, source, and even seal rocks for hydrocarbon exploration.   
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Figure 6.3  Idealized vertical sequence from ophiolite suite of Nan-Uttaradit Suture           

Zone and the Nam Duk Basin during Late Paleozoic. 



 
CHAPTER VII 

CONCLUSIONS 

 

 The result of this study of major and trace element compositions and 

cathodoluminescence analysis of the siliciclastic sediments in the Nam Duk 

Formation and Permian sequences in Loei and Saraburi areas have implications for 

tectonic interpretations in Thailand.  Based on geochemical and cathodoluminescence 

analyses the result can be summarized as follows; 

 1. The pelagic sequence of the Nam Duk Formation was formed in an oceanic 

setting between oceanic island and continental island arc environments.  The source 

of the quartz detritus in the allodapic limestone was from metabasic and volcanic 

provenance. 

 2. The flysch and molasse sequences show similar geochemical characteristics 

(very high TiO2 and Fe2O3, low Al2O3) and indicate mixed mafic igneous, metabasic, 

granitic gneiss, and low-silica metamorphic sources.  Both sequences were deposited 

in a continental island arc setting. 

 3. The Nam Duk Formation at Tha Li in Loei and the equivalent Pang Asok 

Formation in Saraburi-Pak Chong area can be correlated with the flysch sequence at 

its type section in the Phetchabun Fold Belt. 

 4. The sandstone sample from Chiang Khan (Middle-Late Permian Pha Dua 

Formation) displays mainly detrital quartz grains derived from metamorphic sources 
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and could be related to the denudation of metamorphic terrane from older orogen of 

Late Devonian-Early Carboniferous age (Intasopa and Dunn, 1994). 

 5. Tectonically, subduction of the Indochina beneath the Shan-Thai cratons 

(on the west) towards west was started in the upper Middle Permian resulting in the 

formation of an accretionary complex.  The provenance signature of the flysch 

sequence shows the mafic igneous source which is interpreted as being derived from 

the accretionary complex and it was in an outer or a fore-arc environment.  The 

maximum orogenic movement occurred during the completion of suturing process.  

The molasse sequence was accumulated after mountain building process consisting 

predominantly of the siliciclastic sediments. 

 6. This study supports an idea of Nan-Uttaradit suture as being one branch of 

the main Paleo-Tethys represented by the Nam Duk remnant ocean Basin in the 

Phetchabun Fold Belt.  This ocean was already closed during the short period of 

Middle Permian.  

  Finally, the following works are recommended to be carried out for some 

geological clarification:   

- Tracing of the continuation of Permian Nam Duk Basin across Thai-Laos 

border to Pak Lay - Luang Phrabang in Laos, and SW-Yunnan.  

 - U-Pb dating of a small set of zircon population from Nam Duk Formation 

and correlatives with the equivalent rock units in order to determine the age of its 

components and the provenance of the components. 

- More detail structural analysis in order to recognize phase of deformation 

during Mesozoic to Tertiary. 
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- Micro-paleontology study of a pelagic sequence of the Nam Duk Formation 

and the equivalent section in Saraburi (Nong Pong and Khao Phaeng Ma Formations) 

in order to study the paleogeography during Permian time. 

 



 
REFERENCES 

 
Ahrendt, H., Chonglakmani, C., Hansen, B.T. and Helmcke, D. (1993). 

Geochronological cross section through northern Thailand. Journal of 

Southeast Asian Earth Sciences 8 (1-4), pp. 207-214. 

Akermann, T.E. (1986). The geology of the Lower Paleozoic Talutao Formation. 

Unpublished B.Sc. Hon. thesis, University of Tasmania, Australia. 

Altermann, W. (1989). Facies development in the Permian Petchabun basin central 

Thailand. Verlag fur Wissenschaft und Bildung, Berlin, 236 p.  

Altermann, W., Grammel, S., Ingavat, R., Nakornsri, N. and Helmcke, D. (1983). On 

the evolution of the Paleozoic terrains bordering the Northwestern Khorat 

Plateau. Conference on Geology and Mineral Resources of Thailand. 

DMR, Bangkok, November. preprint 5 p. 

Andre, L., Deutsch, S. and Hertogen, J. (1986). Trace-element and Nd isotopes in 

shales as indexes of provenance and crustal growth: The early Paleozoic from 

the Brabantmassif (Belgium). Chemical Geology. 57: 101-115. 

Asama, K., Iwaii, J., Veeraburas, M. and Hongnusonthi, A. (1968). Permian plants 

from Loei. Geology and Paleontology of Southeast Asia. 4(82-99): 14-18. 

Barr, S.M. and Macdonald, A. S. (1987). Nan-River suture zone, northern Thailand. 

Geology 15: 907-910. 



  
 

138

Barr, S. M. and Macdonald,A. S. (1991). Toward a late Paleozoic-early Mesozoic 

tectonic model for Thailand. Journal of Thai Geosciences, 1: 11-22. 

Barr, S.M., Macdonald, A.S., Yaowanoiyothin, V. and Panjasawatwong, Y. (1985). 

Occurrence of blueschists in the Nan River mafic-ultramafic belt, northern 

Thailand. Warta Geologi, 11:47-50. 

Barr, S.M., Tantisukrit, C., Yaowanoiyothin, W. and Macdonald, A.S. (1990). 

Petrology and tectonic implications of Upper Paleozoic volcanic rocks of the 

Chiang Mai belt, northern Thailand. J. Southeast Asian Earth Sci. 4:37-47. 

Baum, F., Braun, E., Hahn, L., Hess, A., Koch, K.E., Kruse, G., Quarch, H. and 

Siebenhüner, M. (1970). On the Geology of Northern Thailand. Beih. Geol. 

Jahrb. 102:3-24. 

Beckinsale, R.D., Suensilpong, S., Nakapadungrat, S., Walsh, J.N., Cobbing, E.J. and 

Ridd, M.F. (1979). Geochronologz and geochemistry of granite magmatism in 

Thailand in relation to a plate tectonic model. Jour. Geol. Soc. Lond., V. 136 

(pt.5), pp. 529-540. 

Bhatia, M.R. (1983).  Plate tectonics and geochemical composition of sandstones.  

Journal of Geology, 91, 611-627. 

Bhatia, M.R. (1985). Rare earth element geochemistry of Australian Paleozoic 

graywackes and mudrocks: Provenance and tectonic control. Sedimentary 

Geology, 45, 97-113. 

Bhatia, M.R. and Crook, K.A.W. (1986). Trace element characteristics of graywackes 

and tectonic discrimination of sedimentary basins. Contrib. Mineral. Petrol., 

92, 181-193. 



  
 

139

Bunopas, S. (1981). Paleogeographic history of western Thailand and adjacent 

parts of Southeast Asia: A plate tectonics interpretation. Ph.D. 

Dissertation, Victoria University of Wellington, New zealand. Reprinted 1982 

as Geological Survey Paper 5, Department of Mineral Resources, Bangkok, 

Thailand. 

Bunopas, S. (1991). The pre-Late Triassic collision and stratigraphic belts of Shan-

Thai and Indochina Microcontinents in Thailand. Proc. of  papers presented 

at the 1st intern. Symp. of the IGCP Project 321, Gondwana:Dispersal and 

Accretion of Asia. Kunming, China 

Bunopas, S. (1992). Regional stratigraphic correlation in Thailand. In: Piancharoen, 

C. (ed.). Proceeding of the National Conference on the Geologic Resources 

of Thailand: Potential for Future Development (pp. 2-24). DMR. Bangkok, 

Thailand. 

Bunopas, S. and Vella, P. (1978). Late Paleozoic and Mesozoic structural evolution of 

Northern Thailand: A plate tectonic model. In: Nutalaya, P. (ed.). Proc. 

GEOSEA III (pp. 133-140). Bangkok, Thailand. 

Bunopas, S. and Vella, P. (1983). Tectonic and geologic evolution of Thailand. In: 

Nutalaya, P. (ed.). Proceeding of the Workshop on Stratigraphic 

correlation of Thailand and Malaysia (pp. 307-323). Haad Yai, Thailand.  

Burrett, C. F. and Stait, B. A. (1985). Southeast Asia as part of an Ordovician 

Gondwanaland; a palaeobiogeographic test of the tectonic hypothesis. Earth 

and Planetary Science Letters. 75: 184-190. 



  
 

140

Caridroit, M., Bohlke, D., Lamchuan, A., Helmcke, D. and De Wever, P. (1993). A 

mixed Radiolarian fauna (Permian/Triassic) from clastics of the Mae Sariang 

area, northwestern Thailand. In:Thanasuthipitak, T. (ed.), Proceedings of the 

International Symposium on Biostratigraphy of Mainland Southeast Asia: 

Facies and Paleontology ( pp.401-413). Chiang Mai, Thailand. 

Carnarvan Petroluem Report (2002). Geology Report. Available on 

http://www.carnarvon.com.au/ 

Chairangsee, C., Hinze, C., Machareonsap, S., Nakornsri, N., Silpalit., M. and 

Ainpool-Anunt, S. (1990). Geological map of Thailand 1:50,000 

explanation for the sheets: Amphoe Pak Chom, Ban Huai Khop, Ban Na 

Kho and King Amphoe Nam Som. Geologisches Jahrbuch Reihe B, Heft 73, 

Hannover. 109 p. 

Chaodumrong, P., Ukakimapan, Y., Snansieng, S., Janmaha, S., Pradittan, S. and 

Leow, N.S. (1983). A review of the Tertiary sedimentary rocks of Thailand. 

Proc. In: Nutalaya, P. (ed.). Proceeding of the Workshop on Stratigraphic 

correlation of Thailand and Malaysia (pp. 105-126). Haad Yai, Thailand.  

Charoentitirat, T. (1999). Latest Carboniferous-Early Permian fusulinacean faunas 

from Loei, Northeast Thailand. Master Thesis, University of Tsukuba, Japan 

(unpublished). 

Charoentitirat, T. (2002). Permian Fusulinodean Biostratigraphy and Carbonate 

Development in the Indochina Block of Thailand with Their Paleogeographic 

Implication. Doctoral thesis. University of Tsukuba, Japan 



  
 

141

Charusiri, P., Kosuwan, S. and Imsamut, S. (1997). Tectonic evolution of Thailand : 

From Bunopas (1981)'s to a new secnario. In: Dheeradilok, P., (eds.).  

Proceedings of the Conference on Stratigraphy and Tectonic Evolution of 

Southeast Asia and the South Pacific, DMR Bangkok, Thailand, pp. 414-

420.  

Chonglakmani, C. (2001). The Saraburi Group of North-Central Thailand: Implication 

for Geotectonic Evolution. Gondwana Research. 4: 597-598. 

Chonglakmani, C. (2002). Current Status of Triassic Stratigraphy of Thailand and Its 

Implication for Geotectonic Evolution. In: Mantajit, N., (eds). Proceeding of 

the Symposium on Geology of Thailand 2002 (pp.1-3). DMR Bangkok, 

Thailand. 

Chonglakmani, C. (2005). Assessment of Limestone Resources of Pak Chong Area, 

Changwat Nakhon Ratchasima. Research Project No. SUT 7-719-43-24-49. 

Suranaree University of Technology. 40 p (in Thai with English abstract).  

Chonglakmani, C. and Fontaine, H. (1992). The Lam Narai-Phetchabun region: A 

platform of Early Carboniferous to Late Permian age. In: Charusiri, P., et al 

(eds.). Proceedings of the Technical Conferences on Development Geology 

for Thailand into the Year 2000. Chulalongkorn University, Thailand. pp. 

39-98. 

Chonglakmani, C., Fontaine, H. and Vachard, D. (1983). A Carboniferous-Lower 

Permian(?) Section in Chon Dan Area, Central Thailand.  In Conference on 

Geology and Mineral Resources of Thailand (preprint 5 p). DMR Bangkok, 

Thailand. 



  
 

142

Chonglakmani, C. and Helmcke, D. (2001). Geodynamic evolution of Loei and 

Phetchabun regions; Does the discovery of detrital chromain spinels from the 

Nam Duk Formation (Permian, north-central Thailand) provide new 

constraint?. Gondwana Research. 4(3): 437-442. 

Chonglakmani, C., Qinglai, F., Meischner, D., Ingavat-Helmcke, R. and Helmcke, D. 

(2001). Correlation of Tectono-Stratigraphic Units in Northern Thailand with 

Those of Western Yunnan (China). Journal of China University of 

Geosciences: 12(3): 207-213. 

Chonglakmani, C. and Sattayarak, N. (1978). Stratigraphy of the Huai Hin Lat 

Formation (Upper Triassic) in northeastern Thailand. In: Nutalaya, P. (Ed.), 

Proc. GEOSEA III, Bangkok, 14-18 Nov., pp. 739-762. 

Chutakositkanon, V., Charusiri, P. and Sashida, K. (2000). Lithostratigraphy of 

Permian marine sequences, Khao Pun area, central Thailand: 

Paleoenvironments and tectonic history. The Island Arc: 9: 173-187. 

Chutakositkanon, V., Hisada, K., Charusiri, P., Arai, S. and Charoentitirat, T. (1999). 

Characteritics of Detrital Chromian Spinels from the Nam Duk Formation: 

Implication for the Occurrence of Mysterious Ultramafic and Volcanic Rocks 

in Central Thailand. In: Khantaprab, C. et al. (eds.). Symposium on Mineral, 

Energy, and Water Resources of Thailand: Towards the year 2000 (pp. 

604-606). Chulalongkorn University, Thailand. 

Chutakositkanon, V., Hisada, K., Uneo, K. and Charusiri, P. (1997). New suture and 

terrane deduced from detrital chromian spinel in sandstone of the Nam Duk 

Formation, north-central Thailand: preliminary report. In: Dheeradilok, P., et 



  
 

143

al (Eds), Proceedings of the International Conference on Stratigraphy and 

Tectonic Evolution of Southeast Asia and the South Pacific. 19-24 August, 

DMR Bangkok, Thailand. pp 368. 

Cobbing, E.J., Mallick, D.I.J., Pitfield, P.E.J. and Teoh, L.H. (1986). The granites of 

the Southeast Asian Tin Belt. Jour. Geol. Soc. Lond. 143: 537-550. 

Cooper, M.A., Herbert, R. and Hill, G.S. (1989).  The structural evolution of Triassic 

intramontane basins in northeastern Thailand. In:Thanasuthipitak, T., 

Ounchanum, P. (Eds), Proceedings of the International Symposium on 

Intermontane Basins: Geology and Resources, Chieng Mai, (pp. 231-242). 

Chiang Mai University. 

Crawford, A.J. and Panjsawatwong, Y. (1996). Ophiolites ocean crust, and the Nan 

Suture in NE Thailand. Intern. Symp. On lithosphere dynamics of East 

Asia, Extended Abstract, Taipei, pp.84-89. 

Cullers, R.L. (1994). The chemical signature of source rock in size fractions of 

Holocene stream sediment derived from metamorphic rocks in the Wet 

Mountains region, Colorado, U.S.A. Chemical Geology. 113: 327-343. 

Cullers, R.L., Basu, A. and Suttner, L. (1988). Geochemical signature of provenance 

in sand-size material in soils and stream sediments near the Tobacco Root 

Batholith, Montana, U.S.A. Chemical Geology: 70: 335-348. 

Dawson, O. and Racey, A. (1993). Fusuline-calcareous algal biofacies of the Permian 

ratburi Limestone, Saraburi, central Thailand. Journal of Southeastern Asian 

Earth Sciences. 8: 49-65. 



  
 

144

Dheeradilok, P. (1975). Precambrian rocks of Thailand in general. Department of 

Geological Sciences, Chiang Mai University, Special Publication, 1(2):3-4. 

Dheeradilok, P., Wongwanich, T., Tansathien, W. and Chaodumrong, P. (1992). An 

introduction to Geology of Thailand. In: Piancharoen, C. (ed.). Proceeding of 

the National Conference on the Geologic Resources of Thailand: Potential 

for Future Development (pp. 641-652). DMR. Bangkok, Thailand. 

Dickinson, W.R. (1982). Compositions and sandstones in circumpacific subduction 

complexes and fore-arc basins. AAPG Bull. 66: 121-137. 

Dickinson, W.R. (1985). Interpreting provenance relations from detrital modes of 

sandstones. In Zuffa G.G. (ed.) Provenance of Arenites, pp. 333-361. 

Dordrecht:D.Reidel. 

Dott, R.H. and Batten, R.L. (1988). Evolution of the Earth (4th). McGrew-Hill, New 

York, 643 p. 

Dunning, G.R., Macdonald, A.S. and Barr, S.M. (1995). Zircon and monazite U-Pb 

dating of the Doi Inthanon core complex, northern Thailand: implications for 

extension within the Indosinian Orogen. Tectonophysics. 251: 197-213. 

Folk, R.L. (1974). Petrology of Sedimentary Rocks. Hemphill Publishing, New 

York. 

Fontaine, H. (2002). Permian of Southeast Asia: an overview. Journal of Asian 

Earth Sciences. 20: 567-588. 

Fontaine, H., Salyapongse, S. and Vachard, D. (1999). New Carboniferous Fossils 

found in Ban Bo Nam Area, Central Thailand. In: Khantaprab, C. et al. (eds.). 



  
 

145

Symposium on Mineral, Energy, and Water Resources of Thailand: 

Towards the year 2000 (pp. 201-211). Chulalongkorn University, Thailand. 

Fontain, H. and Suteethorn, V. (1988). Late Paleozoic and Mesozoic fossils of west 

Thailand and their environments. CCOP Technical Bulletin. 20:1-217, 46 p. 

Fontaine, H. and Suteethorn, V. (1992). Permian corals of Southeast Asia and the 

bearing of a recent discovery of Lower Permian corals in Northeast Thailand. 

In: Charusiri, P., et al (eds.). Proceedings of the Technical Conferences on 

Development Geology for Thailand into the Year 2000. Chulalongkorn 

University, Thailand. pp. 346-354. 

Götze, J. and Simmerle, W. (2000). Quartz and silica as guide to provenance in 

sediments and sedimentary rocks. Contrib. Sediment. Geol. 12: 91 pp. 

Hahn, L. and Siebenhuner, M. (1982). Explanatory notes on the Geological Maps 

of Northern and Western Thailand 1:250,000. B.G.R., Hannover, 76 pp.  

Heggemann, H. (1994). Sedimentäre Entwicklung der Khorat-Gruppe (Ober-trias bis 

Paläogen) in NE-und N-Thailand. Ph.D. thesis, University of Göttingen, 

F.R.Germany.  

Helmcke, D. (1985). The Permo-Triassic “Paleotethys” in Mainland Southeast-Asia 

and adjacent parts of China. Geol. Rundschau, 74/2, 215-228. 

Helmcke, D. (1994). Distribution of Permian and Triassic syn-orogenic sediments in 

central mainland SE-Asia. In: Angsuwathana, P., (eds). Proceedings of the 

Internation Symposium on Straigraphic Correlation of Southeast Asia, 

Bangkok, Thailand, pp. 123-128. 



  
 

146

Helmcke, D. and Kraikhong, C. (1982). On the geocynclinal and orogenic evolution 

of central and northeastern Thailand. Jour. Geol. Soc. Thailand. 5: 52-47. 

Helmcke, D. and Lindenberg, H.G. (1983). New data on the Indosinian orogeny from 

Central Thailand. Geologische Rundschau 72: 317-328. 

Herron, M.M. (1988). Geochemical classification of terrigenous sands and shales 

from core or log data. Journal of Sedimentary Petrology. 58: 820-829.  

Hills, J.  (1989). The geology of the Phuket District of Thailand. B.Sc. Honours 

Dissertation, University Tasmania (unpublished). 

Hiscott, R.N., (1984). Ophiolitic source rocks for Taconic-age flysch: trace element 

evidence. Geological Society of America Bulletin. 95: 1261-1267.  

Hinthong, C. (1981). Geology and mineral resources of the Changwat Phrakorn Sri 

Ayutthaya, Map ND 47-8. Geological Survey report no. 4, Department of 

Mineral Resources, Bangkok, Thailand (in thai). 

Hinthong, C., Chuaviroj, Waewyana, W., Srisukh, S., Pholprasit, C. and Pholchan, S. 

(1976). Geological map of Changwat Pranakhon Si Ayutthaya (ND 47-8), 

1:250,000. Department of Mineral Resources, Bangkok Thailand. 

Huang, J. (1984). New research on the tectonic characteristics of China. In: Yanshin 

et al. (eds.), Tectonics of Asia: Colloq., 05. Int. Geol. Congr. 27th, Moskeow, 

Rep., 5:13-28.  

Hutchison, C.S. (1975). Opliolite in SE Asia. Bull. Geol. Soc. Am. 86: 797-806. 

Hutchison, C.S. (1989). Geological Evolution of Southeast Asia. London Press, 

Oxford, 368 pp. 

Igo, H. (1972). Fusulinaceous fossils from North Thailand. Geology and 

Palaeontology of Southeast Asia. 10: 63-116 pl. 9-19. 



  
 

147

Igo, H. (1974). Lower Permian Conodonts from Northern Thailand. Geology and 

Palaeontology of Southeast Asia. 14: 1-6 pl. 1. 

Ingavat-Helmcke, R. and Helmcke, D. (1986). Permian Fusulinacean Faunas of 

Thailand – Event Controlled Evolution.  Lecture Notes in Earth Sciences. 8: 

241-248. 

Intasopa, S. and Dunn, T. (1994). Petrology and Sr-Nd isotopic systems of the basalts 

and rhyolites, Loei, Thailand. Journal of Southeast Asian Earth Sciences. 9: 

167-180. 

Kamata, Y., Sashida, K. and Uneo, K. (2002). Triassic radiolarian faunas from the 

Mae Sariang area, northern Thailand and their paleogeographic significance. 

Journal of Asian Earth Sciences. 20 (5): 494-506. 

Kobayashi, T. and Hamada, T. (1979). Permo-Carboniferous trilobites from Thailand 

and Malaysia. Geology and Palaeontology of Southeast Asia. 20: 1-21 pl. 1-

3. 

Kon’no, E. and Asama, K. (1973). Mesozoic Plaints from Khorat, Thailand. Geol. 

Palaeont. SE Asia. 12: 149-171. 

Kozar, M.G., Crandall, G.F. and Hall, S.E. (1992). Integrated Structural and 

Stratigraphic Study of the Khorat Basin, Ratburi Limestone (Permian), 

Thailand. In: Piancharoen, C. (ed.). Proceeding of the National Conference 

on the Geologic Resources of Thailand: Potential for Future Development 

(pp. 692-736). DMR. Bangkok, Thailand. 

Kwon, Y. I. and Boggs, Jr. S. (2002).  Provenance interpretation of Tertiary 

sandstones from the Cheju Basin (NE East Chian Sea): a comparison of 



  
 

148

conventional petrographic and scanning cathodoluminescence techniques. 

Sedimentary Geology. 152: 29-43. 

Liu, B., Feng, Q. and Fang, N. (1996). Tectonic evolution of the Palaeo-Tethys in 

Changning-Menglian belt and adjacent regions, Western Yunnan.  Jour. 

China Univ. Geos. 2(1): 18-27.  

Macdonald, A.S. and Barr, S.M. (1978). Tectonic significance of a Late 

Carboniferous Volcanic Arc in Northern Thailand. In: Nutalaya, P. (ed.). Proc. 

GEOSEA III (pp. 151-156). Bangkok, Thailand. 

Malila, K., Chonglakmani, C., Helmcke, D. and Qinglai, F. (2005). Provenance of the 

Nam Duk Formation as an Indication for a Late Paleozoic Orogenic Event in 

Mainland Thailand. Geophisical Research Abstract. 7:02123. 

Mantajit, N. (1975). Some aspects of the petrology and chemistry of the granitic rocks 

in Ban Mong area, south of Amphor Mae Chaem,Chiang Mai, Thailand. 

Unpublished M.Sc. thesis, Manchester University, U.K. 

Mantajit, N. (1997). Stratigraphy and Tectonic Evolution of Thailand.  In: 

Dheeradilok, P., (eds.). Proceedings of the International Conference on 

Stratigraphy and Tectonic Evolution of Southeast Asia and the South 

Pacific. DMR Bangkok, Thailand. pp. 1-26. 

Matter, A. and Ramseyer, K. (1985). Cathodoluminescence microscopy as a tool for 

provenance studies of sandstones. In: Zuffa, G. G. (Ed.), Provenance of 

Arenite. Reidel, Dordrecht, pp. 191-211. 

Maynard, J.B. (1992). Chemistry of modern soils as a guide to interpreting 

Precambrian paleosols. Journal of Geology, 100, 279-289. 



  
 

149

McLennan, S.M., Hemming, S., McDaniel, D.K. and Hanson, G.N. (1993). 

Geochemical approaches to sedimentation, provenance, and tectonics, 

Geological Society of America Special paper. 284: 21-41. 

Meesook, A. and Grant-Mackie, J.A. (1997). Fauna associations, paleoecology nand 

paleoenvironments of the Thai marine Jurassic: A preliminary study. In: 

Dheeradilok, P., (eds.). Proceedings of the International Conference on 

Stratigraphy and Tectonic Evolution of Southeast Asia and the South 

Pacific. DMR Bangkok, Thailand. pp. 177-187. 

Metcalfe, I. (1988). Origin and assembly of south-east Asian continental terranes. In: 

Audley-Charles, M. G., and Hallam, A. (eds.). Gondwana and Tethys. 

Geological Society of London Special Publication. 37: 101-118.  

Metcalfe, I. (1997).  The Paleo-Tethys and Paleozoic-Mesozoic tectonic evolution of 

Southeast Asia. In: Dheeradilok, P., et al., (eds.). Proceedings of the 

International Conference on Stratigraphy and Tectonic Evolution of 

Southeast Asia and the South Pacific (pp. 260-272). DMR Bangkok, 

Thailand. 

Metcalfe, I. (2002). Permian tectonic framework and palaeogeography of SE Asia. 

Journal of Asian Earth Sciences. 20: 551-566. 

Mickein, A. (1992). Alter und Intensitat der Schwachmetamorphen Uberpragung des 

Nam Pat-Fachers E Sirikit Dam (N-Thailand) (K/Ar-Datierung-

Lllitkristallinitat). Unpubl. Ph.D. Thesis, Univ. Göttingen, 80 p. 

Min, M., Lin, K., Qinglai, F., Chonglakmani, C., Meischner, D., Ingavat-Helmcke, R. 

and Helmcke, D. (2001). Tracing the disrupted outer margin of the 



  
 

150

Paleoeurasian continent through the Unian of Myanmar. Jour. China Univ. 

Geos. 12(3): 201-206.  

Mouret, C. (1994). Geological history of northeastern Thailand since the 

Carboniferous: Relations with Indochina and Carboniferous to early Cenozoic 

evolution model. In: Angsuwathana, P., et al (Eds). Proceedings of the 

International Symposium on Straigraphic Correlation of Southeast Asia. 

Bangkok, Thailand, pp. 132-158. 

Müller, A. (2000). Cathodoluminescence and Characterisation of defect structures in 

quartz with application to the study of granitic rocks. Unpubl. Ph.D. Thesis, 

Univ. Göttingen, 229 p.  

Neuser, R. D., Bruhn, F., Götze, J., Habermann, D. and Ricgter, D. K. (1995). 

Kathodolumineszenz: Methodik und Auwendung. Zbl. Geol. Paläont. Teil 1, 

1/2: 287-306. 

Pettijohn, F.J., Potter, P.E. and Siever, R. (1987). Sand and sandstone. Springer 

Verlag. New York, 553 pp. 

Pitcher, W. S. (1982). Granite type and tectonic environment, in Hsu, KJ (Editor): 

Mountain. building processes, Academic Press, London, pp. 19-40 

Pittman, E.D. (1970). Plagioclase as an indicator for provenance in sedimentary rocks. 

Journal of Sedimentary Petrology: 40, 591-598. 

Pisutha-Arnond, V., Kusakabe., M., Khantaprab, C. and Vedchakanchana, S. (1997). 

Sulfur and oxcygen study of the Phichit-Nakhon Sawan gypsum/anhydrite 

deposit: An implication on the age of ist formation. In: Dheeradilok, P., (eds.). 

Proceedings of the International Conference on Stratigraphy and 



  
 

151

Tectonic Evolution of Southeast Asia and the South Pacific. DMR 

Bangkok, Thailand. pp. 188-199. 

Piyasin, S. (1975). Geology of Changwat Uttaradit, Sheet NE47-11. Report of 

Investigation no. 15, Department of Mineral Resources, Bangkok. 68 p. 

Piyasin, S. (1991). Tectonic events and radiometric dating of the basement rocks of 

Phitsanulok Basin. Journal of Thai Geosciences. 1: 41-48. 

Polachan, S., Pradidtan, S., Tongtaow, C., Janmaha, S., Intarawijit, K. and 

Sangsuwan, C. (1991). Development of Cenozoic basins in Thailand. Journal 

of Marine and Petroleum Geology. 8:85-97. 

Potter, P.E. (1978). Petrology and chemistry of modern big river sands. Journal of 

Geology. 86: 423-449. 

Putthapiban, P. (2002). Geology and Geochronology of the Igneous Rocks of 

Thailand. In: Mantajit, N., (eds). Proceeding of the Symposium on Geology 

of Thailand 2002, DMR Bangkok, Thailand, pp.261-283. 

Owen, M. R. (1991). Application of Cathodoluminescence to Sandstone Provenance. 

In Barker, C.E., and Kopp, O.C. (eds.). SEPM Short Course 25 (pp.67-75). 

Qinglai, F. and Helmcke, D. (2001). Late Paleozoic compressional deformation in the 

Simao region Southern Yunnan, P.R. of China. Newsl. Stratigr. 39(1): 21-31. 

Qinglai, F., Helmcke, D., Chonglakmani, C., Ingavat-Helmcke, R. and Liu, B. (2004). 

Early Carboniferous radiolarians from north-west Thailand: 

palaeogeographical implications. Paleontology. 47(2): 377-393. 

Raksaskulwong, L. and Wongwanich, T. (1993). Stratigraphy of the Kaeng 

Krachan Group, penisular and western Thailand. Geological Survey 

Division, Department of Mineral Resources, Thailand. 66 p. (in Thai).  



  
 

152

Remus, D., Webster, M. and Keawkan, K. (1993). Rift architecture and 

sedimentology of the Phetchabun Intermontain Basin, central Thailand. 

Journal of Southeast Asian Earth Sciences. 8 (1-4): 421-432. 

Richter, D. K., Götte, Th., Götze, J. and Neuser, R. D. (2003). Progress in application 

of Cathodoluminescence (CL) in sedimentary petrography. Mineralogy and 

Petrography 79: 127-166. 

Ridd, M.F. (1980). Possible Paleozoic drift of SE Asia and Triassic collision with 

China. Geol.Soc.London J. 137:635-640. 

Rollinson, H.R. (1993). Using geochemical data: evaluation, presentation, 

interpretation. Longman, Essex, 352 pp. 

Roser, B.P. and Korsch, R.J. (1986). Determination of tectonic setting of sandstone-

mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of 

Geology. 94: 635-690.  

Roser, B.P. and Korsch, R.J. (1988). Provenance signature of sandstone-mudstone 

suites determined using discriminate function analysis of major element data. 

Chemistry Geology. 67: 119-139.  

Sattayarak, N., Srilulwong, S. and Pum-Im, S. (1989). Petroleum Potential of the 

Triassic pre-Khorat Intermontane Basin in Northeastern Thailand. In: 

Thanasuthipitak, T., Ounchanum, P. (eds.). Proceedings of the International 

Symposium on Intermontane Basins: Geology and Resources (pp. 43-57). 

Chieng Mai University. 

Sengör, C.A.M. (1979). Mid-Mesozoic closure of Permo-Triassic Tethys and its 

implication. Nature, 279:590-593. 



  
 

153

Sengör, C.A.M. (1985). Die Alpiden und die Kimmeriden: Die verdoppelte 

Geschichte der Tethys. Geol. Rdsch. 74(2): 181-213. 

Seyedolali, A., Krinsley, D. H., Boggs, S., Ohara, P. F., Dypvik, H. and Goles, G. G. 

(1997). Provenance interpretation of quartz by scanning electron microscope-

cathodoluminescence fabric analysis. Geology 25: 787-790. 

Shi, G.R. and Waterhouse, J.B. (1991). Early Permainbraciopods from Perak, west 

Malaysia. Journal of Southeast Asian Earth Sciences. 6: 25-39. 

Singharajwarapan, S. and Berry, R. (1993). Structural analysis of the accretionary 

complex in Sirikit Dam area, Uttaradit, Northern Thailand. Journal of 

Southeastern Asian Earth Sciences, 8: 233-245. 

Singharajwarapan, S. and Berry, R. (2000). Tectonic implications of the Nan Suture 

Zone and its relationship to the Sukhothai Fold Belt, Northern Thailand. 

Journal of Asian Earth Sciences. 18: 663-673. 

Spiller, F.C.P. (2002). Radiolarian biostratigraphy of Peninsular Malaysia and 

implications for regional palaeotectonics and palaeogeography. 

Palaeontolographica Abteilung a-Palaozoologie-Stratigraphie. 266 (1-3): 

1-8. 

Tassanasorn, A.O. (1990). Coalification study in Permian rocks of the Petchabun fold 

and thrust belt, Thailand. Ph.D. Thesis. University of Göttingen, F.R.Germany 

(unpublished).  

Taylor, S.R. and Mclennan, S.M. (1985). The continental crust:Its composition and 

evolution, Oxford and Blackwell, 312 pp. 



  
 

154

Thanasuthipitak, T. (1978). Geology of the Uttaradit area and its implications on the 

tectonic history of Thailand. In: Nutalaya, P. (ed.). Proc. GEOSEA III (pp. 

187-197). Bangkok, Thailand. 

Thanomsap, S. (1992). Structural development on the Khorat Plateau and ist western 

adjacent area. In: Charusiri, P., et al (eds.). Proceedings of the Technical 

Conferences on Development Geology for Thailand into the Year 2000. 

Chulalongkorn University, Thailand. pp. 29-38. 

Wielchowsky, C.C. and Young, J.D. (1985). Regional facies variations in Permian 

rocks of the Phetchabun fold and thrust belt, Thailand. Conference on the 

Geology and Mineral Resource Development of NE Thailand, Khon Kaen 

University, pp. 41-55. 

Winkel, R., Ingavat, R. and Helmcke, D. (1983). Facies and Stratigraphy of the 

Lower-Lower Middle Permian strata of the Phetchabun Fold-Belt in Central 

Thailand. Workshop on stratigraphic correlation of Thailand and Malasia. 

Haad Yai, 8-10 September. Thailand, pp. 293-306. 

Wongwanich, T. and Burrett, C.F. (1983). The Lower Paleozoc of Thailand. Journal 

of the Geological Society of Thailand. 6:21-29. 

Wongwanich, T., Burrett, C.F., Tansathein, W. and Chaodumrong, P. (1990). Lower 

to Mid Paleozoic stratigraphy of mainland Satun province, Southern Thailand. 

Journal of Southeastern Asian Earth Sciences, 4: 1-9. 

Wongwanich, T., Wyatt, D., Stait, B. and Burrett, C.F. (1983). The Ordovician system 

in southern Thailand and northern Malaysia. In: Nutalaya, P. (ed.). 



  
 

155

Proceeding of the Workshop on Stratigraphic correlation of Thailand and 

Malaysia (pp. 77-95). Haad Yai, Thailand.  

Workman, D.R. (1975). Tectonic evolution of Indochina: Jour. Geol. Soc. Thailand, 

1: 3-19. 

Ueno, K., Igo, H. and Sashida, K. (1993). Lower Permian fusulinaceans from Ban 

Phia, Chiang Wat Loei, Northeast Thailand. Transactions and Proceedings 

of the Paleontological Society of Japan. N.S. 169: 15-43.  

Utha-Aroon, C. and Surinkum, A. (1995).  Gypsum Exploration in Wang Sapung, 

Loei.  In: Wannakao, L., (ed.). Proceedings of the International Conference 

on Geology, Geotechnology and Mineral Resources of Indochina (pp. 255-

266). Khon Kaen, Thailand.  

Yanagida, J. (1966). Early Permian braciopods from north central Thailand. Geology 

and Palaeontology of Southeast Asia. 3: 46-97 pl. 1-23. 

Yanagida, J. (1976). Paleobiogeographical consideration on the Late Carboniferous 

and Early Permian braciopods of central north Thailand. Geology and 

Palaeontology of Southeast Asia. 17: 173-189. 

Young, G.M. and Nesbitt, H.E. (1999). Paleoclimatology and provenance of the 

glaciogenic Gowganda Foramtion (Paleoproterozoic), Ontario, Canada: a 

chemostratigraphic approach. Geological Society of America. 111: 264-274 

Zinkernagel, U. (1978). Cathodoluminescence of quartz and its application to 

sandstone petrology. Contrib. to Sediment. 8, Stuttgart E. Schweizerb. 

Verlag, 69 p. 



 

 

 

 

 

 

 

 

 

 

APPENDIX A 

GEOCHEMICAL DATA
 

 

 

 

 

 

 

 

 

 

 

 

 



  
 

157

Table A-1.  Concentration of trace elements (in ppm) for pelagic sequence, Nam Duk 

Formation. 
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Table A-2.  Concentration of major elements (in wt%) and trace elements (in ppm) for 

flysch sequence, Nam Duk Formation. 
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Table A-3.  Concentration of major elements (in wt%) and trace elements (in ppm) for 

molasse sequence, Nam Duk Formation. 
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Table A-4.  Concentration of major elements (in wt%) and trace elements (in ppm) for  

Late Paleozoic siliciclastic sediments from Loei and Saraburi area. 
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Glossary of Thai Geographic Terms 
 

 Changwat = Province, city  

Amphoe = Sub-province, town, district 

 Ban  = Village, small community 

 Doi  = Mount, mountain, a proiment peak of a mountain 

 Huai  = Gully, creek 

 Khao  = Hill, isolated mountain 

 Khlong = Stream, canal 

 Mae  = River 

 Mae Nam = Large River 

 Phu  = Hill or mountain (especially northeastern Thailand) 

 Phu Khao = A mountain range 

 Wat  = Temple 
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