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In the thesis the energy shift, decay width and wave function of the kaonic

hydrogen atom are directly evaluated with various versions of realistic interaction

potentials in addition to the Coulomb interaction. It is found that the ground-

state wave function of the kaonic hydrogen atoms with realistic strong interactions

is considerably different from the hydrogen-like ones at small distances, and also

has a node in the region from 1 to 2 fm, because there exists one deep bound state,

the Λ(1405) near threshold.

It has been a challenge to accurately evaluate the energy shift and especially

the wave function of hadronic atoms. One may think that the dynamical equations

of the kaonic hydrogen can be solved by simply expanding the system in any

complete set of orthonormal functions. The complete set of harmonic oscillator

wave functions is widely applied to bound state problems since they have analytical

forms both in coordinate and momentum spaces. Bound state problems with only

the strong interaction or only the Coulomb force can be well solved in the regime

of harmonic oscillator wave functions. However, the harmonic oscillator wave

function approach fails to describe hadronic atoms which are dominated by the

long-ranged Coulomb force and distorted by the short-ranged strong interaction.

The reason is that two very different oscillator lengths are involved to account for

the short-ranged strong interaction and the long-ranged Coulomb force.

The protonium, pD atom and pionium have been successfully investigated

in a numerical approach based on Sturmian functions. The numerical method
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is much more powerful, accurate and much easier to use than all other methods

applied to the hadronic atoms in history. It can be applied to solve the exotic

atom problem for local and non-local potentials, accounting for both the strong

short range nuclear interaction and the long range Coulomb force and provides

directly the wave function and binding energy of those exotic atoms.
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CHAPTER I

INTRODUCTION

The investigation of exotic atoms opens up new windows in nuclear

and particle physics for studying the strong interaction, quantum chromodynam-

ics (QCD), at zero-energy with unprecedented sensitivity. An exotic atom is the

analogue of normal atoms in which one or more of the electrons are replaced by

other negative particles, such as muon, pion or kaon, or the positively charged

nucleus is replaced by other positively charged elementary particles, or both.

On the other hand, we can say that an exotic atom is a Coulomb bound state

which do not exist in the nature but produced in laboratory. Among them are,

for example, positronium (electron-positron bound states), protonium (proton-

antiproton atomic states) (Cohen and Padial, 1990), pionium (pion-pion atomic

states) (Gall et al., 1999), (Gasser et al., 2001), (Colangelo et al., 2001), (Colan-

gelo et al., 2000), muonic atoms (muon-nucleus bound state) (Hughes, 1966), (Wu

and Wilets, 1969), pionic atoms (pion-nucleus atomic state) (Backenstoss, 1970),

and kaonic atoms (kaon-nucleus atomic state) (Iwasaki et al., 1997), (Ito et al.,

1998).

Exotic atoms was predicted in the 1940s (Tomonaga and Araki,

1940), (Conversi et al., 1945), (Conversi et al., 1947a). The existence of exotic

atoms was first established by the observation of Auger electrons in photographic

emulsion (Fermi and Teller, 1947). In the early 1950s the characteristic X-rays

from pionic and muonic atoms were identified, for the first time. At the present

time, X-radiation from exotic atoms with muons (Fry, 1951), pions (Fitch and
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Rainwater, 1953), (Rasche and Woolcock, 1982), (Gotta, 2004) kaons (Burleson

et al., 1965) antiprotons (Bamberger et al., 1970) and sigma hyperons (Backen-

stoss, 1970) has been established.

At the first time, strong-interaction was a main reason for studying exotic

atoms. Because a binding energy of light system of exotic atoms are in ten keV

range, it is far below from the hadronic scale of about 1 GeV. Hence, investigation

of exotic atoms provide the unique possibility to perform experiments equivalent to

scattering at relative energy. One of the simplest exotic atoms is kaonic hydrogen

atoms (Iwasaki et al., 1997), (Ito et al., 1998). Kaonic hydrogen atoms is a bound

state of negatively charged kaon K− and the proton combined mainly by Coulomb

interaction and effected also by the short range strong interaction. This strong

interaction is the reason for a shift in energy of the lowest-lying level from the

purely electromagnetic value and the finite lifetime of the state-corresponding to

an increase in the observed level width. This results in the atom being unstable,

with a very small lifetime.

The kaonic hydrogen may be formed with a much shorter time than the

lifetime of the charged kaons which is 1.24 × 10−8 seconds with the main decay

mode (Zmeskal, 2008):

K− → µ− + νµ (1.1)

K− → π− + π0 (1.2)

K− → π− + π− + π+. (1.3)

The involved time scales for the formation of the kaonic hydrogen are; first for

slowing a kaon down and capturing it into an atomic orbit about 10−12 to 10−19 s,

then for Coulomb de-excitation and Auger processes about 10−12 to 10−15 s and

finally, for radiative transitions about 10−15 to 10−17 s. Thus the charged kaon in

the kaonic hydrogen atom can be considered a practically stable particle. Despite



3

its short lifetime, kaonic hydrogen can be considered as a quasi-stable bound state,

because the charged kaon travels many times around the proton before decaying,

as the ratio 1
2
µcα

2 / Γ1 ∼ 103 indicates, where

µc =
mpmK

(mp + mK)
= 323.9 MeV/c2

is the reduced mass of the kaon and proton system which mp and mK denote

for the masses of the proton and the charged kaon, respectively, and α ' 1/137

denotes for the fine-structure constant.

As we have briefly mentioned, in comparison with ordinary hydrogen atoms,

the ground state of kaonic hydrogen atoms is unstable. The typical size of kaonic

hydrogen is characterized by its bohr radius

rB = 1/αµc ' 84 fm (1.4)

Moreover, the typical size of kaonic hydrogen atom is about 630 times smaller than

a normal hydrogen atom and the binding energy, proportional with the reduced

mass µc, for the ground state of kaonic hydrogen is about

E1s =
µcα

2

2
' 8.61 keV (1.5)

Because both bound states of kaonic hydrogen and normal hydrogen atom

are predominantly formed by the Coulomb force, the properties of hadronic atoms

are similar to those of the hydrogen atoms in many aspects. The distance rB ' 84

fm is much smaller than the hydrogen radius, but still much larger than the range

of strong interactions, which is typically of the order of a few fm. This is the reason

that strong interactions do not change the structure of the bound-state spectrum

in a profound way. At leading order in an expansion in α, the energy of S-wave

state of kaonic hydrogen is still given by standard quantum-mechanical formula

En = mp + mK − µcα
2

2n2
, n = 1, 2, .... (1.6)
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Moreover, Eq. (1.6) describes the bound-state spectrum only approximately, at

leading order in an expansion in α. The leading correction to Eq. (1.6), which

emerges at order α3, is due to strong interaction only, this means there is no in-

terference between Coulomb and strong interactions at this order. Consequently,

by measuring very accurately of the difference between the true energy levels of

kaonic hydrogen and the pure Coulomb value in Eq. (1.6), one can extract infor-

mation about the strong interactions between the kaon and proton. Because the

size of the atom is much larger than the characteristic radius of strong interac-

tions, the bound-state observables can feel only the low-momentum of the strong

pion-nucleon S-matrix. Hence, in other words, the energy shift can be expressed in

terms of the threshold parameters of kaon-nucleon scattering amplitude, for exam-

ple, the scattering lengths, effective ranges, etc. In other words, the measurement

of the observables of the kaonic hydrogen does not probe the inner region of the

kaon-nucleon interaction.

The insensitivity of the kaonic hydrogen observables to the short-range

details of the kaon-nucleon interaction is very fortunate, because it provides us

with the possibility of directly extracting the values of the kaon-nucleon scattering

lengths from atomic experiments. A different method for determining the same

quantities is to measure the scattering cross sections at different energies, and to

extrapolate the result to threshold. The former method, however, is free from the

difficulties which are related to this extrapolation procedure. This property is even

more important in other hadronic systems, where the scattering amplitude near

threshold is hardly accessible by other experimental technique. Deser, Goldberger,

Baumann, and Thirring (Deser et al., 1954) were the first group who derived the

model-independent relation between the complex energy shift of the ground state

in kaonic hydrogen and the strong kaon-nucleon scattering amplitude at leading
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order in α. The result is

∆E1 − i

2
Γ1 = −2π

µc

|Ψ̃10(0)|2A(K−p → K−p) + O(α4), (1.7)

where |Ψ̃10(0)|2 = α3µ3
c/π denote for the square of the wave function of the atom

at the origin and is, therefore, a measure of the probability that the charge kaon

and the proton in the atom come very close to each other. Furthermore, A(K−p →
K−p) is the K−p elastic scattering amplitude at threshold, which describes strong

interactions between these particles after they come close. The kaonic hydrogen

were first seen through their X-ray spectrum, at the KEK in Tsukuba, Japan

(Iwasaki et al., 1997), (Ito et al., 1998) where the following results were found :

∆E1s = −323± 63(statistical)± 13(systematic) eV (1.8)

Γ1s = 407± 208(statistical)± 100(systematic) eV (1.9)

More detailed studies have been performed at DAFNE (Beer et al., 2005), kaonic

hydrogen has been created in vary low energy collisions of kaons with protons.

In the experimental called DAFNE Exotic Atoms Research (DEAR), they mea-

sures the X-ray transitions occurring in the cascade processes of kaonic atoms. A

kaonic atoms is formed when a negatively charged kaon, coming from the ϕ -decay

which produced at DAFNE, enters a target and loses it kinetic energy through

the ionization and excitation of the atoms and molecules of the medium, and is

eventually captured, replacing the electron, in an excited orbit. Via different cas-

cade processes (Auger effect, Coulomb de-excitation, scattering) the kaonic atom

de-excites to lower states.When a low-n state with small angular momentum is

reached, the strong interaction with the nucleus come into play. The DEAR col-

laboration has performed a measurement of the energy-level shift and decay width

of the K̄N ground state with a considerably better accuracy than the earlier KpK
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experiment at KEK (Iwasaki et al., 1997). the present experimental values of

these quantities are

∆E1s = −194± 40(statistical)± 6(systematic) eV (1.10)

Γ1s = 249± 111(statistical)± 30(systematic) eV (1.11)

As can be seen from the above result, the uncertainty is still ten of eV in the

energy shift and more than 100 eV in the width. Now DEAR is being followed by

the SIDDHARTA (SIlicon Drift Detector for Hadronic Atom Research by Timing

Application) experiment that features new silicon drift detectors. The plans of

the SIDDHARTA collaboration include the measurement of both, the energy shift

and decay width of K̄H, with a precision of several eV, i.e. at the few percent

level.

In the thesis we directly evaluated the energy shift, decay width and the

wave function of the konic hydrogen atom system, with various versions of realis-

tic interaction potentials, in the framework of the Schrödinger equation involving

in addition the Coulomb interaction. In our work we study the konic hydrogen

atom problem employing a properly adapted numerical method based on Stur-

mian functions (Yan et al., 1997). The method accounts for both the strong short

range nuclear potential (local and non-local) and the long range Coulomb force.

The protonium, pD atom and pionium problems have been successfully investi-

gated (Suebka and Yan, 2004), (Yan et al., 2007) in the numerical approach. The

numerical method is much more powerful, accurate and much easier to use than

all other methods applied to the exotic atom (hadronic atoms) problem in history.

The thesis is organized as follows. In Chapter II we construct the dynamical

equations of kaonic hydrogen atoms system. In Chapter III we describe our numer-

ical procedure based on Sturmian functions. Finally, Chapter IV contains results
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for the energy shift, decay width and the wave function from various versions of

interaction potentials, discussions and conclusions.



CHAPTER II

DYNAMICAL EQUATIONS

This chapter is devoted to construct the dynamical equations of kaonic

hydrogen atoms. Kaonic hydrogen atom is mainly the Coulomb bound state of a

K− and a proton (p) but is affected by the strong interaction at small distances.

Basically, the strong interaction couples the K−p state to the K̄0n, πΣ, πΛ, ηΣ

and ηΛ channels, but the decaying of the K−p are dominated by the K̄0n, πΣ and

πΛ channels. In our study, we neglect the ηΣ and ηΛ channels since the couplings

are believed weak.

2.1 Dynamical equations of kaonic hydrogen atoms

A correct treatment of kaonic hydrogen atomic states must include the

coupling of the negatively charge kaon-proton (K−p), neutral antikaon-neutron

(K̄0n), neutral pion-lambda (π0Λ), neutral pion-sigma (π0Σ), negatively charge

pion-positively charge sigma (π−Σ+) and positively charge pion-negatively charge

sigma (π+Σ−) configurations. We define the Hilbert spaces of K−p, K̄0n, π0Λ,

π0Σ, π−Σ+ and π+Σ− as P1, P2, P3, P4, P5 and P6 spaces, respectively. The

Hilbert space of other channels is defined as Q space. The corresponding projection

operators P1, P2, P3, P4, P5, P6 and Q satisfy the completeness relation:

P1 + P2 + P3 + P4 + P5 + P6 + Q = 1 (2.1)

P 2
1 = P1, P

2
2 = P2, P

2
3 = P3, P

2
4 = P4, P

2
5 = P5, P

2
6 = P6, Q

2 = Q (2.2)



9

as well as orthogonality

P1P2 = P1P3 = P1P4 = ... = P6P5 = 0 (2.3)

P1Q = QP1 = 0 (2.4)

P2Q = QP2 = 0 (2.5)

P3Q = QP3 = 0 (2.6)

P4Q = QP4 = 0 (2.7)

P5Q = QP5 = 0 (2.8)

P6Q = QP6 = 0. (2.9)

The Hamilton operator of the full coupled-channel problem is given by H with

the corresponding wave function |Ψ〉 defined in the complete Hilbert space. To

construct the dynamical equations of kaonic hydrogen atoms, we start from the

Schrödinger equation

(E −H)|Ψ〉 = 0. (2.10)

where E is the energy eigenvalue.

First, we consider the K−p channel, then Eq. (2.10) becomes

EP1|Ψ〉 − P1H1|Ψ〉 = 0

EP1|Ψ〉 − P1H(P1 + P2 + P3 + P4 + P5 + P6 + Q)|Ψ〉 = 0

EP1|Ψ〉 − P1HP1|Ψ〉 − P1HP2|Ψ〉 − P1HP3|Ψ〉 − P1HP4|Ψ〉

− P1HP5|Ψ〉 − P1HP6|Ψ〉 − P1HQ|Ψ〉

= 0.

(2.11)

Next, by using identities from Eq. (2.2), we can write

EP1|Ψ〉 − P1HP1P1|Ψ〉 − P1HP2P2|Ψ〉 − P1HP3P3|Ψ〉 − P1HP4P4|Ψ〉

− P1HP5P5|Ψ〉 − P1HP6P6|Ψ〉 − P1HQQ|Ψ〉

= 0.

(2.12)
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where G is the Greens function for all possible intermediate states, defined as:

G =
1

E −QHQ
. (2.13)

Hence,from Eq. (2.12), the dynamical equation of the K−p channel can be written

into

(E − P1HP1)P1|Ψ〉 = (P1HP2)P2|Ψ〉+ (P1HP3)P3|Ψ〉+ (P1HP4)P4|Ψ〉

+ (P1HP5)P5|Ψ〉+ (P1HP6)P6|Ψ〉+ (P1HQ)Q|Ψ〉
(2.14)

with P1|Ψ〉 = ΨK−p, P2|Ψ〉 = ΨK̄0n, P3|Ψ〉 = Ψπ0Λ, P4|Ψ〉 = Ψπ0Σ, P5|Ψ〉 = Ψπ−Σ+

and P6|Ψ〉 = Ψπ+Σ− .

By using the same method, the dynamical equation of coupling channel of

another channels are

(E − P2HP2)P2|Ψ〉 = (P2HP1)P1|Ψ〉+ (P2HP3)P3|Ψ〉+ (P2HP4)P4|Ψ〉

+ (P2HP5)P5|Ψ〉+ (P2HP6)P6|Ψ〉+ (P2HQ)Q|Ψ〉,
(2.15)

for the K̄0n channel,

(E − P3HP3)P3|Ψ〉 = (P3HP1)P1|Ψ〉+ (P3HP2)P2|Ψ〉+ (P3HP4)P4|Ψ〉

+ (P3HP5)P5|Ψ〉+ (P3HP6)P6|Ψ〉+ (P3HQ)Q|Ψ〉,
(2.16)

for the π0Λ channel,

(E − P4HP4)P4|Ψ〉 = (P4HP1)P1|Ψ〉+ (P4HP2)P2|Ψ〉+ (P4HP3)P3|Ψ〉

+ (P4HP5)P5|Ψ〉+ (P4HP6)P6|Ψ〉+ (P4HQ)Q|Ψ〉,
(2.17)

for the π0Σ channel,

(E − P5HP5)P5|Ψ〉 = (P5HP1)P1|Ψ〉+ (P5HP2)P2|Ψ〉+ (P5HP3)P3|Ψ〉

+ (P5HP4)P4|Ψ〉+ (P5HP6)P6|Ψ〉+ (P5HQ)Q|Ψ〉,
(2.18)

for the π−Σ+ channel,

(E − P6HP6)P6|Ψ〉 = (P6HP1)P1|Ψ〉+ (P6HP2)P2|Ψ〉+ (P6HP3)P3|Ψ〉

+ (P6HP4)P4|Ψ〉+ (P6HP5)P5|Ψ〉+ (P6HQ)Q|Ψ〉,
(2.19)
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for the π+Σ− channel and

(E −QHQ)Q|Ψ〉 = (QHP1)P1|Ψ〉+ (QHP2)P2|Ψ〉+ (QHP3)P3|Ψ〉

+ (QHP4)P4|Ψ〉+ (QHP5)P5|Ψ〉+ (QHP6)P6|Ψ〉.
(2.20)

for all another channels.

Consider Eq. (2.20), we can write

Q|Ψ〉 =
1

E −QHQ
(QHP1)P1|Ψ〉+

1

E −QHQ
(QHP2)P2|Ψ〉

+
1

E −QHQ
(QHP3)P3|Ψ〉+

1

E −QHQ
QHP4)P4|Ψ〉

+
1

E −QHQ
(QHP5)P5|Ψ〉+

1

E −QHQ
(QHP6)P6|Ψ〉

(2.21)

by using Eq. (2.13), then we have

Q|Ψ〉 = G(QHP1)P1|Ψ〉+ G(QHP2)P2|Ψ〉

+ G(QHP3)P3|Ψ〉+ G(QHP4)P4|Ψ〉

+ G(QHP5)P5|Ψ〉+ G(QHP6)P6|Ψ〉

(2.22)

Next, inserting Eq. (2.22) into Eq. (2.14–2.19), then the full dynamical equation

of all possible coupling channels of kaonic hydrogen atoms become

(E − P1HP1)P1|Ψ〉 = (P1HP2)P2|Ψ〉+ (P1HP3)P3|Ψ〉+ (P1HP4)P4|Ψ〉

+ (P1HP5)P5|Ψ〉+ (P1HP6)P6|Ψ〉

+ (P1HQ)G(QHP1)P1|Ψ〉+ (P1HQ)G(QHP2)P2|Ψ〉

+ (P1HQ)G(QHP3)P3|Ψ〉+ (P1HQ)G(QHP4)P4|Ψ〉

+ (P1HQ)G(QHP5)P5|Ψ〉+ (P1HQ)G(QHP6)P6|Ψ〉

(2.23)
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for the K−p channel,

(E − P2HP2)P2|Ψ〉 = (P2HP1)P1|Ψ〉+ (P2HP3)P3|Ψ〉+ (P2HP4)P4|Ψ〉

+ (P2HP5)P5|Ψ〉+ (P2HP6)P6|Ψ〉

+ (P2HQ)G(QHP1)P1|Ψ〉+ (P2HQ)G(QHP2)P2|Ψ〉

+ (P2HQ)G(QHP3)P3|Ψ〉+ (P2HQ)G(QHP4)P4|Ψ〉

+ (P2HQ)G(QHP5)P5|Ψ〉+ (P2HQ)G(QHP6)P6|Ψ〉

(2.24)

for the K̄0n channel,

(E − P3HP3)P3|Ψ〉 = (P3HP1)P1|Ψ〉+ (P3HP2)P2|Ψ〉+ (P3HP4)P4|Ψ〉

+ (P3HP5)P5|Ψ〉+ (P3HP6)P6|Ψ〉

+ (P3HQ)G(QHP1)P1|Ψ〉+ (P3HQ)G(QHP2)P2|Ψ〉

+ (P3HQ)G(QHP3)P3|Ψ〉+ (P3HQ)G(QHP4)P4|Ψ〉

+ (P3HQ)G(QHP5)P5|Ψ〉+ (P3HQ)G(QHP6)P6|Ψ〉

(2.25)

for the π0Λ channel,

(E − P4HP4)P4|Ψ〉 = (P4HP1)P1|Ψ〉+ (P4HP2)P2|Ψ〉+ (P4HP3)P3|Ψ〉

+ (P4HP5)P5|Ψ〉+ (P4HP6)P6|Ψ〉

+ (P4HQ)G(QHP1)P1|Ψ〉+ (P4HQ)G(QHP2)P2|Ψ〉

+ (P4HQ)G(QHP3)P3|Ψ〉+ (P4HQ)G(QHP4)P4|Ψ〉

+ (P4HQ)G(QHP5)P5|Ψ〉+ (P4HQ)G(QHP6)P6|Ψ〉

(2.26)
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for the π0Σ channel,

(E − P5HP5)P5|Ψ〉 = (P5HP1)P1|Ψ〉+ (P5HP2)P2|Ψ〉+ (P5HP3)P3|Ψ〉

+ (P5HP4)P4|Ψ〉+ (P5HP6)P6|Ψ〉

+ (P5HQ)G(QHP1)P1|Ψ〉+ (P5HQ)G(QHP2)P2|Ψ〉

+ (P5HQ)G(QHP3)P3|Ψ〉+ (P5HQ)G(QHP4)P4|Ψ〉

+ (P5HQ)G(QHP5)P5|Ψ〉+ (P5HQ)G(QHP6)P6|Ψ〉

(2.27)

for the π−Σ+ channel and

(E − P6HP6)P6|Ψ〉 = (P6HP1)P1|Ψ〉+ (P6HP2)P2|Ψ〉+ (P6HP3)P3|Ψ〉

+ (P6HP4)P4|Ψ〉+ (P6HP5)P5|Ψ〉

+ (P6HQ)G(QHP1)P1|Ψ〉+ (P6HQ)G(QHP2)P2|Ψ〉

+ (P6HQ)G(QHP3)P3|Ψ〉+ (P6HQ)G(QHP4)P4|Ψ〉

+ (P6HQ)G(QHP5)P5|Ψ〉+ (P6HQ)G(QHP6)P6|Ψ〉

(2.28)

for the π+Σ− channel. (PiHQ)G(QHPj) in the equations above are optical poten-

tials, stemming from annihilations to other channels represented by Q. We express

the optical potentials for various channels explicitly as follows:

WK−p→K−p = (P1HQ)G(QHP1) (2.29)

WK̄0n→K̄0n = (P2HQ)G(QHP2) (2.30)

Wπ0Λ→π0Λ = (P3HQ)G(QHP3) (2.31)

Wπ0Σ→π−Σ = (P4HQ)G(QHP4) (2.32)

Wπ−Σ+→π−Σ+ = (P5HQ)G(QHP5) (2.33)

Wπ+Σ−→π+Σ− = (P6HQ)G(QHP6) (2.34)
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and

WK−p→K̄0n = (P1HQ)G(QHP2) = (P2HQ)G(QHP1) (2.35)

WK−p→π0Λ = (P1HQ)G(QHP3) = (P3HQ)G(QHP1) (2.36)

WK−p→π0Σ = (P1HQ)G(QHP4) = (P4HQ)G(QHP1) (2.37)

WK−p→π−Σ+ = (P1HQ)G(QHP5) = (P5HQ)G(QHP1) (2.38)

WK−p→π+Σ− = (P1HQ)G(QHP6) = (P6HQ)G(QHP1) (2.39)

also

WK̄0n→π0Λ = (P2HQ)G(QHP3) = (P3HQ)G(QHP2) (2.40)

WK̄0n→π0Σ = (P2HQ)G(QHP4) = (P4HQ)G(QHP2) (2.41)

WK̄0n→π−Σ+ = (P2HQ)G(QHP5) = (P5HQ)G(QHP2) (2.42)

WK̄0n→π+Σ− = (P2HQ)G(QHP6) = (P6HQ)G(QHP2) (2.43)

Wπ0Λ→π0Σ = (P3HQ)G(QHP4) = (P4HQ)G(QHP3) (2.44)

Wπ0Λ→π−Σ+ = (P3HQ)G(QHP5) = (P5HQ)G(QHP3) (2.45)

Wπ0Λ→π+Σ− = (P3HQ)G(QHP6) = (P6HQ)G(QHP3) (2.46)

Wπ0Σ→π−Σ+ = (P4HQ)G(QHP5) = (P5HQ)G(QHP4) (2.47)

Wπ0Σ→π+Σ− = (P4HQ)G(QHP6) = (P6HQ)G(QHP4) (2.48)

Wπ−Σ+→π+Σ− = (P5HQ)G(QHP6) = (P6HQ)G(QHP5). (2.49)

In case the optical potentials are negligible, the dynamical equation of kaonic

hydrogen atoms Eq. (2.23–2.28) reduce to

(E − P1HP1)P1|Ψ〉 = (P1HP2)P2|Ψ〉+ (P1HP3)P3|Ψ〉+ (P1HP4)P4|Ψ〉

+ (P1HP5)P5|Ψ〉+ (P1HP6)P6|Ψ〉
(2.50)
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for the K−p channel,

(E − P2HP2)P2|Ψ〉 = (P2HP1)P1|Ψ〉+ (P2HP3)P3|Ψ〉+ (P2HP4)P4|Ψ〉

+ (P2HP5)P5|Ψ〉+ (P2HP6)P6|Ψ〉
(2.51)

for the K̄0n channel,

(E − P3HP3)P3|Ψ〉 = (P3HP1)P1|Ψ〉+ (P3HP2)P2|Ψ〉+ (P3HP4)P4|Ψ〉

+ (P3HP5)P5|Ψ〉+ (P3HP6)P6|Ψ〉
(2.52)

for the π0Λ channel,

(E − P4HP4)P4|Ψ〉 = (P4HP1)P1|Ψ〉+ (P4HP2)P2|Ψ〉+ (P4HP3)P3|Ψ〉

+ (P4HP5)P5|Ψ〉+ (P4HP6)P6|Ψ〉
(2.53)

for the π0Σ channel,

(E − P5HP5)P5|Ψ〉 = (P5HP1)P1|Ψ〉+ (P5HP2)P2|Ψ〉+ (P5HP3)P3|Ψ〉

+ (P5HP4)P4|Ψ〉+ (P5HP6)P6|Ψ〉
(2.54)

for the π−Σ+ channel and

(E − P6HP6)P6|Ψ〉 = (P6HP1)P1|Ψ〉+ (P6HP2)P2|Ψ〉+ (P6HP3)P3|Ψ〉

+ (P6HP4)P4|Ψ〉+ (P6HP5)P5|Ψ〉
(2.55)

for the π+Σ− channel.

Finally, the dynamical equation of kaonic hydrogen atoms Eq. (2.50–2.55),

can be rewritten into a matrix form as :



P1HP1 P1HP2 P1HP3 P1HP4 P1HP5 P1HP6

P2HP1 P2HP2 P2HP3 P2HP4 P2HP5 P2HP6

P3HP1 P3HP2 P3HP3 P3HP4 P3HP5 P3HP6

P4HP1 P4HP2 P4HP3 P4HP4 P4HP5 P4HP6

P5HP1 P5HP2 P5HP3 P5HP4 P5HP5 P5HP6

P6HP1 P6HP2 P6HP3 P6HP4 P6HP5 P6HP6







P1|Ψ〉
P2|Ψ〉
P3|Ψ〉
P4|Ψ〉
P5|Ψ〉
P6|Ψ〉




= E




P1|Ψ〉
P2|Ψ〉
P3|Ψ〉
P4|Ψ〉
P5|Ψ〉
P6|Ψ〉




(2.56)
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Next, by using relations P1|Ψ〉 = ΨK−p, P2|Ψ〉 = ΨK̄0n, P3|Ψ〉 = Ψπ0Λ, P4|Ψ〉 =

Ψπ0Σ, P5|Ψ〉 = Ψπ−Σ+ and P6|Ψ〉 = Ψπ+Σ− . Then, Eq. (2.56) becomes




P1HP1 P1HP2 P1HP3 P1HP4 P1HP5 P1HP6

P2HP1 P2HP2 P2HP3 P2HP4 P2HP5 P2HP6

P3HP1 P3HP2 P3HP3 P3HP4 P3HP5 P3HP6

P4HP1 P4HP2 P4HP3 P4HP4 P4HP5 P4HP6

P5HP1 P5HP2 P5HP3 P5HP4 P5HP5 P5HP6

P6HP1 P6HP2 P6HP3 P6HP4 P6HP5 P6HP6







ΨK−p

ΨK̄0n

Ψπ0Λ

Ψπ0Σ

Ψπ−Σ+

Ψπ+Σ−




= E




ΨK−p

ΨK̄0n

Ψπ0Λ

Ψπ0Σ

Ψπ−Σ+

Ψπ+Σ−




(2.57)

where ΨK−p, ΨK̄0n, Ψπ0Λ, Ψπ0Σ, Ψπ−Σ+ and Ψπ+Σ− are wave function of the K−p,

K̄0n, π0Λ, π0Σ, π−Σ+ and π+Σ− channels, respectively.

The interaction terms in Eq. (2.57) are given as:

P1HP1 = Hp
0 + HK−

0 + Vc + VK−p→K−p (2.58)

P2HP2 = Hn
0 + HK̄0

0 + VK̄0n→K̄0n (2.59)

P3HP3 = Hπ0

0 + HΛ
0 + Vπ0Λ→π0Λ (2.60)

P4HP4 = Hπ0

0 + HΣ
0 + Vπ0Σ→π0Σ (2.61)

P5HP5 = Hπ−
0 + HΣ+

0 + Vc + Vπ−Σ+→π−Σ+ (2.62)

P6HP6 = Hπ+

0 + HΣ−
0 + Vc + Vπ+Σ−→π+Σ− (2.63)

where Vc is the Coulomb interaction.

And the charge-exchange (potential) interaction terms in Eq. (2.57) are

given as :

P1HP2 = P2HP1 = VK−p→K̄0n (2.64)

P1HP3 = P3HP1 = VK−p→π0Λ (2.65)

P1HP4 = P4HP1 = VK−p→π0Σ (2.66)
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P1HP5 = P5HP1 = VK−p→π−Σ+ (2.67)

P1HP6 = P6HP1 = VK−p→π+Σ− . (2.68)

Also,

P2HP3 = P3HP2 = VK̄0n→π0Λ (2.69)

P2HP4 = P4HP2 = VK̄0n→π0Σ (2.70)

P2HP5 = P5HP2 = VK̄0n→π−Σ+ (2.71)

P2HP6 = P6HP2 = VK̄0n→π+Σ− (2.72)

P3HP4 = P4HP3 = Vπ0Λ→π0Σ (2.73)

P3HP5 = P5HP3 = Vπ0Λ→π−Σ+ (2.74)

P3HP6 = P6HP3 = Vπ0Λ→π+Σ− (2.75)

P4HP5 = P5HP4 = Vπ0Σ→π−Σ+ (2.76)

P4HP6 = P6HP4 = Vπ0Σ→π+Σ− (2.77)

P5HP6 = P6HP5 = Vπ−Σ+→π+Σ− (2.78)

and Hp
0 =

√
m2

p + ~p2, Hn
0 =

√
m2

n + ~p2, HΛ
0 =

√
m2

Λ + ~p2, HK−
0 =

√
m2

K− + ~p2,

HK̄0

0 =
√

m2
K̄0 + ~p2, Hπ0

0 =
√

m2
π0 + ~p2, Hπ−

0 =
√

m2
π− + ~p2, Hπ+

0 =
√

m2
π+ + ~p2,

HΣ
0 =

√
m2

Σ + ~p2, HΣ−
0 =

√
m2

Σ− + ~p2, HΣ+

0 =
√

m2
Σ+ + ~p2 are the free energies

of the proton, neutron, lambda, negatively charge kaon, neutral antikaon, neutral

pion, negatively charge pion, sigma, positively charge pion, positively charge sigma

and negatively charge sigma , respectively. The masses of the proton, neutron,

lambda, negatively charge kaon, neutral antikaon, neutral pion, negatively charge

pion, positively charge pion, sigma, positively charge sigma and negatively charge

sigma are denoted as mp, mn, mΛ, mK− , mK̄0 , mπ0 , mπ− , mπ+ , mΣ, mΣ− and mΣ+

respectively.
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2.2 Strong interactions of kaonic hydrogen atoms

The strong interaction terms, Eq. (2.58–2.78), may be interpreted in

terms of interactions in isospin basis since the proton, neutron, neutral antikaon,

negatively charge kaon, neutral pion, negatively charge pion, positively charge

pion, lambda , sigma, negatively charge sigma and positively charge sigma are all

isospin eigenstates.

For the proton, isospin I = 1
2

and the third component I3 = +1
2
,

p =

∣∣∣∣
1

2
,
1

2

〉
. (2.79)

For the neutron, isospin I = 1
2

and the third component I3 = −1
2
,

n =

∣∣∣∣
1

2
,−1

2

〉
. (2.80)

For the three pions, negatively charge pion, neutral pion and positively charge

pion, could be assigned to an isospin triplet with isospin I = 1 and the third

component I3 = −1, 0 and +1, respectively,

π− = |1,−1〉 (2.81)

π0 = |1, 0〉 (2.82)

π+ = |1, 1〉 . (2.83)

For the neutral antikaon and negatively charge kaon, isospin I = 1
2

and the third

component I3 = +1
2

and −1
2
, respectively,

K̄0 =

∣∣∣∣
1

2
,
1

2

〉
(2.84)

K− =

∣∣∣∣
1

2
,−1

2

〉
. (2.85)

For the lambda, isospin I = 0 and the third component I3 = 0,

Λ0 = |0, 0〉 . (2.86)
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And for the three sigma baryons, negatively charge sigma, neutral sigma and

positively charge sigma , could be assigned to an isospin triplet with isospin I = 1

and the third component I3 = −1, 0 and +1, respectively,

Σ− = |1,−1〉 (2.87)

Σ0 = |1, 0〉 (2.88)

Σ+ = |1, 1〉 . (2.89)

Hence, from Eq. (2.79–2.89), the particles basis of each particle-particle scattering

process (or each decaying channel) can be written into the linear combination

(decompositions) of the isospin basis as :

∣∣K−p
〉

=

∣∣∣∣
1

2
,−1

2

〉 ∣∣∣∣
1

2
,
1

2

〉
=

1√
2
|1, 0〉 − 1√

2
|0, 0〉 (2.90)

∣∣K̄0n
〉

=

∣∣∣∣
1

2
,
1

2

〉 ∣∣∣∣
1

2
,−1

2

〉
=

1√
2
|1, 0〉+

1√
2
|0, 0〉 (2.91)

∣∣π0Σ0
〉

= |1, 0〉 |1, 0〉 =

√
2

3
|2, 0〉 − 1√

3
|0, 0〉 (2.92)

∣∣π+Σ−〉
= |1, 1〉 |1,−1〉 =

1√
3
|0, 0〉+

1√
2
|1, 0〉+

1√
6
|2, 0〉 (2.93)

∣∣π−Σ+
〉

= |1,−1〉 |1, 1〉 =
1√
3
|0, 0〉 − 1√

2
|1, 0〉+

1√
6
|2, 0〉 (2.94)

∣∣π0Λ0
〉

= |1, 0〉 |0, 0〉 = |1, 0〉 (2.95)

where the coefficients of each isospin basis are called the Clebsch-Gordan coeffi-

cients and the method to evaluate the Clebsch-Gordan coefficients will be shown

in an appendix A.

Finally, the strong interaction terms (the strong potentials) in Eq. (2.58–
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2.63) can be written in isospin basis as

VK−p→K−p =
〈
K−p

∣∣ V
∣∣K−p

〉

=
1√
2

(〈1, 0| − 〈0, 0|) V (|1, 0〉 − |0, 0〉) 1√
2

=
1

2
〈1, 0|V |1, 0〉+

1

2
〈0, 0|V |0, 0)〉

=
1

2
V I=1

K−p→K−p +
1

2
V I=0

K−p→K−p

(2.96)

VK̄0n→K̄0n =
〈
K̄0n

∣∣ V
∣∣K̄0n

〉

=
1√
2

(〈1, 0|+ 〈0, 0|) V (|1, 0〉+ |0, 0〉) 1√
2

=
1

2
〈1, 0|V |1, 0〉+

1

2
〈0, 0|V |0, 0)〉

=
1

2
V I=1

K̄0n→K̄0n +
1

2
V I=0

K̄0n→K̄0n

(2.97)

Vπ0Λ→π0Λ =
〈
π0Λ

∣∣V
∣∣π0Λ

〉

= 〈1, 0|V |1, 0〉

= V I=1
π0Λ→π0Λ

(2.98)

Vπ0Σ→π0Σ =
〈
π0Σ

∣∣V
∣∣π0Σ

〉

=

(√
2

3
〈2, 0| − 1√

3
〈0, 0|

)
V

(√
2

3
|2, 0〉 − 1√

3
|0, 0〉

)

=
2

3
〈2, 0|V |2, 0〉+

1

3
〈0, 0|V |0, 0〉

=
2

3
V I=2

π0Σ→π0Σ +
1

3
V I=0

π0Σ→π0Σ

(2.99)

Vπ−Σ+→π−Σ+ =
〈
π−Σ+

∣∣ V
∣∣π−Σ+

〉

=

(
1√
3
〈0, 0| − 1√

2
〈1, 0|+ 1√

6
〈2, 0|

)
V

(
1√
3
|0, 0〉 − 1√

2
|1, 0〉+

1√
6
|2, 0〉

)

=
1

6
〈2, 0|V |2, 0〉+

1

2
〈1, 0|V |1, 0〉+

1

3
〈0, 0|V |0, 0〉

=
1

6
V I=2

π−Σ+→π−Σ+ +
1

2
V I=1

π−Σ+→π−Σ+ +
1

3
V I=0

π−Σ+→π−Σ+

(2.100)



21

Vπ+Σ−→π+Σ− =
〈
π+Σ−∣∣ V

∣∣π+Σ−〉

=

(
1√
3
〈0, 0|+ 1√

2
〈1, 0|+ 1√

6
〈2, 0|

)
V

(
1√
3
|0, 0〉+

1√
2
|1, 0〉+

1√
6
|2, 0〉

)

=
1

6
〈2, 0|V |2, 0〉+

1

2
〈1, 0|V |1, 0〉+

1

3
〈0, 0|V |0, 0〉

=
1

6
V I=2

π+Σ−→π+Σ− +
1

2
V I=1

π+Σ−→π+Σ− +
1

3
V I=0

π+Σ−→π+Σ− .

(2.101)

Also, the charge-exchange interaction terms Eq. (2.64–2.78) can be written in

isospin basis as

VK−p→K̄0n =
〈
K−p

∣∣V
∣∣K̄0n

〉

=
1√
2

(〈1, 0| − 〈0, 0|) V (|1, 0〉+ |0, 0〉) 1√
2

=
1

2
〈1, 0|V |1, 0〉 − 1

2
〈0, 0|V |0, 0)〉

=
1

2
V I=1

K−p→K̄0n −
1

2
V I=0

K−p→K̄0n

(2.102)

VK−p→π0Λ =
〈
K−p

∣∣V
∣∣π0Λ

〉

=
1√
2

(〈1, 0| − 〈0, 0|) V |1, 0〉

=
1√
2
〈1, 0|V |1, 0〉

=
1√
2
V I=1

K−p→π0Λ

(2.103)

VK−p→π0Σ =
〈
K−p

∣∣V
∣∣π0Σ

〉

=
1√
2

(〈1, 0| − 〈0, 0|) V

(√
2

3
|2, 0〉 − 1√

3
|0, 0〉

)

=
1√
6
〈0, 0|V |0, 0〉

=
1√
6
V I=0

K−p→π0Σ

(2.104)
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VK−p→π−Σ+ =
〈
K−p

∣∣ V
∣∣π−Σ+

〉

=
1√
2

(〈1, 0| − 〈0, 0|) V

(
1√
3
|0, 0〉 − 1√

2
|1, 0〉+

1√
6
|2, 0〉

)

= −1

2
〈1, 0|V |1, 0〉 − 1√

6
〈0, 0|V |0, 0)〉

= −1

2
V I=1

K−p→π−Σ+ − 1√
6
V I=0

K−p→π−Σ+

(2.105)

VK−p→π+Σ− =
〈
K−p

∣∣ V
∣∣π+Σ−〉

=
1√
2

(〈1, 0| − 〈0, 0|) V

(
1√
3
|0, 0〉+

1√
2
|1, 0〉+

1√
6
|2, 0〉

)

=
1

2
〈1, 0|V |1, 0〉 − 1√

6
〈0, 0|V |0, 0)〉

=
1

2
V I=1

K−p→π+Σ− −
1√
6
V I=0

K−p→π+Σ−

(2.106)

VK̄0n→π0Λ =
〈
K̄0n

∣∣ V
∣∣π0Λ

〉

=
1√
2

(〈1, 0|+ 〈0, 0|) V |1, 0〉

=
1√
2
〈1, 0|V |1, 0〉

=
1√
2
V I=1

K̄0n→π0Λ

(2.107)

VK̄0n→π0Σ =
〈
K̄0n

∣∣ V
∣∣π0Σ

〉

=
1√
2

(〈1, 0|+ 〈0, 0|) V

(√
2

3
|2, 0〉 − 1√

3
|0, 0〉

)

=
1√
6
〈0, 0|V |0, 0〉

= − 1√
6
V I=0

K̄0n→π0Σ

(2.108)
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VK̄0n→π−Σ+ =
〈
K̄0n

∣∣V
∣∣π−Σ+

〉

=
1√
2

(〈1, 0|+ 〈0, 0|) V

(
1√
3
|0, 0〉 − 1√

2
|1, 0〉+

1√
6
|2, 0〉

)

= −1

2
〈1, 0|V |1, 0〉+

1√
6
〈0, 0|V |0, 0)〉

= −1

2
V I=1

K̄0n→π−Σ+ +
1√
6
V I=0

K̄0n→π−Σ+

(2.109)

VK̄0n→π+Σ− =
〈
K̄0n

∣∣ V
∣∣π+Σ−〉

=
1√
2

(〈1, 0|+ 〈0, 0|) V

(
1√
3
|0, 0〉+

1√
2
|1, 0〉+

1√
6
|2, 0〉

)

=
1

2
〈1, 0|V |1, 0〉+

1√
6
〈0, 0|V |0, 0)〉

=
1

2
V I=1

K̄0n→π+Σ− +
1√
6
V I=0

K̄0n→π+Σ−

(2.110)

Vπ0Λ→π0Σ =
〈
π0Λ

∣∣ V
∣∣π0Σ

〉

= 〈1, 0|V
(√

2

3
|2, 0〉 − 1√

3
|0, 0〉

)

= 0

(2.111)

Vπ0Λ→π−Σ+ =
〈
π0Λ

∣∣V
∣∣π−Σ+

〉

= 〈1, 0|V
(

1√
3
|0, 0〉 − 1√

2
|1, 0〉+

1√
6
|2, 0〉

)

= − 1√
2
〈1, 0|V |1, 0〉

= − 1√
2
V I=1

π0Λ→π−Σ+

(2.112)

Vπ0Λ→π+Σ− =
〈
π0Λ

∣∣ V
∣∣π+Σ−〉

= 〈1, 0|V
(

1√
3
|0, 0〉+

1√
2
|1, 0〉+

1√
6
|2, 0〉

)

=
1√
2
〈1, 0|V |1, 0〉

=
1√
2
V I=1

π0Λ→π+Σ−

(2.113)
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Vπ0Σ→π−Σ+ =
〈
π0Σ

∣∣V
∣∣π−Σ+

〉

=

(√
2

3
〈2, 0| − 1√

3
〈0, 0|

)
V

(
1√
3
|0, 0〉 − 1√

2
|1, 0〉+

1√
6
|2, 0〉

)

=
1

3
〈2, 0|V |2, 0〉 − 1

3
〈0, 0|V |0, 0〉

=
1

3
V I=2

π0Σ→π−Σ+ − 1

3
V I=0

π0Σ→π−Σ+

(2.114)

Vπ0Σ→π+Σ− =
〈
π0Σ

∣∣ V
∣∣π+Σ−〉

=

(√
2

3
〈2, 0| − 1√

3
〈0, 0|

)
V

(
1√
3
|0, 0〉+

1√
2
|1, 0〉+

1√
6
|2, 0〉

)

=
1

3
〈2, 0|V |2, 0〉 − 1

3
〈0, 0|V |0, 0〉

=
1

3
V I=2

π0Σ→π+Σ− −
1

3
V I=0

π0Σ→π+Σ−

(2.115)

Vπ−Σ+→π+Σ− =
〈
π−Σ+

∣∣ V
∣∣π+Σ−〉

=

(
1√
3
〈0, 0| − 1√

2
〈1, 0|+ 1√

6
〈2, 0|

)
V

(
1√
3
|0, 0〉+

1√
2
|1, 0〉+

1√
6
|2, 0〉

)

=
1

6
〈2, 0|V |2, 0〉 − 1

2
〈1, 0|V |1, 0〉+

1

3
〈0, 0|V |0, 0〉

=
1

6
V I=2

π−Σ+→π+Σ− −
1

2
V I=1

π−Σ+→π+Σ− +
1

3
V I=0

π−Σ+→π+Σ− .

(2.116)

Also, the optical potentials in Eq. (2.29–2.49) can be written in isospin basis as

WK−p→K−p =
1

2
W I=1

K−p→K−p +
1

2
W I=0

K−p→K−p
(2.117)

WK̄0n→K̄0n =
1

2
W I=1

K̄0n→K̄0n +
1

2
W I=0

K̄0n→K̄0n
(2.118)

Wπ0Λ→π0Λ = W I=1
π0Λ→π0Λ

(2.119)

Wπ0Σ→π0Σ =
2

3
W I=2

π0Σ→π0Σ +
1

3
W I=0

π0Σ→π0Σ
(2.120)
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Wπ−Σ+→π−Σ+ =
1

6
W I=2

π−Σ+→π−Σ+ +
1

2
W I=1

π−Σ+→π−Σ+ +
1

3
W I=0

π−Σ+→π−Σ+ (2.121)

Wπ+Σ−→π+Σ− =
1

6
W I=2

π+Σ−→π+Σ− +
1

2
W I=1

π+Σ−→π+Σ− +
1

3
W I=0

π+Σ−→π+Σ− (2.122)

WK−p→K̄0n =
1

2
W I=1

K−p→K̄0n −
1

2
W I=0

K−p→K̄0n (2.123)

WK−p→π0Λ =
1√
2
W I=1

K−p→π0Λ (2.124)

WK−p→π0Σ =
1√
6
W I=0

K−p→π0Σ (2.125)

WK−p→π−Σ+ = −1

2
W I=1

K−p→π−Σ+ − 1√
6
W I=0

K−p→π−Σ+ (2.126)

WK−p→π+Σ− =
1

2
W I=1

K−p→π+Σ− −
1√
6
W I=0

K−p→π+Σ− (2.127)

And,

WK̄0n→π0Λ =
1√
2
W I=1

K̄0n→π0Λ (2.128)

WK̄0n→π0Σ = − 1√
6
W I=0

K̄0n→π0Σ (2.129)

WK̄0n→π−Σ+ = −1

2
W I=1

K̄0n→π−Σ+ +
1√
6
W I=0

K̄0n→π−Σ+ (2.130)

WK̄0n→π+Σ− =
1

2
W I=1

K̄0n→π+Σ− +
1√
6
W I=0

K̄0n→π+Σ− (2.131)

Wπ0Λ→π0Σ = 0 (2.132)

Wπ0Λ→π−Σ+ = − 1√
2
W I=1

π0Λ→π−Σ+ (2.133)

Wπ0Λ→π+Σ− =
1√
2
W I=1

π0Λ→π+Σ− (2.134)

Wπ0Σ→π−Σ+ =
1

3
W I=2

π0Σ→π−Σ+ − 1

3
W I=0

π0Σ→π−Σ+ (2.135)

Wπ0Σ→π+Σ− =
1

3
W I=2

π0Σ→π+Σ− −
1

3
W I=0

π0Σ→π+Σ− (2.136)

Wπ−Σ+→π+Σ− =
1

6
W I=2

π−Σ+→π+Σ− −
1

2
W I=1

π−Σ+→π+Σ− +
1

3
W I=0

π−Σ+→π+Σ− . (2.137)

Now we have the dynamical equations of the kaonic hydrogen system, Eq. (2.57).

The dynamical equation will be solved in a numerical method base on the Stur-

mian function. Detail of our calculations and numerical method will be shown in

Chapter III.



CHAPTER III

NUMERICAL METHOD BASE ON

STURMIAN FUNCTION

This chapter we describe the numerical procedure to solve our dynamical

equation. First, we start from the theoretical background of Sturmian function.

Later we will explain how to use numerical method base on Sturmian function to

solve our dynamical equation. In this work we study the kaonic hydrogen atom

problem employing a properly adapted numerical method based on Sturmian func-

tions (Suebka and Yan, 2004), (Yan et al., 2007). The method accounts for both

the strong short range nuclear potential (local and non-local) and the long range

Coulomb force and provides directly the wave function of the the kaonic hydrogen

atom system with complex eigenvalues E = ER− iΓ
2
. The protonium and pionium

problems have been successfully investigated (Suebka and Yan, 2004), (Yan et al.,

2007) in the numerical approach. The numerical method is much more powerful,

accurate and much easier to use than all other methods applied to the exotic atom

problem in history.

3.1 Theoretical background of Sturmian function

In principle, one could solve Eq. (2.57) through expanding the wave func-

tions ΨK−p,ΨK̄0n,Ψπ0Λ,Ψπ0Σ,Ψπ−Σ+ and Ψπ+Σ− in any complete set. The complete

set of harmonic oscillator wave functions is widely applied to bound state problems

since they have analytical forms both in coordinate and momentum spaces. Bound
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state problems with only the strong interaction or only the Coulomb force can be

well solved in the regime of harmonic oscillator wave functions, by choosing the os-

cillator length being of order 1 fm or 100 fm, respectively. Detailed investigations,

however, have shown that the harmonic oscillator wave function approach fails to

describe exotic atoms which are dominated by the long-ranged Coulomb force and

influenced by the short-ranged strong interaction. The reason is that two very

different oscillator lengths are involved to describe the N̄N deep bound state and

the atomic state. The Sturmian function method was first used in atomic physics

to evaluate the binding energy and wave function of atoms. It was pointed out

that the method is more powerful than the approach using harmonic oscillator

and hydrogen wave functions. Subsequently, the method was applied to various

physical problems such as electromagnetic collisions, binding energies of nuclei and

bound and resonance states in special potentials. The Sturmian functions are very

similar to the hydrogen wave functions, and are therefore, also named Coulomb

- Sturmian functions. In coordinate state space the Sturmians Snl(r), which are

used in the present work, satisfy the second order differential equation

(
d2

dr2
− l(l + 1)

r2
+

2b(n + l + 1)

r
− b2

)
Snl(r) = 0. (3.1)

By solving Eq. (3.1), one finds

Snl(r) =

[
n!

(n + 2l + 1)!

] 1
2

(2br)l+1exp(−br)L2l+1
n (2br) (3.2)

where L2l+1
n (x) are associated Laguerre polynomials defined as

Lk
n(x) = (−1)k dk

dxk
[Ln+k(x)] (3.3)

that is

L2l+1
n (2br) =

n∑
m=0

(−1)m (n + 2l + 1)!

(n−m)!(2l + 1 + m)!m!
(2br)m. (3.4)
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The Sturmians are orthogonal and form a completes set with respect to the weight

function 1/r, which follows from the corresponding 1/r potential term in Eq. (3.1),

∫ ∞

0

r2dr
Snl(r)

r

1

r

Sn′l(r)

r
= δnn′ . (3.5)

Thus radial function Rl(r) can be expanded in the complete set of the Sturmian

functions Snl(r),

Rl(r) =
∑

n

anl
Snl(r)

r
. (3.6)

The Sturmian functions can be defined in momentum space as

Snlm(~p) ≡ Snl(p)Ylm (θp, φp)

=
1

(2π)3/2

∫
drdΩSnl(r)Ylm (θ, φ) e−i~p.~r.

(3.7)

One can derive the momentum from analytically

Snl(p) =

[
24l+3(n + l + 1)n!(l!)2

b(n + 2l + 1)!

]1/2

(p/b)l

[(p/b)2 + 1]l+1
C l+1

n

[
(p/b)2 − 1

(p/b)2 + 1

] (3.8)

where Cs
t (x) are the Gegenbauer polynomials. It is very convenient to have such

a complete set to study interactions in momentum space.

Because almost all bound-state hydrogenic wave functions are close to zero

energy, the innermost zeros of the functions are sensitive to the principle quantum

number. This accounts for the fact that the bound hydrogen functions do not

form a complete set ; the continuum is needed to analyze the region between the

original and the limiting first zero. Unlike hydrogen functions, the first node of

the Sturmian functions continues to move closer to the origin with increasing the

principle number n. This is the key point why a short-ranged nuclear force can

easily be taken into account for the N̄N atomic state problem by using complete

set of the Sturmian functions.
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The parameter b is the length scale entering the Sturmian functions in

Eq. (3.1) and Eq. (3.2), in the same way as the corresponding parameter enters

the harmonic oscillator functions. For N̄N deep bound states one should use 1/b

of order 1 fm while the atomic states without strong interactions require 1/b of

order 102 fm. However, for protonium accounting for both the strong interaction

and the Coulomb force, one must use a 1/b between the two values used for the

above cases. Using a complete basis of, for example, 200 Sturmian functions (100

for the L = J − 1 wave, and another 100 for the L = J + 1) with 1/b = 5 − 500

fm, one can precisely reproduce the analytical 1s and 2p wave functions of the

N̄N systems subject to only the Coulomb interaction. Using the same basis with

1/b = 0.1− 30 fm, the wave functions of N̄N deep bound states can be precisely

evaluated. The N̄N deep bound states can be evaluated in the complete set of

the harmonic oscillator wave functions, and also in the complete set of Sturmian

functions with a more suitable length parameter, for example, 1/b = 1 fm. From

the above investigation, a length parameter 1/b around 20 fm is suitable for the

protonium problem.

In principle, there is no limit to the accuracy in the evaluation of the N̄N

atomic states in the Sturmian functions approach. One is allowed to use larger

and larger complete basis of the Sturmian functions until the theoretical results

converge. And the N̄N atomic states with higher angular momenta can be easily

handled in the approach.

3.2 Sturmian function approach to kaonic atoms

Inserting Eq. (3.6) into Eq. (2.57) does not lead to a diagonal form

on the right hand side of Eq. (2.57) unlike the case of the harmonic oscillator

wave functions. The matrices on both sides of Eq. (2.57) must be simultaneously
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diagonalized. Note that the Sturmian functions have analytical form in momentum

space. One is allowed to deal with strong interactions in momentum space with

the complete set of the Sturmian as easily as with the set of the harmonic oscillator

wave functions. The matrix elements of the Coulomb interaction as well as the

kinetic term can be evaluated analytically according to Eq. (3.1) and Eq. (3.5).

To evaluate the matrix elements of the Coulomb interaction as well as the kinetic

term, we consider

∫ ∞

0

Sn′l(r)Snl(r)dr =

∫ ∞

0

Sn′l(r)dr

[
n!

(n + 2l + 1)!

] 1
2

(2br)l+1exp(−br)L2l+1
n (2br)

(3.9)

using identity

(n + 1)Lα
n+1(x) = −(α + n)Lα

n−1(x) + (2n + α + 1− x)Lα
n(x) (3.10)

then, we can write

(2br)L2l+1
n (2br) = (2n + 2l + 1 + 1)L2l+1

n (2br)

− (n + 2l + 1)L2l+1
n−1 (2br)− (n + 1)L2l+1

n+1 (2br)

or we have

L2l+1
n (2br) =

1

2br
[(2n + 2l + 1 + 1)L2l+1

n (2br)

− (n + 2l + 1)L2l+1
n−1 (2br)− (n + 1)L2l+1

n+1 (2br)]

(3.11)
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hence, by inserting Eq. (3.11) into Eq. (3.9) we have

∫ ∞

0

Sn′l(r)Snl(r)dr

=

∫ ∞

0

Sn′l(r)dr

[
n!

(n + 2l + 1)!

] 1
2

(2br)l+1exp(−br)
1

2br
[(2n + 2l + 1 + 1)L2l+1

n (2br)

− (n + 2l + 1)L2l+1
n−1 (2br)− (n + 1)L2l+1

n+1 (2br)]

=

∫ ∞

0

drSn′l(r)

(
2n + 2l + 2

2br

) [
n!

(n + 2l + 1)!

] 1
2

(2br)l+1exp(−br)L2l+1
n (2br)

−
∫ ∞

0

drSn′l(r)

(
n + 2l + 1

2br

)[
n!

(n + 2l + 1)!

] 1
2

(2br)l+1exp(−br)L2l+1
n−1 (2br)

−
∫ ∞

0

drSn′l(r)

(
n + 1

2br

)[
n!

(n + 2l + 1)!

] 1
2

(2br)l+1exp(−br)L2l+1
n+1 (2br)

(3.12)

the first term on the right hand side of Eq. (3.12) can be written as

∫ ∞

0

drSn′l(r)

(
2n + 2l + 2

2br

) [
n!

(n + 2l + 1)!

] 1
2

(2br)l+1exp(−br)L2l+1
n (2br)

=

(
n + l + 1

b

) ∫ ∞

0

drSn′l(r)

(
1

r

)[
n!

(n + 2l + 1)!

] 1
2

(2br)l+1exp(−br)L2l+1
n (2br)

=

(
n + l + 1

b

) ∫ ∞

0

drSn′l(r)

(
1

r

)
Snl(r)

=

(
n + l + 1

b

) ∫ ∞

0

r2dr
Sn′l(r)

r

(
1

r

)
Snl(r)

r

=
n + l + 1

b
δn′n

(3.13)



32

the second term on the right hand side of Eq. (3.12) can be written as

∫ ∞

0

drSn′l(r)

(
n + 2l + 2

2br

)[
n!

(n + 2l + 1)!

] 1
2

(2br)l+1exp(−br)L2l+1
n−1 (2br)

=

(
n + 2l + 1

2b

)[
n

(n + 2l + 1)

] 1
2
∫ ∞

0

drSn′l(r)

(
1

r

)[
(n− 1)!

((n− 1) + 2l + 1)!

] 1
2

· (2br)l+1exp(−br)L2l+1
n−1 (2br)

=

√
n(n + 2l + 1)

2b

∫ ∞

0

drSn′l(r)

(
1

r

)
S(n−1)l(r)

=

√
n(n + 2l + 1)

2b

∫ ∞

0

r2dr
Sn′l(r)

r

(
1

r

)
S(n−1)l(r)

r

=

√
n(n + 2l + 1)

2b
δn′(n−1)

(3.14)

and the third term on the right hand side of Eq. (3.12) can be written as

∫ ∞

0

drSn′l(r)

(
n + 1

2br

)[
n!

(n + 2l + 1)!

] 1
2

(2br)l+1exp(−br)L2l+1
n+1 (2br)

=

(
n + 1

2b

)[
((n + 1) + 2l + 1)

(n + 1)

] 1
2
∫ ∞

0

drSn′l(r)

(
1

r

)[
(n + 1)!

((n + 1) + 2l + 1)!

] 1
2

· (2br)l+1exp(−br)L2l+1
n+1 (2br)

=

√
(n + 1)((n + 1) + 2l + 1)

2b

∫ ∞

0

drSn′l(r)

(
1

r

)
S(n+1)l(r)

=

√
(n + 1)((n + 1) + 2l + 1)

2b

∫ ∞

0

r2dr
Sn′l(r)

r

(
1

r

)
S(n+1)l(r)

r

=

√
(n + 1)((n + 1) + 2l + 1)

2b
δn′(n+1)

(3.15)

inserting Eq. (3.13–3.15) into Eq. (3.12), then we have

∫ ∞

0

Sn′l(r)Snl(r)dr =
n + l + 1

b
δn′n −

√
n(n + 2l + 1)

2b
δn′(n−1)

−
√

(n + 1)((n + 1) + 2l + 1)

2b
δn′(n+1)

(3.16)
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or we can write Eq. (3.16) as

∫ ∞

0

Sn′l(r)Snl(r)dr =





n+l+1
b

, n′ = n

−
√

n(n+2l+1)

2b
, n′ = n− 1

−
√

(n+1)((n+1)+2l+1)

2b
, n′ = n + 1.

(3.17)

Next we will evaluate the matrix elements of the Coulomb interaction and the

kinetic term. First we consider the first element of the matrix in Eq. (2.57), the

term P1HP1. From Eq. (2.57), we have

P1HP1 = Hp
0 + HK−

0 + Vc + VK−p→K−p

= Hp
0 + HK−

0 − e2

r
+ VN(r)

(3.18)

where −e2/r is the Coulomb interaction, VN(r) is the strong interaction, Hp
0 =

√
m2

p + p2
1 and HK−

0 =
√

m2
K− + p2

2 with p1 and p2 being momentum of proton

and negatively charged kaon, respectively.

If we evaluate only K−p channel, the dynamical equation, Eq. (2.57), was

reduced into the from

(P1HP1)ΨK−p = EΨK−p. (3.19)

From Eq. (3.18) we consider

Hp
0 =

√
m2

p + p2
1

= mp

(
1 +

p2
1

m2
p

) 1
2

= mp

(
1 +

p2
1

2m2
p

+ ...

)

= mp +
p2

1

2mp

(3.20)
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and

HK−
0 =

√
m2

K− + p2
2

= mK−

(
1 +

p2
2

m2
K−

) 1
2

= mK−

(
1 +

p2
2

2m2
K−

+ ...

)

= mK− +
p2

2

2mK−

(3.21)

then

Hp
0 + HK−

0 = mp +
p2

1

2mp

+ mK− +
p2

2

2mK−

=

(
p2

1

2mp

+
p2

2

2mK−

)
+ mp + mK−

=
p2

2µ
+

P 2

2M
+ mp + mK− .

(3.22)

where µ = (mpmK−)/(mp+mK−) and M = mp+mK− are respectively the reduced

and total masses of the proton (p) and the negatively charge kaon (K−) system.

Inserting Eq. (3.22) into Eq. (3.18), we have

P1HP1 = Hp
0 + HK−

0 − e2

r
+ VN(r)

=
p2

2µ
+

P 2

2M
+ mp + mK− − e2

r
+ VN(r).

(3.23)

After the center-of-mass motion removed in Eq. (3.23), the dynamical equation,

Eq. (3.19), becomes

[
p2

2µ
− e2

r
+ VN(r)

]
ΨK−p(~r) = EbΨK−p(~r). (3.24)

with

Eb = E −mp −mK− (3.25)

being the binding energy.

If the VN(r) is a center potential, one may separate the variables to get the

dynamical equation for the radial part of the kaonic hydrogen wave function,

(
− ~

2

2µ

d2

dr2
+
~2

2µ

l(l + 1)

r2
− e2

r
+ VN(r)

)
Rl(r) = EbRl(r). (3.26)
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We expand the radial wave function Rl(r) in the complete set of Sturmian functions

Rl(r) =
∑

n

An
Snl(r)

r
(3.27)

and derive finally the coupled matrix equations as follows

(Pα
n′n + V αβ

n′n + ∆m1,α)Aβ
n = Eb Bα

n′nA
α
n

(3.28)

where ”1” labels for K−p channel and α for other channels, and the indices β and

n are summed over.

The matrix elements in the above equation are evaluated as below

Pn′n = 〈Sn′l|P |Snl〉

=

∫ ∞

0

Sn′l(r)

(
− d2

dr2
+

l(l + 1)

r2
− 2µe2

~2

1

r

)
Snl(r)dr

=

∫ ∞

0

Sn′l(r)

(
− d2

dr2
+

l(l + 1)

r2
− 2b(n + l + 1)

r
+ b2

)
Snl(r)dr

−
∫ ∞

0

Sn′l(r)

(
−2b(n + l + 1)

r
+ b2 +

2µe2

~2

1

r

)
Snl(r)dr

(3.29)

using identity from Eq. (3.1), the first term on the right hand side of above equation

is removed, then Eq. (3.29) becomes

Pn′n = −
∫ ∞

0

Sn′l(r)

(
−2b(n + l + 1)

r
+ b2 +

2µe2

~2

1

r

)
Snl(r)dr

=

∫ ∞

0

Sn′l(r)

(
2b(n + l + 1)

r
− b2 − 2µe2

~2

1

r

)
Snl(r)dr

= 2b(n + l + 1)

∫ ∞

0

Sn′l(r)

(
1

r

)
Snl(r)dr

− 2µe2

~2

∫ ∞

0

Sn′l(r)

(
1

r

)
Snl(r)dr

− b2

∫ ∞

0

Sn′l(r)Snl(r)dr

from Eq. (3.5) and Eq. (3.17) we can write

Pn′n = 2b(n + l + 1)δn′n − 2µe2

~2
δn′n − b2n + l + 1

b
δn′n

+ b2

√
n(n + 2l + 1)

2b
δn′(n−1) + b2

√
(n + 1)((n + 1) + 2l + 1)

2b
δn′(n+1),

(3.30)
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the quantity 2µe2/~2 can be written as

2µe2

~2
=

2µc2e2

~2c2
= 2µc2 e2

~2c2
= 2µc2α2

where α is the fine structure constant and it is a dimensionless quantity, the value

of α is

α ' 1/137 ' 7.297× 10−3.

Also

Vn′n = 〈Sn′l|V |Snl〉

=

∫ ∞

0

Sn′l(r)

(
2µ

~2
VN(r)

)
Snl(r)dr

=
2µ

~2

∫ ∞

0

Sn′l(r)VN(r)Snl(r)dr.

(3.31)

And

Bn′n = 〈Sn′l|B|Snl〉

=

∫ ∞

0

Sn′l(r)

(
2µ

~2

)
Snl(r)dr

=
2µ

~2

∫ ∞

0

Sn′l(r)Snl(r)dr

=
2µ

~2

n + l + 1

b
δn′n − 2µ

~2

√
n(n + 2l + 1)

2b
δn′(n−1)

− 2µ

~2

√
(n + 1)((n + 1) + 2l + 1)

2b
δn′(n+1).

(3.32)



CHAPTER IV

RESULTS, DISCUSSIONS AND

CONCLUSIONS

This chapter is devoted to report our numerical results of the kaonic

hydrogen atoms with realistic interactions and compare our theoretical results with

the experimental data. In the study both real and complex interaction potentials

are considered. Finally, the discussion and conclusions are also given.

4.1 Results from the real interaction potentials

In this thesis, we study kaonic hydrogen first with the interaction taken

from the work of Akaishi Y. and Yamazaki T. (Akaishi and Yamazaki, 2002). The

interactions are in the form :

V I
K̄N(r) = V I

Dexp[−(r/b)2], (4.1)

V I
K̄N,πΣ(r) = V I

C1
exp[−(r/b)2], (4.2)

V I
K̄N,πΛ(r) = V I

C2
exp[−(r/b)2], (4.3)

where

b = 0.66 (4.4)

in unit of fermi (fm) with

V I=0
D = −436 MeV, V I=0

C1
= −412 MeV, V I=0

C2
= none, V I=1

D = −62 MeV,

V I=1
C1

= −285 MeV and V I=1
C2

= none.



38

The two interactions V I
K̄N,πΣ

(r) and V I
K̄N,πΛ

(r), are taken to be vanishing

to simply reduce the number of parameter. This justified because they are almost

irrelevant in describing the K̄ bound states.

The interaction, Eq. (4.1–4.3), is constructed by fitting the free K̄N scat-

tering data (Martin, 1981), the KpK data of kaonic hydrogen by the KEK Col-

laboration (Iwasaki et al., 1997) and the binding energy, which is regarded as an

isospin I = 0 bound state of K̄N . Since the interaction gives one molecular state

Λ(1405), it must be much stronger than the strong pion-pion interaction.

Shown in Fig. 4.1 are both the K−p and K̄0n components of the kaonic hydrogen
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Figure 4.1 1s radial wave functions of kaonic hydrogen with the interaction of

(Akaishi and Yamazaki, 2002). The pure Coulomb kaonic hydrogen wave function

is plotted as a dotted curve.

with the interaction, Eq. (4.1–4.3), It is found that the K−p part of the kaonic

hydrogen wave function differs considerably from the hydrogen-like one at small

distances, and also has a node at r ≈ 1.5 fm because there exists one deep bound

state. Also at small distances the K̄n part of the kaonic hydrogen wave function
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is not negligible.

4.2 Results from the complex interaction potentials

Based on the coupled-channel interaction, Eq. (4.1–4.3), equivalent single-

channel K̄N potentials are derived with imaginary parts in energy-independent

forms which have been also constructed by Akaishi Y. and Yamazaki T. (Yamazaki

and Akaishi, 2007). With this single-channel interaction, the kaonic hydrogen is

investigated in our study. The obtained single-channel interaction or the complex

potentials are :

V I=0
K̄N (r) = (−595− i83)exp[−(r/0.66)2], (4.5)

V I=1
K̄N (r) = (−175− i105)exp[−(r/0.66)2]. (4.6)

The potentials are in unit of MeV with the range parameter equal to 0.66 fm.

Fig. 4.2 (lower panel) we plot the various components of the kaonic hydrogen wave

function with the complex K̄N potentials (Yamazaki and Akaishi, 2007). One

find again that the K−p component differs considerably from the hydrogen-like

kaonic hydrogen wave function at small distance and, again, the K̄0n component

is not negligible.

The kaonic hydrogen is also studied in the interactions taken from the work

of Hyodo T. and Weise W. (Hyodo and Weise, 2008), which are constructed such

as to reproduce the full scattering amplitude of the chiral SU(3) coupled-channel

framework. The interaction from this chiral SU(3) coupled-channel dynamics is

implemented by introducing a third order polynomial in
√

s,

U(r = 0, E) = K0 + K1

√
s + K2(

√
s)2 + K3(

√
s)3 (4.7)

where, 1300 MeV ≤ √
s ≤ 1450 MeV. For our case

√
s = mp + mK− = 1431.94

MeV/c2.
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The coefficients Ki take the values, for example, for the so-called HNJH

model (Hyodo and Weise, 2008) as follows:

For I = 0 :

K0[105MeV] = −5.1020− 4.3660i (4.8)

K1[102MeV0] = 11.453 + 9.6378i (4.9)

K2[10−1MeV−1] = −8.5527− 7.0773i (4.10)

K3[10−4MeV−2] = 2.1218− 1.7285i (4.11)

For I = 1 :

K0[105MeV] = −4.4348− 0.67630i (4.12)

K1[102MeV0] = 9.8340 + 1.4675i (4.13)

K2[10−1MeV−1] = −7.2582− 1.0532i (4.14)

K3[10−4MeV−2] = 1.7818− 0.24953i (4.15)

It is found that the different versions of the potential (Hyodo and Weise,

2008) give quite similar results. The wave functions derived with the effective

potentials (Hyodo and Weise, 2008) are also similar to the one derived with the

interaction of Ref. (Yamazaki and Akaishi, 2007). As an example, in Fig. 4.2 (up-

per panel), we plot the various components of the kaonic hydrogen wave function

evaluated with the equivalent local HNJH potential of (Hyodo and Weise, 2008)

In summary, the kaonic hydrogen wave functions derived with the interac-

tion of (Akaishi and Yamazaki, 2002), (Yamazaki and Akaishi, 2007) and (Hyodo

and Weise, 2008) are featured by that the K−p component is also largely different

from the hydrogen-like one and has a node in the region from 1 to 2 fm, and the

K0n component is also rather large at small distances.
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Figure 4.2 1s radial wave functions of kaonic hydrogen : Upper panel with the

HNJH potential of (Hyodo and Weise, 2008) and lower panel with the interaction

of (Yamazaki and Akaishi, 2007). The pure Coulomb kaonic hydrogen wave

function is plotted as a dotted curve.

The theoretical results for energy shifts and decay widths of the kaonic

hydrogen are shown in Table 4.1, the first, second and third rows for the single-

channel real K̄N potential (Akaishi and Yamazaki, 2002), singer-channel complex
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Table 4.1 1s kaonic hydrogen energy shifts and decay width. Theoretical results

are listed in the first, second and third rows while experimental data are listed in

the fourth and fifth row.

∆E1s[eV] Γ1s/2[eV]

Real Yamazaki −472 −
Complex Yamazaki −375 160

HNJH model −328 352

DEAR Lab −194± 40 125± 56

KEK Lab −323± 64 204± 115

K̄N potential (Yamazaki and Akaishi, 2007) and the equivalent local HNJH

potential of (Hyodo and Weise, 2008), respectively. In Table 4.1, the energy

shift ∆E1s, and decay width Γ1s are derived directly by solving the Schrödinger

equation with the interactions (Yamazaki and Akaishi, 2007), and the equivalent

local HNJH potential of (Hyodo and Weise, 2008). The negative energy shifts in

Table 4.1 mean that the 1s energy level is pushed up by the strong interaction

since there exist one deep bound state, the Λ(1405). For comparison, experimental

data (Beer et al., 2005), (Martin, 1981) are shown in table 4.1 for the fourth

and the fifth row with the energy shift and decay width determined by the DEAR

(Beer et al., 2005) and the the KEK experiment (Iwasaki et al., 1997)

4.3 Discussions and conclusions

Kaonic hydrogen is studied with various versions of realistic interaction

potentials in a numerical approach based on Sturmian functions. It is found that:

The theoretical results for the energy shifts and decay widths of kaonic hydrogen
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with those realistic interactions are in line with experimental data.

The ground-state wave function of kaonic hydrogen, derived for various K̄N

interactions, is shown to be largely different from the hydrogen-like one at small

distances.

The considerable discrepancy between the kaonic hydrogen wave function

and the hydrogen-like one indicates that a perturbation method may NOT apply

to the kaon-nucleon system at low energies. That is, the kaon-nucleon scattering

lengths may not be safely extracted, using the Deser-type or corrected Deser-type

relations, from the kaonic hydrogen data.

Though the theoretical prediction of various employed potentials for the

energy shifts and decays of kaonic hydrogen are in line with experimental data,

the discrepancy between the theoretical results and data is obvious. A potential,

which is able to understand both the low-energy kaon-nucleon scattering data and

kaonic hydrogen data, is in demand.
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APPENDIX A

THE ADDITION OF ANGULAR MOMENTA

OR ISOSPINS

Suppose we have two particles of angular momenta j1 and j2 with z-

components m1 and m2. The total z-component is

m = m1 + m2.

The total angular momentum is

j = j1 + j2

and may therefore lie anywhere inside the limits

|j1 − j2| ≤ j ≤ |j1 + j2|

We wish to find the weights of the various allowed j -values contributing to

the two-particle state, i.e.

φ1(j1m1)φ2(j2m2) =
∑

j

Cjψ(j, m), (A.1)

with m = m1 + m2

The Cj are called Clebsch-Gordan coefficients (or Wigner, or vector ad-

dition, coefficients). Alternatively, we may want to express ψ(j,m) as a sum of

terms of different j1 and j2 combinations. We can do this by the use of angular-

momentum(or isospin) shift operators (also known as ”raising” and ”lowering”

operators).
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First let us recall the definition of the x−, y− and z− component angular-

momentum operators, in terms of the differential Cartesian operators

Jx = − ih

2π

(
y

∂

∂z
− z

∂

∂y

)

Jy = − ih

2π

(
z

∂

∂x
− x

∂

∂z

)

Jz = − ih

2π

(
x

∂

∂y
− y

∂

∂x

)
(A.2)

These Cartesian operations can also be interpreted in term of rotations. A rotation

in azimuthal angle in the xy-plane has Cartesian components

δy = rcosφδφ = xδφ

δx = −rsinφδφ = −yδφ

Thus, the effect of a small rotation on a function ψ(x, y, z) will be

R(φ, δφ)ψ(x, y, z) = ψ(x + δx, y + δy, z)

= ψ(x, y, z) + δx
∂ψ

∂x
+ δy

∂ψ

∂y

= ψ

[
1 +

(
x

∂

∂y
− y

∂

∂x

)
δφ

]

= ψ

(
1 + δφ

∂

∂φ

)

and, from Eq. (A.2)

Jz = −i~
(

x
∂

∂y
− y

∂

∂x

)
= −i~

∂

∂φ
(A.3)

So

R = 1 + δφ
∂

∂φ
= 1 +

iJz

~
δφ (A.4)

It is readily verified that the operators

Jx, Jy, Jz

and

J2 = J2
x + J2

y + J2
z
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obey the commutation rules

J2Jx + JxJ
2 = 0 etc,

and

JxJy − JyJx = iJz

JyJz − JzJy = iJx

JzJx − JxJz = iJy

(A.5)

where we have used units ~ = c = 1 for brevity. The eigenvalues of the operators

J2 and Jz are given in Eq. (A.6–A.7) below.

The shift operators are defined as

J+ = Jx + iJx

J− = Jx − iJx

(A.6)

whence

JzJ+ − J+Jz = J+

JzJ− − J−Jz = −J−.

(A.7)

Thus

Jz(J−φ) = JzJ−φ = J−(Jz − 1)φ = (m− 1)J−φ.

Similarly,

Jz(J+φ) = (m + 1)J+φ.

This last equation shows that the wavefunction J+φ is an eigenstate of Jz with

eigenvalue m + 1. We can therefore write it as

J+φ(j,m) = C+φ(j, m + 1)

where C+ is an unknown (and generally complex) constant. If we multiply both

sides of this equation by φ∗(j,m + 1), and integrate over volume, we get

∫
φ∗(j,m + 1)J+φ(j,m)dV = C+

∫
φ∗(j,m + 1)φ(j, m + 1)dV
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where ∗ indicates complex conjugation.

We choose the normalization of φ so that the last integral is unity, and all

allowed m-values have unit weight. So

C+ =

∫
φ∗(j,m + 1)J+φ(j, m)dV.

Similarly,

C− =

∫
φ∗(j,m)J−φ(j, m + 1)dV

=

∫
φ∗(j,m)J∗+φ(j, m + 1)dV

= C∗
+

from Eq. (A.6) and Eq. (A.7).

If we neglect arbitrary and unobservable phase, we must have

C+ = C− = C (a real number).

Also, from Eq. (A.6) and Eq. (A.7),

J+J− = J2
x + J2

y − i(JxJy − JyJx) = J2
x + J2

y + Jz = J2 − J2
z + Jz

Then

J+J−φ(j, m + 1) = [j(j + 1)−m2 −m]φ(j,m + 1) = C2φ(j,m + 1).

So

C =
√

j(j + 1)−m(m + 1)

is the coefficient connecting states (j, m) and (j, m + 1).

To summarize, the angular-momentum operators have the following prop-

erties:

Jzφ(j, m) = mφ(j, m) (A.8)

J2
z φ(j,m) = j(j + 1)φ(j, m) (A.9)
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J+φ(j,m) =
√

j(j + 1)−m(m + 1)φ(j, m + 1) (A.10)

J−φ(j, m) =
√

j(j + 1)−m(m + 1)φ(j,m− 1) (A.11)

Example

As and example, we consider two particles, j1,m1 and j2,m2, forming the combined

tate ψ(j,m), and we take the case where j1 = 1, j2 = 1
2

and j = 3
2

or 1
2
.

Obviously the states with m = ±3
2

can be formed in only one way :

ψ

(
3

2
,
3

2

)
= φ(1, 1)φ

(
1

2
,
1

2

)
(A.12)

ψ

(
3

2
,−3

2

)
= φ(1,−1)φ

(
1

2
,−1

2

)
(A.13)

Now we use the operators j± to form the relations

J−φ

(
1

2
,
1

2

)
= φ

(
1

2
,−1

2

)
, J−φ

(
1

2
,−1

2

)
= 0

J−φ(1, 1) =
√

2φ(1, 0) J−φ(1, 0) =
√

2φ(1,−1), J−φ(1,−1) = 0,

using Eq. (A.10) and Eq. (A.11)

Now operate on Eq. (A.12) with J− on both sides:

J−ψ

(
3

2
,
3

2

)
=
√

3ψ

(
3

2
,
1

2

)
= J−φ(1, 1)φ

(
1

2
,
1

2

)

=
√

2φ(1, 0)φ

(
1

2
,
1

2

)
+ φ(1, 1)φ

(
1

2
,−1

2

)

so

ψ

(
3

2
,
1

2

)
=

√
2

3
φ(1, 0)φ

(
1

2
,
1

2

)
+

√
1

3
φ(1, 1)φ

(
1

2
,−1

2

)
. (A.14)

Similarly, for Eq. (A.13),

ψ

(
3

2
,−1

2

)
=

√
2

3
φ(1, 0)φ

(
1

2
,−1

2

)
+

√
1

3
φ(1,−1)φ

(
1

2
,
1

2

)
. (A.15)

The j = 1
2

state can be expressed as a linear sum:

ψ

(
1

2
,
1

2

)
= aφ(1, 1)φ

(
1

2
,−1

2

)
+ bφ(1, 0)φ

(
1

2
,
1

2

)
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with a2 + b2 = 1. Then

J+ψ

(
1

2
,
1

2

)
= 0 = aφ(1, 1)φ

(
1

2
,
1

2

)
+ b
√

2φ(1, 0)φ

(
1

2
,
1

2

)

Thus, a =
√

2
3
, b = −1

3
, and so

ψ

(
1

2
,
1

2

)
=

√
2

3
φ(1, 1)φ

(
1

2
,−1

2

)
+

√
1

3
φ(1, 0)φ

(
1

2
,
1

2

)
(A.16)

Similarly,

ψ

(
1

2
,−1

2

)
=

√
1

3
φ(1, 0)φ

(
1

2
,−1

2

)
−

√
2

3
φ(1,−1)φ

(
1

2
,
1

2

)
. (A.17)
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CLEBSCH-GORDAN COEFFICIENTS

As an example of the use of the following table, take the case of combining

two angular momenta j1 = 1, m1 = 1 and j2 = 1, m1 = 1. We look up the entry

for combining angular momenta 1×1, and the fourth line gives for the coefficients

Cj in Eq. (A.1) of Appendix A

φ1(1, 1)φ2(1,−1) =

√
1

6
ψ(2, 0) +

√
1

2
ψ(1, 0) +

√
1

3
ψ(0, 0)

This tell us how two particles of angular momentum (or isospin) unity combine to

form states of angular momentum j = 0, 1 or 2. Alternatively, a state of particular

j, m can be decomposed into constituents. Thus j = 2,m = 0 can be decomposed

into products of state with j = 1 and m1 + m2 = m = 0. The fourth column of

the 1× 1 table gives

ψ(2, 0) =

√
1

6
φ1(1, 1)φ2(1,−1) +

√
2

3
φ1(1, 0)φ(1, 0) +

√
1

6
φ1(1,−1)φ(1, 1)

The sign convention in the table follows that of Condon and Shortley (1951).
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Table B.1 Clebsch-Gordan coefficients for the addition of J1 = 1
2

and J2 = 1
2

J = 1 1 0 1

m1 m2 M = +1 0 0 -1

+1
2

+1
2

1

+1
2

-1
2

√
1
2

√
1
2

-1
2

+1
2

√
1
2

-
√

1
2

-1
2

-1
2

1

Table B.2 Clebsch-Gordan coefficients for the addition of J1 = 1 and J2 = 1
2

J = 3
2

3
2

1
2

3
2

1
2

3
2

m1 m1 M = +3
2

+1
2

+1
2

-1
2

-1
2

-3
2

+1 +1
2

1

+1 -1
2

√
1
3

√
2
3

0 +1
2

√
2
3

-
√

1
3

0 -1
2

√
2
3

√
1
3

-1 +1
2

√
1
3

-
√

2
3

-1 -1
2

1
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Table B.3 Clebsch-Gordan coefficients for the addition of J1 = 1 and J2 = 1

J = 2 2 1 2 1 0 2 1 2

m1 m2 M = +2 +1 +1 0 0 0 -1 -1 -2

+1 +1 1

+1 0
√

1
2

√
1
2

0 +1
√

1
2

−
√

1
2

+1 -1
√

1
6

√
1
2

√
1
3

0 0
√

2
3

0 -
√

1
3

-1 +1
√

1
6

−
√

1
2

√
1
3

0 -1
√

1
2

√
1
2

-1 0
√

1
2

-
√

1
2

-1 -1 1
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alistic strong interactions, particularly for kaonium, are considerably different from the
hydrogen-like ones at small distances. The kaon-kaon scattering length derived from the
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tent with the one derived directly by solving the Schödinger equation. The theoretical
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1. Introduction

Hadronic exotic atoms are bound mainly by the Coulomb force, but the strong

interaction also plays a role, leading to an energy shift from the pure Coulomb

energy and distorting the hydrogen-like wave function at short distance (a few fm).

Pionium and kaonium are among the simplest hadronic exotic atoms since they

couple to only few other channels. Pionium decays into only the π0π0 pair via the

strong interaction while kaonium decays to the ππ and ηπ channels. One may link,

after a simple calculation in the quantum field theory, the decay branching ratio

of pionium and kaonium to the corresponding scattering amplitude. For pionium

decaying to the π0π0 pair, for example, we have

Γ =
64π

M3
p

∣

∣

∣

∣

∣

∫

d~k

(2π)3
ψ1s(~k) f0(k, p)

∣

∣

∣

∣

∣

2

(1)

whereM is the mass of the exotic atom, p is the momentum of the final π0, f0 is the

S-wave scattering amplitude of the process π+π− → π0π0 at zero energy, and ψ1s(~k)

is the 1s wave function of pionium in momentum space and normalized according to
∫

d~k

(2π)3 |ψ1s(~k)|
2 = 1. In the approximation that the scattering amplitude f0(k, p)

901
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is estimated by its on-shell form f0(0, p), one derives

Γ =
64 π

M3
p |ψ1s(0)|

2 |f(0, p)|2 (2)

where ψ1s(0) is the 1s pionium wave function at the origin. The above equation is

just the widely referred Trueman formula.1

It is clear that the wave function of hadronic exotic atoms plays a crucial role

in linking the life time of the atoms to the scattering lengths of the corresponding

systems. For pionium, its wave function might be reasonably approximated by the

hydrogen-like one since the pion-pion strong interaction is believed to be relatively

weak, compared to other hadron-hadron interactions. But for kaonium, it could

be another story since the kaon-kaon strong interaction can be strong enough to

support deep bound states. It is arguable that the wave function of kaonium can

be well approximated by the hydrogen-like one.

The evaluation of wave functions of exotic atoms has been a challenge to numer-

ical methods. Required is an approach, which is able to account accurately for both

the strong short-range interaction and the long-range Coulomb force. The numer-

ical approach based on Sturmian functions has been found effective and accurate.

In this work we use the numerical method which has been carefully studied and

discussed in the work2 to study pionium and kaonium. The paper is arrange as fol-

lows: Pionium and kaonium are studied in Section 2 and 3, respectively. Discussion

and conclusions are given in Section 4.

2. Pionium

Pionium is mainly a Coulomb bound state of π+ and π−, coupled strongly with

π0π0 due to the strong interaction at small distance. The strong interaction between

the two pions leads to an energy shift from the Coulomb energy (E = -1.86 keV)

and a distortion to the hydrogen-like wave function at short distance (a few fm).

Pionium decays predominantly into π0π0 via strong interaction, which probes the

low energy interactions of the pions, especially at zero-energy.

Among all hadronic exotic atoms, pionium is the simplest and has been studied

the best up to now. The DIRAC experiment at CERN has been commissioned since

1998 to measure the pionium lifetime and the first results have been published

recently based on part of the collected data. The result of the pionium lifetime is

τ1S = 2.91+0.49
−0.62×10

−15 seconds.3 In the theoretical sector, pionium has been studied

extensively in various models. As expected, the results of the chiral perturbation

theory is in line with the experimental data.

In the approximation of the pionium wave function ψ1s in Eq. (2) to the

hydrogen-like wave function, one derives the chiral perturbation result at leading

order

Γ =
2

9
α3 p |a0 − a2|

2 (3)
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where α is the fine structure constant, and a0 and a2 are respectively the isospin

I = 0 and I = 2 S-wave scattering lengths of the pion-pion reaction. The chiral

perturbation theory has a NLO prediction for the pionium lifetime,

Γ =
2

9
α3 p |a0 − a2|

2(1 + δ) , (4)

with δ = 0.058 ± 0.012.4 Inserting into Eq. (4) |a0 − a2| = 0.265 ± 0.004, the

O(p6) result of the chiral perturbation theory,5 one gets the pionium lifetime τ =

(2.9± 0.1) · 10−15 s.

That the chiral perturbation theory reproduces the pionium lifetime data per-

fectly implies that a pion-pion strong interaction applicable to the pion-pion dy-

namics equation in the quantum mechanism regime must give a pionium wave

function which differs not much from the hydrogen-like one. In another word, the

pion-pion strong interaction is rather weak, compared with strong interactions for

other hadronic systems, for example, the NN system.

As mentioned in the works,6,7 the evaluation of pionium wave functions is not

an easy task. It is more difficult than other exotic problems, for example, the pro-

tonium problem since the Bohr radius of pionium is much larger than the one of

protonium. Employed here is a numerical approach based on Sturmian functions.8

The numerical method is much more powerful, accurate and much easier to use

than all other methods applied to exotic atom problems in the quantum mecha-

nism regime in history. For the details of the numerical method and the accuracy

in the hadronic exotic atom problem, we refer to the works.2,8,9

In this work we have no intention to study various versions of pion-pion strong

interactions, but instead just to demonstrate the problem with one of the sim-

plest forms of pion-pion strong interactions. The investigation of pionium with

various pion-pion strong interaction models, in both local and nonlocal forms, may

be found in the work.10 Employed here for the purpose of demonstration is the

pion-pion strong interaction which has been widely employed for calculating of the

electromagnetic corrections in low energy pion-nucleon scattering and for studying

the influence of the hadronic interaction on pionium wave functions.6 The potential

is independent of both the energy of the pionium system and pion masses, and

reproduce very well the phase shifts given by two-loop chiral perturbation theory.

Shown in Fig. 1 as the solid line is the 1s radial wave function for the π+π−

component of the pionium in the pion-pion strong interaction taken from the works.6

In the calculation we have employed the non-relativistic Schödinger equation for the

(π+π−, π0π0) system where the mass difference has been considered between the

π+π− pair and the π0π0 pair. It is found that the difference is not much between

the full pionium wave function (solid line) and the hydrogen-like one (dashed line).

The energy shift is derived as ∆E1s = 3.04 eV, indicating that the energy level is

pulled down by the strong interaction, compared to the pure Coulomb interaction.

The lifetime of the pionium is estimated in the potential model to be 3.15× 10−15

and 2.35× 10−15 seconds, where the hydrogen-like and full pionium wave functions
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Fig. 1. π
+

π
− component of full and pure-Coulomb 1s radial pionium wave functions.

are applied to Eq. (3), respectively. The theoretical results of the pionium lifetime

shows the importance of the pionium wave function in potential models or quantum

mechanics regime. It is believed that the application of Eq. (1) with the full pionium

wave function and full scattering amplitude in the pion-pion interaction6 will lead

to a pionium lifetime close to the DIRAC data.

3. Kaonium

Kaonium is the hadronic atom of K+ and K− mixed with the K0K0 component

at small distance. It is bound mainly by the Coulomb force, but affected by the

strong interaction at small distance. The kaonium can not decay into a K0K0 pair

due to the kinetic reason, but may decay into ππ and ηπ via strong interaction.

Unlike the pionium, there are few works12–15 on this exotic atom.

We study the kaonium first in the K−K+ interaction taken from the work.14

The interaction is derived under the assumption that K+K− forms quasi-bound

states in I = 0 and I = 1, which correspond to f0(980) and a0(980), respectively.

Since the interaction gives two molecular states f0(980) and a0(980), it must be

much stronger than the pion-pion strong interaction. Shown in Fig. 2 (left panel)

are both the real and imaginary parts of the K−K+ component of the kaonium in

the interaction14 (Model A). It is found that the K+K− real part of the kaonium

wave function differs considerably from the hydrogen-like one at small distance, and

also has a node at r ≈ 1.5 fm since there exist deep bound states. At small distance

the imaginary part of the pionium wave function is not negligible.

Recently there has been a work studying kaonium in the strong interac-

tion generated by vector meson exchange within the framework of the standard

SU(3)V ⊗SU(3)A invariant effective Lagrangian.15 Since the imaginary part of the

interaction is in the δ-function form which is not suitable for quantum mechanics
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Fig. 2. 1s radial wave functions of kaonium in Model A (left panel) and Model B (right panel).

calculations, we apply only the real part of the interaction to evaluate the kaonium

wave function. Shown in Fig. 2 (right panel) are the derived kaonium wave func-

tions, with the K+K− component largely different from the hydrogen-like one and

having a node at r ≈ 1.5 fm and the K0K0 part also rather large.

To see further how safe it is to approximate the kaonium wave function to the

hydrogen-like one, we compare the scattering length evaluated directly by solving

the Schrödinger equation with the one derived from the kaonium energy shifts by

applying the Deser-Trueman formula,1,11

−∆E1s + i
Γ1s

2
= 2α3 µ2 fK

+
K
−

0 (0) (5)

where µ is the reduced mass of the K−K+ pair, ∆E1s and Γ1s are respectively the

energy shift and decay width of the 1s kaonium state due to strong interaction, and

fK
+

K
−

0 (0) is the S-wave K−K+ scattering amplitude at zero energy.

Shown in Table 1 are the energy shifts (the second column) evaluated with only

the real part of the interactions in both Model A and B, the scattering lengths (the

third column) derived from the energy shifts listed in the second column by applying

the Deser-Trueman formula, and the scattering lengths (the fourth column) derived

directly14,15 by solving the Schrödinger equation. The negative energy shifts in

Table 1 mean that the 1s energy level is pushed up by the strong interactions. It is

found that in the same interaction the scattering length derived directly by solving

the Schrödinger equation is considerably different from the one derived from the 1s

energy shift of the kaonium by applying the Deser-Trueman formula.

Table 1. 1s kaonium energy shifts and kaon-kaon scatter-
ing lengths in unit of M

−1

K
.

∆E1s(eV ) a
K

+
K
−

(M−1

K
) a

K
+

K
−

(M−1

K
)

Model A -548 5.7 7.8
Model B -354 3.69 2.72
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4. Discussion and Conclusions

Pionium and kaonium are studied in an accurate numerical approach based on Stur-

mian functions. It is found that the ground-state wave functions of the exotic atoms

in realistic strong interactions, particularly for the kaonium, are considerably differ-

ent from the hydrogen-like ones at small distances. The kaon-kaon scattering length

derived from the 1s kaonium energy shift by applying the Deser-Trueman formula

is strongly inconsistent with the one derived directly by solving the Schrödinger

equation. The theoretical results indicate that it might not be safe to treat the

kaonium perturbatively.
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