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CHAPTER I

INTRODUCTION

One-to-one binary compounds that obey the octet rule, i.e., I-VII, II-VI, 1II-V, or
IV-IV materials, are generally semiconductors or insulators. Although these AB
compounds have the same chemical formula units, their crystal structures under
ambient conditions can be vary different, depending on their bond ionicities. While
highly ionic compounds, such as CsCl (I-VII), prefer dense crystal structures with a
coordination number of 8 (C.N.= 8), compounds with lower degrees of ionicity, such
as NaCl (also I-VII), gravitate toward the rocksalt structure (RS, Fm3m space group)
with C.N.= 6. As the degree of ionicity decreases (shifting toward the covalent

bonding character), compounds, such as ZnO (II-VI), GaN (III-V) and SiC (IV-1V),
stabilize in wurtzite (WZ, P6,mc ) or zincblende (ZB, F43m) structures with C.N.= 4.

In wurtzite (or zincblende), the valence electron counting is satisfied, i.e., each bond
contains two electrons. However, in compounds with higher degrees of ionicity such
as CsCl and NaCl, the strong cation-anion attractions lead to the formation of the
structures with higher C.N. Nevertheless, bond is not the only factor that determines
the crystalline structure. The intrinsic factors such as band structures, valence
electrons, bonding states and structural symmetries also play their rules. Extrinsic

factors such as loading and temperature also play significant roles.



Calculations and experiments have been carried out to study the structural
stabilities of materials. Over two decades ago, first principles calculations have been
used to evaluate the formation energies of different crystalline structures (see for e.g.,
Chan et al., 1986 and Fahy et al., 1986). X-ray diffraction experiment is the main
tool to determine the natural occurring structures. The stable crystalline structures
under ambient conditions are well established. For a comprehensive review, see
Mujica et al., 2003. Furthermore, advances in experimental techniques, such as the
use of intense and tunable x-ray from synchrotron radiation, also allowed x-ray
diffraction analyses under external loadings. For hydrostatic compression, it is
observed that most materials with low C.N. (e.g., WZ and ZB) transform into a more
compressed crystalline form with higher C.N. structures (e.g., RS) (Bates et al., 1962;
Cline and Stephens, 1965; Xia et al., 1993; Yoshida et al., 1993; Ueno et al., 1994;
Xia et al., 1994; Desgreniers, 1998; Kusaba et al., 1999; Jiang et al., 2000; Mujica et
al., 2003; Wu et al., 2005). First principles and empirical potential calculations have
yielded phase equilibrium pressures that are comparable but almost always lower than
the transformation pressures measured from experiments (Jaffe and Hess, 1993;
Christensen and Gorczyca, 1994; Karch et al., 1996; Coté et al., 1997; Jaffe et al.,
2000; Limpijumnong and Lambrecht, 2001a; 2001b; Zaoui and Sekkal, 2002; Mujica
et al., 2003; Limpijumnong and Jungthawan, 2004; Serrano et al., 2004). The higher
experimental values are attributed to the existence of an energy barrier between the
phases for each transformation. This finding is supported by, for example, the
observation that critical pressure for the upward WZ—RS transformation is higher
than the critical pressure for the downward RS—WZ transformation (Mujica et al.,
2003; Limpijumnong and Jungthawan, 2004) or the trapping of nanocrystallite ZnO in

the RS phase under ambient condition after a high heat-high pressure treatment



(Decremps et al., 2002). If there was no transformation barrier, the upward and
downward transformations would occur at the same point and there should be no
trapping of the meta-stable high pressure phase. The study of strain is also important
because many electronic devices use epitaxial growth film. It is well known that, at
the thin film interfaces, lattice mismatched is inevitable and it degrades the devices’
properties. It is necessary to study the behaviors of crystals under strain deformations.
These properties have been partially studied in both theoretical side, for e.g., the first
principles full-potential linear muffin-tin orbital calculations of elastic constants and
related properties in BN, AIN, GaN, and InN (Kim et al., 1996) and experimental
side, for e.g., the study of strain in InN thin film by Raman measurements (Wang et
al., 20006) or the study of the lattice parameters of GaN epitaxial layers on different

substrates by X-ray-diffraction measurements (Shan et al., 1996).

This thesis employed first principle (also known as ab initio) method to study
mechanical properties of some semiconductors in group IV (SiC), group III-V (GaN
and InN), and group II-VI (ZnO and CdSe). We will first give a brief description of
the calculation methods used (Chapter II). Then the calculated structural parameters
under ambient conditions in comparison with available experimental results are
reported and the brief description for the phase stability (in thermodynamics picture),
phase transition under pressure, elastic constants are also presented as well (Chapter
IIT). The calculated results of this work are constituted as follow, In Chapter IV, the
relative phase stabilities between the wurtzite (WZ), unbuckled wurtzite (HX), and
rocksalt (RS) phases of these compounds under different loading conditions will be
presented. For ZnO, the novel structure was found and named as body center

tetragonal (BCT-4) phase. In Chapter V, the relationship between the previous phases



for ZnO (from Chapter IV) with this new structure is summarized. Finally, the
continuations work about the study of elastic constants under pressure (up to the
transition pressure) of above mentioned five compounds and future works of interest
are presented (Chapter VI). Note that the conclusions of Chapter IV — V are located at

the end of each chapter.



CHAPTER Il

THEORETICAL APPROACH

One often models solid by starting from an ideal crystal at zero temperature.
A unit cell of a crystal may contain several atoms (at specific crystallography
positions). To model a realistic crystal, the unit cell is repeated with periodic
boundary conditions. Then the electronics structure of the entire crystal is solved
quantum mechanically. In addition to electronically properties the electronic structure
is also responsible for other properties such as relative stability, relaxation of atoms
and phase transitions, etc. In this chapter, we will briefly discuss about the theories
approximations, methods, and software used in this work. Details information can be

found in the respective literatures provided throughout the chapter.

2.1 Density Functional Theory

2.1.1 The Hohenberg and Kohn Theorem
The basic principle of density functional theory (DFT) is to describe the
complicated many-body electron wavefunction, ¥, with a simple quantity, that is the

electron density, n(r) (Parr and Yang, 1989). Hohenberg and Kohn (Hohenberg and

Kohn 1964) proposed that, the ground-state energy and all electron properties of the
many electron wavefunction in the presence of an external potential can determined

from the electron density, n(r). They showed that for Coulomb-interacting particles

moving in an external potentialV

ext

(r), the ground state energy can be obtained by



minimizing the energy functional. The ground-state energy of a many electron

wavefunction is written as (Hohenberg and Kohn, 1964),
Eln(r)]= JVext(f)n(f)dsr +F[n(r)], (2.1)

where V

ext

(r) is the “external” potential generated by the nuclei acting on the
electrons. F[n(r)] is a universal functional of the electron density, independent of the
external potential V,, (F). The functional F[n(r)] includes all kinetic energy and

electron-electron interaction terms (Parr and Yang, 1989).

2.1.2 Kohn and Sham Equation
Kohn and Sham (Kohn and Sham, 1965) proposed that the Hohenberg and Kohn

expression in Eq. 2.1 can be written as,

E[n(r)] = [V, (Nn(r)d°r += Hmd rd’r' +T,[n(F)]+ E.[n(F)]  (2.2)

2
where %”% rd®r’ is the electron-electron Coulomb energy, also called
[

Hartree energy. T,[n(F)] is the kinetic energy of a non-interacting system with the
same density. Note that, T,[n(r)]is not the exact kinetic energy functional (T[n(r)]).
Konh and Sham proposed that, the difference between T[n(r)] and T,[n(F)] is
generally small and can be included in exchange-correlation energy, E,.[n(F)] (Parr
and Yang, 1989). E,. is the exchange-correlation energy.

Thus the Kohn-Sham (KS) - effective potential can be written as,

Vo (=06 [+ S5O 23




Hence, the one-particle Schrdodinger equation or Kohn-Sham (KS) equation (Kohn

and Sham, 1965) can be written as,

{—;—VZ +V (r)}//i (F) =&y (r). (2.4)
m

The electron density for this system of electrons is given by (Kohn and Sham, 1965),
. N 12
n(r) = v ("), (25)
i=1
where N is the number of electrons.

Equation 2.4 has to be solved self-consistently. Initially, a guess of n(r) is used to
construct Ve , Which is used as input quantities to solve Eq. 2.4 for the ;. Then an
improved n(r)is calculated from y, based on Eq. 2.5. The new n(r)is then used
instead of the guessing n(F) to construct Vet This routine is repeated until

convergence is reached, that mean the new n(r) as output is equal to the old n(r) as

the input.

2.1.3 The local density approximation (LDA)
Out of three terms in the effective potential (Verr), EQ. 2.3, only the exchange-

correlation energy E, [n(r)] is not exactly known. To solve the one-particle
Schrodinger equation (Eq. 2.4), E, [n(F)] must be approximated. The most popular
approximation for approximating E,.[n(r)] is the local density approximation (LDA).

Under LDA, E,_[n(F)] depends solely on the value of electron density at each
point in space. The most successful local approximation to E,.[n(F)] is the one

derived from homogeneous electron gas model which was first formulated by Kohn



and Sham (Kohn and Sham, 1965) The local density approximation for exchange

correlation energy can be written as (Parr and Yang, 1989; Kohn, 1999),

E->*[n(r)] =jn(r)gxc[n(r)]d3r, (2.6)
where ¢,.[n(r)] is the exchange correlation energy per particle of a homogeneous
electron gas with the density n(r). The &, [n(F)]can be written in the combination
form between exchange and correlation energy as (Parr and Yang, 1989),

& [n(M)] = &,[n(r)]+ & [n(r)], 2.7)
where the exchange energy term,e [n(r)] are known from an analytic form of

homogeneous electron gas as proposed by Dirac (Dirac, 1930) and can be written as

(Parr and Yang, 1989),

,[n(N]=-C,n(r)",C, =§(§j - (2.8)

For the correlation energy term, e [n(F)] was first calculated by Wigner (Wigner,

1938). However, an analytic form of this energy is known only under the high (Gell-
Mann and Brueckner, 1957; Carr and Maradudin, 1964) and low (Carr, 1961,
Nozieres and Pines, 1966) density limit (Parr and Yang, 1989). There is the
correlation energy values obtained from a quantum Monte Carlo method by Ceperley
and Alder (Ceperley and Alder, 1980). Then, Vosko, Wilk, and Nusair (Vosko et al.,

1980) presented the analytic form of ¢ [n(F)] by interpolating the values from
Ceperley and Alder. In addition, there are other forms of ¢ [n(F)] that can be used for
&,.[n(r)] (von Barth and Hedin, 1972; Perdew and Zunger, 1981; Perdew and Wang,

1992).



The LDA work well for the system with slowly varying in density. Some of

successes and failures to use LDA to approximate E [n(F)] have been discussed by

Jones and Gunnarsson (Jones and Gunnarsson, 1989).

2.1.4 The generalized gradient approximation (GGA)
The generalized gradient approximation (GGA) is introduced to take into account
the variation of electron density in space. Under GGA, the exchange-correlation

energy Exc is a functional of the local electron densities, n(r) and their gradients,

[Vn(r)| (Kohn, 1999),
Eo[n(r)] =I f[n(r), Vn(F)In(r)d°r. (2.9)

The GGA improve the ground state properties, it reduces errors in energy of light
atoms in small molecules. In general it tends to produce larger equilibrium lattice
parameters than those obtained from LDA. The improvement of GGA with respect to
LDA is not clear in the applications of solid. Sometimes the GGA overcorrect the
LDA results. The comparison of GGA and LDA for some semiconductors can be

found in Ref. (Filippi et al., 1994; Khein et al., 1995). There are many forms of GGA
functional for the exchange correlation energy, ES**[n(r)]. The most widely used

are proposed by Becke (Becke, 1988), which is known as B88, Perdew and Wang
(Perdew and Wang, 1992), which is known as PW91 and Perdew, Burke, and

Enzerhof (Perdew et al., 1996), which is known as PBE.
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2.2 Plane waves
In this thesis, plane waves (PWs) are employed as a basis set, for the solutions of
the KS equation (Eq.2.4). The starting point for PWSs calculation is an expression of

the wave functions in terms e**", time a function of periodic function, u_ (1) (Kittel,

1996),

w  (F)=€e""u_(F) (2.10)

where

U (F+R)=u_(F). (2.11)

Equation 2.10 and 2.11 are known as Bloch’s theorem, where F is the position in the
crystal, R is the lattice translation vector in the crystal, k is the wave vector, n is the

band index representing the different solutions that have the same wave vector, k.

u - (r) has the same periodicity as the potential. Using the Fourier transform of a

periodic function to reciprocal space, the wave function in Eq. 2.10 can also be

written in the sum of PWs in the following form (Kittel, 1996),
%Aﬂ=;wd®€mmr (2.12)

where G is the reciprocal lattice vector. This allows the calculations to be done in the

reciprocal space. In practice, the numbers of G vectors used in the sum are limited.

The kinetic energy of PWs used in the calculations have to be smaller than the cutoff

energy, Ecuotr, (Martin, 2004),
h? 2
—I|k+G| <E (2.13)
2m

cutoff *

From the Bloch’s theorem, the wavefunction of an infinite number of wave

vectors, k in the first Brillouin zone (BZ) need to be solved (Martin, 2004). In
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practice, it is impossible to do the calculations with the infinite number of k-points.
However, the wavefunctions are quite similar for k-points in the same vicinity.
Therefore, it is possible to sampling a limited number of k-points to represent the
entire BZ. There are various sampling methods to calculate the set of k-points see for
e.g., (Monkhorst and Pack, 1976). The set of “special” k-points chosen to
appropriately describe the BZ employed in this work is based on the Monkhorst-Pack

method (Monkhorst and Pack, 1976).

2.3 Pseudopotentials

In materials, electrons can be divided into two types: core electrons and valence
electrons. Core electrons are strongly localized in the inner atomic shell. Valence
electrons are electrons in the outer shell, participating in bondings. PWs with a limited
Ecutorf are not suitable for describing the core region. Since a large number of PWs
would be required to accurately describe the fast oscillation wavefunctions in the core
regions (Heine, 1970). To solve the problem, the strongly core potential is replaced by

a smooth pseudopotential (V™ (F)) as shown in Figure 2.1. This effectively removes

the core electrons from the calculations. It does not seriously affect the results because

the core electrons remain almost unchanged. The corresponding set of pseudo

wavefunctions " (r) and the all electron wave functions y (r) are matched outside a

selected core radius rc. Inside rc, w™°(F) does not have the fast oscillation features

that required high energy cutoff. The pseudo wavefunctions vary smoothly inside r,

as shown in Figure 2.1.
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Figure 2.1 lllustrations of the pseudopotential and pseudo wavefunction. The dash

lines show the real wavefunction,y (r), and real potential, V (F). The solid lines show
the corresponding pseudo wavefuncions, ™(r), based on the pseudopotential,
V4(r) . The cutoff radius r. represents a radius at which the all electron and pseudo

quantities match. (The figure is reproduced from Ref. (Wolfram Quester Source,

www, 2006))
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2.3.1 Norm-conserving pseudopotentials

Pseudopotentials used in the electronic structure calculations are generated based
on all electron KS calculations of isolated atoms. The radial KS equation is used
because isolated atoms have the spherical symmetry. The pseudopotential should be
nodeless (Martin, 2004; Beyer, 2006).

One important requirement is that the pseudopotentials have to meet the norm-
conserving conditions. This is to ensure that the integration of pseudo and all electron
(real) charges within the core radius are equal (Hamann et al., 1979). The norm-
conserving pseudopotentials are defined from the following list of conditions (Martin,
2004; Beyer, 2006; Carlsson, www, 2009)

1. All electron and pseudo wavefunctions (should be smooth and nodeless) are

matched outside the cut-off radius, re, i.e.,

WED =y, >t (2.14)

2. The eigenvalues should be conserved.
g =g (2.15)
3. Inside the core, the integration of pseudo charge density is equal to that of all

electron charge density. This condition is the norm-conservation criteria, i.e.

[lwen)fdr = [lyes (n)fdr. (2.16)

4. The logarithmic derivatives of all electrons and pseudo wavefunctions and their
first energy derivatives agree at r.

The logarithmic derivative for an angular momentum |, can be written as

d . l//I’(rc;g)
DI(S):EInWI(rIS) ) :m’ (217)
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where w,(r;¢)is a solution of the radial KS equation for a fix potential and fixed

energy ¢ .
The pseudopotential generation steps can be presented as follow. First, the all

electron wavefunction ”** is replaced by an arbitary smooth nodeless

wavefunctiony ™ (r) which satisfied the conditions mentioned above. Based on the
pseudo wavefunction ™ (r) and its corresponding energy & =&, the norm-

conserving pseudo potential is obtained by solving the radial KS equation.

The norm-conserving pseudopotentials, V *° can be separated into a local potential
Viex (r)and a nonlocal potential, V,{*(r)=>"| 8V, (5| (Kleinman and Bylander,
|
1982),
VP =V +V (N =Va )+ BV (B (2.18)
i

The nonlocal part is the deviation from the all electron potential and is confined inside

re. The projector,| ), acts only on the wavefunctions with angular momentum (1),

which is localized within re.

Accuracy and transferability generally lead to the choice of a small cutoff radius
(r¢) and “hard” potentials. This is to give the wavefunction as accurate as possible in
the region near the atom. However, to benefit from the pseudopotential, one needs
soft potentials that result in the smooth wavefunctions. The smoothness of the
pseudopotentials generally leads to the choice of a large cutoff radius (r¢). (Martin,

2004).
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2.3.2 Ultrasoft pseudopotentials

The elements with 2p and 3d valence electrons are difficult to treat within
pseudopotentials scheme (Meyer, 2006). These valence electrons are strongly
localized near the ionic core region. Many plane waves are required to represent the
accurate wave functions, which is not an efficient way to perform in the calculations.
To solve this problem, ultrasoft pseudopotentials (USPP) is introduced (Vanderbilt,
1990).

The norm conserving requirements has been relaxed in USPP, to obtain smoother
wave functions. Instead of using the plane waves to describe the full valence wave
function, only a small portion of the wave function is calculated within the USPP
scheme. This allows one to reduce substantially the plane wave cutoff energy in the

calculations (Meyer, 2006).

2.3.3 Projector augmented waves
The projector augmented waves (PAW) method is proposed by Bldochl (Blochl,

1994). In this method a smooth wavefunction (y) is created. There exists a linear
transformation which relates the all electron wave function () to this smooth

wavefunction (7 ) by the transformation operator 7 through the relationship:
w)=r]). (219

Utilizing the linear transformation of PAW method, the all electron wavefunction ()

can be written as

|W>=|W>+;(|wm>—|eﬁm>)<ﬁm|t/7>, (2.20)
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where y, is a localized all electron partial wave for state m, v is a localized smooth
partial wave for state m, and (f)m| is the localized projection operator. The

transformation operator 7 can be written as

r=14 2 ya) =l (Pl (2.21)
From Eq. 2.21 the transformation operator 7 can be used to add back the core
potential of the all electron wavefunctions to the smoothed wavefunctions. Moreover,

Eqg. 2.21 can be applied equally well to core and valence states so that all electron

results can be derived by applying Eg. 2.21 to all electron states (Martin, 2004).

2.4 The Full Potential Linear Muffin Tin Orbital Method
In full potential linear muffin tin orbital (FP-LMTO) method, the unit cell is
divided into atom centered muffin tin spheres and an interstitial region outside these
spheres. Inside the muffin tin spheres, the potentials can be solved numerically by
means of expansions in spherical harmonics (Methfessel, 1988). In the interstitial
region, the potential is calculated by using numerical integration which results in the
matrix elements (Methfessel et al., 2000),
V™ = [HI (Vv (rH (r)dr (2.22)
iR
where V”.('R) is the matrix element potential in the interstitial region, the functions

H; (r) (or H,(r) ) is the envelop functions, which are augmented inside the muffin

tin sphere to obtain the final basis function, V (r) is the interstitial potential and IR
denoted the interstitial region. The results also depend on how the suitable interstitial
region is chosen. The general way in obtaining the interstitial region is presented as

follow. The basis functions and the interstitial potential are smoothly extended through
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the atomic sphere in some manner. Then these smooth functions are replaced into Eq.
2.22 to integrate for the potential of the interstitial region. Finally, the unwanted
contributions inside the spheres are subtracted in conjunction with the augmentation step.
In FP-LMTO, the smooth extension must be built for the sphere on which the function
is the centered by matching an analytical expression (i.e. a polynomial) at the sphere
radius (Methfessel et al., 2000). Alternatively, Hankel functions can be used to
represent interstitial quantities. These functions make basis function quite similar to
the real basis functions. Moreover, a smoothed Hankel functions that are bended
more than normal Hankel functions near the muffin tin sphere, is introduced. This
smoothed Hankel functions lead to the smaller basis functions. A different approach
(to the interstitial potential matrix elements) is to re-expand the product of any two
envelopes as a sum of an auxiliary atom-centered basis function. The matrix element
in Eq. 2.22 then reduces to a linear combination of integrals of the auxiliary atom-
centered basis function times the interstitial potential. In this way the three-center
integrals in Eq. 2.22 can be reduced to a sum of two-center integrals (Methfessel et
al., 1988). The expansion can be obtained approximately by using Gauss’s theorem to
fit on the surfaces of the muffin-tin spheres (Methfessel et al., 1988; Methfessel et al.,

2000). For further details, see Ref. (Methfessel et al., 2000).
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2.5 The Vienna Ab initio Simulation (VASP) Package

The calculations are performed with the Vienna Ab initio Simulation Package
(VASP), developed by Kresse, Hafner, and Furthmiller (Kresse and Hafner, 1994;
Kresse and Furthmiiller, 1996a; 1996b). VASP uses planewaves (PWs) as a basis set
to describe electron wavefuntions.  The ultrasoft pseudopotentials (USPP)
(Vanderbilt, 1990) and PAW (Bldchl, 1994) potentials needed for the calculations are
included in the package. In this thesis, the ultrasoft pseudopotentials are mainly
employed. So the fewer plane waves are needed in comparison to traditional
pseudopotential methods. The k-point samplings are based on the Monkhorst-Pack
approach (Monkhorst and Pack, 1976). The main computational part for solving the
KS-equation self-consistently is obtained by using an iterative matrix-diagonalization
scheme such as, a conjugate gradient scheme (Teter et al., 1989; Bylander et al.,
1990) and block Davidson scheme (Davidson, 1983). The Broyden/Pulay mixing
scheme (Pulay, 1980; Jonhson, 1988) is used for calculating of charge density. There
are two main loops in VASP calculations. The charge density is optimized in the
outer loop. In the inner loop, the wave functions are optimized by solving KS

equation in a self consistent algorithm (Kresse and Furthmuller, 1996a; 1996b).



CHAPTER Il

CRYSTAL PROPERTIES

3.1. Crystal structure

The natural form of all five materials studied is wurtzite, as shown in Figure 3.1
with the top view and side view in the middle and bottom row, respectively. This
structure is quantified customarily by the lattice constant a, the c/a ratio, and the
internal parameter u# which specifies the relative distance ratio along the c-axis
between the two hexagonal close-packed cation and anion sublattices. To describe the
unbuckled-wurtzite (HX) (Figure 3.2) and the rocksalt (RS) structures (Figure 3.3)
and the transformation from WZ to each of these phases, an extra lattice parameter b
and an internal parameter v are introduced (Limpijumnong and Lambrecht, 2001a;
2001b). The parameter v defines the relative horizontal distance along the b-axis
between the cation and anion sublattices. Out of five parameters (a, b, ¢, u, and v)
illustrated in Figure 3.1, only three external ones (a, b, and ¢) can be directly
manipulated by applying external stresses. The two internal parameters (# and v)
cannot be directly controlled. These two internal parameters are determined such that,
for any given configuration, the net forces on all atoms in the unit cell vanish. It is
found that u depends mainly with ¢/a and v with b/a. An analysis of the variations of u
with ¢/a and v with b/a can be found in Ref. (Limpijumnong and Lambrecht, 2001a;
2001b). The three crystal structures are significantly different, with c¢/a ~1.63 and b/a

~1.73 for WZ, ¢/a = 1.20 and b/a = 1.73 for HX and ¢/a = 1.00 and b/a = 1.00 for RS.
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The ideal values of c¢/a, b/a, u, and v for WZ, HX, and RS under no load and zero
temperature are listed in Table 3.1. All parameters are determined from the geometry
of each structure, for instant, perfect tetrahedral coordination for WZ and perfect
cubic for RS. This is with an exception of the c¢/a value for HX, which is obtained via
enthalpy minimization and the approximated value is listed. Actual values of these
parameters can deviate from those in Table 3.1, depending on the material, loading
conditions and temperature. The calculations values of lattice parameters compare
with other calculations and experimental results are shown in Table 3.2, 3.3, 3.4, 3.5,
and 3.6 for SiC, GaN, InN, ZnO, and CdSe, respectively. These values are in good
agreement with the experimental data and other theoretical values from the literature

(see Table 3.2 — 3.6).

Table 3.1 Ideal lattice parameters for WZ, HX and RS crystalline structures.

Parameters Wz HX RS
c/a J8/3%1.63 1.20 1.00

u 3/8~0.37 0.50 0.50

bla V3=1.73 V3=1.73 1.00

v 1/3=0.33 1/3=0.33 0.50
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Figure 3.1 Crystal model of the WZ structure: small spheres represent anions and
large spheres represent cations. The top figure shows the perspective view. The

middle and bottom figures show top view and side view, respectively. The distances

described by crystal parameters a, b, ¢, u, and v are indicated.
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Figure 3.2 Crystal model of the HX structure: small spheres represent anions and
large spheres represent cations. The top figure shows the perspective view. The
middle and bottom figures show top view and side view, respectively The distances

described by crystal parameters a, b, ¢, u, and v are indicated.
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Figure 3.3 Crystal model of the RS structures: small spheres represent anions and
large spheres represent cations. The top figure shows the perspective view. The
middle and bottom figures show top view and side view, respectively. The distances

described by crystal parameters a, b, ¢, u, and v are indicated.
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Table 3.2 Lattice parameters for WZ, HX and RS SiC under their equilibrium loading

conditions. Values in parentheses are taken from literature.

wZ HX RS
Parameters
p=0GPa —0% = 60.5 GPa P =64.9GPa
a (A) 3.05 4.00
(3.06,* 3.08") 3.32 (3.68,*" 3.84°)
b(A) 5.28 5.74 4.00
c(A) 4.97 3.98 4.00
abc 3
V= 5 (A%) 40.0 37.9 32.0
c/a 1.63 1.20 1.00
b/a 1.73 1.73 1.00
u 0.38 0.50 0.50
v 0.35 0.33 0.50

*DFT (LDA) calculations by Karch et al. (Karch et al., 1996).
bSynchrotron ADX by Yoshida et al. (Yoshida et al., 1993).
‘DFT (LDA) calculations by Hatch et al. (Hatch et al., 2005).
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Table 3.3 Lattice parameters for WZ, HX and RS GaN under their equilibrium

loading conditions. Values in parentheses are taken from literature.

wz HX RS

Parameters
»=0GPa —5* =30.5 GPa P =44.1GPa
a(A) 3.15 4.16
(3.19,43.16,>° 3.10% 3.43 (4.01,% 4.10,°4.07°%)

b (A) 5.46 5.94 4.16

¢ (A) 5.11 4.12 4.16
abc 3

V== (A% 44.0 42.0 36.0

c/a 1.62 1.20 1.00

bla 1.73 1.73 1.00

u 0.38 0.50 0.50

v 0.35 0.33 0.50

*Synchrotron EDXD experiment by Xia et al. (Xia et al., 1993).

®XRD experiments by Xie et al. (Xie et al., 1996).

‘DFT (LDA) calculations by Kim et al. (Kim et al., 1996).

YDFT (LDA) calculations by Yeh ez al. (Yeh et al., 1992).
°XRD experiments by Lada et al. (Lada et al., 2003).
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Table 3.4 Lattice parameters for WZ, HX, DHX, and RS InN under their equilibrium

loading conditions. Values in parentheses are taken from literature.

WZ HX DHX RS
Parameters
p=0GPa -0' = 9.6GPac;' =147GPa p* =12.2GPa
3.54 4.64
a(A) (3.53,3.54,5¢ 3 529 3.82 348 (467 4.62%
b (A) 6.13 6.62 7.66 4.64
N 5.70 4.59 435 4.64
b
V= “2" (A% 61.9 58.1 58.0 50.0
c/a 1.61 1.20 1.25 1.00
bla 1.73 1.73 2.20 1.00
u 0.38 0.50 0.51 0.50
v 0.35 0.33 0.31 0.50

*DFT (LDA) calculations by Kim et al. (Kim et al., 1996).

°DFT (LDA) calculations by Yeh ez al. (Yeh et al., 1992).

‘XRD calculations by Osamura et al. (Osamura et al., 1975).

DFT (LDA) calculations by Furthmiiller ez a/. (Furthmiiller ez al., 2005).
°ADX experiments by Ueno et al. (Ueno et al., 1994).
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Table 3.5 Lattice parameters for WZ, HX, DHX, and RS ZnO under their equilibrium

loading conditions. Values in parentheses are taken from literature.

wZz HX DHX RS
Parameters
p=0GPa -0%=6.0GPa o,'= 10.8 GPa  p* =82 GPa
3.21
a (A) (3.20,%3.25 ¢ 4.24
20,7 3.25, 3.49 3.24 b 4 Hee
326%) (4.28,> 4.27%%)
b (A) 5.54 6.03 6.46 4.24
5.15
c (A) (5.17 a 5.2211) 4.19 4.20 4.24
, 45.7 } 38.1
=925 (&%) (46.69,° 47.24, 44.1 44.0 (39.03°
2 47.98% 38.16")
c/a 1.61f 1.20 1.30 1.00
(1.59)
b/a 1.73 1.73 2.00 1.00
u 0.38
(0.383’d’f) 0.50 0.50 0.50
v 0.33 0.33 0.31 0.50

’DFT (LDA) calculations by Malashevich and Vanderbilt. (Malashevich and
Vanderbilt, 2007).

bSynchro‘cron EDX experiments by Desgrenier (Desgreniers, 1998).

‘XRD experiments by Karzel et al. (Karzel et al., 1996).

YEXAFS experiments by Decremps et al. (Decremps et al., 2003).

‘DFT (GGA) calculations by Jaffe et al. (Jaffe et al., 2000).

DFT (GGA) calculations by Ahuja et al. (Ahuja et al., 1998).



28

Table 3.6 Lattice parameters for WZ, HX, DHX, and RS CdSe under their

equilibrium loading conditions. Values in parentheses are taken from literature.

Parameters W2z HX DHX RS
p=0GPa -0 =375GPa 0,'=5.8 GPa p*=2.2GPa
a®) (:.'32(;) 4.66 4.18 (5.585}5;71*’)

b (A) 7.39 8.06 8.78 5.54

¢ (A) 6.96 5.59 5.44 5.54

V= "Zc (A 109.8 105.0 99.9 85.0

c/a 1.63 1.20 1.30 1.00

bla 1.73 1.73 2.10 1.00

u 0.38 0.50 0.50 0.50

v 0.35 0.33 0.31 0.50

*DFT calculations by Benkhettou et al. (Benkhettou et al., 2004).
®XRD experiments by Wickham et al. (Wickham et al., 2000).
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3.2 Stability of the crystal structures

Under ambient pressure, the natural form of all five materials studied is WZ
structure which belongs to the P63;mc space group as shown in Figure 3.1. Under
sufficiently large hydrostatic compressive RS is observed. HX can be stabilized under

uniaxial compression loading along [0001] direction and under uniaxial tensile

loading along [01 10] direction particularly for InN, ZnO, and CdSe (Sarasamak e al.,

2008). Under uniaxial tensile loading along [01 10], the stabilized structure does not

have hexagonal symmetry (the structure is elongated along b-direction). The structure
will be referred to as distorted HX (DHX). Figure 3.4 shows the total energy as a
function of volume at zero external loading for WZ, RS, HX and DHX structure for
all five compounds. Since the HX and DHX structures are stable only under specific
uniaxial loadings, the curves for them are produced based on two types of uniaxial
stresses. (1) By keeping a uniaxial stress along [0001] direction (fix ¢/a = 1.2 and b/a
= 1.73 for all five compounds), green curves (corresponding to HX structures) are

obtained. (2) By keeping a uniaxial tension along [01 10] direction (fix ¢/a = 1.25 and

b/a = 2.2 for InN, fix ¢/a = 1.3 and b/a = 2.0 for ZnO, and fix c/a = 1.3 and b/a = 2.1
for CdSe), blue curves (corresponding to DHX structures) are obtained.

For each structure, the energies associated with at least four different unit cell
volumes are calculated. The continuous energy-volume curves are obtained by a third-
degree polynomial fit. As shown in Figure 3.4, WZ is the most stable structure with
the lowest energy, HX has second highest energy, and RS has the highest energy
(except for CdSe, where RS has a lower energy than HX). Figure 3.4 also shows that,

HX, DHX, and RS are not stable under ambient conditions.
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Figure 3.4 Total energy as a function of the volume for WZ, RS, HX and DHX

structures (black, red, green, and blue curves represent WZ, RS , HX and DHX

structure, respectively) for (a) SiC, (b) GaN, (c) InN, (d) ZnO, and (e) CdSe with

LDA calculations.
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3.3 Thermodynamic stability

Let us start with the fundamental quantities of materials: energy (£, in the unit of
eV), pressure (P, in the unit of GPa), and bulk modulus (B, in the unit of GPa). The

relationship between them can be written as (Martin, 2004),

E=E®V),
P:—Z—i, (3.1)
2
B=v ¥ _p4d f
v dv

Because some quantities are macroscopic, they are determined for a fixed number
of atoms, for e. g., in crystal, E is the energy per unit cell of volume V' = Vg (V is in
the unit of A°).

The following steps are performed to determine the equilibrium volume V5, (for P
= 0 and T = 0), and bulk modulus B of particular material with known crystal
structure. First the energy (F) for several values of the volume (V) are calculated, and
fit to an analytic form such as Murnaghan’s equation of state (Murnaghan, 1944). For
a sufficiently small range of volume, the E-V curve can be fitted by a simple 3™
degree polynomial. The minimum point gives the predicted volume ¥ and its total
energy. The second derivative at that point is the bulk modulus (B).

When P # 0 and/or T # 0, the stable phase is the one with the lowest Gibbs free

energy G. The Gibbs free energy is defined as (Martin, 2004)
G=E+PV-TS=H-TS, (3.2)

where E is the internal energy (in the unit of eV), P is pressure (in the unit of GPa), V
is volume (in the unit of A%), T is temperature (in the unit of K), S is the entropy (in

the unit of eV/ K), and H is the enthalpy (in the unit of eV).
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The large pressure that can be obtained in high pressure experiments may cause
volume reductions. Here, we focus on the 7= 0 cases. The Gibbs free energy is the

simply enthalpy A and given by

H=E+PV (3.3)

At a given pressure, the thermodynamically stable phase is the one with the lowest
enthalpy.

Although, the zero-temperature theory often results in a good agreement with

experiment, the effects of finite temperature in some cases can be significant. For

example, when the temperature is increased it becomes easier to overcome the

energetic barriers of the transformation, so that the hysteresis is reduced (Mujica et

al., 2003).

3.4 Mechanical properties

3.4.1 Phase transition under pressure

Solid-solid phase transition driven by high pressure can be divided into (1)
reconstructive transitions, which involve significant changes at the transition
including the bond breakings and bond formations, and (2) displacive transitions, in
which the positions of atoms changes by fairly small amounts at the transition (often
accompanied by some strains) (Mujica et al., 2003). Alternatively, phase transitions
can be classified according to their thermodynamic “order”, which is the order of the
derivative of Gibbs free energy (G =E+ PV —TS). However, in this work, only
pressure induced phase transitions is the main interest. In this case, Gibbs free energy
is reduced to only the enthalpy term (H = E+ PV'). At T = 0, the stable structure (at

constant pressure P) is the structure that gives the minimum enthalpy. The transition
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pressure can be determined by calculating E(¥7) and constructing the common tangent
line between the E()V) curves the for two phases. The slope of the line is the transition
pressure.

Figure 3.5 shows the energy versus volume for their crystal structures of ZnO that
we obtained from ab initio DFT calculations (Sarasamak et al., 2008). The local
density approximation is used for the exchange correlation. The computation code
(VASP) (Kresse and Hafner, 1994; Kresse and Furthmiiller, 1996a; 1996b) is based
on plane wave (ultrasoft) pseudopotential method. The stable structure at P = 0 is
wurtzite structure, and ZnO is predicted to transform to the rocksalt structure at the
pressure indicated by the slope of the tangent line, = 8.22 GPa which is in a good
agreement with other theoretical and experimental works (for e.g. , Ahuja ef al., 1998;
Jaffe et al., 2000). A five-fold coordinated unbuckled wurtzite phase which is found to

be stable under uniaxial compression along the [0001] crystalline direction (green
curve which corresponding to HX structures) or uniaxial tension along the [OIIO]

crystalline direction (blue curve which corresponding to DHX structures) are also
shown in this figure (more details for WZ to HX or DHX structure are given in

Chapter IV).
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Figure 3.5 Energy versus volume for four ZnO structures. The transition pressure is
given by the slope of the common tangent lines between the two phases. For example,
the dashed line shows the common tangent line between the WZ- and RS- structures.
The slope of the line gives the equilibrium transition pressure of 8.22 GPa (Sarasamak

et al., 2008).

3.4.2 Elasticity

Solids are generally deformed when subject to an applied mechanical stress. For
small deformations, most solids behave in an elastic manner following Hooke’s law
which states that the stress, oy (i, j = X, y, z), and strain, e; (i, j = x, y, z), are directly
proportional to each other. The linearity in elastic response with an applied stress is
applicable only in a limited range of deformation. For large deformations, the elastic
response becomes non-linear. The non-linear response is a direct consequence of the
anharmonicity of interatomic potentials that dominates at large displacements. The

stress-strain relations are studied by applying external forces to the solid. The size or
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shape of a solid can be changed under an applying external force since the stress
defines the force acting on a unit area in the solid. The stress in the solids is expressed

by a (3x3) matrix where the nine elements are the stress on various directions,

Gij'(i’j:x:yaz)’

O (o} (o}

xx Xy Xz
c=|o, 0o, O, 3.4)
zx Gzy zz

Note that the subscript, i and j, in the stress component is used to indicate the

direction of the force and the plane which the force is applied. For example, o

XX

means a force applied in the x direction to a unit area which its normal vector lies in
the x direction (this type of stress is known as normal stress); o, means a force
applied in the x direction to a unit area which its normal vector lies in the y direction
(this type of stress is known as shear stress). The nine components of stress are

reduced to just six independent components because the constraint of zero totals

torque (Kittel, 1996; Elliott, 1998) which gives,
0,=0,,0,=0,,0,,=0_. (3.5)

The general form of stress matrix in Eq. 3.4 can be transformed to the stress matrix

which has only diagonal components (in a new set of coordinate x’, ), z")

c. 0 0
c'=0 o, 0], (3.6)
0 0 o,

where o, o

,»and o, are the principal stresses. Furthermore the mean stress can

be extracted from the principal stresses such that Eq. 3.6 can be written as (Elliott,

1998)
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c. 0 0 c, 0 0 (o,.—0,) 0 0
0 o, 0/=0 o, 0+ 0 (o,-0y) 0 , (3.7
0 0 o 0 0 o 0 0 (o,-0,)

where the mean stress, o, 1s given by

o,=(0,+0,+0,)/3. (3.8)

Eq. 3.7 shows that the stress tensor is the sum of a pure hydrostatic term which tends
to change the volume and a pure shear or deviatoric stress term which tends to distort
the shape (Elliott, 1998). The stress in the first term causes the solid to change volume
but not the shape because the applying stresses (force per unit area) in all principal
directions are equal in magnitude. Another term causes the solid to change the shape
while the volume remains constant. The change in shape is the result from an unequal
applying force among principal directions. The constant volume is the result from

zero trace of shear stress tensor where as the sum of stress components is
(0,=0y)+(0,-0))+(0,-0,)=0. (3.9)

In other words, the mean stress components are zero. Figure 3.6 shows the

representation of the deformed solid shape under both types of stress.
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Figure 3.6 Representation of (a) uniform compression resulting from a purely
hydrostatic compressive stress and (b) pure shear deformation (The figure is

reproduced from Ref. (Elliott, 1998)).

By considering Hooke’s law for the solids, within a small deformation limit, the

stress components, o, (i, / = X, y, z), can be expressed as linear combinations of the
strain components, e; (i, j = x, y, z). The relationship between stress and strain can be

written in the matrix form as (Elliott, 1998),

O G G, Gy Gy Cs Cg ) en
Oy Gy Gy Gy Gy G5 Gy || 8y
Oz _ G Gy Gy Gy G G || €z (3.10)
Oy Co Cp Cyy Cy Cis Cig || &5
O G Gy Gy Gy G5 Gy |l ey
O, Co Co Gy Cq Cis Cgg €.

where the proportional constant C), (4, a =1, 2, 3,..., 6) is elastic constants which are

in the unit of GPa and the indices 1 to 6 are defined as (Kittel, 1996),

l=xx; 2=yy; 3=zz; 4=yz,zy; S=zx,xz; 6=xy,)x. (3.11)
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Among 36 elastic constants in Eq. 3.10, there are only few constants that are
independent when considering the symmetry of the crystal structure. For example, in
the case of cubic crystal structure, there are 3 independent elastic constants, Cj, Cia,
and Cu4 (for more details, see Ref. (Tinder, 2008)). In the hexagonal crystal structure

(such as the wurtzite structure studied here), there are six independent elastic
: 1
components which are C1, Ciz, Ci3, C33, Cas, and Cgg, where Cgg :E(C“ -C,,), the

independent elastic constants for the wurtzite structure can be written in the matrix

form as (Tinder, 2008),

Cll C]2 C13 0 0 0
CZl Cll C13 0 0 0
Cy GG, 00 0 (3.12)
0 0 0C, 0 0
0 0 0 0 C, O
0 0 0 0 0 C,

3.4.3 Elastic energy

Under small distortions, the interatomic displacement is small and the interatomic
potentials can be considered to be harmonic. The elastic energy is expressed as the
quadratic function of the strains. The expression for the elastic energy per unit volume

can be written as (Kittel, 1996),

6 6

U:%ZZciaelea (3.13)

A=l a=1
where the number indices 1, 2, 3,..., 6 are defined in the same way as Eq. 3.11. The
elastic constants, (), can be obtained from the derivative of U with respect to the

associated strain components (Kittel, 1996).
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In our work, the energy (F) is calculated for difference configurations of traceless
(volume conserving) strain, (exx, €yy, €z, €2y, €, €xy). For each configuration, £ is also
calculated at a few values of the strains (e) (Wright, 1997; Prikhodko et al., 2002).
Then, the energy-strain curve for each strain configuration is obtained by fitting to a
third-degree polynomial function. The second derivative of energy with respect to

strain gives us the elastic constants.

For example, a traceless strain in a strain configuration D; = (0, 0, e, 0, 0, 0) is
introduced to calculate the elastic constant component Cs; for a WZ structure. The

elastic energy can be written in a matrix

C,C,C, 0 0 0Y0
C,C,C, 0 0 0fo
U=2(0 0 ¢ 0 0 0) Co Co G 000 el
2 0 0 0 C, 0 010
0 0 0 0 C, 0|0
00 0 0 0 C,)lo

The multiplication product of Eq. 3.14 gives the elastic energy for this strain
. 1 .
configuration as U, = ECBez. The energy is then calculated for several values of the

strains (e). Then the energy-strain curve is fitted to a third-degree polynomial. The
second derivative of the energy with respect to the strain gives us Css. The other

elastic components can be obtained by similar steps.



CHAPTER IV

STABILITY OF WURTZITE, UNBUCKLED WURTZITE,
AND ROCKSALT PHASES OF SiC, GaN, InN, ZnO, AND

CdSe UNDER LOADING OF DIFFERENT DIRECTIONS

4.1 Introduction

The recent synthesis of quasi-1D nanostructures such as nanowires, nanobelts and
nanorods of GaN, ZnO and CdSe (see, for e.g., (Pan et al., 2001; Bae et al., 2002))
necessitates understanding the response of such compounds to external uniaxial
loading. These nanostructures are mostly single-crystalline and nearly defect-free.
Therefore, they are endowed with high strengths and the ability to undergo large
deformations without failure. In addition, their high surface-to-volume ratios enhance
atomic mobility and promote phase transformations under loading. We have

computationally identified a novel five-fold coordinated unbuckled wurtzite phase
(HX) within the P6,/mmc space group in [0110]-oriented ZnO nanowires under
uniaxial tensile loading (Kulkarni ef al., 2006; Kulkarni et al., 2007). The stability of
this novel phase and the stabilities of WZ and RS phases of ZnO under uniaxial
tension along the [0110] direction as well as hydrostatic compression were analyzed

through enthalpy calculations. It is found that the HX structure can not be stabilized
by applying hydrostatic pressure. Instead, first principles calculations showed that

transformation into the HX structure can occur under either tensile loading along the
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[0110] direction or compressive loading along the [0001] direction of sufficient
magnitude. For this WZ—HX transformation, the uniaxial stress deforms the crystal
in only one direction. Since the unit cell of HX is significantly shorter than the unit
cell of WZ in the c- or [0001] direction (details later), either compression along the c-
direction or tension along the perpendicular [0110] direction can cause the
transformation. For compression along the c-direction, the corresponding contribution

to enthalpy by mechanical work is linearly proportional to —o,Ac, with o, and Ac

being the compressive stress and the change in unit cell size in the c-direction,
respectively. For tension along the b-direction, the corresponding contribution to

enthalpy by mechanical work is linearly proportional to o,Ab, with o, and Ab being

the tensile stress and the change in unit cell size in the h-direction, respectively. For
the WZ—RS transformation, the hydrostatic pressure uniformly compresses the WZ
crystal in all directions and causes it to collapse into the RS phase which has a lower
equilibrium unit cell volume. The mechanical work contribution to enthalpy is pAV,
with p and AV being the external pressure and volume reduction, respectively. The

discovery of the novel HX phase has subsequently been confirmed in [0001]-oriented

ZnO nanoplates (Zhang and Huang, 2006) and nanowires (Zhang and Huang, 2007).

To gain insight into the existence of the WZ, HX, and RS structures in binary compounds
with different ionicities, we analyze here the energetic favorability of these phases for ZnO
and CdSe (groups II-VI), GaN and InN (IlI-V) and SiC (IV-IV) under uniaxial loading
along the [0110] and [0001] crystalline axes as well as under hydrostatic compression
(Sarasamak e al., 2008). The possibility of transformations from WZ into HX or RS and

the effort under loading of different directions on the transformations are analyzed.
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4.2. Computational method

First principles calculations are carried out to evaluate the total energy of each
compound in its natural and deformed states. The calculations are based on the
density functional theory (DFT) with local density approximation (LDA) and ultrasoft
pseudopotentials (Vanderbilt, 1990), as implemented in the VASP code (Kresse and
Furthmiiller, 1996). Here we are interested only in the energy differences between
phases. Zinc 3d, gallium 3d, indium 4d and cadmium 4d electrons are treated as
valence electrons. Cutoff energies for the plane wave expansion are 400 eV for ZnO,
180 eV for CdSe, 350 eV for nitrides and 300 eV for SiC. The k-point sampling set is
based on a 7x7x7 division of the reciprocal unit cell based on Monkhrost-Pack
scheme (Monkhorst and Pack, 1976) with the I'-point included, which gives

approximately 100 inequivalent k-points.

The stability of each crystal structure and compound can be determined by
analyzing enthalpy as a function of ¢/a and b/a. The enthalpy per a wurtzite unit cell
under uniaxial loading is

H(c/a,b/a)=E(c,b,a,u,v)— 4, %04, (4.1)

where E is the formation energy per (wurtzite) unit cell, o; is the stress along the i
direction, ¢; is the lattice parameter in the i direction, 4j is the cross section area of

the unit cell perpendicular to the stress direction, and A4, xo,g, (summation not
implied) is external work. For tension along the b axis, i=b, A =ac/2 and g, =0,
with o, being the tensile stress. For compression along the ¢ axis, i=c,

A, =ab/2,and g, =c, with —o, being the compressive stress.
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For hydrostatic compression, the enthalpy is
H(c/a,b/a)=E(c,b,a,u,v)+ pV, 4.2)
where p and V =abc/2 are the pressure and unit cell volume, respectively. Under
ambient pressure, the enthalpy is equal to the internal formation energy. Note that a

wurtzite unit cell contains two cation-anion pairs and occupy the volume, V' =abc/2.

For each c/a and b/a pair, the internal parameters u and v and the unit cell volume
V are allowed to relax so that the configuration that yields the minimum H is obtained.
For a given load condition, the minima on the enthalpy surface with ¢/a and b/a as the
independent variables identifies the corresponding stable and metastable structures.
For the analyses at hand, the parameter ranges used are [1.00, 1.63] for ¢/a and [1.00,
1.73] for b/a, with the increments of 0.05 for ¢/a and 0.10 for b/a. This meshing of the
structural space results in approximately 170 strained configurations. For tensile
loading along the b-direction, additional configurations with b/a up to 2.30 are also
investigated, increasing the number of total configurations to 200. Out of these 170 or
200 configurations, those around (c/a, b/a) = (1.63, 1.73), (1.2, 1.73) and (1.00, 1.00)
are more carefully analyzed since these three parameter sets define the neighborhoods

of WZ, HX and RS structures, respectively, for the given load condition.

For each strained configuration (each c/a-b/a pair), the energies associated with at
least four different unit cell volumes (V) are calculated. An equation of state (energy-
volume relation) is obtained by a 3™-degree polynomial fit. Under loading, the
volume that minimizes H is not the same as the volume that minimizes E. The
equation of state allows the minimum enthalpy for each combination of c¢/a-b/a pair
and loading condition to be obtained. As an illustration, the energy and enthalpy are

shown in Figure 4.1 as functions of volume for WZ ZnO (c/a =1.61 and b/a =1.73)
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under hydrostatic pressure. At ambient pressure ( p = 0), the energy and enthalpy are
equal and the minimum enthalpy is equal to E(V,), with ¥, being the equilibrium
volume of WZ in a stress-free state. At p = p,, the minimum enthalpy occurs at

V =V, for which dE/dV =-p, .
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Figure 4.1 Energy (solid curve) and enthalpy (dashed curve) as functions of volume
for wurtzite (c/a = 1.61 and b/a = 1.73) ZnO. At hydrostatic pressure p;=8.22 GPa,
the volume that minimizes enthalpy (7)) is smaller than the volume at ambient
pressure (V). (The figure is a reproduction of Figure 2 in our published paper

(Sarasamak et al., 2008).)
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4.3 Results and discussions

4.3.1 Ambient conditions (stress-free state)

Figure 4.2(a) shows the energy (or enthalpy at zero external loading) landscape
for ZnO. The global minimum occurs at the wurtzite structure with (c/a, b/a) = (1.61,

1.73). The sections of the surface along b/a = 1.73 (solid line) and 1.00 (dash line) are

shown in Figure 4.2(b). By virtue of symmetry, b/a is fixed at V3 ~1.73 for WZ and
HX and at 1.00 for RS. Clearly, in stress-free state, WZ is the most stable structure
with the lowest energy, HX has higher energy and is not stable (no local minimum),
and RS structure is metastable with high energy. For SiC, GaN, InN and CdSe, the
shapes of the energy landscapes are similar to that of ZnO as shown in Figure 4.3(a),
(b), (), and (d), respectively and their 2-D sections at b/a = 1.73 and 1.00 are shown
in Figure 4.4(a), (b), (¢), and (d), respectively. The energy difference between HX and
WZ (AE™™"*) and that between RS and WZ (AE®*™) are tabulated in Table 4.1.
For some low pressure or low stress conditions, the enthalpy surface might not have
HX local minimum. In such cases, the c¢/a and b/a defining the HX phase is taken
from the first metastable HX at higher presser or stress. The energies of the three
phases for all compounds except CdSe follow the order of E® > E"™ > EY*. For
CdSe, E® < E™ . This exception can be attributed to the fact that for compounds
such as CdSe with high ionicity, the energy differences between RS, HX and WZ are
relatively small. Therefore, other effects, such as energy cost for bond distortions, can

affect the ordering in energies.



46

H (eV/2-pairs)

n/q

(b) ———————
2202H ZnO bla=100 / 5

204 / il
i ba=1.73 /

-20.6

-20.8

Energy (eV/2-pairs)

10 11 12 13 14 15 16
cla

Figure 4.2 (a) Energy (F) landscape for ZnO (in eV per wurtzite unit cell which
contains 2 cation-anion pairs). Each point on the surface represents the minimum
energy for a given combination of ¢/a and b/a. To obtain each minimum energy, u, v,
and V are allowed to relax while c¢/a and b/a are kept constant. Energy levels above
—20.5 eV are truncated as they are not of interest in the discussions here. (b) 2-D

sections of the energy surface for b/a = 1.73 (solid line) and 1.00 (dashed line).
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Figure 4.3 Energy surface map (in eV/2 pairs) for a wurtzite unit cell of (a) SiC, (b)
GaN, (c¢) InN, and (d) CdSe. Each point on the surface represents the minimum
energy for a given combination of ¢/a and b/a. To obtain each minimum energy, u, v,
and V are allowed to relax while c¢/a and b/a are kept constant. Energy levels above a

certain value for each plot are truncated as they are not of interest in the discussions.



Enthalpy (eV/2-pairs)

"4
bla=173 ¢

7/

”
’,/ \
b/a =1.00

25

Enthalpy (eV/2-pairs)

P o

bla=1.73 5

//
o TR \
b/a=1.00

Enthalpy (eV/2-pairs)

27—
28 (b) GaN )
i Lol b g | o] 5|
1.6 1.0 1.2 1.4 1.6
c/a
-12
R /
bla=1.73 /

Enthalpy (eV/2-pairs)

1.0 1.2

1.4

RS

(d) CdSe
"l 0 Y I O |

1.6 1.0

1.2 1.4 1.6
c/a

48

Figure 4.4 2-D sections of (a) SiC, (b) GaN, (c¢) InN, and (d) CdSe energy surfaces

for b/a = 1.73 (solid lines) and 1.00 (dashed lines).

Table 4.1 Energy difference (eV per 2 pairs) between HX (or RS) and the WZ

structure. The Phillips’ ionicity parameters (f;) are also listed. (Phillips, 1970)

Compounds  Phillips’ fi E™-EY?(ev) ER-EW4(ev)
SiC 0.177 2.53 2.74
GaN 0.500 1.32 1.74
InN 0.578 0.61 0.78
ZnO 0.616 0.26 0.41
CdSe 0.699 0.44 0.30
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Figure 4.5 Correlation between the formation energy differences (AE) and the
ionicity as quantified by Phillips’ f; for SiC, GaN, InN, ZnO and CdSe. AE®*"* is
shown with the solid line and AE™"” is shown with the dashed line. For all

compounds, WZ has the lowest energy and RS has the highest energy, except for

CdSe whose RS phase has a slightly lower energy than HX phase.

There are significant variations of AE™ " or AE®™ among the compounds,
partly reflecting differences in the ionicity. Several indexes are available to describe
the ionicity of materials. Phillips’ ionic scale (f;) (Phillips, 1970) which has the range
between 0 (the least ionic) and 1 (the most ionic) is used here by choice. The values
of f; for the compounds studied here are listed in Table 4.1.(Phillips, 1970) The
variations of AE™ Y and AE® ™ with f; are shown in Figure 4.5. For RS,

AE®™Y (solid line) decreases monotonically as f; increases. For HX, AE™ "

(dashed line) decreases monotonically with f; (except for CdSe). This is expected



50

because compounds with higher levels of ionicity can significantly lower their
energies through increases in C.N. While ionicity is not the only factor that
determines the relative stability of crystal structures, it clearly affects the stability of
structures. For covalent compounds (e.g., SiC and GaN), the structure with four-fold
coordination is highly favored, resulting in the large differences between the
formation energies of RS (6-fold) and WZ (4-fold) and between HX (5-fold) and WZ.
On the other hand, for a compound with higher level of ionicity, the differences in
formation energies among RS, HX and WZ are lower. In this paper, only some ionic
compounds that have four-fold coordinated structures (WZ) under ambient conditions

are studied.

Table 4.2 Percentage changes in ¥ (volume), lattice parameters b and c as the crystal
structure changed from WZ to HX and WZ to RS for all five compounds. The

conditions that stabilize each phase are given in parentheses.

Compounds WZ (0=0)>HX (o =-0) WZ (p =0) >RS (p =p)
AV (%) Ab (%) Ac(%)  AV(%)  Ab(%)  Ac (%)
SiC -5.0 8.7 -19.9 -20.0 -24.2 -19.5
GaN -4.5 9.0 -19.4 -18.2 -23.8 -18.6
InN -6.1 7.9 -19.5 -19.2 -24.3 -18.6
Zn0O -3.4 8.8 -18.6 -16.5 -23.5 -17.7

CdSe -4.4 9.1 -19.7 -22.6 -25.0 -20.4
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Figure 4.6 Schematic illustrations of the WZ, HX, and RS structures: small spheres
represent anions and large spheres represent cations. The middle and bottom rows
show top view and side view, respectively. Parameters a, b, ¢, u, and v are indicated.

For realistic rendering, the images shown are drawn to scale using parameters for ZnO
at equilibrium conditions, i.e., ambient pressure for WZ, o =-c™ for HX and p = p*
for RS. AV, Ab, and Ac are the percentage changes in V' (volume), b and ¢ relative to

the same quantities for WZ. (The figure is a reproduction of Figure 1 in our published

paper (Sarasamak et al., 2008).)
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4.3.2 Hydrostatic compression

Sufficiently high pressures can cause the WZ structure to collapse into the denser
RS phase. As shown in Figure 4.6, the volume of the RS structure is ~17% smaller
than the volume of the WZ structure (AV = —0.17V,, with V; being the equilibrium
volume of WZ). Although, the figure uses ZnO as an illustrated case, other
compounds show similar changes in the volume (see Table 4.2). For a given constant
pressure p, the difference in contributions to enthalpy by mechanical work between
RS and WZ is approximately pAV (neglecting the difference in bulk moduli of the
two phases). If p is sufficiently high, mechanical work can overcome the formation
energy difference, driving the transformation forward. Figure 4.7 shows
AH®™Y = H® —HY and AH™ Y = H™ — H" as the functions of p for the five
compounds studied. The rather linear trends confirm that the bulk moduli of the WZ,
HX, and RS phases are quite comparable. The slight deviation from linearity of
AH®™ reflects the fact that the bulk modulus of RS is somewhat higher

(approximately 25%) than that of WZ. Note that the slope of the AH™™" line is ~5

times that of the AH™ V* line, consistent with the fact that the volume decrease
associated with the WZ—RS transformation (17%) is approximately 5 times of that

associated with the WZ—HX transformation (3.6%).

The equilibrium pressure p* between the WZ and RS structures (the pressure at
which the enthalpies of RS and WZ become equal) can be obtained by examining the
enthalpy surfaces at several pressures. This pressure is identified with the intercept of

the enthalpy curve with the horizontal axis in Figure 4.7. From the figure, the

AH"™Y* line does not intercept the horizontal axis for all five compounds over the
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pressure range analyzed. Obviously, HX is not a thermodynamically stable structure

under hydrostatic compression.
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Figure 4.7 Enthalpy differences (AH), in the unit of eV/2-pairs, between RS and WZ
(solid line) and between HX and WZ (dashed line) as a function of hydrostatic
pressure for (a) SiC, (b) GaN, (c) InN, (d) ZnO and (e) CdSe. As the pressure reaches
the equilibrium point (p°Y, indicated by solid dots), the enthalpies for RS and WZ
become equal. Above p®, RS turn to be more stable. Note that HX is never stable

under hydrostatic loading.
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Figure 4.8 Enthalpy surface maps (in eV/2 pairs) for a wurtzite unit cell of (a) SiC,

(b) GaN, (c) InN, (d) ZnO and (e) CdSe at their respective RS-WZ equilibrium

pressures (p°9).
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Figure 4.9 2-D sections of the enthalpy surface maps in Figure 4.8 for b/a = 1.73

(solid lines) and 1.00 (dashed lines).

The enthalpy surfaces of SiC, GaN, InN, ZnO and CdSe at their equilibrium
pressure, p°Y, are shown in Figure 4.8 and their corresponding 2-D sections are shown
in Figure 4.9. At p < p®, WZ has the lowest enthalpy. As p is increased above p®, RS
has a lower enthalpy than WZ. p® depends strongly on the ionicity of the compound.
This 1s expected because the initial energy difference between WZ and RS
(AE®™Y* = E®® — E™) depends on the ionicity of the compound (from AE®™ =
2.74 eV for SiC to 0.30 eV for CdSe). SiC has the highest AE®*™“* and therefore the

highest p* (64.9 GPa). CdSe has the lowest AE®>™* and therefore the lowest p*I (2.2
GPa). The equilibrium pressures of the five compounds are listed in Table 4.3. Our
calculated equilibrium pressures are in good agreement with other calculated results

in general. To compare with experiments, one should not directly compare the
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calculated equilibrium pressure with either the critical pressures of the upward or
downward WZ to RS transformations. This is because there is a transformation
barrier between the two phases that causes the upward critical pressure to be higher
(and the downward critical pressure to be lower) than the equilibrium pressure.
(Mujica et al., 2003; Limpijumnong and Jungthawan, 2004) The averages between
the upward and downward critical pressures, shown as p; in Table 4.3, are shown as
an approximate experimental equilibrium pressures and are in good agreement with

the corresponding calculated equilibrium pressures.
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Table 4.3 Equilibrium pressure, transformation barrier, and stresses for SiC, GaN, InN,
ZnO and CdSe for the WZ—RS and WZ—HX (WZ—DHX) transformations. p* is the

hydrostatic pressure that establishes the equilibrium between the WZ and RS structures
and p; (exp) is the corresponding experimental value. —c:* (o,?) is the value of the
compressive (tensile) force per unit area along the c-direction (b-direction) at which the
WZ and HX (DHX) structures are in equilibrium. For CdSe, although —o* =3.8 GPa
provides equilibrium between the WZ and HX phases, the RS phase has lower enthalpy
(hence more stable) under this condition. The transformation enthalpy barrier in eV/2-

pairs between the WZ and RS phases at a given equilibrium pressure are given in

square brackets following p in the same column.

RS HX DHX
Compounds — cq (Gpy) %9 (GPa) p: (GPa) . "
-0, (GPa) o, (GPa)
(present) (other) (exp)
SiC 64.9 [1.26] 60, 66.6,° 66,° 92¢ 67.5° 60.5 -
GaN 44.1[0.76] 51.8,142.98 522,031 30.5 -
InN 12.2[0.51] 21.6,11.1¢ 10 12.1 9.6 14.7
ZnO 8.2 [0.30] 6.6,59.3'8.0™ 5.5"8.5° 6.0 10.8
CdSe 2.2 [0.40] 2.5 2.1 3.8 5.8

*DFT (GGA) calculations by Miao and Lambrecht (Miao and Lambrecht, 2003).

"DFT (LDA) calculations (of zincblende to RS) by Karch et al. (Karch et al., 1996).

‘DFT (LDA) calculations (of zincblende to RS) by Chang and Cohen (Chang and Cohen, 1987).

YDFT (B3LYP) calculations (of zincblende to RS) by Catti (Catti, 2001).

*Synchrotron angle dispersive x-ray diffraction (ADX) experiment by Yoshida et al.
(Yoshida et al., 1993).

'DFT(LDA) calculations by Christensen and Gorczyca (Christensen and Gorezyca, 1994).

¢DFT (LDA) calculations by Serrano et al. (Serrano et al., 2000).

FADX experiment by Ueno et al. (Ueno et al., 1994).

'Synchrotron energy-dispersive x-ray diffraction (EDX) by Xia et al. (Xia et al., 1993).

'Synchrotron EDX experiment by Xia et al. (Xia et al., 1994).

“DFT (LDA) calculations by Jaffe et al. (Jaffe et al., 2000).

'DFT (GGA) calculations by Jaffe et al. (Jaffe et al., 2000).

"DFT (GGA) calculations by Ahuja et al. (Ahuja et al., 1998).

"Synchrotron EDX experiment by Desgreniers. (Desgreniers, 1998).

°Synchrotron EDX experiment by Recio ef al. (Recio et al., 1998).

PDFT (LDA) calculations by Coté et al. (Coté et al., 1997).

9EDX experiment by Cline and Stephens (Cline and Stephens, 1965).
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To gain insight on the transformation enthalpy barrier, we extracted the
homogeneous transformation barrier (in the unit of eV/2-pairs) of these five
compounds and tabulated in Table 4.3 inside the square brackets. The barrier for ZnO
of 0.30 eV/2-pair is the same as previously reported value. (Limpijumnong and
Jungthawan, 2004) The barrier for SiC and GaN of 1.26 and 0.76 eV/2-pairs are in
good agreement with the calculated values reported by Miao and Lambrecht (Miao
and Lambrecht, 2003) (for SiC) of 1.2 eV/2-pairs and by Limpijumnong and
Lambrecht (Limpijumnong and Lambrecht, 2001a) (for GaN) of 0.9 eV/2-pairs. We
can see that the magnitude of the barrier increases with the zero pressure energy
difference between phases (AE™ "), hence, the ionicity. The detail investigation of

the barriers will be a subject of further study on more compounds in the future.



59

70 B T Ll T Ll Ll T 1 T I L Ll L] T I T L Ll L L] T Ll T | T Ll T Ll i
60F 20 8iIC
sof ré 3

- GaN .* ]

é: 40) B ,,’ =
= e -~ -
Ta 30F ]
20 /” R
g i e =N -
“CdSe,”” ]

() [ 1 L ? L | L 1 L 1 I L L 1 L I 1 L L 1 | 1 1 L 1 | 1 L 1 L ]

0 0.5 I 15 2 25 3

S-WZ
AESV (ev)

Figure 4.10 Correlation between equilibrium hydrostatic pressure (p*?) and the difference
in energy (AE) between the RS and WZ phases of the five compounds. p* is the pressure
at which the WZ and RS structures are in equilibrium as illustrated in Figure 4.7 and
tabulated in Table 4.3. The energy difference AE®*™* = E®® — EY* is calculated under the

conditions of zero external loading and is tabulated in Table 4.1.

Figure 4.10 shows the relationship between equilibrium pressure and the initial
energy difference. An approximately linear dependence of p* on AE"*™ is seen.
The linear fit gives

P = 25.97(AE® )~ 4.68 (4.3)
with the units of p* and AE®*™"* in GPa and eV/2-pairs, respectively. This approximate
universal relationship can be used to estimate the difference in formation energy of the

RS and WZ phases when the equilibrium pressure is known, or vice versa.
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4.3.3 Uniaxial compression along the [0001] direction

HX has a lattice constant ¢ significantly shorter (~19%) than that of WZ in the
[0001] direction as illustrated in Figure 4.6. Although, the figure uses ZnO as an
illustrated case, other compounds show similar changes in lattice constant ¢ (see
Table 4.2). This difference allows WZ to transform into HX via compression in the c-
direction. Under constant compressive stress —o. (negative sign indicates
compression), the mechanical contribution to the enthalpy difference between WZ

and HX is -4, xo,Ac, where Ac = —0.19¢c. A sufficiently high —o. would allow

mechanical work to offset the energy difference between HX and WZ, leading to the

transformation into the HX structure.

The stability of the HX phase can be analyzed through the enthalpy difference
AH™N = ™ — HY* as a function of the compressive stress along the c-direction
(dashed lines in Figure 4.11). If the elastic moduli of HX and WZ along the c-
direction are assumed to be equal, AH would vary linearly with —o. with an
approximate slope of A,Ac = —0.19 (abc/2) = —0.19V. Figure 4.11 also shows the
enthalpy difference between RS and WZ, AH"*"* = H* — H™ (solid lines). Note
that AH"™ Y and AH">™ show similar trends, with similar slopes. This is because
for the WZ—RS transformation Ac/c = 18%, while or the WZ—HX transformation

Ac/c = 19%.
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Figure 4.11 Enthalpy differences (AH) between the RS and WZ (solid line) and HX

and WZ (dashed line) as a function of c-direction stress (—o,) for (a) SiC, (b) GaN,

(c) InN, (d) ZnO and (e) CdSe. As the magnitude of the stress reaches the equilibrium

value (—o?, indicated by solid dots), enthalpies of the HX and WZ structures become

comparable. At stresses above—o.*, the HX phase is more stable.



H (eV/2-pairs)

Figure 4.12 Enthalpy surface maps (in eV/2 pairs) for a wurtzite unit cell of (a) SiC,

(b) GaN, (c) InN, (d) ZnO and (e) CdSe at their respective HX-WZ equilibrium c-

direction stresses (-o™).
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Figure 4.13 2-D sections of the enthalpy surface maps in Figure 4.12 for b/a = 1.73

(solid lines) and 1.00 (dashed lines).

The shapes of the enthalpy surfaces for SiC, GaN, InN, ZnO and CdSe at their
respective equilibrium compressive stress —o.' are shown in Figure 4.12 and their
corresponding 2-D section are shown in Figure 4.13. For all compounds except CdSe,
AH"™ Y is always lower than AH**""*  indicating that HX is more stable than RS
under compression in the c-direction. For CdSe, where initially (i.e., under no load
condition) the RS phase has slightly lower energy than HX, AH"*™™ is always
lower than AH"™"* indicating that RS is the preferred structure over HX under
uniaxial compression along the [0001] direction. As a result, the enthalpy surface at
—o.of CdSe (Figure 4.12(e)) is qualitatively different from those of other four
compounds, i.e. the RS phase has lower enthalpy. The equilibrium stress for the

transformation (—o') of each compound is shown in Figure 4.12. At stresses
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below—o:", WZ phase is stable. At stresses above—o:', HX is stable (RS for CdSe).
The values of —o* depend on the initial energy difference (AE) between WZ and HX

and are listed in Table 4.1. For SiC, AE = E"™ — EY*=2.53 eV, the stress required to

cause the HX—WZ transformation is high (-o.* = 60.5 GPa). On the other hand, for
ZnO, AE = 0.26 eV and —c* =6.0 GPa which is only 1/10™ of the stress level

required for SiC. This linear trend is clearly seen in Figure 4.14 which shows —c* as
a function of AE for the compounds analyzed. The linear fit gives

—0% % 25.72(AE™ V)~ 4.56. (4.4)

The coefficients in the equation are based on the units of —¢* and AE™ " in

GPa and eV/2-pairs, respectively. The similarity in the numerical values of
coefficients of Eq. 4.4 and Eq. 4.3 is fortuitous. Note that the WZ-HX homogeneous
transformation enthalpy barrier is significantly lower than that of WZ-RS, i.e. always
less than 0.1 eV/2-pairs for all compounds studied except SiC. (For SiC the barrier is

only slightly higher, i.e. 0.13 eV/2-pairs.)
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Figure 4.14 Correlation between equilibrium stresses (—o.' and o;') and the
difference in energy (AE) between the HX and WZ phases for the five compounds.
—o.1 (o0,') is the equilibrium value of the c-direction compressive stress (b-direction
tensile stress) for the HX (DHX) and RS structures (see Table 4.3). The energy

difference AE™VY2 = F"™ _ EY% s calculated under conditions of zero external

loading and is tabulated in Table 4.1.
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4.3.4 Uniaxial tension along the [OliO] direction.

The HX structure has a longer dimension in the [0 IIO] direction compared to the

WZ structure (longer by approximately 9%, see Figure 4.6 middle column). Although,
the figure uses ZnO as an illustrated case, other compounds show similar changes in

lattice constant b (see Table 4.2). This difference allows WZ to transform into DHX
via tension in the b ([OliO]) direction. Note that the difference in b between the two

structures is only about half of the difference in c. Accordingly, the mechanical

enthalpy contribution 4, xo,Ab is roughly half of the case of c-compression for the

comparable stress magnitude. Only three (InN, ZnO and CdSe) out of the five
compounds studied have a local minimum corresponding to the DHX structure under

tensile loading along the b direction. The enthalpy surfaces for these three
compounds at their equilibrium tensile stresses o,* are shown in Figure 4.15 and their
2-D section plots are shown in Figure 4.16. The plot between the enthalpy differences
AHPPN = P — Y as functions of tensile stress o, are shown in Figure 4.17.

The equilibrium tensile stress o, (14.7, 10.8 and 5.8 GPa for InN, ZnO and CdSe,

respectively) is approximately twice the equilibrium compressive stress —o:* for the
c-direction. Empirical potential based molecular dynamic (EP-MD) simulations have
shown that under tensile loading, [OliO] -oriented ZnO nanowires can indeed

transform into the DHX structure under tensile loading (Kulkarni et al., 2006). The

nanowires can sustain tensile stresses up to 14 GPa before failure, which is well above

the equilibrium stress o, predicted here. The equilibrium transformation stress of

o, = 5.8 GPa for CdSe is the lowest among the compounds studied. For
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nanostructures, other factors such as surface effects may contribute to facilitate the
WZ—HX transformation (Grunwald et al., 2006). As a result, HX can emerge as an
intermediate phase during a WZ—RS transformation in CdSe nanorods (Grunwald et

al., 2006), even though it does not have the lowest enthalpy in the bulk calculations.

The relationship between o7 and AE"™ Y = EP™ — E™is shown Figure 4.14.

Note that the tensile stress o,?of CdSe may be higher than its fracture strength.

Figure 4.15 Enthalpy surface maps (in eV/2 pairs) for a wurtzite unit cell of (a) InN,

(b) ZnO and (c) CdSe at their respective DHX-WZ equilibrium stresses along b-

direction (o,*).

T T T T 1242

-30.0 {— — bla=195_ .
— bla=2.2

| | | | | | | | | | |
— bla=195] 176} — bla=2.0

— bla=20 —bla=2.1

243+
—4-17.7

Enthalpy (eV/2-pairs)

244 — -
: L -17.8
I 4 245 DHX WZ_|
30.6 | | | | | | | | | | | -17.9
10 11 12 13 14 15 16 1.0 1.1 1.2 13 14 15 1.6 1.0 1.1 1.2 13 14 15 1.6
cla cla cla

Figure 4.16 Sections of the enthalpy surface maps in Figure 4.15 for two b/a values

that cut through the DHX and WZ structures.
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Figure 4.17 Enthalpy differences (AH) between the DHX and WZ phases of (a) InN,

(b) ZnO and (c) CdSe as a function of b-direction stress (o, ). As the applied stress
reaches the equilibrium point (o,?, indicated by solid dots), the enthalpy of DHX

equals that of WZ. At stresses above o,?, the DHX phase is more stable.

A local minimum for DHX is not observed in the enthalpy surfaces for SiC and

GaN, even at extremely high theoretical levels of o, (60 GPa for SiC and 30 GPa for

GaN). The enthalpy surfaces plots for SiC and GaN at their ultimate strengths, o,

values (60 GPa for SiC and 30 GPa for GaN) are shown in Figure 4.18. The lack of
transformation in these compounds can be attributed to the fact that their equilibrium

transformation stresses are higher than their respective ultimate tensile strengths

(0, > 0,,). Indeed, EP-MD simulations have shown that for GaN nanowires
o, #30GPa,(Wang et al., 2007) only a fraction of the rough estimation of
equilibrium stress of o, 260 GPa. The o,* of SiC is even higher since it has a

higher energy difference between WZ and HX, making it more likely to have

fractured before reaching its theoretical equilibrium stress of ¢, >120 GPa.
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Figure 4.18 Enthalpy surface maps (in eV/2 pairs) for (a) SiC and (b) GaN at the

tensile stress along b-direction (o, ) of 60 GPa and 30 GPa, respectively.

4.4 Conclusions

First principles calculations are carried out to study the stability of the wurtzite
(WZ), rocksalt (RS) and unbuckled wurtzite (HX) phases of SiC, GaN, InN, ZnO, and
CdSe under loading of different directions. The relative energies between phases of
the compounds correlate with their ionicity. At ambient conditions, WZ has the lowest
energy, HX has the second highest energy and RS has the highest energy (with the
exception of CdSe whose RS phase has a lower energy than its HX phase). All five
compounds have the four-fold wurtzite structure as their stable and naturally
occurring phase. Under hydrostatic compression, the compounds can transform into

the six-fold coordinated rocksalt (RS) structure. Under uniaxial compression along
the [0001] direction and uniaxial tension along the [OliO] direction, the compounds

can transform into the five-fold coordinated unbuckled wurtzite (HX) structure. The

equilibrium conditions for the transformations are outlined.
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For the WZ—RS transformation, the equilibrium hydrostatic pressure (p*?) is
predicted to be 64.9, 44.1, 12.2, 8.2 and 2.2 GPa for SiC, GaN, InN, ZnO, and CdSe,
respectively. These values are in good agreement with other theoretical calculations

and experimental measurements. For the WZ—HX transformation under uniaxial
compression along the [0001] direction, the equilibrium stress (—o:') is 60.5, 30.5,

9.6 and 6.0 GPa for SiC, GaN, InN and ZnO, respectively. For CdSe, uniaxial
compression along the [0001] direction induces a WZ—RS transformation at a stress
of 2.4 GPa instead of the WZ—HX transformation because the formation energy of

RS is lower than HX for CdSe. For the WZ—DHX transformation under uniaxial
tension along the [0 IIO] direction, the equilibrium transformation stress (o,") is 14.7,

10.8, and 5.8 GPa for InN, ZnO and CdSe, respectively. The stress level for CdSe is

close to its fracture limit. No transformation is observed for SiC and GaN under
tension along the [OliO] direction due to the fact that their theoretical equilibrium
transformation stresses are well above their respective ultimate fracture strengths. The

magnitudes of p®, —c, and o," are approximately linearly dependent with the

formation energy differences between the relevant phase of the compounds. Based on
the calculations of five compounds, we established a general linear function between
p°? and RS-WZ energy difference that could be useful for predicting the difference in
formation energy of the RS and WZ phases of other materials when the equilibrium

pressure is known, or vice versa.



CHAPTER V

FIRST PRINCIPLES STUDY OF

ZnO POLYMORPHS

5.1 Introduction

There are three well known polymorphs of ZnO; including wurtzite (W2),
rocksallt (RS), and zincblende (ZB) structures.(Ozgur et al., 2005) WZ structure is the
natural state under ambient conditions. RS structure is stable under high hydrostatic
pressures. ZB structure can only be grown on certain crystalline surfaces of cubic
crystals. So far, the existence of polymorphs other than WZ, RS, and ZB under
various loading conditions has not been extensively studied. Recently, HX structure in

[0110] -orientated nanowires (Heussinger and Frey, 2006) and a body-centered-

tetragonal phase (hereafter referred to as BCT-4) in [0001]-oriented nanowires (Wang
et al., 2007) under uniaxial tensile loading are observed. The similar structures (to
BCT-4) have been reported for carbon (Schultz and Stechel, 1998) and lithium
aluminum oxide (Marezio, 1965). However, for a binary compound this structure is
first studied by us (Wang et al., 2007; Kulkarni et al., 2008). In Chapter 1V, the phase
transformation from the WZ-to-RS and the WZ-to-HX(DHX) structure in ZnO has
been reported. This chapter is devoted to the phase transformations from WZ - to -

BCT-4. Based on first principles calculations, the BCT-4 ZnO is stable under uniaxial
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tensile stress along [0001] direction. This chapter focused on the crystallographic

changes and critical loading condition for the WZ-to-BCT-4 transformation.

5.2 Computational Method

First principles calculations are carried out to evaluate the total energy of ZnO in
the WZ, BCT-4, and their deformed structures. The calculations are based on the
density functional theory (DFT) within the local density approximations (LDA) and
ultrasoft pseudopotentials (Vanderbilt, 1990), as implemented in the VASP code
(Kresse and Furthmuller, 1996). Zinc 3d electrons are treated as valence electrons.
Cutoff energy for the plane wave expansion is 400 eV. The k-point sampling set is
based on a 7x7x7 division of the reciprocal unit cell according to Monkhrost-Pack
scheme (Monkhorst and Pack, 1976) with the I'-point included, which gives

approximately 100 inequivalent k-points.

The stability of each crystal structure can be determined by analyzing enthalpy as

a function of c¢/a and b/a. The enthalpy per a wurtzite unit cell under uniaxial loading
is defined as (Sarasamak et al., 2008)

H(cla,bla)=E(c,b,a,u,v)— A4, x04,, (5.1)

where E is the formation energy per wurtzite unit cell, o; is the stress along the i

direction, g; is the lattice parameter in the i direction, and A is the cross section area

of the unit cell perpendicular to the stress direction. Therefore, 4, xo,q; is external

work. For tension along c axis, i=c, 4, =ab,and g, =c, with o, being the tensile

stress. Note that, in the WZ-to-BCT-4 transformation, a unit contains 8 atoms or 4 Zn-

O pairs (V =abc) is used for the calculations.
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For each c/a and b/a pair, the internal parameters « and v and the unit cell volume
J are allowed to relax so that the configuration that yields the minimum H is obtained.
For a given load condition, the minima on the enthalpy surface with ¢/a and b/a as the
independent variables identifies the corresponding stable structures. However, for
WZ-t0-BCT-4 transformation, b/a is fixed at 1.73. This is because both WZ and BCT-

4 share the same b/a = 1.73. Therefore, only c/a is varied in the range from 1.4 — 2.0.

WZ
[0001]

[0110]
[2110]

(a)

BCT-4
[010]

190 |

[001]

Figure 5.1 (a) Crystallographic transition trough breaking and formation of bonds and
differences in bond angles between the wurtzite (WZ) and and body-centered-
tetragonal (BCT-4) structures and (b) WZ and BCT-4 structures. The red dash box
lines show the cell size with 8 atoms (four Zn-O pairs), for the WZ and BCT-4

structures used for the calculations.
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5.3 Results and discussions

The WZ to BCT-4 transformation occurs through a combination of: (1) The
breaking of every other Zn-O bonds along the [0001] direction (bonds labeled with A
in Figure 5.1(a)) and (2) The formation of an equal number of Zn-O bonds next to the

broken bonds along the same direction (bonds labeled with B in Figure 5.1(a)).

This bond-breaking and bond-formation process repeats on alternate planes along
the [0110] direction. The transformed phase keeps the tetrahedral coordination with
each Zn/O atom at the center and 4 O/Zn atoms are at the vertices of a tetrahedron.
The geometry of the tetrahedron can be characterized through the O-Zn-O bond
angles (ai, i = 1-6), as shown in Figure 5.1(a). For WZ, all bond angles are
approximately equal (o ~ 109°). For BCT-4, however, the formation of 4-atom rings

results in three distinct bond angles (a1 ~ 90°, a» ~ 114°, and a3~ 112°).

As can be seen from Figure 5.1(b), the transformed phase consists of 4-atoms
(2 Zn and 2 O) rings one arranged at the center (of the figure) and another ring at the
corner rotated by 90° relative to the first ring. In each 8-atom, BCT-4 unit cell, there
are two 4-atom-ring clusters (one of each orientation) positioned in a simple
tetragonal primitive lattice. The corresponding cell of 8 atoms for the WZ is shown
for a direct comparison with the BCT-4 cell as well. Figure 5.1(b) shows the lattice

parameters a, b, and ¢ for the WZ and BCT-4 structures.
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Their respective values as obtained from the first principles calculations at various
stress levels are listed in Table 5.1 along with the corresponding cell volumes. For
WZ, the c¢/a and b/a ratio are 1.61 and 1.73, respectively. Throughout the
transformation, the b/a ratio remains at its initial value of 1.73, reflecting the
symmetries of the loading and the lattice. By increasing tensile stress along the c-axis
oc, the c/a ratio increases. The stability of the BCT-4 structure under the tensile
loading along [0001] direction can be explained by its higher c/a ratio compares to
that of WZ. Table 5.1 shows the equilibrium unit cell volume = 91.4 A® and 95.2 A3
(per 4 Zn-O pairs) for the WZ and BCT-4 structure, respectively. The unit cell volume
of the BCT-4 is 4.2% larger than that of the WZ, with the elongation along the [0001]
direction being the primary reason for this volume difference. The ideal BCT-4

structure with lattice parameters a, b, and c is presented in Figure 5.2.
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Table 5.1 Lattice parameters for WZ and BCT-4 ZnO under tensile loading along

[0001] direction for o, =0, 4, 7 and 10 GPa.

Parameters WZ BCT-4
p=0GPa o—=0GPa o0.=4GPa o.=7GPa 0.:=10GPa
3.21 317
a(A) (3.20,93.25°¢ 48 3.13 3.09 3.06
3.26, 3.29% (3.24%)
5.54 5.48
bA) (5.679) (5.589) 5.42 5.35 5.32
5.15
d f 5.48
c(A) (5'157'1759')22’ (5.529) 5.71 5.87 5.98
91.4
_ 3 2on e 95.2
V=abe (R) g”g’; ’f 99644%’) (99.89) 96.9 97.0 97.3
y 1.61 1.73
“a (1.59%) (1.719) 1.82 1.90 1.95
y 1.73 1.73
4 (1.739) (1.729 1.73 1.73 1.73

®DFT (GGA) calculations by Jaffe et al. (Jaffe et al., 2000).

®Synchrotron EDXD experiments by Desgreniers. (Desgreniers, 1998).
“XRD experiments by Karzel et al. (Karzel et al., 1996).

IDFT (LDA) calculations by Malashevich and Vanderbilt (Malashevich and

Vanderbilt, 2007).

*DFT (GGA) calculations by Ahuja et al. (Ahuja et al., 1998).
'EXAFS experiments by Decremps et al. (Decremps ef al., 2003).
9MD simulation by Wang et al. (Wang et al., 2007).
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Figure 5.2 Crystal model of the BCT-4 structure: small spheres represent anions and
large spheres represent cations. The top figure shows the perspective view. The
middle and bottom rows show top view and side view, respectively. The distances

described by crystal parameters a, b, and ¢ are indicated.
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Figure 5.3 Enthalpy (eV/ 4 Zn-O pairs) as a function of ¢/a obtained from first
principles calculations for b/a = 1.73 at tensile stresses of (a) o. = 0 GPa, (b) o, = 4
GPa, () o, = 7 GPa and (d) o. = 10 GPa. The minimum enthalpy curve for each plot

is shown with the thick solid green line.
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The relative favorability of the two structures is studied by calculating the
enthalpies. Because both WZ and BCT-4 share the same b/a ratio at 1.73, it is not
necessary to vary this parameter for the study of relative phase stability. The
enthalpies are shown by the 2-D section plot at 5/a=1.73. Figure 5.3 shows the
enthalpy values for both the WZ and BCT-4 structure with b/a = 1.73 at the tensile

stresses of o.=0 GPa, 4 GPa, 7 GPa and 10 GPa. At any stress level, each structure

has its own enthalpy minimum. The first minimum (H"*), at 0.=0 GPa is in the

min
vicinity of ¢/a ~1.6 which corresponds to the WZ structure and the second minimum

(HET*) is in the vicinity of ¢/a ~1.7-1.9 which corresponds to the BCT-4 structure.
At zero stress, the WZ is stable crystal structure and its enthalpy is lower than that of
the BCT-4 by 0.3 eV as shown in Figure 5.3(a). Because the two phases (WZ and
BCT-4) are differed by the vertical bonds formations, the transformation from WZ-to-
BCT-4 involves the bond-breaking and bond-formation that are the internal change
inside the cell and are not directly affected by the changes in external parameter c/a.
Varying c/a alone does not cause the spontaneous transformation from WZ to BCT-4.
Therefore, in the calculations, both phases can be stabilized at the same c¢/a (for e.g.
c/a in the range 1.6 — 1.8). In reality, there would be a transformation to the lower
enthalpy phase, providing that the transformation barrier can be overcome. The
minimum enthalpy curve for each plot in Figure 5.3 is shown with the thick solid
green line. The kink is the expected transformation point. In reality, there might exist
considerable hysteresis (the transformation occurs after the change in c¢/a passed the
kink point in both forward and backward transformation) due to the large barrier

associated with the bond-breaking/formation processes. As the stress is increased to 4

GPa (Figure 5.3(b)), the difference in enthalpies decreases, and at a stress of 7 GPa
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(Figure 5.3(c)), the two minima, H\*and HE-"* become comparable, indicating that
the WZ and BCT-4 are equally favored. However, as mentioned above, there is a
transformation barrier (expected to be large due to the bond breaking/formation)
prohibiting the spontaneous transformation. This value of stress corresponds to the

equilibrium transition stress for the two structures. At the stress of 10 GPa (Figure

5.3(d)), the enthalpy of the BCT-4 is lower, and this structure is clearly favored.

5.4 Conclusions

The first principles calculations are carried out to study the stability of the
wurtzite (WZ), the rocksalt (RS), the unbuckled wurtzite (HX) and the BCT-4 phases
of ZnO under different loading conditions. The stability of the RS and HX structures
has been presented in Chapter I1V. This chapter focused on the stabilities of WZ and
BCT-4 structures. We found that the WZ to BCT-4 transformation can occur under
uniaxial tension along the [0001] direction and estimated the equilibrium transition
stress (o:') to be about 7 GPa. A large hysteresis in the upward/downward
transformation is expected due to a large barrier in bond breaking/formation during
the transformation. The identification of the BCT-4 crystalline structures and the
characterization of the WZ-to-BCT-4 phase transformations lead to a more complete

understanding of the nature of polymorphism in ZnO.



CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH

In this thesis, some mechanical properties of some semiconductors in group-1V
(SiC), group-III-V (GaN and InN), and group-II-VI (ZnO and CdSe) are calculated by
utilizing the first principles (or ab initio) method. The crystal properties such as the
phase stability and phase transformations under different loading conditions are
calculated for the aforementioned materials. The results from our study are illustrated

as following:

The stability of the wurtzite (WZ), rocksalt (RS), and unbuckled wurtzite (HX)
phases of SiC, GaN, InN, ZnO, and CdSe under different loading directions is
investigated. The phase transformations from WZ-to-RS structure and WZ-to-HX
structure are systematically studied by considering the enthalpy surfaces and enthalpy
barriers between the different structures. Under ambient conditions, the WZ-structure
has the lowest energy for these compounds, the HX-structure has the second highest
energy and the RS-structure has the highest energy. This is with the exception of
CdSe, where the RS-structure has a lower energy than the HX-structure. Under
sufficiently large hydrostatic compression, the WZ-structure can transform into the

RS-structure. Under a uniaxial compression along the [0001] crystalline direction or a
uniaxial tension along [OliO] crystalline direction, the WZ-structure can transform

into the HX or DHX structure.
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Based on first principles calculations, the critical pressures of transformation are
calculated and found to be in good agreement with available experimental results.

The equilibrium conditions for the transformations are outlined.

For the WZ—RS transformation, the equilibrium hydrostatic pressures (p°?) are
predicted to be 64.9, 44.1, 12.2, 8.2 and 2.2 GPa for SiC, GaN, InN, ZnO, and CdSe,
respectively. These values are in good agreement with other theoretical calculations
and experimental measurements (Sarasamak et al., 2008).

For the WZ—HX transformation under uniaxial compression along the [0001]
direction, the equilibrium stresses (—o.!) are 60.5, 30.5, 9.6 and 6.0 GPa for SiC,
GaN, InN and ZnO, respectively. For CdSe, uniaxial compression along the [0001]
direction induces a WZ—RS transformation at a stress of 2.4 GPa instead of the
WZ—HX transformation because the formation energy of RS is lower than HX in this
particular compound.

For the WZ—DHX transformation under uniaxial tension along the [0 110]
direction, the equilibrium transformation stresses (o, ) are 14.7, 10.8, and 5.8 GPa
for InN, ZnO and CdSe, respectively. No transformation is observed for SiC and GaN
under tension along the [0 liO] direction due to the fact that their theoretical
equilibrium transformation stresses are well above their respective ultimate fracture
strengths (Wang et al., 2007; Sarasamak et al., 2008). The magnitudes of p*l, -4,
and o, are linearly promotional with the formation energy differences between the

relevant phases.

For ZnO, a novel structure, body-centered-tetragonal with 4 atoms ring (BCT-4) is

predicted to be stable under tension along [0001] direction. This structure has never
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been reported for a binary compound before. For the WZ—BCT-4 transformation
under uniaxial tension along the [0001] direction, the equilibrium stress (o.*) is

approximately 7 GPa. The identification of the BCT-4 structure and the
characterization of the WZ-to-BCT-4 phase transformation lead to a more complete
understanding of the nature of polymorphism in ZnO.

There is another ongoing project on the study of pressure dependences of the
elastic constants in compounds with the WZ-structure. In our calculations, the
elasticities under pressures are carried out by using the linear muffin tin orbital
(LMTO) codes developed by M. Methfessel ef al. (Methfessel et al., 2000). The codes
are based on the full potential linear muffin tin orbital method (FP-LMTO) in local
density approximations. The energy as a function of various strains is calculated.
Application of traceless (volume conserving) strains in the various directions provides
the elastic constants. The six independent elastic constants for wurtzite structure are
extracted. The calculations are repeated for varied unit cell volumes, and from the
calculated pressure-volume relation, the elastic constants are obtained as a function of
pressure (details in the elastic properties such as the stress-strain relation in WZ-
structure can be seen in Chapter III).

The focus is on the behavior of the elastic moduli (Cjj) as a function of pressure.
The two longitudinal modes, C;; and C33, are increased with pressure as shown in
Figure 6.1 (left column). For the shear modes, there is no common trend. The trends
are varied depending on compounds as shown in Figure 6.1 (right column).
Moreover, we observed that the high pressure crystal phase transformation from
wurtzite to rocksalt relates to an orthorhombic strain with two components (1) a

traceless compression along the [0001] axis corresponding to the longitudinal mode
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and (2) a traceless compression along [01 10]direction corresponding to the shear

mode.

To study the elastic constants under pressure, first we calculated six elastic
constants in WZ-structure for each compound at the equilibrium volume. The
agreement between the calculated value and experiment is satisfactory (Table 6.1).
For the structures under pressures, the elastic constants are calculated at several
reduced volumes, each of which corresponds to the system under pressure. The
corresponding pressure is obtained from the slope of the energy-volume curve at each

volume used for the calculation.
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Table 6.1 The bulk modulus(B,)and the elastic constants (Cjj) in unit of GPa, of

WZ — SiC, GaN, InN, ZnO, and CdSe at P = 0 GPa.

[75]
©
5
8 sic GaN InN ZnO CdSe
&
@)
162
229 207 151 . . 60.1
Bo (220%)  (210,°207,°202% (14751419 (1315,162.3, (53.4)
133.7%)
c 541 367 232 228 80.5
T (501%)  (390,396,°367%)  (271,°2239 (231,°207" (74.9,"74.6"
c 117 135 115 133 472
20 (111%)  (145°144,°135%  (124.° 1159 (111,°118% (46.09," 46"
c 61.1 98 95.8 118 399
B (52%) (106, 100,°103%  (94.°92% (104.° 104" (39.26, 39"
c 586 409 239 232 91.9
3 (553" (398,°392,°405%  (200,° 224% (183.,° 209" (84.51," 81"
c 162 97.9 52.4 40.0 149
# (163"  (105,°91,°959 (46,° 48%) (72,° 44.1% (13.15,0131
c 212 116 58.8 47.1 167
66 (195%  (122.5°126,°116%  (73.5,°54% (60, 44.5% (14.41,14%

*(Kamitani ef al., 1997)
®(Polian et al., 1996)
‘(Kim et al., 1994; Kim et al., 1996)
d(Wright, 1997)

‘(Zaoui and Sekkal, 2002)
'(Carlotti et al., 1995)
¥(Jaffe et al., 2000)
"(Cline et al., 1967)
'(Rabani, 2002)
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Figure 6.1 The elastic constant as function of pressure in WZ-SiC. GaN, InN, ZnO, and

CdSe. The black, red, blue, and green color represented C;, Cs3, Cag, and Ceg, respectively.
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This work improves current understanding of the elastic constants under pressure.
The results show that both of the longitudinal modes, C;; and Cj33, increase with
pressure for all compounds, as shown in the left side of Figure 6.1. For SiC, GaN, and
InN, Cs4 monotonously increase with pressure. On the other hand, for ZnO and CdSe,
Cu4 1s slightly decreased with pressure. The depending with pressure of Cgs is more
complicated. For SiC and GaN, Cgs increase with pressure at low pressure and drops
at high pressures. For InN, ZnO, and CdSe, Cec tend to decrease with pressure. For all
compounds studied, Css and Cgp curves are crossed (show with red solid dots in the
right side of Figure 6.1). We observed that the crossing point of Css and Ces occurs
near the WZ-RS equilibrium transformation pressures but on the higher side. The
crossing points are 130, 65, 18, 8.3, and 4.8 GPa, for SiC, GaN, InN, ZnO, and CdSe,
respectively. These values are larger than the calculated equilibrium transition
pressures, except for ZnO, where the value is comparable. However, for GaN, InN,
Zn0O, and CdSe the actual transformation pressures observed experimentally are
generally higher than the calculated values (Ueno et al., 1994; Kumar et al., 2007;
Wang et al., 2007). This has been attributed to the transformation barrier (Mujica et
al., 2003). As a result, the experimental transformation pressures occur close to the
Cu4-Ces crossing point. In SiC, the crossing point is about two times larger than our
calculated equilibrium transformation pressure. However, this value is quite close to
the value from recent ab-initio study by Durandurdu (Durandurdu, 2007), where the
pressure induce phase transition in WZ-to-RS is found to be 100 GPa. Since high
quality WZ-SiC is difficult to grow, the WZ-RS phase transition has not been
experimentally studied. However, there is some experimental studies in the pressure

induce phase transition of SiC by x-ray diffraction measurements. For example,
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Yoshida et al. found that SiC can transform from zincblende (ZB) to RS at the
pressure ~100 GPa (Yoshida et al., 1993).

There is another project being carried out on the investigation of the phase
transformation in LiAlO,. The total energies has been calculated by the projector
augmented wave (PAW) method (Blochl, 1994) as implemented in the VASP code
(Kresse and Furthmiiller, 1996; Kresse and Furthmiiller, 1996; Kresse and Joubert,
1999). The codes are based on density functional theory within the generalized
gradient approximation (GGA). This lithium compound has potential applications in
the energy industry as lithium battery cathodes (Ceder et al., 1998) and electrolyte
tiles for molten carbonate fuel cells (MCFC) (Takizawa and Hagiwara, 2002). It has
been reported that LiAlO, has at least four different types of crystal structures, the
hexagonal a-phase (Marezio and Remeika, 1966), the monoclinic £ - phase (Marezio
and Remeika, 1966; Zou et al., 2006), the tetragonal y~-phase (Marezio, 1965), and the
tetragonal 0 - phase (Li et al., 2004). The y - LiAlO, is a promising substrate for GaN-
based laser diodes. This is because the lattice mismatch between LiAlO, and GaN is
only 1.4% (Xu et al., 1998). We investigate the y - and ¢ - phases. The illustrations of
both phases are shown in Figure 6.2. The unit cells used for the calculations are
shown in Figure 6.3. The properties of both phases and the equilibrium transformation

pressure between them are briefly summarized as follow.
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Figure 6.2 Schematic illustration of the »LiAlO, and 0-LiAlO, structures: The
middle row and the bottom row show the side view and top view, respectively. The

crystal parameters a and c are indicated.
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Figure 6.3 Unit cells of »~LiAlO; and J-LiAlO; used in the calculations
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Figure 6.4 The total energy as a function of volume for y- and d-phase and the

common tangent construction.
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Table 6.2 The calculated lattice constant a, bulk modulus B, and pressure derivation

of the bulk modulus B’, and equilibrium volume V), for -LiAlO,, and o- LiAlO,.

parameters y- LIAIO; o- LIAIO;
a(A) 5.229 (5.169°) 3.924 (3.887")
¢ (A) 6.332 (6.268") 8.398 (8.300)
B (GPa) 92.2 156
B’ 3.84 3.89
Vo (A% 173 129 (-25.3%)

"XRD-experiment (Marezio, 1965)
®A shock compression technique (Li et al., 2004)

First, we present the results for y - LiAlO, and 6 - LiAlO,, separately. In the
calculations of both phases, c¢/a and volume are allowed to relax. The relaxed crystal
parameters and the total energies are shown in Table 6.2. J-LiAlO, has a smaller
volume than the y —phase. Under ambient conditions, the y -phase is found to be
lower in energy than the J-phase. The calculated y —LiAlO; crystal parameters are in
agreement with the values by Marezio (Marezio, 1965). The energy-volume curve, i.e.
the equation of states for each phase is calculated. The energy-volume curves for both
phases are shown in Figure 6.4. Based on the equation of states, the bulk moduli, its
derivative, and the equilibrium transformation pressure between the y — and the 6 —
phase are calculated. The equilibrium transformation pressure is calculated from the
common tangent between the two equation of states curves. The equilibrium
transformation pressure is 3.3 GPa.

Our results agree quite well with the x-ray diffraction (XRD) study, where they

estimated the minimum pressure required for the y — to 0 — phase transition to be
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about 2 GPa under static compression. (Lei et al., 2008). However, another
experimental results from Li et al. (Li et al., 2004), based on a shock recovery
technique found a much higher transformation pressure, i.e. at pressures above 9 GPa.
The larger pressure of the actual transformation compare to the equilibrium
transformation pressure, especially for the shock wave experiment, is expected and
can be attributed to the transformation barrier. Further experimental results can help
to improve understands of the transformation

All of the results in this thesis show that the first principles calculation can be
used to study many mechanical properties, such as the stability of different crystal
phases, the equilibrium phase transformation pressures, and other properties such as
the elastic constants. The approaches illustrated in this thesis can be applied to study

other materials as well.
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We predict a previously unknown phase transformation from wurizite to a graphitelike (P6;/mme)
hexagonal structure in [0110]-oriented Zn0 nanowires under uniaxial tensile loading. Molecular dynam-
ics simulations and first principles calculations show that this structure corresponds to a distinet minimum
on the enthalpy surfaces of ZnO for such loading conditions. This transformation is reversible with a low
level of hysteretic dissipation of 0.16 J/m?® and, along with elastic stretching, endows the nanowires with

the ability to recover pseudoelastic strains up o 15%.

DOL 100 103/PhysRevLett. 97105502

The assumption of crystal structures by a material re-
flects a complex interplay of intrinsic factors such as com-
position, band structure, valence electrons, bonding states,
and structural symmetry and extrinsic factors such as
temperature and loading. A change in any of these factors
may trigger a transformation 1o a different structure, giving
rise 10 polymorphism which is especially pronounced in
compounds such as ZnO whose electronic bonding states
show significant dependence on applied loading [1]. There
are three hitherto well-known polymorphs of Zn0), includ-
ing wurtzite (WZ, P6yme space group), zinc blende (ZB,
Fa3m) and rock salt (RS, Fm3m) [2]. WZ is the most
stable and commonly observed phase under ambient pres-
sure. ZB can be obtained only on cubic surfaces under
specific growth conditions. RS is the result of a irans-
formation from W2 at pressures between 8-10 GPa
[1,3-8]. This pressure-induced reversible transformation
has received significant consideration primarily because
hydrostatic compression is the most likely mode of loading
for bulk ZnO. Recent work on GaN, MgO, and ZnQ thin
films has revealed a previously unknown unbuckled struc-
ture resulting from exiensive surface reconstructions 1o
suppress surface polarity [9-12]. So far, the existence of
polymorphs other than W2, ZB, and RS al various loading
triaxialities has not been extensively studied.

Recent synthesis of quasi-11D nanostructures such as
0 panowires, nanobelts, and nanorods necessitates
understanding of the response of ¥n0 to uniaxial tensile
loading [13-15]. Since these nanostructures are single-
crystalline and nearly defect-free, they are endowed with
high strengths and the ability to undergo large deforma-
tions without failure. Also, their high surface-to-volume
ratios enhance atomic mobility and promote phase trans-
formations  under loading along  certain - crystalline
directions.

Here, we report a novel phase transformation from W2
1o an unbuckled wurtzite phase (hexagonal, hereafier de-
noted as HX) within the P6;/mme space group during
uniaxial tensile loading of [0110]-oriented Zn0 nanowires
[Fig. 1{a)]. This structure bears both resemblance to and
distinction from the layered structure (LY) [9-12]; see

0031-9007/06 /97(10)/105502(4)
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Fig. 1(c) which compares charge density distributions on
the (1120) planes of W7, HX, and LY. The resemblance is
in crystallography and the distinction is in coordination.
Specifically, a strong bond along the [(XN) ] axis is seen in
HX which occurs throughout the solid wires. In contrast,
this interplanar bond is absent in LY, which extends only a
few layers from the surface beneath which the structure is
predominantly WZ. Therefore, despite the similar geomet-

(2ilo] [o110]

Coordination

w3

[0lig) ———

20 30 40 50

oy g ] 7 e () /AP

l k%, O e 0 ( — 07 e
& ) ( { 1.4 ¢fA?

Lo ——33eAY

(LY)

FIG. 1 {color online).  (a) Wurtzite (WZ) and newly discovered
hexagonal (HX) crystal structures, (b) nanowire with HX and
WZ phases [transformation in progress under tensile loading
(point C in Fig. 2 with a strain of 5.9%)]: and (¢) charge density
plots on the (1120) planes of WZ, HX, and the layered structure
(LY} reported in Refs, [9,10].
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ric symmetries, HX has a higher coordination number (3)
than LY (3). A similar HX phase has been reported as the
natural state of boron nitride (A-BN) [16]. It has also been
predicted as a metastable state of GaN during the WZ —
RS transformation at high pressures [17] and as a stable
phase of MgO under hydrostatic tensile loading [18].

The deformation analysis here uses a quasistatic loading
scheme within the molecular dynamics (MD) framework
([19]) and a Buckingham potential with charge interactions
[20,21]. The parameters of the potential are the same as
those in Ref. [22] and have been shown to accurately
predict the lattice, elastic, and dielectric constants along
with surface and defect properties of ZnQ [20,22 23]. The
nanowire considered has an initial WZ structure with
[0110] growth orientation and (2110) and (0001) lateral
surfaces. The lateral dimensions are 21.22 % 18.95,
31.02 X 29.42, or 40.81 X 39.89 A. Under applied tensile
stress () along the wire axis, gradual transformation into
the HX phase occurs. Figure 1(h) shows a partially trans-
formed 21.22 X 1895 A wire containing both WZ and HX
phases. To ascertain the relative energetic favorahility of
the two phases under loading, their enthalpies are indepen-
dently determined using first principles calculations which
are based on the density functional theory (DFT) as im-
plemented in the VASP code [24], with local density ap-
proximation  and  ultrasoft  pseudopotentials  [25].
Computational parameters such as energy cutoff and sam-
pling k points are the same as those in Ref. [7] which
focused on the WZ — RS transformation of Zn0O and
yielded lattice parameters, bulk modulus, and equilibrium
transformation pressure that are in good agreement with
experiments. For comparison, the emergence of HX as a
stable phase under compressive loading (er.) along the
[0001] axis is also shown.

We first characterize crystallographic changes associ-
ated with the transformation. As shown for the WZ lattice
in Fig. 1{a), three parameters (a, ¢, and u) are typically
used to define hexagonal structures, with #c denoting the
offset between the Zn and O basal planes. Additional
parameters b and v, with vb being the offset between Zn
and O atoms along the [0110] axis, are introduced to

delineate the difference between the HX and RS structures
[7.17]. a, b, and ¢ are the dimensions of the hexagonal unit
cell along the [2110], [0110], and [0001] directions, re-
spectively. Table T lists the lattice constants for WZ, HX,
and RS structures. Note that the parameters for relaxed
wires deviate slightly from the values for ideal bulk WZ
due to surface effects [19,26]. For HX, ¢ = 4.35 A and
u = 0.50 are similar to those for RS; whereas @ = 3.34 A
and v = 0.32 are similar to those for WZ. Since v remains
unchanged, HX has the same hexagonal symmetry around
the ¢ axis as WZ. During the transformation, # changes
from its initial value of 0.38 for WZ to a value of 0.5 for HX
(Table I), implying the flattening of the buckled wurtzite
basal plane (Zn and O atoms becoming coplanar). As a
result, Zn atoms are at equal distances from O atoms along
the [0001] axis and the structure acquires the additional
symmetry of a mirror plane perpendicular to the [D001]
axis. This process occurs while the orientation of the basal
plane remains invariant. The in-plane coordination of the
HX structure is threefold and the full 3D coordination is
fivefold (as compared to the fourfold in WZ). The for-
mation of additional bonds (therefore the increase in coor-
dination) along the [0001] axis can also be seen in the
charge density distributions on (1120) planes in Fig. 1(c).
Obviously, an additional bond is formed between the Zn
atom initially at the top left and the O atom initially at the
bottom in the WZ structure. However, the charge density
map for LY observed in [9,10] does not display such a
strong intraplane molecular bond and the layers therein are
only held together by Coulombic forces between Zn and O
ions. Consequently, LY has a threefold in-plane coordina-
tion. The unusual fivefold coordination and uniform charge
distribution around the atoms in HX and its erystallo-
graphic similarity to RS suggest that the WZ — HX trans-
formation observed here progresses toward an ionic
bonding state with a higher coordination.

Figure 2 shows the tensile stress-strain (or-2) response of
a nanowire with a 21,22 X 18.95 A cross-section at 100 K.
While only data for a particular wire size and temperature
is shown here, the transformation and the characteristics of
the or-& relation are the same for wires with lateral dimen-

TABLE I. Lattice parameters for WZ, HX, and RS under different loading conditions. Select values are highlighted in boldface for
easy comparison across different structures.
WZ HX RS
DFT AP Exp® DFT DFT AF' DFT DET DFT
Parameters . . . . . . . . .
= 0GP oy =0GPa ¢, =0CPa o, =10GPa o, = ~6GPa o, = 10GPa o = 10GPa o, = ~6GPa p = 822 GPa
alh) ] 3 325 312 38 M 31 348 416
B(A) 554 5.66 563 593 5.68 6.24 6.42 6.03 418
v 0.33 032 033 033 034 032 0.32 0.33 0.50
(A} 515 5.30 521 500 452 435 4.18 418 416
u 0.38 0.41 038 0.39 0.30 050 0.50 0.50 050
bia 173 1.76 173 1.80 173 187 185 1.73 Lon
c/a 1.61 1.65 1.60 1.60 1.50 1.30 127 120 1.00

*Analytical Potential
b]_".:r.1:|L:ri.uu:rll [22]

110




Manuscript published in Physical Review Letters

PRL 97, 105502 (2006) PHYSICAL

REVIEW

ST D e week ending
LETTERS 8 SEPTEMBER 2006

15

2122x18.95A
12 100K j
B

Stress (GPa)
(=]

—= | oading
=— Linloading

0 002 0068 008 012 015
Strain

FIG. 2 (color online). Tensile stress-strain response of a
21.22 X 18.95 A nanowire at 100 K during loading-unloading.

The hysteresis loop is relatively small.

sions between 18-40 A and temperatures between 100
1200 K [27]. The region between A and B corresponds to
elastic stretching of the WZ structure. Loading beyond 8
results in a stress drop from 10.02 to 6.98 GPa (B — C) at
& = 5.14%. This softening behavior corresponds to the
nucleation of the HX phase. At this stage, u shows a
precipitous change to 0.5 and the Zn and O basal planes
become coplanar. As the deformation progresses, the trans-
formed region sweeps through the entire wire length (€ —
Dy and the transformation completes at & = 9.71% (o =
9.65 GPa). Further deformation occurs through the elastic
stretching of the transformed structure (HX) and ultimate
fracture occurs at & = 16% (o = 15.29 GPa, not shown)
through cleavage along {1210} planes. Unloading from any
strain prior to the initiation of failure, e.g., point E with
& = 14.5%, is first associated with the recovery of the
elastic deformation within the HX structure (£ — F). A
reverse transformation from HX to WZ (F—= G — H)
initiates at & = 5.77% (o = 4.59 GPa, point F) and com-
pletes at & = 0.6% (o = 1.15 GPa, point H). Unloading
bevond H occurs through elastic deformation within the
WZ structure (H — A). Strains up to 14.5% can be recov-
ered, highlighting a very unusual aspect of the behavior of
Zn0 which normally is quite brittle. Obviously, the large
recoverable strains observed here are associated with a
unique structural transformation process which occurs
only in [0110] nanowires under uniaxial tensile loading.
The energy dissipation associated with the stress-strain
hysteresis loop is ~0.16 J/m®, much lower than that for
the WZ — RS transformation in bulk (~1.38 J/m? with a
maximum recoverable volumetric strain of 17% in com-
pression) [3]. This low level of energy dissipation limits
heat generation and heat-related damage, making the nano-
wires better suited for service under conditions of cyclic
loading and large strains. It is important to point out that
nanowires with other growth directions (e.g., [0001]) do
not show such a phase transformation and are relatively
brittle with failure strains not more than ~7%.

To identify stable crystalline structures under uniaxial
tensile loading along the [0110] direction, we obtained
their enthalpy as a function of ¢/a and b/a for specific

values of stress using DFT calculations. Since the trans-
formation proceeds with the Zn and O basal planes becom-
ing coplanar and a corresponding reduction in ¢, we also
explored the stability of the HX phase under compression
along the [0001] axis. The enthalpy per unit cell (2 Zn-O
pairs) under applied loading is given by

Hic/a bja) = Ele b, a,u,v) — fiq,. (1)

where E is the internal energy, f;q¢; (summation not im-
plied) is the external work, and f; is the uniaxial force per
unit cell. For tension along the b axis, i = b, f, = o, ¥
(ac), and g;, = b. For compression along the ¢ axis, § = ¢,
fe = . (ab),and g. = c. For each pair of ¢/a and b/a,
w, v, and unit cell size a (thus the volume) are allowed to
relax to minimize H. The minima of the Hic/a, b/a)
surface so obtained correspond to stable crystal structures
under the applied stress.
Figure 3 shows the enthalpy surfaces (eV /unit cell) for
o, =7, 10, and 13 GPa (with . = (} GPa) and o, =
6 GPa (with o, = 0 GPa). In each case, there are two
minima. For the tensile loading, the first minimum (*H*%)
is in the vicinity of ¢/a = 1.6 and b/a = 1.9; for the
compressive loading, the first minimum (‘Hﬂi) is in the
vicinity of ¢/a = 1.5 and b/a = 1.732; each correspond-
ing to a WZ structure with lattice parameters slightly
different from those at zero stress (Table 1), The second
minimum in each of these plots corresponds to the HX
phase. For the tensile loading, the second minimum
(*HM%) is in the vicinity of ¢/a = 1.3 and b/a = 1.9;
(a)0,=7 GPaAH=012¢V (b} 0,=10 GPa AH = 0.03 eV

H (V) -
ST

{c) o= -6 GPa AH = 0.01 eV

HeV)
BT @

FIG. 3 (color online). Enthalpy surface maps from DFT cal-
culations for uniaxial tensile stress of {(a} o, =7 GPa,
(b) ey, = 10 GPaand (c) &, = 13 GPa along the b axis and uni-
axial compressive stress of {d) o, = —6 GPa along the ¢ axis.
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for the compressive loading, the second minimum (‘Hﬁ)
is in the vicinity of ¢/a = 1.2 and b/a = 1.732. The
structure at “HM is that observed in the MD simulations
discussed earlier. The difference in lattice parameters ob-
tained from the two modes of loading stems from the fact
that the ratio b/ a is locked at 1.732 by structural symmetry
under compression along the [0001] axis.

At a tensile stress of 7 GPa [Fig. 3(a)], *H2Z is much
lower than “HMX (AH® = PHHX — PHWE < 012 eV),
hence, no transformation takes place. As the stress is
increased to 10 GPa, "'H:r[u?f‘ and J"H:ﬁ become comparable
(AH? = 0.03 eV) and consequently both WZ and HX are
equally favored. At an applied stress of 13 GPa [Fig. 3(c)],
YHYX is lower than *HZ (AH® = —0.05 eV), indicating
that HX is more stable. The transformation barrier between
the two phases of 0.06 eV (0L05 eV if calculated using the
analytic potential) is quite low, compared with the barrier
of ~0.15 eV for the high pressure WZ — RS transforma-
tion |7]. A similar behavior is observed under uniaxial
compression along the [0001] direction. The WZ and HX
enthalpy wells are comparable at o, 6 GPa [AH®
0.01 eV, Fig. 3(d)]. At higher compressive stresses, “HILL
is lower than “HZ, indicating the relative favorability of
HX under such conditions. As the magnitude of either o,
or o is increased above the corresponding equilibrium
transition value, HX becomes more stable and the trans-
formation barrier becomes even lower, resulting in an even
higher driving force for transformation. In summary, the
distinet minima in the vicinities of the HX and WZ struc-
tures on the enthalpy maps obtained through DFT caleu-
lations confirm what is discovered in MD caleulations by
pointing out that (1) HX is energetically favored over WZ
above a critical applied tensile stress value of o), =
10 GPa along the [0110] direction or a critical compressive
stress value of o, = —6 GPa along the [0001] direction
and (2) the barrier for the transformation decreases as
applied stress increases.

HX can result from either uniaxial tension along the
[0110] direction or uniaxial compression along the
0001 ] direction because both cause interatomic distances
in Zn and O basal planes to increase, creating conditions
favorable for the two types of atoms to be accommodated
in a single plane. This process is similar to the fcc — bec
Bain transformation [17]. Phenomenologically, the trans-
formation can be explained by considering the effect of
structural distortion on the nature of bonding. Specifically,
under the external stresses discussed, lattice parameters
change and the interatomic Coulombic interactions favor
ionic states of bonding over covalent states of bonding [2].
For example, hydrostatic pressure can cause the progres-
sion of WZ (moderately ionic) toward RS (highly ionic), a
s shown by both experiments and theoretical analyses
[1,3-8].

Since HX and WZ can have very different properties, the
stress-induced phase transformation may significantly alter
the response of the nanowires. Examples include the

modulation of piezoelectric constant, Seebeck coefficient,
and thermal conductivity [28]. Such effects provide
mechanisms for tuning the response of nanocomponents
in a variety of nano-electro-mechanical systems through
the application of mechanical input.
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We recently reported the discovery of a novel pseudoelastic behaviour resulting
from a reversible phase transformation from wurtzite ( P6smce) to a novel graphite-
like hexagonal (P63/mme) structure in [0110]-oriented Zn0 nanowires under
uniaxial loading [Phys. Rev. Lett. 97 105502 (2006)]. This previously unknown
phenomenon is observed in nanowires and has not been reported for bulk Zn0O.
In this paper, molecular dynamics simulations are carried out to characterize the
tensile behaviour dominated by this transformation of nanowires with lateral
dimensions of 18—41 A over the temperature range of 100-700 K. Significant size
and temperature effects on the behaviour are observed. Specifically, the critical
stress for the initation of the phase transformation, the recoverable strains
associated with the pseudoelasticity and the hysteretic energy dissipation are
found to be both size and temperature dependent and can vary by as much as
59%, 32% and 57%, respectively. The large recoverable strains of 10-16% are
unusual for the normally rather brittle ZnO ceramic and are due to both elastic
stretch and the phase transformation in the slender one-dimensional nanowires.
The hysteretic energy dissipation is in the range 0.05-0.14 GJm™ per cyele and
such low levels are attributed to the relatively low energy barrier for the
transformation. Unlike the psendoclasticity in fec metal nanowires of Cu, Ni and
A, which leads to a novel shape memory effect, the pseudoclasticity quantified
here does not result in a shape memory of ZnO nanowires. The primary reason is
the absence of an energy barrier for the phase transformation at zero stress.

1. Introduction

Pseudoelasticity and the shape memory effect (SME) are traditionally associated
with shape memory alloys and elastomers [1]. Such effects have recently been
discovered in single crystalline metal nanowires as a consequence of their nanoscale
dimensionality [2 5]. We have recently reported a novel pseudoelastic behaviour in
[0110]-oriented ZnO nanowires which arises from a reversible phase transformation
from a tetrahedrally coordinated wurtzite (herein denoted as WZ., Poame space
group) phase to a newly discovered graphite-like phase (herein denoted as HX,
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Posfmmc space group) [6]. This previously unknown five-fold coordinated
polymorph of ZnO can result from either tensile loading along the [(0110] direction
or compressive loading along the [0001] direction. For [0110] nanowires in tension,
recoverable strains, which comprise of the elastic stretching of the WZ and HX
phases and a contribution from the transformation, can be up to 16%. This i1s quite
extraordinary since ionic compound semiconductors such as ZnO, GaN, InN and
BN are known to be brittle under tensile loading. While the ability to undergo a
phase transformation is the primary reason for the unusual pseudoelastic behaviour,
the nearly defect-free nature of these nanowires and the large surface-to-volume
ratios, which enhance atomic mobility, also contribute to the wires’ ability to
undergo deformation without fracture. The high strengths, large recoverable strains
and property variations associated with transformation make these nanowires ideal
candidates for nanocomponents in a variety of nano-electromechanical systems
(NEMS), such as sensors, actuators and switches. Since this pseudoelastic behaviour
has just been discovered in ZnO nanowires that have only been synthesized recently,
a fundamental understanding of the overall constitutive behaviour, the nature of the
phase transformation and the characteristics of the transformed phase is needed in
order to unleash the potential of these nanowires.

In this paper, the pseudoelastic responses of [0110] ZnO nanowires with lateral
dimensions of 21.22 x 18.95, 31.02 x 29.42 and 40.81 x 39.89 A> under quasistatic
tensile loading are characterized. The characterization accounts for temperatures
between 100 and 700K. The analysis focuses on the formation of the new HX
crystalline structure and the transformation path from WZ to HX under uniaxial
tensile loading. In particular, the atomic motions or lattice distortion resulting in the
formation of the HX structure are quantified through the gradient of a continuum
deformation map. The analysis lends itself to the quantification of the recoverable
strains associated with the pseudoelastic behaviour of the nanowires, including
contributions from the elastic stretching of the WZ and the HX phases and lattice
size change due to the phase transformation. The size and temperature dependence
of important parameters, including the critical stress for the initiation of phase
transformation, maximum recoverable strain and hysterctic dissipation, are also
quantified.

2. Computational framework

Molecular dyvnamics (MD) simulations using the Buckingham potential with charge
interactions |7, 8] arc carricd out. The nanowires considered are single-crystalline and
wurtzite-structured, with lattice constants a — 3.249A and ¢=5.206A and a growth
direction along the [0110] axis [9 11]. The wire structure is generated by repeating a
wurtzite unit cell along the [2110], [0001] and [0110] directions (figure 1). Three
different cross-sectional sizes (21.22 x 18.95, 31.02 x 29.42 and 40.81 x 39.89 :\Q) are
considered. The smallest cross-sectional size (21.22 x 18.95 A:) is chosen such that
the short-range cut-off distance in the Buckingham potential [7, 8] is smaller than the
smallest wire dimension and long-range interactions are properly considered [12].
Periodic boundary conditions are specified in the axial direction. Calculations with
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Figure 1. Configuration of a [0110] nanowire with lateral dimensions of 21.22 x 18.95 A?
after geometric construction and before initial relaxation.

different computational cell sizes show that any length greater than 100 A,
irrespective of the cross-section size, is sufficient to avoid image effects [13, 14].
Here, a periodic computational cell length of 150.83 A is used for all the cross-
sections analyzed.

Since the erystallographically constructed nanowires may not be in equilibrium,
preloading relaxations are carried out to obtain the wires’ free-standing configura-
tions. The relaxations occur at desired temperatures without external loading, until
thermodynamic quantities (such as energy. stress, and temperature) indicate that
statistical steady states have been reached. A relaxation time of 3 ps is found to be
adequate for achieving equilibrium states for the ranges of wire size and temperature
considered. During the relaxations, minimization of the wires’ energy occurs through
surface reconstruction and adjustment of the lattice spacing in the wire core. The
surface reconstruction manifests in the forms of decreases in the interlayer spacing
between outer surface layers and in-plane contractions of the surfaces [13].
Such morphological changes on surfaces and in the wires’ cores are also monitored.
This is especially important for nanostructures since their surface-to-volume ratios
are high and extensive surface, and in some cases, core reconstructions may occur.
For example, [100] oriented fcc metal nanowires are known to reconstruct into [110]
orientations as a consequence of surface energy minimization [2, 4, 15, 16].

Following the initial relaxations, a quasistatic loading scheme is employed to
effect tensile deformation and to obtain the mechanical response of the nanowires.
Approximate quasistatic tensile loading in each deformation increment is achieved
though successive loading and equilibration steps using a combination of algorithms
for NPT and NVE ensembles [17]. Specifically in each deformation increment,
stretching at a specified rate of 0.005ps™' is first carried out for 0.5ps using
a modified version of the NPT algorithm of Melchionna er al. [18, 19]. Subsequently,
with the strain maintained constant, the nanowire is relaxed for 3 ps via an algorithm
for NVE ensemble [17] at the specified temperature. This equilibration duration is
chosen such that a statistically steady state is reached and no further structural
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Figure 2. Decomposition of a nanowire into surface atoms and interior atoms using the
coordination number (CN); the surface atoms have CNs below 4 and the core atoms have CNs
equal to 4.

changes occur. It is possible that the magnitude of the strain increment in each step
may affect the calculated stress-strain response. To minimize this error, calculations
using series of strain increments between 0.35% and 0.1% were carried out. Based on
the results, a strain increment of 0.25% and an equilibration period of 3 ps per
loading step are found to minimize fluctuations in the calculated response and are
used in the analysis reported. Since the loading proceeds in a series of equilibration
steps, this process essentially simulates quasistatic loading of the specimen.
Unloading is implemented in a similar manner with a reduction in strain for cach
unloading step. The virial formula is used to calculate the stress [20].

Changes in lattice structures are characterized using the average lattice constants
and the radial distribution function (RDF) [21]. The average lattice constants are
calculated at each strain increment by averaging local lattice constants over the bulk
volume of the wire. Surface layers (figure 2) are not included in this calculation and
the local lattice parameters are computed from coordinates of atoms in the wire core.
The RDF describes how atoms in a system are radially packed around each other.
It measures the density of atoms in a spherical shell of radius » and thickness dr
surrounding an atom in the structure, i.c.

. n(r. r+dr)/ Vs
g(r) = — N (1
where g(r) is the RDF, n(r,r+dr) is the number of atoms in the spherical shell,
Vg=dmrdr is the volume of the spherical shell, NV is the total number of atoms in the
system and V7 is the volume of the structure. The RDFs are generated at the end
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of the equilibration stage of a relevant strain increment when a steady state has been
achieved. In particular, the RDFs for the WZ structure after initial relaxation and
for the HX structure after transformation completion are studied to characterize the
structural changes associated with the phase transformation.

3. Results and discussion

3.1. Loading response

Figure 3a shows the tensile stress—strain curve of a 40.81 x 39.89 A% wire during
loading and unloading at 100 K. The configurations of this wire at four different
stages (three of which are during loading) of deformation along the curve are shown
in figure 3b, with the atoms coloured by their coordination numbers. In the wurtzite
structure [initial configuration, (i) in figure 3b], each atom has a coordination
number of 4, typical for tetrahedral structures. Atoms on surfaces and edges have
coordination numbers of 3 or less. In the HX phase [(ii) and (iii) in figure 3b], on the
other hand, each atom has a coordination number of 5 due to an additional Zn-O
bond along the [0001] axis as compared to the WZ phase. This [ive-fold coordination
will be discussed later.

The loading response (figure 3a) consists of initial elastic stretching of the WZ
wire (A — B), structural transformation from WZ to HX (B— D) and elastic
stretching of the HX wire (D — E), culminating in the eventual failure at E. The
stress—strain relation in the elastic regime between A and B is essentially linear.
Deformation beyond the elastic regime results in a stress drop from 11.31 to
10.45GPa (B— C). This relaxation event indicates the initiation of a phase
transformation [22]. The HX phase nucleates near the wire’s surface at a strain of
0.065 (figure 3a). As the deformation progresses, the transformed region sweeps
through the whole specimen [C — D and configuration (ii) in figure 3b] and the
transformation is completed at a strain of 0.108 and a stress of 10.58 GPa (point D
in figure 3a). Continued loading beyond point D causes elastic stretching of the
transformed structure [D — E in figure 3a and configuration (iii) in figure 3b] and
the eventual failure at a strain of 0.162 and a stress of 12.28 GPa through cleavage
along (1210) type planes.

3.2. Crystallographic change

Figure 4 outlines the crystallographic characteristics of the initial WZ phase and
the transformed HX phase. Following Limpijumnong and co-workers [23, 24],
a common set of lattice parameters (a, b, ¢, uc and vb) for these two structures is used
and illustrated in figure 4a. Additionally, two layers of atoms perpendicular to the
[0110] direction and two layers perpendicular to the [2110] direction are shown in
figures 4b and c, respectively, to delineate the atomic motions associated with the
transformation. The figure shows that, as a result of the transformation, the (0001)
Zn and O basal planes become coplanar and the HX structure acquires a new
symmetry (mirror plane perpendicular to the [0001] axis). Consequently, an
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Figure 3. Tensile behaviour of a 40.81 x 39.89 A? nanowire: (a) stress—strain curve under
loading and unloading; (b) deformed configurations at different stages of loading and
unloading.

additional Zn-0O bond is formed along the [0001] axis (figures 4b and ¢), giving the
HX phase a five-fold coordination. Table 1 lists the lattice parameters for the WZ
and HX structures at several stress levels for the 40.81 x 39.89 A? wire. During the
deformation, # = wuc/c changes [rom its initial value of 0.4 for WZ to a value of 0.5 for
HX. implying the flattening of buckled wurtzite basal planes. A similar unbuckled
structure has been observed in GaN, MgO and ZnO thin films as a result of extensive
surface reconstructions to suppress surface polarity [25-28].

Figure 5 shows the RDF profiles before loading is applied (point A, o =0GPa)
and upon completion of the WZ — HX transformation (point D, o =8.58 GPa) for
the nanowire in figure 3. The profile for the initial wire (WZ structure) has its first
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Figure 4. Illustrations of the WZ and HX structures involved in the phase transformation:
(a) lattice structures of the WZ and HX phases; (b) atomic arrangement on [0] 10] plane;

(¢) atomic arrangement on [2110] plane.

Table 1. Lattice parameters for WZ, HX and RS under different loading conditions for

a 40.81 x 39.89 A% nanowire.

Wz
a=0GPa a=0GPa o=11.39GPa o=8.58GPa o=1229GPa

Parameter e=0" e=0 £=0.065 e=0.108 e=0.162
(A), 3.25 3.26 323 338 3.40
b (A) 5.63 5.62 6.05 6.22 6.62

0.33 0.32 0.29 0.31 0.29
¢ {,-"\] 5.21 5.18 4.92 4.30 4.15
u 0.38 0.41 0.46 0.50 0.49
bla 1.73 1.74 1.87 1.84 1.95
cla 1.60 1.57 1.53 1.27 1.22

*Experiment [29].
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Figure 5. Radial distribution function profiles for a 40.81 % 39.89 A’ nanowire before
loading (point A in figure 3a] and upon completion of phase transformation (point D in
figure 3a).

peak at a radial distance of 1.93 A, indicating a Zn-0O bond distance consistent with
the experimental value of 1.95A [29]. Upon completion of the WZ— HX
transformation at point D, this peak has split into two peaks with the primary
peak at 1.98 A and the secondary peak at 2.20 A. The primary peak corresponds to
Zn-0 bonds in the basal ({0001}) plane of the HX structure, while the secondary
peak is associated with the additional bonds formed along the [0001] axis (see
figure 4). Also seen in figure 5 are peaks corresponding to lattice constants a, b and c.
Initially in the WZ phase, the ‘¢’ peak is at 3.26 A and the "¢’ peak is at 5.18A.
The transformation to FIX results in the shift of the "’ peak to 3.38 A and the shift
of the *¢’ peak to 4.30A. These shifts indicate that the transformation to the HX
structure involves both an expansion of the basal planes (increase in ‘a’) to
accommodate the flattening of the buckled plane and a contraction in ‘¢ which
results in the formation of the Zn-O bond along the [0001] axis. The transformation
is also associated with a shift of the b" peak from 5.60 A for WZ to 6.22 A for HX,
consistent with the nature of the applied tensile loading. The values reported in
table 1 also show a progressive increase in the lattice parameter b toward 6.22 A as
the stress is increased towards the level of 8.58 GPa at the completion of the
transformation. Further load increases are accompanied by increases in b with the
associated RDF peak shifting toward a higher value (not shown).

3.3. Characterization of the deformation

The deformation can be quantified in a continuum sense through the deformation
gradients F; (i=1,2, and 3) associated with the three stages of deformation, with
i=1 denoting the first stage (elastic stretching of WZ, A — B in [igure 3a), i=2
denoting the second stage (transformation from WZ to HX, B— D in figure 3a) and
i=13 denoting the third stage (elastic stretching of HX, D — E in figure 3a). In such
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Figure 6. Representative volume defined in a unit cell of the wurtzite lattice for the purpose
of deformation analysis.

an analysis, the deformation of a representative volume of @ = & x b x ¢ (figure 6) is
used, with dimensions a, b and ¢ being the average values of lattice constants a, b and
¢, respectively. Since the average values of the lattice parameters are used here,
the deformed wire is regarded as a repetition of this representative volume.
The deformation gradient for each stage can then be expressed as

I

= 0 0
di-
O
F=| 0 =—/— 0| i=123 (2)
Ci '
o o 2
lr"II

In the above expressions, @ ;. b;1. and & are the average lattice constants at the
beginning of stage 7 and @ b;, and ¢; are the average lattice constants at the end of
stage i. Note that ap, f;g, and &, are the constants for the initial (undeformed., WZ)
wire. The relative volume change associated with stage 7 is

Q;
M deu(Fy), 3
o, = detlF) @

where € is the volume of the wire at the beginning and end of stage i, respectively.
For a 40.81 x 39.89 A% wire at 100 K, the deformation gradient for the first stage
(A — B in figure 3a) is

0.991 0 0
F = 0 0960 0 . 4)
0 0 1.065

The associated volume increase is 1.27% and the longitudinal (elastic) strain
£33=F?|‘3— 1 = 0.065 consistent with that seen from the stress-strain curve in
figure 3.
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During the second stage of deformation (phase transformation B— D in
figure 3a), a increases and ¢ decreases. The corresponding deformation gradient is

1.047 0 0
I = 0 0876 0 . (5)
0 0 1.043

The volume ratio associated with the transformation is €,/€2; =0.957, indicating
a slight decrease in volume of 4.3%. This decrease in volume under tensile loading is
counterintuitive. It is a direct consequence of the discrete lattice structure and the
structural transformation. Specifically, the uniaxial tensile stress in the [0110] or 5
direction causes the interatomic distances in the [0001] Zn and O basal planes (a) to
increase, causing the two types of basal planes to become coplanar and, therefore,
the volume decrease.

The deformation gradient for the elastic deformation of the HX phase in the
third stage (D — E in figure 3a) is

1.008 0 0
Fs=| 0o o092 o | (6)
0 0 105

Although the "¢’ and b’ directions are perpendicular to each other, & increases
slightly (with a corresponding strain of £,; = 0.008) under the tensile loading along
the “b" direction. This gives rise to a negative phenomenological Poisson’s ratio of

]J|3=—;i=—0.16. (7}

33
The total elastic strain of the wire beyond the completion of the phase trans-
formation and before fracture (between D and F in figure 3a) is £33 = F}* — 1 = 0.05.
Here, the reference state of this strain is the length of the wire at the completion of
transformation (point D). The corresponding volume increase is 1.68%.
Overall, the total strain of the wire between points A and E is ¢ =
FPFPF — 1 =0.162. Here, the reference length is the original length of the wire.

3.4. Unloading response

Unloading of an HX structured wire from any strain prior to wire [racture activates
a novel pseudoelastic behaviour. Take the wire in figure 3 for example; unloading
from a strain of 14.5% (point F) initially results in the recovery of the elastic
straining of the HX structure embodied in F5 and goes beyond the end point of the
WZ — HX transformation during loading (point D). This elastic unloading within
the HX structure continues until point G where a reverse transformation from HX to
WZ initiates at a strain of 0.087 and a stress of 7.38 GPa. Further unloading results
in the complete reversal of the HHX — WZ transformation at H (with a strain of 0.039
and a stress of 7.04 GPa). Unloading between H and A follows the elastic trend of
the WZ phase and the hysteresis loop is completed.

For the wire in figure 3, the total recoverable strain is ~16% which is significant
since ZnO is a ceramic. The hysteretic energy dissipation in one loading and
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unloading cycle is ~0.14 GJm ™. This dissipation level is significantly lower than
that observed for wurtzite to rock salt (WZ— RS) transformations in bulk ZnO
(~1.38GIm™ per cycle), therefore, limiting heat generation and heat-related
damage and making the nanowires ideal for applications involving cyclic loading and
unloading [30]. The low level of dissipation can be attributed to the fact that (i) the
crystallographic transition between the WZ and HX structures, which does not
require the formation of defects such as dislocations or twin boundaries, is smooth
and (ii) the energy barrier for the transformation between the WZ and the HX
structures is relatively low [6].

3.5. Effects of size and temperature

Temperature and lateral dimensions have significant effects on the pseudoelastic
behaviour of the wires. Figures 7a-¢ show the loading part of the stress—strain curves
over 100-700 K for the 21.22 x 18.95, 31.02 x 29.42 and 40.81 x 39.89 A? nanowires,
respectively. The critical stress for the nucleation of the HX phase (o,) is marked by
open circles in these figures. Figure 7d shows the variation of this critical stress as a
function of size and temperature. Overall, the critical stress decreases as the wire size
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Figure 7. Stress-strain curves of (a) a 21.22 % 18.95 A? wire, (b) a 31.02 x 29.42 A% wire and
(c) a 40.81 x 39.89 A® wire at different temperatures. (d) The critical stress for the initiation of
phase transform (o) as a function of lateral dimensions and temperature.
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Figure 8. Surface reconstruction of a 21.22 x 18.95 A% nanowire at 100K relative to its
configuration in bulk ZnO, the images correspond to the states of the wire after (a) geometric
construction (before initial relaxation) and (b) after initial relaxation.

is reduced. The critical stress also decreases as temperature is increased. Over the
temperature range analyzed, o, for the 31.02 x 29.42 A% wire is up to 42% hlghm
than that for the 21.22 x 18.95 A® wire, whereas the values for the 40.81 X 39.89 A?
wire are approximately 11-15% higher than those for the 31.02 x 29, 42 A? wire. In
contrast to the well-established trend that the stiffness of nanowires increases as wire
size is reduced [13]. o, decreases as the wire size is reduced. The higher surface-to-
volume ratios at smaller wire sizes cause both effects. Note that, as the wire size is
reduced from S0A to 10A., the surface-lto-volume ratio increases by ~35%. In
particular, for polar (0001) surfaces (figure 1), the imbalance of charges results in
extensive surface reconstruction.

Figure 8 shows the positions of atoms on layers perpendicular to the [0001]
direction before and after the initial relaxation. Obviously, relative to the ideal bulk
structure, the surface layers contract and the Zn and O basal planes become
essentially coplanar, resulting in a layered surface structure (LY) which is
crystallographically similar to the HX structure. This phenomenon has been
predicted by first-principle calculations and observed in experiments on ZnO
nanofilms [25, 26). The reconstructed LY surfaces in the initial wire before loading
play an important role because they can act as nucleation sites for and lower the
energy barrier of the WZ — HX transformation due to the geometric similaritics
between the LY and HX structures. The smaller wire cores at smaller wire sizes
facilitate the initiation of the phase transformation from the surfaces. resulting in the
lower o, values.

As the temperature increases from 100K to 700K, a 25.2% decrease in o, is
observed for the 40.81 x 39.89 A% wire (figure 7d). This effect is attributed to thermal
softening and the ability of the nanowire to overcome the energy barrier for the
transformation at higher temperatures. Note that over the same range of
temperature, the elastic modulus of the nanowire decreases by 24% [13].
Temperature changes also significantly affect hysteretic dissipation. To illustrate
this effect, the stress-strain curves of the 40.81 x 39.89 A% wire at 100 K, 300 K, 500K
and 700 K are shown in figure 9.

The corresponding dissipation during the lmdmg unloading cycle, along with
those for the 21.22 x 18.95 and 31.02 x 29.42 A” wires at these temperatures, is given
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Figure 9. Stress-strain responses of a 40.81 x 39.89 A? wire during one loading-unloading
cycle at (a) 100K, (b) 300K, (c) 500K and (d) TOOK.

0.25 T T T

a
L
T
L

Hysteretic Dissipation (GPa)
(=]
&
2
o
o
]
=

015 "
1Z2%1B 85 A

B D:-EQAZAM
005 5

DD 200 400 G600 800

Temperaturs (K)

Figure 10. Hysteretic dissipation in one loading—unloading cycle as a function of lateral
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in figure 10. For the 40.81 x 39.89 A? wire, the dissipation decreases by 39.6%
as temperature is increased I‘rnl;n 100K to 700 K. A similar trend is seen for the
21.22 x 18.95 and 31.02 x 29.42 A? wires which show decreases of 52.9% and 56.6%.
respectively, over the same temperature range.
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Table 2. Size and temperature dependence of the stress-strain response of the nanowires.

Ultimate
Cross-section Strain at Maximum  tensile  Hysteretic
dimensions  Temperature o, completion of recoverable strength dissipation
(A% (K) (GPa) &, transformation  strain (GPa)  (GIm %)
21.22 % 18.95 100 10.02 0.051 0.100 0.165 15.56 0.155
300 8.59 0.045 0.096 0.155 14.50 0.171
500 6.29 0.033 0.097 0.148 13.56 0.088
700 4.15 0.027 0.091 0.127 12.34 0.073
31.02 % 29.42 100 10,10 0.053 0.110 0.155 13.05 0.106
300 9.59 0.053 0.110 0.154 12.50 0.086
500 831 0.049 0.098 0.140 11.44 0.053
700 7.17 0.040 0.116 0.138 10.89 0.046
40.81 = 39.89 100 11.32 0.065 0.108 0.159 12.30 0.139
300 10.40 0.063 0.109 0.162 11.68 0.104
500 9.31 0.060 0.114 0.143 10.60 0.089
700 8.47 0.051 0.086 0.108 9.21 0.084

Table 2 lists the values of several key parameters quantifving the pseudoelastic
behaviour at various cross-sectional sizes and temperatures. In particular, note that
the maximum recoverable strain decreases significantly as temperature is increased,
while the strain at which the WZ — HX transformation completes is essentially
temperature-independent. The enhanced mobility of atoms at higher temperatures
promotes the formation of defects and may be a factor contributing to the failure at
lower strain levels.

3.6. Pseundoelasticity without shape memory

The pseudoelastic behaviour quantified here is reminiscent of a very similar
pseudoelastic behaviour (which leads to a novel shape memory effect) in fec metal
nanowires discovered and analyzed by Liang er al. [3, 4]. This similarity in the
pseudoelastic behaviours between nanowires of the two classes of materials naturally
raises the question of whether a similar SME also exists in the ZnO nanowires
analyzed here. To answer this question, we [irst note that the pseudoelasticity and the
SME in the fce metal nanowires are driven primarily by a surflace-stress-induced
lattice reorientation process which requires the formation of intermediate transi-
tional structures involving partial dislocations. One attribute of that unique lattice
reorientation process is that an energy barrier exists between the phases even at very
low temperatures. Therefore, spontaneous relaxation occurs only at temperatures
above a critical value. It is this temperature dependence that gives rise to the SME in
the fce metal wires.

To ascertain if a SME exists in the ZnO nanowires analyzed here, partially and
fully transformed wires were cooled to various {inal temperatures, the lowest being
10 K. Subsequently, unloading is carried out at the low temperatures to determine il
the HX phase can be retained without external stress. For all wire sizes considered
and under all initial/final temperature combinations analyzed. the wires reverted
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Figure 11. Potential energy map of ZnO with highlights of the WZ, RS and HX lattice
structures.

fully back to the WZ structure. This result shows that there is no critical temperature
below which either partially or fully HX-structured wires can exist without external
loading. The absence of such a critical temperature and the lack of an HX structure
at zero loading effectively rule out the possibility of a SME in the ZnO nanowires.
This finding can be explained by the enthalpy surface for ZnO at 0K and zero
external loading. Figure 11 shows the potential energy profile of one ZnO unit cell at
different structural configurations (when there is no external loading, the enthalpy is
equal to the potential energy). This profile is obtained through first principle
calculations, details of which are provided by Kulkarni ez al. [6] and Limpijumnong
and Jungthawan [23]. Lattice structures corresponding to WZ, RS and HX are
labelled in this figure. Note that only two local minima (energy wells) exist, one at the
WZ structure and the other at the RS structure. A well is not seen at the HX
structure. Obviously, WZ is the stable phase and any sample with the HX structure
would spontaneously transform into the WZ structure. On the other hand, the RS
structure is a metastable phase which may exist if temperature and load histories are
carefully controlled. In contrast, it is not possible for HX to exist without loading
since no energy well is seen for it on the energy surface. Of course, the enthalpy
surface can be modified by appropriate external loading to include a local minimum
(well) at the HX structure. Tensile loading of sufficient magnitude along the
b-direction is such an example and has been shown to cause the WZ — HX phase
transformation [6]. Crystallographically, the two-way WZ < HX transformation
occurs through smooth lattice structure evolution without the formation of defects
or intermediate structures. In particular, the process can be illustrated by a look at
the buckling and unbuckling of the [0001] Zn and O basal planes.

Figure 12 shows the evolution of the 3-D O-Zn-O bond angle () at various
stages ol deformation. The strain values are associated with the loading process of
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Figure 12. Increase in the O-Zn-0 bond angle (¢) between Zn and O atoms on [0001] basal
planes at various levels of strain during tensile loading along the [0110] wire axis.

the 40.81 x 39.89 A” wire. The evolution of during unloading is very similar except
that the corresponding wire strain values are slightly different. For a perfect,
undeformed WZ lattice, a~108.2° (figure 12a). As deformation progresses,
o increases as loading is increased and the structure evolves (figures 12b and c).
Upon full WZ — HX transformation, the basal planes flatten out and « becomes
1207 (figure 12d), at the same time, a new bond is formed along the [0001] axis
(figures 4b and ¢). During unloading, the reverse process is seen, with ¢ decreasing as
the load is decreased. The lack of defect or intermediate structure formation in the
process makes ZnO nanowires different from FCC metal nanowires such that the
energy requirement for the nucleation of the WZ < HX transformation is very low.
Therefore, during the actual unloading ol a HX wire, the barrier for the HX — WZ
transformation is primarily due to the breaking of the additional [0001] bond formed
during the forward transformation. This barrier is relatively small [6] and is easily
overcome by the strain energy stored in the HX structure. Consequently,
spontancous HZ — WZ transformation occurs at all temperatures and no SME is
observed in the ZnO nanowires.

4. Conclusions

A novel pseudoelastic behaviour we discovered recently in [0110]-oriented ZnO
nanowires over the temperature range 100-700K has been characterized.
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MD simulations of the uniaxial tensile loading and unloading of nanowires with
lateral dimensions between 18 and 41 A show that this behaviour results from a
unique structural transformation from WZ to a previously unknown phase (herein
referred to as HX). Crystallographically, this newly discovered polymorph of ZnO
has a five-fold coordination, in contrast to the four-fold coordination of the initial
WZ structure, implying that the transformation proceeds towards higher ionicity.
The transformation is fully reversible upon unloading with recoverable strains up
to 16%. The hysteretic dissipation associated with a loading-unloading cycle is
0.05-0.14GJ m ™ and this value is significantly lower then the value for the reversible
WZ-RS transformation in ZnO.

Significant temperature and size dependence ol the pseudoelastic response is
observed. In particular, the critical stress for the nucleation of the HX phase and the
maximum recoverable strain decreases as temperature increases. In addition, the
critical stress is lower at smaller wire sizes. Extensive surface reconstructions that
minimize surface charge polarity and surface energy contribute to these temperature-
and size-effects.

Unlike the pseudoelasticity in fce metal nanowires, which was discovered recently
by Liang et al. [2-4] and underlies a novel shape memory effect, the pseudoelasticity
in the ZnO nanowires analyzed here does not lead to a SME. The primary reason for
this lack of an SME is the absence of an energy barrier between the WZ and the HX
lattice structures when no external loading is applied. The absence of an energy
barrier between WZ and HX at zero stress can be regarded as a consequence of the
smooth and continuous nature of the crystallographic transition which does not
require the formation of delects such as dislocations and twin boundaries. The result
is that stretched HX ZnO nanowires can spontaneously revert back to the WZ state
at any temperature.
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I structure for ZnO). This structure results from a

We report a previously n body-c

phase transformation from wurtzite in [0001 J-oriented nanorods during uniaxial tensile loading and is the most
stable phase for Zn0) when stress is above 7 GPa. The stress-induced phase transformation has important
implications for the electronie, piezoelectric, mechanical. and thermal responses of ZnO. The discovery of this
polymorph brings about a more complete understanding of the extent and nature of polymorphism in ZnO. A
erystalline structure-load iaxiality map is developed o summarize the relationship between structure and

loading.
DO 10.1103/PhysRevB.76.172103

Natural selection ol the lowest energy state determines the
bonding state and atomic arrangement of a material under
ambient conditions. Deviations from this natural state occur
when external stimuli such as mechanical loading and tem-
perature changes are provided, leading to failure through
bond breaking or polymorphism due to atomic rearrange-
ment. At the macroscopic scale, failure is dominant since
atomic mobility is relatively low and defects are more preva-
lent. At the nanoscale, however, high surface-1o0-volume ra-
tios and nearly defect-free structures lead to higher atomic
motilities and more pronounced polymorphic transitions.
Consequently, polymorphs previously unknown for bulk ma-
terials can be revealed. Recently, a fivefold coordinated hex-
agonal phase (referred to as HX) of ZnO was observed in
[01T0]-oriented ZnO  nanowires under uniaxial tensile
loading.? This discovery has subsequently been confirmed
in [0001])-oriented ZnO nanoplates’ and nanowires.* Here,
we report yet another polymorph of ZnQ with a body-
centered-tetragonal structure with four-atom rings (referred
to as BCT-4, space group P4sfmnm), which oceurs under
uniaxial tensile loading along the [0001] crystalline axis of
the wurizite structure. While similar structures have been
reported for carbon® and lithium aluminum oxide,” this
polymorph has been reported here for a binary system. The
results here show that the extent of polymorphism in Zn0O
(and perhaps in other groups IV, HI-V, and I1I-V] materials
such as GaN and CdSe) is much more pronounced than pre-
viously known. With the discovery of these phases, a more
complete picture has emerged for the polymorphism of ZnO
under the influence of mechanical loading with all realistic
riaxialities. The recent fabrication and applications of
defect-free, single-crystalline  nanowires, nanobelts, and
nanorings of materials such as ZnQO, GaN, and CdSe high-
lights the need for understanding the extent of polymor-
phism. Characterization of the thermomechanical and electri-
cal responses of the relevant phases is crucial since the
perform. and functionalities of these slender g
dimensional materials as  components in  ultras
chemical and hiological sensors, nanoresonators, field effect

1098-012172007/76(17W1T2103(4)
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transistors, and rmnn,g‘;nt:r:nur.t:R ' are cither significantly al-
fected by or wtilize the phase transitions,'?

Our analyses include both molecular dynamics (MD})
simulations and density functional theory (DFT) based first
principles caleulations, The MD simulations are performed
to study the phase transformation and the associated me-
chanical response of Zn0 nanorods with the [0001] growth
direction under loading and subsequent unloading. The first
principles calculations are carried out to determine the ener-
getie favorability and the electronic band structures of the
parent and transformed phases. The impact of this phase
transformation on the thermal, mechanical, and electric re-
sponses of the nanorods is also evaluated,

The as-synthesized hexagonal ZnO nanorods have a
wurlzite structure with a sixfold symmetry around the [0001]
axis and six {0110} lateral erystalline surfaces, !>
trated in Fig. 1{a). The lattice parameters (Ref. 16) are a
=325 A, u=0.38, and ¢=5.21 A as shown in Fig. 2(a). The

as illus-
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FIG. 1. (Color online) (a) [0001] nanorod with d=32.5 A and
(b) stress-strain curve of this nanorod at 300 K during loading and
unloading.
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FIG. 2. (Color online) (a) Wurtzite (WZ) and body-centered-
tetragonal with four-atom rings (BCT-4) structures and (b} crystal-
lographic transition through breaking and formation of bonds and
differences in bond angles between the WZ and the BCT-4
structures.

nanorods analyzed here have the same length of 145.8 A and
five different cross-sectional widths (d=19.5, 26.0, 32.5,
39.0, and 45.5 A). A Buckingham-type potential with charge
i tions is used to define atomic interactions in the MD
calculations."™ 7 The analysis concerns quasistatic defor-
mation at 300 K.!

Figure 1(b) shows the stress-strain response of a nanorod
with lateral dimension d=32.5 A, Four distinct stages are
observed. The first stage (A— B corresponds to the elastic
stretching of the wurtzite (W) structure up to a strain of
7.5%. Further deformation results in a precipitous stress drop
(B —C) associated with the W7 1o BCT-4 phase transforma-
tion. The transformation completes at a strain of 8.5%. Con-
tinued loading causes elastic stretching of the BCT-4 struc-
ture (C— D) and culminates in the eventual failure at a strain
of 16.9% (point E). To analyze the stability of the parent and
transformed structures, unloading is performed from states
prior to transformation initiation (first peak tensile stress,
point B) and failure initiation of the nanorod (second peak
tensile stress, point D). The unloading path from B coincides
with the loading path, confirming that the deformation from
A to B is indeed the elastic response of the WZ-structured
nanorod. Unloading from D also results in the elastic recov-
ery of the BCT-4 structure, and continued unloading beyond
the transformation completion strain (point C) does not resull
in a reverse transformation. Instead, the nanorod retains
the BCT-4 structure when the stress is reduced 1o zero [Fin
Fig. 1(b}].

The WZ 1o BCT-4 transformation occurs through a com-
bination of (1) the breaking of every other Zn-O bond along
the [0001] direction [bond A in Fig. 2(a)] and (2} the forma-
tion of an equal number of Zn-O bonds along the same di-
rection [bond B in Fig. 2(a)] next to the broken bonds. This
process repeats on alternate planes along the [0110] direc-
tion. The transformed structure retains the tetrahedral coor-
dination with each Zn/0O atom at the center and four OfZn

PHYSICAL REVIEW B 76, 172103 (2007)

TABLE L. Lattice constants for W7 and BCT-4 Zn0 in tension
along the ¢ axis obtaned via MDD and DFT (in square brackets)
caleulations.

BCT-4

Parameters  o=0 a=0 a=4 a=T7 a=10
alA) 329 3.4 322 3.20 3.19
[320]  [3a7] [313] [3.0]  [3.06)

b (A) 5.67 558 5.54 5.51 548
[555] [5.48] [542] [5.35] [5.32]

c (A) 517 552 5.67 577 5.84

[5.13] [548] [5.71]  [5.87]  [5.9%]
V=abc (AY) 964 99.8 1012 1017 1021
©11]  [95.2]  [969] [97.0] [97.3]

AV (AT 0.0 34 4.8 53 57
[0.0] [4.1] [5.8] [59] [6.2]

cla 1.57 1.71 1.76 1.80 1.83
[1.60] [1.73] [1.82] [1.9] [1.95]

bila 1.72 1.92 1.72 1.72 1.71

[L73] (1731 [1.73] [1L73] [1.73]

atoms are at the vertices of a tetrahedron. The geometry of
the tetrahedron can be characterized through the O-Zn-O
bond angles (e, i=1-6), as shown in Fig. 2{a). For WZ, all
bond angles are approximately equal (a;==108"), For
BCT-4, the formation of four-atom rings results in three dis-
tinet bond angles () =90%, &, = 112.7°, and a;=113.7").

As seen from Fig. 2(b), the transformed phase consists of
four-atom (two Zn and two O) rings arranged in a BCT lat-
tice. Note that the four-atom ring at the center is rotated by
90” relative to the rings at the corners of the tetragonal lattice
cell. Strictly speaking, the unit cell consists of two-ring clus-
ters (one of each orientation, total of eight atoms) positioned
in a simple tetragonal primitive lattice. Figure 2(b) also
shows the lattice parameters a, b, and ¢ for the WZ and
BCT-4 structures. Their respective values as obtained from
MD and DFT calculations (in square brackets) at various
ss levels are listed in Table 1 along with unit cell vol-
For WY, the ratios cfa and b/a are 1.60 and 1.73,
. Throughout the transformation, the b/a ratio
remains at its initial value of 1.73 (£0.02), reflecting the
symmetries of the loading and the lattice. On the other hand,
upon transformation to BCT-4 at a stress above 7 GPa, the
cla ratio increases to 1.8, Phenomenologically, the predilec-
tion for the BCT-4 phase over the W2 phase under the tensile
loading conditions considered here can be explicated by its
elongated configuration in the [0001] direction (higher c/a
ratio) relative to that of the WZ structure. Upon unloading,
the residual strain at F in Fig. 1(b) is 6.8% according to both
MD and DIFTL It reflects the dimensional difference between
the unstressed WZ and BCT-4 structures in the [0001] direc-
tion. This unstressed BCT-4 structure corresponds 1o the
: BCT-4 structure predicted by the DFT caleulations
with bfa=cla=1.73 in Fig. 3{a).

The relative favorability of the two phases is studied by

caleulating the enthalpy (per four Zn-0O pairs) using DIFT

caleulations.*'? The complete enthalpy surfaces (not shown

172103-2
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due to space limitation) show that the BCT-4 structure has
minimum enthalpy at bfa=1.73 for all values of tensile
stress considered, For clarity without loss of generality, the
discussions here use Fig. 3 which shows the enthalpy values
(eV per four Zn-0 pairs) for both structures for bla=1.73 al
=0, 4, 7, and 10 GPa. Al any stress level, each structure
has its own enthalpy minimum. The first minimum is in the
vicinity of cfa= 1.6 which corresponds 10 W2 with
arameters slightly different from thos
the second minimum  is the vicinity of efa=1.7-1.9,
which corresponds to BCT-4. At zero stress, W7 is the stable
crystal structure and its enthalpy is lower than that of BCT-4
by 0.3 eV [Fig. 3(a)}]. As the stress is increased to 4 GPa
[Fig. 3(b}], the difference in enthalpies decreases, and at a
stress of 7 GPa [Fig. 3(c)]. the two 1 1a become compa-
rable indicating that W2 and BCT4 are equally favored.
This value of siress corresponds to the equilibrium transition
stress for the two phases. Since an energy barrier (associated
with intermediate transitional states) exists for the transfor-
mation, a stress level higher than the 7 GPa equilibrium
stress is required to initiate the transformation. At a stress of
10 GPa [Fig. 3(d)], the enthalpy of BCT-4 is lower, and this
structure is clearly favored, Further increases in stress resull
in the eventual initiation of the phase transformation. The
specific stress level at which the transformation initiates de-
pends on the rod size and temperature. For the particular
nanorod in Fig. 1 at 300 K, the critical stress level is o
=17.9 GPa. The gradual evolution of the local enthalpy
minimum for the BCT-4 at =0 into a global minimum as
stress increases confirms thal the phase ransformation ob-
served in MDD simulations is indeed energetically favored.
The phase transformation observed here alters the electri-
cal, thermal, and mechanical responses of the nanorods. Re-
cently, WZ-structured ZnO nanorods have been used 1o suc-
cessfully generate direct electric current through mechanical
bending’ The transformation from the piezoelectric WZ
structure to the nonpiezoclectric BCT-4 structure establishes
an upper bound for the maximum possible current generation
and operational strain for this application. Specifically, the
electric field output £5 can be related to the longitudinal

s oal Fero siress

strain &5 through 3l dyz, where dyy=20.5 pm/V is the
piczoelectric coe nt for the Zn0 nanorods. Since the
strain al the initiation of transformation [B in Fig. 1(b)] is
approximately 7.5% for all rod sizes, the maximum electric
ficld output is therefore 3.7 V/nm. The mechanical response
of BCT-4 also differs significantly from that of WZ. In par-
ticular, the enthalpy curves for BCT-4 are flatter than those
for W7 (Fig. 3), indicating that the ¢ stilfness of BOT4
is lower than that for W2, Indeed, in Fig. 1(b), the slope of
curve AB (228 GPa, which is the [0001] elastic modulus of
WZ) is higher than that of curve FID (167 GPa, which is the
comresponding modulus of BCT-4). The thermal response of
semiconductors such as ZnO is dominated by phonons and
the interactions between phonons and surfaces,”! The WZ o
BCT-4 phase ransformation changes the atomic arrangement
and hence the phonon spectrum, resulting in potentially large
changes in thermal conductivity. The electronic band struc-
tures of W and BCT-4 are shown in Fig. 4. Note that the
total number of bands for BCT-4 is twice that for WZ be-
cause the unit cell of BCT-4 has twice as many atoms as WZ.
Both phases have direct band gaps at I'. Although DFT cal-
culations with local density approximations are known to
underestimate band gaps and therefore are not normally used
to predict absolute band gap values, they can provide valid

&

FIG. 4. Band structures of (a) WZ Zn0 and (b} BCT-4 Zn0O
obtained by DEFT caleulations. The energy is relative w the wp of
the valence bands.
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== Transformation Observed
=== Transformation Not Obsarved

FIG. 5. (Color online) Crystalline structure-load traxiality map
summarizing the nature and much wider extent of polymorphism in
Zn0) than previously known: WZ is the natural state at ambient
conditions, RS occurs under hydrostatic or near hydrostatic com-
pression, HX occurs under tension along the [2110] and [0170]
directions as well as compression along the [0001] direction. and
BCT-4 occurs under tension along the [0001] direction. The green
and red arrows indicate, respectively, possibl 1 impossible trans-
formation paths under relevant load direction reversals, ZB can only
be grown epitaxially on certain crystalline planes of cubic crystals
and cannot be obtained via a transformation from W7 under exter-
nal loading: therefore. it is not included in this map.

PHYSICAL REVIEW B 76, 172103 (2007)

relative comparisons between the two phases. The calculated
band gap and average electron effective mass of BCT4 are,
respectively, 12% and 17% smaller than those of WZ, giving
the nanorod a smaller band gap and potentially higher elec-
tron mobility after the WZ-t0-BCT-4 transformation. These
mechanically induced electrical property shifts may have ap-
plications in devices that depend on coupling between re-
sponses.

Most importantly, the identification of the BCT-4 structure
leads to a more complete understanding of the nature and
extent of polymorphism in ZnO and its dependence on load
triaxiality. Joining wurtzite (WZ), zinc blende (ZB), rocksalt
(RS}, and HX, BCT=4 constitutes the fifth polymorph of ZnO
discovered so lar. ILis now possible to construct a structure-
load triaxiality map for ZnQ, as shown in Fig. 5. Among the
previously well known phases, WZ is the most stable and
naturally occurring phase and RS is observed under hydro-
static compressive conditions. Both BCT-4 and HX are sta-
bilized under uniaxial loading, with HX occurring under ten-
sion along the [0110] andfor [2110] directions as well as
compression along the [(001] direction and BCT-4 occurring
under tension along the [0001] direction. It is worthwhile to
note that ZB grows epitaxially on specific surfaces of cubic
crystals and cannot be oblained via a transformation from
WZ under external loading; therefore, it is not included in
this map.
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Stability of wurtzite, unbuckled wurtzite, and rocksalt phases of SiC, GaN, InN, ZnO, and
CdSe under loading of different triaxialities
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First principles calculations are carried to study the structural stability of SiC, GaN, InN. ZnO. and CdSe
which are found to transform from a fourfold coordinated wirrzite (WZ) structure under ambient conditions to

twor different erystalli

structures under loading of different triaxialities. Under hydrostatic compression,
transformation into a sixfold coordinated rocksalr (RS) structure occurs, and under unia

ial compression along

the [0001] direction and uniaxial tension along the [0110] erystalline direction {except SiC and GaM), trans-
formation into a fivefold coordinated wnbuckled wurizite phase (HX) 1s observed. The lack of the WZ - HX

transformation for $iC and GaN under uniaxial tension along the [0110] direction is because for these two

materials the temsile stress required for the enthalpy of HX to become lower than the enthalp:
:al stress levels for the ransformations are found 1o
1X, and RS structures which in tum are related to the ionicity of

than their corresponding ultimate tensile st
depend on the formation energies of the WZ,

ngth. Criti

each material. The transformations are a manifestation of the tension-compression response asymmetry of

these materials,

DO 10.1103/PhysRevB.77.024104

L INTRODUCTION

One-to-one binary compounds obeying the octet rule (ie.,
I-VIL -V -V, or V-1V materials) are generally semicon-
ductors or insulators. Although these lype AB compounds
have the same chemical formula units,
under ambient conditions show significant variations with
bond ionicity. While highly ionic compounds such as CsCl
(I-VII} prefer dense crystal structures with a coordination
number of 8 (CN=8), compounds such as NaCl (also [-VII)
with lower degrees of ionicity gravitate toward the rocksall
(RS) structure (Fm3m space group) with CN=6. As the de-
gree of ionicily decreases (shifting toward covalent bonding
states), compounds such as ZnO (II-VI), GaN (III-V), and
SiC (IV-1V) stabilize in wurtzite (WZ) (PHymc) structures
with CN=4. In such covalent compounds, the valence elec-
tron counting (two ¢lectrons in each bond) is satisfied
through the formation of four bonds for each atom. However,
in compounds \wlh higher degrees of ionicity such as CsCl
and NaCl, the ¢ in cation-anion altractions leads to the
formation of structures with higher CN. Nevertheless, bond
i ty should not be considered as the only factor in deter-
mining crystalline structures in such compounds since the
assumption of a particular structure also depends on intrinsic
factors such as composition, band structure, valence elec-
trons, bonding states, and structural symmetries. Extrinsic
factors such as loading and temperature also play significant
roles,

Calculations and experiments have been carried out to
study the structural stabilities of these materials. Over two
decades ago, first principles caleulations have been used to
evaluate the formation energies of different crystalline struc-
tures (see, e.g., Refs. 1 and 2). X-ray diffraction experiments
have been used to determine the natural occurring structures.
Consequently, the stable crystalline structures under ambient
conditions are well established (for a comprehensive review,

1098-0121/2008/77(2)1/024104(12)
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PACS number{s): 61.50.Ks, 62,20, —x, 64.T0.K-

see Ref. 3). Furthermore, advane

in experimental tech-

niques, such as the use of mtense and tunable x ray from
synchrotron radiation, have also allowed x-ray diffraction
analyses under external loading. For hydrostatic compres-
\mn, it is nbwrvnd Ilm most mdlt.rhll\ \th Im\r CN struc-

First ]Jrinuiples nnd empir' al pnlcnlial c culnlin lmv-
yielded phase equilibrium pressures that are comparable but
always lower than the transformation pressures measured
from experiments.*'* ** The higher experimental values are
attributed to the existence of an energy barrier between the
phases for cach transformation. This finding is supported by,
for example, the observation that critical pressure for the
upward WZ— RS transformation is higher than the critical
pressure for the downward RS — W transformation®!® or
the trapping of nanocrystallite ZnO in the RS phase under
ambient  condition after a high heat-high pressure
treatment.™ If there was no transformation barrier, the up-
ward and downward transformations would occur at the
same pressure and there would be no trapping of the meta-
stable high pressure phase.

The recent synthesis of quasi-one-dimensional nanostruc-
tures such as nanowires, nanobelts, and nanorods of GaN,
Zn0, and CdSe (sce, e.g., Refs. 25 and 26) necessitales un
derstanding the response of such materials to uniaxial load-
ing. These nanostructures are single crystalline and nearly
defect-free and, therefore, are endowed with high strengths
and the ability to undergo large deformations without failure.
Also, their high surface-to-volume ratios enhance atomic
mobility and promote phase transformations under loading.
A novel fivefold coordinated unbuckled wurizite phase (HX)
within  the P6Hy/mme  space  group was  observed in

[0110]-oriented  ZnO  nanowires under uniaxial tensile
loading.*™* The stability of this novel phase and the stab;
ties of WZ and RS phases of ZnO under uniaxial tension

©2008 The American Physical Society
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along the [0110] direction as well as hydrostatic compres-
sion were analyzed through enthalpy calculations. It is found
that the HX structure cannot be stabilized by a hydrostatic
pressure. Instead, both empirical potential based molecular
3 P-MD) simulations and first principles calcula-
tions showed that transformation into the HX structure can

oceur under either tensile loading along the [0110] direction
or compressive loading along the [0001] direction of suffi-
cient magnitude. For this WZ—HX transformation, the
uniaxial stress deforms the crystal in only one direction.
Since the unit cell of HX is significantly shorter than the unit
cell of WZ in the ¢ or [0001] direction (details later), either
compression along the ¢ direction or tension along the per-
pendicular [0110] direction can cause the transformation.
For compression along the ¢ direction, the corresponding
contribution to enthalpy by mechanical work is linearly pro-
portional to =, Ae, with o, and Aec being the compressive
stress and the change in unit cell size in the ¢ direction,
respectively. For tension along the b direction, the corre-
sponding contribution to enthalpy by mechanical work is lin-
early proportional to —eAb, with o, and Ab being the ten-
sile stress and the change in unit cell size in the b direction,
respectively. In contrast, for the WZ—RS transformation,
the all around external pressure uniformly compresses the
WZ erystal in all directions and causes it to collapse into the
RS phase which has a lower equilibrium unit ¢cell volume.
The mechanical work contribution to enthalpy is pAV, with
p and AV being the external pressure and volume reduction,
respectively. The discovery of the novel HX phase has sub-
sequently been confirmed in  [0001]-oriented  ZnO
nanoplates™ and nanowires.™”

To gain insight into the existence of the WZ, HX, and RS
structures in materials with different ionicities, we analyze
here the energetic favorability of these phases for ZnO and
CdSe (groups [1-VI}, GaN and InN (III-V), and SiC (IV-1V)
under uniaxial loading along the [0110] and [0001] crystal-
line axes as well as under hydrostatic compression. The like-
lihood of transformations from WZ into HX or RS and the
effort of load triaxialities on the transformations are
analyzed.

II. CRYSTAL STRUCTURES

The nawral form of the five materials studied is wurizite,
as shown in Fig, 1 (left column). This structure is quantified
customarily by the lattice constant a, the ¢/a ratio, and the
internal parameter n which specifies the relative distance
along the ¢ axis between the two hexagonal-close-packed
cation and anion sublattices, To describe the HX and RS
structures and the transformation from W to each of these
phases, an extra lattice par ter b and an internal parameter
v are introduced. =" ¢ defines the horizontal distance along
the b axis between the cation and anion sublattices. Out of
the five parameters (a. b, o, u, and v) illustrated in Fig. 1,
only the three external ones (a, b, and ¢) can be directly
manipulated through applied loading. The two internal pa-
rameters (e and v) cannot be varied directly. These param-
eters are determined such that, for any given configuration,
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FIG. 1. (Color online) Schematic illustration of the WZ, HX,
and RS structures: small spheres represent anions and large spheres
represent cations. The middle and bottom rows show top view and
side view, respectively. Parameters a, b, o, w, and v are indicated.
For realistic rendering, the images shown are drawn o scale using
parameters for Zn0 at equilibrinm conditions, i.e., ambient pressure
for W2, er=—o™ for HX. and p=p® for RS. AV, Ab, and Ac are the
tage changes in V (volume), b and ¢ relative to the same

the net forces on all atoms in the unit cell vanish. An analysis
of the variations of & with ¢/a and v with b/a can be found
in Refs. 19 and 20, The three structures are significantly
different, with ¢/a=1.63 and bla=173 for WZ,
cla=120 and bfa=173 for HX, and c/a=1.00 and
bla=1.00 for RS. The ideal values of ¢/a, b/a, u, and v lor
WY, HX, and RS under no load and zero temperature are
listed in Table 1. The ¢/a value for HX is obtained via en-
thalpy minimization. All other parameters are determined
from the geometry of each structure, for instance, perfect
tetrahedral coordination for WZ and perfect cubic for RS.
Actual values of these parameters can deviate from those in
the table, depending on the material, loading, and tempera-
ture.

HL COMPUTATIONAL METHOD

First principles calculations are carried out to evaluate the
total energy of each material in its natural and deformed

TABLE 1. Ideal lattice parameters for WZ, HX. and RS crystal-
line structures.

Parameters W HX RS
cla V8/3=1.63 1.20 1.00
I 3/8=037 L50 (.50
bla il 73 V3=1.73 1.00
v 1/3=033 1/3=0.33 0.50

024104-2

136



Manuscript published in Physical Review B

STABILITY OF WURTZITE, UNBUCKLED WURTZITE....

states, The calculations are based on the density functional
theory (DFT) with local density approximation (LDA) and
ultrasoft pseudopotentials,® as implemented in the vasp
code.* Test calculations have shown that generalize gradient
approximations (GGAs) give the results that are qualitatively
the same as LDAY Zinc 3d, gallium 3d, indium 44, and
cadmium 4d electrons are treated as valence electrons. Cut-
off energies for the plane wave expansion are 400 eV for
Zn0, 180 eV for CdSe, 350 eV for nitrides, and 300 ¢V for
SiC. The k-point sampling set is based on a 7X7 X7 divi-
sion of the reciprocal unit cell based on the Monkhorst-Pack
scheme™ with the I" point included, which gives approxi-
mately 100 inequivalent k points.

The stability of each erystal structure and compound can
be determined by analyzing enthalpy as a function of c/a
and b/a. The enthalpy per a wurtzite unit cell under uniaxial
loading is

Hicla,bla)= Ele,ba,uv) - Ayog,, (1)

where E is the formation energy per wurtzite unit cell, o, is
the stress along the { direction, ¢; is the lattice parameter in
the i direction, Ay is the cross section area of the unit cell
perpendicular to the stress direction, and A o, (summation
not implied) is the external work. For tension along the b
axis, i=b, A,=ac/2, and gy=h, with o, being the tensile
stress. For compression along the ¢ axis, i=e, A =ab/2, and
g.=¢, with =, being the compressive stress. For hydrostatic
compression, the enthalpy is

Hicla,bla)= E(c,b,a,uuv)+pV, (2)

where p and V=abe/2 are the pressure and unit cell volume,
ively. Under ambient pressure, the enthalpy is equal to
| formation energy. Note that a wurtzite unit cell
s two cation-anion pairs, i.e., 2 fu. and occupy the
volume V=abe/2.

For cach ¢/a and b/a pair, the internal parameters w and v
and the unit cell volume V' are allowed to relax so that the
configuration that yields the minimum H is obtained. For a
given load condition, the minima on the enthalpy surface
with ¢/a and b/a as the independent variables identify the
corresponding  stable and metastable structures. For the
analyses at hand, the parameter ranges considered are [1.00,
1.63] for e/a
(.05 for ¢/a and 0.10 for b/a. This meshing of the structural
space resulls in approximately 170 strained configurations.
For tensile loading along the b direction, additional configu-
rations with b/a up to 2,30 are also investigated, increasing
the number of total configurations 1o 200, Out of these 170
or 200  configurations, those around (c/a.bla)
={1.63,1.73), (1.2, 1.73), and (1.00, 1.00} are more care-
fully analyzed since these three parameter sets define the
neighborhoods of stable Wi, HX, and RS structures, respec-
tively, lor the given load condition.

For each strained configuration (each c/a-b/a pair), the
energi sociated with at least four different unit cell vol-
umes are calculated. An equation of state (energy-volume
relation) 15 obtained by a third-degree polynomial fit. Under
loading, the volume that minimizes H is not the same as the
volume that minimizes E. The equation of state allows the

and [1.00, 1.73] for b/a, with the increments of’
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FIG. 2. (Color online) Energy (solid curve) and enthalpy

(dashed curve) as functions of volume for wurtzite (¢/a=1.61 and
bla=1.73) Zn0. Al hydrostatic pressure p,=8.22 GPa, the volume
that minimizes enthalpy (V) is smaller than the volume at ambient
pressure (V).

minimum enthalpy for each combination of ¢/a-b/a pair and
loading condition to be obtained. As an illustration, the en-
ergy and enthalpy are shown in Fig. 2 as functions of volume
for WZ Zn0 (¢/a=1.61 and b/a=1.73) under hydrostatic
pressure. Al ambient pressure (p=0), the energy and en-
thalpy are equal and the minimum enthalpy is equal 1o E(V,),
with Vi, being the equilibrium volume of W2 in a st
state. At p=py, the minimum enthalpy occurs at V=V, for
which dE/dV=—p,.

ss-free

IV. RESULTS AND DISCUSSIONS
A. Ambient conditions (stress-free state)

Figure 3(a) shows the energy (or enthalpy at zero external
loading) landscape for ZnQ. The global minimum occurs at
the wurtzite structure with (c/a.b/a)=(1.61,1.73). The sec-
tions of the surface along b/a=1.73 (solid line} and 1.00
(dash line) are shown in Fig. 3(b). By virtue of symmetry,
blais fixed at (3(=1.73) for WZ and HX and at 1.00 for
RS. Clearly, in stress-lree state, W7 is the most stable struc-
ture with the lowest energy, HX has higher energy and is not
stable {no local minimumj, and the RS structure is meta-
stable with a high energy. For CdSe, GaN, InN, and SiC, the
shapes of the energy landscapes (not shown but can be found
online®) are similar to that of Zn0O. Their two-dimensional
(2D} sections at b/a=1.73 and 1.00 are shown in Fig, 4. The
energy  difference (see Ref. 36) between HX and WZ
(af;‘ﬁx""‘} and that between RS and WZ (AERSY) ape
tabulated in Table II. The energies of the three phases
for all compounds except CdSe follow the order of
ERS = pHX = W2 For CdSe, R < E'™ This exception can
he buted to the fact that for compounds such as CdSe
with high ionicity, the energy differences between RS, HX,
and WZ are relatively small. Under this situation, other ef-
fects, such as energy cost for bond distortions, can affect the
ordering in energies

There are significant variations of AE"Y-WZ gr AERS-WE
among the materials, partly reflecting differe
icity. Several indices are available to describe the ionicity of
materials. Although LDA calculation is sometimes believed

es in the ion-
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FIG. 3, (Color online) (a) Energy (£) (or enthalpy H under zero
external loading) landscape for ZnO (in eV per wurtzite unit cell
which contains two cation-anion pairs or 2 fu.). Each point on the
surface represents the minimum energy for a given combination of
ela and bla. To arrive at the minimum, o, v, and V are allowed to
relax while a, b, and ¢ are kept constant. Energy levels above
~20.50 eV are truncated as they are not of interest in the discus-
sions here. (b) 2D sections of the energy surface for b/a=1.73
(solid line) and 1.00 {dashed line).
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FIG. 4. (Color online) 213 sections of {a) SiC, (b) GaN, (¢} InN,
and (d) CdSe energy surfaces (Ref. 35) for b/a=1.73 (solid lines)
and 1.00 (dashed lines).
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TABLE I1. Energy difference (eV/2 pairs) between HX (or RS)
and the WZ structure. The Phillips ionicity parameters (f;) are also
listed. (Ref. 37).

X _ Wz ERS_ w2
Compounds Phallips’ f; (eV}) (eV)
Sic 0177 253 274
GaN 0.500 1.32 1.74
InN 0,578 0.61 0.78
Zn0y 0.616 .26 41
CdSe 0.699 0.44 0.30

to slightly overestimate the ionicity in materials, the trend of
ionicity between materials should be qualitatively correct.
Therefore, Phillips” ionic scale (f;),"” which has the range
between O (the least ionic) and [{the most ionic), is used here
by choice. The values of f; for the compounds studied here
are listed in Table 1137 The variations of AE"Y2 and
AER-WE with f, are shown in Fig. 5. For RS, A% (s0lid
line) decreases monotonically as f; increases. For HX,
AE"™-WZ (dash line) decreases monotonically with f; (except
for CdSe). This is expected because compounds with higher
levels of ionicity can significantly lower their energies
through increases in CN. While ionicity is not the only factor
that determines the relative stability of crystal structures, it
clearly affects the stability of structures. For covalent com-
pounds {e.g., SiC and GaN), the structure with fourfold co-
ordination is highly favored, resulting in large differences
between the formation energies of RS (sixfold) and WZ
(fourfold) and between the formation energies of HX (five-
fold) and WZ. On the other hand, for compounds with higher
levels of ionicity, the differences in formation energies
among RS, HX, and WZ are lower, In this paper, only ionic
compounds that have fourfold coordinated structures (WZ)
under ambient conditions are considered.

[
P

Energy difference, AE (e Vi2-pairs)
. —T

1 1 .
0.2 03 04 05
Phillips’ f;

FIG. 5. (Color online) Correlation bet the 1on energy
differences (AE) and the ionicity as quantified by Phillips” f; for
SIiC, GaN, InN, 200, and CdSe. AERSW js shown in solid line and
AET™WE G shown in dash line. For all compounds, WZ has the
lowest energy and RS has the highest energy. except for CdSe
whose RS phase has a slightly lower energy than its HX phase.
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FIG. 6. (Color online) Enthalpy differences (AH), in the unit of ¢V/2 pairs, between RS and WZ (solid line) and HX and WZ (dashed
line) as a function of hydrostatic pressure for (a) 5iC, (b) GaN, (¢} InN. (d) Zn0. and (¢} CdSe. As the pressure reaches the equilibrium value

(p™, indicated by solid dots), the enthalpies for RS and WZ become equal. Above p™, RS is more stable. Note that HX 1s never stable under

hydrostatic loading.

B. Hydrostatic compression

Sufficiently high pressures can cause the WZ structure 1o
collapse into the denser RS phase. As shown in Fig. 1, the
volume of the RS structure is ~17% smaller than the volume
of the WZ structure (AV==0,17V,, with V, being the equi-
librium volume of WZ). For a given constant pressure p, the
difference in contributions to enthalpy by mechanical work
between RS and WZ is approximately pAV (neglecting the
difference in bulk moduli of the two phases). If p is suffi-
ciently high, mechanical work can overcome the formation
energy difference, driving the transformation forward. Figure
6 shows AH®S-WE= gRS - W2 qpd AHHX-WE= gHX W g
functions of p for the five compounds studied. The rather
linear trends confirm that the bulk moduli of the WZ, HX,
and RS phases are quite comparable. The slight deviation
from linearity of AH®" reflects the fact that the bulk
modulus of RS is somewhat higher (approximately 25%)
than that of WZ. Note that the slope of the AH®Y line is
approximately five times that of the AH"Y Jine, consis-
tent with the fact that the volume decrease associated with
the WZ—RS transformation (17%) is approximately five
times of that associated with the WZ— HX transformation
(3.6%).

The equilibrium pressure p™ between the W2 and RS
structures (the pressure al which the enthalpies of RS and
WZ become equal) can be obtained by examining the en-
thalpy surfaces al several pressures. This pressure is identi-
fied with the intercept of the enthalpy curve with the hori-
zontal axis in Fig. 6. The enthalpy surfaces of all five
materials at their equilibrium pressure p™ are qualitatively
the same (not shown here but can be found online™). There-

fore, we choose to present only the enthalpy surface for InN
in Fig. 7(a). The corresponding 2D section is shown in Fig.
T(b). At p<p™, WZ has the lowest enthalpy. As p is in-
creased above p™, RS has a lower enthalpy than Wi, p=
depends strongly on the ionicity of the compound. This is
expected because the al energy difference between W7
and RS (AERS-WZ 7} depends on the ionicity of the
material {from AFE T4 eV for SiC o 030 eV for
CdSe). SiC has the highest AE®Y and therefore the high-
est pl (64.9 GPa), CdSe has the lowest AERSY and there-
fore the lowest p™ (2.2 GPa). The equilibrium pressures of
the five materials are listed in Table 111 Our calculated equi-
librium pressures are in good agreement with other caleu-
lated results in general (see Table 1), To compare with ex-
periments, one should not directly compare the calculated
equilibrium pressure with either the critical pressures of the
upward or downward W2 to RS transformations, This is be-
cause there is a transformation barrier between the two
phases that causes the upward critical pressure to be higher
{and the downward critical pressure to be lower) than the
equilibrium pressure. ¥ The averages between the upward
and downward critical pressures, shown as p, in Table 111, are

shown as an approximate experimental equilibrium pressures
and are in good agreement with the caleulated equilibrium
pressures,

To gain insight on the transformation enthalpy barrier, we
extracted (from the plots) the fiomogeneous transformation
barrier (in the unit of ¢V/2 pairs) of these five materials and
tabulated in Table IIT using square brackets. The barrier for
Zn0 ol 0.30 ¢V/2 pairs is the same as Limpijumnong and
Jungthawan have previously reported.'® The barriers for SiC
and GaN of 1.26 and 0.76 ¢V/2 pairs arc in good agreement
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FIG. 7. (Color online) (a) Enthalpy surface maps (in eV/2 pairs)
for InN at its RS-WZ equilibrium pressures, p™i=12.2 GPa. (b} 2D
sections of the enthalpy surface for b/a=1.73 (solid line} and 1.00
(dashed line).

with the calculated values reported by Miao and Lambrecht™
(for 8iC) of 1.2 eV/2 pairs and by Limpijumnong and
Lambrecht® (for GaN) of 0.9 ¢V/2 pairs. We can see that
the magnitude of the barrier incr ith the zero pressure
energy difference between phases (AERSWE

E ‘), hence the ion-
icity. The detailed investigation of the barriers will be a sub-
jeet of further study on more materials in the future.

Figure 8 shows the va 1 of equilibrium pressure with
the initial energy difference. An approximately linear depen-
dence of p™ on AERY ig seen. The linear fit gives

P 25, 9T(AERSYE) _ 4,68, (3}

The units of p and AE®S™ are in GPa and eV/2 pairs,
respectively. This approximate universal relationship can be
used to estimate the difference in the formation energy of the
RS and WZ phases when the equilibrium pressure is known
OF Vice vers

Figure 6 also shows that the AH"™ ™ line never inter-
cepts the horizontal axis for all five materials over the pres-
sure range analyzed. Obviously, HX is not a thermodynami-
cally stable structure under hydrostatic compression and the
WZ— HX transformation does not occur for such conditions.

C. Uniaxial compression along the [0001] direction

Figure 1 shows that 11X has a lattice constant ¢ signifi-
cantly shorter (~19% ) than that of WZ in the [0001] direc-

PHYSICAL REVIEW B 77, 024104 (2008)

TABLE 1. Equilibrium pressure, transformation barrier, and
stresses for $iC, GaN, InN, Zn0, and CdSe for the W2 RS and
WZ—HX transformations. p™ is the hydrostatic pressure that es-
tablishes the equilibrium between the WZ and RS structures and p,
(reported here as an average between the experimental upward and
downward p i is the corresponding experi-
mental value. —af? (o) is the value of the compressive (lensile)
force per unit area along the ¢ direction (b direction) at which the
WZ and HX structures are in equilibrium. For CdSe. although
~ri=3.8 GPa provides equilibrium between the WZ and HX
phases, the RS phase has a lower enthalpy (hence more stable)
under this condition, The transformation enthalpy barrier in ¢V/2
pairs between the W2 and RS phases at a given equilibrium pres-
sure are given in square brackets following p* in the same column.

of transfor

RS HX
g o P
(GPa) (GPa) GPa)  —af o
Material ~ (Present) (Other) (Expt.)  (GPa) (GPa)
SiC 64.9[1.26] 60, 66,6, 67.5° 60.5
66,5 92

GaN 44.0[0.76] 51814208 522h31 305
InN 12.2[051] 21651018 1051210 96 147
Zn0 820030] 66%93) 55785 60 108

8.0
CdSe 2.2[0.40] 2.57 2,19 38 5.8

“DFT (GGA) calculations by Miao and Lambrecht (Ref. 41).
PDET (LDA) caleulations (of zincblende w RS) by Karch er al,
(Ref. 17).

SDEFT (LDA) calculations (of zinchlende to RS) by Chang and Co-
hen {Ref. 42).

AFT (B3Lyp) calculations (of zincblende to RS) by Catti (Ref. 43).
“Synchrotron angle dispersive x-ray diffraction (ADX) experiment
by Yoshida er al. (Ref. 10).

DET (LDA) caleulations by Christensen and Gorezyea (Ref. 14),
EDET (LDA) calculations by Serrano er al. (Ref. 44).

BADIX experiment by Ueno et al. (Ref. 6).

'Synchrotron energy-dispersive x-ray diffraction (EDX) by Xia er
al. (Ref. 8).

JSynchrotron EDX experiment by Xia er al. (Ref, 9),

EDIFT (LIDA) caleulations by Jaffe er al. (Ref. 16),

'DFT (GGA) caleulations by Jaffe er al. (Ref. 16).

BPRET (GGA) calenlations by Ahuja er al. (Ref. 45).

“Synchrotron EDX experiment by Desgreniers. (Ref. 5).
“Synchrotron EDX experiment by Recio er al. (Ref. 46).

EDET (LA} calculations by Coté er al. (Ref. 23).

SEDX experiment by Cline and Stephens (Ref, 4),

tion. ‘This difference allows WZ to transform into HX via
compression in the ¢ direction. Under constant compressive
stess —o. (negative sign indicates compression), the me-
chanical contribution to the enthalpy difference between WZ
and HX is —=A o Ac, where Ae=-0.19¢. A sufficienily high
=, would allow mechanical work to offset the energy dif-
ference between HX and WZ, affecting the transformation
into the HX structure. The shapes of the enthalpy surfaces
for 8iC, GaN, InN, and Zn0O at their respective equilibrium
compressive stress —o? are qualitatively the same (not
shown here but can be found online™ ). Therefore, we choose
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FIG. 8, (Color online) Correlation between equilibrivm hydro-
static pressure (p™) and the difference in energy (AE) between the
RS and W phases of the five materials, p* s the pressure at which
the WZ and RS structures are in equilibrium, as illustrated in Fig. 6
and tabulated in Table I11. The energy difference AE=E®S - W% j5
caleulated under the conditions of zero external loading and is tabu-
lated in Table I1.

to present the enthalpy surface for InN with a 21 seetion plot
in Fig. 9(a). The stability of the HX phase can be
better analyzed through the enthalpy difference AH1Y-WZ
=H"X— ™% a5 a function of the compressive stress along the

¢ direction (dashed lines, Fig. 10} If the elastic moduli of

HX and WY along the ¢ direction are assumed to be equal,
AH would vary linearly with —o, with an approximate slope
of AgAcm==0.19abe/2)==0.19V, Figure 10 also shows
the enthalpy difference between RS and WZ, AHRS-WE
=H®—H" (solid lines). Note that AH"™ Y and AR

(b) CdSe

(eVT-pairs}

s b = 1100
’

H

-0/1=175GPa

H (eVR2-pairs)
=
V)

<208

FIG. 9. {Color online) Enthalpy surface maps for (a) InN and (b)
CdSe at their respective HX-WZ equilibrium ¢ direction stress
(=e23). Their 20 sections for bla=1.73 (solid line) and 1.00
(dashed line) are also shown in the bottom panel. Note that, unlike
other materials studied here, CdSe favors RS over HX phase under
e-direction stress.
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show similar trends, with similar slopes. This is because for
the WZ—RS transformation, Ac/c=18%, while for the
WZ—HX transformation, Ac/c=19%.

For all materials except CdSe, AH™W2 is always lower
than AH®"Windicating that HX is more stable than RS
under compression in the ¢ direction. For CdSe, where ini-
tially (i.e., under no load condition) the RS phase has a
slightly lower energy than HX, AH®™Y is always lower
than AHY*Y indicating that RS is the preferred structure
over HX under uniaxial compression along the [0001] direc-
tion as well as under hydrostatic compression. As a result,
the the enthalpy surface at —o%% of CdSe [Fig. 9(b}] is quali-
tatively different from those of the other four materials [rep-
resented by Fig. 9(a)], i.e., the RS phase has lower enthalpy.
The equilibrium siress for the transformation (—e®) of each
material is shown in Fig. 10. Below —of, WZ phase is
stable, Above o, HX is stable (RS for CdSe). The values
of -t depend on the ial energy difference (AF)
between WZ and HX and are listed in Table 111 For SiC,
AE=E"-EW2=2.53 ¢V, the stress required to cause the
HX —WZ transformation is high (-o=60.5 GPa). On the
other hand, for ZnO, AE=0.26 ¢V and —¢%1=6.0 GPa which
is only 1/10 of the stress level required for SiC, This linear
trend is clearly scen in | 11 which shows —o2 as a func-
tion of AE for the materials analyzed. The linear fit gives

— o= 25 T2AEYE) _ 456, (4)

The coefficients in the equation are based on the units of
=™ and AE"S Y2 in GPa and €V/2 pairs, respectively. The
ity in the numerical values of coefficients of Eqgs. (4)
and (3) is fortuitous. Note that the WZ-HX homogeneous
transformation enthalpy barrier is significantly lower than
that of WZ-RS, i less than 0.1 eV/2 pairs for all
materials studied except $1C. However, for SiC, the barrier is
only slightly higher, i.e., 0.13 ¢V/2 pairs.

simi

D. Uniaxial tension along the [0170] direction

The HX structure also has a longer dimension in the
[0110] direction compared to the WZ structure (longer by
approximately 9%, see Fig. 1, middle column). This differ-
ence allows W7 to transform into HX via tension in the b
([0110]) direction. Note that the difference in b hetween the
two structures is only about half of the difference in ¢, Ac-
cordingly, the mechanical enthalpy contribution A, .o Ab is
roughly half of the case of ¢ compression for the comparable
stress magnitude. Only three (InN, Zn0, and CdSe) out of
the five materials studied have a local minimum correspond-
ing to the HX structure under tensile loading along the b
direction. We choose to present the enthalpy surfaces for InN
(those for ZnO and CdSe can be found online™) at the equi-
librium tensile stress o3 [Fig. 12(a)] with its 2D seetion plot
[Fig. 12(b)]. The wn"‘ between the enthalpy differences
AHMXWEZ X W2 ae functions of tensile stress o, are
similar to the compressive stress case. The equilibrium ten-
sile stress o (14.7, 10.8, and 5.8 GPa for InN, Zn0O, and
CdSe, respectively) is approximately twice the equilibrium
compressive siress —er! for the ¢ direction. EP-MD simula-
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L 10L (Color onling) Enthalpy differences (AH) between the RS and W72 (solid line) and HX and WZ, (dashed line) as a function of
ion stress (—er,) for (a) SicC, (b) GaN, (¢) InN, (d) ZnO, and (¢} CdSe, As the magnitude of the siress reaches the equilibrivm value

(=, indicated by solid dots), enthalpies of the HX and WZ structures become comparable. At stresses above —o, the HX phase is more

stable.

tions have shown that under tensile loading, [0110]-oriented
Zn0O nanowires can indeed transform into the HX structure
under tensile loading.”® The nanowires can sustain lensile
stresses up to 14 GPa before failure, which is well above the
equilibrium stress o predicted here. The equilibrium trans-
formation stress of op'=58 GPa for CdSe is the lowest
among the materials studied. For nanostructures, other fac-
tors such as surface effects may contribute to facilitate the
W#Z—HX transformation.” As a result, HX can emerge as

&0
. g™ T
30 - v e .
GaN_~" i
»
L
3oL InN l/l Bl
o 8L
wf ey =
4 i
e |
o 1 ’ 2k 2 =
AE™Y (V1. pairs)

FIG. 11. (Color online) Correlation between equilibrium stresses
{—o and o}%) and the difference in energy (AE) between the HX
and WZ phases for the five materials. —o™ (o57) is the equilibrium
value of the c-direction compressive stress (b-di
stress) for the HX and RS structures (see Table I11). The energy
difference AE=E"™-E"* is caleulated under conditions of zero
external loadi nd is tabulated in Table I1.

o,=147GPa

=300

- ba=195

pairs)

) = -30.2 -

o
T .
= 304 s, i
\ HX wZ
ba=22
P e T O I
3085 12 14 1.6
cfa

FIG. 12. (Color online) (a} Enthalpy surface maps (in eV/2
pairs) for InN at its HX-WZ stresses along the b direction,
opl=147 GPa. (b) 2D} sections of the enthalpy surface for
bia=1.95 (solid line) and 2.20 (dashed line).
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an intermediate phase during a WZ—RS transformation in
CdSe nanorods,” even though it does not have the lowest
enthalpy in the bulk calculations. The relationship between
ofd and AETX-W22 EHXC EWZ 5 shown Fig. 11. Note that the
o3 of CdSe may be higher than its fracture strength.

A local minimum for HX is not observed in the enthalpy
surfaces for SiC and GaN, even at extremely high theoretical
levels of o, (60 GPa for $iC and 30 GPa for GaN).™ The
lack of transformation in these materials can be attributed 1o
the fact that their equilibrium transformation siresses are
higher than their respective ultimate tensile strengths (o
= opps). Indeed, EP-MD simulations have shown that for
GaN nanowires, org=30 GPa,* only a fraction of the
rough estimation of equilibrium stress of o%9= 60 GPa. The
aid of SiC is even higher since it has a higher energy differ-
ence between W7 and HX, making it more likely to have
fractured before reaching its theoretical equilibrium stress of
o= 120 GPa.

V. CONCLUSIONS

First principles calculations are carried out to study the
stability of the W, RS, and HX phases of 8iC, GaN, InN,
Zn0), and CdSe under loading of different triaxialities. The
energy of the materials correlates with their ionicity. At am-
bient conditions, WZ has the lowest energy level, HX has the
second highest energy level, and RS has the highest energy
level (with the exception of CdSe whose RS phase has a
lower energy level than its HX phase). All five materials
have the fourfold warizite structure as their stable and natu-
rally occurring phase. Under all around hydrostatic compres-
sion, the materials can transform into the sixfold coordinated
RS structure. Under uniaxial compression along the [0001]
direction and uniaxial tension along the [01 T[]] direction, the
materials can transform into the fivefold coordinated unbuck-
led wurtzite structure, The equilibrium conditions for the
transformations are outlined. For the WZ—RS transforma-
tion, the equilibrium hydrostatic pressures (p™) are predicted

PHYSICAL REVIEW B 77, 024104 (2008)

to be 64.9, 44.1, 12.2, 8.2, and 2.2 GPa for 5iC, GaN, InN,
Zn0, and CdSe, respectively. These values are in good
agreement with other theoretical caleulations and experimen-
tal measurements. For the WZ— HX transformation under
uniaxial compression along the [0001] direction, the equilib-
rium stresses (—a) are 60.5, 30.5, 9.6, and 6.0 for SiC,
GaN, InN, and Zn0, respectively, For CdSe, axial com-
pression along the [0001] direction induces a WZ—RS
transformation at a stress of 2.4 GPa instead of the
W7 — HX transformation because the formation energy of
1s lower than HX for CdSe. For the WZ— HX ransfor-

n under uniaxial tension along the [0110] direction, the
equilibrium transformation stresses (o) are 14.7, 10.8, and
5.8 GPa for InN, Zn0, and CdSe, respectively. The stress
level for CdSe is close to its fracture limit. No transformation

is observed for SiC and GaN under tension along the [01 ]-0]
direction due to the fact that their theoretical equilibrium
transformation stresses are well above their respective ulti-
mate fracture strengths. The magnitudes of p™, —o?, and o}
are approximately linearly dependent with the formation en-
ergy differences between the relevant phase of the materials.
Based on the calculations of five materials, we established a
general linear Tunction between p™ and RS =WZ, energy dif-
ference that could be useful for predicting the difference in
formation energy of the RS and W7 phases of other materi-
als when the equilibrium pressure is known or vice versa.
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APPENDIX
Tahles IV-VIIL

TABLE IV. Lattice parameters for WZ, HX, and RS SiC under equilibrium loading conditions.

W7 HX RS
Parameters p=00GPa —r=60.5 GPa P=064.9 GPa
a (A) 305 332 4.00
(3.06.* 3.087) (3.68.2% 3.84%)
b{A) 528 574 4.00
o (A) 497 398 4.00
ve % (A% 40.0 38.0 320
cla = 1.63 1.20 1.00
bla 1.73 1.73 1.00
u (0,38 050 0.50
v 0.35 0.33 0.50

DT (LIDA) caleulations by Karch er al. (Ref. 17).
"XRIDY experiment by Schultz er al. (Ref. 47).
“Synchrotron ADX by Yoshida er al. (Ref. 10).
IDFT (LDA) calculations by Hatch er al. (Ref. 48).
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TABLE V. Lattice parameters for W2, HX, and RS GaN under equili

PHYSICAL REVIEW B 77, 024104 (2008)

um loading conditions.

W7, HX RS
Parameters p=0GPa =o=30.5 GPa pH=44.1 GPa
a (A) 305 (3192 3060 3000 3.43 416 (4012 410 4.07%)
b (A) 546 504 416
e (A) 511 412 416
- ﬂ (AS} 440 420 360
cla 1.62 1.20 1.00
bila 173 173 1.00
u 0.38 0.50 0.50
v 0.35 033 .50

*Synchrotron EDX experiment by Xia er al. (Ref. 8).
PXRD experiment by Xie er al. (Ref. 49).

DFT (LDA) caleulations by Kim er al. (Ref. 50).
IDFT (LDA) caleulations by Yeh er al. (Ref. 51).
“XRD experiment by Lada er al. (Ref. 52).

TABLE VI, Lattice parameters for WZ, HX, and RS InN under equilibrium loading conditions.

HX

W7 RS
Parameters p=0GPa —afi=0.6 GPa  ai=14.7 GPa P=12.2 GPa
a(A) 3.54 (3,53, 3.54.0¢ 3.52) 182 348 464 (4,675 4.62%)
b (A) 6.13 6.62 7,66 464
e (A) 5.70 4,50 435 4.64
LN 619 58.1 580 50.0
cla 1.61 1.20 1.25 1.00
bla 173 1.73 220 1.00
u 0.38 0.50 0.51 0.50
v 0.35 033 0.31 0.50

“DEFT (LDA) calculations by Kim er al. (Ref. 50).

PDET (LA} calculations by Yeh er al. (Ref. 51).

SXRD experiments by Osamura er al. (Ref, 53).

DET (LDA) caleulations by Furthmiller er al. (Ref. 54).
CADX experiment by Ueno er al. (Ref. 6).

TABLE VIL Lattice parameters for W7, HX, and RS Zn0 under equilibrium loading conditions.

HX

w7 RS
Parameters p=0GPa —oM=60GPa ot=10.8 GPa p=8.2 GPa
a (A) 3.21 (320, 3,250 3.264) 349 324 4.24 (4281 4.27%%)
b (A) 554 6.03 6.46 4.2
e (A) 5.15 (5.17.% 5.229) 4.19 420 4.24
vabe g3y 457 (46.697 4724 47989 44,1 44.0 38.1 (39.03.° 38.167)
cla 2 161 (1.59%) 120 1.30 100
bla 173 173 200 100
I 038 (0.38000) 0.50 0.50 0.50
v 033 033 031 050

DT (LDA) caleulations by Malashevich and Vanderbilt (Ref, 56).
"Synck EDX experi by D ier (Ref. 5).

CXRD experiments by Karzel er al. (Ref. 55).

IEXAFS experiments by Decremps er al. (Ref. 57).

“DIT (GGA) caleulations by Jaffe er al. (Ref. 16).

OFT (GGA) caleulations by Ahuja er al. (Ref. 45).

024104-10

144



Manuscript published in Physical Review B

STABILITY OF WURTZITE, UNBUCKLED WURTZITE....

PHYSICAL REVIEW B 77, 024104 (2008)

TABLE VIIL Lattice parameters for W2, HX, and RS CdSe under equilibrium loading conditions.

HX
W7 RS

Parameters p=0GPa ~of1=3.75 GPa ofi=5.8 GPa PH=22GPa
a(A) 4.27 466 418 5.54

(4.307) (55825710
b (A) 7.39 806 878 5.54
c(A) 6.96 5.50 544 5.54
v=2 43 109.8 105.0 99.9 85.0
cla 1.63 1.20 1.30 1.00
bla 173 173 2.10 1.00
n 0.38 0.50 0.50 0.50
v 035 033 031 0.50

*DET caleulations by Benkhettou er al. (Refl, 58).
"XRD experiment by Wickham er al. (Ref. 59).
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Abstract

Molecular dynamics (MD) simulations and first-principles calculations are carried out to analyze the stability of both
newly discovered and previously known phases of ZnO under loading of various triaxialities. The analysis focuses on a
graphite-like phase (HX) and a body-centered-tetragonal phase (BCT-4) that were observed recently in [0110]- and
[000 1T-oriented nanowires respectively under uniaxial tensile loading as well as the natural state of wurtzite (WZ) and
the rocksalt (RS) phase which exists under hydrostatic pressure loading. Equilibrium critical stresses for the transforma-
tions are obtained. The WZ — HX transformation is found to be energetically favorable above a critical tensile stress of
10 GPa in [0110] nanowires. The BCT-4 phase can be stabilized at tensile stresses above 7 GPa in [000 1] nanowires. The
RS phase is stable at hydrostatic pressures above 8.2 GPa. The identification and characterization of these phase transfor-
mations reveal a more extensive polymorphism of ZnO than previously known. A crystalline structure-load triaxiality map
is developed to summarize the new understanding.
© 2007 Elsevier Ltd. All rights reserved.

Keywords: Phase transformations; Load triaxiality; Zinc oxide; Molecular dynamics; Density functional theory

1. Introduction

Polymorphic transitions occur in materials with non-convex free energy landscapes or materials that dis-
play multiple local minima along with a global minimum under ambient conditions. The global minimum
in free energy corresponds to a stable crystalline structure and is the natural state of the material. Each local
minimum, on the other hand, represents a metastable lattice structure that the material can assume under
external stimuli. Traditionally, external loading and temperature changes are used to transform materials from
their stable structures to metastable states. Stress-induced phase transformations are widely observed in
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groups IV, III-V and II-VI materials including ZnO, which have been predominantly studied through
compressive loading (Mujica et al., 2003). Having a parent wurlzite (WZ, P6yme space group) structure, these
materials transform to a rocksalt (RS, Fn3m space group) structure under high hydrostatic pressures. The
recent fabrication of defect-ree, single-crystalline nanowires, nanobelts and nanorings ol ZnQO (IIB-VIA),
GaN (IITA-VA) and CdSe (IIB-VIA) necessitates the analyses of responses to loading of various triaxialities,
including bending and uniaxial tension since these materials have slender quasi one-dimensional geometries
and are capable of undergoing significant elongations (Diao et al., 2004; Kulkarni et al., 2005; Liang and
Zhou, 2006).

There are three hitherto known polymorphs of ZnO, including WZ, RS and zinc blende (ZB, F43m) (Ozgur
et al., 2005). WZ is the natural state under ambient conditions. RS occurs under high hydrostatic pressures.
ZB can only be grown on certain crystalline surfaces of cubic crystals. So far, the existence of polymorphs
other than WZ, ZB and RS at various loading triaxialities has not been extensively studied. Recently, we
observed a graphitic structure (hereafter referred to as HX) in [0110]-orientated nanowires (Kulkarni et al.,
2006) and a body-centered-tetragonal phase (hereafter referred to as BCT-4) in [0001}oriented nanowires
under uniaxial tensile loading (Wang et al., accepted for publication). Here, we characterize the phase
transformations from WZ that lead to these novel structures. For comparison and overall perspective, the
WZ-t0-RS transformation is also analyzed. Our analyses use [irst-principles calculations based on the density
functional theory (DFT) and molecular dynamics (MD) simulations. Particular interest is on the crystallo-
graphic changes and critical loading condition for each transformation. A crystalline structure-load triaxiality
map is developed to summarize the relationship between the structures and load condition.

2. Computational framework

The MD simulations use the Buckingham potential with charge interactions (Binks and Grimes, 1993; Woll’
et al., 1999). The calculations concern the quasi-static uniaxial tension of nanowires with the [0110] growth
orientation and nanorods with the [0001] growth orientation and the hydrostatic compression of bulk
Zn0. The initial structures considered are single-crystalline and wurtzite-structured with lattice constants
a=3.249 A and ¢ = 5.206 A, as illustrated in Fig. 1(a) (Wang, 2004). The computational cell for bulk struc-
ture is 29.24 % 28.13 % 31.24 A in size and is created by repeating a unit wurtzite cell along the [0001],[0110]
and [2ﬁ0] directions. Periodic boundary conditions (PBCs) are specified along the three directions to approx-
imate infinite material extension. The [0110]-oriented nanowires have rectangular cross-sections and {2110}
and {0001} lateral surfaces and the computational cell size is 21.22 x 18.95 x 150.83 A. The [0001]-oriented
nanorods have hexagonal cross-sections with a six-fold symmetry around the [0001] axis and six {0110} lat-
eral surfaces. The corresponding computational cell size is 28.14 x 65.0 x 145.8 A. PBCs are specified only
along the axial directions for the nanowires.

Fig. 1. {a) The wurtzite (WZ) crystal structure and {b) formation energy surface of ZnO with minima corresponding to the WZ, HX and
RS structures.
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Since the crystallographically constructed computational cells may not be in equilibrium, pre-loading relax-
ations are carried out to obtain their ree standing configurations. Following this initial equilibration, approx-
imate quasi-static tensile loading in each deformation increment is achieved though successive loading (at a
specified rate of 0.005/ps) and equilibration steps (for 3 ps) using a combination of algorithms [or NPT (Mel-
chionna et al., 1993; Spearot et al., 2005) and NVE ensembles (Haile, 1997). The loading process results in a
longitudinal strain increment of 0.25% (dilatation increment of ~0.75%) per deformation increment. Unload-
ing is implemented in a similar manner with a reduction in strain for each unloading step. The virial formula is
used to calculate the stress (Zhou, 2003).

The DFT calculations use the VASP code (Kresse and Furthmiiller, 1996) with local density approximation
(LDA) and ultrasolt pseudopotentials (Vanderbilt, 1990) and locus on the evaluation of the total energy in the
natural and deformed states. The stability of each crystal structure is determined by analyzing enthalpy as a
function of lattice parameter ratios ¢/a and b/a. The enthalpy per unit cell (2 Zn-O pairs) under uniaxial load-
ing is defined as

H(c/a.b/a) = E(e, b, a,u,v) — %‘f}qj. (1)

where FE is the formation energy, f; is the uniaxial force along the 7 direction, ¢; is the lattice parameter in the 7
direction, and fg; (summation not implied) is external work per unit volume V. For tension along the [0110]
axis, i=0b, f, =03 % (ac) and g, =b, with o, being the tensile stress. For tension along the ¢ axis, i=¢,
fe=0.%(ab), and g.= ¢, with ¢, being the tensile stress. For hydrostatic compression, the enthalpy is

H(c/a,b/a) = E(c,b,a,u,v) +%pV, (2)

where p is the pressure and V' = abc is the volume of two unit cells containing 4 Zn-O pairs. For cach ¢/a and
bla pair, the internal parameters » and v and the volume J are allowed to relax so that the configuration that
yields minimum H is obtained. For a given load condition, the minima on the enthalpy surface with ¢/a and
bla as the independent variables identify the corresponding stable and metastable structures.

3. Results and discussion
3.1 Stress-free state

Under ambient conditions, ZnO assumes the WZ structure which belongs to the Péyme space group. As
shown in Fig. la, this structure consists of two hexagonal close packed sublattices (one for Zn and the other
for O) with an offset of ‘uc” along the [000 1] axis. The lattice parameters a, b, ¢, u = uc/c, v = vh{b which com-
pletely define the structure are also indicated in the figure. Fig. Ib shows the formation energy (or enthalpy at
zero external loading) landscape for ZnO. The structures corresponding to WZ, RS and HX are shown. The
global minimum occurs at the WZ structure with (¢/a, bla) = (1.61, 1.73). Clearly, WZ is the most stable struc-
ture with the lowest energy; HX and RS have higher energies and are not stable under ambient conditions.

3.2. Uniaxial tension along the [0110] orientation

Fig. 2a shows an intermediate configuration during the tensile loading of a [01 10]-oriented nanowire with
the cross-sectional size of 21.22x 18.95 A using MD simulations. The corresponding stress-strain (o—&)
response is shown in Fig. 2b. The region between A and B corresponds to elastic stretching of the WZ struc-
ture. Loading beyond B results in a stress drop from 10.02 to 6.98 GPa (B — C) at & = 5.14%. This softening
behavior corresponds to the nucleation of the HX phase. At this stage, u changes from its initial value of 0.38
for WZ to a value of 0.5 for HX, implying the flattening of the buckled wurtzite basal plane (Zn and O atoms
becoming co-planar) [Fig. 2c]. As a result, Zn atoms are at equal distances from O atoms along the [000 1] axis
and the structure acquires the additional symmetry of a mirror plane perpendicular to the [0001] axis. This
process occurs while the orientation of the basal plane remains invariant. Since v remains unchanged, HX has
the same hexagonal symmetry around the c-axis as WZ. As the deformation progresses, the transformed
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Fig. 2. {a) Nanowire with HX and WZ phases (transformation in progress under uniaxial tensile loading in the [0110]). (b} tensile stress-
strain response of a 21.22 < 18.95 A nanowire at 100 K during loading-unloading, {c) newly discovered hexagonal (HX) crystal structure,
{d) enthalpy surface map obtained from DFT calculations with tensile stress o, = 10 GiPa, and (e) enthalpy surface map with tensile stress
oy = 13 GPa.

region sweeps through the entire wire length (C — D) and the transformation completes at ¢ =9.71%
(¢ =9.65 GPa). Further deformation occurs through the elastic stretching of the transformed structure
(HX) and ultimate fracture occurs at ¢ = 16% (¢ = 15.29 GPa, not shown) through cleavage along {1210}
planes.

Unloading from any strain prior to the initiation of failure, e.g. point E with ¢ = 14.5%, is first associated
with the recovery of the elastic deformation within the HX structure (E — F). A reverse transformation from
HX to WZ (F — G — H) initiates at £¢=5.77% (o =4.59 GPa, point F) and completes at &=0.6%
(g = 1.15 GPa, point H). Unloading beyond H occurs through elastic deformation within the WZ structure
(H — A). Strains up to 14.5% can be recovered, highlighting a very unusual aspect of the behavior of ZnO
which normally is guite brittle. Obviously, the large recoverable strains observed here are associated with
the unique structural transformation process. The energy dissipation associated with the stress—strain hyster-
esis loop is ~0.16 GJ/m*, much lower than that for the WZ « RS transformation in bulk (~1.38 GJ/m® with a
maximum recoverable volumetric strain of 17% in compression) (Desgreniers, 1998).

Fig. 2d and e shows the enthalpy surfaces (eV/unit cell) for a5, = 10 and 13 GPa, respectively. In each case,
there are two minima. The first minimum (H:‘ﬁ) is in the vicinity of ¢fa = 1.6 and bla =~ 1.9 corresponding to a
WZ structure with lattice parameters slightly different from those at zero stress. The second minimum (H1)
in the vicinity of ¢fa 2 1.3 and bla =~ 1.9 corresponds 1o the HX phase. At a stress value of 10 GPa, H''Y and
HY% are comparable and consequently both WZ and HX are equally favored. At an applied stress of 13 GPa
[Fig. 3¢], #I™ is lower than HY2, indicating that HX is more stable. Obviously, the critical stress value for the
WZ-to-HX transformation is o, = 10 GPa. As the magnitude of g, is increased above this equilibrium tran-
sition value, HX becomes more stable and simultaneously the transformation barrier is even lower, resulting in
an increased driving force for transformation.
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3.3, Uniaxial tension along the [0001] orientation

Fig. 3a shows the configuration of a [0001}-oriented nanorod with a lateral dimension of @ =32.5 A.
Fig. 3b shows the corresponding stress—strain response. Four distinet stages (A — B, B—C, C— D and
D — E) are observed. The first stage (A — B) corresponds to the elastic stretching of the WZ structure up
to a strain of 7.5%. Further deformation results in a precipitous stress drop (B — C) associated with the
WZ to BCT-4 phase transformation which initiates in a local zone and propagates along the length of the
nanorod. Crystallographic analysis reveals that the transformed phase consists of four-atom (2 Zn and 2 O)
rings arranged in a BCT lattice [Fig. 3c]. The four-atom ring at the center has an orientation different (rotated
by 90°) [rom that of the rings at the corners of the tetragonal lattice cell. The BCT-4 structure thus obtained
preserves the initial tetrahedral coordination such that each Zn/O atom is at the center and four O/Zn atoms
are at the vertices of a distorted tetrahedron. The distortion in the coordination tetrahedron can be analyzed
through a quantification of the 3-D O-Zn-0O bond angles (z;, i = 1..6). For WZ, the bond angles are approx-
imately equal (2; = 108%). For BCT-4, the formation of 4-atom rings results in three distinct groups of bond
angles (a7 == 90°, 5 &= 112.7° and =3 = 113.7°). Throughout the transformation, the bfa ratio remains at its ini-
tial value of 1.73 (£0.02), reflecting the symmetries of the loading and the lattice. The transformation com-
pletes at a strain of 8.5%. Further loading causes the elastic stretching of the BCT-4 structure (C — D) and
culminates in the eventual failure at a strain of 16.9% (point E).

To analyze the stability of the WZ and BCT-4 structures, unloading is performed from points B and D
which correspond, respectively, to the states prior to the transformation initiation and failure initiation of
the nanorod. The unloading path from B coincides with the loading path, confirming that the deformation
from A to B is indeed the elastic response of the WZ structured nanorod. Unloading from D also results
in the elastic recovery of the stretched BCT-4 structure and continued unloading beyond the transformation
completion strain (point C) does not result in a reverse transformation back to WZ. Instead. the nanorod
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Fig. 3. (a) Configuration of a [0001] nanorod with d = 32.5 A, (b) stress-strain curve of this nanorod at 300 K during loading and
unloading, (c) newly discovered body-centered-tetragonal with four atom rings (BCT-4) structure, (d) enthalpy (per 4 Zn—O pairs) as a
function of ¢/a obtained from DFT calculations for b/a = 1.73 at a tensile stresses of o, = 7 GPa, and (e) enthalpy map at ¢, = 10 GPa.
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retains the BCT-4 structure when the stress is reduced to zero [F in Fig. 3b). The residual strain at F in Fig. 3b
is 6.8% according to both MD and DFT. It reflects the dimensional difference between the unstressed WZ and
BCT-4 structures in the [000 1] direction. This unstressed BCT-4 structure corresponds to the “ideal” BCT-4
structure predicted by the DFT calculations with bla = ¢la = 1.73.

Fig. 3d and e show the enthalpy values (eV per 4 Zn-O pairs) for both WZ and BCT-4 with bla = 1.73 at
a = 7and 10 GPa. At any stress level, each structure has its own enthalpy minimum. The first minimum (H}%
is in the vicinity of ¢/a 2 1.6 which corresponds to a WZ structure with lattice parameters slightly different
from those at zero siress and the second minimum (HBS!#) is in the vicinity of ¢fa = 1.7-1.9 which corre-
sponds to the BCT-4 structure. At a stress of 7 GPa, HY2 and HECI# become comparable, indicating that
WZ and BCT-4 are equally favored. This value of stress corresponds to the equilibrium transition stress
for the two phases. At 10 GPa [Fig. 3c), #51# is lower than A% and BCT-4 is clearly favored. Further
increases in stress result in a higher driving force for and the eventual initiation of the phase transformation
into the BCT-4 structure as H%!* becomes progressively lower than 2. The gradual evolution of the local
enthalpy minimum for the BCT-4 at ¢ = 0 into a global minimum as stress increases confirms that the phase
transformation is indeed favorable.

3.4. Hyvdrostatic compression

Fig. 4a and b show the initial WZ and transformed RS structures for ZnO. The corresponding pressure—
dilatation relation is shown in Fig. 4¢. Three distinctive stages of response during loading (A — B, B — C and
C — D) and unloading (D — E, E — F and FF — G) are observed. During loading, the first stage (A — B) cor-
responds to the elastic deformation of the WZ structure. The precipitous drop in pressure at p = 9.4 GPa is
associated with the transformation of the initial WZ structure to the RS structure. Crystallographically, the
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Fig. 4. (a) Bulk ZnO with the WZ structure under hydrostatic compression. (b) the RS structure as a result of the WZ-to-RS
transformation, {¢) pressure—dilatation relation of bulk ZnO during loading and unloading at 300 K, (d) lattice structure of the RS phase,
(e) enthalpy surface obtained from DFT calculations for a hydrostatic pressure of p = 8.22 GPa, and (f) enthalpy surface for p = 13 GPa.
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Fig. 5. Crystalline structure-load triaxiality map showing the relationship between applied loading and the resulting polymorphs of Zn0.

transformation proceeds such that both u and v change to 0.5 and the b/a and ¢/a ratios become unity [Fig. 4d].
Consequently, the RS structure has a six-fold coordination and belongs to the Fin3m space group. The trans-
formation pressure observed here is consistent with experimental measurements in the range of 8.7-9.1 GPa
(Desgreniers, 1998; Karzel et al., 1996). These values are higher than the phase equilibrium stress predicted
by first-principles calculations (6.6-8.5 GPa) (Jafle and Hess, 1993; Jaffe et al., 2000; Limpijumnong and Jung-
thawan, 2004). The difference is that, while the MD and experimental values are actual transformation stresses
which reflect the effect of the energy barrier between the WZ and RS phases, the DFT phase equilibrium stress
only indicates the level of stress at which the two phases are equally favored but does not relate to the stress
required to overcome the energy barrier and activate the transformation.

Upon transformation completion, further increase in pressure results in the elastic deformation of the RS
phase. Unloading is carried out from various stages of deformation of the RS phase to analyze the reversibility
of the transformation. Specifically, unloading from point D along the loading path results in the recovery of
the elastic deformation of the RS phase. Decrease in pressure beyond the transformation initiation point (B)
does not result in the reverse transformation. Instead, the RS structure remains upon complete unloading.
This retention of the RS structure upon full unloading has been reported in experiments (Recio et al.,
1998). However, a spontancous reverse transformation has also been observed in experiments (Mujica
et al., 2003). Both sets of experimental results are reasonable because in experiments temperature is controlled
only in an average sense and different experiments are carried out at different temperatures. Excess thermal
energy in high temperature regions can allow the energy barrier between the RS and WZ structures to be over-
come, resulting in the reverse RS-to-WZ transformation upon unloading. FFurthermore, in experiments,
defects such as grain boundaries in polycrystalline ZnO samples can act as potential nucleation sites [or the
reverse transformation and this effect is not considered in the calculations. In the simulations, the RS structure
can casily revert to the WZ structure upon the application of a small negative hydrostatic pressure (E — IF),
leading to full elastic recovery of the volumetric strain (F — G).

Fig. 4¢ and [ show the enthalpy landscapes for p = 8.22 and 13 GPa, respectively. Similar to what is seen for
the HX and BCT-4 transformations, there are two minima; one corresponds to WZ (HYZ, ¢fa =~ 1.6 and

bla = 1.6) and the other corresponds to RS (HE . cla= 1.0 and bla = 1.0). At p =822 GPa, HY = H*

and WZ and RS are equally favored. This value of pressure is the phase equilibrium pressure for ZnO. As
the pressure is increased to 13 GPa, HXS becomes much lower than HYZ and the transformation to RS is ener-

getically favored.

4. Summary

The identification of the novel HX and BCT-4 crystalline structures and the characterization of the WZ-to-
HX and WZ-t0-BCT-4 phase transformations lead to a more complete understanding of the nature of
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polymorphism in ZnO and its dependence on load triaxiality. Obviously, polymorphism is much more pro-
nounced in ZnO than previously understood and load triaxiality plays a very significant role in determining
the structures. Fundamentally, this complexity is a reflection of the anisotropy and tension-compression
asymmetry embedded in the atomic bonding and crystalline structures. It is possible to construct a crystalline
structure-load triaxiality map for ZnO, as shown in Fig. 5. Among the previously well known phases, WZ is
the most stable and naturally occurring phase and RS is observed under hydrostatic compressive conditions.
Both BCT-4 and HX are stabilized under uniaxial loading, with HX occurring under tension along the [0110]
and BCT-4 occurring under tension along the [000 1] direction.
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Abstract

A phase transformation of ZnO nanowires from the natural wurtzite phase
(WZ) to a novel graphite-like hexagonal structure (HX) is predicted for the first
time, based on first- principle calculations and molecular dynamic simulations.
We found that a [0110] nanowire, i.e. a nanowire with its principal axis oriented
along the WZ [0110] direction, has a special property under tension. Under a
large tension, the wire can have the WZ-HX phase transformation which
effectively allows the wire to stretch by almost 20% before breaking. This
property is very unusual for ZnO which normally can stretch by less than 7%
before fracture. We have recently published this work in Physical Review Letters.
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uniaxial stresses and lead to two new crystal structures previously un-
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which we named HX. On the other hand, uniaxial tension along the
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transformation stresses for these transformations are obtained and their
correlation with the ionicity of the materials is analyzed.
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Introduction

Phase transformations of crystals under high pressure or uniaxial stress have been
physical phenomena of great interest for a long time.  In this work, homogeneous phase
transformations of ZnO from wurtzite (WZ) to three other different crystalline structures;
unbuckled wurtzite (HX), rocksalt (RS), and BCT-4 under different loading conditions are
studied by using first-principle calculations.

Methods

First principles calculations are used to calculate the total energy of cach ZnO crystal
structure. The calculations are based on the density functional theory (DFT) with local density
approximation (LDA) and ultrasoft pscudopotentials, as implemented in the VASP code. The
stability of cach crystal structure is determined by analyzing enthalpy of the structures under
distortions. For each distorted configuration, an equation of state (energy-volume relation) is
obtained by a third-degree polynomial fit through the series of calculations with varied volume.
Under different loading conditions (hydrostatic pressure or uniaxial stress along certain crystal
axcs), the lowest enthalpy configuration is identified. By gradually increase the pressure (or
stress) the homogencous transformation path can be described.

Results

To ensure that our computation scheme is valid, we studied the well known hydrostatic
case. Under hydrostatic pressure (~ 8 GPa), wurtzite ZnO can transform into a six-fold
coordinated rocksalt (RS) structure. This is consistent with available experimental and
theoretical results in the literatures. For the uniaxial stress conditions, we found that (1) the

uniaxial compression along the [0001] direction or uniaxial tension along the [01 TO] direction

can lead to a transformation into a five-fold coordinated unbuckled wurtzite structure (HX): (2)
the uniaxial tension along the [0001] direction can lead to a transformation into a body-
centered-tetragonal structure (BCT-4).
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Conclusions

Based on first principles calculations. we predicted the new polvmorphs of ZnO that are
stable under umaxial stresses. Our results show that the unbuckled wurtzite structure (HX) can

be stabilized by either the tension along [0110]or the compression along [0001], while the
BCT-4 structure by tension along [0001] direction.
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Abstract

Under ambient pressures, SiC, GaN, InN, ZnO, and CdSe have a four-fold
coordinated wurtzite (WZ) structure. It is well known that under sufficiently high
hydrostatic compressive stress, the transformation of these materials into a six-fold
coordinated rocksalt (RS) structure takes place. Based on first principles
calculations, the critical pressures of transformation are calculated and found to be
in good agreement with available experimental results. Further calculations of the
transformations driven by uniaxial stresses suggest that the crystal can transform
into a five-fold coordinated umbuckled wurizite phase (HX) under uniaxial
compression along the [0001] direction or uniaxial tension along the [0110]
crystalline direction. The critical equilibrium transformation stresses for these
transformations are predicted and their correlation with the ionicity of the
materials is analyzed.
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