LINEARIZATION OF FOURTH-ORDER
ORDINARY DIFFERENTIAL EQUATIONS
BY POINT AND CONTACT

TRANSFORMATIONS

Supaporn Suksern

A Thesis Submitted in Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy in Applied Mathematics

Suranaree University of Technology

Academic Year 2008



Al
v v

o a Y U Y a Y
MIMAUMIPIDUNUTATNYOU Uﬁﬁlﬁ!ﬂul‘lf\‘i!ﬁu

v d
Iﬂ?ﬂ“ﬂﬂ1’illﬂﬁﬁllﬂﬂi}‘ﬂ!!ﬁzﬂﬂuuﬂﬂﬂ

HNANIGMNT guiasey

a

a a ¢ : [ a2 a o
Inentinusiiduaiuvtisveamsanmmunangasisyainnmansqufiiutiea
a a ¢ dJ
mvInadiamansdszgna

a U =S =
unIngnaumalulaggsuns

msdnm 2551



LINEARIZATION OF FOURTH-ORDER ORDINARY

DIFFERENTIAL EQUATIONS BY POINT AND

CONTACT TRANSFORMATIONS

Suranaree University of Technology has approved this thesis submitted in

partial fulfillment of the requirements for the Degree of Doctor of Philosophy.

Thesis Examining Committee

(Assoc. Prof. Dr. Prapasri Asawakun)

Chairperson

(Prof. Dr. Sergey Meleshko)

Member (Thesis Advisor)

(Asst. Prof. Dr. Anusorn Chonwerayuth)

Member

(Assoc. Prof. Dr. Nikolay Moshkin)

Member

(Asst. Prof. Dr. Eckart Schulz)

Member

(Prof. Dr. Pairote Sattayatham)

Vice Rector for Academic Affairs

(Assoc. Prof. Dr. Prapan Manyum)

Dean of Institute of Science



C% Y

a o A o HAqvd a oy )
fIﬂ”IW‘J Q’ﬂllﬁ’iiy . ﬂﬁTl”llelﬂﬁL%QﬂiéW‘Ll‘ﬁﬁ”l mau@uﬁ‘lmﬂmmmuT@a”l%mmﬂm

g

HUUIALASADULINA 0 (LINEARIZATION OF FOURTH-ORDER ORDINARY
DIFFERENTIAL EQUATIONS BY POINT AND CONTACT TRANSFORMATIONS)

s (R 4 9
i’)ﬁniiﬂﬂﬂﬁﬂkﬂ CFNEAI19158 AT, YN LiJLa“IfTﬂ, 103 ¥iuN.

a a s Yo o o q YR a a o ¢ o o o A
eniwusi laanuilymmsi liidudaduvesdumasioyiusanigouaud

9

IS

v ¢ o AN Yo Ao v A Ao
IﬂEIGlGIfﬂTD'LLﬂmLLU‘lJigﬂuazﬂ’é)uLLﬂﬂﬂ ‘VlQuUlﬂmmuflg‘ﬂu‘u‘U‘WlfﬂLLNGIIENN’E)‘LJII"IMMHJHLLM

o [ o I~ a a a 1] a Q(
Mganadmsumsmlditugadu 35ms 1duveamsudaugsadu srudaduiszansvos

[
o =

a [ % o a @ J v A w A
aumaFudu nazd ldudegluuuna ldvesaumaFoyiusaighouaugenan

£

o Y a Y Yy 4 dy Y o J
a'lll’liﬂ‘ﬂ’]élﬂLﬂulﬂf\?Lﬁuvl@ﬂ')flﬂ'lﬁllﬂa\?!l,ﬂu%qﬂ!lagﬂ@ullﬂﬂﬂ u@ﬂﬂ']ﬂull@u'llﬂmm"ll@\‘lﬂ’li

0 <3| a { a 4 v v W L Y
M lddwgadunldunnaumasudueyiusanigouava lidszgndldnuszunves

q

aumsFeyRutaiyduduassitiassaums

a a 4 A A o =
VNI IAUAATAT DYUDFDUNANH

a = A A P
ImsanyT 2551 AeUFRD19159NUTNV




SUPAPORN SUKSERN : LINEARIZATION OF FOURTH-ORDER
ORDINARY DIFFERENTIAL EQUATIONS BY POINT AND
CONTACT TRANSFORMATIONS. THESIS ADVISOR : PROF.

SERGEY MELESHKO, Ph.D. 103 PP.

LINEARIZATION PROBLEM / POINT TRANSFORMATION / CONTACT
TRANSFORMATION / LINEARIZATION TEST / NONLINEAR ORDINARY

DIFFERENTIAL EQUATIONS
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CHAPTER 1

INTRODUCTION

Almost all important governing equations in physics take the form of non-
linear differential equations, and, in general, are very difficult to solve explicitly.
While solving problems related to nonlinear ordinary differential equations it is
often expedient to simplify equations by a suitable change of variables. One of the
fundamental methods of solving relies upon the transformation of a given equation
to another equation of standard form. The transformation may be to an equa-
tion of equal order or of greater or lesser order. In particular, the possibility that
a given equation could be linearized, i.e., transformed to a linear equation, was
a most attractive proposition due to the special properties of linear differential
equations. The reduction of an ordinary differential equation to a linear ordinary
differential equation besides simplification allows constructing an exact solution
of the original equation. Analytical (exact) solution has value, firstly, as an exact
description of a real process in the framework of a given model; secondly, as a
model to compare various numerical methods; thirdly, as a basis to improve the
models used. Therefore, the linearization problem plays a significant role in the
nonlinear problem.

Many of the classical methods for solving ordinary differential equations
work by applying a change of variables to produce another equation with known
solutions. The simplest form of a differential equation is a linear form. It is
of interest to provide general criteria for the linearizability of nonlinear ordinary
differential equations, as they can then be reduced to easily solvable equations.

Linearization criteria via invertible transformations for ordinary differential equa-



tions have been of great interest and have been dealt with by many authors over
the years.

The linearization problem studied in the thesis can be stated as follows: find
a change of variables such that a transformed equation becomes a linear equation.
If the change of variables includes derivatives, this change is called a tangent
transformation. If the change of variables only depends on the independent and
dependent variables, then this change is called a point transformation. A tan-
gent transformation, that is defined by the change of the independent, dependent
variables and the first-order partial derivatives, is called a contact transformation.
Point transformations are the simplest type of transformations compared with
tangent transformations. This thesis studies linearization problem by using point

and contact transformations.

1.1 Short Historical Review

The problem of linearization of ordinary differential equations has a long
history*. It attracted attention of mathematicians such as S. Lie and E. Cartan.
The first linearization problem for ordinary differential equations was solved by Lie
(1883). He found the general form of all ordinary differential equations of second
order that can be reduced to a linear equation by changing the independent and
dependent variables. He showed that any linearizable second-order equation should
be at most cubic in the first-order derivative and provided a linearization test in
terms of its coefficients’. The linearization criterion is written through relative
invariants of the equivalence group. Liouville (1889) and Tresse (1896) treated the

equivalence problem for second-order ordinary differential equations in terms of

*Historical review can be found in (Ibragimov, 1999), recent references in (Meleshko, 2005).

TSee detail in section 2.5.



relative invariants of the equivalence group of point transformations.

Lie also noted that all second-order ordinary differential equations can be
mapped to each other by means of contact transformations?, and that this is
not so for third-order ordinary differential equations. Hence, the linearization
problem using contact transformations becomes interesting for ordinary differential
equations of order greater than two.

There are other approaches for solving the linearization problem of a second-
order ordinary differential equation. For example, one was developed by Cartan
(1924). The idea of his approach was to associate with every differential equa-
tion a uniquely defined geometric structure of a certain form. Another approach
makes use of the generalized Sundman transformation (Durate, Moreira and San-
tos, 1994).

Cartan’s approach was further applied by Chern (1940) to third-order ordi-
nary differential equations. He obtained conditions for a third-order ordinary dif-
ferential equation to be equivalent to the equations v = 0 and " +wu = 0. In his
work, the conditions for linearization are given in terms of geometric invariants of
contact transformations and do not provide practical methods for determining lin-
earizing transformations. In 1993, Bocharov, Sokolov and Svinolupov considered
the linearization problem with respect to point transformations. Grebot (1997)
studied the linearization of third-order ordinary differential equations by means of
a restricted class of point transformations, namely ¢ = ¢ (z),u = ¢ (z,y). How-
ever, the problem was not completely solved. Complete criteria for linearization
by means of point transformations were obtained in (Ibragimov and Meleshko,
2005). Linearization with respect to contact transformations was studied in a se-

ries of articles [(Bocharov et al., 1993), (Doubrov, 2001), (Doubrov, Komrakov

fSee more detail in Appendix A.



and Morimoto, 1999), (Gusyatnikova and Yumaguzhin, 1999)]. The solutions of
the linearization problem were given in (Neut and Petitot, 2002) and (Ibragimov
and Meleshko, 2005). Conditions for equivalence with an arbitrary linear equation
were announced in (Neut and Petitot, 2002), but the procedure for obtaining lin-
earizing transformations were not given. In (Ibragimov and Meleshko, 2005), the
explicit form of the criteria for linearization and the procedure for the construction
of the linearizing transformation are presented.

The linearization problem for a third-order ordinary differential equation

was also investigated with respect to the generalized Sundman transformation

[(Berkovich, 1999), (Euler, Wolf, Leach and Euler, 2003)]:
u(t) = F(r,y),  dt =G(z,y)dz.

Criteria for a third-order ordinary differential equation to be equivalent to the

linear equation

ull/ — 0

with respect to the Sundman transformation were presented in (Euler et al., 2003).

The main difficulty in solving the linearization problem comes from the
large number of complicated calculations. Because of this difficulty, there are only
a few attempts to solve this problem for equation of orders higher than three. In
(Dridi and Neut, 2005) Cartan’s method was used for a particular linearization
problem of fourth-order ordinary differential equation under contact transforma-
tions. As the result, conditions for a fourth-order ordinary differential equation to
be equivalent to the trivial equation u¥ = 0 were obtained®. It is worth noting
that application of contact transformations is more complicated than application

of point transformations.

§See detail in Appendix B.



1.2 Results Obtained in Thesis

The aim of this thesis is to obtain complete criteria for fourth-order ordi-
nary differential equations to be linearizable by point and contact transformations.
For solving the problem in thesis, compatibility¥ theory was used. Any study of
compatibility requires a large amount of symbolic calculations. These calculations
consist of consecutive algebraic operations: prolongation of a system, substitution
of some expressions, and the determination of ranks of matrices. Because these
operations are very labor intensive, it is necessary to use a computer for symbolic
calculations. Here we use symbolic calculation Reduce (Hearn, 1987).

Our motivation for considering the linearization problem is to map a known
solution of an ordinary differential equation to solution of a linear ordinary dif-
ferential equation, thus allowing a systematic use of collections of solved linear
ordinary differential equations.

As shown in (Ibragimov and Meleshko, 2005) for third-order ordinary dif-
ferential equations, two sets (the set of equations linearizable by point transforma-
tions and the set of equations linearizable by contact transformations) are com-
plement to each other, but we found that for fourth-order ordinary differential
equations, two sets are disjoint. This is one of the interesting results obtained for
studying the linearization problem by point and contact transformations.

Other attractions of the study fourth-order ordinary differential equations
are the following. Many systems of two second-order ordinary differential equa-
tions!l can be reduced to a fourth-order ordinary differential equation. Hence, the

linearization criteria obtained for fourth-order ordinary differential equations can

YCompatibility means the system has a solution.

IShort review of results of solving the linearization problem for a system of two second-order
ordinary differential equations can be found, for example, in (Wafo Soh and Mahomed, 2000),

(Aminova and Aminov, 2006).



be also applied to such type of systems.

It is worth mentioning that among the examples we find well-known equa-
tions such as those describing traveling waves of the generalized shallow water wave
equation and one class of nonlinear fourth-order partial differential equations.

The study of fourth-order ordinary differential equations allowed us to de-
velop the method for obtaining necessary conditions of linearization of ordinary
differential equations of any order greater than four.

The thesis is organized as follows. In chapter II, the background knowledge
and the main tools for solving linearization problem are introduced. In chapter
III, we consider the criteria for fourth-order ordinary differential equations to be
linearizable by point transformations. We show that all fourth-order equations
that are linearizable by point transformations are contained in the class of equa-
tions which are linear in the third-order derivative. We provide the linearization
test and describe the procedure for obtaining the linearizing transformations and
the formulae for coefficients of resulting linear equations. For ordinary differen-
tial equations of order greater than four we obtain necessary conditions, which
separate all linearizable equations into two classes. Illustrative examples and lin-
earization of traveling waves of partial differential equation are provided in the
subsequent sections. Application of the linearization theorem to one class of sys-
tems with two second-order ordinary differential equations are given. In chapter
IV, the linearization via contact transformations for fourth-order ordinary differ-
ential equations are presented. We show that all fourth-order ordinary differential
equations that are linearizable by contact transformations are contained in the
class of equations which are at most quadratic in the third-order derivative. The
main results of this chapter are studied in a similar manner as in chapter III. The

conclusion of the thesis is presented in the last chapter. For the sake of simplicity



of reading, cumbersome formulae, additional calculations and some material for

review are presented in the Appendices.



CHAPTER 11

PRELIMINARY BACKGROUND

In this chapter, we introduce some elementary knowledge that is used
throughout the thesis. The main tools for solving the linearization problem are

provided.

2.1 Tangent Transformations

Let us consider the transformations of the independent, dependent variables

and their derivatives

&= [f(z,u,p), w=o(x,u,p), p=1(x,u,p). (2.1)
Here oo = (o, g, . . ., v, is @ multi-index, p is the vector of the partial derivatives
Do = %. For the multi-index « the following notations are used |« =
Tox52.. 015
artag+--toapand a,j = (ar,...,05-1,05 + Lo, ..o, o),

Remark 2.1. Functions f, ¢ and ¢ in equations (2.1) are always assumed to be

sufficiently many times continuously differentiable.

The transformations (2.1) are prolonged to the differentials dx, du, dp :

. 0f; ofi Ofi
dr;, = o, dx; + 9 du + e dpq,
_ 09 ¢ e
du = 8_{[,'Z dﬂfl + 8u du + apa dpon
Oy, 0, o,
dp, = an dz; + M du + O dpq,

where 1 = 1,2, ..., n, the index v is a multi-index.



Definition 2.1. Transformation (2.1) is called a tangent transformation if it pre-

serves the tangent conditions
du — p;dx; =0, dpy — pyidx; = 0.

If the functions ¢(z,u,p) and f;(x,u,p), (i=1,2,...n) do not depend on
the derivatives, then such a transformation is called a point transformation. A
tangent transformation which is not a point transformation, that is defined by the
transformation® of the independent, dependent variables and the first-order partial
derivatives, is called a contact transformation. Point and contact transformations
play a special role among all tangent transformations. Their role is explained
by the Backlund theorem, which states that if in a tangent transformation one
can find a closed system!, then such transformation is a prolongation of point or
contact transformation.

As in this thesis we apply point and contact transformations to fourth-order
ordinary differential equations, let us discuss them in more detail, in the case of

ordinary differential equations.

Definition 2.2. A transformation

(2.2)

is called a point transformation.

*Transformations of higher order derivatives are defined through the transformations of the
independent, dependent variables and first-order partial derivatives by prolongation formulae

and tangent conditions.

fTransformations of the independent, dependent variables and derivatives up to some finite
order, for example, N, depend on the independent, dependent variables and derivatives up to

the order N.
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Definition 2.3. A transformation

t=¢(z,y.p),
s=g(z,y,p),
where p = ¢ = % is called a contact transformation if it obeys the contact
condition
o ,  du
=u =—.
dt

2.2 Mapping of Derivatives in Point Transformations
In general, let us analyze an ith-order ordinary differential equation
y(l) = f (l’, Y, y/7 ylla s} y(lil)) : (24)

We apply a point transformation (2.2) to equation (2.4). First of all, it has to

change y(x) to u(t). Assume that we know the solution of equation (2.4), i.e.,
y=y(@).
To obtain the transformed function u(t), start with the equation
t=p(x,y(@)).

Notice that we require the Jacobian

_ _9(pY) B
A= D@y ny) Pathy — pythe # 0.

Since ¢’ (x,y (z)) = ¢z + Yy, is continuous (as ¢ is assumed to be continuous
differentiable) and A (¢ (z,y (2))) = vz + ¥y # 0 then by virtue of the Inverse
Function Theorem one finds

r=alt).
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Thus, one obtains

Now one needs to transform the derivatives. The first-order derivative is

transformed by the formula

du OYda 0Ydyda , L da
_ du _ dyda  Opdydo da 2.
& ardl Togdear - WYy (25)

u' (1)
Since t = ¢ (a (t),y (a(t))) then

dt Op da Oy dy da

dt Oz dt ' Oy dx dt
da
1 = (o410,
(pe +'0y) —
d 1
@ —. (2.6)
dt (0z + ¥'oy)
Substituting equation (2.6) into equation (2.5), one obtains
bty Dy

P + y’gpy - DSO - ¢1 (ZE?y (I) ay/ (l')> .

Notice that D = a% + y’a% + y”a%, + -+ is the total derivative with respect to x.

u' (t)

So that the first prolongation of transformation (2.2) is v’ = 91 (x,y,y) .

Next, we find the transformation of second-order derivative. Consider

o
dt?
Ourdo | Oy dydo 9y dy do
oxr dt Oy dx dt ~ Oy dx dt
do

= (Y1, + Y1, + Y "Y1y) T
wlx + y/¢1y + y,/¢1y’

Vs + Yoy
Dy
Dy

= wQ (!L’,y (l’) ;y, (.Z‘) 7y// (]7)) )

ul/ (t) —

so that the second prolongation of transformation (2.2) is u” = ¥ (z,v,9,y") .

Similarly, one finds

" d3U D¢2
v =G5 = Dy

= 2/}3(377 Y, y,7 y,/7 ?///)7
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d*u Dy
(4)t:_: 3: P (4)'
u () dt4 DQO ¢4(x7y)y7yay Y )
In general, one can write
_ korlu B D¢k

(k+1) _ A/ /] (k+1) _
u (t) - dtk+1 - D(}D _¢/€+1(x7y7y7y 7y 7""y )7 (k_OJ ]"27"’)'

Notice that g = .

2.3 Mapping of Derivatives in Contact Transformations

Let y(x) be the solution of equation (2.4). Applying a contact transfor-
mation (2.3) to equation (2.4), the transformed function u(t) is found from the

equations

t=9(x,y(x),p(x)),

u=1(z,y(x),p(x)).

By virtue of the Inverse Function Theorem, the first equation gives

and then

The first-order derivative is transformed by the formula

du
dt
8lpd_7 oY dydr Oy dpdr

dr dt ' Oydrdt = Opdux dt
y dr
= (Yo + 0y + ") o (2.7)

u(t) =

Since t = ¢ (7 (t),y (7 (t)),p(7(t))) then

d _ dpdr  dpdydr | dpdpdr

dt  Ordt Oydrdt Opdxdt
" dr

L= (v tpoy +y'0p) =

d 1
= B (2.8)
dt (92 + 0oy +Y"0p)
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Substituting equation (2.8) into equation (2.7), one obtains

_ Yt piy Y'Y, Dy .
Oz +poy +y"0, Dy

u'(t)
The contact condition requires

by (,9,p,9"). (2.9)

g(x7y7p> = D_QO

Equation (2.9) is rewritten in the form

9 (@2 + 0oy + " 0p) = ta + oy + ¥y,

Since the contact condition is satisfied for any y”, one obtains
9 (pz + poy) = Vo + Py,
(2.10)
9op = Uy

The second-order derivative is transformed by the formula
d*u
dt?
dgdr Ogdydr Ogdpdr

Or dt ' Oydrdt ' Opdx dt

U" (t) —

dr
= (9o +p9y+9"9) pr

Ge + D09y + V" gp
Oe + DOy + Y 0p

_ Dy
= Do
= qi(z,y.py").
Similarly, one finds
d*u  Dg
m _4v _ "o
u ()_ dt?) DQO 92(3771171);3/ Y )7
d*v Dy
(4)t:—: 2 _ "o (4)‘
ut(t) = Do gs(z,y,0, 9", y", y™)

In general, one can write

d(k+1) Dan._
u(k+1)(t) o u 9(k—-1)

= D = Do = gr(z,y,p, y",y”’7-"’y(k+1))> (k=1,2,..).

Notice that gy = g¢.
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2.4 Equivalent Equations
Definition 2.4. Two equations are called equivalent if there is an invertible trans-

formation which transforms one equation into another.

Definition 2.5. The problem of finding all equations which are equivalent to a
given equation is called an equivalence problem. If the given equation is a linear

equation, then the equivalence problem is called a linearization problem.

Since all considerations in this thesis are local, we mean local equivalence

here.

2.4.1 Linear kth-order Equations
The following properties are well known for point transformations.
e First-order Equations

All first-order equations are equivalent to another. In particular, an equa-

tion of first-order can be transformed into the simplest one, viz., v’ = 0.
e Linear Second-order Equations

All linear second-order equations are equivalent to another and can, for
example, be reduced to the simplest equation " = 0.
However, a linear equation of order £ > 3 need not be transformable into

the simplest form.
e Laguerre Canonical Form

The general form of a linear kth-order ordinary differential equation is

See detail in Appendix C.
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Theorem 2.1. (Laguerre®). Any linear kth-order ordinary differential equation

1

y® N " a (2)y? =0, k>3 (2.11)

=0

can be transformed by a point transformation to an equation of the form
y® 3" a; (2)y® = 0. (2.12)

Notice that equation (2.12) is called the Laguerre canonical form of the

linear kth-order ordinary differential equation (2.11).

2.5 The Lie Linearization Test

Since the method used in the thesis is similar to the Lie method, let us
consider it in details.
The simplest linear form of a second-order ordinary differential equation

with the independent variable ¢t and the dependent variable wu is
u” = 0. (2.13)

Lie showed that any second-order ordinary differential equation v = f(z,y,v’)
obtained from linear equation (2.13) by a change of the independent and dependent

variables,
t=p(xy), u=v(zy)), (2.14)

is cubic in the first-order derivative:

Y ' +alz,y)y®+b(x,y)y*+c(z,y)y +d(z,y) =0, (2.15)

§See proof in Appendix E.
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where
a=A" (Pytyy — Pyythy)
b= A_l (@x¢yy - @yywx +2 (@y%y - (p:cywy)) ’
Cc = A_l (@y¢x:c - 909[:1:7»% + 2 (@x¢wy - pry,l?bﬁ)) )

Here the Jacobian of the change of variables is

(2.16)

A= Py — Py # 0.

Moreover, a second-order ordinary differential equation is linearizable if and only

if it has the form (2.15) with the coefficients satisfying the conditions

33y — 2byy + cyy — 3azc + 3a,d + 20,0 — 3cga — ¢y b+ 6dya = 0,
(2.17)

byz — 2¢4y + 3dy, — 6a,d + byc + 3byd — 2cya — 3dya + 3d,b = 0.
The mapping of equation (2.15) into linear equation (2.13) is reconstituting by

finding the functions ¢p(x,y) and v (x,y) that satisfy the relations (2.16)9.

2.6 Theory of Compatibility

There are two approaches for studying compatibility. These approaches are
related to the works of E. Cartan and C. H. Riquier.

The Cartan approach is based on the calculus of exterior differential forms.
The problem of the compatibility of a system of partial differential equations is
then reduced to the problem of the compatibility of a system of exterior differential
forms. Cartan studied the formal algebraic properties of systems of exterior forms.
For their description he introduced special integer numbers, named characters.
With the help of the characters he formulated a criterion for a given system of

partial differential equations to be involutive.

YSee compatibility analyze of the system of equations for functions ¢ and 1 in Appendix F.
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The Riquier approach has a different theory of establishing the involution.
This method can be found in (Kuranashi, 1967) and (Pommaret, 1978). The
main advantage of this approach is that there is no necessity to reduce the system
of partial differential equations being studied to exterior differential forms. The
calculations in the Riquier approach are shorter than in the Cartan approach.
The main operations of the study of compatibility in the Riquier approach are
prolongations of a system of partial differential equations and the study of the

ranks of some matrices. In this thesis the Riquier approach is used.

2.6.1 Completely Integrable Systems

One class of overdetermined systems, for which the problem of compatibility
is solved, is the class of completely integrable systems. The theory of completely

integrable systems is developed in the general case.

Definition 2.6. A system

07"
oa’

= fi (a,2), (i=1,2,...,N; j=1,2,...,7) (2.18)

is called completely integrable if it has a solution for any initial values ag, zg in

some open domain D.

Theorem 2.2. A system of the type (2.18) is completely integrable if and only if

all of the mixzed derivatives equalities

ofi L of afﬁ N ofy .
" Zfﬂazv o Zf]az’Y =1,2,..,N; 3,j=1,2,....,r) (219

are identically satisfied with respect to the variables (a,z) € D.

In practice, sometimes it is enough to use a particular case of the compat-

ibility theorem:
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Corollary 2.3. If in an overdetermined system of partial differential equations all
deriwatives of order n are defined and comparison of all mized derivatives of order

n+ 1 does not produce new equations of order less or equal to n, then this system

18 compatible.



CHAPTER III

LINEARIZATION OF FOURTH-ORDER
ORDINARY DIFFERENTIAL EQUATIONS

BY POINT TRANSFORMATIONS

Our starting point is a fourth-order ordinary differential equation

y W = f(z,y, 9,y y"), (3.1)

for a real function y = y(z). Here f = f(x,y,y,y",y") is a sufficiently many
times continuously differentiable function of real variables (x,y,v',y”,y"). This
chapter is devoted to studying the linearization problem of equation (3.1) which

is to find an invertible change of independent and dependent variables

t:gﬁ(l‘,y), UZ?M%?J) (32)

mapping the nonlinear equation (3.1) into a linear equation.

In 1879, E. Laguerre showed that in any linear ordinary differential equation
the two terms of orders next below the highest can be simultaneously removed by
an equivalence transformation®. Therefore, the general linear ith-order ordinary

differential equation in Laguerre’s form is
u' + ;s ()ul 4 .+ ag(t)u = 0, (3.3)

where ¢ and u are the independent and dependent variables, respectively.

*See detail in section 2.5.



20
3.1 Necessary Conditions for Linearization

We begin with investigating the necessary conditions for linearization. We

consider an ¢th-order ordinary differential equation

v = f(v,,9,9" sy ) (3.4)

The general form of equation (3.4) that can be obtained from a linear ordinary
differential equation by any point transformation (3.2) is found in this step. Nec-
essary conditions for a linearizable fourth-order ordinary differential equation are

studied here in more details.

3.1.1 Necessary Form of a Linearizable ith-order ODE

Applying a point transformation (3.2), the derivatives are changed as fol-

lows
d_U_w _ Dy dQ_U_w _ Dyy  D*) Do — D*p Dy
dt "' Do’ dt2 TP Dy (Dy)? ’
A1y W)
dthrl = /l/)k-i-l - D;a (k > 1)7
where
0 0 0 0 0
D=~ 1Y n < m_* (4) .
ox +y8y+y oy’ +y oy" Ty ay" +

is the operator of total derivative with respect to . Notice that

D'F = yWE, + ky* VDF, + hp(z,y,y/, ... y ¥, y* ) (k> 2),

b= ﬁww - @(D%)(D@ku — (D) (D) — (D'p)tn] + ...,
A i
Vi1 = W?J(Z R

where A = 0, — @y, # 0 is the Jacobian of the change of variables (3.2),

F = F(z,y) is an arbitrary function, and ¢ > 3. Here ... means terms with
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derivatives of order less than i — 1. Hence,

(Dso)% = y(l) > +2y -1 [D¢y ZDQOy_
(3.5)

De ~ Py (Dy)?

Calculations show that in the right hand side of equation (3.5) the term with the

(i— )(D2 ) D2¢D¢7D2§0Dw]+'” )

derivative y(~1) is

(D@)?[Dihy, — BEDp, — L5 (D) iy — o, Ze LD e Y]

= _y pr (H_l) + y/ 2(‘:0xy90ywy @yy% - (Pyy(%cwy+ywz - Q/nySOf, + wnyO;rSOy)
‘HJ,(_QnyiA + PraPyy — PyyPathe — ¢zx90§ + wyygﬁi)

Substituting the resulting expression into the linear equation (3.3), the necessary

form of a linearizable ordinary differential equation of ith-order is

7 s (1— 7 A
Y@ 4 iy =D o[y, B2
+y/ 2(‘;0a:y§0y1/}y - Qoyy% - @yyw - ¢zy§072; + ¢yy§0:c§0y)

+yl(_90wyiA + %ﬁ%% - ‘;Oyy@xﬂ)x - %Mz + @ijy‘pi)

_SOmy(P:chx - 9011% + @xmw + wmy(pq; wm%%] =0.

From this representation we can conclude that for the linearization problem one
needs to study two cases: (a) ¢, = 0, and (b) ¢, # 0. This corresponds to the

following two necessary forms of linearizable ordinary differential equations:

YD + i D[Ay + Ag] + ... = 0, (3.6)
and
, 1 i(i+1)
() 4 =) ! By’ + Fy +Fl+..=0 3.7
YOy T B By Rl ;37

where F; = Fj(z,y), A; = Aj(x,y). If ¢, = 0, in literature this class of transfor-

mations is called a fiber preserving transformations.

Theorem 3.1. Any linearizable ith-order (i > 4) ordinary differential equation

has to be either of the form (3.6) or of (3.7).
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3.1.2 Necessary Form of a Linearizable Fourth-order ODE

As was obtained in the previous section, the transformations (3.2) with ¢, =
0 and ¢, # 0, respectively, provide two distinctly different classes of linearizable
equations.

If ¢, = 0, working out the missing terms in equation (3.6), are substituting

the resulting expression into the linear equation
u® + a(t) + Bt)u=0 (3.8)
we obtain the following first class for linearization

YW (A + Ao)y” + Boy™ + (Coy” + Cry/ + Co)y” (3.9)

+Dyy"* + D3y + Doy + D1y’ + Dy = 0,
where A; = A;(x,y), B; = B;(z,y), C; = Cj(x,y) and D; = D;(z,y) are arbitrary
functions of z, y.
If ¢, # 0, we proceed likewise and setting r = i—z, arrive at the second class

for linearization

y(4) +y/1+r(—10y”+Fzy’2+F1y’+Fo)y”’

+m [153/”3 + <H2y12 +H1y’+Ho)y”2

+( Lyt + T3y + oy + iy + Do)y (3.10)
+ K7y 4+ Key'® + K5y + Ky
+ K3y + Kaoy? + K1y + Ko] = 0,
where r = r(z,y), F; = Fj(x,y), H; = Hj(x,y), J; = J;(z,y) and K; = Kj(z,y)
are arbitrary functions of x,y.
Thus, we have shown that every linearizable fourth-order ordinary differ-
ential equations belongs either to the class of equations (3.9) or to the class of

equations (3.10).



3.2 The First Class of Linearizable Equations

3.2.1 The Linearization Test for Equation (3.9)
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In this case, the linearizing transformation (3.2) must be a fiber preserving

transformation, i.e., it has the form

t=p(), u=1z,y)

(3.11)

Theorem 3.2. Equation (5.9) is linearizable if and only if its coefficients obey the

following conditions:
Aoy — A1z =0,
4By — 3A; =0,
124, + 3A] — 8C,y = 0,
12A,, + 34pA, — 4C; = 0,
32C, + 1240, A1 — 1601, + 3454, — 4A,Cy = 0,
4Cy, + A;Cy — 24D, = 0,
4Cy, + A,Cy — 12D3 = 0,
160, — 1240, A1 — 3A5A; + 44,0, + 8A,Cy — 32Dy = 0,

192Dy, + 36 Ag, Ag Ay — 48 A0, C1 — 48Co, Ay — 288Dy, + 9AF A,

— 12A2C, — 36A40A,1Cy + 48 Ay Dy + 32C,C, = 0,

(3.12)
(3.13)
(3.14)
(3.15)
(3.16)
(3.17)
(3.18)

(3.19)

(3.20)
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384Dy, — [3((3A0A1 —4C)) A2 1+ 16(2A, Dy + CoCh)
—16(A,Cy — Dy)Ag)Ag — 32(4(C1.Dy — 2C5 Dy + CyDs)
+ (341D — C%) A1) — 96Dy, Ag + 384Dy, Ay + 1536 Dy,
— 16(3A¢A; — 4C1)Co, + 12((3A0A; — 4C1) Ay

Theorem 3.3. Provided that the conditions (3.12)-(3.21) are satisfied, the lin-

earizing transformation (3.11) is defined by a fourth-order ordinary differential

equation for the function o(x), namely by the Riccati equation

dx

40—~ = 20x* = 8Cy — 3A: — 12A,,, (3.22)
T
for
SOCCCE
X=— (3.23)
Pa

and by the following integrable system of partial differential equations for the func-
tion Y (x,y)

477/}?!2/ = @DyAh 4¢xy = ¢y(A0 + 6X)7 (324)

and

160092000 = 96008402 X + 1609, (—12A0, — 3A2 — 902 + 8Cp)

+ 400, (12 A0, Ag + T2A0. X — 16C0, + 3A3 + 18 A2y — 124,C)
+120x% — 48\ Cy + 24D, — 8Q) + (144 A7, + T2A0, A% — 35240,Co
— 160Cq,, — 80Co, Ag — 1600 Dy, + 640D1, — 809, + 9A; — 88A2C)

+ 160A40D; + 30402 — 400A; Dy + 300x€2 + 144CF) + 16004, D, (3.25)
where x is given by equation (3.23) and ) is the following expression

Q= A3 —4A0Co +8D; — 8C, + 640, Ag + 4 Aoz (3.26)
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Finally, the coefficients a and (3 of the resulting linear equation (3.8) are

Q

B = (1600p2) 1 (=144 A2 — 72A0, A3 + 352A0,Co + 160C0,, + 80Co, Ag

+ 1600Dg, — 640D;, + 8082, — 9A; + 88A45C, — 16049 D; — 304,12

+ 4004, Dy — 300xQ — 144C3). (3.28)
Remark 3.1. Since the system of equations (3.12)-(3.21) provides the necessary
and sufficient conditions for linearization, it is invariant with respect to transfor-
mations (3.11). It means that the left-hand sides of equations (3.12)-(3.21) are

relative invariants of second-order for the equivalence transformations defined by

(3.11).

3.2.2 Relations Between Coefficients and Transformations

For proving the linearization theorems we need relations between the func-

tions ¢(x), ¥ (x,y) and the coefficients of equation (3.9).

Lemma 3.4. The coefficients of equation (3.9) and the functions p(x) and ¥(x,y)

in the transformation (3.11) are related by the following equations:

Ay =4(,) gy, (3.29)
Ao = = 2(0aty) " Bty — 205%y), (3.30)
Bo =3(1y) "y, (3.31)
Cy =6(by) " yyy, (3.32)
Ci = — 6(paty) " (Bpaathyy — 202 ayy), (3.33)

C(0 = - (%20%)71 (4901%969036 - 15903;90)% + 6(3903:9:%;/ - prwmﬁy)@x]a (3'34)
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Dy :(wyylwyyyyv (3'35)
Dy =— 2(<Px¢y)71(380mwyyy — 202 Veyyy), (3.36)
D2 = - (Sogzcwy)il(zlgowngpxwyy - 1590926;5%3/ + 189%3:909:1%41/ - 6gpiwxmyy)’ (337)

Dl = - (¢i¢y)71 [3(590;201;% - 10%1«%%3/ + 690925%3933/)%;5

3.2.3 Proof of the Linearization Theorems

The proof of the linearization theorems requires the study of integra-
bility conditions for the unknown functions ¢(x) and t(z,y). The func-
tions o(z) and (z,y) satisfy equations (3.29)-(3.39) with given coefficients
Ai(z,y), Bi(z,y), Ci(z,y) and D;(z,y).

We first rewrite the expressions (3.29) and (3.30) for A; and Ay in the

following forms

— 1/JyA1
4 )

(690m + @ A )
Uy = o O, (3.40)

wyy

Comparing the mixed derivative (¢y,), = (¢uy)y, One arrives at equation (3.12).
Then equations (3.31), (3.32) and (3.33) become equations (3.13), (3.14) and

(3.15), respectively. Furthermore, equation (3.34) gives

__(1240,0% — 6092, + 302 A5 — 8¢2C)) -
Prez = — 40<,0x . ( : )

Differentiation of equation (3.41) with respect to y yields equation (3.16). Equa-
tions (3.35), (3.36) and (3.37) become in the form of equations (3.17), (3.18) and

(3.19), respectively.
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One can determine « from equation (3.38):

4Aoyy + 6 A0, Ag — 8Co, + A3 — 440Cy + 8D,
o = .

30 (3.42)

Since ¢ = (), then a,, = 0, which yields equation (3.20). From equation (3.39)

one finds

Vrzze = — 1058 | 3240000300 — T2A02000 P30 + 48 A0z 03 ra
+36 Az p31hs Ag — 48C 0,031, — 120903 1, 4 360902, 0 ss
— 2400400 V0 — 18040020 AL + 480400210, Co + 40073 (3:43)
+12030,0 A — 320340020 Co + 50210 A — 200340, Ao Cly

Forming the mixed derivative (Vyz00)y = (Vay)zze OnE Obtains

B= Tz 320 A0saspe — 1200A0ssips + 360 A0zaips o + 33643, 0,
—1800A0z00s Ao — 12A0000 A2 + 32 40502Co — 480C050 0
+2400C04 @2z + 1600Dgy 00 — 30000 A3 + 120090, A0 Co (3.44)
—2400¢,, D1 — 390, AL + 2080, A2Cy — 400, AgD;

Differentiation of 3 with respect to y yields equation (3.21).

From equation (3.41) one can rewrite the representation for Cy. Denoting
X = % leads to equation (3.22) and the representations for v, and ., in the
equations (3.40) become equations (3.24). Rewriting the representation for a from

equation (3.42) in the following form

where

Q= A3 —4A0Cy+8D; — 8Cy, + 6A0,Ag + 4A0se,
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then (3 of equation (3.44) becomes

B = (1600¢2) 1 (=144 A2 — 72A0, A2 + 352A0,Co + 160C0,. + 80Co, Ag
+ 1600Dg, — 640D;, + 80€2, — 9A; + 88A45C, — 16049 D; — 304,12
+ 400A; Dy — 30082 — 144C7).

Finally, equation (3.43) becomes equation (3.25). This completes the proof of the

theorems.

3.2.4 [Illustration of the Linearization Theorems
Example 3.1. Consider the nonlinear ordinary differential equation
22y 2y + ) + 822y + 16xyy"” + 622y + 48xy'y" + 24yy” + 24y"* = 0. (3.45)

It is an equation of the form (3.9) with coefficients

4 8 3 24 12
A1:_7A0:_730:_7C2:O701:_700:_27
Yy x Y xy x

(3.46)
12 Y

Dy=0, D3=0, Dy=——, D1=0, Dy=73-
7y

One can check that the coefficients (3.46) obey the conditions (3.12)-(3.21). Thus,
equation (3.45) is linearizable. We have

8Cy — 3A3 — 12Ag, = 0 (3.47)

and the equation (3.22) is written as

Let us take its simplest solution x = 0. Then invoking equation (3.23), we let

Y =x.

Now equations (3.24) are rewritten as

Yoy 1 Yy 2

Wy y’ ¢_y:$
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and yield

= Ky, K = const.

Hence,
2,2

b= K=+ f(x).

Since one can use any particular solution, we set K =2, f(z) =0 and take
v = 2%y°.
Invoking equation (3.47) and noting that equation (3.26) yields 2 = 0, one can

readily verify that the function ¢ = z%y? solves equation (3.25) as well. Hence,

one obtains the following transformations
t=x, u=a%y> (3.48)

Since 2 = 0, equations (3.27) and (3.28) give

1
a=0, f=—=1
P
Hence, the equation (3.45) is mapped by the transformation (3.48) to the linear
equation

u® 4+ u = 0.

Example 3.2. The third-order member of the Riccati Hierarchy is given by Euler,

Euler and Leach (2007) as

n

y" 4+ dyy" +3y* + 6y%y +y' = 0. (3.49)

Applying (Ibragimov and Meleshko, 2005) and (Euler et al., (2003)) one checks
that this equation cannot be linearized by a point transformation or contact trans-
formation or generalized Sundman transformation. Under the Riccati transforma-

tion y = “T“’/ the equation (3.49) becomes (Andriopoulos and Leach, 2007)

WP +4(a—1) AW +3(a— 1) ww™
(3.50)
+6(a—1)(a—2)ww*W" +(a—1)(a—2)(a—3)* =0.
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It is an equation of the form (3.9) with the coefficients

C,=8@38a42) o =0, (3.51)

w2

D4:%, Dy=0, Dy=0, Dy =0, Dy =0.
One can verify that the coefficients (3.51) obey the linearization conditions (3.12)-
(3.21). Furthermore,

8Cy — 3A3 — 12Ag, = 0 (3.52)

and the equation (3.22) is written as

dx 2
2= — = 0.
dx X 0

We take its simplest solution y = 0 and obtain from equation (3.23) the equation

¢" =0, whence

p=ux
Equations (3.24) have the form
% _ a; 1’ o
and yield
Yo = Kw™Y, K = const.
Hence

a

b=K= 4 f(2).
Since one can use any particular solution, we set K = a, f(z) =0 and take
Y = w".
Invoking equation (3.52) and noting that equation (3.26) yields {2 = 0 , one can

readily verifies that the function ¢ = w® solves equation (3.25) as well. One obtains

the following transformation

t=x, u=uw" (3.53)
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Since 2 = 0, equations (3.27) and (3.28) give

Thus, the equation (3.50) is mapped by the transformation (3.53) to the linear
equation

u® = 0.

Furthermore, one can transform the solution u(t) to the Riccati substitution

Yy = “T“” The solution of the linear equation is
u(t) = co + c1t + cot® + cst?,

where ¢;, (i = 0,1,2,3) are arbitrary constants. By using the transformation

(3.53), one finds

W = co + a1z + cox? + g

Hence,

y = (Inw?)

= (ln (co + 11 4 cor® + 03x3))/
c1 + 2¢o7 + 3c3x?

co + 1o + cox? + 333’

This example shows that as for second-order ordinary differential equations
(Ibragimov and Meleshko, 2007)" the Riccati substitution can map a third-order
ordinary differential equation into a linearizable fourth-order ordinary differential
equation. Using the criteria of linearization obtained in this thesis, one can ob-
tain complete criteria for third-order ordinary differential equations linearizable

by Riccati substitution.

fIn (Ibragimov and Meleshko, 2007) the complete study of second-order ordinary differential

equations linearizable by the Riccati substitution is presented.
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3.2.5 Linearization of Traveling Waves of PDEs

Solutions of many partial differential equations were obtained by assuming

that a solution is a traveling wave type.
e One Class of Fourth-order Partial Differential Equations

Let us consider the nonlinear fourth-order partial differential equation

(Clarkson and Priestley, 1999)
Uy = (K4 7u°)  + Villagee + [lagtt + QUglazy + B, (3.54)

where «, 3,7, u, v and k are arbitrary constants. This equation may be thought
of as a fourth-order analogue of a generalization of the Camassa-Holm equation,
about which there has been considerable recent interest. Furthermore, equation
(3.54) is a Boussinesq-type equation which arises as a model of vibrations of har-
monic mass-spring chain and admits both compacton and conventional solitons.
Of particular interest among solutions of equation (3.54) are traveling wave

solutions:

u(x,t) = H(x — Dt),

where D is a constant phase velocity and the argument x — Dt is a phase of the

wave. Substituting the representation of a solution into equation (3.54), one finds
(vH + pD*)HW + oH'H" + BH" + (2vH + k — D*)H" +2vyH"”? = 0. (3.55)

This is an equation of the form (3.9) with coefficients

o} B
A= —2 Ay =0, By= —
1 VH+MD2’ 0 ) 0 VH+/LD2’
9 H + # — D?
Co=C, =0, Cy=
2 1 ) 0 VH—F,MDZ 3
P
Dy=Dy=0, Dy i D, = Dy = 0.

- vH + uD?’
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It is assumed that v # 0 and v # 0.

Equation (3.55) is linearizable if and only if

(2vp + v)D?
—

a=4v, f=3v, kK=
e The Shallow Water Wave Equation

In this topic we discuss the generalized shallow water wave (GSWW) equa-

tion (Clarkson and Mansfield, 1994)
Ugpat T QUL Uz + ﬂutu:px — Ugt — Ugg = 07 (356>

where o and [ are arbitrary, non-zero, constants. This equation, together with
several variants, can be derived from the classical shallow water theory in the
so-called Boussinesq approximation (Whitham, 1998).

Substituting the traveling wave representation of a solution into equation

(3.56), one gets
~DHY — (D(a+ B)H' + (1 — D))H" = 0. (3.57)
It has the form of equation (3.9) with the following coefficients
A =Ay=By=Cy=0, C, =a+p, C’oz%,
Dy=D3s=Dy=Dy=Dy=0.

Equation (3.57) is linearizable if and only if

a=—p0.

¢ Boussinesq Equation

Let us consider the Boussinesq equation

Upt — Ullgy — Ug> — Upgpe = 0. (3.58)
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Substituting the traveling wave representation of a solution into equation (3.58),
one finds

HY 4+ (H — D*)H" + H” = 0. (3.59)
It is an equation of the form (3.9) with the coefficients

A1:0, AQIO, BOIO, CQIO, Cle, COI—D2+H,
(3.60)

D,=0, D3=0, Dy=1, D, =0, Dy = 0.

Since the coeflicients (3.60) do not satisfy the linearization conditions (3.16), (3.19)

and (3.21), hence, the equation (3.59) is not linearizable.

3.2.6 Application of the Linearization Theorems to a Sys-

tem of Two Second-order ODEs

In this section we give some necessary and sufficient conditions of lineariza-
tion for a system of two second-order ordinary differential equations with two

dependent variables y, z and one independent variable x of the form

/!

Yy = fl(x7y7y/7 Z)7 ZU = f2($7%y,a Z) (361)

Assuming that fi, # 0, by virtue of the Inverse Function Theorem the first
equation of (3.61) can be solved with respect to z = g(z,y,y’,y"). Substituting
this into the second equation of (3.61), one obtains that system (3.61) is equivalent

to the fourth-order ordinary differential equation

y(4)gy// —|—y”/2gy//y// -+ y/N(ng/y//y” —+ 2gy”yy/ —+ zgy”:): + gy’) —+ gy/y’y”2 (3 62)

+(2gy'yy/ + 2gy’ﬂc + gy)y” + gyyy,2 + 29wyy/ + Guw — f2 =0.

Applying linearization theorems to equation (3.62) one can obtain conditions for

the functions fo(z,y,v’, 2) and g(z,y,y’, z) which are necessary and sufficient for
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equation (3.62) to be linearizable. It is worth noting that, in general, these lin-
earizing transformations, which are point transformations for equation (3.62), are
not point transformations for system of equations (3.61).

Since one of the necessary conditions for linearization of equation (3.62)
requires that this equation has to be a linear equation with respect to the third-
order derivative y”, one obtains that g,»,» = 0, i.e., g = go + 1y”, where g; =

gi(x,y,y'), (i =0,1). Since g,» # 0, the function g; # 0. Equation (3.62) becomes

v+ | By + 201,y + Goy + 2912)Y" + Guyyy”
+ (20199Y + Goyry + 20190 + 1)y
+ (g1y” + 2(goyry + 91ey)¥' + 200y2 + Grew + Goy)y"
+ Goyy¥? + 2902y’ + Gows — f2] /g1 = 0.
Considering the coefficient related with the product y”y”, for a linearizable equa-
tion one obtains either g1, = 0 or 3(y' + 7)g1, + 10g1 = 0, where r = r(z,y).
In this section we study the case gi,» = 0. Since the coefficients with the deriva-

" has to be linear with respect to the first-order derivative 3, one obtains

tive y
goy'y'y! = O, that is
90 = goo + g1y + Go2y'”,

where go; = goi(z,y), (i = 0,1,2). Hence, the coefficients A; and Ay in equation
(3.9) are
Ay =2(g1y + 902) /91, Ao = (2012 + 901) /91
Proceeding to compare coefficients of equation (3.62) with equation (3.9)

we obtain that?

fo= f222+ (faro + for1y + for2y?) 2

+ fa00 + foo1y' + fa020* + fa03y” + faoay?,

See more calculations in Appendix H.
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where foo = foo(z,y), foui = failz,y), (@ = 0,1,2), fai = foui(2,9),(i =

0,1,2,3,4) and
By = (g1y — f2205 + 2902)/ 91,

Cy = (5go2y + Giyy — f21291 — 2f2290291)/ 91,

Ci = (3g01y + 49022 + 2912y — f211.91 — 2f2290191)/ 91,

Cy = (900y + 29012 + G122 — f21091 — 2f2290091)/91,
(gozyy — fa0a — fa12902 — f22952)/ 91,
(901yy + 29023:y — f203 = f211902 — f212901 — 2f22901902)/917
(Gooyy + 29012y + Go2ax — f202 — f210902 — f211901 — f212900

—2 fa2900902 — f22951)/ 91,

D, = (2gOOmy + Gotzz — foor — f210901 — fa11900 — 2f22900901)/917

Dy = (goom — f200 — f210900 — fz29§o)/91-

For the sake of simplicity we present here the linearization conditions for the case
faoa = 0. One can verify that in the case fys = 0 the found coefficients A;, B;, C;

and D; satisfy the linearization conditions (3.12)-(3.21) if and only if

gory, = (2902,91 — 291,902 + Go1902)/ 91, (3.63)

g1y = 9oz, (3.64)
gooyy = (far0y97 + Gooygo291 + G020295 — 2902291291 + YoraGo191

—~G12090201 + 297,902 — G12901902)/ 91 » (3.65)

far0y = fa02/ 91, (3.66)

Jaory = (2f202091 + f201902 — fa02901)/ 91, (3.67)

f200yy = (f200y90291 + f202m9f - f202y90091 - 2900yf202g1
+9022 f20191 — 91z f201902 — f202f2109% + 2f202900902)/9% (3.68)

and

f203 = f200 = for1 = fa12 = 0. (3.69)
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One type of the functions fo(z,y,y/,2) and g(x,y, vy, y") satisfying condi-

tions (3.63)-(3.69) is®
fo=zpo+pusH + ps, 9=y "Hy+y*Hy, +2y'Hyy + 1 H + pu,

where p; = pi(z), (i = 1,2,3,4,5) are arbitrary functions, and the function

H(z,y) satisfies the equation

((iy)f (]Ej>2>y:0- (3.70)

System (3.61) corresponding to these functions is

y' = Z/Hy - (yIQHyy + QQ,chy + N4)/H — M1, 2" = 2po 4+ psH + ps. (3.71)

Hence, we can conclude that a system (3.61) is linearizable if it has the form (3.71)

where the function H satisfies the equation (3.70).

3.3 The Second Class of Linearizable Equations

3.3.1 The Linearization Test for Equation (3.10)

The following theorems provide the test for linearization of the second class.

Theorem 3.5. Equation (3.10) is linearizable if and only if its coefficients obey

conditions:Y (G.1)-(G.18).

The necessary and sufficient conditions comprise eighteen differential equa-

tions (G.1)-(G.18) for twenty one coefficients of equation (3.10).

Theorem 3.6. Provided that the conditions (G.1)-(G.18) are satisfied, the trans-

formation (3.2) mapping equation (3.10) into a linear equation (3.8) is obtained

§See more calculations in Appendix H.

YSince equations (G.1)-(G.18) are cumbersome, they are presented in Appendix G.
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by solving the compatible system of equations for the functions p(x,y) and (x,y):

(G.19)-(G.22)!.  The coefficients o and 3 are given by equations (G.23) and
(G.24).

Remark 3.2. Equations (G.1)-(G.18) define eighteen relative invariants of third-

order of point transformations (3.2).

3.3.2 Relations Between Coefficients and Transformations

Lemma 3.7. The coefficients of equation (3.10) and the functions p(z,y) and

U(xz,y) in the transformation (3.2) are related by equations ** (G.26)-(G.44).

3.3.3 Proof of the Linearization Theorems

The problem is: for the given coefficients F;(z,y), H;(x,y), Ji(x,y), Ki(z,y)

of equation (3.10), find the integrability conditions for the functions ¢(x,y) and

Y(z,y).

Recall that, according to our notations, the following equations hold

Qp =T Oy, 6:1: :Tﬁy

and

7/} Po — A
P = TPy, Py = (3.72)
Py

From equations (G.26) and (G.27) one finds
Pyy = |(4Ay — F2A)§0y] /(10A), (3.73)

A, = (20r,A + 4A,r + F1A — 2ForA) /4.

IEquations (G.19)-(G.22) and (G.23)-(G.24) are presented in Appendix G
**Equations (G.26)-(G.44) are presented in Appendix G.
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Comparison of the mixed derivative (¢,)yy, = (¢yy). gives equation (G.1). Then

equations (G.28)-(G.31) become equations (G.2)-(G.5) and equation (G.32) gives
Ay = —(20FyA* — 48A7 + AN Fo A + TFFA? — 20J,A%) /(40A).

The equation (A,,), = (A,),, leads to equation (G.6). Equations (G.33)-(G.36)

yield equations (G.7)-(G.10), and from equation (G.37) one finds

Vygyy = 30080, A2(AA, — FoA) + 53,0, A(—120Fp, A% — 1442
720, FoA — 39FZA% 4 80.J3A%) + 0, (—50003 A
—150Fy,, AP 4 360F5y Ay A2 — 165 Fy, Fy A% + 100.J,,A% (3.74)
FOBAS — T2A2F5A + 1080, FZA? — 2404, J,A% — 24F3A?

+60FyJ4A%) — 50013 BA® + 500K7A4] /(5004,A%).

Equation (G.38) defines a:
o = (4Fpy, + 6Fy Fy — 8]y + F; — AFyJy — 8Kg + 56 K1)/ (8¢;). (3.75)

The relation o, — ra, = 0 leads to equation (G.11). Furthermore, considering

(ww)yyyy - (wyyyy)x = 0, one obtains

ﬁ == 120Ay<_4F2yy — 6F2yF2 + 8J4y - F23 + 4F2J4 + 8K6 - 56K77’)
+A(320Fyyy, + 480Fyy, F, + 336F5, 4 168Fy, F5 + 32F,,J (3.76)
—480J4yy — 240J4y F5 — 1600K 7, + 1600K7,r — 400F K

—9F} + 88F2Js + 160F, Kg — 320F, Kor — 144J3) /(1600A¢Y).

The relation 8, — 73, = 0 leads to equation (G.12). Equations (G.39)-(G.44)
become equations (G.13)-(G.18), respectively.

Let us turn now to the integrability problem. One can find all second-
order derivatives of function ¢ and all fourth-order derivatives of the function

by using equations (3.72), (3.73) and (3.74). So that one obtains at equations
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(G.19)-(G.22). Finally, the coefficients o and g of the resulting linear equations

(3.75) and (3.76) are given by

a=0/(8g,),

B = (—144F; N — T2F3 F§A + 352F5, JuA + 1604, A + 8014, F5 A
+640K4,A — 1600K7, A — 2880K7,rA — 44801, K7A + 800, A
—120A,0 — 400F; K7 A — 9F}A + 88F3 JuA + 160F, KA

—320F, KorA — 144J7A) /(160001 A),

where

O = (Fy —4Jy)Fy — 8(Kg — TK7r) — 8Juy + 6Fy Fy + 4Fy,,.

Hence, we complete the proof of theorems.

3.3.4 Illustration of the Linearization Theorems

Example 3.3. Consider the non-linear equation

10 1
y(4) . _y//y/// + ﬁ (15y//3 _ Iyﬂ _ ylﬁ) =0. (3‘77)

Y
It has the form of equation (3.10) with the following coefficients:
r=0, F,=0, F, =0, Fp=0, Hy=0, H, =0, Hy=0,
Ji=0,J;=0, o=0, =0, Jy=0, K; = —x, (3.78)

Ki=—1, Ks=0, K,=0, Ky=0, Ky=0, K, =0, Ko=0.
Let us test the equation (3.77) for linearization by using Theorem 3.5. It is manifest
that the equations (G.1)-(G.18) are satisfied by the coeflicients (3.78). Thus, the
equation (3.77) is linearizable, and we can proceed further.

Let us take its simplest solution ¢ = y and ¥ = x which satisfy the compat-
ible system of equations (G.19)-(G.22). So that one obtains the following trans-
formations

t=vy, u=uz. (3.79)
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Since © = 8 | equations (G.23) and (G.24) give

Hence, the equation (3.77) is mapped by the transformation (3.79) into the linear
equation

u® + 0 +u=0.



CHAPTER 1V
LINEARIZATION OF FOURTH-ORDER
ORDINARY DIFFERENTIAL EQUATIONS

BY CONTACT TRANSFORMATIONS

Recall that a transformation

t=v(,y,p), u=vyp), s=g(,yDp), (4.1)

of the variables x,y and p = ¢ = dy/dz is called a contact transformation if it
obeys the contact condition

,  du

s=u = —.
dt

(4.2)

This chapter deals with the linearization of fourth-order ordinary differen-
tial equations (3.1) by means of contact transformations (4.1). A contact trans-

formation (4.1) preserves the contact condition (4.2) if

Dy (z,y,p) _ Yo+ pthy + 4"ty
Do (x,y,p) Yo+ 0oy +y"0p

g(z,y,p) = (4.3)

Splitting equation (4.3), it implies that the functions ¢, and g are related by

Vp = 9p, Uz + by = (¢u + Dy) 9. (4.4)

In particular, if ¢, = 0, then ¢, = 0, and hence, the transformation (4.1)
becomes a point transformation. Since the linearization problem using point trans-
formations was solved in the previous chapter, we further assume that ¢, # 0.
Moreover, by virtue of equations (4.4), the Jacobian of the contact transformation
(4.1) is

(g9 — V) (9 + 9y0)0p — (92 + @yp)gp) # 0.
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Applying a contact transformation (4.1), the derivatives are changed as

follows. The tangent conditions du’ = u"dt, du" = u"dt, du’” = u¥dt, ... give the

representation of the transformed derivatives

&u
dt3

dtu _
dtt
d(k+1)u o
dt(k+1)

g1 =

g2 =

g3 =

gk =

Dy’

2 _n2
D gD(%<p§; 2 Dg == (DL)Q (ng - D290g1)7

B D’9 = 3(D*0) D g2 — (D*¢) g1,

B [DRg — M (D20) (D)2 gy

—k(D* 1) (Dp)gs — (Do) gi] + hi(z,y, ¢/, s y* D), (k> 3).

Notice that for any function F' = F(z,y,p):

DF

D*F

- y/IFp+pr+an
= y"F,+y" (y'Fy +2DF, + F,) + pDF, + DF,,

= y"F, +y" (2DF, + F, —y'F,) + pDF, + DF,,

DFF = y®OF 4+ y*D((k - 1)DF, + F, — 639" Fpp)

+fF(y(k72)7y(k73)7"'7y/7y7x)7 (k Z 3)7

where d; is the Kronecker symbol, and

D =9, + pd,.

4.1 Necessary Conditions for Linearization

Here we consider ith-order ordinary differential equation (3.4). Our goal

is to describe all equations (3.4), which are equivalent with respect to contact

transformations (4.1) to a linear equation.

We start with investigating the necessary conditions for linearization. The

general form of equation (3.4) that can be obtained from a linear ordinary differ-
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ential equation by a contact transformation (4.1) is found on this step. Necessary
conditions for a linearizable fourth-order ordinary differential equation are studied
here in more details.

Because of the formulae of changing the derivatives (4.5), for obtaining
necessary conditions one has to study separately equations of order two, three, four
and orders greater than four. Here we present necessary conditions for equations

of fourth-order (i = 4) and higher (i > 4).

4.1.1 Necessary Form of a Linearizable Fourth-order ODE

As was obtained in the previous section, the transformation (4.1) provides
the change of derivatives (4.5). Substituting u, v’ and u¥) into the linear equation

(3.8), and setting a(z,y,p) = (pz + ppy)/¥p, we arrive at the following equation

y(4) + ﬁ . 3y”/2 + (A2y//2 + Aly” + AO) y/// (4 6)

—|—B5y”5 + B4y”4 + Bgy”3 + BQy//Q + B1y” + BO — O,

where A; = A;(z,y,p) and B; = B;(x,y,p) are some functions of z,y,p. Thus, we

have proved the theorem.

Theorem 4.1. Any fourth-order ordinary differential equation linearizable by a

contact transformation belongs to the class of equations (4.6).

Remark 4.1. Comparing the general forms of fourth-order ordinary differential
equations linearizable by point transformations and contact transformations, we
can conclude that in contrast to third-order ordinary differential equations, the

sets linearizable by these two types of transformations are disjoint.
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4.1.2 Necessary Form of a Linearizable ith-order ODE

In this section necessary conditions for linearizable ordinary differential
equations of order ¢ > 4 are obtained.
Calculations show that
g2 = geelD?g — (D) (D) iy
—(i = 2)(D"2¢)(Dp)ga — (D" *p)gn] + - -
= myzlD Tl = (D)) + -
- (Dgol)i_—Q YUV gp — open] + -+
Here ... means terms with derivatives of order less than ¢ — 1. Hence, the function

gi—1 has the representation

. . . i—1)(i— & i—
g = maerlyVg, + V(i — 1)Dg, + g,) — R (g, — 0,01)

—(i = 1)(De) g2y Vpp — g1 (¥, + y (i = 1) Dipy + )] + - --

i i— . i—1)(i—2) D2
= H=rlv? (9 — o) + ¥ V(i — 1) Dy, + 9,) — L2 (g, — 001)

—(i = D)(Dp)gapp = 91 ((i = ) Dpp + ¢y )]] + - -
Substituting derivatives of the function w(t) into a linear equation (3.3), one ob-

tains
yD 4 yiON 4 =0, (i > 4),
where
N,y ¢y ") = ATV = 1)Dg, + g, — SR (g, — o,01)
—(i — 1)pp 22BELeD9 — B9((i — 1) Do, + ipy)]

and

9,Dp —0,Dg gDy — p,Dg
Alz,y,p) = 2 Dgpp =2 pr 40,
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The function A\;(z,y,v’,y”,y") has the form

N\ = 1 [_ i(igl)y"/+(Agy”2+A1y”+Ao)

y'+a
with some functions A; = A;(z,y,p), (i = 0,1,2). Thus, the necessary form of a
linearizable ordinary differential equation of ith-order is

A . 1 i(i—1)
(@) o, (i-1) _ M A 1 A+ A } A7
Yty T a 5 Y+ (Ay™ + Ay + Ag) | + (4.7)

Theorem 4.2. Any ith-order (i > 4) ordinary differential equation linearizable by

a contact transformation belongs to the class of equations (4.7).

4.2 Formulation of the Linearization Theorems

We have shown in the previous section that every linearizable fourth-order
ordinary differential equation belongs to the class of equations (4.6) that are at
most quadratic in . In this section, we formulate the main theorems containing
necessary and sufficient conditions for linearization, the methods for constructing
the linearizing transformations as well as the coefficients of the resulting linear

equations.

Theorem 4.3. Equation (4.6) is linearizable if and only if its coefficients obey the

following conditions:
- 4qu7‘ +6/f.Dfr — fr3 - 8fp - 4D2fr + 8qu = )‘1((] + a)3> (4'8>

—1440f,D? f, — 1600 f, + 832f,D f, — 144f,* + 1512Df, f.> — 808 f, f,”
+480D3 f, — 1600f, f, — 189f.* +2000Df, f, — 864D f,> — 1120D?f,
+1600D f, = L2 1 — 600A,(q + a)? + 1800A17 + 30\ (—24a,q (4.9)

—24a,a — 1040 — 12A1q — 2A10 — 15A2¢% — 6Azqa — Asa?)

+Xa(q + a)?|,
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Az = (=12A1a,p + Aip(—A1p + 2Aspa + 10a)

(4.10)
—6ap)\1 + 3/\1(—141 + 2A26L — ,ulp))/lo,
/\ly = (12/\1pap + )\lp(Al — 2A2(l) + 3)\1,&1)/10, (411)
)\Qy = (12)\2pap + )\Qp(Al — 2142&) + 1800>\1M2p + 4)\2[1,1)/10, (412)

where p=y',q=1vy" andr =y".
The following notations are used :

M = 4Ay,, + 6A42,Ay + 8By, — 32Bs,a — 8Bs, — 8Bs,p — 56a,Bs
—4A1Bs + A3 +4A,B, — 124, Bsa,

Ay = 960A1,Bs — 43243, — 216 A3,A3 — 1056 A5, B, + 50404, Bsa
—1680A5, Bs — 1680As, Bsp — 480 By, — 240B,,As + 1920 Bs,,
+1920Bs,,p + 480 Bsppa + 960 Bsya,, + 480 Bs, Ay — 240 Bs, Asa
+480Bs, Ay + 480Bs, Agp + 6720Bs, + 240\, — 480a,A2Bs
—120A4, Ay Bs — 27TA5 — 264 A3 By + 156043 Bsa — 90 A\
—640B3Bs — 432B7 + 6880B,Bsa — 17200B3a?,

1 = —8Ag,a + 6Agyp + 4a,As + Ay 4 649, + 3A1 A5 — 6A§a
+8B3 — 32Bya + 80B5a?,

py = (156Ag,a, + 3A5,(A; — 52A9a) 4+ 150 A9, (Asp — 1)
+2a,,(57A3 + 92B4 — 460Bsa) + 15045, Ay — 40 Bs, + 100By,a
+60By, + 60B,,p — 100Bs,a> — 300 Bs,a — 300 Bs,pa + 50 Ao Bs
+57A A3 + 12A, By — 1104, Bsa — 114A3a + 1404, B

—584AyBya + 1570 A5 Bsa® — 15A501)/(60p).

Theorem 4.4. Provided that the conditions (4.8)-(4.12) are satisfied, the trans-

formation (4.1) mapping equation (4.6) into a linear equation (3.8) is obtained by
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solving the following compatible system of equations for the functions ¢(x,y,p),

U(x,y,p), 9g(x,y,p) and k(z,y,p):
P2 = APy — PPy, Oy = wp(12a, + Ay — 245a) /10,
Copp = (6092, + ©2(—12A,, — 3A3 — 8B, + 40Bsa))/(40¢,),

wx = —p% + g(@z +p§0y)a wy = _(Ppk + PYy9, wp = ¥p9,

9z = gpa — gyp + k, 9y = (_6§0ppk — ppAak + 490y9p)/(490p)7

Gppp = (—T2000%,9 + 1440090095 + 9000, MY + 12002, (— 1243,

— 343 — 8B, + 40B5a) + 6000, (—8Bsk — gA1) — p,Aath)/(480047),
ky = (2¢ppk(—12a,p — A1p+2Aspa+10a) + ppk(56a, +8A; —6Asa—wp))/(40¢,),
ky = (20ppk(12a, + A1 — 2A20) + 0pkw) /(400,), Ky = (2pppk + 0pA2k)/(4py),
where

k= g, + 9,0 — gpa # 0, (4.13)

w = 12A1p - 56A2pa -+ 32A2x + 32A2yp + 28CLPA2 + 21A1A2

— 42A3a + 56 B3 — 224 Bya + 560 Bsa’.

The coefficients o and B of the resulting linear equation (3.8) are given by

A1
a=-—
83

5 = Z9002mA + ko
480003

Remark 4.2. If the left hand sides of equations (4.8), (4.9) are equal to zero, and
equation (4.6) is linearizable by contact transformations, then A\; = 0 and Ay = 0.
In this case equations (4.10)-(4.12) are satisfied, and a = 0, § = 0. This particular

case was studied in (Dridi and Neut, 2005)*. Conversely, if an equation (4.6) can

*There are two more equations in (Dridi and Neut, 2005): f,, = 0 and 6fgrr + frr2 =0.

These equations are equivalent to the form (4.6).
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be mapped into the trivial equation v = 0, then a = 0, 3 = 0. This leads to
A1 = 0 and Ay = 0. Hence, the left hand side of equations (4.8), (4.9) are equal
to zero. Thus, the result obtained in the thesis extends linearization conditions

obtained in (Dridi and Neut, 2005) for the most general case of linear equations.

4.3 Relations Between Coefficients and Transformations

Lemma 4.5. The coefficients of equation (4.6) and the functions ¢(x,y,p),
U(x,y,p) and g(x,y,p) in the transformation (4.1) mapping linear equation (3.8)

into equation (4.6) are related by equations' (I.1)-(1.9).

4.4 Proof of the Linearization Theorems

Proof : For given coefficients A;(z,y,p) and B;(z,y,p) of equation (4.6), we
have to find the necessary and sufficient conditions for integrability of the overde-
termined system of equations (I.1)-(1.9) for the unknown functions ¢(z,y,p),
U(z,y,p), 9(z,y,p) and k(z,y,p).

Defining the derivatives 1, and 1, from equation (4.4), and equating the
mixed derivative (¢,), = (¥s)p, one finds from this equation the derivative 1.
Recall that, according to our notation ¢, = ay, — py, and for simplicity of cal-
culation, we introduce the function k as in equation (4.13). From equation (4.13)
one finds the derivative g,. The equations (¢), = (¥y), and (¥,), = (¥p)y
can be solved with respect to the derivatives k, and k,, respectively. Equations
(L1)-(L5) give gy, kysa, @ and @y Thus, equations (g.)y = (6,)e: (¢2)y = (£
and (k;), = (kp). can be solved with respect to the derivatives ¢, A1, and Ay,

respectively. The equation (1.6) defines the derivative a,,).

Since equations (I.1)-(1.9) are cumbersome, they are presented in Appendix I.
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Since a(z,y,p) = ao p(x,y,p), one obtains the relations

Az py — Qi = 0, Qg — app, =0,  ayp, — appy = 0.

From these relations, one finds § and g,,,. Equations (1.8)-(1.9) serve for finding

the derivative Ag, and the coefficient By. Notice that the following derivatives

Py Py Poppy Yo, Yy, Yy Gzy Gys Gopps Koy Ky, kp

are found through
©py Ppps Ips Gpps U5 95 k.

Thus, one has found all third-order derivatives of the function ¢, all first-order
derivatives of the function 1, all third-order derivatives of the function g and all
first-order derivatives of the function k. The remaining compatibility conditions
are obtained by equating the mixed derivatives (with corresponding orders) of the

functions ¢(z,y,p), ¥ (z,y,p), 9(z,y,p) and k(z,y,p).

Since B(x,y,p) = B o p(z,y,p), one obtains the relations

635901/ - By@pm - 0: (414)
6%30;0 - 6p§0m - 0; (415)
Byep — Bppy = 0. (4.16)

Comparing the mixed derivatives (¢z)ppp = (Pppp)z a0 (©y)ppp = (Pppp)y, OLE Ob-
tains the derivatives Ay, and a,,. The equation a,,, = (a,p), gives the derivative
A, Substituting A, into the relation Ay,,, = (Aipy)p, one finds the deriva-
tive Agp,. Setting (k;), = (k,), and (k,), = (kp),, one gets only the derivative
Agpp. The derivative Byy,, is found from equation (1.7). The relations (4.14)-(4.16)
and the mixed derivatives (¢)ppp = (Gppp)zs (Gy)ppp = (Gppp)y give the conditions

for Bupps, Bappy and Byy,,. The equation (as)p, = (app), provides the expression
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for Asy,. The equations Buype = (Bape)ps (Arz)pp = (Aipp)es (A222)p = (A2pa)a,
(Aoz)pp = (Aopp)z and Bupzr = (Bapsz )z give, respectively: Bsyy,, Biga, Bsppes Bsgs
and Agp,. The derivative a,, can be found from the equation Ay, = (Ao,),. Equa-
tion (apy)p = (app)y yields the derivative Ay,,. One can find the derivative Ao, from
the equation (Ag,), = (Aos)p,- Comparing the mixed derivatives (Ag,), = (Aoy),
and (Aipy)p = (Aipp)y, one arrives to formulae for the derivatives Ba,, and Bayyyp,
respectively. The equations (Aoz)y = (Aoy)s and (Bsuw)pp = (Bspps)s give the
derivatives Bip, and Bszpqs, respectively.

Analyzing the results of (Dridi and Neut, 2005), and recalculating the left
hand sides of equations (4.8)-(4.12), we could represent the obtained conditions in

the final criteria of linearization of a fourth-order ordinary differential equation in

the form presented in (4.8)-(4.12).

4.5 Illustration of the Linearization Theorems
Consider the nonlinear ordinary differential equation
_16y/2y//y(4) + 48y/2y///2 + y'y”5x _ 48y/y//2y/// . y//5y + 12y//4 =0. (417)

It is an equation of the form (4.6) with coefficients

Bs = —FY B4:$7 B3 = By = B1 =By =0,

16p2 )

)\120, /\2:%, ulzugzw:().
These coefficients obey the linearization conditions (4.8)-(4.12). Thus, equation
(4.17) is linearizable. The linearizing transformation is found as follows. The

equations for the function ¢ are

12]72(,02 + 3(702
@y =0, ¢z =0, Pppp = 8p§ o
D"Yp

(4.18)
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The function ¢ = /p is a particular solution of the equations (4.18). In this case

gy = 0. Then the function k(z,y, p) has to satisfy the equations

9z
Yy P 2p

Since g, = k and k = k(p), the general solution is k = ko/p, where kj is constant.

So that g = koz\/p + f(p), in particular, one can consider

g = z\/p.
One can readily verify that the function g = z,/p solves equation for g,,, as well.

Solving system of equations 1, = —pi),, 1, = —1/2 and 1, = 2/2, one finds

—(y—C
o= (g ).

where C' is constant. Taking for example C' = 0, one obtains the transformation

o=y v=2L"Y  G—az/p (4.19)

The coefficients « and 3 of the resulting linear equation (3.8) are

1
Hence, the nonlinear equation (4.17) is mapped by the transformation (4.19) into

the linear equation

u +u=0.

4.6 Application of the Linearization Theorems to a System

of Two Second-order ODEs

In this section we give some conditions for linearization of a system of two
second-order ordinary differential equations with two dependent variables y, z and
one independent variable x

iz

Yy = fl(xvyuyla Z)7 Z,/ = f2<xvy7y,7 Z)' (420)
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Assuming that fi, # 0, by virtue of the Inverse Function Theorem the first equa-
tion of (4.20) can be solved with respect to z = h(x,y,y’,y”). Substituting this
into the second equation of (4.20), one obtains that system (4.20) is equivalent to

the fourth-order ordinary differential equation

y(4) hy// +y'"2hy~y” + y///(th,y”y// + th”yy/ —+ th//m + hy/) + hy/y/y//2 (4 21)

+(2hyyy + 2hyw + hy)y" + byt + 2hayy’ + hyw — f2 = 0.

Applying linearization theorems to equation (4.21) one can obtain conditions for
the functions fa(x,y, vy, z) and h(z,y,y’,y"”) which are necessary and sufficient for
equation (4.21) to be linearizable.

Since one of the necessary conditions for linearization of equation (4.21)
requires that this equation has to be a quadratic equation with respect to the

third-order derivative 3" with the coefficient — one obtains that the general

_3
y//+a b
form of the function h is

ha

h=ho+
" ap

where h; = h;i(z,y,v'), (i = 0,1). Since hy» # 0, the function hy # 0. Because of

"

the coefficients with the derivative y"” have to be quadratic with respect to the

second-order derivative y”, one obtains hg, = 0, which means that hy = ho(z,y).

Hence, the coefficients Ay, A; and Ay in equation (4.6) are

Ay = 3hi,/(2h),
A1 = (Q(hh; + hlyp) + hlpa — 56Lph1)/h1,

AO = ((4(hlz -+ hlyP) — hlpa)a — 12ayh1p — 126Lzh1 -+ 2apah1)/(2h1),

where p = 7/,

Since the coefficients with the derivative 3”® have to be zero, one arrives at
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equation

(y” + a)4f2y//y//y//y//y//y// + 24<y,/ + (l)3f2y//y//y//y//y//

+18(y// + a)2f2yuy//y//y// + 480<y// + a)ny//yuyu + 360f2y//y// =0.

The general solution of this equation is

fom—t oy 2 OB Oy e
2 y// +a (y// + a)2 (y// + a)3 (y// + a)4 5Y 6
where ¢; = ¢;(x,y,9'), (i =1,2,...,6) and one obtains
Bs = —(hoy — c5)/(2h1),
B4 = _(2h0:vyp + hOa;m + hOyyp2 + 4h0ya + hlpp — 4CLC5 — Cﬁ)/(?hl),

Bs = (2auphy + 4a,hy, — 8hogyap — 4hoga — 4h0yyap2 — 6h0ya2 — 2Ry,
—2hypyp — 2h1ppa — hyy + 6a’cs + 4acg + ¢1)/(2hy),

By = (4apshy + 4apyhip + 2a,,0h1 — 6ahy + daphiya + daphi, 4 4aphy,p
+dagzhiy + 4ayhipp + 2a,hy — 12h0xya2p — 6hogea’ — 6h0yya2p2
—4h0ya3 — 4hipga — 4hypyap — hlppa2 — 2h12yp — hige — hlypr
—2hyya + 4a’cs + 6a’cg + 3ac, + c3)/(2h),

By = (4ap,ahy + 4dapyahip — 12a,a,hy — 12a,a,hip + 4ayhiza + 4ayhyap
+dagzyhip + 2a,.h + dazhipa + 4aghyy + 4aghyyp + Qayyh1p2
+4ayhipap + 4ayhigp + élczyhlyp2 + 2a,ah, — 8h0xya3p — dhggea®
—4h0yya3p2 — hoya4 —2df (hy, p, x)a* — 2h1pya2p — 4hyzyap — 2h14.a
—2hyy,ap® — hiya® + a*cs + 4aPcs + 3a’c; + 2acy + c3)/(2h),

By = (dagyahip + 2a,,ah — 6aih1 — 12a,a,hip + 4azhiza + 4azhyyap
+2ayyah1p2 - 6a§h1p2 + dayhizap + 4otyh1yap2 - 2h0zya4p — hogza?
—hoyya4p2 — 2h1xya2p — hygea® — hlyya2p2 + atcg + ade; + dley

“+acs + C4)/(2h1)
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For the sake of simplicity here we consider a particular case where a = 0,hg = 0

and hi, = 0. We present the linearization conditions for the case hi, = 0 and

hly 7é 0.

4.6.1 Case hyy, =0

One can verify that in this case the coefficients A; and B; found satisfy the

linearization conditions (4.8)-(4.12) if and only if
Cl = C = C3 =C = 0, Cox = Coy — 0, Cozx = Coxy = Coyy = 0. (422)

In this case the functions fo(z,y,v', z) and h(z,y,y', y") satisfying conditions (4.22)

are
I V52
f2 = (Vl + X + ng)y + Uy, h = W’ (423)
where v; = v;(y'),(i = 1,...,5) are arbitrary functions*. System (4.20) corre-
sponding to these functions is
v v
Y = D = (v1 + o + ng)—5 + vy. (4.24)

NZ

Hence, we can conclude that a system (4.20) is linearizable if it has the form (4.24).

7

4.6.2 Case hy, #0

In this case setting ¢; = 0, the found coefficients A; and B; obey the

linearization conditions (4.8)-(4.12) if and only if
Cy = C3 = Cq4 = 0, hlp = 4h1/p, hlyy = 6h%y/(5h1), (425)

6 = —(cepp” — 6h1)hay/(5phy),  coy = (copp + 3c6)hay/ (5h1), (4.26)

See more calculations in Appendix J.
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Cser = —(20cspehup® + 2¢spph1yp° + 15¢s,h,p° + 60cs,hyp?
+5¢s,hip* + 20h1,csp* + 10cghip® — 120h3) Ry, /(50p*h3),  (4.27)

Coay = (1O(c5py102 + 4esy + Cspap) 1 — (20¢5p,h1p — 205pph1yp2

—15¢sph1yp + 25¢5,h1 — 20hy,c5)p)hay, /(50RT), (4.28)
Csyy = —(205pph1yp2 + 15C5ph1yp - 75C5yh1 + 20h1y05
—20¢sp,h1p)hyy,/(50RT). (4.29)

One type of the functions fo(x,y,y,z) and h(x,y,y’,y") satisfying condi-
tions (4.25)-(4.29) is

12 3 14
o1 % 0 = Y (4.30)

o1 3y 09
RN R Ky°y"

+y"(

where o; = Ji(% —x), (i = 1,2,3,4) are arbitrary functions and & is a constant®.
System (4.20) corresponding to these functions is

2 12 3

1 Yy n 01 3y Yy 01 02 o3 04
y'=——, Z'=—+ + — + + + + ).
kY52 y Ry wySz ARyt 2977 Vyly? o oyy® oy )
(4.31)

Hence, we can conclude that a system (4.20) is linearizable if it has the form (4.31).

§See detail in Appendix J.



CHAPTER V

CONCLUSIONS

This thesis is devoted to the study of the linearization problem of fourth-
order ordinary differential equations via point and contact transformations. The
results obtained are separated into two parts.

In the first part, the criteria for fourth-order ordinary differential equations
to be linearizable by point transformations are given. Two distinctly different
classes for linearization are provided: the sets of all fourth-order ordinary differen-
tial equations that are linearizable by point transformations are contained either

in the class of equations (3.9) or in the class of equations (3.10).

e The main Theorem 3.2 for the first class, provides necessary and sufficient
conditions for linearization. The explicit procedure for constructing the lin-
earizing point transformations and the formulae for the coefficients of the
resulting linear equations are summarized in Theorem 3.3. An example of a
third-order member of Riccati Hierarchy equation which is not linearizable
by a point transformation or contact transformation or generalized Sundman
transformation, but is linearizable by our method, is given. Linearization of
traveling waves of partial differential equation are applied. Applications of
how one can effect linearization for a system of two second-order ordinary

differential equations are presented.

e The main Theorem 3.5 for the second class, provides necessary and suffi-
cient conditions for linearization. The procedure for obtaining the linearizing

point transformations and the coefficients of the resulting linear equations is
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summarized in Theorem 3.6.

Moreover, the general form of ordinary differential equations of order greater than
four linearizable via point transformations are obtained.

The second part deals with the linearization of fourth-order ordinary dif-
ferential equations by contact transformations. The general form of fourth-order
ordinary differential equations that are linearizable via contact transformations
is (4.6). Conditions which guarantee that equations (4.6) can be linearizable are
provided Theorem 4.3. The explicit procedure for obtaining the linearizing contact
transformations and coefficients of the resulting linear equations are presented in
Theorem 4.4. The linearization criteria obtained for fourth-order ordinary differ-
ential equations are applied to a system of two second-order ordinary differential
equations. The general form of ordinary differential equations of order greater
than four linearizable via contact transformations are provided.

Furthermore, it is proven that the set of fourth-order ordinary differential
equations linearizable by point transformations and the set of fourth-order ordinary
differential equations linearizable by contact transformations are disjoint.

We can conclude that the criteria for fourth-order ordinary differential equa-
tions to be linearizable via point and contact transformations are completed. Pro-
gram for checking the linearizable criteria have also been developed.

In the future work I will analyze the conditions for fourth-order ordinary

differential equations to be linearizable by tangent transformations.
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APPENDIX A

REMARKS ON CONTACT

TRANSFORMATIONS OF SECOND-ORDER

ODEs

The contact condition has the following meaning. Let the function y(x) be

given. The transformed function wu(t) is found from the equations

t=(x,y(x),y (r)),
u=1(x,y(x),y (r)).

By virtue of the Inverse Function Theorem, the first equation gives

and then

Hence, it is assumed Dy # 0. The derivative is

o () = g—g (r(t) 5 (r ()4 (r (8) " (r (1))

The contact condition requires

D

Y
g($7y7p) = D_QO (x7y7p7w>7

where p = ¢ and w = y”. Equation (A.1) is rewritten in the form

g (e + PPy + wpp) = Py + piy + wipy.
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Since the contact condition is satisfied for any w = 3", one obtains

9 (pz + poy) = Yo + Py,
(A.2)
9op = Uy
S. Lie showed that all second-order ordinary differential equations are equiv-
alent with respect to the set of contact transformations. In fact, let us prove that
any equation

y' = f(x,y,p)

is equivalent with respect to the set of contact transformations to the equation
u =0

Since v’ = g—i, one needs to find functions ¢(z,y, p), ¥(x,y,p) and g(z,y, p) which

satisfy (A.2) and the equation Dg = 0, which is

9 +pgy + f9p =0. (A.3)

Notice that the Jacobian of the transformation is

A= (Yy — goy) (9p (02 + Dpy) — ©p (92 + Dgy)) # 0,

or we can write
A= (¢y - g@y) dp (Sﬁr + ppy + f@p) 7é 0.

Without loss of generality it is assumed that f # 0.
Assume that g(z,y,p) is some solution of (A.3) such that g, # 0. Since

f # 0, then the value
9z + pgy # 0.
Let us denote

a =1 —@g.
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Equations (A.2) become

Oy + POy = prgzn
ap + g, = 0.
Thus, the function a(z,y, p), has to satisfy the equation
oy + poy, + fay, = 0. (A.4)

Notice that the requirement A # 0 leads to

aygp — Apgy 7 0. (A.5)

Since g, # 0, then for solving equation (A.4) one can change the independent
variables (z,y,p) into (z,y, g).

Let p=h(x,y,9),a = H (z,y,g). Since
oy = Hy + Hyg,, oy = H, + H,g,, a, = Hyg,
then the function H(z,y, g) has to satisfy the equation
H,+hH,=0. (A.6)

The condition (A.5) becomes

H, # 0.

In equation (A.6) the variable g plays the role of a parameter. Finding any solution
H(z,y,g) of equation (A.6) satisfying this condition one finds the transformation

of the equation y” = f(x,y,p) to the equation u” = 0.



APPENDIX B
A PARTICULAR LINEARIZATION
PROBLEM OF FOURTH-ORDER
ODEs UNDER CONTACT

TRANSFORMATIONS

In 2005, Dridi and Neut used Cartan’s method to study the equivalence
problem of fourth-order ordinary differential equation with the flat model under
contact transformations. As a result, they obtained that the following propositions

are equivalent:

(i) the equation y™ = f(x,y, 4/, y",y") is equivalent to the equation u*) = 0

under a contact transformation,

ii) the equation y® = f (x,y,9,v",y") admits a contact symmetry group of 8
q Y Y9,y ,Y

parameters,
(iii) f satisfies
frr =0, fr® 4+ 6fpr =0,
~4fofr +6f,Dfr — f,° —8f, —4D*f, +8Df, =0,
—1440f,D*f. — 1600 f, + 832f,D f, — 144, + 1512Df, f,>
—808f,f? + 480D f, — 1600f, f, — 189f,* + 2000Df, f,

—864 (Df,)* — 1120D%f, + 1600D f, = 0,

wherep =y, q=y", r =y" and D = F+pg +ag+rg+f(2,4,0,6,7) 5



APPENDIX C

LINEAR SECOND-ORDER ODEs

The general form of a linear second-order ordinary differential equation is

y' (@) +a@)y (x) +b(@)y (@) =c(2). (C.1)
Any linear second-order ordinary differential equation (C.1) is equivalent to the
equation

ull — O
In fact, because a solution of equation (C.1) is represented as
Y =1UYn + yp7
where y, is a solution of the homogeneous equation
y'+ay +by=0

and y, is a particular solution of equation (C.1), one can construct the transfor-

mation
t=x, v=Y—Yp.
Then,
v =y —y,
v =y =y

Substituting these expressions into equation (C.1), one gets
(V" +y)) +a( +y) +bv+y,) = c
(V" + av' 4+ bv) + (v +ay, + by,) = ¢
(W"+a+bv)+c = ¢

vV 4+av+bv = 0.
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That is we can exclude the coefficient ¢ from equation (C.1).

Let us exclude the coefficients a and b in the equation
y" +ay + by = 0. (C.2)
Assume that a solution of equation (C.2) has the form

y (@) =u(t)q(r).

Consider the transformation

Then,
Yy =u'q+uq,

y// — u//q_|_ 2u/q/ _|_uq//.
Substituting these expressions into equation (C.2), one has
(W'q+2u'qd +ud")+a(Wqg+uq)+bug = 0

u'q+u' (2¢ +aq) +u(¢"+aqd +bq) = 0.
Choosing ¢(z) which satisfies equation (C.2), one obtains

u" + ' (2761 + a) = 0. (C.3)

Thus, we can exclude the coefficient b in equation (C.2).

Next, let the function h(z) such that

2/
h’:?qua.

Then, equation (C.3) becomes

W +u'h =0.



Because of )
J R (s)ds
eo (W' +u'h")y=0

so that,

e (v +u'h) = 0.
Setting v" = u/e”. Hence, one obtains

v =0.
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APPENDIX D
SOME MATERIAL FOR REVIEW AND

REFERENCE

Theorem 4.1. (Inverse Function Theorem). Let f : R™ — R™ be continuously
differentiable on some open set containing a, and suppose detJ f(a) # 0, where J
1s the Jacobian matriz. Then there is some open set V' containing a and an open
W containing f(a) such that f :V — W has a continuous inverse f~1 : W — V

which is differentiable for all y € W.

Theorem 4.2. (Faa de Bruno Formula). If g and f are functions with a sufficient

number of derivatives, then

B 0= e o (LY (P (e 0)”

where the sum 1s over all different solutions in nonnegative integers ly,ls, ..., l; of

L+2+ - +kly=Fk andm=1,+1ly+ -+ 1.

Theorem 4.3. (Leibnitz Formula for the n-th Deriwvative of a Product). Let u(x)
and v(z) be functions of class C", i.e., functions with continuous n-th derivative.

Then their product is also of class C™, and

arl@r@ =3 " | ) @),

dz™ dx™r

where

1s the usual binomial coefficient.



APPENDIX E

PROOF OF THEOREM 2.1

Proof : The substitution y = vq leads equation (2.11) to the equation
v® 4@ v D G + G = 0. (E.1)

In fact, the Leibnitz formula for the derivative of the product of the functions v

and q is

k!
(k=) (1)

)(k) _ m q

|
]~

(vq

r=0

= |l

k!
- v k) () (k) (k—=1)
N (k—r)!r!v N

||
N

r

Hence, equation (2.11) becomes
vW g+ 0%V (k¢ + ap_1q) +--- = 0.
Choosing the function ¢ such that
k¢ +ar—1q =0

one obtains equation (E.1).

Let us exclude the coefficient a;_, in the equation
y® + a0y + sy + -+ @y + agy = 0. (E.2)

For this purpose, one can use the change



Consider

d* g1 k(k—1
y® +ap oy = < )q+k<——m>d+ k=1

dar dth—1
dk—2
()]

Using the Faa de Bruno formula, one has

2

dt* SUSIERRN/N 1! 2! k!

= bou™ + byuY 4 byu*D .
For finding the coefficient by one has to solve the equation

L +2+---+kl, = k,

h+l+--+1, = k.

Thus,

lo+2l3+---+(k—1)l=0.

This means that lp, =13 =--- =1, =0 and |; = k.

Similar for the coefficient by:

L+2+ - +kly = k

Lh+lb+---+l = k-1
Elimination of [; gives
lo+2l3+ -+ (k—1)l =1,

whence oy =1, 3= =, =0and [, =k — 2.

For by:

L+2+---+kly = Fk,

L4+l = k-2

dk72
(dtk—Qu

74
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or

lo+23+ -+ (E—1)1; =2,
which gives case s = 2, [3 =--- =1, = 0 and then [; = k—4 and case [, =0, I3 =
Lily=--=l=01L1=k—3.

Notice that for k& = 3 the first case is not involved in calculations.

Thus, one obtains

b = ()",
k(e —1)

b= T )

b= g @) (%> ram @ ()

0, k=3
where o), = =1— 0,
1, k+#3
Therefore,
dku k k ]{7 (k} — 1) k—2 k—1
ko u® ()" + 5 (¢") @ ulY
k‘ Nnk—4 SOH ? k' Nk—3
g @) <2 oo @
dF1u _ (k—1)(k—2) _
i S (k—1) ¢, k-1 Nk=3 1 (k—2) .
T ut () + 5 ()" 7" +
dk’2u _ k—
T = W)

Substituting these expressions into equation (E.3), one arrives at equation

. [k
) 1 gy ® D = qu® () 4y 1){ (

ol et (5)

—1 " Nnk— / nk—
RE =D o ()2 g 4 kg ()

—|—kq’ ((k - 1) (k - 2) (Spl)k_g S0//) + k (k - 1)q// ((P/)k_Q

2
tag—29 (@,)k_Q} o
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The functions ¢(z) and ¢(x) satisfy the equations

k—1
( 5 )<p”q+q/g0’:0, (E4)
KL o RN AY (k=1 (k-2 ,
q(k—3)!¥+a’“(k—4)!25<7) a7tk 2 7 (£5)
k(k—1
SR )q”so’ + ap-2q¢’ = 0.

2
From equation (E.4) one obtains

so that,

Substituting these expressions into equation (E.5), one gets

ke B L 2+k(/f—1)(/~<r—2)(1—/€)(s0”)2
(k=313 " P-4\ 2 2 2 ¢
k(k—1)(1—Fk k+1)(¢")?
LA Gl )(p,,,_( )(w/) g = 0.
2 2 2

Hence, equation (E.2) is equivalent to equation (2.12). The proof is thus complete.



APPENDIX F
COMPATIBILITY ANALYZE OF THE
SYSTEM OF EQUATIONS FOR FUNCTIONS

¢ AND ¢ IN SECTION 2.5

Since for a given equation there are only two unknown functions ¢(z,y)
and 1 (x,y), equations (2.16) form an overdetermined system of partial differential
equations. Let us analyze the compatibility of this system.

First assume that ¢, = 0. From relations (2.16) one defines
a=0, ty=vb 20y = 0 Vyue + Uy,  aw = @, aPun + Uyd. (F.1)
Comparing the mixed derivatives (¢zy), = (¢yy), and (Yay), = (¢2z),, one finds
Cy = 2by, 057 (200000 — 305,) = 4(dy +bd) — (2¢, + 7). (F.2)
Because ¢, = 0, differentiating the last equation with respect to y , one obtains
dyy — by — by + byd + dyb = 0.

Thus, a second-order ordinary differential equation of the form (2.15) is linearizable

with the function ¢ = p(z) if the coefficients of this equation satisfy the conditions
a=0, ¢, =2b,, dyy — by —byc+b,d+d,b=0. (F.3)

The functions ¢(z) and ¥(z,y) are restituted by solving the involutive overdeter-

mined system of equations (F.1) and (F.2).
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Relations (2.16) in the case ¢(y) # 0 are analyzed similarly, but the process

is more cumbersome. In fact, from equations (2.16) one finds

Pythyy = (Pyythy +a b),

20200y = 200y 0yty — Pyy & — (apz — bpy) A,

Pothae = 200y Pyle — PaPyyle — Cota + Copyab + 5 (Vyd — hec)
Py Pas = 2PayPatPy — PPy — Va0 + Pa0yb — puipie + gid.

From the equations (1), = (¥y,), and (1), = (Ysz),, one gets

20y Cyyy = 3 (€1 — 20ayPya + 20500 + @2a%) — 2040, (ay + ab)
—|—<,0§ (2b, — 4a, + dac — b*),
6902 Payy = 3 (4PayPyyPy — P2y + 200 PyyPyb — 200y 02b)
+3p2a® + 33035@5 (—2a, + 2ac — b*) + 2@2 (—by + 2¢, + 3ad) .
Forming the mixed derivatives (¢uyy), = (Pyyy), and (Puz),, = (Payy),, one ob-

tains equations (2.17). Conditions (F.3) form a particular case of the relations

(2.17): they are selected by the way of finding a linearizing transformation.



APPENDIX G
EQUATIONS FOR THE SECOND CLASS OF
LINEARIZABLE EQUATIONS IN

SECTION 3.3

G.1 Equations for Theorem 3.5 in Section 3.3.1

In this section we present equations which were used in previous sections.

107y, = —(Fiy + Foy + Foyr + 1, F3), (G.1)
10r, = 10r,r — Fy + Fyr — For?, (G.2)
Hy = —3F, (G.3)
AH, = —3(5F, — 2Fyr), (G.4)
AHy = —3(6Fy — Fir), (G.5)

10Fyy = —(FiyFy — 40Fyy — 16F5, Fy + 20Fyy,1r + 40F,r,

+ 14 Fy, For + 20J4, — 2047 + 14r, Fy — 407, Jy), (G.6)
12Fy, = 12Fy,r — 3F\Fy + 6Fyr + 4J5 — 16,7, (G.7)

60F, = 60Fy,r — 36 FnFy — 15F7 + 661 For — 36 Fyr? + 40y

— 8037 + 80J477, (G.8)

60Fy, = 60Fy,r — 51F,Fy + 66Fy Fyr + 36 F2r — T2F, Fyr® + 36 F2r?

+ 60.J; — 80J57 4 80J5r% — 80.J472, (G.9)
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20.Jy = OF? — 18FyFir 4+ 18 Fy For? + 9F2r? — 18F, Fyr® + 9F3r*

+ 2017 — 20157 4 20J51% — 20J47%, (G.10)

120.J3,,, = 216 Fy, Fy, + 54Fy, F — 48F),Jy + 360 Fy,, 1, + 90y, I

— 180 Fyyy For — 432F5, r + 324Fy, 1, Fy + 189Fy, F1 Fy — 486 Fy, Fyr

— 192Fy, J3 + 864 Fy, Jyr — 60J3, Fy + 72040y + 18040 Fy — 240.J 4,7

— 1200.J4y7, + 60J 4, For + 720 K4, — T20Kg,r — 5040K7,7 + 5040 K 7,1
+ 367, F — 4321, FyJy — 21607, K¢ + 151207, K7r + 504, K7 + 36 F, Fy
— 102, FyJ, — 504 F K71 — T2F)r — ASF2 J5 + 396 F2 J4r + 504F, Kqor?

+ 136.J5.J, — 544037, (G.11)
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240J4yy = —(36F1y Foy, + 162Fy, Fy Fy — T2F, Jy, + 36 F1, F5

— 168Fy, FyJy — T2F 1, K¢ — 168F,, Kor — T2Fy,, Fo,r + 144 Fy, 1, Fl

+ 54Fyy, F1 Fy — 108Fyy, Fyr — T2Fyy,J5 + 288Fyy, Jur + 432F5 1,

+ 1085 Fy — 540F;, Fyr — 144Fy, Js, + 528 Fay Jyp + 192Fy, Jyyr

+ 324Fy, 1, Fy — 1008 Fy,ry, Jy + 162Fy, F1 Fy — 132Fy, Fy Jy — 396 Fo, Fyr
— 180Fy, FyJs + 1320Fy, FoJyr + 144Fs, Ker — 336 Fo, K71° — 365, Fy

+ 176J3y Jy + 120J 1y Fy + 1324, F§ — 4324505 — 24047 — 960147,
— 1204y, For — 768 J 4,7y Fo — 138.J4, F1 Fy + 288.J4, Fiyr + 18414, J3

— 1008 Jy, Jur + 960K,y + 240K, Fy — 960Ks,, 1 — 3840 K5, 7,

— 240K, For — 1920 K741 — 2400K7,, + 2880K7,1, — 600K, F}

— 480 K7, Foyr + 4320 K7,,7? + 24000 K71, + 432 K7, Fy + 168 K7, Fyr

+ 912 K7, For® + 201601, K7 + 1728r, F1 K7 + 36r, Fy — 2641, F5 J,

— 12481, Fy K + 52807, Fy K7 + 1607, J; + 408 Fy Fy K7 + 150 FE K

+ 2T\ F) — 120 Fy Jy — 168 Fy Fy K + 168 F Fo Kqr — 54F9r — 36Fy J3
+ 3843 Jyr + 336 F Kgr — 1344 F5 Kor? + 160Fy J3.Jy — 640, Jr

— 400Jy K7 + 2243 K — 368 J3 K7 — 896.J, Kgr + 3872, K71

+ 672Fy, K7), (G.12)

4J4a: == 4J4y7“ — F1J4 + 2F2J47" - 4K5 + 24K67" - 84K7T2, (G13)
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60Fp,, = —(30Fy, Fy + 36Fy, Fy — 36 Fy, For — 60Fy,,r* + 24F, Fy
— 36y, B — 54Fy, For? — 40y, + 40J3,1 + 80J,,r7

— 367, [y Fy + 367, Fyr + 407, J3 — 801, Jur + 6 Fy Fy — 6F,J,
+9FPFy — 18F Fyr — 12Fy Js + 24F Jyr — 6F571° — 10FyJo

4 22Fy Jar + 26Fy Jyr? — 60K, + 180K5r — 180K — 420K-r%),  (G.14)

20]23; = QOJQyT + 20J3I7” - 2OJ3yT2 - 14F0<]3 + 28FOJ4T’ - 5F1J2
+ 19F, Jyr — 28 Fy Jyr? 4+ 10Fy Jor — 24F, J5r? + 28 Fy Jyr®

— 120K3 + 360K,r — 640 K51% 4+ 840 K¢r® — 840 K71?, (G.15)

601, = 60J1,1 — 40J3,7% + 40J3,7° — 42FyJy + 42Fy J3r — T0Fy Jyr®
— 15F,Jy + 42F, Jor — 52F, Jsr? 4+ 70, Jyr® + 30Fy Jyr
— 42Fy Jor? 4+ 62F, J3r® — T0F, Jyr* — 600K, + 1080 K31 — 1380 K412

+ 1700 K57r* — 2100Kgr* 4 2100 K77, (G.16)

80K, = 3F3F, — 6F; For — 6 FyFir + 18Fy By For? — 12, Fyr® — 8FyJ,
+ 16 Fy Jor — 24FyJsr? + 32F,Jur° + 3FPr? — 12F Fyr® + 15F, Fir?

+ 8F Jir — 16F, Jor? 4 24F) Jsr® — 32F  Jur* — 6Fpr® — 8FyJr?

+ 16 Fy Jor® — 24Fy Jor* + 32F, Jyr® + 160 Kor — 240K3r% + 320K,r°

— 400K5r* + 480K¢r° — 560 K7, (G.17)

400Ky = —(6Fy — 33Fy Fyr + ASE; For® + A8Fy Fir? — 126 Fy Fy Fyr®

+ T8Fy Fyr* + 40Fy Jir — 80Fy Jor? 4+ 120Fy Jsr® — 160Fy Jyrt — 21 F}r?

+ T8 Fyr* — 93F Fyr® — 40F, Jir? + 80F, Jor® — 120F, Jar* + 160F, Jyr®
+ 36 F3r0 + 40Fy 0113 — 80FyJor* + 120Fy Jsr® — 160 F5.J4r°% — 400 Kyr?

+ 800K 3% — 1200K,47* + 1600K57r° — 2000K¢r°® 4 2400 K777). (G.18)



83

G.2 Equations for Theorem 3.6 in Section 3.3.1

P = TPy, <G19)
%ﬂﬁz = T@ywy - A7 (GZO)
10Apy, = ¢, (44, — F3A), (G.21)

5000y Vyyyy A° = 3000, 0, A2 (44, — FyA) + 50,0, A(—120 Fy, A?
— 144AY + 120, Fo A — 39FF A* 4 80.J,A%) + 1y, (50003 A?

— 150Fy,, A® 4 360F5, Ay A? — 165 F, F3A® + 1004y A 4 96A

— 202N + 1080 FFA? — 240A, JyA? — 24FFA® 4 60F5.J,A%)

— 500p) BA® + 500K, A%, (G.22)

«

= —, (G.23)
8@2

3 = (1600A¢%) ! [A(—144F22y — T2Fy, F2 + 3525, Jy + 1604,
+ 80J4y, Fy + 640K, — 1600K7, — 2880K7,r + 800, — 44807, K7
— 400F, K7 — 9Fy) + 88F5 J, + 160, Kg — 320, Kqr — 144.J3)

_ 120Ay@}, (G.24)
where © is the following expression

O = (Fy —4Jy)Fy — 8(Kg — TK7r) — 8Juy + 6Fo Fy + 4Fy,,. (G.25)



G.3 Equations for Lemma 3.7 in Section 3.3.2

Fy = = 2(p,A) " (50, A — 20, A,),

By =4(p,A) [(Az + Ayr —5r,A)p, — 5goyyrA} :

Fy == 2(p,8) 7" (514 = 28,)7 + 5r,A) g, + 5y, 1A

Hy =6(0, )7 (5oyy A — 20, ),

Hy =—3(p,A) " [(5Aw + 3A,r — 25r,A)p, — 20g0yyrA],

Hy =3(p,A)7! [(5(3@ +2r,m)A — (5BA, — Ayr)r)p, + 1Og0yyr2A} :
Jy=— (gOZA)_l(lOcpyyycpyA — 45cp§yA + 3090y, 0y Ay — 6¢§Ayy),

Y

Js =220) 7 [B((2(Awy + Ay — 51,8) = 57y A}
—5((Ag + 3Ayr — 4ry,A)p, — 60,7 A)pyy) — 200y, 0y rA |,

Jy =6(p2A) ! [(Am + Ayyr® + 40,1 — 5(2A, + 3A,r — 5r,A)r,
— 107y, rA — 5r, A, — 5rxyA)goz —5(((3(A; + Ayr) — 10r,A)r

- QTxA)SOy - 9¢ny2A)9@yy - 1090yyy90y7’2A]7

Ji = —2(p2A)" [((5(3(3% 4 A7) — 1y A)ry — 6(Agyr + Auy)

84

(G.26)

(G.27)

(G.28)

(G.29)

(G.30)

(G.31)

(G.32)

(G.33)

(G.34)

+ 207y, rA)r 4+ 5(3(Ag + Ayr) — 167, A)ry + 5rae A + 207,17 A) )

+ 15(((3A, + Ayr — 8ryA)r — 4r, A)p, — G@yyrzA)goyyr

+ 2090yyy90yT3A )

(G.35)



85

Jo=— (gpzA)’l [((2((5ryy7“A — 300 )T + 5rap A + 5rgyrA)
— 5(TryA — 6A,)ryr)r — 5(2(7ry,A — 3A,)r + QTxA)rx)gpi

= 5(3(2((2ryA — Ag)r + 21, A)p, + 3@ny2A)90yy

- 2<pyyyg0yr2A)r2} : (G.36)

K7 =— (SOSIA)A [¢yyyy¢§¢y — 100yyy Pyypyty + 490yyy§0§wyy + 15902y¢y

- 1590;2/y‘10ywyy + 690yy9032/¢yyy - @Zﬁw - 902wa - Sozwyyyy ) (G'37)

Ks :(SOZA)_l [3(5((7¢ywyyr —6Ay)py — T(yibyr — A)pyy)pyy
— 2(Toyhyyyr — 5Ayy)§0§)¢yy + (79035,ﬁ¢7’ + 79031%6”" - (pi’/aA
+ Toyyyyyr — 4Ayyy)902 + 2(35§0yy90y1/}yr — 30y, A — 14805%117"

+ 100y Ay ) @yyy 0y — (Toythyr — 5A)90yyyy90;2/]7 (G.38)

K5 =— (902A)71 (2(3(Auyy + 3Ayyyr — 51y Ay — 51y Ay) — 51y A)

- 3(7@36107“ + 7@32%047“ — QgpzaA + 7L/Jyyyy7“)s0y7“)902
—3(2(5(Agy + 5Ayyr — 4y Ay — 21y A) — 2100y, %) 07
— 15((A; + 11A,r — 3r,A — 7gpywyyr2)<py

+ T(pythyr — 20)0yy) 0y )Py — 2((5(Ag + 11A,r — 31, A)
— 4200y %) 0y + 15(Tpy by — 12A) 0y ) Qyyypy

+ 3(Teytyr — 10A) ey, (G.39)
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Ky=—(£A)" [(2(45ryy7“yA — 107y, Ay — 557y, Ay + 50024,
— 20r, Ayy — 507, Ay + T1A 1 + 2840y + 174,12
— 207y, T A — Bry Ay, — 107,y Ay — 51y A)
- 5(7@351&7’ -+ 7@021%047“ - 3g0§ozA + 7¢yyyyr)<pyr2)g0§
+ 15((3((5(Az 4+ 5A,r) — 14r,A)r — 1,A) — 350,10, )@,
+ 35(pythyr — 3A)<,0yy7"2)<p§y — 10(Ags + 31A,,r° + 13A,,r
—8(A, + 6A,r — 2ryA)r, — 26r,,rA — 4r, A, — 4r,, A
— 21<py¢yyyr3)goyy<p§ —10(((5(Ay + 5A,r) — 1dr,A)r — r, A
— 14pythyyr®) oy + 5(To by — 18A)0y, 1)y 0y

+ 5(Tpyhyr — 15A)g0yyyygpzr2] ; (G.40)

Ky =— ()A) " ((13Agmy + 352y 1)1 + Agag 4 31A4y,17
—5(3A,, + 264,17 + 23A,,7 — (154, + 49A,r — 251, A)r, )1,
— 5(13A, + 324,71 — 50, A)ry,r — 657,72 A — 5(3A,, + 5A,,r
— 167ry Ay — Tryy A)ry — 5rpp Ay — 51y A
—5(3A; + 11A,r — 157, A)ryy, — 30ray,rA — 5(70, Bvbr + Tginb,ar
— AQ2 A + Ty )0y )0 — 5(2((2(2000 + 1Ty r? + 114,,7)
— (29A, + 75A 1 — 5lryA)ry — 451y, rA)r — (3A, + 13A,r — 13r,A)r,
— Tag A = 11y r A — 210,00y, )02 — 3((6((5(Ay + 3A,r) — 131, A)r
= 27, ) = 3503y, 17 )y + 35(pythyr — 4A) @y 1)y Ty,
—10(2((5(As + 3A,7) — 13r,A)r — 21, A — T by, ),

5Tty — 248)0,7%) Py pyr + 5Ty — 208) Pyl ], (G.41)
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Ky =— (@2 A) 7 ((3((58may + TAyyyt)r + Aoy + TAyy1?)
— (3(13A,, + 28A,,7 + 39A,,7) + (204r,A — 161A, — 217TA 7)1, )1,
— (T9A, + 116A,r — 26471, A)ry,r — 541,71 A)r
— (3(20u0 + TAr* + 11A,,r) + (1711, A — 64A, — 140A,7)r,
— 721y rA — 187, A1y — (40, + 11Ar — 2171y A)ryy — 127, rA
— Tawe A — ((3TA, + 53A,r — 1507, A)r — 331, A)ryy — 3375, 72 A
= 3(T, Byr + Tpyibyar — Sppal + Ty, r)e )y,
—3(2(5((2A 40 + TA,y1? 4+ 64,7 — (13A, + 19A 7 — 207,A)r,
— 13r,,rA)r? — ((3A, + 5A,r — 111, A)r — 1, A)ry, — r4yr A
— Orgy 1 A) — 2101y, 1)y — 15((2((5(As + 2A,7) — 12r,A)r
= 3r0A) = Toyyyr®) oy + T(ytbyr — 50) 0y ) 7)oy
—2(2(5((5(A, 4+ 2A,7) — 127, A)r — 3r,A) — 210,10, 1)@,

+ 15(T, by — 30A) 0y 1) Pyyy 0y + 3(Toyth,r — 25A)g0yyyyg0§r4] ,

(G.42)



K

- (‘P;A)il [((7(Amy + AynyQ)r + 300 + 7Awyy7"2

— (33045 + 284,17 + 4977 + 2(59r, A — 56A, — 42A,1)r,)r,

— (43A, + 424,17 — 1287, A) 1y, — 231, 7 A)r?

— (128, + TAyr? + 21A,,r + 2(86r,A — 49A, — 35A,7)r,
— 497, rA)r + (851, A — 15A, — 21Ar)ry)ry

— ((8A, + 7A,r — 32r,A)r — 107, A) 70y — Maay 7 A — 2700 A
— ((29A, + 21A,r — 957, A)r — 467, A)rpyr — 1674, 7° A

— (T, Bur + Tospyar — 6970 + Ty, r)oyr°) o,

— (2(5((40 s + TA,r? + TALr — (234, + 21A,r — 31r,A)r,
— 17ryy A — (94, + TA,r — 271, A)r — 61, M), — 3ry,rA
— 1074y 7?A) = 2101y, r° )0 — 15((3((5A, + TA,r — 11, A)r
— 41, A) = Ty 1)y + T(oythyr — 6A) 0y 1?) 0y 1) yyr

—2((5((5A; + TAyr — 11r,A)r — 4r, A) — 14g0y¢yy7‘3)g0y

38

+ 5(Tpyyr — 36A) 0y )Py + (T, r — SOA)goyyyygoer’] , (G.43)
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Ko =(&3) ™ [((((2rawy + 2yt )7 + Tz + 3773 A
+3(3A, + 24,1 — 8r,A)ry,m*)r — (107, + 11r,r)A
— (4A; + Ayr)r)res — (131, + 207, 1) A — (TA, + 3A,7r)r)re,r
+ (8% + oytbya + Yy )1 — ual)yr® + (90, + 44y,
+ TAzyr — 2(13A, + 64,1 — 127, A)r, )y r? — ((Apay + Ayyyr?)r
+ DNpze + Dgyyr?)r?)r — ((2((17A, 4 5A,r — 23ryA)ry + 6ryyrA)
— (6440 + Ayyr? + 30,,r))r* — (5(3r, + 8ryr)A
— 3(hA, + Ayr)r)rm)rx)gpz — ((2((5(74 + 3ryyr® + 2141 A
+ 30y Wyt + 5(5A, + 30,1 — 61, A)ryr — 5(Aus + Ayyr? + Ayyr)r)r
— 5((3ry + Tryr) A — (30, + Ayr)r)ra) ¢l — 15((3(ry + 2ryr) A
+ oy = 3(Da + Ayr)r)ey — (ythyr — TA) Py )pyyr*) Py

+ (2((5(rs + QTyT)A + Q@y@byyrg —5(A; + AyT)T)SOy

- 5(90y¢y7" - 6A)90yyr2)90yyy + (pytyr — 5A>§0yyyy¢yr2)¢yr2)r2 - (G.44)



APPENDIX H

MORE CALCULATIONS IN SECTION 3.2.6

H.1 Obtaining the Coefficients B;,C; and D,

Since the coefficients with the derivative y”® have to be zero, one obtains
f2y//y//y// = O, that iS

fo = fao + farz + fae2?

where fo; = foi(z,y,9'), (i = 0,1,2). Because the coefficients with the derivative

y""? have to depend on z and y, then

(gly — faoq® + 2902) —0
g1 y'

Le., f22 = f22(x>y)7 so that

By = (g1y — [2297 + 2902)/ 91

Because of the necessary form (3.9), the coefficient related to the product of 33"

has to be zero, so that fo; has the form

fo1 = faro + forr¥ + fory'?,

where fo1; = fo1:(x,y), (i =0, 1,2). Thus, one obtains that
Cy = (5902y + Gryy — f21291 — 2f2290291)/ 91,

Ci = 3901y + 49022 + 2912y — f21191 — 2f2290191)/ 01,

Co = (9ooy + 29012 + G122 — f21091 — 2f2290091)/ 1.
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Since the coefficients with the derivative 3> have to be zero, one obtains
fgoy/y/y/y/y/ = 0, that is
foo = faoo + fary' + fa02y”® + faosy® + faoat/,

where foo; = faoi(x,y), (i = 0,1,...,4). Hence, the coefficients D;, (i = 0,1, ...,4)
in equations (3.35)-(3.39) are in the following forms

Dy = (gozyy — f20a — [212902 — f22932)/91,

D; = (901yy + 29023:3/ — fo03 — f211902 — fo12901 — 2f22901902)/91,

Dy, = (QOOyy + 29012y + Y0200 — Joo2 — f210902 — f211901 — f212900

—2f22900902 — f229(2)1)/91,
D, = (290013,, + go1zz — f201 — f210901 — f211900 — 2f22900901)/91>

Dy = (goom — f200 — f210900 — f22980)/91-

H.2 Obtaining the Form of Functions f; and g

One can rewrite equations (3.63) and (3.64) in the following forms

Go1y91 — 9191y 2(902:91 — Go2912)

93 g3

)

or

Y

go1 2002
=)y =(—)
g1 g1

or
(2)‘x>y = (2)‘y)xa

where A = A(z,y). That is
go1 = 291z, Jo2 = 91)\y-
Since go2 = g1y, then g1, = g1\,. The general solution of this equation is

g = 6)\+k(:p) '



One can use any particular solution k(x) = 0, so that

g1 = et

Therefore equation (3.66) becomes
fao2 = €Af210y-
Thus equations (3.65), (3.67) and (3.68) are written in the following form
Googy = GooyAy + €210y + 2Xp A + Avay),

foory = far Ay + 2€ for0uy,

Joooyy = faooyAy — 6/\(f210f210y + 2 f2100y Az + f21022y + for0y ez

+f210y>\i) - f210yy900 - 2f210yg00y + f210y)\y900 + )\:chfQOl-

Thus, functions f; and g have the following form

fo = farog+ ffkleoyy,2 + f201¥" + fa00,

g = 2NY + MY+ ") + goo-
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One solution of equation (H.1) is goo, = no(z)e?, then equation (H.1) becomes

e’\(fﬂoy + 22Xy Az + Agay) = 0.
Since e* = g; # 0, then fo10, + 2AsyAe + Apwy = 0 i€,
fa10 = =Aua = AL + M ().
One solution of equation (H.2) is fao; = na(x)e?, so that equation (H.2) is
2eM(—2Xpy ez — Awzay — 2Aazye) = 0.

One arrives at

(H.4)
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One solution of equation (H.3) is faoo = goona + faoox(z, ), so that equation (H.3)

becomes
e/\[n4y(771 — 213 — 204) + AayM2] — foookyy + f200kyAy = 0. (H.5)
One solution of equation (H.5) is fagory, = 15(x)e*. Hence equation (H.5) becomes
Awyl2 + Nay(m — 2m3 — 2n4) = 0. (H.6)

Considering case 7o = 0 and 7, = 0 (i.e., 74 = 0), thus equation (H.4) becomes

Aoz + A2 =13 (H.7)

Let
er = H,. (H.8)
So that faor, = Hyns(z) and goo, = Hyno(z). The general solution of these two

equations are fooor = Hns(z) + ne(x) and gog = Hmno(z) + n7(z), respectively.

Differentiating equation (H.8) with respect to x, one arrives at
AoHy = Hyy. (H.9)
Substituting equation (H.9) into equation (H.7), one gets
i, H,,\’
(). ()

Differentiating equation (H.8) with respect to y, one obtains

NH, = Hy,.
Therefore, fo(z,y,y, 2) and g(z,y,vy’,y") become
fo=2ms+nsH +ng, g =y"Hy +y?Hy, + 2y Hyy +noH + 1y,

where ng = 11 — n3. One can change the coefficients 7;(z) to p;(z) as in section

3.2.6. Hence,

fo=zpo+pusH + ps, g=y"Hy+y*Hy, +2y'Hyy + 1 H + pug.



APPENDIX I
EQUATIONS FOR LEMMA 4.5 IN

SECTION 4.3

For proving theorems we need the relations between ¢(z,y,p), ¥(z,y,p),

g(x,y,p) and the coefficients of equation (4.6). These relations are presented here.

Ay == (92 + 9,0 — ) p) ™" [(391)% = 29y + 3950 = 39pyP — 39pz )Py

+ 3(9z + gyP — Gp@)Ppp — wygp] , (L1)

A1 == (92 + gy — gpa)ipp) " [(3(3930% — Gy’ — Guz — 20uyD + Gppa”)
+ (9app - a)gy + 3(ax + ayp — 2apa)gp)90p - 2((2(9x + gyp) - gpa)@y

= 3(g0 + 9up — Gp0)00)|. (12)

Ao =((g2 + Gyp — gpa)Spp)_l [(3((93:95 + gyyp2 + 2G0yD — GpyPa — Gpaa@
+ (az + ayp + apa)gp)a — (2(az + ayp) + aya)g.)
— (6ay]02 + a® + 6a,p + 3a,pa)gy)ep

+ ((4(g2 + gyp) — 39pa) 0y — 3(ge + GyP — Gpa)Pppa)al, (L.3)

Bs = — ((92 + gyp — gpa)%g))_l [((Ozg + ﬂ@”@; — Poppdp)Pp

+ 3¢§p9p — 3PppPogpp + 90;2;9ppp] ) (1.4)
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By =~ (9 + gyp — gp@‘ﬁi)il 3((29pap — Gy — 39pp@ — 29pyP — 20pz ) Pp
— 20y9p)Ppp + (3(Ppydp + Pygpp) + 5(ag + ﬁ¢)@;a)@p
— 9z + gyp + 49,0) (Ppppipp — 3¢5,)

- (3(29191:% + 9ppp — GppyP — Gppz) — 2GpppQ — 3gpy)90;2; 5 (L5)

By =((g2 + gyp — gpa)%%)il (3((2appa — 3ag2o + apyp + ape) gy
+ (appp + 2ap) gy + Gapp + (ag + ayp + 3a,0)Gpp — 29ppyPa — 29pp00)
- gpppa2 + 6(2app — a)gpy + 1291)58%)%2;
+ 33994 — 9y — 290 — 29pyP — 29p2) Py
— (10(ag + BIP)SOZGQ + 39059;7) —3(((2app — 3a)g, — gyyp2 + 2g.ay
— Gaw — 2GuyP + (g + ayp + 5a,a)gp — 3gppa” — 6gpypa — 6gp.a)p,
= 2(9x + gyp + 39pa)py + 2(2(92 + 9yP) + 39p0) Lpp@) Prp
+2(2(gx + 9yp) + 39p0)Ppppp@ = 3((Gy + GyyD + Gpyyl” + Gpa

+ Qgpwyp)@p + (gz + gyp + 3gpa)90py)90p] ) (I~6)



By =((ga + g4p — gpa) )~ [(6gmap — GyyuD” — 3YawyP — Yaze — 3YayyP

2

— 3GppyPa” = 3Gppaa” — 6pyyp’a — 6Gprea — 12gpz,pa

+ 6(app — a)gyyp + 6(20pp — a)gay + 3(ae + ayp + apa)gppa

+ 6(a, + ayp + 3a,a)gpe + 3(2a,p* — a® + 2a,p + 6a,pa) gy,

+ 3(2a,0 — 3@2 + Qpyp + Apz) g — 3(3(app — a)a, — (az + ayp)
— 2apppa — apyp2 — QpeP)gy + (ayyp2 — QyQ + Qgy + 205yp — 8a123a
+ da,,a® + day,pa + daya — 10(a, + ayp)ap)gp)gpfj

+3(((3(gaw + Gyup® + 29uyp) + Gopa” + 6gpypa + 6gpea

— 2(ay + ayp + 2a,0)gp)a — (ay + ayp + Saya)gy

— (ayp® — 3a® + azp + 5a,pa) g, )y, + 6(g: + gy + gp0) Py @) Py
+ (3(3620p — GyyP” = Guw — 202yD — Gpp@” — 4gpypa — 4gpea

+ (3app — 2a)g,) + 2(2(asz + ayp) + 7a,a)gy) eppy

— ((9(g + gyp + 9pa) Ppy + 10(arg + BY)0ya?) ppa
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+3(g2 + gyp + 2050)92 — 2(3(92 + 9,) + 20,0) ey — 393,)0%) |, (L7)



By == (90 + 9,0 = 9p0) D)™ | ((A(3uzy + GuP )P + Guva + 302°)
+ 3Gpyy P’ + 3Gpan + 6gpeypa — 6(ay + ayp + apa)(gpe + Gpyp))a
— 3(ay + ayp + 3a,0)gur — 3(a,p® — a® + ap + 3a,pa)g,,p
— 3(2a,p* — a® + 2a,p + 6a,pa) gy — (Ayyp* — aya + auy + 2a4,p
— 8a§a + da,ya® + day,pa + dap.a — 10(a, + ayp)ay) g,
— ((ayyp” + 2a,a)p + 3a,a + agep + 2a4,p” — 8azpa + 4a,,pa’
+ day,p*a + daypa — (10a,p® — 3a® + 10a,p)a,) g, + ((3a,p* + a*)a,

3 2
— Gpypa

— aypra + 3(a, + 2ayp)am — Upa@ — 20zypa + 2a§a2 — AppQ
— ape0® + 4(ay + ayp)aya)gp) s — (3(((3(gax + Gyyp” + 292yD)

+ 2gpypa + 29,0 — (ay + ayp + apa)gy)a — 2(ay, + ayp + 2a,a) g,

— (24,0 — @ + 2a.p + daypa) g, )y + 2(3(gx + gyp) + gpa)Pya) ppa

— ((2(3(gaz + Gyyd® + 29uyP + Gpypa + gpza)a — (2(a, + a,p) + Ta,a)g.)
— (4(ay + a,p) + 5aya)gya — (da,p® — 3a® + 4a,p + 14a,pa)g,) ey

+ (3(2(g2 + gyp) + 9pa) 5 + 5(g + Bi)ppa’

+ 3(3(gx + gyp) + gpa)Sopy(Ppa

— (4(ge + gyp) + 9,0) (Gpmpey — 303, )a%)a) |, (1.8)
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By =((92 + gyp — gpa)‘P?D)il ((ayyp2 — Ay + Ay + 205yD
+ (2(az + ayp) + aya)a, + appa* + appa + apa)p,
— ((2(az + ayp) + aya) @y + yyyp®) + 3(az + ayp + a,a)pppa
+ Ppppa” — 30y a*) (g + Gyp)pa + 3((0pap — @y + Pppa — Ppyp)a
— ((ppay = Pyup + Ppy@)p — 0p02)) (Gaw + GyyD* + 22yD) 0
— 2(ga + gyp)pyyp”) — (Praga’ + ©3B1a° + 3000ayyp’a” + Polara’
+ 390;239zxypa2 + @ZgyyypchQ - SOP‘Pyyygxpga - ‘Pp@yyygy?#a
— 60p Py eyl @ — 30pPyyGaaD’ @ — 3PpPuyGyyD" @ + PyyyPygap’
+ Wyyy@ygyp5) — 6(2((ppap — @y + Pppa — @pyp)a + (az — ayp)iy
+ 2000 — @) (G0 + 9yP) — (Gw + GuuD” + 20240)2p) (V1
— yyp + Epya)p — (3((0pap — @y + Pppa — ppyp)a
— ((ppay = yyp + Ppya)p — 0pa2))* + (12(0pay — Pyup + opya)’

— (Lyyyipy — 305,)0°)0°) (9= + gyp) |- (1.9)



APPENDIX J

MORE CALCULATIONS IN SECTION 4.6

J.1 Obtaining the Form of Functions f; and g in Section

4.6.1

Considering equation cs,, = 0 of equations (4.22), one obtains that the

general solution of this equation is
cs = fy+k, (J.1)
where f = f(z,p) and k = k(z, p) are arbitrary functions. So that
Csue = Juay + Ko (J.2)

From equations (4.22) one has ¢5,, = 0, then cs,,, = 0. Differentiating equation
(J.2) with respect to y yields fm = 0, moreover one finds k,, = 0. Therefore, the
forms of f and k are

f:l1$+l0, ];:l%ll"i‘lgo,
where I; = [;(p), and k; = k;(p), (i = 0,1) are arbitrary functions. Differentiating
equation (J.1) with respect to y, one gets
Csy = ]E

Substituting into ¢s,, = 0, one obtains /; = 0. That is f =ly. Hence, the general
form of cx is

Cr = loy + ];?11‘ + ];?0.
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From equations (4.22), one has ¢; = ¢; = ¢3 = ¢4 = 0 and ¢, = ¢y, = 0 (i€,

c6 = Cgp). S0 that f5 has the following form
fo = (ko + ki + loy)y” + co.

One can rewrite f> in the form of equations (4.23).

By setting a = 0, hg = 0, hy, = 0, function A in this case has the form

20

Y

where hy = hy(p). One can rewrite it in the form of equations (4.23).

J.2 Obtaining the Form of Functions f; and ¢ in Section

4.6.2

Because of hy, = 0, that is hy is functions of y and p. By consideration of

the second equation of equations (4.25), one obtains that

hl = Ep4a

where k = k(y) is arbitrary function. Substituting into the third equation of

equations (4.25), one finds that

1

R
(ko + k1y)®

where ko and k; are arbitrary constants. One can choose any particular solution

ko =0, thus k = (151174)5' So that equations (4.26) become

(C6p]7f?y5 - 6p)p2 Coy = — (Cﬁpp + 306)‘ (J3)

k26 ’ Yy

Coxr =
By using Cauchy method the second equation of equations (J.3) gives

Cg =

lek’w
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where f = f(z, g) is arbitrary function. Substituting ¢ into the first equation of

equations (J.3), one arrives at equation

—fot 2 = =0, (J.4)

where fo = fo(2 — 2). Thus ¢s becomes

3p2 E

Ce — ==~ .
Ky 3

Setting Sy = c5, + pcsy, one arrives at equation
ySky —|—pSkp + 45, = 0.

Solving by Cauchy method, one obtains

w

Sk =
y4

(J.5)

where w = w(z, £) is arbitrary function. Hence,

w

Csx = — — DCsy.
4 Yy
Y

This solves equation (4.28) as well. Substituting the value of ¢5, into equation

(4.27), one obtains
9 _
w, — 22w, = 2(2w — l;;_j) + fo. (J.6)
1

By using Cauchy method, the general solution of equation (J.6) is
32 fo m
W==———+4—
Koz 2%
where m = m(% — x) is arbitrary function. One can rewrite w in the following

form

3p foy  my?
W= == ——+—,
kly p p
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where m = m(% — ) is arbitrary function. Therefore Sy, of equation (J.5) becomes

(fokPy? — 3p*)p — kimy®

_ 0.
kYp?y°

Cs¢ + PCsy +

The general solution of this equation is

_ 3 L fg _m
4Pyt 292 PPy

+d,

Cr =

where d = d(p, % — x) is arbitrary function. This solution solves equations (4.27)-

(4.29) as well with

A A
d= 27+ 0
p p
where A\; = Ay(% — ), @ = (1,2) are arbitrary functions. Hence, functions h and
f2 become
4
o P
kiny/&
fo | 3p° fo 3 moAL A
fo= et G s~ A o T e T )
y* Ry y’p? o Akyyt o oypt o p? o p

One can rewrite these equations as in the form of equations (4.30).
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