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SUBMERGED CONDITION USING PHYSICAL MODELS
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ABSTRACT : Plane failures of scaled-down rock slope models have been simulated under real gravitational force and
pseudo-static acceleration. The simulations involve two-dimensional plane sliding of rock slopes formed by cubical
(4x4x4 cm) and rectangular (4x4x8 cm and 4x4x12 cm) blocks of sandstone, under various slope face angles with the
maximum slope height up to 1 m. The sandstone blocks prepared by saw-cutting are arranged to simulate rock slopes
with two mutually perpendicular joint sets. Horizontal pseudo-static acceleration of up to 0.225 g with amplitudes
between 24 to 64 mm is applied. The observed sliding angles under dynamic loading are considerably lower than those
calculated by the deterministic method. The discrepancy becomes larger for slope models formed by shorter sandstone
blocks and under a higher acceleration. The results from the physical model simulations under dry and submerged
conditions agree well with those obtained from finite difference analyses using FLAC code. The findings imply that for
the smooth, open and low-cohesion joints as simulated here, assessment of rock slope stability under static and dynamic
loading by using the deterministic method alone may not be conservative, particularly for the slope mass comprising

joints with small spacing.
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1. INTRODUCTION
Physical models or scaled-down models have long been
used to simulate the failure behavior of rock slopes in the
laboratory. They have been used as teaching and
research tools to reveal the two-dimensional failure
process of rock slopes under various geological
characteristics. They are sometimes employed to gain an
understanding of a unique failure process under site-
specific conditions. Perhaps the most popular and widely
used model is Goodman’s friction table [1, 2] discuss the
base friction principle that is used widely to reproduce
the effects of gravity in two dimensional physical models
of excavations in rock. They develop mathematical
principles upon which the analogy between gravity and
base friction can be examined. The friction table has
later evolved into several versions (e.g. [3-6]). The slope
modeling with friction table however poses some
disadvantages. The driving force inducing sliding or
failure is not a true gravitational force. Instead it largely
depends on the friction and velocity of the moving belt,
and hence additional calibration or correction is required
to reveal the actual slope behavior. A stick-slip behavior
between the belt and testing materials is a common
problem particularly under low speeds, making the
driving force by belt moving unrealistic. Since the
friction table is horizontal, or gently inclined, assessment
of the true effect of water can not be made.

The objective of this research is to study rock slope
failure under static and dynamic loads by means of

laboratory simulation of scaled-down models. The
observed results are compared with those calculated by
deterministic methods and by numerical analyses. A
vertical test platform has been used to host the slope
models formed by cubical and prismatic blocks of Phu
Phan sandstone to simulate two-dimensional plane
sliding failure. ~ The failure is induced by true
gravitational force and horizontal pseudo-static
acceleration of up to 0.225 g. The effect of water-
submerging is investigated. Comparisons are made of
the results from physical model simulations and from
numerical analysis.

2. TEST PLATFORM

The test platform used in this research comprises two
main components: a 2.2x2.2 m vertical test frame
supported by a movable stand [7]. The frame is hinged
through steel rods in the middle to the stand allowing
frame rotation from horizontal position during arranging
and loading block samples to vertical position for testing
under true gravitational force (Figure 1). When the frame
is in horizontal position, the aluminum plate becomes a
flat bed supporting the rock blocks during loading. The
clear and removable acrylic sheet is installed before
rotating the frame to the upright position to prevent the
block samples from tipping over. It also allows visual
inspection and monitoring of slope movement during the
test. The test frame can accommodate 4 cm thick rock
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Figure 1 Schematic drawing of test platform used for
physical model simulation.

blocks arranged to a maximum height of up to 1.5 m to
simulate two-dimensional jointed rock slopes. Steel
grooved rollers mounted underneath the stand are used
for testing under dynamic loading. The rollers will be
placed on a set of steel rails equipped with a high torque
motor, gear system and crank arm to induce a cyclic
motion to the entire test platform. The frequency and
amplitude of the horizontal pseudo-static acceleration can
be controlled by adjusting the rotational diameter of the
flywheel and speed of the motor.

3. ROCK SAMPLE

Phu Phan sandstone has been selected for use as rock
sample here primarily because it has highly uniform
texture, density and strength. It is classified as fine-
grained quartz sandstone with 72% Quartz (0.2-0.8 mm),
20% feldspar (0.1-0.8 mm), 3% mica (0.1-0.3 mm), 3%
rock fragments (0.5-2mm), and 2% others (0.5-1 mm).
The average density is 2.27 g/cc. To form slope models
with two mutually perpendicular joint sets, cubical
(4x4x4 cm) and rectangular (4x4x8 cm and 4x4x12 cm)
shaped sandstone blocks have been prepared by using a
saw-cutting machine. The cubical blocks are used to
simulate joint sets with equal spacing, while the
rectangular blocks simulate joint sets with different
spacing. The friction angle and cohesion of the saw-
cutting surfaces of the Phu Phan sandstone determined by
tilt testing are 26 degrees and 0.053 kPa [7]. The
simulated joints have their strike parallel to the slope
face, and hence represent a worst case scenario for the
stability condition.

4. SLOPE MODELS TESTED UNDER STATIC

CONDITION
Over one hundred plane sliding failures have been
simulated under dry and submerged conditions with the
slope heights varying from 16 to 93 cm and slope face
angles from 40 to 75 degrees. For submerged condition,
the height of the water in the test models ranges from 7 to
60 cm. Each set of slope geometies is formed by
sandstone blocks with the same dimension, and is
simulated at least 3 times to ensure the repeatability of
the results. Video records are taken during the test.
Table 1 summarizes the test parameters and results for
modeling under dry and submerged conditions.
Pangpetch and Fuenkajorn [7] give solutions to calculate
the slope height and sliding plane angle at failure. The
video recorder allows examining the failure process of
the slope models after the test. The failure usually
initiates from the slope toe and progresses upward to the
crest. A combination of plane sliding near the slope toe
and toppling failure near the slope crest is often found for
slope models formed by 4x4 cm blocks.

Figure 2 compares the simulation results by plotting
the slope height at failure as a function of sliding plane
angle. Since the measured cohesion is very low and
negligible, the deterministic method simply yields the
sliding plane angle equal to the friction angle of the block
surfaces. The observed sliding plane angles tend to be
lower than the rock friction angle. The discrepancy
becomes larger for the slope models formed by shorter
sandstone blocks. The sliding plane angles (y,) also
seem to be independent of the slope height. As expected,
the observed sliding plane angles under submerged
condition are lower than those under dry condition.
However under the same slope conditions (e.g., slope
height, face angle) the difference is less than 2-3 degrees.

Table 1 Test parameters and results of slope model
simulations under dry and submerged conditions.

Block No. of H 72 Yp H,
Size Testing | (cm) |(degrees)|(degrees)| (cm)
Dry

4x4 cm 43 20-68 | 40-52 21-25 -

8x4 cm 53 16-77 | 49-75 23-27 -

12x4 cm 49 16-93 | 44-72 25-26 -
Submerged

4x4 cm 10 36-75 | 40-66 20-22 | 13-55

8x4 cm 10 20-91 | 45-71 21-23 7-60

12x4 cm 11 22-70 | 49-69 22-24 8-54

5. FINITE DIFFERENCE ANALYSIS

Finite difference analyses using FLAC_Slope code [8]
have been performed to calculate the factor of safety of
some slope models. Twelve finite difference models
have been constructed to represent the physical model
geometry. For the dry condition, the simulations use the
sliding plane angle of 25 degrees with slope heights
varying from 21 to 70 cm, and slope face angles from 51
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Figure 2 Slope height (H) as a function of sliding plane angle (y,) for block sizes of 4x4 cm (a), 8x4
cm (b) and 12x4 cm (c). Solid points represent submerged condition.

to 72 degrees. Under submerged condition the sliding
angles are taken as 20 to 23 degrees, with slope heights
varying from 52 to 58 cm, slope face angles from 48 to
68 degrees, and water level heights (H,) from 30 to 69
cm.

For all simulations the friction angle is maintained
constant at 26 degrees with cohesion equal to 0.053 kPa.
The results are compared with those observed from the
physical model tests. Figures 3 compares the shape of
the failure zone of the numerical simulation results and
the slope model observations under dry and submerged
conditions. The FLAC_Slope can well predict the shape
and extent of the failure zone with the factor of safety
close to those observed from the tested models.

Figure 4 compares the factors of safety calculated by
FLAC code and by deterministic method with those of
the physical model tests for the same slope geometry
under dry condition. The factor of safety of 1.0 is taken
to represent the condition at which failure occurs in the
slope models.  Assuming that the plane sliding
mechanism  follows the Coulomb criterion, the
deterministic method uses an equation modified from
Hoek and Bray [9] to calculate the factor of safety.

a2
FSzZ-c/{y~H~sin2~wp{aﬁ—(dbﬂ}+

where: a = cot y, — cot ;
b = cot (a - ;) + cot y,
¢ = cohesion of rock surface
¢ = friction angle
Y = unit weight of rock
o= angle of the back of slope model

tan ¢ (1)

tany,

The results from the three methods agree reasonably well.
Very small discrepancies remain. Under dry condition,
the deterministic method yields the highest factor of
safety, which is about 10% greater than those observed
from the test models. The factors of safety from FLAC
simulations are less than 5% greater than the
observations. This may be because the deterministic

method assumes that the sliding block is a single and
rigid mass lying on an incipient failure plane while the

(a) (b)

Figure 3 Comparisons of FLAC simulations with phy-
siccal model tests for 4x4 cm blocks (a) and
8x4 cm blocks (b).
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actual test models are a discontinuous mass formed by
rock blocks. The discrepancies become even smaller for
a greater slope face angle.

6. SLOPE MODELS TESTED UNDER
DYNAMIC LOADING

The dynamic loading is studied by considering the effects
of the horizontal pseudo-static acceleration induced by
cyclic motions of the test platform in the direction parallel
to the dip direction of the slope face. These cyclic motions
are used to simulate the earthquake shaking. The vertical
acceleration is assumed to be zero. Over one hundred
plane sliding failures have been simulated with the
horizontal pseudo-static accelerations between 0.013 g and
0.225 g. These accelerations are within the range tested
and observed elsewhere [10, 11, 12]. The amplitude is
maintained constant at 23.5 mm. The slope models have
the sliding plane angles varied from 1 to 22 degrees,
heights from 44 to 83 cm, and slope face angles from 28

1.4
3

—

Deterministic Method

FLAC Simulation\-\ ............ (a)

Actual Observation® " ~-----.._

08 T T T T 1
30 40 50 60 70 80
V ¢ (degrees)

Deterministic Method b
FLAC Simulation (L)
Actual Observation®?

FS

30 40 50 60 70 80

V¢ (degrees)
1.4

1.3

1.2 1 Deterministic Method (©

1.1 JFLAC Simulation\\\{

FS

JActual Observation\d .7 777777777 i

1.0

0.9 4

08 T T T T 1
30 40 50 60 70 80
v ¢ (degrees)

Figure 4 Factors of safety determinated for 4x4 cm
blocks (a), 8x4 cm blocks (b), and 12x4 cm
blocks (c) at y, equal 25 degrees.

to 68 degrees. Table 2 summarizes the test parameters
and the results. For all slope geometries the duration for
cyclic motion is maintained at one minute. If failure does
not occur within one minute of shaking, the sliding plane
angle is progressively increased by one degree interval
and the test is repeated. Figure 5 shows an example of
the plane sliding failure for 8x4 cm blocks.

Table 2 Results of rock slope stability analysis under dynamic
loading with amplitude = 23.5 mm.

Block | No. of | Frequency| a H 72 Vo
Size Tests (Hz) (2) (cm) (°) (°)
7 0.403 [0.013] 69-83 | 40-44 [ 15-18
3 0.504 [0.017] 80-82] 40-43 [ 15-17
3 0.629 [0.027] 76-78 | 41-44 [ 14-16
4x4cm| 4 0.700 [ 0.033| 44-53 | 33-44 [ 12-17
el 7 0.833 [0.046] 50-77 | 31-41 | 4-15
8 1.000 [0.067| 46-75| 28-38 | 1-12
4 1.233  10.102) 49-54] 28-32 3-6
4 1.346 1 0.119] 46-62( 28-32| 14
1 1.833 ] 0.225| 46 46 1
7 0.403 [0.013] 55-58] 61-67 [ 16-21
7 0.504 [0.017] 55-56 | 64-68 | 18-20
3 0.629 [0.027 | 54-56 | 63-68 | 18-19
8x4cm| 3 0.700 [ 0.033] 55-57 [ 60-64 | 15-18
== 11 0.833 [0.046| 51-55] 57-63 [ 10-16
8 1.000 ] 0.067| 48-52| 52-59 | 10-12
6 1.346 1 0.119] 45-48 ] 48-54 | 1-5
1 1.700 10.193| 45 51 1
1 1.833 ]0.225| 45 46 1
2 0.403 [0.013] 58-59| 66-67 | 21-22
4 0.833  [0.046| 55-57 | 60-63 [ 15-18
12x4cm| 2 1.117 ] 0.083] 52-53 | 58-59 | 12-13
:E 2 1.429 [0.136] 49-50| 52-53 [ 6-7
1 1.700 [0.193| 45 46 1
1 1.833 10.225] 45 46 1

It is generally observed that under similar slope geometry
and block arrangement the failure zone induced under
dynamic load is more extensive than those under static
loading.

To compare the test results with those calculated by the
deterministic method, a closed-form solution given by
Kramer [10] is adopted here. The solution offers a simple
approach to calculate the factor of safety of plane failure
per unit thickness of slope mass under vertical and
horizontal pseudo-static accelerations.

S:c-l+[(W—I-7v)coswp—Fh siny ] tand )

(W —F,)siny, +F, cosy,

F,=aW/g=kW 3
F,=a, W/g=k,W (€))
where F;, and F, = horizontal and vertical inertial forces, a
= horizontal pseudo-static acceleration, a, = vertical

pseudo-static acceleration (assumed here = 0), W =
weight of the failure mass, y, = angle of planar failure
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Figure 5 Simulation of sliding failure for 8x4 cm blocks
at a=0.046 g and amplitude=23.5 mm.

surface, g = gravitational acceleration, |1 = the length of
the failure plane, and k, and k, = dimensionless
horizontal and vertical pseudo-static accelerations.

In relation to the earthquake phenomena Kramer [10]
postulate that the horizontal pseudo-static force decreases
the factor of safety by reducing the resisting force and
increasing the driving force. The vertical pseudo-static
force typically has less influence on the factor of safety
since it reduces (or increases, depending on its direction)
both the driving force and the resisting force. As a result,
the effects of vertical accelerations are frequently
neglected in pseudo-static analyses resolving the forces
on the potential failure mass in a direction parallel to the
failure surface.

In this study the vertical pseudo-static acceleration
(ay) is assumed to be zero, subsequently the vertical
inertial force (F,) becomes zero. This assumption

conforms to Kramer’s conclusion above. The above
equation is therefore reduced to:
S:c-l+[Wcoswp7Fhsin\yp]tan¢ 5)

(Wsiny, +F cosy,)

By setting FS=1, the relationship between the
acceleration, a, and the angle of the failure plane, v, can
be developed. Under this condition the acceleration

required to induce plane failure for a rock slope decreases
with increasing failure plane angle.

Results of the test models under dynamic loading are
plotted in terms of the acceleration as a function of the
sliding plane angle in Figure 6. A failure envelope (line
separating the stable and failure conditions) can be drawn
from the test results for each block size, and is compared
with the results from the deterministic method using
FS=1. It is clearly shown that the deterministic method
significantly over-estimates the actual observations.
Under the same sliding plane angle the deterministic
solution gives the acceleration at failure at more than
twice of those observed from the test models. This is
probably because the deterministic method assumes a
rigid and continuous mass of rock above the incipient
sliding plane while the slope models are formed by
discrete rock blocks. The deterministic method also
assumes that all relevant forces pass through the centroid
of the sliding mass. The presence of interaction forces
between the blocks in the slope model could enhance the
shape effect of the individual blocks above the sliding
plane. This behavior may be better demonstrated by a
discrete element analysis that can incorporate the effect
of dynamic loading. The discrepancy between
deterministic method and test models becomes greater for
a lower sliding plane angle, and particularly for the slope
models formed by short blocks (4x4 cm). In addition the
acceleration required to fail slope models with the shorter
blocks tends to be lower than those with longer ones (8x4
cm and 12x4 cm).

7. DISCUSSIONS AND CONCLUSIONS

It is recognized that the joints simulated in the slope
models here are very smooth and clean with low cohesion
and friction angle, which may not truly represent most
actual rock joints found in in-situ rock slopes.
Nevertheless the comparisons of the test results with the
deterministic solutions (by Hoek & Bray [9] and
computer simulations (FLAC_Slope code) under the
same test parameters (e.g., joint properties and slope
characteristics) have revealed significant implications.
Under static condition the deterministic method and
computer simulation over-estimate the factor of safety for
the plane sliding failure by about 5 to 10%, particularly
for the slope models with shorter blocks. This is
probably due to the impacts of the block spacing, block
shape and interaction forces between the discrete blocks
in the sliding mass. This implies that stability analysis by
assuming that the sliding mass is continuous as used by
the deterministic method may not be conservative,
particularly for slope masses with short-spaced joints
compared to the slope height.

The discrepancy between the deterministic method
and the test results under dynamic loading is highly
significant. The deterministic solution proposed by
Kramer [10] over-estimates the acceleration at failure by
more than twice those observed from the test models.
The discrepancy however reduces for slope models
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Figure 6 Pseudo-static acceleration (a) as a function
of sliding plane angle (y,) at failure for 4x4
cm (a), 8x4 c¢cm (b), and 12x4 cm (c) blocks.

formed by larger sandstone blocks and under a greater
sliding plane angle. This is again probably due to the
assumption of the continuous mass imposed by the
deterministic method. These findings indicate that under
dynamic loading plane sliding analysis using the simple
deterministic method for rock slopes with small joint
spacing compared to the slope height will give a non-
conservative result. In addition, the deterministic
approach for stability analysis of low-angled sliding
planes under dynamic loading may be inappropriate. In
this case an additional physical model testing or discrete
element analysis that is capable of dynamic simulation
should be performed.

The physical models tested here have a narrow range
of the size and shape of the rock blocks used to simulate
the joint spacing in the test frame. Additional test results
obtained from slope models with larger blocks, probably
up to 20x20 cm, and with smaller blocks, 2x2 cm, would
provide a clearer indication of the effect of joint spacing
on slope stability
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