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This thesis is involved with extensive analyses of supersymmetric methods in the
quantum electrodynamics of many-particle systems in quantum physics and of super-
symmetric quantum electrodynamics working in the functional differential formalism
of quantum field theory in the presence of dependent fields. A detail intricate devia-
tion of the Quantum Dynamical Principle is derived in the presence of dependent fields
tailored made to handle supersymmetric quantum electrodynamics in which dependent
fields necessarily arise as a consequence of a gauge constraint. As an application of
supersymmetric methods, a rigorous lower bound is derived for the ground-state en-
ergy of the quantum electrodynamics of charged many-particle systems of bosonic type
in quantum physics as a function of the number of the negatively charged particles.
The Quantum Dynamical Principle is then used to carry out a systematic analysis of
the gauge problem in quantum electrodynamics dealing with the Coulomb gauge, the
Fock—Schwinger gauge, the axial gauge and all covariant gauges. Starting from the La-
grangian proposed by Wess and Zumino for supersymmetric quantum electrodynamics,
the Quantum Dynamical Principle thus derived is used to obtain the explicit expression
for the vacuum-to-vacuum transition amplitude of the theory as a functional deriva-
tive operation applied to an exact functional describing the propagation of the particles

and their superpartners between emitters and detectors represented by external sources.
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As applications, the scattering amplitude of the process electron—positron to photino—
photino is derived to the leading order, as well as of the self-energy of the electron. The
latter involves additional diagrams to the one in pure quantum electrodynamics. We
finally show that the wave-function renormalization constant /s is finite in the Landau
gauge, to the leading order, as it is in pure quantum electrodynamics. The implication
of the result in the high-energy massless full supersymmetric theory and of its internal
consistency is to be stressed. The reason is that it opens the way to study, in particular,
gauge invariant quantities order by order in the full theory in the massless high-energy
regime where the mass, providing an energy scale, becomes unimportant by working
appropriately in a gauge chosen consistently order by order so that their corresponding
expressions are finite order by order and no ambiguous cancellation of infinite terms of
opposite sign arise. Finally, it is worth emphasizing that the supersymmetric partners
of observed particles provide, in particular, non-trivial radiative corrections as internal
lines of processes with external lines corresponding to observed particles and the result-
ing modifications in the dynamics may not necessarily be omitted on physical grounds

and may, hopefully, be thus tested in experiments perhaps indirectly.
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CHAPTER 1
INTRODUCTION

Supersymmetry (SUSY) was introduced to treat bosons and fermions on the
same footing and construct theories with built in transformations between fermions and
bosons. Quantum field theories, being relativistic, then necessitate the introduction of
generators Qﬁ to carry out such transformation, [cf. Wess and Zumino (1974a,b,c);
Salam and Strathdee (1974a,b,c, 1975a)], in addition to the generators P*, J*” asso-
ciated with the Lorentz transformations, where the P* operators generate space-time
translations, and the J*” ones generate the Lorentz transformations themselves. Due
to the spin and statistics theorem [cf. Streater and Wightman (1964)], the fermions and
bosons, obeying different statistics, implies that the so-called supersymmetric genera-
tors Qf,lA behave as spinors under Lorentz transformations and satisfy anti-commutation
relations as opposed to P*, J*” which satisfy commutation relations. The so-called
Lie algebra associated with P*, J*” then necessarily change to some new algebra re-
ferred to as a graded Lie algebra which accommodates these anti-commutation relations
[cf. Haag et al. (1975)]. In Q4. Alis a spinor index (A = 1,....49)and j =1,...,N
denotes the number of supersymmetric generators needed. The theory with N = 1 is
referred as a simple SUSY model [Parkes and West (1983b); Piguet and Sibold (1984);
Veneziano and Yankielowicz (1982)] and for N > 2, these models are referred to as
extended SUSY models [Parkes and West (1983a); Fayet (1979)]. With such transfor-
mations between bosons and fermions and vice versa a new rule arises according to
these theories as far as the type of particles predicted to exist in nature. The simplest
such rule is that for every known boson there exists a Fermi partner and for every known
fermion there exists a Bose particle. A Bose partner of a known fermion is named by

[IPei]

adding “s” to the beginning of the fermion, e.g., selectron as a Bose partner of an elec-



tron. A Fermi partner of a known Bose particle is named by replacing “on” at the end

of the boson’s name by “ino”, e.g., photino, gluino.

One of the characteristic of a SUSY theory is that it has the vacuum invariant
under SUSY transformations and that the ground state energy is exactly zero. This
fact alone has independent applications of supersymmetric methods in setting up su-
persymmetric Hamiltonians which are non-negative and hence are bounded below by
zero. We have used this important property of supersymmetric methods to investigate
rigorously the quantum electrodynamics (QED) ground-state energy of many-particle
systems in quantum physics and will be elaborated upon later in this introductory chap-
ter. Quite generally, as mentioned above, an invariance property of the vacuum in quan-
tum field theory (QFT) under SUSY transformations predicts that superpartners have
the same mass (and, in general, are produced in pairs). The fact that SUSY partners
(e.g., selectron, photino) have not been observed seems to indicate that the vacuum is
not invariant under SUSY transformations and a large lower bound on the masses of
SUSY partners exist which are high enough to be accessible experimentally, and a cor-
responding theory is then referred to as spontaneously broken [Affleck er al. (1984);
Campbell-Smith er al. (1999); Cecotti and Girardello (1982); de Wit and Freedman
(1975a); Fayet (1975a,b); Fayet and Iliopoulos (1974); Ferrara et al. (1979); Girardello
and Grirasu (1982); Iliopoulos and Zumino (1974); O’Raifeartaigh (1975); Parkes and
West (1983a,b); Witten (1981, 1982); Zumino (1975)]. Also another advantage is that
SUSY theories are expected to have less divergences in carrying out the renormalization
program than in non-symmetric ones [Avdeev et al. (1980); Caswell and Zanon (1981);
Ferrara et al. (1974a); Grisaru et al. (1980); Hollik et al. (1999); Iliopoulos and Zumino
(1974); Jones (1975, 1977); Kraus and Stockinger (2002); Mandelstam (1983); Piguet
and Rouet (1975); Piguet and Sibold (1984); Poggio and Pendleton (1977); Rupp et al.
(2000); Slavnov and Stepanyantz (2003)]. When the transformations between fermions

and bosons (and vice versa) depend on the space-time point, i.e., are locally defined,



gravitational theory naturally arises and is referred to as Supergravity (SUGRA) [cf.
Jacob (1986)]. On the other hand, the extension of point particle descriptions in field
theory to strings starting from a SUSY theory has led to Superstrings Theory [cf. Green
et al. (1988)]. A wide class of SUSY models have been introduced over the years
[Gol’fand and Likhtman (1971); Wess and Zumino (1974a,b); West (1976); Veneziano
and Yankielowicz (1982); Slavnov and Stepanyantz (2003); Rupp et al. (2000); Piguet
and Sibold (1984); Meisler (1996); Kraus and Stockinger (2002); Hollik ez al. (1999);
Grisaru et al. (1979); Ferrara and Zumino (1974, 1975); Fayet (1976); de Wit and Freed-
man (1975b); Clark et al. (1980a,b); Bagger and Witten (1982)] with a lot of success,
but still much work has to be done. Our interest are the technical aspects of the SUSY
extension of quantum electrodynamics (SQED) [Wess and Zumino (1974b); Zumino
(1975); Slavnov and Stepanyantz (2003); Rupp et al. (2000); Poggio and Pendleton
(1977); Piguet and Rouet (1975); Hollik et al. (1999); Ferrara et al. (1974a); Ferrara
and Zumino (1975); Clark et al. (1980a); Campbell-Smith et al. (1999); Avdeev et al.
(1980)] as well as in such supersymmetric methods as applied to the quantum electro-

dynamics of many-particle systems in potential theory.

The development of the dynamics of QED and SQED requires extensive applica-
tions of the Quantum Dynamical Principle in the presence of so-called dependent fields.
This is a highly non-trivial problem and is intimately related to the gauge problem and of
resulting constraints. Accordingly, as an important contribution to the analysis of the in-
tricacies of SQED, in particular, a fairly detailed investigation of the Quantum Dynami-
cal Principle in the presence of dependent fields and resulting rigorous derivations were
recently carried out [Manoukian et al. (2007)]. This is reported in equal details in Chap-
ter II. The latter chapter also involves rigorously in the analysis of the gauge problem
in QED as many of the results are significant in SQED. This chapter establishes many
of the intricate details used throughout the thesis and is necessarily quite long. Here

many of the specific gauges used are discussed. The following chapter (Chapter III),



deals with supersymmetric methods as applied in quantum physics in potential theory
and, in particular, to the quantum electrodynamics of charged many-particle systems, in
which a rigorous lower bound is derived for the corresponding ground-state energy, as a
function of the number of negatively charged particles involved, as in so-called bosonic
matter. Chapter IV, introduces generators of supersymmetric transformation together
with their anti-commutation relations with the four-momentum. The transformation law
of the vectors in the underlying Hilbert space of physical states is also introduced. The
Lagrangian proposed by Wess and Zumino [Wess and Zumino (1974a,b,c)] for SQED is
spelled out paying special attention to the roles of the supersymmetric partners and their
corresponding propagators. External sources are introduced coupled to the basic fields
appearing in the Wess—Zumino Lagrangian in Chapter V and the explicit expression for
the vacuum-to-vacuum transition amplitude (0, |0_) is derived as a functional differen-
tial operation applied to the vacuum-to-vacuum transition amplitude (0 |0_), involv-
ing the propagation of free particles and their superpartners between various sources
represent emitters and detectors of such particles. This provides the entire dynamics
of the underlying theory and gives rise to all the fundamental processes governed by
it giving rules of computations appropriately referred to as Schwinger—Feynman rules
using functional derivatives and in contrast to the old fashioned rules based on Feynman
diagrams avoids altogether “guessing” multiplicative weight factors and signs of basic
integrals involving propagators, vertex functions and their various convolutions, thus
emphasizing the power and elegance of the present formalism. Chapter VI deals with
applications, to derive, in particular, the leading contribution to the scattering ampli-
tude of electron—positron scattering to photino—photino, where the photino is the super-
symmetric partner of the photon. Another significant application is also given to the
so-called self-energy of the electron so that a direct comparison of this result with the
one occurring in pure quantum electrodynamics is made with emphasis on the renor-

malization constant Z5. To our surprise it is found to the leading order, 7, is finite



only in the so-called Landau gauge. The significance of this result will be discussed
in our concluding chapter (Chapter VII). It is important to emphasize that even if the
supersymmetric partners of the present known particles are not detected in experiment,
such particles, as virtual particles, would have important contributions to the scattering
of the fundamental particles in nature as internal lines in the diagrams describing their
interactions. [This is reminiscent of the non-observability of quarks in describing phys-
ical properties of fundamental problems, and even of the so-called Higgs particle and
its role in unified field theories to ensure renormalizability.] Also they seem to have
an utmost importance in the divergence problem of quantum field theories and hence
of their internal consistencies. Chapter VII, also summarizes our main results. Some

notations and conventions are finally given in an appendix.



CHAPTER 11
QUANTUM ELECTRODYNAMICS AND GAUGE

TRANSFORMATIONS

About two decades ago, it was shown [Manoukian (1986, 1987a)] that the very
elegant action principle [Schwinger (1951a,b, 1953a,b, 1954a)] may be used to quan-
tize gauge theories in constructing the vacuum-to-vacuum transition amplitude and the
Faddeev—Popov factor [Faddeev and Popov (1967)], encountered in non-abelian gauge
theories, was obtained directly from the action principle without much effort. No ap-
peal was made to path integrals, no commutation rules were used, and there was not
even the need to go into the well known complicated structure of the Hamiltonian
[Fradkin and Tyutin (1970)] in non-abelian gauge theories. Of course path integrals
are extremely useful in many respects and may be formally derived from the action
principle [cf. Symanzik (1954); Lam (1965); Manoukian (1985)]. We have worked
in the Coulomb gauge, where the physical components are clear at the outset, to de-
rive the expression for the vacuum-to-vacuum transition amplitude (generating func-
tional) including the Faddeev—Popov factor in non-abelian gauge theories. It is interest-
ing to note also that the Coulomb gauge naturally arises [Faddeev and Jackiw (1988);
Ogawa et al. (1996)], see also [Joglekar and Mandal (2002)], in gauge field theories as
constrained dynamics [cf. Henneaux and Teitelboim (1992); Garcia et al. (1996); Su
(2001)]. To make transitions of the generating functional to arbitrary covariant gauges,
we have made use [Manoukian (1986, 1987a)], in the process, of so-called ¢ function-
als [Schwinger (1965)]. The ¢ functionals, however, are defined as infinite dimensional
continual integrals corresponding to the different points of spacetime and hence the

gauge transformations were carried out in the spirit of path integrals.



The purpose of the present chapter is, in particular, to remedy the above situ-
ation involved with delta functionals, and we here derive the gauge transformations,
providing explicit expressions, for the full vacuum-to-vacuum transition amplitude to
the generating functionals of arbitrary covariant gauges and, in turn, to the celebrated
Fock—Schwinger (FS) gauge

a'A, =0, (2.1)

[Fock (1937); Schwinger (1951c¢)], as well as the axial gauge

n*A, =0, (2.2)

for a fixed vector n*, for the abelian (QED) gauge theory by an entirely algebraic ap-
proach dealing only with commuting (or anti-commuting) external sources. The interest
in the FS gauge, in gauge theories, in general, is that it leads to Faddeev—Popov ghost-
free theories, [cf. Kummer and Weiser (1986)], the gauge field may be expressed quite
simply in terms of the field strength [Kummer and Weiser (1986); Durand and Mendel
(1982)] and it turns out to be useful in non-perturbative studies, [cf. Shifman textitet al.
(1979a,b)]. Needless to say, the complete expressions of such generating functionals al-
low one to obtain gauge transformations of all the Green functions in a theory simply by
functional differentiations with respect to the external sources coupled to the quantum
fields in question and avoids the rather tedious treatment, but provides information on,
the gauge transformation of diagram by diagram [Handy (1979); Feng and Lam (1996)]
occurring in a theory. A key point, whose importance cannot be overemphasized, in our
analysis [Manoukian (1986, 1987a)] is that, a priori, no restrictions are set on the exter-
nal source(s) J* coupled to the gauge field(s), such as a 9, J* = O—restriction, so that
variations of the components of J* may be carried out independently, until the entire
analysis is completed. The present method is expected to be applicable to non-abelian

gauge theories including supersymmetric ones and the latter will be attempted in a forth-



coming report. Some classic references which have set the stage of the investigation of
the gauge problem in field theory are given in Landau et al. (1954); Landau and Khalat-
nikov (1955); Johnson and Zumino (1959); Zumino (1960); Biatynicki-Birula (1968);
Mills (1971); Slavnov (1972); Taylor (1971); Abers and Lee (1973); Wess and Zumino
(1974a); Salam and Strathdee (1974a); Becchi et al. (1975); Utiyama and Sakamoto
(1977). For more recent studies which are, however, more involved with field opera-
tor techniques and their gauge transformations may be found in Sardanashvily (1984);
Kobe and Gray (1985); Oh er al. (1987); Sugano and Kimura (1990); Gastmans et al.
(1996); Pons et al. (1997); Gastmans and Wu (1998); Banerjee and Mandal (2000). To
generate the so-called vacuum-to-vacuum transition amplitude in the functional differ-
ential formalism of quantum field theory the so-called quantum dynamical principle is
applied in the process. In the presence of dependent fields this application becomes
difficult as the rules of applications are to be modified to remedy this program. Accord-
ingly, in our next section, we first study and develop the quantum dynamical rigorously
in the presence of dependent fields [Manoukian et al. (2007)], in view of applications to
QED and SQED where dependent fields are necessarily present due to the gauge prop-
erties of such theories. The photon field in the interaction with an external current in the
Coulomb gauge is then treated carefully in Section 2.2. The field equations of the latter
theory are developed in §2.2.1, again in the celebrated Coulomb gauge, while the photon
propagator is worked out in §2.2.2. The canonical conjugate momentum components of
the (independent) fields and the canonical commutation relations are developed, respec-
tively, in §2.2.3, §2.2.4, while in §2.2.5 some applications of the quantum dynamical
principle are carried out. Section 2.3 deals with the central problem of this chapter, that
is, of gauge transformations in QED involving the Coulomb gauge, the covariant ones,

the Fock—Schwinger and the axial gauge in various subsections.



2.1 Quantum Dynamical Principle in View of Applications to QED
and SQED

Consider a Hamiltonian of the general form
H(t,\) = Hy(t) + Ha(t, \), (2.1.1)

where Hy(t), Hs(t, A) may be time-dependent but Hy(t, \) may, in addition, depend on
some parameters denoted by A. Typically, in quantum field theory, H;(t) may stand
for the free Hamiltonian written in terms of the physically observed masses referred to
renormalized masses and H;(t) will be time-independent. In this latter case, Ha(, \)
will denote the remaining part of the Hamiltonian which, in particular, depends on
renormalization constants, coupling constants and so-called external sources coupled
to the quantum fields. The coupling constants and the external sources will be then col-
lectively denoted by A. A derivative of a transformation function with respect to A with
the latter denoting an external source will then represent a functional derivative [see e.g.

Manoukian (1987¢)].

The time evolution operator U (¢, A), corresponding to the Hamiltonian H (¢, ),
satisfies the equation
d

ih L U(EN) = HEN UL (2.1.2)

For the theory given in a specific description, we have
. d
171& (at| = (at| H(t,\), (2.1.3)

where the states (at| will depend on the parameters A. Typically, the states (a/|, assumed
independent of A\, may represent multi-particle states of free particles associated with a

given self-adjoint operator such as the momentum operator, with the single particle en-
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ergies written in terms of the observed masses, or may represent the vacuum-state. One
may also introduce the time evolution operator U (), corresponding to I (t), satisfying

the equation

ihci:Ul(” — () U, (1), (2.1.4)

and the states j(at| which are independent of the parameters \, satisfy

d

The states (at| of interest are related to the states 1(at| by the equation

(at| = 1(at| V(t,\), (2.1.6)
where
V(t,\) =Ul () U(t,\), (2.1.7)
with the latter satisfying
. d t
ih—V (t,\) =U](t) Hy(t, \) U(t, \) . (2.1.8)

dt

The quantum dynamical principle is involved with the study of the variation of a

transformation function (ats | bt ), with respect to the parameters \.

For 7 # ty, 7 # t; and A # X, we have the following useful key identity in the

entire analysis:
. d t / T /
i [Vt ) V) V) V)]

— V(ts, \) [UT(T, N) (H(r, Ny = H(r,N) U, X)} Vit V), (2.1.9)

which will be subsequently used.
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The independent quantum fields of the theory will be denoted by x(x) and their
canonical conjugate momenta by 7 (), suppressing all obvious indices. The dependent
fields will be denoted by 7(x) whose canonical conjugate momenta vanish, by defini-

tion. Here # = (¢, x). The Hamiltonian F7(¢, \) may be then written as
H(t,\) = H(x, A\ 1), (2.1.10)

which, in particular, is a functional of y(x), 7(x) with the latter defined in the so-called
Schrodinger representation at ¢ = 0, which are independent of A. In the Heisenberg

representation we have

x(x) = UT(t, ) x(x)U(t,\), (2.1.11)
m(z) = UN(t, ) m(x) U(t, \), (2.1.12)
having non-trivial dependence on the parameters .
Now we integrate the relation in (2.1.9) over 7 from ¢; to ¢, to obtain

V(t2, )Vt X) = Vit ) V1, M)

. to
= —%V(tg, A) [/ dr UT(r, \) (H(T, ) — H(T,\))
t1
X U(r, )| V(t1,N). (2.1.13)
By setting A’ = A + 8, one obtains the variational form of the above equation

5 [V(t2, \) v*(tl,w

. t2
= —%V(tQ,)\) [/ dr U (r, \) SH(T, ) U (7, \) | VI(t1, \). (2.1.14)

t1
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Upon defining the Heisenberg representation of (7, \) at time 7, by
H(1,\) = U1, \) H(x, 7, 7,\) U(T, \), (2.1.15)
we may rewrite (2.1.14), as

. ts
5 [V (12, A) VI (0, A) ——;V@%M[/chSHﬁjﬂlﬁﬁhM, (2.1.16)
t

1

provided the variations of H with respect to A in (2.1.16) are carried out by keeping

x(x), w(x), givenin (2.1.11), (2.1.12), fixed.

We take the matrix elements of (2.1.16) with respect to (ata|, [bt1), [see (2.1.5)],

use (2.1.6), and note the \ independence of (ats|, |bt1),, to obtain

5{ats|bt)) = —% <at2

t2
/ dr SH(r, )\)‘bt1> , (2.1.17)
t1

with the variation in H, with respect to \, carried out with the independent fields x ()

and their canonical conjugate momenta 7(x) kept fixed.

The Hamiltonian H in the Heisenberg representation in (2.1.15) may be rewritten
as

H(t,\) = H(x(t), 7(t), A\ 1), (2.1.18)

as obtained from the Hamiltonian H (¢, \) in (2.1.10) at ¢, by carrying out the explicit
operation given in (2.1.15). Eq. (2.1.18) is, in particular, written in terms of the indepen-
dent (Heisenberg) fields at time ¢ and their canonical conjugate momenta. The effective

Lagrangian L, of the system is related to H by the equation

u@mwmxm_ﬁ&m@ﬁ@—ﬂwmmmmn7 (2.1.19)
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with a summation over the fields understood.

The canonical conjugate momenta 7(z) of the fields are defined through the

equation

Lo (), 4(8) + 831, A1) — Lo (x(8), (8, A ) = /d3x7r(m) Sy(x).  (2.1.20)

Egs. (2.1.19), (2.1.20) allow us to consider the variation of H (x(7),7(7), A, ), with
respect to A\, by keeping , 7 fixed as required in (2.1.17), in relationship to the variation

of L,. From (2.1.19), (2.1.20), we then obtain, with x, 7 kept fixed, that
8Ly (X(7), X(7), A, 7) = =8H (x(7),7(T), A\, T) , (2.1.21)

upon cancelation of the term on the right-hand side of (2.1.20), where, now the varia-

tion of I, in (2.1.21) is carried out with respect to A by keeping x(7) and x(7) fixed.

The dependent fields will be denoted by 7(x) and their canonical conjugate mo-
menta vanish, by definition. The Lagrangian of the underlying field theory may be
written as L(x(t), x(¢),n(t), A, t), which upon the elimination of 7(t) in favor of x(¢),
x(t) and \ generating the Hamiltonian under study as well as the effective Lagrangian
L.. We consider the variation of I, with respect to A, by keeping x(t), x(t) fixed. Now

since 7)(t) will, in general, depend on A\, we have

8L = I, gz S\ + OL : (2.1.22)
X5 XM

where we note that the Lagrangian does not contain terms depending on 7, by definition.
The first term on the right-hand side defined as an integral in abbreviated form, [7, in it
corresponds to the Euler—Lagrange equation of 7, which vanishes, and the second term
on the right-hand denotes the variation of L, with respect to A, by keeping v, x and

7 fixed. The latter property was first noted in Lam (1965). The Lagrangian density
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L= ZL(x) = ZL(x,\) of the system is related to the Lagrangian L through

L(e(t) X0 m(D) A £) = /d3x L) (2.1.23)

From (2.1.21), (2.1.22) and (2.1.23), we obtain the celebrated quantum dynamical prin-

ciple or the Schwinger dynamical (action) principle

. to
5{ats |bt1) = % <at2 / (dz) 6$(m,>\)‘bt1> , (2.1.24)
t

1

where (dz) = dtd*x, and the variation 5.Z(x, \), with respect to ), is carried out
with the fields, independent and dependent, and their derivatives d,,x, Vn, all kept
fixed. The interesting thing to note is that although the states |aty), |bt;) depend on A,
in the variation of the transformation function (at,|bt;), the same (non-varied) states
appear on the right-hand side of (2.1.24) with the entire variation being applied to the
Lagrangian density .Z(x, A) with the fields and their canonical conjugate momenta kept
fixed. This is thanks to the U and V' operators elaborated upon in (2.1.2)—(2.1.8), the
independence of the states (atz|, (bt1] of A, and the key identify given in (2.1.9). In

practice the limits 5 — 400, t; — —oc are taken in (2.1.24) in scattering processes.

Now consider an arbitrary function

B(x(z),m(x),\,t) = B(t,\), (2.1.25)

of the variables indicated, with y(z), 7(x) in the Heisenberg representation in (2.1.11),

(2.1.12). We may write

B(t,\) = U (t,\) B(x(x), 7(x),A\,t) U(t, \), (2.1.26)

with x(x), 7(x) on the right-hand side in the Schrédinger representation at time ¢ = 0.
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We note the identity
V(t27 >‘) ]B(Ta >‘) VT(tla >‘) = V(t2> /\) VT(Tu >‘) UI(T) B(X(X)> W(X)> /\7 T)
x Uy (1) V (1, \) Vit ). (2.1.27)

Hence (2.1.14), (2.1.27) give for the following variation with respect to A (t; < 7 <

TQ)I
8|V (12, N B(r, ) V1(t1, 0)]
= V() / A SH (N B(r ) VI (1, 0)

+ V(ta, \) 8B(7, \) VI(t1, A)

— %V(tQ,)\) / dr' B(r, \) SH (7', \) VIt \) (2.1.28)
t1

where according to (2.1.28), the variation in 8B(7,\) = 8§B(x(x,7),7(x,7), A, 7),
with respect to \, is carried out by keeping the (Heisenberg) fields x(x,7), 7(x,7)

fixed.

We may use the definition of the chronological time ordering product to rewrite

(2.1.28) in the more compact form
8 [Vt ) B(7, \) Vi1, M)
. to
SRS / dr' (B(r, \) SH(r', \)), Vi(t1, \)

h t1

+ V(ta, N) 8B(1, \) VT(t, \). (2.1.29)



16

Upon taking the matrix element of (2.1.29) with respect to (ata|, |bt1),, and using

(2.1.6), (2.1.15) and (2.1.24) we have for t; < 7 < t

5{aty |B(r, \)|bty) = ;/tltz(dx/) <at2

(B(r,\) 6.2« )\))+‘bt1>
+ {atz | 8B(7, \)|bt1) (2.1.30)

where in the variation 6.Z(z’, A), with respect to A, all the fields and their derivatives
dux, Vn are kept fixed, while in dB(7, \), expressed in terms of x(x,7), w(x,7),
the latter are kept fixed, and an extra A-dependence may arise from the elimination of
7 in favor of y, m. To our knowledge Eq. (2.1.30) appears first in Lam (1965). The
second term in (2.1.30) is responsible for the generation of the Faddeev—Popov factor
and its generalizations in gauge theories [see, Manoukian (1986, 1987a); Limboonsong

and Manoukian (2006)].

2.2 Pure Photon Field in the Coulomb Gauge

The Lagrangian density for the photon field A* in the presence of an external

source J* is

1
L= —ZFWF“V + A, J", (2.2.1)
and the action for photon field is
1
W — / (dz) £~ / (dx) [—4FWFW A (2.2.2)

where F),, = 9,A, —0,A, and pn,v =0,1,2,3.

We note that (for a = 0, 1, 2, 3)

OaFyy + 0y Fya + 0y Foy = 0 (0,A, — 0,A,) 4+ 0, (0, A — 04 AL)
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+ 0, (00 A, — 0,A4)
= (0a0y — 040a) Ay + (0,0, — 0,0,) Aq
+ (0,00 — 040,) A, .
On smooth spacetime manifold, we have
Oalyy + 0y Fyq + 0,15, = 0. (2.2.3)

This identity (2.2.3) has an analogue in general relativity, known as the Bianchi identity.

We may similarly refer to (2.2.3) as the Bianchi identity.

In the Coulomb gauge, we have the constraint
V-A=09A"=0, i=1,2,3. (2.2.4)

Equation (2.2.4) allows us to solve, for example, A® in terms of A!, A?:

—al (1A + 0, A) = —(05) 710, A2, a=1,2. (2.2.5)

3

A3 =

We treat A°, A!, A? (not A%) as dynamical variables, we obtain A2 = A2 and 6 A3 =
—(03) 10,8 A or combining into A* by

SAT = §U5AT = 525 A + B35 A% = 525 A* — 51'3236Aa,
3

SAT = (5 - 5i3ga> 5 A2, i=1,2,3. (2.2.6)
3



18

2.2.1 Field Equations in the Coulomb Gauge

W — / (dz) —ié(F“”FW) + J%AH]

= /(dx) —;F%Fﬂﬁjﬂmﬂ}

!
- / (de) |5 F*™8(D,A, = 0,Au) + J“z’)AM}

- / (dv) |~ 9,84, + 764,

- / (do) [—0.(F™sA,) + (9, F)5 A, + JﬂaA,,} .

The surface term ST.I = — / (dx) 9,(F*"5A,) does not contribute to the field equa-

tions.
SW = / (d2) [ (9P + J*) 84, ] + STI
= / (A2) | (8P + J°) 84 + (9, + J') 84;] + STI
or
SW = / (d2) [ (P + J°) 840 4 (9, + J') 8A'| £ STL. 227)
Using (2.2.6):

SW = / (dx) {— (0,0 + J°) 6 A°

+ (8, F" + JY) <5 — 5i3ga> Ma] + STI
3
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= / (dz) {— (0, F*0 + J°) 8A° 4 (9, F"= + J*) 5 A
— (0, F" + J%) g"‘éAa] + ST.I
3
= - / (dz) (9,7 + J°) 8 A° + / (dz) (9, "=+ J*) 5A*

— / (dz) (8,F* + J?) g‘"‘éAa + STI. (2.2.8)

3

Consider the third term:

| = - / (dz) (9,7 + J?) gazsAa
3

= - / (dz) O, [(auwi” + J%) algéAa}

+ Jan [o.re 1 19 s

g\ 1
The surface term ST.II = — / (dx) O, [(@F“?’ +J%) 86143} also does not contribute
3

to the field equations.

] = / (dv) [0a(9, 7 + 1%) | ;Ma + ST
3

- /(d:z:) agiaa(ﬁuwﬂﬁ) Lsas st
O3 O3

_ /(dx) 33{ [81383(8“}7#3 + J3)} (‘9136‘43}

— [(dx iaa o, F™ 4+ J3 agiéAa + ST.II.
17
83 a3

1 1
The surface term ST.III = — /(dx) 83{ [88‘"‘ (%F"?’ + JS)] 86Aa} again does not
3 3



contribute to the field equations.

= — / (dz) B"‘(@Fﬂ?’ + J3)} 5A* + STII + ST.II,
3

or

- Jian) @ ) o = - fian) | @+ ) o

s s

+ ST. + ST.III.
Substituting (2.2.9) into (2.2.8):
W = — / (da) (8, F*° + J°) 8A°
+ / (dx) {(GHF’“ +J?) — gZ(auFuf” + J7%)| 8A®

-+ ST.I 4 ST.II 4 ST.III,

or

5

6};1\; = — (9" + J°)

W Da

4= (O FF 4 J?) — 373(8“17”3 +J°) .

The field equations are
—0, " = J°

—OuF = J* — ga(auFﬂ?’ +J%)
3

20

(2.2.9)

(2.2.10)

(2.2.11)

(2.2.12)

(2.2.13)

(2.2.14)



fora = 1,2. But (2.2.14) also true for a = 3:
i i 9; 3 3 .
—8MF“:J—8—(8MF" +J), 1=1,2,3.
3
Using (2.2.13) and (2.2.15):
—0,0,F" = —0y0,F"° — 0,0, F"

0,
=00 J° +0; | J' — a—;(auFﬂi” +J?)

0.0
:%ﬂ+@ﬂ—é§@£w+ﬁ)

2
3

and using 0,0, """ = 0 we obtain the non-conservation of current (charge)

2
0T = (04 T°) £0,

3

or
L 0, F* + J?) = ! a,J"
53( [ + ) B vZ] e
Substituting (2.2.17) into (2.2.15):
, R, : 9'0°
—8MF!“:JZ—V2'LLJM:<9’LOC—V2> Ja, Z:1,2,3

Combining (2.2.13) and (2.2.18) into one equation:

—, P = — 5", 0, T

= 008, FH0 — 8, 8, F¥

21

(2.2.15)

(2.2.16)

(2.2.17)

(2.2.18)



22

] ) 81’804
__gu0J0+gl/z<gza_ >Ja

V2
, . 0;0%
="+ 9" i —g" oz Ja
- 0;0¢
-0, F" = (g”a —g” v ) Jos (2.2.19)
or
=0, " = (g"* = V'0%) Jy, (2.2.20)
where
\% 0
W= (0; v2> - g“kv—g. (2.2.21)
For 0,J% = 0, we obtain the Maxwell’s equation
-0, " =J". (2.2.22)
B0 =0

In the Coulomb gauge, —9, F* = —0,,(0#AY — 0VAr) = =AY 4 99y A°

0;0%
—OAY + 070, A° = <gm —g” = > Ty . (2.2.23)
Forv = 0:
A0 ¢ o iaiaa
—0A° + 9°9,A° = <go —4° oz > Jos
or
VA =J%  and A" = 1v2 JO. (2.2.24)

Actually, we do not treat (2.2.24) as a field equation. We will see, in the next section,

that A° is a dependent field since its canonical momentum 7° vanishes and is given by

(2.2.24).



23

From (2.2.24), we obtain its time derivative
DA =—_2J°, (2.2.25)

and substituting into (2.2.23):

;0;0% 0”0,
—[JAY = (gua_gm = ) Ja_l_ VQOJO

L0009 9P

=J'—gq o2 Ja—l-ﬁjo
T L,
= J + a;ajja - g”iaivia,]a - 8;21@
=J"+ a;a;Ja - g”a@aJa - ‘“'a;? Ta,
—OA” = [g”a + a;a; —g” 8%6;& — g~ aéy} Jo
- (g” - gkiaga;) Gro (g”“ - g”’“‘?’g) Jo. (22.26)
or
oA — [gmu ‘;‘Qa e ba@y} 7.
= (¢"* = 020") gro (97> = b70%) J, . (2.2.27)
For 0,J% = 0, we obtain
—gav oo~ (gm — gm.a%a:> Ty . (2.2.28)
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Forv=k=1,23:

)

oo L0:0% 00,

k ka
—0A% =g +V2_g V2_g V2 Ja
ko oo oko. .
k k T ori
=J"+ V2 Jo—0 iwt]a_ e J
ok, .
k 1 711
— J — VQ J ,
or
- 0RO, .
k ki kY4 i
—UA" = (5 - v2> J (2.2.29)
From (2.2.26):
v va oo 0 Vi aiauaa Qi 81‘8#’81}
—Qo*A” = |:g o + V2 -9 V2 -9 V32 :| Jom
and
14 o QY aya#aa 18181/8& ma,@”@“
—Lo"A* = |:gu8 + V2 _gﬂ V2 -9 V32 :|Jo¢7
or
v v rvo a Qv Viﬁiguaa iaiayaa
—0 (0" — 0"A") = {(9 O —g"d") — g V2+g“v2] Jas
uv va g Ho v vi n l’“ v alaa
O = (9 ot —g 3)—(g ot —yg 8)W J,
8,0°
_ <gl/)\8//« _ guz\au) T <goa _ ng?> Jo (2.2.30)
or

—OF™ = [(g"0" — g"0") — (00" — 1"0”) 8°] Ja
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= (g70" — ¢"9") gro (¢°* — b°0%) o . (2.2.31)
For 0,,J% = 0, we obtain
—grm = OMJY — "I (2.2.32)

00 J*=0

2.2.2 Free Photon Propagator

From (2.2.26) and (2.2.27):
A (z) = / (da') D (2, 2') J ('), (2.2.33)

where the free (retarded) photon propagator in the Coulomb gauge is

DY, N gy 22 bo” — b or L ! 2.2.34
o+ (@,2') = |g T T - O—ic (x —a), (2.2.34)
or
1
DE(w,2) = (9" = b°0") gog (97 = V/0") 5 d'(x—a'), (2235
- — 1€

D¢ (x,a") = DE (x — ') is translational invariant.
We note that

Co”
V2

) 1
9, g _ g”’“’“D} 5o — o)

9, D¢ (x,a") = _8” + V2 v? O—ic

[ v 0o~ 8k8k v vk 8k 1 ¢4 ’
a ., s 1
= ﬁ(ﬁ — ¢"%0y) _D_i€54(x—m'),
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or

v / 14 8 /
9D (z,2) = —g 07‘;54@; — ) (2.2.36)
a 2
0,0,D¢ (w, a") = (Voz) 5z —a'). (2.2.37)

Let

A= [ / (dz)(da") J,(x) DX, (x, x’)L(w’)]

0o J*=0

oro” 1
_ uv _ppAY v Al
/(dx) J () (g + 7 oY — b0 ) O iEJV(.@)}

Oa J*=0

_ /(dx) Ju(w) (g = 0"0") iy iejy(x)}

— [(@)de!) 2 (o) D (o) )

Therefore A is gauge invariant quantity,

fanas) 10D (o) k)

Oa J2*=0

_ / (de) Ju(r) -2~ ). (2.2.38)

In the momentum description

v —ikx v v dk ikx v
D¢ (k) = /(dx) e D (x) and DY (x) = /((27T))4 H DI (k),  (2.2.39)
y L KMEY L 1
Dé+(l{f) = |:g“ + —a'k” —a k“:| m , (2240)
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or
17 (6% (67 v 12 1

DEL (k) = (9" = a®k*) gas (97 — a"K") 15—, (2.2.41)

where

k kg
at = <0; k2> = g‘“P. (2.2.42)
1 )

DL (k) = DE, (k) =0, (2.2.43)

AN
P = (7= ) e

/

By using the time-like vector £# = (—1 ; 0) = ¢g"" and ¢, = —1, we have

v E-€) (krEY 1 kven 1
Déi(k): [g“l’_ kP k _( f)( §¥ + 5)] Rt (2.2.44)

k? + (k-€)? k? + (k-€)?
where k- = k,&* = k% and k2 + (k-€)? = K*.

We note that

v o Ko Y g”°
kDE(R) =9 and - RDER)| =~ (2.2.45)
or
(k°)?
kD (k)ky, = — % and kDL (k)ky| =1, (2.2.46)

For the real source J};(k) = J,(—k), let

A = [ / ((2‘1:; J;(lc)Déi(k)Jy(k)}

kaJ*=0

[ [ (k) N
_ {/(%)4 Tl=k) (9 + 5 5 =@k =@k ) e R) .
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/ LR S

(2m)s H k? — ie

(k)
/ (27)1 Ju (k) Dy'y (k) (k) .

Therefore A’ is gauge invariant quantity,
gaug q y

[ S8 gD 0] - .

2.2.3 Canonical Conjugate Momenta of the Field Components

g
(—k)mJl,(k:) . (2.247)

—

From (2.2.6)
) ) o)
Al — via _ gi37a A2
d ((} 0 3;;) 0A?,
1 cia 13 8a a
6(8MA) =10 -9 o 5(0,A%) , (2.2.48)
3
and from (2.2.7):

W = / (da) [~ (9,7 + 7°) 8A° + (9,1 + J°) 5141} +STI

- / (dw) | (~0RF™) 8A° = J%8A° 4 JIS A + (8,F") 8A'| + STI

= / (d2) [0 (FR8A°) + FH8(2,A°) = J°8A° + JI6 AT + (9, ) 8]
+ STI
_ / (de) [1°8Ag + JI5AT = FR8(DA0) + (9,F) A

+ ST.I+ STIV. (2.2.49)
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Considering the second term in (2.2.49) and using (2.2.6)

/ (dz) Ji5AT — / (dz) J (5 - 5i33'°‘> 5.4°
3

- / (dz) J*54° — / (dx) J?’ga‘éAa
3

_ / (dz) J*5A + / (de) (8.7°) 8135Aa

- /(dx) J25A* — / (dz) <g:J3) §A,

or

/ (dw) J'8A" = / (dw) (Ja — gaﬁ) 5 A, . (2.2.50)
3

Considering the last term in (2.2.49) and using (2.2.48)
/ (dz) (9,F") 8A" = — / (dz) F* 5(0,A")
) ia 13 aa a
= — [(dx) " (6" — 6% = | 8(9,A%)
O3
a a 3 aa a
= — [(dx) F**6(0,A%) + [(dz) F* 8—6(5’MA )
3

- /(dx) 2 §(8,A%) — / (dz) (9. F*°) ;6(%%1"‘)

3

= - [tan P50, + flan (gaFw) (8, 4%)

3

or

/ (dz) (8,F") A" = / (dx) <—F“a + g"‘Fﬂf”) §(9,A,) (2.2.51)

3
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Substituting (2.2.50) and (2.2.51) into (2.2.49):

)
SW = / (dx) {JOZSAO + <J‘"‘ — an?’) 5A.

3

—FR08(0, Ag) + <—F“a + gaFW) 5(8#5)} : (2.2.52)

3

The canonical momenta conjugate to A* is defined by

4% oW
F=r|At = — = . 2.2.53
=7 [AV] o4, ~ 5(0A,) ( )

For photon field, A° is a dependent field since its canonical momentum vanishes (7° =

0) and is given by A° = —(V?)~1J°,
m=7[A = —-F®+ g:FOS, a=1,2. (2.2.54)
But 7® = 0 because A? is not a dynamical variable.
Using (2.2.3), we have 93 F% + 90F23 - 92 [30 = ()
_PFa _ a0 _ 50 a3
_ P02 | 903 _ g0fa3

—03F% + 0, F% = =0, F*,

or
0] 0]
_ [0 jF03:_70Fa3.
o )
Therefore
T = _F0a+%FO3 _ _%Fa3

05 05 ’
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also true fora =k =1,2,3:

0 0
= % 4 ;F03 —a—OF“‘. (2.2.55)
3 3
Because 7° = 0:
T = g, = g"'mo + 9w, = —g"'n° + gt = g*hrt
T = Oy grk g’“ F% = g go ks (2.2.56)
3 3
for = 0, 1,2, 3 and solving for F'%:
0
Ot = =0, I + gﬂkaM§F03
foato
-9 F,uO F03
K + 83
V2
_ —JO + 7F03 ’
J3
or
030 0
PO = oy oy (2.2.57)
Substituting % from (2.2.57) to (2.2.56):
0 kak 03
= —qght 4 gt = F
03
O ( 030 0
o LYk 3V 3 70
——7T“—|-”8<V2 +V2J)
— gk 4 guk kO g gukr O Jo
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or

OO 3}
Fou <gw _ gukg2> T, + #kv]; JO, (2.2.58)

where 1, v =0,1,2,3but k = 1,2, 3.

Because 7° = 0 and 7 = 0, we have ¢g"’m, = gtn! = ¢g**r® and O,7¥ =
ot = 0,12
Ok _ < sha 3@%) o @’2 7. (2.2.59)
or
(Qkﬂ 5@5’2 ) - (gka _ 3@‘}) nt— Ok | g’;JO. (2.2.60)

We may generalize (2.2.58) into F'*¥ = —F"" by
w _Lsu s Y ap
F :§<()a65—(5a(55)F
1 nosv voosu 03 1 uwosv voSH kB
:5(5065—506[3)}7’ +§(5k(55—5k55)F
1 uo SV NN 0k 1 Cp SV VoSl kO
:5(506k—000k)F +§(ok50—6k00)F

(844 8" — 8" 0%) F™

l\D\H

1 1

— _§ (gu()gl/k _guog,u,k) FOk 4 5 (gp,kguo - gukg,uO) FOk
1 o sV SV SH kil
+§(5 807 — 0"k M) F

- (g,uogyk . gyOguk) FOk + ; (6uk 5ul . 5uk 6“[) Fﬂkl7

therefore

1
P — _guOFOV + gVOFOM T 5 (5;Lk 51/[ o 6uk 5#[) Fﬂcl7
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4 rvo Vaaa 14 o aaa
Jaz _[gu0<g _gkkv2>_90(gu _guk kv2 >‘|7Ta

9) 1
— (g"g"F — g% V%JO +3 (814 6%, — 675 01y) F* (2.2.61)

0,
by using a notation b* = g+ V—’;

FHy — [(guogua o guOgua) o (gp,Obz/ . guobu) 80[} T
— (9" — g"°b") J° + ; (044 61 — 0% 6m,) P (2.2.62)
or

FHv — (g,uogyo . gyogua) Gox (g)\a . bA@a) o

— (" — ") J° + ; (6" 0%y — 0% 01) FM (2.2.63)

where pu,v,a=0,1,2,3but k = 1,2, 3.
In the Coulomb gauge A* = —(93) 19, A® with b = 1,2

O
po k20 k3
T g )

— _gukgo (8kA3 . a3Ak)
3

k
_ gukaOAk: _ gukaoaa A3
3

. 900k [ Oy
_ ,uk:Ak’ wk ©0 7Ab
it o (o)

. OO -
— gtk Ak o quk ZEZP ib
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%3‘; Ab] : (2.2.64)

or by using the gauge constraint A% = —(93)719, A

020
(03)?

T = ghe {5“ + } AP (2.2.65)

with g = 0,1,2,3, k = 1,2,3and a,b = 1, 2.
From (2.2.64), solving for &, A

O, T — uk k kY ip
= g""o, [A + (83)2A

kOO,

— 9, AF AP
T Ty

V2
(03)?

AP,

or

(83)28 o (03)?

OpA® = vz KT y2

Dar® (2.2.66)

and substituting to (2.2.64)

or

and



By using (2.2.60)
i iv alau 0i 81 0
A:< —V2>7TV:—F ‘l‘ﬁj,
or
0,;0 15,
i ik 1Yk k Oa a 70
A _<5 - vz) =P
and

Combining (2.2.67) with A = —(V?)~1.J°

A= g A, = "0 Ag + M Ay = —gH0 A 4 g AT

. - 0;0, O, o+
Al = gt <gi1/ T > " +9”0702J0 =—F%+ ﬁjo-

2.2.4 Canonical Commutation Relations

Fora,b=1,2

[A*(x), 7°(a")]

0= 107263 (x — x'),

0=z

or

(20 — 2'%) [A%(x), 7 (2)] = 16%26* (@ — 2)

35

(2.2.67)

(2.2.68)

(2.2.69)

(2.2.70)

(2.2.71)

(2.2.72)

is the (equal-time) quantization rule for the physical degree of freedom A' and A2

Because m° = 0 and 73 = 0, we generalize to

§(2° — x'o) [Aa(x) , W”(a:')} = ig”0*(x — 2'),

(2.2.73)
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and using A® = —(93)719,A2

[A2(z), 7 (2")] e = ig"20% (x — x)
/ : uaaa /
[—(05) 710, A%(z), 7% (2)] e =Y 8—3(53(X —x’)
3 v,/ : yaaa 3 /
[A (l’),ﬂ' (3?)} = —1g ~ (X_X)u
z0=2'0 (93
or
9,
5(x° — 2 [A%(z), 7" (2)] = —ig”a8—a(54(3: —a'). (2.2.74)
3

Combining (2.2.73) and (2.2.74):

[A'(@), 7"(a")]

=9 [A(x), 7 (2)]

20=70 20=70

_ (5ia [Aa($> 7 WV(.I/)}

Iozx/o

+ 68 [A3(:Jc) , W”(x’)}

20—=¢0

. 0,
— igl/a(sza(54(a7 . IEI) . igl/a613764(m _ x/)’

03
or
0 /0 i v/ : va ia igaa 4 /
§(x° —2”) [A(x), 7" ()] = ig ((5 -9 a)(S(:l:—x), (2.2.75)
3
withi, bk =1,2,3anda =1, 2.
Because A° = —(V?)~1JY is just c-number,
v(a) @] |, = (@@ |,

= ot [A°(x), 7" (2")]

70

0=z
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+ 0% [Al(z), 7 (a)]

mO:m/O

= g"o(a — %) [A¥(x), 7" (a")] ,

O
Os

, o) : e,
vk O"Lk . 5137’C — g2 | 52 — (513: )
9 < Bs 9 Bs

Using (2.2.70) for j = 1,2,3

5(z° — 2'°) [A(z), 7(2)] = ig"g"* <(5““ — 6% > 5 (x — a'), (2.2.76)

we note that

w0 2@ |, =97 (0= T2 ) A7)

20=20 VIQ 20=x0
0,04 )
_ i ak v ik i3 Yk 3
=ig"yg gﬂ<gja—v/2><6 -0 ag)d(x_x/)
1 ak v a a ) Y 876 !
:1g“gkg]<gja V2 ><5k 6383>53(X—X)
il 0N (O
—19“97(09’“— %Qk) <Ok (5383>03(X—X)
where
0 9 .. 0 0
o = =Y s
¢ O’ and v d oz Ox?
Considering
: 0,0 o)
ik _ k ik _ i3%
(O V2 > (6 ! 83)
o o O 0;0 0; OO,
_ sik sik _ §i3 5ik ik k i3 kYK
FRO — G — gL
_ 61]@5]]@ . 613@ o 5zka ak 5138

05 V2 05



o .00
_ sik gjk ik k
= 0" —§ % ,
or
. 0,0 . O o 0,0;
jk Y% cik i3 Yk _ s v
(- 22) (- 22 <0 %0
In terms of the transverse delta function
ij / ij ala /
0l(x—x") = (5] _V2]> 5 (x — x)
- ((5” — b,é?J) (53(X - X/) y
or
0 (x —x') = 6953 (x — x') + Loa 1
L 4 x — x|
and
0 (x —a') = (2% — x/o)dij(x —x'),
we obtain
[Af(z), A ()] | =igMgeT (x = X)),
or
(2% — x’o) [A*(2), A ()] = ig" g ot (x — o).
From (2.2.70)
. oY
v Ov 0
AV = —F" + ﬁ‘] ,
we have
5($0 — x'o) [A”(x) , Foy(x’)] — —ighig"F 5% (x — o),
and

(2% — x/o) [A¥(z), Fo%(a))] = —ig"6F(x — 2').

38

(2.2.77)

(2.2.78)

(2.2.79)

(2.2.80)

(2.2.81)

(2.2.82)

(2.2.83)
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Generalizing (2.2.83) for F*8 with F*8 = — FPe;
FoP = — (g% — ™) F 4 ; (0%m 670 = 67 6%) F™™,
and using 0 (2° — 2'%) [A#(x), F™™(2')] = 0
§(a® — ') [AM(x), FP(a))] = ig" (7™ — g™ g™%) 6 (w — /), (2.2.84)
and
(20— a”) [P*(a), F*9(a")]
=i [(go‘”gﬁk — g7g°%) (970" — g0")
— (g"°g"" — g"°g"*) (¢"'0" — g*'0°) ] 5z — ') . (2.2.85)
We note that
§(2° — 2'%) [FO(x), FY% ()] = 0
§(2° — ) [Fii(x), F™™(2")] = 0
§(2° = a'%) [FO(z), F™(a")] = +i(o*"0™ — g*mom) 6t (x — o)
= (0™ — §mam) 6t (x — )
§(2® — &%) [Fm(z), F%(a")] = —i(skma™ — §kmam) ot (x — )

= —i(6"o™ — §"™mo") 6Nz — 2'),
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or in terms of the electric field £ = F* and the magnetic field B* = 1e¥/* % we have
(2% — m'O) [Ei(z), B (2)] =0
§(z° — 2°) [Bi(x), Bi(2')] = 0
(2 — x’o) [E'(z), B/ (2)] = +ie?™ 0™ 6" (@ — o)
— et @ — o)
5(3:0 — .r'o) [Bj(.r) , Ei(x/)} = —igdmngmyin(y — a')
— —icFok5t(z — 2').

2.2.5 Applications of the Quantum Dynamical Principle

The Schwinger’s quantum dynamical (action) principle [see (2.1.24)] im-
ply the functional derivative of the vacuum-to-vacuum transition amplitude with respect

to an external source J* is

y M
i5.7,(x) (04 [0-) = (04 [A*(x)]0-) , (2.2.86)

and for any operator-valued (q-number) function #(x) [see (2.1.30)]

.07 (01710 = (0| ()2 ). fo- )

+ (o

with no constraint on a c-number function J#(z). (That is J* need not be conserved.)

dF(x)
157, (")

0> : (2.2.87)
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In terms of the expectation value of the photon field A*(x):

(04 |A%(@)]0-)
0,00)

(A*(z)) (2.2.88)

we have

(AM(2)) = Wi(m) In (0, [0_) . (2.2.89)

We treat the equation (2.2.33):

A(z) = / (da!) D (2, 2') ("),

as a classical equation, replacing by the g-number field with its expectation value
(A*(2)) = / (da’) D2 (2, 2') J, (2'), (2.2.90)

where D’ (x, ') is the exact photon propagator. Obviously, the expectation value of

the photon field A*(x) in the absence of an external source J# is

()| =0, (2.291)

J=0

From (2.2.86) and (2.2.90), we obtain the functional differential equation for the

vacuum-to-vacuum transition amplitude

5 / v / /
5 (041090 = [(@a) D) 1) 00 (22.92)
and the solution is
(0,]0_) — exp B / (da)(da’) Ju(x) D (w, ') T (") | | (2.2.93)

with normalizing by (0, [0_ 1.

>|J:0:
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For the functional derivative, the photon field A%(x) does not depend on an ex-

ternal source J° but the dependent field A°(x) depend on J° by (2.2.24). We obtain

§A%x) iy ,

and generalizing to

dAM(x) ., 5 0A%(x)
i5.7,(z) "7 isg8(w)
5A°(z) SA'(x)
_su 0 w0
%09 i5J9(a") 0%y i5J9(x")
. §A°(x) SA(x)
o vk M. vk
OIS iy T S ()
_ _guOgVO 6140(.%')
16J0(z")’
M) _ oo L gacy o) (2.2.95)
léjy(x/) VQ 9 L

are both c-numbers.
From (2.2.87), we have

a7, (0410 = (0 (@), Jo- )

+ (o

<o+ ‘ (AO(;C)AO(:C'))+(0_> ~0. (2.2.97)

dAH(x)

157, (')

0> : (2.2.96)

imply
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The expectation value of A* depend on J*:

Léjf(x’) <AM($)>} T —iDg (@, 2"). (2.2.98)

We note that

b | 8 "
iﬁjy(xl) <A ($)> = (05 [0) iéJl,(x/) <0+|A ( )|O_>

e 1 0
— (A*(2)) 0,10} 18, () {

0, 10-)

d
<0+TO> 57, () O 1A @)10-)

— (AM(2)) (A ()
o WO A AV SAH(x)
57 (@) = (@A), ) + <Wy (m,)>
— (A*(x)) (A¥(a")) | (2.2.99)
and

Lé Jf(x/) <A“(x)>} = <(A“(w)A”(a:’))+>J:0 + < dA%(x) >J_O . (222.100)

16, (x") /,_

The exact photon propagator is

DE (z,2)) =i < (A*(z) A" (")) +> 7t g“og”°v12<54(a: — ). (2.2.101)
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From the classical equation (2.2.30):

—[OF* — (gyaap . guaau) o (gm'au . guiau) alan Ja;
we have
(04 |[F™(2)]0-) = D" Jo(x) (04]0-) (2.2.102)
or
(F™(z)) = DM Jy(2), (2.2.103)
and
x)) = —iD* et (x — 1), (2.2.104)
where
1 : ;0%
,ul/ozE vaqu _ poqry vigp ;u v ) 221
D= (00— ) - (0 ) | e2105)
From (2.2.87), we have
S 0oy = (o, |2
i, (x) T B YA
+ (o, ‘ (F*(z) Aa<x/))+‘0_> , (2.2.106)

or

1 d o ()
(0,00 16, () O+ 17 (@)]0-) = <16J )>

+ <(Fw(:c)A°‘(fC’)) +> : (2.2.107)
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But in terms of the expectation value of F*¥(z), we have

o w1 5 i
1d.J, (") (" (x)) = (0, [0_)i8J,(2") <O+|F ( )}O—>

HY (e 1 5
— (F™(x)) 0,100 () (+10-)

5
<0+TO_> TIACD (04 [ (x)]0-)

= (F"(2)) (A*(a")) ,
<ojo> iéJj(.r’) (04 |F*(2)]0-) = wj(x,) (PP ()
+ (P () (A% (a')) (2.2.108)
We obtain
(i) g e~ (2
+ (F(x)) (A%(2)) (2.2.109)
and

<(FW(:JU)A@(96'))+>J:0 = L Mf(x/) ( FW(@«»} - <f£;(fj§ >J_0 . (22.110)

For the bosonic g-number functions A4(x) and B(x’), the (chronological) time-

order product is defined by



or
((a@)3(2), ) = 0" = ) (A(2)B(2")
+ 02" — 2% {(B(2")a(x))
Because
% ((A@)3(), ) = =" =) (a(@)3(")
+0(a° = ") (a(w) B (')
+0(2" — 2% (B(2")a(x))
+0(2" — 2°) (9 B()a(x))
% ((a(@)3(), ) = ((A@)%3("), )
— 32" = a) ( [a(2), 3] )
and

% ((a()3()), ) = ((A)9f3(2)), )

Combining (2.2.112) and (2.2.113) into

o {(a()()), )

I
S
—~
)
=
==X
R
&\
N

Jr
~_—

46

(2.2.111)

(2.2.112)

(2.2.113)

(2.2.114)
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or

— gu0d(2® — 2’°) < [a(), ’B(x')]> . (2.2.115)

From (2.2.109):

(P ) = i (00 = (i)

+ (P () (A%())
we have
(P (@)07A2 (")), ) = 07 ( (P (@) A%(), )

97620 = o) ( [P (@), A°(2")] )

/ d uv / 6F#V(I)
- aﬁiéJa(x’) (Fta)) = o <15Ja<x’> >
(P (o)

P - [P 00

or

(P taa @), ) =5 o 1) - (5705

+ (P (2)) (0PA*(2)))
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+ 9’605(:50 _ x'o) < [FMV(m) ’ Aa($’)}> . (2.2.116)

By defining the operator

) = Ok (2.2.117)
and the operator
P (x) = 0MAY (z) — 0"AM(z)
_ aﬂiwf(x) - avmi(x) , (2.2.118)
we write the quantum dynamical principle (2.2.86) as
AB(z) (0410-) = (04 |[A#(x)]0-) | (2.2.119)
and write the equation (2.2.99) as
Ar(a') (AP (z)) = <(A“(x)A”(a:’))+> — (AP(x)) (A () | (2.2.120)
where
(AM(z)) = <ojo_)@(“") (0,]0_) . (2.2.121)

Writing the equation (2.2.109) as

<(FW(;U>AQ(;U'))+> = A (a) (F™ (z)) — <2a(x')FW(x)>

+ (F*(2)) (A%(")) , (2.2.122)
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and from (2.2.116), we obtain
(P @) (a)), ) = P!y (P (@) = (F2(a) P ()}
(P () (FP())
+9°0(a® =) ( [F*(@), A°(@)])

— ¢75(2° — 2'°) < [F (), A"‘(x’)]> 7 (2.2.123)

where

iz _ 1 Al
<F (x)> = <0+|0_>F () (04 ]0_) . (2.2.124)

We note that

d 1 5

16J5(2") <FW($)> - (04 ]0_)18.J5(2") () (04]0-)

1 1 5 S
T 00100 [0, 10y o) 100 B ) (04]0-)

1 5 -~
~ {0, ]0-) i6]g($/)F () (04]0-)

— (A7) (F* ()

or

RN S e
A (P (a)) = gy AP @) (0410-)

— (A%(a)) (F* () (2.2.125)
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Po3() (@) = g5y o) P (@) 04 J0-)
— ("™ (2)) (F*P (")) , (2.2.126)
and rewriting (2.2.123) as
(@), ) = oo P P @) 0 fo-)
. <Faﬁ<x/)FW(x)>

+ 2% (a” — 2) [FP(z), AP(a))]
_ QBO(;(J;O _ x/O) [F’“’(x) : Aa(g;’)] ’ (2.2.127)

since [F"(x), A*(2)] is a c-numbers, <[F’“’(a¢) , A%(2)] > = [Fm(x), A*(a))].

From (2.2.62):
FHY — [(guogua _ gl/Og;wc) . (guoby . guobu) 8a:| o

- (g,u.Obu . gVObu) JO + ; (5Mk (Syl o (Syk 6/4[) Fkl,

we have
SFM™(X) . w0 f pory  wora st /
i5T,(2) Y (970" = g"0") 0%z — "), (2.2.128)
or
A%(a) Fr(x) = ig™ (g0 = g"0") 6*(x — o). (2.2.129)

8/5121\(1(17/) FHV(.T) _ iga08/5 (g,u,Obu _ gu()b,u) 54(1, . LL’/)
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= —ig*0” (g"°b" — ¢"°b") 6*(x — 2'), (2.2.130)

and

AP () P (z) = —ig™0® (90" — g"°v) 6 (x — o). (2.2.131)

Therefore
ﬁaﬁ(m’)F“”(w) = —i (gﬁ‘)@o‘ — gaoﬁﬁ) (g“ob” - g”ob“) 54(:c —a'), (2.2.132)

is just a c-number, <F\aﬁ(m’)F“l’($)> = F\aﬂ(w/)FW(@")-

From the commutation relation (2.2.84):
02" =) [A¥(w), F2(a")] = ig" (9°°9™ — ¢Pg°") T (w — @),
where 0% (z —a’) = (6% — b10F) §*(x — 2’) and V' = g 3" we have
o(a" = a®) [A(a!), F*0(a)] = ig" (9°°9™ — 97g*) 6T (2’ — )
0(a" =) [FF(x), AM(a')] = —ig" (¢°°9™ — ¢%g™*) 6 (z — '),
because 6% (2’ — x) = §*(x — a’). Therefore
§(a - :U'O) [F*(2), A(a")] = —ig™ (g"°g"% — g"0g"*) 6 (x — 2') . (2.2.133)
Let
b = g°%5(2° — o) [ (x), A%(2')]

— ¢P5(2° — 2°) [P (z), A%(2)] | (2.2.134)



52

we obtain
¢ = —i(g°°9% — g™ g°") (g"°g"F — g"g"*) (2 — o)

= —1(9™9" = g7g™) (979" = g0g") (6" = 1'0") ' (w = a')

= —i (g*g" = g7g%) 6 (9"°9"F — g0 g"*) 6 (w — o)
+i(9°%9% = 9%9™) (979" — 9"0g"*) V'O 6! (2 — ')

= =i (g°°%" — 9%¢"") g (9"°9"* — g"°g"*) 6*(x — o)
+i (g% — ¢%¢) Oiby, (9"°g"F — g"°g"*) 6 (w — o)

a0 Bo B0 _ao

= =i (9" = 97°9°%) gor (9"°9"* — ¢"°9") 6*(x — )

+i (ga()gﬁa _ gﬁogaa> 8(7[?)\ (guOgV/\ _ gVOg,u)\) 54<$ . I’l) 7

or
P = —i(9*°¢" = ¢79°) gor (¢"°9" — ¢"°¢"*) 6" (x — )
+1(g°°9° — g7°0%) (g"°b — g"°W") 6*(x — ). (2.2.135)
But from (2.2.132):
(P2 P (@) ) = =i (70" = g°°07) ("W = g"0") §*(x — o)
we have

b — —i (gaOgﬁo _ 9609a0> Gor (guogux o guog;m) ()4(27 _ I/)
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+ (PO P () )
— (PP (2)) + g°0(a® = ) [F**(2), A°(a)]
= ¢%8(a® = 2) [P (), A% (a")]
= =1 (99" = 49°7) gor (99" = 9"°9") 0* (& — &). (2.2.136)

From (2.2.127)

(P @) Fa), ) = For(a!) P (z) (0. 0-)

we have

(Pr(a) PO,
<

_ 1 Haf II v T
= o P @) 00

— (gaogﬂa _ gBOgaa) Gor (gp()gu)\ . gy()gu)\) 54($ N I/) ' (2.2.137)
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From (2.2.31), we obtain

() = o (670"~ 00) 4o (¢ DO Sa), 22138)
or
(04 [P (x)]0-)
= _Dl_ - (970" — g"70") gox (¢ — b*07) J,(2) (04]0) . (2.2.139)
Because of
() (04]0-) = (04 | F#(2)[0-) (2.2.140)
therefore

P (@) (0410-)

1

-0 & (970" — g7 0") gox (97 — 207) J,(x) (04 ]0-) ,  (2.2.141)

and

d

o s(a) 1 010)

—1

:—D—ie

(970" = g"70") gox (g7 — b*07) 6%, 0* (2 — 2’) (04]0_)

1 d
Vo Qu Mo Qv AY Ay
+ “O_u (g ot — g0 )ga,\ (g b0 ) Jy () 71&75(36’) (0410-)

—1

= g (979" = 9779") g (¢ = 007) 8% (w = 2) (04]0-)

+ (F"(x)) Mé(x,) (0,]0_), (2.2.142)
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or
AP(a!) F™ () (04 10-)
= _D_i_ie (970" — g"70") gox (¢ — 0207 6*(x — &") (0, ]0_)
+ (PP (2)) (04 [AP(2")[0-) | (2.2.143)
o AP (@) P () (04 [0-)
_ _D_i_ié (60" — gh0") gox (PO — B820°) 6%(x — ') (0,4 |0)
+ (P (2)) (04 |0 AP ()]0-) . (2.2.144)
Because of
gosta—o)= L e —a) =~ O fia—a') = —0°6a - o),
da!, O4
therefore
o AP (o) F™ () 04 ]0-)
_ _Di_ie (470" — ¢0") gox (690° — 6°0%) 6*(x — o) (0, |0_)
+ (P (2)) (04 |0 A% ()] 0_) (2.2.145)
or

97 A% (') P () (0] 0_)
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i

= 00— (970" — g"70") gox (97*0° = b20°0) *(x — o) (04 |0_)

+ (PP (2)) (04 |07 A(2")]0_) (2.2.146)
and hence
Fe(al) B (x) (04 0-)

i

= 5 (970" = g70") gon (970" = 90P) 84w — 2') (0. ]0-)

(P (@) (0, | PP (a)0-)

or

1 HaB (. 1\ Ty

ooy P @) (04 100)

= _Dl_ - (gaaaﬁ _ gﬁaaa) Gon (gu/\ay _ gl/)\g,u,) (54(1, _ (IJ’)
+ (F* () (F()) (2.2.147)
1 B (I T _ 1 Suv (N Daf

symmetric in & < g and § < v
1 ~ ~

S PO () PR () (04| 0

0 FUE P 00|

i
- —ie

(9270° — gP70%) gox (910" — g 0") §*(x — '),
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and also
Fo(al) P (2) 0410-)|

= _Dl_ (97707 = g770%) goa (970" = g0") OM(w —a') . (22.148)

e From (2.2.148), we have
P () (0 ]02)]

- —Dl— = (970" = g70") gox (9™ = ¢7*0°) 6w — &)

i

_ 009i9j  0j9iq0 _ i090qj ij0a0| 4/ s
o [P0 — 0 — g0 + g1 5w =),

or
F(a') FO _ (8, — 0| 64w — 2
o) FY@) (02100)] = 5 |09 (a)" - 0| d'(a — ).
(2.2.149)
Therefore
DN 7y i i 2 iaj| s4 /
Fi(z') B (x)<o+|o,>]J:0: e [o (3%) —aa]o (x — ')
(2.2.150)
Note that
[E(;ﬂ) - B() (0, m_>] = _Dl_ - [3 (30) — v?] Mz — '), (2.2.151)
[E(a;’) x B(z) (0, |0_>]J:0 = _D_i_ -V X Vi (z—a2)=0. (2.2.152)



e From (2.2.148), we have

[P P 0.0
= _Dl_ - (gia@j _ gjaai) Go (gm)\an . gn)\am) 54(1' . 37,)

_ _Dl_ - [gimaj(?n B ginajam _ gjmaian + gj”aiﬁm} 54($ - I/) )

or

P!y (@) 040-)

J=0

— 1 M Aajan _ fingjam _ £im Qi qn naitagm | s4/,. ./
e [0 = O — UG 4 50" | 5w — o)
(2.2.153)

and

1 ...~ 1 ~
|:2 Eki’t_] Ak (I/> 5 8lmanmn(I) <0+ |0>}

J=0

L s i ki i
— 7 1, mn lmaj 877, _ 1] ~tmn 'Lnaj am
] G Sren

_Ekijslmno‘jmaian + Ekijglmn(gjnaiam} (54(55 _ x')

i

T _O—ic4

|:€kzg Elmaj o — glmjglmzaj am

—ckiiglingign 4 skijslm@i@m] Mz —2)

— Dl : le [5ikjgiln8j8" + gikjgilmajam
—Ll—1€

eitizingion 4 cibzimgign | (s — o)
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:—D—ie

i
-0 —ie
i

:—D—ie

Therefore

Bi(a") B (x) (0+]0-)

From (2.2.150) and (2.2.154)

A ~

[(Bi(a') (@) = B() B (@) ) (04 ]0-)]

:—D—iE

or

[(P'(a") B (@) = B(@) B (@)} (04]0-)]

or

i

:—D—ie

i

Kﬂfyﬂ@—ﬁwyﬁ

Note that

B(2') - B(x) (0. ]0_)

J=0

i

(2)) (0+10-)]

2i
-0 —ie

5ikj£iln8jan(54($ . .1’/)
(6kl(5jn . 5kn5jl)8jan54(x _ .I/)

(MV? — 980" 6t (v — o).

J—o = T—]E ((5”V2 - alaj)(54($ — x/> .

J=0

189 (00)* = 69V2| o'(a — )

=954z — 2'),

J=0

= 3id* (v — a') .
o i0%(x — ')

Vit (x — ),

59

(2.2.154)

(2.2.155)

(2.2.156)

(2.2.157)
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B(z') x B(z) (0,]0_)] = g5 VX Vét(z—2')=0. (2.2.158)
e From (2.2.148), we have

P!y (@) 04]0-)

J=0

= _Dl_ - (gOaai - gi080) Go (gm)\an . gn)\am) 54(1: . LE/)

i

|:90mazan _ QOnazam _gzm808n _l_gznaOam} 64(.17— CC/>,

T —O—ic
or
0, 1\ TYmn i m qn n gm /
FOl) () (04]00)] = =g [670" = 670" | 06 (@ — )
(2.2.159)
and
7304 /1 imn Lymn
Ol (af) = T E () (04 0_)
2 J=0
i 1r . A .
_ - jmnsiman _ _jmn §in Qm 4 )
= O_ialt OO — e 68]80(5(m ')
1 17 . o
— T | sJingn o jmigm 4 o
T-walf o —e 8}80(5(31: x')
1 10 .. g
_ = | _Ligkak _ _ijkak 4 o
O, e - 3]805(x 7).
Therefore
- —1 ii ,
[E’(x ) B (x) (0, |o_>] =g daee ), (22.160)
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and

—1 o
— 7617,]57,]/68168064(37 o x/)

"B () B () (04 ] 0
eV B (2) B (x) (04]0-)) =5

- - 5“%”’“8'“8054(1; o I/)
1€

-
:fT—wak 5§17 kDo (2 — ')
_D - 00t (a — ).
Note that
[E(:ﬂ) . B(x) (0, | 0,)} =0, (2.2.161)
Bl) x B() (0,]0)] = _Die%v&@—x) (2.2.162)

e From (2.2.148), we have

Fr(aly F%() (04 ]0-)]

J=0

i

- (gmoan . gngam) Go (90)\81' o gi)\aO) (54(1’ . .T/)

-
= gt — g — g0 1 gron ] ot e — o),

or
F(2') FO(z) (0, ]0_) i 5WW/5WWL%&@—x%

J=0 —D
(2.2.163)
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and
3 ) P 04100)]
= —Di— ic ; I — | oyt (a — o)

_Di ¢ ; or — <m0 (@ — o)

_Di . ; :_Sijkak _ gijkak] O00*(x — ') .
Therefore

[éj » E%( (0, 0. >] e _D—l_16 IR IF Q5 2z — o) (2.2.164)

and

; ik gk 900t (x — 2)

—1 L
_ pjlzgjzkakg 54 o
— & 0 xXr X

-0 —ie ( )

(éllézk‘ 5lk6u) 8k8054(x o Q?l)

—D
—D2 "0 (x — 2') .
Note that
[ﬁ(x/) - B(x) (0, [0_ >L20:°’ (2.2.165)
;

80V5 (x —a'). (2.2.166)
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Let
Waﬁ,;w = _i(gaogﬁa . gﬁogaa)ga)\ (guogu)\ o gyogu)\)54(m . LL‘/) 7 (22167)

symmetric in « < p and 3 < v, we obtain

wOj,Oi — —1(51]64({1] . l'/)
(2.2.168)

men,Oz — LpOz,mn — pmnij 0’

and from (2.2.137), we have

(P Fedan), ) = Fod(a) P () (0,4 ]0_) + w3

(0, ]02)

1 ~ ~
= (Y FP(2) (04 [0_) + w8 (2.2.169)
(0410-)

<(FM'/($)FO‘5($/))+> _ <(FO‘B(JU)F“”(x’))+> ’

symmetric in « <>  and 3 < v. Together with (2.2.147):

FoB (") v ( +|0_
o107 P ) (0410

i

— o= (gaaaﬁ o gﬁaaa) Jor (gu)\ay _ gu)\a,u) 54(1, _ SC/>

+ (PP () (F°())
we obtain

(P (@) (), )

i
- —ie

(gozaaﬁ o gﬁaaa) Gox (g,u)\au o glz)\a,u,> 64(1' _ xl)
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+ (F%(z)) (F™ (2!)) + wodm (2.2.170)
or
(P (@) (@), )
- —Di— (97707 = g770%) gor (940" — g70") 6z — )
— (979" = 9%°9°7) gor (99" — 9"°9"*) 0" ( — 2)
+ (F8(2)) (F™(2)) (2.2.171)
and
((Fo@ P (), )

i

:—I:I—ie

(gomaﬁ . gﬁoaa) Go (gu/\au . gu)\8u) 54(1' . 37,)

_ l(gaogﬁa _ gﬁogaa)gg/\ (g,u,Ogy)\ _ guogu)\) 54(35 _ .’17,) ) (2.2.172)

e From (2.2.169) and (2.2.168), we have

1
(0,]02)

(PP (), ) = FO (@) PO (2) 0, [0 ) + w00

= oy ) P @) 040

— 10954z — 2), (2.2.173)



and from (2.2.149), we have

(P @)Y (@), ) = [P () (0,]0)] =107
= gy @) -] et )
+ _Di_ 0V 00 @ =),
(P Fo(),) = (5972 = 00 ' — ),
or
(F@EE),) = (0992 - 99) oa — ).
Note that

e From (2.2.169) and (2.2.168), we have

((Fi(z)Fm™ (@), )

and from (2.2.153):

1
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— ')

(2.2.174)

(2.2.175)

(2.2.176)

(2.2.177)

- Fi(a) Fn(z) (0,0-) + i

(0, ]02)

= oy @) 0o

Fii(a) F™ () (04 0_)

J=0

(2.2.178)
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i

— ﬁ 6zm8jan - 5majam - 6Jm818n+5jnazam (54(.%’—1’/),
—Ll—1€

we have

(F"j(m)Fm"(:Jc'))Jr
< )

J=0

(Fij(I>an(.fCl))+
( )

J=0

i
- —ie

[o‘imaﬂ' o — §neigm

—§MIO" 4 5™ | (@ — ), (2.2.179)

i ghid glmn <(F”($>an(x/))+>

J=0

_ _Dl_ > 1 |:€k;’Lj glmnozmaj o — Ekzjglmn(smajam

_Ekijglmnéjmaign + Ekijglmn(sjnaigm} (54($ _ .ZUI)

_ _Dl_ - Z [gkzgglmajgn o gkmelmzajam

ki lingign gkijglmjaiam] 54(33 — )

= g [ 4 g

| ikigingign | gjkigjlmaiam} 3z — ')

:7ikjilnjn4 A
O oo (w — a')
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::E%EQWM_M%WWW&@—W)

i

(5klv2 . 8’“81)(54@ . I/) 7

T —O—ie
or
<gm@3«fn9kﬂz_Dik(WV%—yw)#@—x» (2.2.180)
Note that
<Gﬂ@'3@”+ko‘f4jikV%%$_f% (2.2.181)
«Bu)xB@ﬂLLﬂ:O. (2.2.182)

2.3 Gauge Transformations in QED

The Lagrangian density for QED is given by a well known expression

[Manoukian (1986, 1987a)]

$=—iﬂﬁww]{(%¢>ww—ww@f]—mww

2 1
+ eopy A + T + Y + A J* (2.3.1)
where
F=0,A, —9,A,, (2.3.2)

n, n, J# are external (c-number) sources with 7, n anticommuting, and no restriction
is set on J* (such as 9,.J* = 0) in order to carry out functional differentiations with

respect to all of its components independently.
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2.3.1 The Coulomb Gauge and Arbitrary Covariant Gauges

Our starting point is the vacuum-to-vacuum transition amplitude in the

Coulomb gauge given by Manoukian (1986, 1987a)

(0, ]0_) = exp [i /(d:c) z{} (04 102)y = Ze[n,m, J] (2.3.3)

o d )
(0,7, J) = " 2.3.4

where
(02100 = exp i f(dn)(d') n(o)Si (o, (o)

X exp B / (dz) (') J“(w)DEj(m,x’)J”(m')} , (2.3.5)

with S (x, 2’) denoting the free electron propagator,

d . p
Sy(x,2') = /<<2:))4 S, (p)eP@=) (2.3.6)
where
TP+ mg
Sy(p) (2.3.7)

p? +mE —ic’

and D¢’ (z, 2") denoting the free photon propagator in the Coulomb gauge,

d : /
e (o) = [ o P, (238)



where 3 \
. . ¢ 1
Dzk: _ O‘zk: _ 749
fo) = (- 10)
DzCO+(Q) =0= D&-( )
1
DOO q) = T 9
C+( ) q2 ]
or

v a aiqqu v kaqV 1
Dé-i-(Q) = <gu -9 ;2> Jap (gﬁ _gﬁ q? ) ¢ —ie’

We introduce the generating functional
Z[ﬁ?ﬁv K; G] = €exp [1 /"%/(papa K):|

X exp 1 / (dz)(da") p(z)S4(x — x’)p(m’)}

coxp |5 [(da)(@) K008, () (o)

where in the momentum description

/J,ZIG2
7 TG,

y el
Dé+(Q) - <g# - 9 )

q q

and G(¢?) is arbitrary.

‘We show that

Y

p=0,5=0, K=0

Zcn,n, J] ="' Z[p, p, K; G

where

W' = / (dz) n(z) exp [_ieﬂauiéKi(x)} ié/ix)

69

(2.3.9)

(2.3.10)

(2.3.11)

(2.3.12)

(2.3.13)
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o) 2 e

d
+ /(dx) ((guo - a“é’a) JO—(JT)> W s (2314)
and
k
at = (o, sz) :gﬂ’fgz, (2.3.15)

relating the Coulomb gauge to arbitrary covariant gauges.

To establish (2.3.13), we start from its right-hand side. We note, in a matrix

notation, that

e’ exp [ipS, p] exp B K,D¢ K, 1/:|

=exp |i| p+7nexp | —iega” 2 S + exp |iegat 2
= exp p T Nexp 00 +1P poiéKun
i P A
X exp {2 (KH + (G — a,05) T )DG+ (KV + (gor — a,00) )} , (2.3.16)
and since ﬁf{(p, p, K), is classical, is invariant under transformations
p(x) — p(z)exp (iA(z)) and p(z) — exp (—iA(z))p(x), (2.3.17)

for an arbitrary numerical function A(x), and we eventually set p = 0, p = 0, the

right-hand side of (2.3.13) becomes
exp {i /-i”{(n, 1, J)]

x exp |1 | mexp | —iegat 0 S, | exp |iega* y
p 1 exp 0 N + P |1€o N n
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i

5 (Bt (900 = 005) 77 ) DL, (Ko + (900 — a,@)ﬁﬂ . (23.18)

xexp[

with K, — 0. Now we use the identity

exp [ieo /(dx) <15776($)7M1677ix)8“A(m>>} exp [i7541]
—exp [i (%) 8y (7o) |, (2.3.19)

to rewrite the above expression as

d d d
. wo _ ngo .
€xXp |:1€0 /(dx) (1677(1')’)/#1677(37) (g a )16KU(J§')>:| exXp [lT} +77i|
i o\ v A
X exp {2 (KN + (Guo — a,05) 7 )DG+ (KV + (gor — avdh)J )} . (23.20)
which for K, — 0 reduces to the left-hand side of (2.3.13) since
(Guo — @u05) DA (gur — a,0) = DS (2.3.21)

Almost an identical analysis as above shows, by noting in the process,

(g;w - a,uaa)Dg"; (gzz/\ - 'd,,ék) - (DO) oA = D{;;— s (2322)
with
_ 0, o
Ay = i, 0= d“d , (2323)

where the right-hand side of (2.3.22) defines the photon propagator in the Landau gauge,

with G in (2.3.23) set equal to zero, that

Z[n,0, ;G = 0] ="' Z[p,p, I; ] , (2.3.24)

p=0,p=0,K=0
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where W' is given by the expression defined in (2.3.14) with a* in it simply replaced by

a*, thus relating the Landau gauge to arbitrary covariant gauges.

2.3.2 The Fock-Schwinger Gauge

The Fock—Schwinger gauge 2#A,, = 0, allows one to write

kA
A= Tk (2.3.25)
T
which upon substitution in (2.3.1), and varying . with respect to A* yields
g @t 0 i, ot
0, FH" — E%F“ =—7 4] prg (2.3.26)
where
g = eqpytip + I (2.3.27)

We note that (2.3.26) holds true with k replaced by 0 in it giving 0 = 0, i.e., we may

rewrite (2.3.26) as

v

v x” v 0L _
aMF;L _ EaﬂFﬂo = —j +]OE = S7. (2328)

By taking the derivative 9, of (2.3.28), we may solve for (9, F*°) /°,

g

Gt (ax)—lag <_ja+j0‘;0> , (2.3.29)

which upon substituting in (2.3.28) gives

1

O = =g =" (92) 7| (2.3.30)
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By taking v = k, and taking the derivative 0y of (2.3.30), we may write

1

0
~00A° =

(ag O AF 4 aksk) , (2.3.31)

which when substituted in (2.3.30) gives

o 1
AV =[0O7'sY + =P <akA’<f — Daksk’> . (2.3.32)
That is, A" is of the form
AV =071 + 0. (2.3.33)

For v = k, and multiplying (2.3.33) by :ck/xo, we have from (2.3.25)

k
i
A° =

nosts f;aka. (2.334)
On the other hand, directly from (2.3.33) with v = O in it,

A =07"18° 4+ 9%, (2.3.35)
which upon comparison with (2.3.34) leads to

rda=—2"0""S9,. (2.3.36)

From (2.3.33), (2.3.36) and the definition of S” in (2.3.28), we obtain

1 1 1
Ve — g = H° o — Tu—0, )77, 2.3.37
A D(g x3+2x><g“ x”@x >J ( )

where we have noted that 0 v = 4 + x 0. It is straightforward to check from (2.3.37)

that 2, AV = 0 is indeed satisfied.

To establish the transformation from covariant gauges to the FS gauge, we have
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to pull J7! in (2.3.37) between the two round brackets. To this end we note that

Oz0=(z0+2)0, (2.3.38)
and hence
(Czd) ' = (o) 'O ' =0 (wd+2)", (2.3.39)
ie.,
1 1 11
Oz0+2 200 (2:340)
We may also use the identity
1 1 o
—at=at = —-2— 2.3.41
o Tfo” To (2341)
and since 0" when applied to the second factor in (2.3.37) gives
i 1
M| Guo — xua—x&, =0. (2.3.42)
We obtain from (2.3.40)—(2.3.42), (2.3.37)
AY = g — 8”La’“ b - L& 7 (2.3.43)
=\g mé’/ (—D) gua “8:1: ] - o

Now we invoke the transversality property in (2.3.42) to rewrite (2.3.43) as

1 1 1
v v v 2 po P g N
AY = <g -0 s x ) 7( ) [gup — H(D)ﬁuﬁp] <g - —xﬁ )]U, (2.3.44)

where H(0) is arbitrary on account of (2.3.42).

It remains to set

1
g* — x’”a—a" = 0", (2.3.45)

T
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and note that for the factor multiplying j, on the right-hand side of (2.3.44),

(al(@) = [ (@) (@) @' 10"k} (| (D),

x”’> (0P |2’y ,  (2.3.46)

where, as shown in detail in the next subsection (§2.3.4), we have noted that

(fteay ) - (v

and we recognize <x” " > to have the very general structure in (2.3.12).

0" (x 8) s ot (8 x)flﬁ”

:c> , (2.3.47)

(Dn),,

Hence we may write, as in (2.3.13),

: (2.3.48)

p=0,p=0,K=0

Zes[n,m, J) =" Z]p, p, K; G|

where W” is given by (2.3.14) with a* in the latter replaced by z# (9 x) !, [For inter-

pretation of x* (8 a:) 19" see the subsection (§2.3.4) that follows and also Kummer and

Weiser (1986).]

2.3.3 The Axial Gauge

The axial gauge n*A, = 0, with n” a fixed vector, is handled similarly,

with A” in (2.3.43) now replaced by

1 1 1
AV = g™H —=0"——n* | —— o —Nu——=0, )75, 2.3.49

and a similar expression as in (2.3.48) holds with a* in (2.3.13) replaced by n*(n.d) ™'

in it.
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2.3.4 Explicit Derivation of the Identity (2.3.44)

For an explicit derivation of (2.3.47), we multiply 0" by —i and write
9" (x 8)71x“ = (op+ 1) prar = Z(—l)"(xp)"p”x“ , (2.3.50)

n=0

upon moving, in the process, p” to the right. Using the identity

(dp) ix
(x“Pu)q)——u/kdx)(2W)4|x><p|14)e P (2.3.51)
we note that
[T (dps)
o [0l
x elon(Pn=Pn-1)gi@n-1(Pro1=pn-2)  ol@1PL |0 Yy | (2.3.52)

and hence

m
n=0 i=1

<£L’ 9" (z0) Lm m'> = Z(—l)"/ [ (da;) ((2p)1xipi] prad(x — )
x @TnPnmPnt)gitn1(pno1mpn2) | gimpigTienr (2 3 53)
This may be rewritten in an equivalent form by making the change of variables

TL=Yny - T =Y1; P1= —qn,---Pn = —q1, (2.3.54)

leading to

(a

n

m’> == f:/ [H (dyi)((;g;lyi%] ™M q( 6 (yn — )

i=1

& (2:0) Lt




W ol oly1(22—a1) iyv2(93—42) o =iyndn

On the other hand,

<:Jc ‘:1:“ (Ox) o

R

and
(dp) ipT
(p#xu)op N /(dx> (2m)* [p){elpa e,
w1 (dps)
(p2)" = / [l} (i) (g eyupivs
x @1 (P2=p1) | gimno1(Pr—put)g=iEnpn | V(g |
leading to

n

Z/[H du;)

x“(@a:

(a

X eiwpl eixl(pQ_pl) . eiw”lfl(pn_pnfl)e_ixnpn

which upon comparison with (2.3.55) establishes (2.3.47).

4ple] atplo(x, — )

Y
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(2.3.55)

(2.3.56)

(2.3.57)

(2.3.58)

(2.3.59)



CHAPTER III
SUPERSYMMETRIC METHODS IN THE

INVESTIGATION OF THE QUANTUM
ELECTRODYNAMICS OF MANY-PARTICLE
SYSTEMS

Supersymmetric methods have had interesting applications in potential theory
in quantum physics as well. Such supersymmetric methods are applied, in the present
chapter, in potential theory in the quantum physics of many-particle systems with very
general Hamiltonians of the form given below in (3.1.2) with potential energy defined
in (3.1.1), and, in particular, a rigorous application is given to develop a lower bound
for the ground-state energy of the quantum electrodynamics of charged many-particle
systems of bosonic types. The study of the nature of the ground-state energy of Hamil-
tonians of interacting many-particle systems is of central importance for the investi-
gation of the stability of such complex systems. Over the years much work has been
done in deriving rigorous bounds [cf. Dyson and Lenard (1967); Dyson (1967); Hall
(2000); Lenard and Dyson (1968); Lieb and Thirring (1975); Lieb (1979); Manoukian
and Muthaporn (2002, 2003a,b); Manoukian and Sirininlakul (2004); Muthaporn and
Manoukian (2004)] on the exact ground-state energy of such Hamiltonians and, in
turn, establish stability or instability of the underlying systems with main emphasis
on systems pertaining to matter in bulk. The instability of so-called “bosonic matter”,
i.e., for matter obtained by relaxing the Pauli exclusion constraint [cf. Dyson (1967);
Lieb (1979); Manoukian and Muthaporn (2002, 2003a,b); Manoukian and Sirininlakul

(2004); Muthaporn and Manoukian (2004)] is a result of a power law behaviour N7 of
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the ground-state energy, where NNV is the number of negatively charged particles, with the
exponent «y such that v > 1. Such a power law behaviour, with v > 1, implies instability
of the underlying system, since the formation of such matter consisting of (2N + 2N)
particles will be favourable over two separate systems brought into contact, each con-
sisting of (N + N) particles, and the energy released upon collapse, in the formation
of the former system, being proportional to [(2N)7 — 2N7], will be overwhelmingly
large for realistic large N, e.g., N ~ 102, It is interesting to point out that if collapse
occurs, then the radial extension of such a system does not decrease faster than N -1/3
[Manoukian ez al. (2006)] upon collapse, as /N increases for large N. On the other
hand, for ordinary matter, i.e., for which the Pauli exclusion constraint is invoked, the
ground-state energy has the single power law behaviour ~ N [Lieb and Thirring (1975);
Thirring (2005)] consistent with stability. In this respect, as the number /N is made to
increase such matter inflates and its radial extension increases not any slower than N'*/3
[Manoukian and Sirininlakul (2005)]. In recent years there has been also much inter-
est in physics of arbitrary dimensions [cf. Forte (1992); Hatfield (1992); Manoukian
and Muthaporn (2003a,b); Muthaporn and Manoukian (2004); Semenoff and Wijew-
ardhana (1987)]. In this respect it is also quite important to investigate if the change of
the dimensionality of space will change the properties of many-particle systems and if
a given property, such as instability, is a characteristic of the three-dimensional prop-
erty of space. [Some present field theories speculate that at early stages of the universe,
the dimensionality of space was not necessarily three and, by a process which may be
referred to as compactification, the present three-dimensional character of space arose
upon the evolution and the cooling of the universe.] The purpose of this communica-
tion is to use supersymmetry methods to derive rigorously lower bounds to a class of
Hamiltonians, to be defined in the next section, with particular emphasis on “bosonic
matter” in arbitrary dimensions of space. The basic idea of supersymmetry methods [cf.

Manoukian (2006) for a pedagogical treatment] is to introduce generators QQ and write
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the Hamiltonian / under consideration, or more precisely a part [’ of the Hamiltonian,
as Q' - Q, where Q! is the adjoint of Q, and then use positivity constraints to derive a

lower bound for H.

3.1 Supersymmetry Methods and the Ground-State Energy: Ap-
plication to “Bosonic Matter”
For an N-particle system, we introduce N real vector fields G;(x1, ..., xn; 0),

j=1,..., N, as functions of NV dynamical variables x1, ...,xy € R", which may also

depend on some parameters which we denote collectively by o. The space dimension is

denoted by v. We consider a class of potential energies V'(x1, ..., Xx; ¢) defined by
N
V(x1,...,xni0) = = Y _ V- Gj(a1, ..., ani0) (3.1.1)
j=1
) . . .
where V; = p and define the multi-particle Hamiltonian by
X;j
N pg
H = 4 . ; 3.1.2
;27,”]_‘_ (Xh 7XN7Q)7 ( )
with p; = —ihV}, and the m; denoting the masses of the underlying particles.

Introduce the N operators

hV Qmj
Q; = L+ G, (3.1.3)
I 2mJ h J
and their adjoints
hV Qmj
QT - — A G;, (3.1.4)
J 2mJ h J

j =1,...,N, and use the property V; - G; = (V; - G;) + G, - V; to obtain for any
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normalized state | V)

sz> . (3.15)

an idea often used in supersymmetry methods, from which we obtain the basic lower
bound
N om;
J 2
(wlH|w) > =3 =3 (V[GI|Y) (3.1.6)
j=1

for any Hamiltonian defined by (3.1.2), (3.1.1), giving a lower bound for the expectation

value of the Hamiltonian in the state | V).

A classic application of the above is to the Hamiltonian of matter given by

=1 i<j {Xl - XJ"
N k
7 e? 7; 7 e?
—ZZL+27J(3 (3.1.7)
=1 j=1 |xi — Ry Ri - R;
where k denotes the number of nuclei situated at R4, ..., Ry with total charges
k
Zhlel, ..., Zx|e| such that Z Z; = N for neutral matter.
j=1

The potential energy in (3.1.7) may be generated exactly from the vector fields

Gj(Xl, R ,XN;Rl, .. ,Rk) defined by

k
e
G,(x1,....,xn;Ry, ..., Rg) = — nngr Z

2N 77
_ % Z P2 (3.1.8)
<l
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with v > 2 the dimensionality of the space considered, and n;, k;, are unit vector fields

defined by
X: — Xy x: — Ry
nj =, Ko ! ;
‘xj—xd |X] —Rgl
by using, in the process, the facts that
N
> V-x;=vN
j=1
N j—1 N 1
2.2 Virmp=(r-1))
j=2 =1 €<y }XJ - X£|

giving
N N o2
—ZGj(xl, XN Ry, 7Rk)*z
j=1 i<j i = %]
P

i=1 j=1 |Xi -
i Zi Zje
1<J

which is the potential energy for matter in (3.1.7).

(3.1.9)

(3.1.10)

(3.1.11)

(3.1.12)

(3.1.13)

Due to the presence of the x; factor in the last term on the right-hand side of

(3.1.8), the lower bound in (3.1.6) for the Hamiltonian H in (3.1.7) will involve un-

manageable terms such as — ij\IlH2 for which no further lower bounds may be directly

obtained. Accordingly, the definition in (3.1.8) suggests to introduce instead the vector
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fields G(x1,...,xn; R, ..., Ry)

7j—1
62 62
Ilje +

G/ (x1,...,xyx;Ry,...,Ry) = —
-1 2™ o)

J

k
> Ziky, (3.1.14)
/=1

N N 2
-y V,-Gl(xy,...,xy;Rq,...,Ry) =
; J j 1 N 1 N ;j}xz_le
N By
—ZZL. (3.1.15)
i=1 j=1 |Xi_Rj|

From (3.1.6), (3.1.15), we then obtain the following lower bound for the expec-

tation value of the Hamiltonian in (3.1.7) in a state |¥)

2
(\P\H\\I}>>—h—? <\If’G;2(x1,...,XN;Rl,...,RN)‘\I/>
j=1
k
AVAY
+ vy
Zth-A
2m N ’2
> <\1r’Gj (xl,...,xN;Rl,...,RN)‘\I/> , (3.1.16)
j:

with G)(x1,...,xn5; Ry, ..., Ry) defined in (3.1.14).

Upon using the facts that nj,, kj¢, defined in (3.1.9), are unit vector fields, i.e.,

nj-njy <1, kjs-kjp <1, —nj, - kjp <1, we obtain from (3.1.14)

4

w17 (j—1+N)? (3.1.17)

<\I’ ’G;Q(Xl, Ce 7XN;R17 R ,RN)‘\IJ> <
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k
where we have used, in the process, the property Z Zj = N for neutral matter.
j=1

Summing over j from 1 to N, (3.1.17), (3.1.16) give the following lower bound

for the ground-state energy Fy for the Hamiltonian in (3.1.7)

2m et N
Ey>-" i — 14 N)? 1.1
or
me*\ 16 N3
E S T [ — 3.1.1
Nz <2h2>3(1/—1)2 (3.1.19)

Needless to say for v — 1, we do not obtain any contradiction with —infinity as the

lower limit of the set of real numbers—which is, however, not interesting.

3.2 Basic Remarks

We may combine the above result with an earlier one [Muthaporn and
Manoukian (2004)] which derives instead an upper bound for Iy valid also for all space
dimensions v and for N > 2¥. The combined results now state that for the Hamiltonian

H in (3.1.7) for so-called “bosonic matter”

me*\ NE)/v m et 16 N3
— ( 2h2 > 1671232V > EN > = ( 2h2 > 3(1/ _ 1)2 ) (321)

valid for all v and for N > 2Y. It is easy to check the consistency relation

16 NS N(2+u) Jv
3(v—1)? 7 16n2052v
that for v = 3, the power 3 of NV in the inequality on the right-hand side of (3.2.1) may

in relation to the above double inequalities. It is well known

5 C . .
be reduced to 3 Also for v = 3, for Fermionic, i.e., standard matter with the negatively
charged particles obeying the Pauli exclusion principle, the power 3 of N is reduced to
one, as mentioned in the introductory section, consistent with the stability criterion of

matter. Our result obtained for arbitrary dimensions is obviously far from trivial. In
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(3.1.7), the so-called positively charged particles (nuclei) are treated non-dynamically
being much heavier than the negatively charged particles which is the common prac-
tice. Our lower bound for the ground-state energy I/ given in (3.1.19) is still valid
in all dimensions for an overall neutral system of bosonic charged particles with the
positively charged particles treated dynamically as well with the simplification that all
the charges are equal in absolute values, provided m on the right-hand side of (3.1.19)
denotes the largest mass in the set of masses of all the positively as well as negatively
charged particles and NV, being now even, denotes the total number of particles. The
inequalities in (3.2.1) are consistent with a famous remark made by Dyson and Lenard
[Dyson and Lenard (1967)] concerning bosonic matter and the release of an overwhelm-
ingly large amount of energy, as also discussed in the introductory section, when two
such systems are brought into contact: “/Bosonic] matter in bulk would collapse into
a condensed high density phase. The assembly of any two macroscopic objects would

»»

release energy comparable to that of an atomic bomb...”. Such a property will be
also shared in higher dimensional spaces than three, as well as in two dimensions. We
will not speculate on the physical significance of higher dimensional spaces [cf. Forte
(1992); Hatfield (1992); Semenoff and Wijewardhana (1987)] except to re-iterate that it
is important to investigate if the change of the dimensionality of space will change the
properties of many-particle systems and if a given property, such as instability, is a char-

acteristic of the three-dimensional property of space. Needless to say, two dimensional

space, however, seems to be physically relevant at least in condensed matter physics.



CHAPTER IV
SETTING UP SUPERSYMMETRIC QUANTUM

ELECTRODYNAMICS

In this chapter, we introduce the anti-commutation rules of the generators of su-
persymmetry as well as their commutation properties with the four-momentum vector,
as well as the rule of transformation of the vectors in the underlying Hilbert space of
physical states. The Lagrangian proposed for SQED by Wess and Zumino [Wess and
Zumino (1974a,b,c)] is then spelled out in the so-called Wess—Zumino gauge in which
the non-polynomial character of the LLagrangian is reduced to a non-polynomial one to
meet the requirements of renormalizability as based on the Power Counting Theorem
[cf. Manoukian (1983)]. Special emphasis is also given in defining the supersymme-
tric partners in the theory as well as providing the expressions for their corresponding
propagators. The vacuum-to-vacuum transition amplitude will then be constructed in

the celebrated Coulomb gauge in the next chapter.

4.1 Transformation of Vectors in the Hilbert Space

The supersymmetry algebra [cf. Bailin and Love (1994)] is given by

[Qaapu]: Qéapu}:[P;uPy]:O, 4.1.1)

{Qa. Qu} ={Qs.Qp} =0, (4.1.2)

and

{Qa, Qp} = —2(d"),; Pu, (4.1.3)
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defining @,, @, as generators of supersymmetry (a, b, a,b = 1,2) and P* as the

energy-momentum vector components (u, v = 0,1, 2, 3).

The vectors in the underlying Hilbert space are then transformed via the operator
U(z*,0,0) = exp [i <93Qa LOQ,+ x“PM>] . (4.1.4)

4.2 On the Lagrangian of SQED Versus Supersymmetric Particles

Based on renormalizability requirements, a Lagrangian for chiral superfields

may be taken as
L= ~0upl 0o — ip; 0Oy — FI T,
1
— | 5mu Vihy + Nijr Yivyhr + H.C. ) (4.2.1)

with m;; and A;j;, real and symmetric in their indices, where the terms depending on
the field components F; are so adjusted to ensure the supersymmetric invariance of the

action in question.
— 2
L= —Dupl 0" p; — 1y I bs — |mij 05 + Nijre 05 0x|
1
— (2 m; wld)] + /\ijk @Z}zlbgwk + H.C.) . (4.2.2)

Similarly, for the vector superfield components may be equivalently constructed
by imposing, in the process, the well known gauge transformation of the electromag-
netic vector potential 0 A* = 0*A. Based on these constructions the SQED Lagrangian

suggested by Wess and Zumino [Wess and Zumino (1974a,b,c)] in a specific gauge,
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appropriately referred to as the Wess—Zumino gauge is
1 DL* H 2y~ D# ofy
325 T¢ Y — Py TT/J — Moy

— (Dudhr) (D 1) — mgdldr — (Do) (D) — midlos

1 11/0,~ - 0
_ = (22— el Y _ w
4FWF +4K i )\)7 A=y < iA)]

+ \% [X(] + d2) + Aiysto(d2 — @)
— N1 + B) + Vivs (@] — é1)]
_ DB (41 — Gioy)?
9 (¢1¢1 ¢2¢2) ; 4.2.3)

where

D, =09, —igpA,, 4.2.4)
is a covariant derivative.

The supersymmetric partners defined through supersymmetric links are as fol-

lows:
1+ electron field, (¢1,¢2) : SUSY partner (selectron field)

A* . photon field , A SUSY partner (photino field)

with the corresponding free propagators defined in the momentum representations as

follows:



o the free electron propagator is

—p + mo
S == -
+(p> pg_l_mg_iEa

e the free photon propagator in the Coulomb gauge is

ij G 4 1 )
DY, (q) - (af - )

q? ) ¢* —ic’

Dé)Jr(Q) =0= DOCZL(Q) )

1
Vs

or

v a aiq'qu v k’qqu 1
D&ﬂﬁ—(w —9 ;>9w<f'—f¢Q>f_

e the free photino propagator is

—p
R f—
+(p) p2 _ iE )
e the free selectron propagators are
Ak = 1
YT R mE — i

1

A2+(k2) -

k3 +m2 —ie’

respectively, for the fields introduced above.

:
1€

89

(4.2.5)

(4.2.6)

(4.2.7)

(4.2.8)

(4.2.9)



CHAPTER V
VACUUM-TO-VACUUM TRANSITION AMPLITUDE,

EXTERNAL SOURCES AND THE COULOMB

GAUGE

This chapter is involved in constructing the vacuum-to-vacuum amplitude
(04 ]0_) of the underlying SQED theory given the Wess—Zumino Lagrangian (4.2.3).
We work throughout in the celebrated Coulomb gauge. In Section 5.1, we couple the
fields to external sources to generate (0, |0_) thus introduce a new Lagrangian in the
presence of such sources. Using functional derivative techniques, we derive the explicit
expression for (0 |0_) as a functional derivative operation acting on (0 |0_), involv-
ing the propagation of free particles between these sources as emitters and detectors.
Our final expression is given in (5.1.8) in the Coulomb gauge. To the leading up to
second order the latter simplifies to the one given in (5.2.1) which allows us to develop
rules for computations of fundamental process. Applications of these useful formulae

are given in the next chapter.

5.1 Lagrangian Density for SQED

The lagrangian (density) for SQED with the sources is
1 DL* H 2 H DN 2y
iﬂ:g T¢ Vb — vy Tw — moYyp

— (Duéhr) (D 1) — madler — (Do) (D) — miodlos
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1 1[/0,~ (D
_ = [z “H Y _ wl ZH
T +-4{< 1A>7 A=y ( iA)}

+ j‘% [ N85 + 62) + Airstb(¢ — ¢1)

— PG + ) + DivsA(0h — 61)]
= B (4l0r - g’
T+ JRA, + Ko+ ¢l K
+ Koy + LKy + A+ €N, (5.1.1)

where

D, =, —igA, (5.1.2)

is a covariant derivative and n, 1, J*, Ky, K }L , Ky, K2T , &, E are external (c-number)

sources with 1, 7, £, € anticommuting.

One may rewrite the SQED lagrangian (5.1.1) as
L=+ a9+ L, (5.1.3)

where

0, — — 9) _
o= 5| (0 o= (%o)|

— (9,01 (0"1) — madlon — (8,05)(9" ) — mEdo

1 1[/8,- /D
e (%) ()] 610
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is the free lagrangian,

L= qoy" YA, — igoAP [6](0u1) — (8,00) 1]
+igo AR [dh(9ua) — (D,05) o]

+ j% [ A (&] + ) + Aivs (o — 61)

— N1 + o) + ipsA(9) — 61)]

2
- % (611 — Bh)” — BALA" ($]1 + Gha) | (5.1.5)

or

Zi— qo{wwAM A6 (0u6n) — (8,0])6]

+ 1A [5(Du2) — (9,68) 6]
+ % [ X1 = i35 9] + X1 + i) 0
— (1 + i) Ay — (1 — i%)kaﬂ }

1
— a5 {2 (6161 — Bhen)” + A, A" (Bl + ¢$¢2)} , (5.16)
is the interaction lagrangian and

Ls =+ + A+ Ky + LK+ Kfgs + @b Fa + A +EN, (5.17)

is the external source terms. Let % stands for the interaction lagrangian (5.1.5), (5.1.6)

_ & & b
with 1 replaced by @ , 1 replaced by ﬁ , A, replaced by TR ¢ replaced by

) ) o -
_, I replaced b —_, replaced by ——, ! replaced b ———, Areplaced
e 1 rep Y Bk, ¢ rep yiéK;r ¢ rep e p
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76 and ) replaced b 767 i.e

5 &5 6
.,g/ﬂ — #
©ion " 16716

5 [ 6 5 5\ 5 ]
—i M B T i
Pign | 15K, < mq“) ( 16K1> i5K |

5 [ 6 5 5 5
. ap, _ a,LL
s |81, < 15K2T> < 16K2> i8K7 |

5 b
idn 16KJr

qo ) i i d )
+ﬂ[165(1 bs)tonior, T ioe L) iy

55 8 56
—— (1T +1ivy5) — - (1 -
o0 115 g kT o 75)15§15KJ

q0< 5§ 6 5 6 )2
0K i5K]  10K2i5K]

5 05 (5 5 5 b
2

_ | 1
W5 Inisd, <15K115K1T+15K215K;> G198

Hence the vacuum-to-vacuum transition amplitude in the Coulomb gauge, in the pre-

sence of the external sources, is

.10 = exp i f(a0) 4] 02103, (5.19)

where (04 |0_), = (04|0_) ‘qoz[) is given by

(02100 = exp i f(de)(de') n(o)Si (o, e

X exp _i /(dx)(dx’) Ki(2) Ay (z, 2Ky (2)

X exp -i /(dm)(dx') Ki(2) Aoy (, 2" Ko (2)
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cexp | flan)@s) 2,08 ()00

X exp _i /(dx)(dx') f(x)RJr(x,:c’)f(x')} : (5.1.10)

with the free electron propagator is

(dp) =W +mo e w)
S+(x,x’):/(27r)4 p2+m%—i€ep( , (5.1.11)

the free photon propagator in the Coulomb gauge is

v d v ig(x—=a'
De(m ) = / ((273))4 D¢ (q) €17, (5.1.12)
and - .
g 4 1
o= (=)
DX (q) =0=D%(q), > (5.1.13)
DOO q) = ——=5,
C+( ) q2 )
or
v o o ol quu By Ok qul/ 1
Dg+(Q) - <gM —4g q2 )gaﬁ <g —4g 012> q2—i€' (5114)

The free photino propagator is

: dp) = pe-v
Ry(x,a/) —/(%)4 p2_i€ep< ), (5.1.15)

and the free selectron propagators are

1 : /
) - [ Lt

(2m)* k2 +m2 — ic

Y

(5.1.16)

P I

(2m)* k3 +md —ie
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5.2 Schwinger-Feynman Rules Using Functional Derivatives

The vacuum-to-vacuum transition amplitude in the Coulomb gauge, in the pre-

sence of the external sources, is
(04 10-) = exp (igoA — iggB) (04 ]0_), , (5.2.1)

where

5 85 b
p— J— I\'Li
A= / <d$){15n7 15716

_1.5 .5 8“6 —8",6 °
161 [18K, \ i5K] i8K1 /) i5 K] |

5 [ 8 5 5 5 ]
i " — (o~
g _16K2< 15}(;) < 16K2> 0K

1 5 &5 6 5 6
(T =) — (1 i) —
9 Lég( 175)15@15[(1 + 15,5< +1%) 15715 ]

S5

5 5 8 5 8
2 Y (1) 522
58 15K ifm( ) i6¢ iéKj } 622

1/ 86 6 5 5\
(dm) o | . + L . T
2 \10K1i0K] 10K3i8K)

5 &5 (5 8 5 8
, 523
T isgnis, (iéKl oK 10K, iéKgﬂ 02

d .
—@(1 +175)

B

By differentiation (5.2.1) with respect to bare charge qo,

0

5o (0410-) =i (A = 2goB) (04 ]0-) , (5.2.4)
do

o? 2

59 (04 ]0-) = —2iB (0, |0_) — (A —2¢oB)" (0, ]0_) , (5.2.5)

Oq?
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and
=1iA(04]0-),, (5.2.6)
= —2iB(0,]0_), — A% (0,]0_), , (5.2.7)
The vacuum-to-vacuum transition amplitude (5.2.1) may be written as
(04]0_) = exp (ao + arqo + a2qg + asqy +...) , (5.2.8)
where
ap=1n(04]0_), , (5.2.9)
a; =
L 40,00, (5.2.10)
200,100,
_ g (04 10) — = A2 (04 |0, — “—%, (5.2.11)
2(0410-), 2



CHAPTER VI
APPLICATIONS

In this chapter we carry out applications of the vacuum-to-vacuum transition am-
plitude derived and obtained in the previous chapter, and we use notably our expression
given in (5.2.1). We carry out an application to the scattering of electron—positron to
photino—photino (e"e™ — y¥) and obtain the explicit expression for the corresponding
amplitude and is given in (6.1.4). As another application, of significance importance,
we carry out a study of the self-energy X' (p) of the electron which necessarily involves
the photino to make a comparison with the one occurring in pure QED. In contrast to
the latter theory, the present one involves three diagrams, not just one, to the leading
order, and our explicit expression for X(p) is given in (6.2.59). To our surprise it is
shown that the wave-function renormalization constant 75 is finite only in the Landau
gauge, to the leading order, as it is in pure QED, i.e., for the photon propagator given in

the covariant form

v v 1
DY (q) = (g“’ T >q2_i€. 6.1)

The significance of this result will be discussed in detail in our concluding chapter

(Chapter VII).

The vacuum-to-vacuum transition amplitude in the Coulomb gauge, in the pre-

sence of the external sources, is

(04 10-) = exp (igoA — ig3B) (04]0_), (6.2)
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where

5 &5 b8

= AR
A= / (dx){izsﬂ 157 1674
8 5 ]
i5.Jm | 6K, 15[(* 16K1 16KT_

NS
5.1 | 0K, 16KT

1

15K2) 16[(T

O o> b

’ Léf( ~ )55y 5k, ise ) iy o]

g

& 5 6 & 5 6
]l + 1 —_— = — ]l —1 —= 5 6.3
§ (1+ 1) i8¢ 10K lén( 1%)155 16KJ } (©3)

1/ 6 6 5 8\’
b= /(d@[ <15K1 16KJr 10K, iéKg)

I 5 8 8 3 6.4)
161 187, \18Ky isKk]  18Ka i5K)) | '

6.1 Electron—Positron-to-Photino—Photino Scattering

We are looking for the amplitude of e"e™ — Yy scattering:

Figure 6.1 ¢ e™ — Yy scattering.

For the process just discussed, the vacuum-to-vacuum transition amplitude be-



comes effectively replaced through the following steps:

(04]0-)

e i [ b et
P4 10 V2 16&c(x) 75)co 16mp (z) 10K (2)

1 d d

, §
V2 na(e) 0% Gz iéKﬂxJ

d d

1 ) o
V2 isea(a) T e

187 () 16 K7 (x)

1 d d

. 0
NG 1dnc () (1~ i)

sy () usKQ(xJ } (0410-)¢, (6.1.1)

S5

and set K1(x) =0, Ky(xz) = 0and J*(z) = 0 after doing the differentiations.

{0410-)

. 9 1 ) . 1) ,
~ e it (=3) [igy, 0+ e i5q(r) M)

) . )
ey T o iénD@:')}

. 1 5 ' 5 ,
+1q§ <_2> LéfA(I) (1 +1’Y5)AB WA%_(:UJ:)

) . )
(o) (5o 165[)(:6')] } 10102,

X

— exp {—;qg [(1 + iWs)AB (1- 175)CD A (x,2)

X 2 2 °
i0ma(1) 166 () i06c(@')

+ (14 i%)AD (1- 175)CB Aoy (2, 2)
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Xié&\(‘”/) idnc(x) 1553(:16)} iéno(sc’)} {04 10-),
— exp {—;qg {(1 +i9)ag (1 = 95) g A (2,2

X 6 6 6
ina(2) 1885 () 18Ec ()

+ (1 +1iy5),p (1 —i75) g Ao (2, )

X 2 ° °
106 (2) 10nc(z) 166 (2)

< SPE(a, 2) nE<z>} (0, 102,

expd g 2
P 2% ima(a)

5 5
18¢g () 18&c (@)

X {(1 +175) 05 (1 = 175)cp Ar (2, 2')

5 5
i8c() i8¢ (w)

—(1+175)cp (1 —i75) 5 Aas (2, 2)
< SPE(a, 2) nE<z>} (0,102,

15
— exp {—2613 e (y) S (y, x)

5 5
18¢g () 186c(2')

X {(1 +195) g (1T = 195)cp A, 2)

5 5
i8c(@) i8¢ (w)

—(1+ i75)(:D (1- w5)AB Do (2, )

< SPE(a, 2) nE<z>} (0, 10,

100
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P
— exp {—2q§ e (y) ST (y, x)

0
iégs(x)

X {(1 +175) 55 (1 = 175)cp Ar (2, 2)

o d
iégs(l’) 1d¢c(a')

F (14 i75)p (1= 175) 05 Qos (2, )
< SUE(, ) ne(e) | 0 10-)

15
— exp {+QQ3 e (y) ST (y, )

o
. {(1 +175)pg (1= 195)cp A (2, 2) 15 (2)
B

. 1 ' 6
(14 15)ep (T = 175)ag Ao+ (', ) 1658(@:|

x &c(2) Ric(z’, ') SEE(a:’, z) nE(z)} (0410-),
—exp {4 (0) S 2)

X |(1+98) (1= 35)cp Ars ()

)
1628(37)

(14 iv5)cp (1 —i75) 5 Ao (2 95)]
« Eol) REE(, ) S5, 2) ) 02102,
— exp {—;qg e (y) S (y, )

x [(1 + i’75)AB (1- 175)CD Ay (z,2')
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+(1 = i95)5g (1 + 175) g Aoy (', a:)]
¢ Gole!) REC( ) B2 (o, ) 6u(") SPE( ) () (0210,
—exp {458 [1r(0) STA ) BE 7))
x [(1 +198)g Ars (@, 27) (1 = 95) g,
+(1 = i), Ao (2, 2) (1 + m,)CD]
x [EG(Z') RSC(#/, 2') SPE(a/, 2) nE(z)} } (0410_), 6.1.2)

The amplitude of e"e™ — ¥ scattering is

M= ;qg 1(y) S+, @) (14 ) B, 2) €(2")] Avy(a,2)

X &) R (2,2/) (1= i95) 4 (o, 2)n(2)]

+ ;CIS [ﬁ(y) Si(y,z) (1 —ivs) Ry(x, 2") 5(2//)} Ay (2, )

X [E(z’) Ri(Z,2') (1 +1ivs) Sy(2,2) n(z)] : (6.1.3)

or

M= b [(de)(de) dy)(d2)(d)(d)
x [15) 84 (9,2) (14 05) Rilr, 2) 6(2")] Av(,2)

X &) Ru(2, ') (1 =) S4 (2!, 2) n(2)]

+ad [(de)(de) dy)de)d)(d)



X [ﬁ(y) S+(ya 'T) (]l - i’7’5) R+($7 ZU) 5(2”)} A2+(.7}/, 'T)

x [62) Re(2, ') (1 +i05) 4 (o, 2)n(2)]

103

(6.1.4)

Figure 6.2 Two diagrams contributing to the e"e™ — ¥y scattering (in spacetime vari-

ables).

The free electron propagator is

d / in' (2 —2

and

Si(y,x) = /Egﬁ%i elrv=) Sy(py) .

(6.1.5)

(6.1.6)



The free photino propagator is

/W dp ip1 (2’ —2'
R+(Z,.I’) :/Ezﬂ_;z ep( )

and

Ri(p1),

d H "
Ri(x,2") = /( p2) e R (p) .

(2m)t

The free selectron propagators are

/ dk ik(z—x'
AH(x,x)—/( ) aiha=s) AL ()

(27)*

and

dE") i
A2+($,,$) _/( ) elk (z'—x) Ag

(27m)*

The amplitude of e"e™ — Yy scattering (6.1.4) is

M= 3ad [(de) (o)) (d2)(@2)(d=")

+(K).

x (1) S4(y,) (1+195) Ry (w,2") 6(2")] Av(a,2)

X &) Re(2,2/) (1= i95) Sy (o, 2) n(2)]

+ i [(de)(de) dy) ) d) (@)

x (1) Sy, ) (1= i05) R (1, 2") €(2")] Ao (o, 2)

x [62) Re(2, ') (1 +i05) 4 (o, 2) n(2)]

(dp

dp

(dp

1) (dp

(dk)

— b [(dn)(de) @) (e2) 02 (0")

2m)* (

V) (

2T

)

)

(2

™)* (2

% eip’1 (z'—2) eip’g(y—:c) eipl(z’—x’) eipg(ac—z”) eik(x—x’)

m)

2)

(27)*
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(6.1.7)

(6.1.8)

(6.1.9)

(6.1.10)



X () S+(py) (1 +1ys) Ry(pa2) £(2") Ary (k)

X E(Z/) Ry (p1) (]1 - i“Y5) S+ (py)n(2)

5 [ldo) ) (a2) )0 )
w @P1(z'=2) oiph (y—2) ip1(z'=2') Gip2(z—2") k' (2’ —z)
x 1(y) S (p) (1= iy5) Ry (p2) £(2") Aoy (K)
x &(2) Ry (p1) (1 +iv5) S (p)) ()

) (dpa) (dk) .
1 ot (s (42)(d2) (d9)(d2) (42 (d=")

x [0 m(y) | S (ph) (1 +15) Ripa) |77 €(2")| Avs (k)

x [ ()| Ry () (1= i5) S40%) [ ()|
i 2 ( ) ( pIZ) (dp1> ( p2) (dk,) ) (da (d2)(dz"

% ei(Pll —p1+k")z’ el(p2 —py—k')z

x [ m(y) | S (65) (1= 15) Ri(pa) |77 (") | Ao ()

x [ ()] Rupa) (14 vs) S (04) [ n(2)|

x (2m)* 64 (pl — pr — k) (2m)* 0 (p2 — Py + k)

x 7(ph) St (ph) (14 iys) Re(p2) E(p2) Ary (k)
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x (2m) 64 (p) — pr + K') (2m)* 6*(p2 — py — K)
x 1(ph) S+(ph) (1 — ivs) Ri(p2) E(p2) Aot ()

x &(p1) Re(p1) (1 +ivs) Se(ph) n(ph)

o [ (dpy) (dps) (dpy) (dp2)
/ )4 )4 4 (

@ﬂ4ﬁfﬁ%—%+m—m)
X ﬁ(plz) S+(p/2) (]1 + i%) Ry (p2) £(p2) A1+(p/1 —p1)

x &(p1) Ry(p1) (1 —ivs) S+(p1) n(p})

) (0m)* 540}~ p1 42— 1)
X ﬁ(plz) S+(p/2) (]1 - i75) Ry (p2) £(p2) Aoy (p2 —pé)

x &(p1) Ry(p1) (1 +1vs) Sy (p1) n(ph) - (6.1.11)

Therefore

@m4%fﬁm—m+m—m)

) (dp2)

(27T)4 (27T)4 64(]3,1 —p1+tp2— pIQ)
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X [E(pl) Ri(p) (1 +1i7s) 5+(p/1)77(p/1)] : (6.1.12)

(pg)

(L+i5) o e (1 - i)
S, S,
n(py) \%(pﬁ)

A
(]]-_175) ”<2+” (]]-"1'175)
S, Ch
n(p{)Q \%I(pé)

Figure 6.3 Two diagrams contributing to the e"et — YV scattering (in momentum
description).

6.2 Self-Energy of the Electron

We are looking for the amplitude of electron self-energy:

] E%S+ 5 m

We may then effectively consider the following replacement for (0 |0_):

(0410-)
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5 5 3

5 . 5 5
i6n(x) 18K (x)

) ) ) )
(0= 5) s o)) | 0100+ 6220

and set Ki(z) = 0, Ky(x) =0, &(z) = 0, &(x) = 0 and J#(x) = 0 after doing the

differentiations.

6.2.1 The Coulomb Gauge

For the process just discussed, the vacuum-to-vacuum transition ampli-

tude becomes effectively replaced through the following steps:

(0, ]0)

1 Iy o y o
— P _ Y DC+ ! v
=P {lq‘) (*2) Lfm(w) "oty P ) g 15?7(:6’)}

+igd <—;) [_6@)(1 - 175)15;(:5) Avy(2,2)




2 5 d
—i% { (]l+175)mﬂl+(%xl)

N I v,
5 Lé§<$> (1+ 75)151 )A2+( ')
5 d
x 16n(z’) (1= i) iéf(x’)] } (0+10-)o

E++7

where

2 idn(x) © idnp(x)
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(6.2.2)

(6.2.3)

(6.2.4)

(6.2.5)
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Consider the first term (6.2.3):

2
=0 {19 (7)hs ()eo D )
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The first term | I | generates amplitude of 5 processes:

e Process 1:

2
M =18 D (0,27) T[S (w,4) 1S4 (2, 2) 1] (6.28)

represented by the diagram

S+
e Process 2:
My = g3 Dy (2" )(y) Sy (y, 2') 7 Sy (a, ) v*Si (2,0 ) n(y) | (6.2.9)
represented by the diagram
DM

+
HEA—&—EU
s, S, S,

e Process 3:
2

M = —i% Tr[Si(z, x) "] DS, (w,a') Te[y" S (2!, )], (6.2.10)

represented by the diagram

DM
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e Process 4:

My == Dot (w,2") T[S (o', 2] n(y) S4 (v, ) v* Si(m,y) nly) . (6.2.11)

represented by the diagram

e Process 5:

2

My =i % () S (o, 0) S (2, 2) ()| DG (0, )

X |(2) S (2,0) 1S4 (@' y) ()] (6.2.12)

represented by the diagram

Only the second process, eq. (6.2.9), contributes to the electron self-energy

M = My = ¢§ DT (@, 3") (y) Se(y, ') 7 Se (2, ) Sy (2,0 ) n(y')



or
M= ¢ / (da)(da) (dy)(dy)

x DS (a,2') 7(y) Sy, 2') 1" (2!, ) 4 Si (2, y') n(y)

. / (da)(da") (dy)(dy)

< | [ o pgs )] nt) [ [ e 5.0

o [(dg) (dp) (dp) (dp”) : :
- [, oyt (d0)(da) (d9)(d)

ym! " o) o il
x @@= +p")z i(p'—p=a)’ Gipy o—ip"y

x D (q)(y) S+(p) 7S+ (0) S+ (") n(y)

x (2m)*6% (g —p' +p") (27)* 6 (p' —p —q)
x Di¥(q)1(p) S+(p) 7" S+(0") S+ (0") n(p") ,

therefore

M = ¢ / (dg) (dp) DS (q)n(p) S+ (p) v Se(p + q) S+ (p) n(p)

(2m)t (2m)t
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(6.2.13)

(6.2.14)



or

M= [ S8 (0) 84(0) i) S 0) ).

where

Zt(p) = / ((2(13))4 DS @) 7 Se(p+ @)

and in the mass zero limit:

Z4(p)

—— /((2(]:]))4 DS (q)y” Se(p+q) A

The free photon propagator in the Coulomb gauge is

7 q Tk Qv 1
ng(q) = (gua — Jai ;2N> gaﬂ <gﬁu — 48k q2 >

The free electron propagator is

[=72(p + ¢)a + o]
(p+q)? +mi —ic

Si(p+q) =

)

and in the mass zero limit

_ o P+ 9o
mo=0 (p+q)? —ic’

Si(p+q)

o 0 {( P+ q)a ]

mo=0 Ips | (p+q)* —ie

¢ —ie’

a0+ =)0 = 2(p+ @)a (p+9)°

[(p+q)? —ic]”

[(p+q)? —ie]”

[(p+a)* —ic]r” =20+ )" 0+ D)oy
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(6.2.15)

(6.2.16)

(6.2.17)

(6.2.18)

(6.2.19)

(6.2.20)
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For very large photon momentum g:

2 .0 o a
7 —2¢° qay
Sy(p+q) | ) : 6.2.21)

g mo=0  g—0o q*

the contribution to the expression on the left-hand side of the following equation for

¢ > p? is effectively

o
Ips

Z4(p)

dg YT —2¢°

mo=0

and hence effectively

o,
. EI
o 8]70 C(p) mop=0
dg) 1 , , i .
N / (<27r))4 ?ng (@)% 7" [ = 20" 67" ] 7" (6.2.23)
g%>>p?

Using the identities

v 2 _o

Yo @7 =207y A,
—297 Y o Ga Y Y = =2¢" 7 + 44" (g )Y
Yo ¥ [ = 2¢° ] 7" = 44" (6 vV (6.2.24)

we effectively have for (6.2.23)

g XN — = D) ¢ (go YO )V* . 22
Yo gy P T /(%)4 g D (@4 (4-77)7 (6.2.25)
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From (6.2.18)

2
N G\ as( Wd 1
Dy, (9)q" = <gua ~ Y o ) q° <Qﬂ 9Bk @ ) @Z—ic’

_ qi (qu ") ar ¢ 1
m DC+ vo__ _ . af _
Y Dy (@) ¢ = | Vo — Gai e 9B e e
r 27 2
o C+ v o qi q of qdr q 1
(oY )V Dy (0) ¢ = _va(qav ) + Yai @ |7 [%’ ~ 9 ] 2

r 2
- 4 q Ik q 1
= _%(qav ) + Gai " {qa — 0% & } Z—ic

= —;2 [(Qk ) (2:77) + q2]

e

or
v 1 o
(407" )V Dt q) ¢ = g (@07°) (@) (6.2.26)
o J ) ) '
Therefore for the contribution to 7, I Yu(p) in the asymptotic region of the
Po mop=0
momentum of the photon,
0 (dg) 1 1
o 2 — - — — (207" (¢577) - 6.2.27
o g, e / ) (907" (2:77) (6.2.27)
q2>>p2

Now consider the second term (6.2.4):

2
_ G| 0 :
exp{ iy Lém (T + i)
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5 . d
et O~ oo s 0100

2
= €Xp {—i %0 Avy(x,2) (]l + i75)AB <]l - 175>CD

y 5 ) 1) )
idna(z) 16 (x) 18&c(2) 187 (2)

b1,

2
= exp {i %0 Ay (@, a”) (1 +175) oy (1= 175) ¢y

L 5 5 5
i81a () 187 () 18&c(a') i6g(x)

b1,

2
— exp {i %O Ary (2, 2) (]l + 175)AB (]l - 175)CD

L0 5
i1 () 1877p (')

() (el | 0410-)

— exp {_(]28 Ay (x,2) (]l + iw,)AB (]l — 175)CD Me(2) (S+(z, x))FA

(5, pg ) (i)  (0-10-),

2
— o { =B (2) S (12) (14 ) R0 v 0

(1= i) Sl ) ) (0210
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The second term | I1 | generates amplitude of process:

2
M = —D5(2) 84(2,) (14 15) R (w,2) Ars(a,)

x (1= i) Sp(2,y) n(y) (6.2.28)

M= =8 i)t dy)(d2) 1) 54 2,0) (1 -+ )

X Ry(x,2") Ayy(z, 1)) (]l — i’y5) Sy (2, y)nly) (6.2.29)

2

__g/@mmw@mm

27)4

X { / Egﬁ;i o' (@=2) R+(p”)} / (;d:)l ) Ay (q)

x (1 — iy5) { / (df: Z ¥ @) S+(p’)} n(y)

@ [(dq) (dp) (dp') (dp”)

2 ) (2m)f (2m)t (27)4 (27)4

x (2m) 6 (g —p+p") (2m) 64 (p — g —p")

X 1(p) S4(p) (1 +iv5) Ry (p") Ary(q) (1 —ivs) S+ (p") n(p')
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therefore
0 ¢ [(dg) (dp) _ :
MT = _E /(27_(_)4 (27‘()4 77(19) S+(p) (]l + 175)
X Ry(p—q) Ars(q) (1 —1iv5) S+ (p)n(p) , (6.2.30)
M= [Snp) 5.0 P S0 . (623D
where
M) =—; [ ((Qdf))4 (1) Rep—a) (T —is) Auel), (6:232)

or in the mass zero limit

1 [(dq) . .
X =—— 1 Ri(p—q) (1 — A 6.2.33
W), == [ o (10 Rl =a) (1=13) Ala)] - 6239
The first free selectron propagators is
Ay (q) = B (6.2.34)
1+q_q2+m%—ie’ -
and
An(g =2 (6.2.35)
1+qm0:0_q2—i6‘ o
The free photino propagator is
Ryp—q)= 1P~ (6.2.36)
(p—q)? —ic

9 _ A 9 (p_q)a
8p0R+(p_Q)7 7 op, {(p—q)Q—iJ
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o 0= —1€)0%a —2(p — q)a (p — @)°
[(p— )2 —ie]”

=7

(o} «

[(p— @) —i]v =2(p—q)° (p— @)ay
[(p— )2 —ic]”

For very large selectron momentum ¢

) (> 77 = 2¢° ga 7v°]
T Ro(p— — . 2.37
8170- +(p Q) g—o0 q4 (6 3 )

As before for the contribution to the left-hand side of the equation below for

q? > p?, we effectively have

9 11
8po’ E (p) mo=0
L[ dg) o [P =207 L
2 / (27)4 (1 +17ys) p (1 —ivs) 2 (6.2.38)

q?>p?

and hence effectively,

1 dg) 1 . o o a ;
s / <<27f))4 07 (1) [77 =207 0" ] (T =) . (6.2.39)
g2>p2

Using the identities
Yo (14 17s5) ¢ 77 (1 —iv5) = 8ig® s,
27, (14 175) ¢ g7 (1 — i75) = 4ig* s,

Yo (L+175) [¢*77 = 2¢° ¢a 7] (1 —ivs) = 4ig* 5, (6.2.40)
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we effectively have

0 . [(dg) s
X 2 / 2 6.2.41
Yo op. (p) - 1 (27)% ¢ ( )
Finally consider the third term (6.2.5):
III | = exp —iq—(z) 2 (1+1ivs) LAQ (x,2)
2 [i0&a() "B 5 () T

d , d
“ionten (1~ a1

2
= €Xp {_i %0 Ao (z,2) (1 + i75)AB (1- w5)CD

L b 5 5 5
18a(w) 187 () idnc(a’) i8p (')

bos1o),

2
= exp {i %0 Do (w,2") (1 +175) pg (T —175)

L 5 5 5
idnc(a') 107 () i0a(w) i8p (')

b1,

2
— exp {i %0 Ay (x,2) (]l + 175)AB (]l — 175)CD

y 5 5
idnc(a’) 1d7g

7 D D)} (0410

2
— exp {_q20 Ao (,2") (T +175) ug (1 —i75) o M (2) (S4(2,2)) ¢

X (S_:,_(.%', y))BE UE(y) (R+<$,7 .CL’))DA} <0+ |0—>0
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2
= oxp { =B (2) 8. (') (1 179 Ruli' ) Do)

x (1 +ivs) Sy (2, y)ny) } (04]0-), -

The third term generates amplitude of process:

2
MM = _% 7(2) Sy(z,2") (1 —iys) Ry(2',2) Aoy (w,2")

X (1 +1ivs) Sy, y)n(y), (6.2.42)

or

2

MU= B () o)) (dz) 1(2) S (220 (1= )

X Ry(a,2) Ay (w,2') (1 +iys) Sy (2, ) n(y) (6.2.43)
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therefore

MY = - /((ng))4 ((;;))4 1(p) S+ (p) (1 — i)

2
x Ri(p+q) Doy (q) (1 +1v5) St (p) n(p) s (6.2.44)
M= [0 ) 5.0 S0 S ), (6249

where
Em@)z‘éi/gﬁﬂ(ﬂ—f%)Rﬁp+q)@+ﬁ%)Am(@, (6.2.46)

or in the mass zero limit

1 [(dq) . .

PR z—/ 1—ivy) R 1 A . (6.2.47
(p) oo 2 | 2r)t (1 —iys) Re(p+q) (1 +ivs) Aas(q) oo (6.2.47)

The second free selectron propagator is
Ao (q) ! (6.2.48)

2 2+ mi —ic o
and
1
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The free photino propagator is

_7a b + q)a
J O [ (Pt ]
R _ .
op, P T = {(erq)z—ie

o+ g =)0 =20+ @) (p + 0)°
[(p+ q)2 —ic]”

[(p+9? —i]r" =2p +9) (P + 2o
[(p+ )2 —ic]”

For very large selectron momentum ¢

) 7 —2¢° ga Y™
3 Ri(p+4q) — [ i ) . (6.2.51)
Do q—0 q

Hence for the contribution to the left-hand side of the expression below for ¢% >

p?, we effectively have

i 11
8]?0— mo=0
1 (dg) P = 2¢° 4] N
5 (27]_)4 (]l — 1’75) q4 (]l + 1’}/5) ? s (6252)
q2>>p2
and effectively
0
> EIII
% 5 @)
1 (dQ> 1 : 2 o o « :
2 @i g (I—iv) [ —2¢" ¢an®] (T +17s) . (6.2.53)
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Using the identities

Yo (1 —i7v5) 77 (1 +iv5) = —=8i¢° 75,

27, (1 —i75) ¢° qu 7™ (1 + i) = —4ig? s,

Yo (1 —1iv5) [#77 =207 4 7] (1 +1i7s5) = —4ig? s, (6.2.54)
we have for the contribution to ~, 5 SM(p) in the asymptotic region of the
Do mo=0
integration variable, effectively
0 : (dg) 75
y— S — =2 / — 6.2.55
% B (p) o N Ty ( )
q*>p?
leading effectively
0
Yoo - [ZM)+ 20 W) ——0, (6.2.56)
o mo=

5,
for the contribution of the integral of defining o [X(p) + Z"(p)] in the

mo=0

asymptotic region of the integration variable ¢. That is, the latter integral gives a finite

0]
contribution to . (XM (p) + X" (p)]

mo=0

The total contribution to the self-energy of electron is obtained by combining the

expressions in (6.2.15), (6.2.31) and (6.2.45):

M= M4+ ME 4 M (6.2.57)
or
_ 2 (dp) _
M =g (2m)i n(p) S+(p) Xec(p) S+(p)n(p) . (6.2.58)
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where
Ze(p) = Zolp) + 20 (p) + ZM(p), (6.2.59)
and
olp) = / ((;:))4 D (@) 7S (p+q) 7", (6.2.60)
SM(p) = —; /(;d:)l (1 +ivs) Re(p—q) (1 —ins) Avg(q), (6.2.61)
) = =g [ (=) Relp+0) (14 ) Aurle). (6260

Combine (6.2.27) and (6.2.56), we obtain effectively,

0 0
- 2 e 0 M , 6.2.63
Yo g, oW Yo g, el (6.2.63)
- 9 : . :
or that for the contribution to ~, o Yea(p) in the asymptotic g-region
Do mo=0

9 dg) 1.1
S 5/ - — = 7). 2.
Yo gpn T Tt | gy g (7)) (6077 (62.64)
g2>p?
We may write Yc(p) in the form
mo=0
Yolp)| ——— (vp) Ac, (6.2.65)

where, in general, A¢ is may be defined with are ultraviolet cut-off. Hence we formally

have
a (o}
B Yealp) — 77 Ac, (6.2.66)
Do mo=0
0
Yo g, Zelp)| —— —4Ac, (6.2.67)
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0

Tr {% % e (P)

} . 16 Ac, (6.2.68)

mo=0

form which we will determine Ac.

Using (6.2.64), the so-called expected divergent part of the expression on the

left-hand below is given by

Ops

d 11
m—o} - / - g e (6269

0
Tr |:70’ a ZC(p)

—~
[\
3
S——
S
()

therefore

1 [ (g 11 .
Ac = 4 / (2m)4 ¢* 2 60 ¢ Tr[7*7°] (6.2.70)

o}

2 —A2

defined rigorously with an ultraviolet cut-off A2, Since Tr[y#7”] = —4¢g"”, we obtain

1 (dg) 1 1,0 2
Ae =1 / (27)* ¢* o 4(a0)

L)

By writing the 3-vector q as

q=0Q (cosgbsin@, sin ¢sin 0, cos 9) , (6.2.71)

and the 4-vector ¢ as

q=Q (cos¢sinfsiny, singsinfsin y, cosfsin y, cosy) . (6.2.72)

We can evaluate Ac in a standard manner by using the substitutions [cf. Jauch
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and Rohrlich (1980), page 456 and 457]:
q° — @Q*sin’y and ¢ — Q?, (6.2.73)

to obtain
te= [ e (- )
=~ || S L] [ o] [[ovemts (- )
e

therefore in the Coulomb gauge we have

1A@

Ag = ———
¢ 167 :

(6.2.74)

and the divergent part of the self energy of the electron in pure QED in the Coulomb

gauge is

1

Yea(p) - " T i6n (vp)

'dQ

. 6.2.75
0 ( )

6.2.2 Arbitrary Covariant Gauges

We just replace Xo(p) by Za(p), and D by DSF, defined below in

(6.2.83), so that the amplitude in (6.2.58) becomes replaced by

Mzﬁ/mﬂmM&@ﬁum&@mm, (6.2.76)
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where
Solp) = Z6(p) + 2 p) + ZM(p), (6.2.77)
and
S = [199 peryvg Z 6.2.78
G(p) - (27_[_)4 nv (C.I)’Y +(p+ Q)7 ) ( oL )
to obtain effectively
1, J
Vo 870 Eg(p) o0 — Yo Tpg EG(p) mo=0’ (6.2.79)

and from (6.2.25), we effectively have in the asymptotic g-region

0 (dg) 1
s ZI . 7DG+ v O\ 1 2.
Yo 8]70 G(p) =0 - / (27T)4 q4 v (q)q (QJ7 )7 ) (6.2.80)
q2>>p2
9 1
Tr [% Oy L6(p) m0—0:|
. (dQ> 1 G+ v o\ A1
— 4/(2#)4 pr Tr[DW (q)q (%7 )7 ] . (6.2.81)
Therefore
o 1 (dQ) 1 G+ v T\ A b
Ag = 4/(2#)4 s Tr[DW (q9)q (q(,y )7 } ) (6.2.82)

The free photon propagator in the Coulomb gauge is

G+ _ qu 9v
D/uz (Q) - (g;w - ) >

q

1
s T aa G, (6.2.83)

q° — 1€

where

Gl¢*) = - “

— 6.2.84
¢*(q* — ic) (289
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with

0 (the Landau gauge),

=19 1 (the Feynman gauge), (6.2.85)

3 (the Fried—Yennie gauge).

Qu Q@ q°
—ie 02 (¢% — ie)

Or

DS (q) ¢" (4077)7" = =&, (6.2.86)

and

e[ DS (0) ¢ (40 17)7"] = —460. (6.2.87)

From (6.2.82), we obtain

AG:—fo/(dq) %

(2m)* ¢

“ e L) L] [ foo] [[avmen]
=[G 6).
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therefore
S [MdQ
Ag=——— — 6.2.88
and for the contribution to X (p) in the asymptotic (Q-region,
mo=0
€o hd@
Yea(p) oo — 6n (7p) Q- (6.2.89)

Note that

e in the Landau gauge, £, = 0, Ar, = 0 and for the contribution in the asymptotic

-region
— 0. (6.2.90)

mo=0

2(p)

Thatis, Xp(p) is finite.

mo=0
1 AdQ

—~ = Ac (the Coulomb gauge).

e In Feynman gauge, {s =1, Ap = ~16- 0
™

6.3 Wave-Function Renormalization Constant Z,

The leading contribution to the exact electron propagator .S, is

) = Syl + [(d)(dy) S+0) S) S/ o 630
with
dp) .,
)= [ (;f)) ) 5(p), 63.2)
where
Z(p) = Z'(p) + X"(p) + Z"(p) . (6.3.3)

Using the defining of the wave-function renormalization constant 7, given
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through the following equation:

X(p) _0p) : (6.3.4)

mo=0 Z2

. . . . 1
as defined in the mass zero limit, we obtain for the expected divergent part of 7 the
2

following expression:

1
<> =A. (6.3.5)
Z2 Divergent part
e In the Coulomb gauge or the Feynman gauge:
1 1 [*d
() __ Lo (6.3.6)
7z 2 / Divergent part 167
e In the Landau gauge:
1
() =0. (6.3.7)
Z 2 Divergent part

e In arbitrary covariant gauge:

1 & [MdQ
— =——— —. (6.3.8)
< Z 2 >Divergent part 167 Q

Thus we conclude that as in quantum electrodynamics (QED), the wave-function
renormalization constant /7, is finite in the Landau gauge in supersymmetric quantum
electrodynamics (SQED) to the leading order. The significance and the importance of

this result will be discussed in our concluding chapter that follows.



CHAPTER VII
CONCLUSION

In this final chapter, we summarize our findings and make several pertinent com-
ments. Extensive analyses were carried out of supersymmetric methods dealing with
the quantum electrodynamics of many-particle systems in potential theory in quantum
physics as well as of supersymmetric quantum electrodynamics. As the study is carried
out in the functional differential formalism of quantum field theory, extensive applica-
tions of the so-called Quantum Dynamical Principle in the presence of dependent fields
which are inherently present not only in quantum electrodynamics but also in its super-
symmetric version. Accordingly, in our studies of the intricacies of the latter theory, a
complete, detailed and rigorous derivation was given of the Quantum Dynamical Prin-
ciple in the presence of dependent fields. The basic equation involved here is provided

by the one given by

(B(r, \) 8.2(a, A))+‘bt1>

t
1

& {aty |B(1,A)|bt1) = ;/tQ(dx') <at2
+ {atz | 8B(T, \)|bt1) (7.1)

where A is a generic coupling parameter, and the variations are with respect to coupling
parameters, masses and so on. B(7, \) is a Heisenberg operator which may depend on
A evaluated at a time 7: t; < T < ty. The variations are taken by keeping the inde-
pendent fields and their canonical conjugate momenta fixed. Supersymmetric quantum
electrodynamics turns out to be a very special case of the ones embodied in the general
result in (7.1). Detailed analyses were also carried of the gauge problem in quantum

electrodynamics which is also present in its supersymmetric version. Supersymmetric
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methods were applied, in particular, to derive a lower bound for the ground-state energy
E'y of the quantum electrodynamic of charged many-particle systems in potential theory
in quantum physics, for bosonic systems, as a function of the number of the negatively

charged particle NV given by

N 16 N?
Ey > — <me> > (7.2)

where v is the dimensionality of space, —|e] is the charge of a negatively charged parti-
cle and m is its mass. The Wess—Zumino Lagrangian was spelled out in (4.2.3) putting
emphasis on the fields describing the particles and their superpartners. In the presence
of external sources, acting as emitters and detectors of the particles, the Lagrangian is
given by

L=LH+ 40+ Ls, (7.3)

where
o=y |(F0) v = ve ()] - mave
— (0,00)(0"¢1) — maplen — (9,05)(0"¢a) — miphos

— iFMVF“” + i K?‘A) AN — Ayt (%A)} , (7.4)

is the free lagrangian,
= ao{ o, = 100 [6](0,00) - 9,0])01)

+iA" [0](0u¢2) — (9,08) 0]

b {m — i75) o] + A(1 + iy5) Vb

N



—w@+m@wx—w@—wgwﬂ}

~ 4 | y(610n = hon)” + A, (0o + o)

is the interaction lagrangian and

Ls=gn+mb+ JA, + Koy + 61Ky + Ky + oLK, + A+ EX,
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(7.5)

(7.6)

is the external source terms. The exact vacuum-to-vacuum transition amplitude (0 |0_)

describing all the dynamical processes in the theory was derived to be

where

0:10-) = exp [i [(de) ] (02103,

, 5 8

i

d

4 = QOﬂV ﬁi&]ﬂ

a iqoié?]ﬂ _162(1 (auizsiq) a (8“168;()

055 :iéi@ <a“i5i(;> N <8u15i(2>

+ \% Lgf(ﬂ _ 175)157716;1 n 1665(]1 Ty
_ign(]l PRI

d

d

@ ( 5 B 5 )2
2 \i8K1isK| 10K2i8K]

5 O

d

d

d

5
~Pisgmis, (

. +
0K is K]

)

N
ty:el

d

0K |

d

5
2 ~ 21— i)
) i6¢i5K]  ion (1 =) i 16/

5)7

10K, i85 K}

16715 )

(7.7)

(7.8)
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(0,10_), = exp {i Jianar) a@)s, o am)

X exp

X exp

X exp

X exp

E / (d)(da!) K (2) Ay (o, 27) Ky ()
i [(an)ae) Kiw)das o) Kol

2 / (da)(da’) J,(x) DL (v, 2") T, (2)

B / (dz)(da’) &(z) Ry (z, 2")E(a")|

with the free electron propagator is given by

)

2m)% p? +md —ic

and the free photon propagator in the Coulomb gauge is

D (0t = [ S0 pp (g ete=).

(2m)
with o . \
D¢ = (oY — _—
R P
Dé)_‘_(q) =0= D%Z—(Q) 5 >
1
00 _
DC+(Q) - _év )
or
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(7.9)

(7.10)

(7.11)

(7.12)

(7.13)
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The free photino propagator is

) (dp) = e
R (x,a') = /(%)4 Pk Pz (7.14)

and the free selectron propagators are

A1+(l‘7 .’17/) _ /(dk1> 1 eikl(irfx/) ;

(2m)* k2 + m2 —ic

(7.15)

1 : /
N

(2m)* k2 4+ md —ic

Inherit with the explicit expression for (04 |0_) in (7.7)—(7.15) specific applications
were carried out. The scattering amplitude to the leading order for the process e et —
Yy was explicitly derived, where y, the photino, is the superpartner of the photon. An-
other application was carried out in the analysis of the self-energy of the electron which

now includes three diagrams in comparison to the pure quantum electrodynamics case,

+
7 E&jn
s, 8, 8,

Figure 7.1 The self-energy of the electron in pure quantum electrodynamics with vir-
tual photon line represented by D:[l,.

where in the second diagram the dashed lines represent the virtual selectrons denoted by
Ay and Aoy, and R, represent photino lines, with the self-energy given in Figure 7.2 .
Most importantly we have shown that the wave-function renormalization constant 7, is
finite, to the leading order, only in the Landau gauge with the photon propagator in the

explicit form

D (q) = <g"” - gy> : (7.16)

@ ) ¢ —ie’
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s, 8. S,

Figure 7.2 The self-energy of the electron in supersymmetric quantum electrodynam-
ics with virtual selectron lines represented by A, and A,,, and photino
line represented by 2., while the last diagram represents the pure QED
contribution.

where —ie is the Schwinger—Feynman boundary condition, as it is in pure quantum elec-
trodynamics. This result of finiteness of 75 in this specific gauge is quite of significance.
This opens the way to study supersymmetric quantum electrodynamics at high energies
in which the mass term m,, providing an energy scale, may be neglected. Accordingly,
one hopes that a systematic perturbation expansion may be carried out in the coupling
parameter ¢q in (7.7) for the gauge parameter &, as appearing in the covariant form of

the photon propagator

1 gy o
DE(q) = (g, — L9 n Iy 7.17
w () (g“ ¢ )@—ie @ g—ic (717
which makes graph by graph finite in each order in qq in the mass mg zero limit. We hope
that such a program may be carried out in the near future as such a result would imply
automatically the finiteness of any gauge invariant amplitude order by order in pertur-

bation theory without the need of cancelling infinite terms with other infinite terms of
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different signs. Finally, it is worth mentioning that even if the supersymmetric partners
of the present known particles are not detected experimentally, such particles, as virtual
particles, would have important non-trivial contributions to the scattering of the fun-
damental observed particles in nature as internal lines in the diagrams describing their
interactions. This is somehow reminiscent of the so-called Higgs Boson in unified field

theory and of quarks in describing physical properties of fundamental particles.
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The action principle is used to derive, by an entirely algebraic approach, gauge trans-
formations of the full vacuum-to-vacuum transition amplitude (generating functional)
from the Coulomb gauge to arbitrary covariant gauges and in turn to the celebrated
Fock—Schwinger (FS) gauge for the Abelian (QED) gauge theory without recourse to
path integrals or to commutation rules and without making use of delta functionals.
The interest in the FS gauge, in particular, is that it leads to Faddeev—Popov ghosts-free
non-Abelian gauge theories. This method is expected to be applicable to non-Abelian
gauge theories including supersymmetric ones.
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1. INTRODUCTION

About two decades ago, we have seen (Manoukian, 1986, 1987) that the
very elegant action principle (Schwinger, 1951a,b, 1953a,b, 1954) may be used
to quantize gauge theories in constructing the vacuum-to-vacuum transition am-
plitude and the Faddeev—Popov factor (Faddeev and Popov, 1967), encountered
in non-Abelian gauge theories, was obtained directly from the action principle
without much effort. No appeal was made to path integrals, no commutation rules
were used, and there was not even the need to go into the well-known complicated
structure of the Hamiltonian (Fradkin and Tyutin, 1970) in non-Abelian gauge
theories. Of course path integrals are extremely useful in many respects and may
be formally derived from the action principle cf. (Symanzik, 1954; Lam, 1965;
Manoukian, 1985). We have worked in the Coulomb gauge, where the physical
components are clear at the outset, to derive the expression for the vacuum-to-
vacuum transition amplitude (generating functional) including the Faddeev—Popov
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factor in non-Abelian gauge theories. It is interesting to note also that the Coulomb
gauge naturally arises (Faddeev and Jackiw, 1988; Ogawa et al., 1986), see also
(Jogleker and Mandal, 2002), in gauge field theories as constrained dynamics
cf. (Henneaux and Teitelboim, 1992; Garcia and Vergara, 1996; Su, 2001). To
make transitions of the generating functional to arbitrary covariant gauges, we
have made use (Manoukian, 1986, 1987), in the process, of so-called é function-
als (Schwinger, 1972, 1973). The § functionals, however, are defined as infinite
dimensional continual integrals corresponding to the different points of spacetime
and hence the gauge transformations were carried out in the spirit of path integrals.

The purpose of the present investigation is, in particular, to remedy the
above situation involved with delta functionals, and we here derive the gauge
transformations, providing explicit expressions, for the full vacuum-to-vacuum
transition amplitude to the generating functionals of arbitrary covariant gauges
and, in turn, to the celebrated Fock—Schwinger (FS) gauge x* A, = 0 (Fock, 1937),
as well as the axial gauge n* A, = 0 for a fixed vector n*, for the Abelian (QED)
gauge theory by an entirely algebraic approach dealing only with commuting (or
anti-commuting) external sources. The interest in the FS gauge, in gauge theories,
in general, is that it leads to Faddeev—Popov ghost-free theories, cf. (Kummer
and Weiser, 1986), the gauge field may be expressed quite simply in terms of
the field strength (Kummer and Weiser, 1986; Durand and Mendel, 1982) and
it turns out to be useful in non-perturbative studies, cf. (Shifman et al., 1979).
Needless to say, the complete expressions of such generating functionals allow
one to obtain gauge transformations of all the Green functions in a theory simply
by functional differentiations with respect to the external sources coupled to the
quantum fields in question and avoids the rather tedious treatment, but provides
information on, the gauge transformation of diagram by diagram (Handy, 1979;
Feng and Lam, 1996) occurring in a theory. A key point, whose importance
cannot be overemphasized, in our analysis (Manoukian, 1986, 1987) is that, a
priori, no restrictions are set on the external source(s) J# coupled to the gauge
field(s), such as a 9, J* = O—restriction, so that variations of the components
of J* may be carried out independently, until the entire analysis is completed.
The present method is expected to be applicable to non-Abelian gauge theories
including supersymmetric ones and the latter will be attempted in a forthcoming
report. Some classic references which have set the stage of the investigation of the
gauge problem in field theory are given in Landau and Khalatnikov (1954), Landau
and Khalatnikov (1956), Johnson and Zumino (1959), Zumino (1960), Bialynicki-
Birula (1968), Mills (1971), Slavnov (1972), Taylor (1971), Abers and Lee (1973),
Wess and Zumino (1974), Salam and Strathdee (1974), Becchi et al. (1975),
Utiyama and Sakamoto (1977). For more recent studies which are, however, more
involved with field operator techniques and their gauge transformations may be
found in Sardanashvily (1984), Kobe, (1985), Oh and Soo (1987), Sugano and
Kimura (1990), Gastmans et al. (1996), Pons et al. (1997), Gastmans and Wu
(1998), and Banerjee (2000).
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2. GAUGE TRANSFORMATIONS

The Lagrangian density under consideration is given by a well-known
expression (Manoukian, 1986, 1987)

N {(8—‘”) yp %“8“7‘#} — mo¥y

+ ey WA + T + Y+ A JH (1)

where 7, n, J* are external sources, and no restriction is set on J* (such as
d,J* = 0) in order to carry out functional differentiations with respect to all of
its components independently.

Our starting point is the vacuum-to-vacuum transition amplitude in the
Coulomb gauge given by Manoukian (1986, 1987)

(0410-) =exp [i/%i] (0+10-)0 = Fcln, 71, J] )

—~0 - _ 8 8 8
fi (.1, J) = /(dx) (30 ig,;@)’”i&ﬁ(x) i(gjux> 3)

where
(0410_)p =exp [i /(dX) (dx") 7(x)S4 (x — x/)n(x/)]

X exp B / (dx) (dx") J“(x)DEv(x,x/)J”(x/)} 4)

with S, (x — x’) denoting the free electron propagator, and, in the momentum
description, (k,m =1, 2, 3),

” 1
g, (q) = (akm - qg—qz) e 5)
Dg(q) =0 = Diy(q) (6)
D (q) = —%. (7)
q

We introduce the generating functional
F[p.?,K;G] =exp [i /gi(p, 2 K)} exp [i /(dX)(dx’) P(x)Sy(x — x/)p(x’)}

X €Xp [% /(dX) (dx) K (x) DG (x, x/)Ku(x/)] ®)
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where in the momentum description

DY (¢) = w _ 974" 1 Ra¥ G(g? 9)
¢ @=18 e q2_18+qq )

and G(g?) is arbitrary.
We show that

Feln. 7. J1=¢""F[p.. K:G]lp=05-0.k =0 (10)
where
W/—/(d)_() Ciega °
= JINOEP ] Tt T o | isp )
dr) — oat —— | )
+/( X 5500 exp |iepa ) n(x
+f(dx)((g’“’ —a“a")Ja(x))iBKﬂ(x) (11)
and
p 0 v e O 12
a = a@ =8 @ (12)

relating the Coulomb gauge to arbitrary covariant gauges.
To establish (10), we start from its right-hand side. We note, in a matrix
notation, that

e exp [i0S4p]exp [%KM Dy’ KU}

S . ) . )
= exp [1 (p + nexp {—woa“iSKM ]) St (,o + exp {leoaﬂisl{ﬂ} 77)}

i v
X exp [E(KM + (8o — 00) J")Dg (K + (g — ava,\)JA)} (13)

and since Z'{(p, p, K), is classical, is invariant under transformations p(x) —
p(x)exp (iA(x)), p(x) — exp (—iA(x)) p (x) for an arbitrary numerical function
A(x), and we eventually set p = 0, p = 0, the right-hand side of (10) becomes

XiiZ”(_J)xi_'x—i“(SSexi“al
exp 1(n, 77, exp | i| Texp | —ieoa s + | exp |ieoa” s 1

i Vv
X exp | 3 (K + (8o — au00)d I (K, + (801 = a,83)J™)] (14
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with K,, — 0. Now we use the identity

, 8 8 ._
exp [wo f(dx) (i&](x)y“iaﬁ(x)au/\(x))} explin S ]

= expli(i ¢S (e (15)

to rewrite the above expression as

8 o o 8 f—
exp |:leo /( (18n(x) 187;(x)( g1’ —a 8“)i8K6(x)>:|eXp[mS+n]

X eXp [E(KM + (8uo — @400 )J7) DL (K, + (gur — avaA)J*)] (16)

which for K, — 0 reduces to the left-hand side of (10) since

(gw — auaa)ng (g,,,\ — ava,\) = DSA. (17)
Almost an identical analysis as above shows, by noting in the process,
(810 — @06 ) D" (803 — @v0:) = (Do), = D%, (18)
with
~ o
a, = E,DEE)#B“ (19)

where the right-hand side of (18) defines the photon propagator in the Landau
gauge, with G in (9) set equal to zero, that

Fln,7,J;G =0]=¢""Flp, 5, K;Gll,—05-0.k -0 (20)

where W' is given by the expression defined in (11) with a* in it simply replaced
by a*, thus relating the Landau gauge to arbitrary covariant gauges.
The Fock—Schwinger gauge x* A, = 0, allows one to write

kA
A0 = T2k Q1)
X
which upon substitution in (1), and Varying < with respect to A* yields
ok
8, Fr — a FHO = —jk 4 0 (22)
where
J = eyt 4+ " (23)

We note that (22) holds true with k replaced by 0 in it giving 0 = 0, i.e., we may
rewrite (22) as

v x" 0 ) -OXU __ Qv
8MFH —FE)MF“ :—] +J F:S. (24)
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By taking the derivative 9, of (24), we may solve for (9, F*°)/x°,

9, FH10 x°
— e =@, (—j"+j°x—0) (25)

which upon substituting in (24) gives

F" =—[g" —x"(@x)"'9%]jo. (26)
By taking v = k, and taking the derivative d; of (26), we may write

—3A% = %(ag A" + 3.5%) (27)

which when substituted in (26) gives
A =0ls" + o (8kA" — laksk) . (28)

V2 O
That is, A” is of the form

A" =07"'8"+ 3. (29)

For v = k, and multiplying (29) by x*/x°, we have from (21)

Xk

k
_oa. (30)

Al = %D‘lsk +
X X
On the other hand, directly from (29) with v = 0 in it,
A’ =0718% 4+ 9% (31)
which upon comparison with (30) leads to

xda = —x*07's,. (32)
From (29), (32) and the definition of S” in (24), we obtain

AV 1 Vi PR 1 i 1 9 0 (33)
- - = - X o ~Xu 705
| & x0+2 Bu " ox /

where we have noted that 0x = 4 + x9. It is straightforward to check from (33)
that x, A" = 0 is indeed satisfied.

To establish the transformation from covariant gauges to the FS gauge, we
have to pull 0~! in (33) between the two round brackets. To this end we note that

Oxd = (x0+2)0 (34)
and hence

@x) =) 'ot=0'xa+2)"! (35)
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1e.,

1 1 11
— = ——. (36)
Oxd+ 2 x0 O

We may also use the identity

1 1 at
—xt =xt=—2— (37)
O O O

and since 9" when applied to the second factor in (33) gives

1
o o —X,—0, | =0. 38
(gu Xugs ) (38)
We obtain from (36)—(38), (33)
1 1 1
A" =g —-0"—xM)—— o —Xu—05 ) j°. 39
(g xax ) (—D) (gﬂ -xu, ax ) .] ( )

Now we invoke the transversality property in (38) to rewrite (39) as

A = (g —gr Ly ;[g —H(m)aa] ¢ — v ar) i (a0
x (—o) Lo noe dx 7

where H (O) is arbitrary on account of (38).
It remains to set

1
gP? —x?P—09% = 0"’ 41)
ox
and note that for the factor multiplying j, on the right-hand side of (40),
(x|(e)]x") = /(dx/’) (dx")(x"[OMV 1x) (x"|(Dr)p 1) (x| OP7 Xy (42)

where, as shown in the appendix, we have noted that
(x[0"(xd) ' x"|x") = (x|x*(3x)""0"|x) (43)
and we recognize (x”|(Dy),,|x") to have the very general structure in (9). Hence
we may write, as in (10),
Frsn, 7. J1=¢""Flp, 5, K; Gllp=0.5=0.k =0 (44)

where W” is given by (11) with ¢* in the latter replaced by x*(dx)~'. [For
interpretation of x*(dx)~'3" see the appendix and also Kummer and Weiser
(1986).]

The axial gauge n* A, = 0, with n" a fixed vector, is handled similarly, with
A" in (39) now replaced by

1 1 1
AV — VI _ gV n . — aa .o 45
(g na )(—m) (g“ " )] “3)
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and a similar expression as in (44) holds with a* in (10) replaced by n*(n 3)~"
in it.

3. CONCLUSION

We have seen that the algebraic method developed in this work solves the
gauge transformation problem relating generating functionals in different gauges
starting from the vacuum-to-vacuum transition amplitude in the Coulomb gauge.
Needless to say, their transformation rules give the transformations of all the
Green functions encountered in the theory and avoids unnecessary tedious steps
otherwise involved. The simplicity and the power of the method is evident and it is
expected to be applicable to non-Abelian gauge theories, with (Manoukian, 1986,
1987) or without Faddeev—Popov ghosts, as well as to supersymmetric theories.
We have not, however, touched upon uniqueness problems such as the Gribov
ambiguity (Gribov, 1978; Zwanziger, 1981). This and extensions to non-Abelian
cases and supersymmetric theories will be attempted in a forthcoming report.

APPENDIX

For an explicit derivation of (43), we multiply 3" by —i and write

o0

0(xd) ' xt = (xp+ )7 p'xt =Y (=1)"(xp)" p'x* (A1)
n=0

upon moving, in the process, p” to the right. Using the identity

(X Pr)op = /(dx) ) (pl xp &7 (A2)

(2m)*

we note that

(xp)n — f {H(dx )(2 )4 X; pl} lxn(pn_pnfl)eixnfl([)nfl_pan) L eixlpl |xl ><pn|

(A.3)
and hence
(8 (rd) e ) Z( v | ﬂ(d D GPD i | pixser — 1)
(2n)*
Xelxn(pn_pnfl)elxnfl(pnfl_pnfz) - _emp]e—ian_ (A.4)

This may be rewritten in an equivalent form by making the change of variables

XI=Yn>- s Xn =Y D1 =—Gn>--» Pn = —q1 (A.5)
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leading to
Vs ay— ( qi)
(x]0"(xd)~"x"|x) = Zf []‘[( ) Gyt i | X" 180 = )
e oV1(@2-qD)e1y2(¢3-q2)  o~ivndn (A.6)
On the other hand,
(x|xt(3x)710"x") = (x|x* p"(px — D7 [X)
== (xlx*p"(px)"Ix') (A7)
n=0
and
(dp) —ipx
(P x)op = /(dX)(h)4 |p) (x| pxe™” (A.8)

. dp; . . .
(p x)n — / [H(d-xl)((z’Tp)Zplxl} elxl(pzfpl) . elxnfl(pnfpnfl)eflxnpn |p1 )(-xl’ll

i=1
(A.9)
leading to

(xfe(@x) 70" x') = Z / {]‘[(d >( - ’)4p,xl}xﬂpra<xn—x’>

X 61XP161X1(P2—P1) L. elxn—l(pn_pn—l)e_ixnpn (A.lo)

which upon comparison with (A.6) establishes (43).
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Explicit field theory computations are carried out of the joint probabilities associated
with spin correlations of u~uT produced in e~e™ collision in the standard electroweak
model to the leading order. The derived expressions are found to depend not only on the
speed of the e~e™T pair but also on the underlying couplings. These expressions are unlike
the ones obtained from simply combining the spins of the relevant particles which are of
kinematical nature. It is remarkable that these explicit results obtained from quantum
field theory show a clear violation of Bell’s inequality.

Keywords: Polarization correlations; quantum field theory; high-energy computation;
the Standard Electroweak Model; Bell’s test.
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Several experiments have been performed over the years on particles’ polarizations
correlations' ™ in the light of Bell’s inequality and many Bell-like experiments have
been proposed recently in high energy physics.®" 1! We have been particularly in-
terested in actual quantum field theory computations of polarization correlation
probabilities of particles produced in basic processes because of the novelties en-
countered in dynamical calculations as opposed to kinematical considerations to
be discussed. Here it is worth recalling that quantum field theory originates from
the combination of quantum physics and relativity and involve nontrivial dynam-
ics. Many such computations have been done in QED'?:!3 as well as in e~e™ pair
production from some charged and neutral strings.'* All of these polarization cor-
relation probabilities based on dynamical analyses following from field theory share
the interesting property that they depend on the energy (speed) of the colliding
particles due to the mere fact that typically the latter carry speed in order to col-
lide. Such analyses are unlikely based on formal arguments of simply combining

*Work supported by a Royal Golden Jubilee Award.
tCorresponding author
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spins,!” as is usually done, and are of kinematical nature, void of dynamical con-
siderations. Here it is worth recalling that the total spin of a two-particle system
each with spin, such as of two spin-1/2’s, is obtained not only from combining the
spins of the latter but also from any orbital angular momentum residing in their
center-of-mass system. For low speed, one expects that the argument based simply
on combining the spins of the colliding particles should provide an accurate descrip-
tion of the polarization correlations sought and all of our QED computations!?!?
show the correctness of such an argument in the limit of low speed. Needless to
say, we are interested in the relativistic regime as well, and the formal arguments
just mentioned fail to provide the correct expressions for the correlations. As a
by-product of the work, our computations of the joint polarizations correlations
carried out in a full quantum field theory setting show a clear violation of Bell’s
inequality.

In the present communication we encounter additional completely novel proper-
ties not encountered in our earlier QED'?13 calculations. We consider the process
e"et — p~uT as described in the standard electroweak (EW) model. It is well
known that this process'® as computed in the EW model is in much better agree-
ment with experiments than that of a QED computation. The reasons for consider-
ing such a process in the EW model are many, one of which is the high precision of
the differential cross-section obtained as just discussed. Reasons which are, however,
more directly relevant to our anylyses are the following. Due to the theshold energy
needed to create the u~u™ pair, the limit of the speed 3 of the colliding particles
cannot be taken to go to zero. This is different from the processes treated by the
authors in QED such as in e"e” — e e, ete™ — 27, thus all arguments based
simply on combining the spins of e~, e™, without dynamical considerations, fail.
[As a matter of fact the latter argument would lead to the joint probability in (7)
we are seeking, the incorrect result sin®((x1 — x2)/2) — an expression which has
been used for years.] Another novelty we encounter in the present investigation is
that the polarization correlations not only depend on speed but also have an explicit
dependence on the underlying couplings. Again this latter explicit dependence is

different from the situation arising in QED.1?13
16,17

The relevant quantity of interest here in testing Bell’s inequality is, in a
standard notation,
g _ P2laaz)  piz(ar, as) N p12(al, a2) n pi2(ay, a3)
p12(00,00)  p12(00,00)  p12(00,00)  pia(oc, o0)
_ p2(af,00)  p1a(o0, az) (1)

p12(00,00)  p12(00, 0)
as is computed from the electroweak model. Here a1, as (a},d)) specify
directions along which the polarizations of two particles are measured, with
p12(a1, az)/pi2(oo0, 00) denoting the joint probability, and pi2(a1,00)/p12(00, 00),
p12(00, az)/p12(00, 00) denoting the probabilities when the polarization of only one
of the particles is measured. [p12(00,00) is a normalization factor.] The corre-
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sponding probabilities as computed from the electroweak model will be denoted
by P(x1,x2), P(x1,—), P(—,x2) with x1, x2 denoting angles specifying directions
along which spin measurements are carried out with respect to certain axes spelt
out in the bulk of the paper. To show that the electroweak model is in violation
with Bell’s inequality of LHV,, it is sufficient to find one set of angles x1, x2, X1: X5,
such that S, as computed in the electroweak model, leads to a value of S outside
the interval [—1,0]. In this work, it is implicitly assumed that the polarization pa-
rameters in the particle states are directly observable and may be used for Bell-type
measurements as discussed.

We consider the process e e™ — pu~ ™ in the center-of-mass frame (see Fig. 1)
with the momentum of, say, e~ chosen to be p = v8m.(0,1,0) = —k, m. denoting
its mass and v = 1/4/1 — 82. The momentum of the emerging u~ will be taken to
be p’ = +'8m,(1,0,0) = =K', v/ = 1/4/1 — 32, and m,, is the mass of u~ (u*),
the spinors of e™, e* are chosen as

T - B
1 1
w) =I5 e | e =T (5T e
y+1 !

Obviously, there is a nonzero probability of occurrence of the above process.
Given that such a process has occurred, we compute the conditional joint probability
of spins measurements of u~, u™ along directions specified by the angles 1, x2 as
shown in Fig. 1. Here we have considered the so-called singlet state. The triplet

Lz
| N
| X2
e~ et
—————— _— e —————— .y

Fig. 1. The figure depicts the process e“e™ — p~uT, with e, et moving along the y-axis,
and the emerging muons moving along the x-axis. x1 and x2 denote the angles with the z-axis
specifying the directions of measurements of the spins of x~ and ut, respectively.
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state leads to an expression similar to the one in (7) for the probability in question
with different coefficients A(E),...,E(€), N(£) and leads again to a violation of
Bell’s inequality. The corresponding details may be obtained from the authors by
the interested reader.

A fairly tedious computation for the invariant amplitude of the process'®2° in
Fig. 1 leads to

M ox {A(E) sin <%) + B(E)sin <X1 ’;X2> + C(E) cos (M)}

2
—1 {D(S)sin <X1;—X2> + E(€) cos (%)} , (3)
where
(MG s
M2
B(E) = — <:—> <é +ab? — 1) , (4b)
m
abm,
C(g) = 5—% 52—m’2“ (4C)
_ % Jea o [e2 2
D(€) = g E2 —m2\/E? —mZ, (4d)
E(€) = —;—b\/EQ —m2 (4e)
m
and
2
a=—79 ~0.353, b=1—4sin?fw = 0.08 (4f)

16€2 cos? Ow

g denotes the weak coupling constant, fvw is the Weinberg angle, and e denotes the
electric charge. The contribution of the Higgs particles turns out to be too small
and is negligible.!®

Using the notation F(x1,x2) for the absolute value squared of the right-hand
side of (3), the conditional joint probability distribution of spin measurements along
the directions specified by the angles x1, x2 is given by

P(x1,x2) = %, (5)

where the normalization factor N (&) is

N(&) =F(xa,x2) + Fxa +mx2) + F(xi,x2 +7) + F(x1 + 7, x2 + )
= 2{[AE)? + [BE +[CE) + [DE) + [E(E))*} (6)
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giving
P(x1:x2) = ﬁ A(E)sin (Xl — X2> + B(€)sin <X1 +X2>
+C(€) cos <M> | + ﬁ [D(E) sin (%)
+ E(€) cos (%) 2 ' o

The probabilities associated with the measurement of only one of the polariza-
tions are given respectively, by

Pl =) = 5~ S A© s + CE)sinl ©)
and similarly for x»
P(—,x2) = % +%§;[A(€)COSX2+C(8)$HX2]. 9)

It is important to note that P(x1,x2) # P(x1,—)P(—, x2), in general, showing
the obvious correlations occurring between the two spins.

The indicator S in (1) computed according to the probabilities P(x1, x2),
P(x1,—), P(—.,x2) in (7)—(9) may be readily evaluated. To show violation of Bell’s
inequality, it is sufficient to find four angles x1, x2, X1, X5 at accessible energies,
for which S falls outside the interval [—1,0]. For € = 105.656 MeV, i.e. near thresh-
old, an optimal value of S is obtained equal to —1.28203, for x; = 0°, y2 = 45°,
X7 = 90°, x4 = 135°, clearly violating Bell’s inequality. For the energies originally
carried out in the experiment on the differential cross-section at £ ~ 34 GeV, an op-
timal value of S is obtained equal to —1.22094 for x; = 0°, x2 = 45°, x} = 51.13°,
X5 = 170.85°.

As mentioned in the introductory part of the paper, one of the reasons for this
investigation arose from the fact that the limit of the speed 8 of e~e™ cannot be
taken to go to zero due to the threshold energy needed to create the u~ ™ pair and
methods used for years by simply combining the spins of the particles in question
completely fail. The present computations are expected to be relevant near the
threshold energy for measuring the spins of the u~u* pair. Near the threshold,
the indicator Sqrp computed within QED coincides with that of S given above
in the electroweak model, and varies slightly at higher energies, thus confirming
that the weak effects are negligible. Due to the persistence of the dependence of
the indicator S on speed, as seen above, in a nontrivial way, it would be interesting
if any experiments may be carried out to assess the accuracy of the indicator S
as computed within (relativistic) quantum field theory. As there is ample support
of the dependence of polarizations correlations, as we have shown by explicit com-
putations in quantum field theory in the electroweak interaction as well as QED
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12,13 on speed, we hope that some new experiments will be carried out in the
light of Bell-like tests which monitor speed as further practical tests of quantum
physics in the relativistic regime.

ones,
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Abstract

A systematic explicit derivation is given for variational derivatives of transformation functions
in field theory with respect to parameters variations, also known as the quantum dynamical
principle (QDP), by introducing, in the process, two unitary time-dependent operators which
in turn allow an otherwise non-trivial interchange of the orders of the parameters variations of
transformation functions with specific time-dependent ones. Special emphasis is put on
dependent fields, as appearing, particularly, in gauge theories, and on the Lagrangian
formalism. The importance of the QDP and its practicality as a powerful tool in field theory
are spelled out, which cannot be overemphasized, and a complete derivation of it is certainly
lacking in the literature. The derivation applies to gauge theories as well.

PACS numbers: 11.10.Ef, 11.10.Jj, 11.15.—q, 11.15.Bt, 11.10.+t

1. Introduction

The purpose of this study is to derive systematically vari-
ational derivatives of transformation functions, also referred
to as the quantum dynamical principle (QDP), with respect to
parameters occurring in the theory and with respect to exter-
nal sources, coupled to the underlying fields, in quantum field
theory. The very elegant QDP [1-14] is undisputably
recognized as a very powerful tool for carrying out explicit
computations in quantum field theory, and in the quantization
problem, in general. How these applications and constructions
are carried out using variational derivatives of transformation
functions, derived below, and will be spelled out for the
convenience of the reader in the concluding section. In
particular, the QDP has been used to quantize gauge theo-
ries [10-13] in constructing the vacuum-to-vacuum transition
amplitude and the direct generation and derivation [10—13] of
Faddeev—Popov (FP) [15] factors, encountered in non-abelian
gauge theories and their further generalizations [13] with not
much effort and without making an appeal to path integrals or
to commutation rules and without [10—13] even going into the
well known complicated structure of the Hamiltonian [16]. In
particular, it has been shown [13] that the so-called FP factor
needs to be modified in more general cases of gauge theories
and that a gauge invariant theory does not necessarily imply
the familiar FP factor for proper quantization as may be

0031-8949/07/060751+04$30.00 © 2007 The Royal Swedish Academy of Sciences

otherwise naively expected based on symmetry arguments.
As the QDP provides the variations of transformation func-
tions with respect to external parameters, such as coupling
constants and external sources coupled to the quantum fields,
upon integrations of the amplitudes over these parameters
yield the expression for the latter (see e.g. [§—14]). To derive
variational derivatives of transformation functions, we intro-
duce in the process, two unitary time-dependent operators
which in turn allow an otherwise non-trivial interchange of the
orders of parameters variations with specific time-dependent
ones. This procedure answers the otherwise rather mysterious
question as to why the variation of a transformation function,
with respect to given parameters, is restricted solely to the
variation of the Lagrangian in question with the states defin-
ing the transformation function, which may depend on these
parameters, kept non-varied! The answer is based, mostly
on equations (6) and (7) below and a key identity derived
in (9) written in terms of the two unitary time-dependent
operators mentioned above. The derivation is an extension of
the corresponding one in quantum mechanics [9] to the more
complicated case of quantum field theory, where now empha-
sis is also put on dependent fields, as occurring, particularly,
in gauge theories and on the Lagrangian formalism. There has
been renewed interest recently in Schwinger’s action principle
(see e.g. [17-20]) emphasizing generally operator aspects
of a theory, as deriving, for example, various commutation
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relations, rather than dealing with the computational aspects
directly related to transformation functions and transition
amplitudes through their variational derivatives as done here,
and most importantly, to be derived in this work. In the
concluding section, we spell out how variational derivatives
of transformation functions are used in various aspects of the
theory, emphasizing the underlying method as a powerful tool
in quantum field theory.

2. The QDP
Consider a Hamiltonian of the general form
H(t, &) = Hi (1) + Hy (1, 1), M

where H,(t), H>(¢, 1) may be time-dependent but H(z, A)
may, in addition, depend on some parameters denoted by A.
Typically, in quantum field theory, H;(¢) may stand for the
free Hamiltonian written in terms of the physically observed
masses referred to renormalized masses and H;(¢) will be
time-independent. In this latter case, H,(¢, 1) will denote
the remaining part of the Hamiltonian which, in particular,
depends on renormalization constants, coupling constants and
so-called external sources coupled to the quantum fields.
The coupling constants and the external sources will be then
collectively denoted by 1. A derivative of a transformation
function with respect to A with the latter denoting an
external source will then represent a functional derivative
(see e.g. [10]).

The time evolution operator U (¢, 1), corresponding to the
Hamiltonian H (¢, 1), satisfies the equation

d
iﬁaU(t, AN =H(@E, MU, ). 2)
For the theory given in a specific description, we have

iﬁg(at\ = (at|H(t, 1), 3)
dr

where the states (af| will depend on the parameters .
Typically, the states (a|, assumed independent of A, may
represent multi-particle states of free particles associated
with a given self-adjoint operator such as the momentum
operator, with the single particle energies written in terms
of the observed masses, or may represent the vacuum-state.
One may also introduce the time evolution operator U, (¢),
corresponding to H, (¢), satisfying the equation

—d
ihaUl(t) =HOUL(), “

and the states | (a¢| which are independent of the parameters
A, satisfy

_d
iy atl = atl Hi(). ®

The states (at| of interest are related to the states (at|
by the equation

(at] = {at|V (2, 1), (6)

where
Ve, ) =U (U@, ), (7

752

with the latter satisfying

iﬁ% Vt,2) = Ul (t) Hat, VU1, A). ®)

The QDP is involved with the study of the variation
of a transformation function (az,|bt|), with respect to the
parameters A.

For 7 #£t, T #1 and A #1/, we have the following
useful key identity in the entire analysis

i;qdi [V, Vi@ 0V @ )V, 2]
T

=V(t, V) [UN(t, W(H (@ M) —H(z, )U (T, )] V1, 1),
©

which will be subsequently used.

The independent quantum fields of the theory will be
denoted by yx (x) and their canonical conjugate momenta by
7 (x), suppressing all obvious indices. The dependent fields
will be denoted by 7(x) whose canonical conjugate momenta
vanish, by definition. Here x = (¢, x). The Hamiltonian
H (t, ») may be then written as

H(t,A)=H(x,m, A, t), (10)

which, in particular, is a function of x (x), 7 (x) with the latter
defined in the so-called Schrédinger representation at ¢ =0,
which are independent of 1. In the Heisenberg representation
we have

x@) =UTt, Vx®UE, L), 1n

a(x) =UT @, yr @U@, 1) (12)

having non-trivial dependence on the parameters A.
Now we integrate the relation in (9) over 7 from ¢, to £,
to obtain

[V, Vi@, 2 = Vi, WV, )] = —%V(zz, »)

5]
X U dr Ut (x, ) (H(z, M) — H(z, W) U(x, x’)} Vi, \).
t1
(13)

By setting A" = A + 8 A, one obtains the variational form of
the above equation

8V (t, MV (11, 1]
) .
:—%V(tz,k)[/ dr Ut(z, NS H(z, MUz, x)} Vi, a).
4l
(14)

Upon defining the Heisenberg representation of H(z, A) at
time 7, by
H(z,2) =U'(z, MH(x,m, t,\)U(z, ), (15)

we may rewrite (14), as

. "

[V (tr, WV (1, M= 7% V(ts, 1) U dt §HH (x, A)}V*(zl, 1)
h

(16)
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provided the variations of IH with respect to A in (16)
are carried out by keeping x(x), m(x), given in (11) and
(12), fixed.

We take the matrix elements of (16) with respect
to 1 {ata], |bt1); (see (5)), use (6), and note the A independence
of 1 {aty], |bt;);, to obtain

btl>,

with the variation in /H, with respect to A, carried out with
the independent fields x (x) and their canonical conjugate
momenta 7 (x) kept fixed.

The Hamiltonian /H in the Heisenberg representation
in (15) may be rewritten as

§ (at|bt)) = 7hi<at2 (17)

153
/ dt §IH (t, 1)
h

H(t ) = H( (), 7(t), 1., 1), (18)
as obtained from the Hamiltonian H (¢, A) in (10) at z, by
carrying out the explicit operation given in (15). Equation (18)
is, in particular, written in terms of the independent
(Heisenberg) fields at time ¢ and their canonical conjugate
momenta. The effective Lagrangian L. of the system is related
to /H by the equation

L.(x(@®), x(®), 2, 1) :/ Exr @) i (x) = Hx (0), 7w (t), 7. 1),
(19)
with a summation over the fields understood.
The canonical conjugate momenta 7 (x) of the fields are
defined through the equation

Lo(x @), x@0)+8x (@), A, 1) = Lu(x (), x (), A, 1)

= / Ex ()8 x (x). (20)
Equations (19) and (20) allow us to consider the variation
of H(x(t), n (1), A, ), with respect to A, by keeping x, 7
fixed as required in (17), in relationship to the variation of L,.
From (19) and (20), we then obtain, with x, 7 kept fixed, that

8L, (x (1), x (1), A, 1) = =8H (x (1), (1), &, T),

upon cancellation of the term on the right-hand side of (20),
where, now the variation of L, in (21) is carried out with
respect to A by keeping x () and x (7) fixed.

The dependent fields will be denoted by n(x) and their
canonical conjugate momenta vanish, by definition. The
Lagrangian of the underlying field theory may be written as
L(x(@), x(@),n(), A, t), which upon the elimination of 7 ()
in favour of x(¢#), x(¢) and A generating the Hamiltonian
under study as well as the effective Lagrangian L,. We
consider the variation of L, with respect to A, by keeping
x (1), x (¢t) fixed. Now since n(¢) will, in general, depend on
A, we have

@1

an
SL:E,,B—)LB)L+8L ,
Xo XM
where we note that the Lagrangian does not contain terms
depending on 7, by definition. The first term on the right-
hand side defined as an integral in abbreviated form, E, in
it corresponds to the Euler—Lagrange equation of 7, which
vanishes, and the second term on the right-hand denotes the

(22)

variation of L, with respect to A, by keeping yx, x and n fixed.
The latter property was first noted in [7]. The Lagrangian
density .£ = £ (x) = Z(x, 1) of the system is related to the
Lagrangian L through

L(x(t),)'((t),n(t),/\,t):/d3x$(x,k). 23)

From (21), (22) and (23), we obtain the celebrated QDP or the
Schwinger dynamical (action) principle
bt >

where (dx) = dt d®x, and the variation 8. (x, 1), with respect
to A, is carried out with the fields, independent and dependent,
and their derivatives 9, x, V1, all kept fixed. The interesting
thing to note is that although the states |at,), |bt;) depend on
A, in the variation of the transformation function (at,|bt,), the
same (non-varied) states appear on the right-hand side of (24)
with the entire variation being applied to the Lagrangian
density £ (x, 1) with the fields and their canonical conjugate
momenta kept fixed. This is thanks to the U and V
operators elaborated upon in (2)—(8), the independence of the
states| (at2|,1 (bt;| of A, and the key identify given in (9).
In practice the limits #, — +00, t; — —o0 are taken in (24)
in scattering processes.
Now consider an arbitrary function

8<atz|btl> = hi<alz (24)

b
/ (dx) 8.2 (x, 1)
n

B(x(x),m(x),r,t) = IB(t, 1), (25)

of the variables indicated, with x (x), 7 (x) in the Heisenberg

representation in (11) and (12). We may write
B(I,)\.):UT(t,)\.)B(X(X),H(X),)\,,t)U(t, A), (26)

with x (x), 7(x) on the right-hand side in the Schrédinger
representation at time # = 0. We note the identity

V(ty, VBT, )V, 0)
=V, WV (x, VU () B(x (%), 7 (), A, T)

<UDV (T, )V, 1). 27

Hence (14) and (27) give for the following variation with
respectto A (1] <7 < 1)

8LV (12, W B(x, MV (11, )]
. A
- 7%V(t2,)\)/ de' SH (@', ) B(x, WV (ty, »)
+V (6, NSIB(t, MV (11, 1)
M T
V0. / de' Bz, WSHE )V (@0, 0, (28)
n
where according to (28), the variation in 8/B(z,A) =
§B(x(x, 1), (X, 1), A, T), with respect to A, is carried out by
keeping the (Heisenberg) fields x (x, t), 7 (X, T) fixed.

We may use the definition of the chronological time
ordering product to rewrite (28) in the more compact form

8V (62, W B(t, MV (11, V)]
; R
= —711_ V(ta, A) / dt'(B(z, )sH (', M)+ Vi, 1)
n
+V (ty, MSB (T, MV Tty ). (29)

753
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Upon taking the matrix element of (29) with respect
to {aty|, |bt1);, and using (6), (15) and (24) we have for
h<t<bh

8{aty|B(z, 1)|bty)
S
:%/ (dx"at |(B(r, 1)8.L(x, 1))+ | btr)

+(at, |8 B(z, A)| bty), (30)
where in the variation §.Z(x’, 1), with respect to A, all the
fields and their derivatives 9, x, Vn are kept fixed, while in
8B(t, 1), expressed in terms of x(x, 7), m (X, 7), the latter
are kept fixed, and an extra A-dependence may arise from
the elimination of 5 in favour of x,w. To our knowledge
Equation (30) appears first in [7]. The second term in (30)
is responsible for the generation of the FP factor and its
generalizations in gauge theories (see [10, 12, 13]).

3. Conclusion

The importance of the QDP as a powerful tool in field
theory cannot be overemphasized and a detailed derivation
of it was given by introducing, in the process, two unitary
time-dependent operators. The latter in turn allowed the
interchange of variations of transformation functions with
respect to given parameters with specific time-dependent
operations so crucial for the validity of the QDP. A key
identity has been derived in (9) which was essential for the
entire derivation. For the convenience of the reader we spell
out how variational derivatives of transformation functions
are used in some aspects of an underlying theory. (i) The
integration of (24) for the QDP over A is carried out by
introducing, in the process, external sources coupled to the
fields, where the external sources (currents) are necessarily
taken initially to be non-conserved so that variations of
all of their components may be varied independently
(see [10, 13]). From the expression of the vacuum-to-vacuum
transition amplitude, for example, thus obtained, transition
amplitudes of all processes may be extracted by factoring
out amplitudes for the emission and absorption of the
underlying particles by the external sources. By functional
differentiation of the vacuum-to-vacuum transition amplitude
with respect to the external sources, integral equations,
such as Schwinger—Dyson equations, relating various Green’s
functions may be derived. We also recall that the path integral
expressions may be derived, for example, directly from the
application of the QDP principle (see e.g. [8, 9]). It is also
far simpler to carry out (functional) differentiations than to
deal with infinite dimensional continual integrals. (ii) In the

754

presence of dependent fields, with no time derivatives of them
occurring in their respective field equations, these dependent
fields will, in general, be functions of independent fields
(and their conjugate momenta) and external sources. With the
rules set up in (24) and in (30), additional terms will then
occur coming from the second term on the right-hand side
of (30) by taking functional derivatives of matrix elements
of such dependent fields in (30) with respect to external
sources by keeping the independent fields (and their conjugate
momenta) fixed. Such terms lead precisely to FP factors and
their generalizations, for example, in gauge theories, from
the applications of (30), as just mentioned, in the present
formalism (see [8, 10—14]). For such intricate and additional
details, the reader may refer to the just given references
as well as to some of the earlier ones such as [21, 22].
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Abstract

Supersymmetry methods are used to derive rigorously a lower bound
for the exact ground-state energy of many-particle systems for a general
class of interactions, in arbitrary dimensions, with main emphasis on
the state of matter in bulk with Coulomb interactions. In particular,
we derive a lower bound for the ground-state energy En of so-called
"bosonic matter” as a cubic power of N - the number of negatively
charged particles - valid for all dimensions v > 2 providing an upper as
well as a lower bound for Ey for such matter in all such dimensions.
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Keywords: Quantum mechanics, supersymmetry methods, functional anal-
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1 Introduction

The study of the nature of the ground-state energy of Hamiltonians of inter-
acting many-particle systems is of central importance for the investigation of
the stability of such complex systems. Over the years much work has been
done in deriving rigorous bounds (cf. [1,2,5,7-9,11-13,15,17]) on the exact
ground-state energy of such Hamiltonians and, in turn, establish stability or in-
stability of the underlying systems with main emphasis on systems pertaining
to matter in bulk. The instability of so-called "bosonic matter”, i.e., for mat-
ter obtained by relaxing the Pauli exclusion constraint (cf. [2,9,11-13,15,17])
is a result of a power law behaviour N7 of the ground-state energy, where N
is the number of negatively charged particles, with the exponent v such that
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~v > 1. Such a power law behaviour, with v > 1, implies instability of the
underlying system, since the formation of such matter consisting of (2N +2N)
particles will be favourable over two separate systems brought into contact,
each consisting of (N 4 N) particles, and the energy released upon collapse, in
the formation of the former system, being proportional to [(2N)?Y — 2N7], will
be overwhelmingly large for realistic large N, e.g., N ~ 10%. It is interesting
to point out that if collapse occurs, then the radial extension of such a system
does not decrease faster than N~'/3 [14] upon collapse, as N increases for large
N . On the other hand, for ordinary matter, i.e., for which the Pauli exclusion
constraint is invoked, the ground-state energy has the single power law be-
haviour ~ N [8,19] consistent with stability. In this respect, as the number N
is made to increase such matter inflates and its radial extension increases not
any slower than N'/3 [16]. In recent years there has been also much interest in
physics of arbitrary dimensions (cf. [3,6,12,13,17,18]). In this respect it is also
quite important to investigate if the change of the dimensionality of space will
change the properties of many-particle systems and if a given property, such
as instability, is a characteristic of the three-dimensional property of space.
[Some present field theories speculate that at early stages of the universe, the
dimensionality of space was not necessarily three and, by a process which may
be referred to as compactification, the present three-dimensional character of
space arose upon the evolution and the cooling of the universe.] The purpose
of this communication is to use supersymmetry methods to derive rigorously
lower bounds to a class of Hamiltonians, to be defined in the next section, with
particular emphasis on ”bosonic matter” in arbitrary dimensions of space. The
basic idea of supersymmetry methods (cf. [10] for a pedagogical treatment) is
to introduce generators Q and write the Hamiltonian H under consideration,
or more precisely a part H’ of the Hamiltonian, as Q".Q, where Q' is the
adjoint of Q, and then use positivity constraints to derive a lower bound for
H. In the concluding section, further comments on our findings are made.

2 Supersymmetry Methods and the Ground-
State Energy: Application to ” Bosonic Mat-
ter”

For an N-particle system, we introduce N real vector fields G;(x1, ..., Xn; 0),
j = 1,...,N, as functions of N dynamical variables xi,...,xy ¢ R”  which
may also depend on some parameters which we denote collectively by p. The
space dimension is denoted by . We consider a class of potential energies
V(x1,...,Xn; 0) defined by
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N
V(le"'7XN7 Z Xl)"‘va;Q> (]‘)

where V; = 0/0x;, and define the multi-particle Hamiltonian by

Z Qp— V(x1, .. Xn3 0) (2)

with p; = —ihV}, and the m; denoting the masses of the underlying particles.

Introduce the N operators

hV 2mj
Q=L + Y, )
/ 2m] h J
and their adjoints
Q= -TYL 4 VMg, ()
J 2m] h J

j =1,...,N, and use the property V,;.G; = (V;.G;) + G;.V; to obtain for
any normalized state |)

0<3 Q= <w\@}@j

Jj=1 Jj=1

¥)

V3 2m;
S (v [ i V-.G-+—JG2.]
Z< ' Qmj J J hZ J

j=1

‘1’> (5)

an idea often used in supersymmetry methods, from which we obtain the basic
lower bound

(U || T) > Zhﬂ (v|G2|w) (6)

for any Hamiltonian defined by (2), (1), giving a lower bound for the expec-
tation value of the Hamiltonian in the state |).
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A classic application of the above is to the Hamiltonian of matter given by

H_Npg b ZZe
‘ZT*ZM—M sz AR oR

7=1 1<j =1 j=1 i<j
(7)

where k denotes the number of nuclei situated at Ry, ...R; with total charges
Zi|el, .., Z | e] such that £5_, Z; = N for neutral matter.

The potential energy in (7) may be generated ezactly from the vector fields
G,(x1,....,xn; Ry, ..., Rg) defined by

3

o2 J-1 o2 k
G(x1,....xy; Ry, ..., Rg) = — ) n; + (V—l)ZZ[ kj
/=1 (=1
Z 2 )
|Ri — Ry |

with v > 2 the dimensionality of the space considered, and nj, k;, are unit
vector fields defined by

Xj — Xy x; — Ry

n,— ——, kip= ——— 9
T - xd T xRy ®)
by using, in the process, the facts that
N
j=1
N j—1 N 1
> V3W@:(”_D§:yx—xy (11)
=2 =1 (<j 1 T

szj-kje = (V—l)ZZﬁ (12)

giving
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N
_;Vj.Gj(xl,...,XN;Rl,..., Z |X7,—XJ | ZZ |X

1<j i=1 j=1
k
7 7;e?
13
F TR oR] (13)

i<j

which is the potential energy for matter in (7).

Due to the presence of the x; factor in the last term on the right-hand
side of (8), the lower bound in (6) for the Hamiltonian H in (7) will involve
unmanageable terms such as — || x; ¥ || for which no further lower bounds may
be directly obtained. Accordingly, the definition in (8) suggests to introduce
instead the vector fields G/(x1, ...,xy, Ry, ...Ry) given by

<.

2 —1

2 k
€ €
G/‘(Xla '“7XN7R17 7RN) - = nj;, + ZZ k‘f (14)
J CERPRE N P

with the unit vector fields nj,, k;, defined as before, yielding

N
_;Vj.G;(Xl,...,XN,Rl,- Z|X1—X] | ZZ|X

1<J i=1 j=1
(15)

From (6), (15), we then obtain the following lower bound for the expecta-
tion value of the Hamiltonian in (7) in a state |¥)

2m Y 77
<\11|H|\1J>2——QZ< )G X1, %N, R, s R ‘ > PP
h Jj=1 1<j |R R |
2m al
z—ﬁz< )G X1, o, xN,Rl,...,RN)‘\IJ> (16)
7j=1

with G;(Xl, ...,X]\[,].:{,l7 ...,RN) defined in (14)

Upon using the facts that nj, kj, defined in (9), are unit vector fields, i.e.,
njn;y <1, ki kjy <1, —nj.k; < 1, we obtain from (14)

4

(v—1)

<\I/‘G;-2(x1,...7XN,R1,...RN)‘\II> < G—1+N)? (17
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where we have used, in the process, the property Zle Zj = N for neutral
matter.

Summing over j from 1 to N, (17), (16) give the following lower bound for
the ground-state energy Fy for the Hamiltonian in (7)

Mz

EN Z — 2 j —1 + N (18)
7=1
or
me*y 16 N3
By > —( )— 19
N 2m2) 3 (v —1)2 (19)
Needless to say for v — 1, we do not obtain any contradiction with — in-

finity as the lower limit of the set of real numbers - which is, however, not
interesting.

3 Conclusion

We may combine the above result with an earlier one [17] which derives instead
an upper bound for Ey valid also for all space dimensions v and for N > (2)¥.
The combined results now state that for the Hamiltonian 7 in (7) for so-called
"bosonic matter”

mety NEHI/v me*\ 16N?
~(5) - (o) 3 (20)

> Ey >
2h2 ) 16m203(2) N oh2 ) 3(v — 1)

valid for all v and for N > (2)”. It is easy to check the consistency relation
16N3/3(v—1)? > N@)/7 /167203(2)? in relation to the above double inequal-
ities. It is well known that for v = 3, the power 3 of N in the inequality on the
right-hand side of (20) may be reduced to 5/3. Also for v = 3, for Fermionic,
i.e., standard matter with the negatively charged particles obeying the Pauli
exclusion principle, the power 3 of N is reduced to one, as mentioned in the
introductory section, consistent with the stability criterion of matter. Our
result obtained for arbitrary dimensions is obviously far from trivial. In (7),
the so-called positively charged particles (nuclei) are treated non-dynamically
being much heavier than the negatively charged particles which is the com-
mon practice. Our lower bound for the ground-state energy Ey given in (19)
18 still valid in all dimensions for an overall neutral system of bosonic charged
particles with the positively charged particles treated dynamically as well with
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the simplification that all the charges are equal in absolute values, provided
m on the right-hand side of (19) denotes the largest mass in the set of masses
of all the positively as well as negatively charged particles and N, being now
even, denotes the total number of particles. The inequalities in (20) are con-
sistent with a famous remark made by Dyson [1] concerning bosonic matter
and the release of an overwhelmingly large amount of energy, as also discussed
in the introductory section, when two such systems are brought into contact:
7 [Bosonic] matter in bulk would collapse into a condensed high density phase.
The assembly of any two macroscopic objects would release energy comparable
to that of an atomic bomb ...”. Such a property will be also shared in higher
dimensional spaces than three, as well as in two dimensions. We will not spec-
ulate on the physical significance of higher dimensional spaces (cf. [3,6,18])
except to re-iterate that it is important to investigate if the change of the di-
mensionality of space will change the properties of many-particle systems and if
a given property, such as instability, is a characteristic of the three-dimensional
property of space. Needless to say, two dimensional space, however, seems to
be physically relevant at least in condensed matter physics.
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