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ELECTRON GAS WITH RASHBA SPIN-ORBIT COUPLING JUNCTIONS

In this thesis, the conductance spectra of 3 types of junctions containing two-
dimensional electron gas (2DEG) with Rashba spin-orbit coupling (RSOC):

2DEG/metal (2DEG/M), 2DEG/s-wave superconductor (2DEG/S), 2DEG/d , ,-wave

superconductor (2DEG/D) are theoretically studied. The scattering method is applied
to obtain reflection and transmission probabilities, which are used to obtain the zero-
temperature conductance spectrum. In 2DEG/M junction, there is a difference
between the conductance of electron with up spin and that of with down spin. This
difference is maximum at the voltage corresponding to the crossing of the two energy
branches of 2DEG. The total conductance of 2DEG/M junction contains 2

distinguished features, the distance between which is equal to the Rashba energy.

In 2DEG/S junction, the effect of RSOC is different for different Fermi levels
of 2DEG. When the Fermi level lies above the crossing between the two energy
branches of 2DEG, the conductance below the energy gap is suppressed with
increasing RSOC strength. When the Fermi level is located at or below the crossing,
increasing RSOC strength enhances the conductance below the energy gap up to a

critical value, but suppresses the conductance beyond this value. In all cases of the



IV

Fermi levels, the conductance at the energy gap is increased with the RSOC strength,

but is unaffected by the change in the potential barrier

The effect of the difference in effective masses on the conductance is also
different for different Fermi levels of 2DEG. When the Fermi level lies above the
crossing, the effect of mismatch of effective mass is equivalent to that of potential
barrier for applied voltage both below and above the energy gap, i.e., they both
suppresses the conductance. However, at the energy gap, the mismatch and the barrier
affect the conductance in a different way, i.e, the conductance is unaffected by the
barrier but is suppressed by the mismatch. When Fermi level is located at or below the
crossing, the effect of the mismatch is also equivalent to that of RSOC for applied
voltage both below and above the gap, but at the energy gap the effect of the
mismatch is the same as that of barrier.

In 2DEG/D junction, the conductance spectrum of {100} junction is found to
contain an additional feature at energy less than the maximum gap. This feature
depends strongly on the RSOC strength and only appear when the junction is in the
Andreev limit. For junction away from {100} orientation, the conductance spectrum
contains a zero-bias conductance peak (ZBCP) and a peak at the energy equal to the
superconducting gap along the direction of the interface normal.

In Andreev limit, ZBCP is enhanced by the RSOC for all Fermi levels. In
tunneling limit, ZBCP is suppressed when Fermi level lies above the crossing, but
when it is at the crossing, ZBCP is decreased with the RSOC strength up to a critical

value of RSOC, but it is increased after this value.
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CHAPTER I

INTRODUCTION

In the past decade, the advent of spintronics has motivated the study of spin
transport in solid state systems (Zuti¢, Fabian and Das Sarma, 2004) and two-
dimensional electron gas (2DEG) with the Rashba spin-orbit coupling RSOC is
among the systems of interest. RSOC is known to lift spin degeneracy of 2DEG. This
system can be potentially used as a part of the spin-polarized field-effect transistor
(Spin-FET) (Datta and Das, 1990), spin interference device (Aronov and Lyanda-
Geller, 1993), and spin filters (Koga, Nitta, Takayanagi and Datta, 2002; Cummings,
Akis and Ferry, 2006). In general, RSOC is present in a system with structure
inversion asymmetry (Bychkov and Rashba, 1984) as in III-V semiconductor
heterostructure. For example, InGaAs/InAlAs, GaSb/InAs/GaSb, GaAs/AlGaAs,
InAs/AlSb, InAl/ AlISb (Luo, Munekata, Fang and Stiles, 1988; Das, Miller, Datta,
Reifenberger, Hong, Bhattacharya, Singh and Jaffe, 1989; Das and Datta, 1990; Luo,
Munekata, Fang and Stiles, 1990; Nitta, Akazaki and Takayanagi, 1997; Miller,
Zumbiihl, Marcus, Lyanda-Geller, Goldhaber-Gordon, Campman and Gossard, 2003).

The possibility of creating new devices made from 2DEG motivated this thesis
work, which is a theoretical study of the tunneling spectroscopy of three types of
junctions containing 2DEG with the RSOC, i.e. 2DEG/metal (2DEG/M), 2DEG/s-

wave superconductor (2DEG/S) and 2DEG/d-wave superconductor (2DEG/D).



The effect of the RSOC on the differential conductance spectrum of each junction is

the main focus of this thesis.

1.1 Two-Dimensional Electron Gas with Rashba Spin-Orbit Coupling

The Hamiltonian that describes the RSOC in 2DEG can be written in terms of

the 2D electron momentum (P) and the Pauli matrices (&) as (Bychkov and Rashba,

1984),

A2

H, = p*—w-(?xb). (1.1)
2m

Here, A represents the strength of RSOC, or known as Rashba parameter, m” is
effective mass of the electron in 2DEG and Y is the direction perpendicular to the 2D

plane.

The eigenenergies of 2DEG with RSOC are

21,2
E*:Zk* + AK (1.2)
m

where k = ‘IZ‘ =,/k> +k’ . The splitting eigenenergy in equation (1.2) can also be

rewritten as

hZ
2m

n’q;

E*= ., 1.3
> (1.3)

* (kiqo)2 -

*

where (], = m7/1 representing the RSOC strength in units of momentum. The

eigenstates corresponding to the eigenenergy in equation (1.2) are



e’ (1.4)

where ¢, are the angles between the wave vector k™~ and wave vector k, as shown

in Fig. 2.1 (b). As can be seen in equation (1.4), the spin states in both plus and minus

branches are not completely up or down, when ¢, is away from zero.

v

(a) (b)
Figure 1.1 (a) The sketch of energy dispersion of the 2DEG with RSOC (b) The
energy contours of the plus and minus branches. k “and k~are the wave vectors of the

same K, . The thick arrows show the direction of the spins for each k -state along the

energy contours.

The density of states (DOS) of each branch for E > 0 is

D.(E)- bk r;_z 17 %o E>0, (1.5)

27 JemE/n).q,’




where D, and D_ are DOS of plus and minus branches respectively, L, and L, are
the dimensions of 2DEG . The total DOS for E > 0 is
LL m'
D(E)=D,(E)+D_(E)=—>.—, (1.6)
T h
which is a constant equal to the DOS of 2DEG without RSOC.
For E <0, there is only one branch (minus branch) and the DOS is
D (E)=bb M _h E<0 (1.7),
z B\ Jem'E/n*)+q,

n’q;

which becomes singular at E=-E, =— e or the bottom of the energy band. This
m

singularity occurs due to the point-like energy spectrum for 2DEG with no RSOC

becomes ring-like (see inset of Fig. 2.2).

g,=0 g, #0
F F

D(E/E)D,

Figure 1.2 The plot of DOS of the 2DEG with RSOC. The solid line is the total DOS.
The upper and lower dashed line are the DOS of the minus and plus branches for

E > Orespectively. The inset is the sketch of energy dispersions of the 2DEG with and

without RSOC.



The RSOC strength can be measured from the analysis of the beating pattern
in the magnetoresistance oscillations in small magnetic field (Luo, Munekata, Fang
and Stiles, 1988; 1990; Das, Miller, Datta, Reifenberger, Hong, Bhattacharya, Singh
and Jaffe, 1989). It was found to be in the range of 102107 eV.m. The strength of
the spin-orbit coupling A was shown to be controlled by applying a gate voltage
perpendicular to the 2D plane (Chen, Han, Huang, Datta and Janes, 1993; Knap,
Skierbiszewski, Zduniak, Litwin-Staszewska, Bertho, Kobbi and Robert, 1996; Nitta,

Akazaki, Takayanagi and Enoki, 1997).

1.2 Methods and Assumptions

A simple method called the scattering method is used to study all the junctions.
This method was first used by Griffin and Demer in 1971 in study of quasiparticle
transport of metal-insulator-superconductor (MIS) junction, where the insulator is
represented by a square barrier potential (Griffin and Demer, 1971). Later, by
modeling the insulating layer as a delta-function potential, Blonder, Tinkham and
Klapwijk adopted this scattering method to calculate the current in MIS junction and
predicted an excess current in the limit where the insulating potential is small
(Blonder, Tinkham and Klapwijk, 1982). Since then, this method has been used to
study the tunneling spectroscopy of MIS junction and became well-known as the BTK
formalism. In this approach, the junction of interest in this thesis are modeled as 2D
infinite systems. The interface is at X = 0. The X < 0 region is occupied by the 2DEG.
The metal or superconductor occupied the x > 0 region. The Hamiltonian of the

system is written as

H=H_ +H,+HJ(X), (1.8)



where H, is the Hamiltonian of the 2DEG with an adjustable Fermi level, H is the
Hamiltonian of the metal and/or the superconductor, and H 6(X) is the scattering
potential at the interface (Hg represents the strength of the barrier potential). In

general, the effective masses of all regions are assumed to be different. Note that in
the case of the junction containing the superconductor, one needs to consider both
electron and hole states. Therefore, the Rashba Hamiltonian for holes is also

considered:

A _f)z
Hh = 2m* —/16(9X _p)a

which lead to the following eigenenergies and eigenstates.

21,2
E* z—h k* F ARk,
2m
B —Sln¢_k ) B COSﬂ )
‘k,+>— 2Jr elkf’ and ‘k’_>_ 2 i eka
_Cosﬂ Sln¢—k
2 2

From the Hamiltonian, one can obtain the eigenstates and eigenenergy for the
electrons/holes in each region. For the ballistic transport, the wave function of the
electron in the 2DEG is the linear combination of the incoming and reflected
eigenstates of the same energy and the momentum with the same component parallel
to the interface. Similarly, the wave function of the electron or the quasiparticle in the
metal or superconductor is a linear combination of all the suitable outgoing
eigenstates. These wave functions are matched by the appropriate boundary
conditions at the interface to obtain the reflection and transmission probabilities.

These probabilities are then used to calculate the differential conductance of the



junction as a function of applied voltage. For simplicity, only the conductance spectra
at zero temperature are considered in this thesis. The effect of finite temperature is
expected to smear off the features in the spectra. For the junction with both kinds of
superconductors, the effect of both the suppression of the superconducting gap near

the interface and the proximity effect are ignored.

1.3 Outline of Thesis

Various types of junctions between these RSOC systems and other materials
have been theoretically studied in many aspects. For instance, Matsuyama et al.
investigated the ballistic spin transport in ferromagnet/2DEG with RSOC (F/2DEG)
junction. They found that the spin-injection rate across the interface depends on the
carrier density of the 2DEG (Matsuyama, Hu, Grundler, Meier and Merkt, 2001).
Jiang and Jalil studied the heterostructure F/2DEG/F and found the insulating barrier
at each F/2DEG interface enhances the spin-polarization of the system (Jiang and
Jalil, 2003). They also found the spin-polarization has an almost linear dependence
with the strength of RSOC (Jiang and Jalil, 2003). In addition to the junction with
ferromagnetic metal, the junction with s-wave superconductor was also recently
studied by Yokoyama et al. (Yokoyama, Tanaka and Inoue, 2006). They calculated
the tunneling conductance of the junction in comparison with that of F/S junction. The
main results of this work are related to the Andreev reflection, which is the process in
which two electrons are transported across the metal/superconductor junction at a time
(Andreev, 1964; Blonder, Tinkham and Klapwijk, 1982). It was found that in F/S
junction, the Andreev reflection is suppressed by the exchange field causing both

band splitting and the imbalance of up- and down-spin electrons in F. On the contrary,



in 2DEG/S such suppression does not occur, because the Rashba splitting never
causes the imbalance (Yokoyama, Tanaka and Inoue, 2006). In these studies, the

Fermi level of 2DEG is usually considered to be much higher than the Rashba energy.

The main focus of this thesis is to theoretically study the tunneling
spectroscopy of 3 types of junctions involving the 2DEG with RSOC, i. e.,
2DEG/metal (2DEG/M), 2DEG/S and 2DEG/d-wave superconductor (2DEG/D)
junction. The mismatch effective mass, the insulating barrier potential at the interface
and the level of the Fermi energy of the 2DEG are considered.

The organization of this thesis is as follows. In Chapter II, tunneling
conductancespectrum of 2DEG/M junction is examined. The effect of the RSOC and
the interfacial scattering on the conductance spectrum is considered. In ChapterIII, the
tunneling conductance spectrum of 2DEG/S junction is investigated. The effect of the
difference in effective mass is considered. Also, the effect of different Fermi levels of
the 2DEG is included. The tunneling spectroscopy of 2DEG/D junction is addressed
in Chapter IV. In addition to the effect of the interfacial scattering and the different
Fermi levels of the 2DEG, the effect of the crystal orientation of the d-wave
superconductor with respect to the normal interface is considered. Finally, the

conclusions of this thesis are addressed in Chapter V.



CHAPTER Il

2DEG/M JUNCTION

In this chapter, the tunneling conductance spectrum of 2DEG/M junction is
investigated. The energy levels of the 2DEG are assumed to be occupied up to the
energy above the crossing of two energy branches. The effect of barrier potential and
the RSOC on the differential conductance spectrum is examined. The work in this
chapter is motivated by the previous work of Jiang and Jalil on the junction of
F/1/2DEG/I/F, in which the barrier potential can greatly improves the spin-

polarization (Jiang and Jalil, 2003).

2.1 Model and Method of Calculation

The 2DEG/M junction is modeled as a 2D infinite system. The plane of the
junction is on xz plane. The interface is at x=0. The x <0 region is occupied by the
2DEG, and the x>0 region by the metal. The insulating barrier at the interface is

described by a delta function,H 0(x), where Hs represents the strength barrier

potential.
The Hamiltonian of thejunction can be written as (Zulicke and Schroll, 2002)

~ .01
H=
p2m(x)

= LLA0(5x0) + (9x VAN + Hi6() - Er 1cc®(-0) - Er, (0

(2.1)
where L = rrll @(—x)+%®(x) describing the mismatch of the effective mass (m*

m(x)
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is the electron mass in the 2DEG and m is the mass in the metal), ®@(X)is the
Heaviside step function, A(X)=A0O(-X), and Eg,,c andE., are the Fermi

energies of the 2DEG and the metal respectively.

In the X <0 (2DEG) region, the excitation energy dispersion relation is

nk’
By =~ K= Ep o (2.2)

The excitation energy dispersion of the system is depicted in Fig. 2.1. There are two
equal possibilities for an incident electron:

1) from the state with wave vector (,, where

*

2m
4 =" +\/q02 +7(E+ Er 2oes) for E > -Er.opec

2m
g =4, _\/QO2 +7(E + EF,2DEG) for E < -Er 2pEG

2) from the state with wave vector Q,,

4, =0, +\/q02 +2hi2(E +Eq,peg)  forall E’s.
When the incoming eigenstate is from the E,” branch, the wave function of the

electron from the 2DEG, for the energy above the crossing of the two branches is

cos , sin , cos : :
Wopes (X<0,2) = (|: ? }elqlxx " b1|: ? i|e_lqlxx n bz{ ?, }e"q“x Jeukzz . (23)

—sin @, CoS @, sin @,

¢1(2)

where ¢, = , $\», 1s the angle between the wave vector G, and Kk, as shown in

Fig. 2.1, q,, and q,, are the X-components of wave vectors ¢, and {, respectively.

b; and b, are the amplitudes of the two reflected eigenstates with the wave vectors

d,and q,.
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Similarly, when the incoming eigenstate is from the E, branch, the wave

function of the electron from the 2DEG for the energy above the crossing is written as

sin . | sin . .| cos . .
Wapee (X< 0,2) = @ & }e"‘zxx + b{ ? }e"“”x + bz{ @ }e"q“xje'kzz , (2.4)

cos @, Cos @, sin @,

where b, and b, are the amplitudes of the reflected eigenstates with the wave vectors

d,and @, respectively.

For the energy below the crossing, both incoming eigenstates are from the E,
branch. Only the wave function of the electron with the incoming eigenstate ¢, is

modified to

cos . sin . cos : .
¥ HpEG (X < ()’ Z) = ({ ) D j|e|qlx n b1|: ?, :|e—|qlx n bz{ ) ?, j|e—lq2x ]emzz . (25)
sin @, cos @, sing,

First consider the X >0 (metal) region. In this region, the excitation energy

: : o n’k? : :
dispersion relation is E, = om E- , and the wave function of the electron is the
m :

linear combination of the two transmitted eigenstates: one with spin up and the other

with spin down. These two states have the same energy and k.

_ 1 ik, X 0 ik | Aik;Z
wu(Xx>0,2)=| ¢ 0 e +¢, { e g™, (2.6)

where k, and k, are the x- and z-component of the transmitted wave vector K , C;

and C; are the transmission amplitudes for spin up and spin down eigenstates

respectively.
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EF,2DEG

Figure 2.1 The upper panel shows the energy contours plot of the electron in 2DEG
(left) and metal (right). The sketches of excitation energies of 2DEG and metal are

shown in the lower panel. The dashed line is the line of the same E. The arrows show

the k states of the electrons on each side with the same E.

The appropriate matching conditions for the wave functions are

(i) Continuity of the wave function at the interface

¥apes (0) =y (0) = w(0), (2.7

(i1) The discontinuity of the slope of the wave function at the interface are (Schnittler

and Kirilov, 1993; Zulicke and Schroll, 2002)
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2k z+i g, 0
= m n O (2.8)
0 2k z—-1—-q,
m

OY ﬂa‘ﬂzDEG

ox U mt oox 10

mH
where 7z = >

F

is the unitless parameter that characterizes the barrier strength, K. is

the Fermi wave vector of the metal.

After the substitution of wave functions into the matching conditions, the

following equations for incident state with wave vector (, are obtained.

sin @, cos @, -1 0 b, —Cos @,
—Ccos @, sin ¢, 0 -1 b, | sin ¢,
q,rf,sing,  g,r,cosp, Kk +2iz-rq, 0 ¢, | | q,r,coso,
—Q, M cos@, O, 1, sing, 0 k,+2iz+r.q, || C, =0, 1, sin g,
(2.9)
sing, cos @, -1 0 b, —Cos @,
Cos @, sin @, 0 -1 b,| | -—sing,
_qlxrm Sil’l ¢1 qzxrm cos ¢2 kx + 2IZ o rqu 0 Cl - _qlxrm Sil’l ¢l
_qlxrm cos (01 q2xrm Sin (02 0 kx + 2|Z + rmqo C2 _qlxrm cos (01
(2.10)

where T, = ﬂ* , equations (2.9) and (2.10) are for E > -Epapgg and for E < -Epspeg
m

respectively. In case of the incident state with wave vector (,, the following equation

for E > -Erapeg and for E < -Epspgg are obtained respectively.
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sin g, Cos @, -1 0 b, —sin @,

—Cos @, sin g, 0 -1 b,| | —cosg,
q,r,sing,  Q,r,cosp, K +2iz-r.q, 0 ¢, | |a,r, sing,
=0y cosg Q1 sin ?, 0 kx +2iz+ o |G 0,1 COS @,

(2.11)

sin g, COS @, -1 0 b, —sing,

cos ¢, sin @, 0 -1 b, —Cos @,
_qlxrm Sil’l (/)1 q2xrm cos ¢2 kx + 2IZ o rmqo 0 Cl - q2xrm Sil’l (/)2
—0, T COS @ Oy, sing, 0 kx +2iz+ o I C 0,4 COS @,

(2.12)

These 4 x4 equations above are used to obtain the reflection and transmission
coefficients and then the reflection and transmission probabilities which are defined as

follows.

- i)
B, (E,kz) = ‘buz)(Ea kz)‘ W ) (2.13)
n
2 i
Cio)(E.kz) = \Cl(z)(E,kZ)\ o (2.14)
in
+(-) +,(-)
where v, ¥ = 1 , v 1 are the group velocities of
h aqx q :q h aqx q =,q
X ~Mix(2x) X 1X(2X)
. . : . . 1 oE| .
the incoming and reflected eigenstates in the 2DEG respectively, and Vv, = P 18
X kX

the group velocity of transmitted eigenstates in the metal. The superscript 1(2)

indicates the state with wave vector q, ({,). The magnitude of these group velocities

are defined as follows.
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Vin1 = %(qlx +0,cos2¢,), for E>-Er,pea,
,h
Vin = F(_qlx +0, cos2¢,), for E <-Erapec,
vl = i*(q2X —q,cos2¢p,)=V., forall E,
m
,h
v, = F(_qlx —0,cos2¢,), for E>-Eripka,
,h
v, = F(qlx —q,cos2¢,), for E <-Eripkc,
th(z) = h—kx , for all E.
m
The conservation of probability requires
Bl(Eokz)+ BZ(E:kz)+C1(E:kz) + CZ(E:kz) =1 (2’15)

In the 2D system, the general expression for the current density in X-direction

across the junction is given by

J=> nye (2.16)
k, .k

where Vv, 1is the group velocities and e is the electron charge, the electron
concentration, n, =(C,(E)+C,(E))f(E) where f(E) is the Fermi Dirac distribution

function. The current flowing to the right across junction from 2DEG to metal with

applied voltage, V is

e
Locs o == | [ kA (C (B k) +Cy (B K )T (E-eV), (2.17)
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where L represent the dimension of the interface. The current flowing to the left

across junction from metal to 2DEG is
e
20z =7 | [ OKAV(CL(EK)+ C,(EK ) (), (2.18)
T

Thus, the net current crossing the junction is

I(eV) = I2DEG—>M - IM—>2DEG

fez Hdkxdkzvk( C,(E.k,)+C,(E,k,)[f(E—eV) - f(E)]
T

sz ”dksz( C,(E,k,)+C,(E,k,)[f(E-eV)—-f(E)].
47z°h
(2.19)

The tunneling conductance of the 2DEG/M junction is the derivative of the

current flows across junction with respect to the applied voltage

Gopeeim (BY) = dIZDEZ/\'/VI—(eV) . (2.20)

At zero temperature, the tunneling conductance becomes

Le?

&)=

[di,(C,(eV,k,)+C,(eV,k,)), (221

2.2 Results and Discussion

The tunneling probabilities (C;, C;) of up- and down-spin eigenstates of

2DEG/M junction depend on the incident angle (or k,) as shown in Fig. 2.2. It is

found that for normal incident (k,= 0), the transmission probabilities of spin up and
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spin down states are equal due to the fact that for k, = 0 the spin states in the plus and
minus branches are completely up- and down-spin. However, when k, is non-zero the
tunneling probability of transmitted electron up- and down-spin are not equal and spin
polarization can be generated. It is found that for each k, within some energy range,

the spin is strongly polarized as shown by the arrow-headed line in Fig. 2.2.

The energy range where the spin polarization is large for each k, consistent
with the splitting of two branches at k, =0, E*(0,k,) (see the inset of Fig. 2.2). This

splitting, caused by the two dimensionality, is similar to the splitting due to magnetic
field in the previous work by Stfeda and Seba’s on the junction of two 2DEGs with

RSOC in one dimension (Stfeda and Seba, 2003).

Fig. 2.3 contains the spectra of spin-up (G;), spin-down (G;) and the net
conductance. The difference in G; and G, defines the spin polarization of the system.
The spin polarization depends on the applied voltage. It is maximum at the bias
voltage equal to the crossing of two energy branches. The spin polarization is not
always increased with RSOC strength (o) as one may expect. The difference between
the conductance of electron spin up and spin down(G; — Gi) at eV=Egpgg is only
increased with (o until it reaches a maximum value and then steadily decreased as

shown in Fig. 2.4.

Fig. 2.5 shows the conductance spectra at eV= Eppgg as a function of barrier
potential(z). It is found that the effect of the z on the spin-up and spin-down
conductance at eV = Eppgg 1s different. For the spin down conductance z suppresses
the conductance, while the spin-up is enhanced up to a critical value z* and is then

decreased with z. Thus, the increase in the potential barrier decreases the difference
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between the conductance of spin up and spin down electrons. These results are
different from those of 2DEG/F junction previously studied by Jiang and Jalil (Jiang

and Jalil, 2003).

Fig. 2.6 shows the plots of conductance spectra at eV = Er,pgg as a function
of z at different values of . It is found that conductance is slightly enhanced within a

range of small z and is then decreased with z.

The plot of conductance as a function of bias voltage for different values of
Qo is shown in Fig. 2.7. It suggests that one can use the tunneling spectroscopy to
measure the strength of RSOC. The distance of the two distinguished features as

indicated in the Fig. 2.7 is equal to the Rashba energy.
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2
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eV/E,

Figure 2.2 The transmission probabilities of up-(C;) and down-(C,) spin states for
different k, = 0 and 0.05 kg, m/m" = 10. The horizontal arrow line indicates the
energy range over which the spin polarization is large. The inset in the upper panel is
the plot of the energy vs ky at a particular k,. The range of the energy between the two

dashed line correspond to the energy range indicates by the arrow lines.
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Figure 2.3 The tunneling conductance of up-(G;)and down-(G) spin, the different

between up-and down-spin conductance (G,-G)) and the total conductance (G;+G,),

for qo=0.2krand m/m” =10 for z= 0 and 1. Ef = Er2pgg = Erm for simplicity.
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Figure 2.4 The difference of the conductance of spin-up and spin-down at eV =

Er2peG as a function of qp for different z= 0, 0.5, 1, 2 and 3, m/m* = 10.

02
0.15
0.1

0.05

Figure 2.5 The conductance spectra of 2DEG/M junction for a fixed qo = 0.1k, 0.2kF,
0.3kr and 0.4kp at eV = Epopeg. m/m* = 10 (G, Gz, G1+G; and G,-G, same as

defined in Fig. 2.3)
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Figure 2.6 The conductance as a function of z for different qo at eV = Epapgg. The

inset shows the close up of the conductance near z = 0 where q¢ = 0.6kr, m/m* = 10.

Figure 2.7 The conductance as a function of bias voltage

16

for different qop = 0.1k,

0.15kp and 0.2kp, m/m* = 10. The arrows in the case of qo = 0.2k indicates the two

features occurs at eV = Er2peg and Eropeg +E .
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2.3 Conclusion

In this chapter, the tunneling conductance spectra of 2DEG/M junction are
examined. It is found that the injection from 2DEG can generate the spin polarization
in the metal which is caused by the two-dimensionality. The spin polarization depends
on the applied voltage. It is maximum at the crossing of two energy branches. The
increase in the barrier potential decreases the spin polarization and also suppress the
conductance except in a range of small barrier, which the conductance is slightly

enhanced.

The increase in RSOC strength enhances the conductance spectra. However,
the difference between the conductance of spin up and spin down electrons is not
increased with RSOC strength as one may expect. It is just enhanced over some range
of RSOC strength and then steadily decreased. From the plot of conductance as a
function of bias voltage, it suggests that one can use the tunneling spectroscopy to

measure the strength of RSOC.



CHAPTER IlI

2DEG/S JUNCTION

Recently, 2DEG/S junction was studied by Yokoyama et al. (Yokoyama,
Tanaka and Inoue, 2006). They calculated the tunneling conductance of the junction
in comparison with that of F/S junction. In their study, they considered only when the
Fermi level of the 2DEG is much higher than the Rashba energy and they did not
show explicitly the effect of the different effective mass of both sides. In general, one
can control the Fermi level of the 2DEG by adjusting the number of carriers. One can
study how the lower Fermi level will affect the charge transport in 2DEG/S junctions.

In this chapter, the tunneling spectroscopy of 2DEG/S junction is investigated.
The Fermi level of the 2DEG will be set arbitrarily. The effect of RSOC strength,

barrier potential and the mismatch of effective masses will be studied in details.

3.1 Model and Method of Calculation

The junction is modeled as a 2D infinite system in the xz plane. The interface
isat x=0. The 2DEG occupies the x <0 region and the superconductor occupies the
x >0 region as depicted in Fig. 3.1. The potential barrier at the interface is described
by a delta function, V (X) = H,o(x) where H, represents the strength of barrier. The
gap function is taken to be zero in the 2DEG and to be finite and independent of
position on the superconductor, i.e. A(k)=A®(x) where ©(x) is the Heaviside step

function and A is a constant.
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Ho(x)

A(K)O(X)

v
>

2DEG I S

Figure 3.1 The sketch of the 2DEG/S junction.

In the study of 2DEG/M junction in Chapter Il, only the Hamiltonian of
electrons is used. However, in 2DEGI/S junction, the Hamiltonian of hole needs to be
included, because a quasiparticle in the superconductor is a combination of both

electron and hole. Therefore, the Schrodinger equations describing the system is

written as
H, +H_. +HsS(x) 0 AG(X) 0
0 A, +H,, +H5(%) 0 AB(X)
° ® ~ ~ ] = E ] ]
AG(X) 0 -H, +H_. —Hd(X) 0 V1) =EBpx2)
0 AB(X) 0 —H, +H_, —~H5(X) (3.1)

where I—A|O and HART,i are the Hamiltonian of the free electron and Rashba Hamiltonian

of electron and/or hole with spin up and spin down respectively. That is,

- ~ 1 .
H, = pm p- EF,5®(X) - EF,2DEG®(_X) '
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~ A A PN a B
Her = 2 (O(=X)(0701) Py = Oy12) P,) + (0 01) Py = Oa) P, )O(=X))
~ A A ~ A B
He, = 2 (O(X)(0,22) Px = Fya2) P;) + (T z0) P = T P, )O(-X))

where p is a momentum operator in 2D, i: L @(—x)+l®(x) is the effective
m

m(x) m

mass of the system (m" in 2DEG and m in the superconductor). y(x, z) is a four-

l//eT
l//ei

Y
Vit

component wave function y(x,z) =

In the superconductor, or the x > 0 region, the eigenenergies of excitations

are

E, =& +A (3.2)

21,2
where &, = o Er s. The excitation energy dispersion is depicted in Fig. 3.2

Figure 3.2 The sketch of the excitation energy of the quasipariticles in the

superconductor
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The wave function of quasiparticle in the superconducting side is a linear combination

of the four transmitted excitations:

u 0 u 0
K K
ik x 0 ik x u iky X —iky x k ik,z
w.(x>0,2)=| ce”™ +c,e"™ +de ™ +d,e™ e, (3.3)
Vk‘ k
-V 0 -V 0

where c,, c,, d,and d, are the amplitudes of the four transmissions, and

k* :\/Z—T(EF +JET-A?),
7

k™ :\/iz_T(EF —VE?-A?).

u, and v, are the electron-like and hole-like quasiparticle amplitudes; and are defined

as

= — 34)
JE+& +[a,)
Ak

v, = :
JE+E[ +[af

(3.5)

so that |u,|* +|v, [ =1.

In the 2DEG or the x <0 region, the excitation energy dispersion relation is

L _ I n°dg

E P~ (gtq,)’ - ot ™ Er »o86 for electrons

and

. 72 7202
E™ =E¢ 206 __*(qiqo)2 + %

= for holes.
2m 2m
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The energy dispersion on 2DEG is depicted in Fig. 3.3(a).

(@) (b)

Figure 3.3 (a) The sketch of energy dispersion of 2DEG with RSOC. (b) The energy
contours of the electrons in 2DEG. (q, and g, are the x-component of wave vector

G, (plus branch) and g, (minus branch))

Unlike in 2DEG/M junction, the two-component eigenstates of the electron in

2DEG here the eigenstates of the 2DEG here are now four-component:

cosﬁ sinﬁ
2 2
A\ _| —q ﬁ igF A\ _ ﬁ i0,1
|ql>_ sm2 e%" and |q2>_ 0052 e'®", forelectron  (3.6)
0 0
0 0
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0 0
0 0
|G,) = _sinL [e%" and |G,)= cos& |e®", for hole (3.7)
2 2
cosﬂ sinﬂ
2 2

where ¢, are the angle between wave vector @, and wave vector k, as in Fig.

3.3(b).
Most 2DEG systems are semiconductors and one can adjust the Fermi energy
by adjusting the density of the carriers. In this chapter, the effect of the different

Fermi levels in the 2DEG will be considered.

Case 1: where Eg is located above the crossing of the branches.
Case 2: where Ef is located at the crossing of the branches.
Case 3: where Eg is located below the crossing of the branches.
In all cases, the Rashba energy is assumed to be more than the superconducting gap

2.2
(Z—qu > A) and the gap is set to be 0.01Er. The wave function of the excitation in the
m

2DEG is different for each case.

3.1.1 Case 1: Ef is located above the crossing of the two branches

In this case, the excitation energies of the 2DEG and the superconductor are as
depicted in Fig. 3.4. The Fermi energy of the 2DEG is set to be equal to that of the

superconductor, i. e. Er opec = Ers = Er.
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kX
Figure 3.4 The sketch of excitation energy of 2DEG/S junction
There are two possibilities for an incident state.
1) From the plus branch with wave vector @, , where
2m’
2
q=-0 +\/q0 +7(E+EF) :
In this case, the wave function of the excitation in 2DEG can be written as
cos g, 0 0
. + 0
ig/x | —SIN @ o 0 iq; x
x<0,z)=|e"" Y+ ae'®” + ae®
¥ 2oec ( ) 0 1 _sing;] 2 c0s 9
0 - CoS @, -sing,
sin ¢, cos ¢,
4 ble—iqfx ~cos g, . bze,iqu sin g, oia? | (3.9)
0 0
0 0 |

¢

where ¢ - P a, and a, are the Andreev reflection amplitudes of the states from the

plus and minus branch respectively, and b; and b, are the normal reflection



amplitudes of the states from the plus and minus branch respectively. The

components of the momenta ¢~ and ¢, are defined as follows.

N 2m’
0 :\/(_qo +\/q02+7(E+EF))2_k12 )

N 2m’
a, =\/(q0+\/q02+7(E+EF))2—kf )

i 2m’
0, :\/(_qo +\/q02 +h_2(_E+ EF))2 _kzz !

, 2m”
qa, =\/(qo+\/q02+ n? (_E+EF))2_kzz’

2) From the minus branch with wave vector q,, where

2m’
0, =q0+\/q02+7(E+EF) .

The wave function of the excitation in this case is

. + 0 0
sin ¢,
W, oee (X< 0,2) = . - 0 . 0
P CQS¢) 1,10 X 1 gy X
pld2X 2y a € . |+a, e’ )
0 —Sln(ﬁl COS(DZ
0 —-Cos @, -sing,
- + +
sin ¢, cos ¢,
igrx | —cose, iatx | sin g, i
blueflqlx 1 +b2|e7|q2x @, elkzz1
0 0
0 o |

(3.9)
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a,'and a,' are the Andreev reflection amplitudes of the states from the plus and
minus branch respectively and b, ‘and b, " are the normal reflection amplitudes of the

states from the plus and minus branch respectively.

3.1.2 Case 2: Erislocated at the crossing of the two branches

The excitation energy dispersion of the 2DEG in this case is shown in Fig. 3.5

Ex

Figure 3.5 The sketch of excitation energy on 2DEG side

In this case the incident electrons are from only minus branch. The two possibilities of

the electron wave function of the 2DEG are:

1) (The incident is the state with the momentum @,, q ——q, + /qoz+ﬂ)
hz
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cos o, 0 0
igrx | — sin o, —igy x 0 oz X 0
Wopee (X<0,2) =| ™ Y+ ae |+ ae )
0 —COS @, Cos @,
i 0 -sing, -sing,
sin g cos g,
+ - +
_ig*x | — cos Ziarx | sin i
+ ble iqy x (01 + bze iqy x (02 elkzz
0 0
0 o /|
(3.10)

2) (The incident state is the state with the momentum d,, ¢, =q,+ Mﬂﬁ)
h

sin go; 0 0
+ 0
iqrx | €OS “igr ity
Wopes (X < 0,2) = | %] 77 |4 g™ |+ ae )
0 —COS @, Cos @,
0 —sing, —sing,
sin ¢, cos g,
+ - +
_igrx | —COS Zigrx | Sin i
+ ble iqy x §D1 + bze iqy x (Pz elkzz ’
0 0
0 0 ]
(3.11)

The x-components of the momenta ¢~ and @, in this case are as follows.

. / 2m'E

0, = \/(_QO + QOZ +7)2 - kz2
. f 2m'E

g, :\/(qo+ q02+h—2)2_kz2
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i 2m'E
g, :\/(_qo+ q02 _—)2_k2

, / 2m'E
g, = \/(qo + q02 _7)2 - kzz

3.1.3 Case 3: Er is located below the crossing of the two branches

The excitation energy dispersion of the 2DEG in this case is shown in Fig. 3.6.

Figure 3.6 The sketch of excitation energy on 2DEG side when voltage V is applied

Similar to the previous case, in this case the incident electrons are also from only

minus branch. However, the AR with wave vector ¢, comes from different energy

branch for the energy above and below the crossing. The two possibilities of the

electron wave function of the 2DEG are:
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1) (The incident state is the state with momentum -, ¢ g, _\/qouw ,

E. is the energy at the crossing)

n

cos g, 0 0
iqr sin ¢J+ —ig x iqy x 0
¥ 20ec (x<0,z)=|e ™" o+ ag _|tae” }
0 —COS @, Cos @,
i 0 -sing, -sing,
sin ¢ cos ¢,
+ - +
+ bl | SO g e | PN i (312),
0 0
0 o )|
- . . - 2m(E-E
2) (The incident state is the state with momentum @,, q,=q, +\/q02 +% )
i sin g, 0 0
iqix | cos e, C g ' gy
Wypes (X < 0,2) =| " P2 14 a g% |+ a,e™” )
0 —CoS @, Cos @,
0 —sing, -sing,
. + +
sin ¢, cos ¢,
' iqfx cos (Pf ' —iqu sin ¢; ik, z
+ b,e +b,e et (3.13)
0 0
0 0o /|

Note that equations (3.12) and (3.13) are satisfied the energy higher than the crossing,

while below the crossing, only the AR term with momentum @, in equations (3.12)

0
- 0
and (3.13) is modified to be ae"”

Ccos ¢,

—sing,
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The x-components of the momenta ¢~ and @, in this case are as follows.

=\/(q0 —\/qo2 +%Z_EC))2 —K? forall E’s,
h 4

s as 2m’ (E E))z % for all E’s,

(qo 02 2m(E+E))z k?  forE<Ec,

\/( q0+\/q02 2m’ (E2+E ))2 k,? for E> E;

(%+\/ 2 2m(E+E))2 k> forall E’s.

The appropriate boundary conditions at the interface are:

(i) Continuity of the wave function at the interface
Ws(X=0)=y,5e6(X=0)=y(0), (3.14)

(i) The discontinuity of the slope of the wave function at the interface are

oy m 6l//ZDEG i m
s.e ) . € =(2k.z + lo, — e 0 , 3.15
OX |X=0 m OX |x:0 ( F qo)‘// ( ) ( )
al//s’h m aWZDEG,h

. m
ax |x:0+ m* ax |X:0_ = (2kF Z- IO-Z FqO)(//h (O) ’ (316)
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Ver
where x//:(%]: Vel .Y :(WGTJ, W :(Wm], z=m—|_|s is the unitless
e h 2
Y Vi Vel Vil nKe
Yhi

parameter that characterizes the strength of the barrier potential, k. is the Fermi

wave vector of the superconductor.

As in Chapter 11, substitution of the wave functions of each case, now the 8x8

equations (see appendix A) are obtained.

These 8x8 equation are used to obtain all the transmission and reflection

amplitudes. The Andreev and normal reflection probabilities are defined as

o
A (E kz) = \a@(E, kZ)\ Wl (3.17)
n
Byz) (Ek2) = By (. K2) Wl (3.18)
in
Similarly, the transmission probabilities are equal to
‘Vt”h(z)
2
Ci (E kz) = ‘C1(2)(E, kz)‘ W ) (3.19)
in
le 2
2 V'(
D1(2)(E,kz):‘dl(Z)(Eakz)‘ |V- | ) (3.20)
n
+0)
where V'@ = % 85 is the group velocity of injection electron,
9 Ax=C(2)
()
v:]l'(z) = —%% is the group velocity of reflected hole,
d,

Ax=01(2)
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e 1OETT) . .
v = P is the group velocity of reflected electron,
Ay ax=—CH(2)
vtIh = %% is the group velocity of transmitted hole-like excitation, and
X lky=—k~
1 0E : : : . I
Ve = g% is the group velocity of transmitted electron-like excitation.
X lky =k*

The superscript 1(2) indicates the state with wave vector ¢, (q,). The magnitude of

these group velocities are different for each case as follows.

1) Casel:
1_ h + 2 +\ _y,ed1
Vin _m*(ql +qOCOS (01)—Vr '
2 _ h + +\ _ /82
Vin __*(qz_qOCOSZ(pl)_Vr '
m
h,l_i A 2 —
Vr - *( ql qOCOS (”1)!
m
he N - _
Vi =— (=0, +0, oS 29, ),
m
n K& RKTE
V. = y Vo =
mE mE
2) Case2:
1 h + + el
V,, = o (0, +0g,c082¢" ) =V,",
2 _ h +_ 2 -\ _ /82
Vin - *(qz qO Cos wl)_vr ’

m
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v =—(q, —q,cos2¢;,)
r * 1 0 17

h2 _

h - -
Ve * (_qz +q, COS 2¢2 )v

m
n _hk‘g‘, e hk*fw
vV, =———, V, =

mE mE

3) Case3:

vl = %(—q: +q, 00820 ) =V°*,

h + + e
* (_qz +(, COS 2(”1 ) = Vr'2’

2
V. =
" m

fi
v =—/(0 —Qq,CcoS2p, ),
T (a4, — 4, @)

h _ _
Vi 2= F(_qz +(, COS 2(”2 )’

The conservation of probability requires A (E, k,) + A, (E,k,) + B,(E,k,)
+B,(E,k,)+C,(E,k,)+C,(E,k,)+ D,(E,k,)+ D,(E,k,)=1.

In the 2D system, the general relation for current density in x-direction across

the junction is given by

I=Ynve (3.21)
K, ,k

where v, is the group velocities a long the x-direction, e is the electron charge and

the electron concentration, n, =(1+ A (E)+ A,(E)-B,(E)-B,(E))f(E), f(E) isthe
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Fermi Dirac distribution function. The current flowing across junction from 2DEG to

superconductor with applied voltage V is therefore

Loecss :4L—:Z_ez”dkxdkzvk 1+ A(Ek,)+ A (E k) -B(E k,)-B,(E,k))f (E—eV). (3.22)
And similarly the current flowing across junction from superconductor to 2DEG is

I ooec =£|1‘—72:';”dkxdkzvk @+ A(Ek,)+A(Ek,)-B(Ek)-B,(EKk))f (E),

(3.23) Thus, the net current crossing the junction is

I (eV) = I2DEG—>S - IS—>2DEG

[ [ dk,dk,v, (L+ A (E,k,)+ A (E.k,) -

L%e
4r°
B,(E.k,)—B,(E, k) f(E—eV)-f(E)]

[ [ dk,dEv, (L+ A (E.k,)+ A (E k,) -
B,(E.k,)—B,(E. k) f(E-eV)-f(E)] (3.24).

L’e
Ar’h
The tunneling conductance of the 2DEG/S junction is the derivative of the current

flows across junction with respect to the applied voltage

dl eV
G,pecrs(EV) = —ZDESC( ) : (3.25)

At zero temperature, the tunneling conductance becomes

G(eV) =%jdkz(l+ A(eV,k,)+A eV k) —B (eV,k,)—B,(eV,k)), (3.26)



41
3.2 Results and Discussion

3.2.1 Case 1: Ef lies above the crossing of the two energy branches

Figs. 3.7 (rm = 1) and 3.8 (rm =10), the plots of the tunneling conductance
spectra for different values of RSOC strength (q,) are shown in the different limit. In
the Andreev limit (low z) (Figs. 3.7, 3.8 (a)), all the spectra for finite g, contain peaks
at the applied voltage equal to the superconducting gap and these peaks are enhanced
with the increase in q,. The conductance below the energy gap, which is mostly
influenced by the Andreev reflection process, is suppressed as ¢, is increased. In
tunneling limit (high z) (Figs. 3.7, 3.8 (b)), the conductance below the energy gap are
enhanced as g, is increased up to a critical value and one qo is higher than this value,
the increase in o suppresses the conductance. Moreover, there occurs a feature at the
voltage less than the energy gap for mismatch effective mass is big (Fig. 3.8), it is
obviously in Fig. 3.9 (b) when the potential barrier get bigger. The position of this

feature depends on the magnitude of the RSOC. In fact, it slowly moves towards the

peak at the energy gap as the strength of RSOC is increased.

The potential barrier does not affect the peak at the energy gap. This peak is

completely independent on potential as shown in Fig. 3.9.
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eV/E .
(a)
5 T I T l T | I
|
B N q,= 0 ]
il -——— = 0.3kF |
-= = O.SkF
B L - qD = 0'?kF |
|
I
3+ \ ]

(b)

Figure 3.7 The conductance spectra (normalized by e*L*/27h) as a function of bias

voltage for different go = 0, 0.3k, 0.5kr and 0.7ke where rn,=1 (8)z=0, (b)z=1.
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Figure 3.8 The conductance spectra (normalized by e®L*/27h) of 2DEG/S junction:
rm =10, (a) z = 0, (b) z = 1. The arrows indicate the feature at the voltage below the

superconducting gap.
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L L L ! L
0 0.005 0.01 0.015 0.02

0 0.005 0.01 0.015 0.02

Figure 3.9 The conductance spectra (normalized by e*L*/2zh) of 2DEG/S junction
for different value of z, go = 0.2ke: (@) rm = 1 (b) ry = 10. The arrows indicate the

feature at the voltage below the superconducting gap.

In order to understand the line shapes of the conductance, one considers the
angle averaged of normal and Andreev reflection probabilities as a function of voltage

(see Appendix B) It is found that the conductance spectra at the voltage less than the
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gap are influenced mostly by the AR probabilities, which involves the states with the
same wave number as the injected electron as mentioned in the previous work of T.

Yokoyama and coworker’s work (Yokoyama, Tanaka and Inoue, 2006)
To clarify the effect of g, on the conductance, consider the conductance as a

function of q, for different values of z and r,, at eV = 0 (Fig. 3.10) and eV =A (Fig.

3.11). It is found that the conductance at eV = 0 is affected by both barrier potential
and the mismatch of effective mass. As seen in Fig. 3.10 (a), when the insulating

barrier potential is low, the conductance at eV = 0 is decreased with q,, butwhen the
barrier potential is high, the conductance is increased with qg,. When there is a
mismatch in effective mass, the conductance at eV = 0 can be increased with g, up to

a critical value and is decreased as q, gets bigger (see Fig. 3.10 (c)).

The conductance at eV =A is increased with q,. This behavior makes it

possible for this feature to be used to measure the RSOC strength.

The effect of the mismatch in the effective mass and the potential barrier on
the conductance spectra seems similar. That is, both suppress the conductance at most
of the energies except at the energy gap, where only the mismatch suppress the
conductance but the barrier potential has no effect on. In order to further investigate
the effect of both factors, the conductance at zero bias voltage and at the energy gap
as a function of barrier strength and the mismatch are shown in Figs. 3.12 and 3.13 for
a fixed value of q,. The ratio of the effective mass affects the conductance at both
voltages in the same way, whereas the barrier potential only affects on the

conductance a zero voltage but does not affect the conductance at the energy gap at

all.
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Figure 3.10 Theg,dependence conductance (normalized by e*L*/2zh) at eV = 0

wherern, =1(@)z=0,0.1and 0.5 (b)z=1and2 (c) rn=10,z=0and 1.
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Figure 3.11 Theq,dependence conductance(normalized by e’L?/27h) at eV = A

where rp, =1 and 10.

. =10,eV=A

r =10,eV=0
m

Figure 3.12 The z dependence conductance (normalized by e’L?/2zh) for

Qo=0.2kg, rm =1and 10ateV=0and A.
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! q; =02k z=0

m

Figure 3.13 The ry dependence conductance (normalized by e’L*/2zh) for q, =

0.2kr,z=0,at eV =0 and A.

3.2.2 Case 2: Ef lies at the crossing of the two energy branches

When Egis located at the crossing of the two energy branches of the 2DEG on
2DEG, the effect of qo differs from when Eg lies above the crossing. When the
effective masses are the same on both sides, the increase in o enhances the
conductance spectrum at all energy (see Fig. 3.14). When there is a mismatch in the
effective mass, the conductance at the eV =A is increased with go in both Andreev
and tunneling limit (see Fig. 3.15). However, the conductance at eV = 0 is suppressed
with go in case of Andreev limit (see Fig. 3.15(a)), while in the tunneling limit,
conductance at eV = 0 is enhanced up to a critical value and then is suppressed with

Qo (see Fig. 3.15(b)).
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Figure 3.14 The conductance spectra (normalized by e*L*/2zh) of 2DEG/S junction

for different value of o, rm=1(@)z=0(b)z=1.
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Figure 3.15 The conductance spectra (normalized by e’L*/2zh) of 2DEG/S junction

for r, = 10 and different value of qp (@) z=0(b)z=1

To clarify more the effect of g, on the conductance at eV = 0, consider the
conductance as a function of ¢, for different values of z for r,, = 1 (see Fig. 3.16) and

rm = 10 (see Fig. 3.17). It is found that in both r, = 1 and 10, the conductance at eV =

0 is enhanced with go up to a critical value of each z. When qq is higher than that
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value, the conductance at eV = 0 is depressed with qo. For ry, = 1 this critical value of

q, is very different for different value of z. For ry, = 10, this critical value lies around

Qo = 02k|:-03k[:

Figure 3.16 The conductance (normalized by e*L*/27h) as a function of g, for

differentz=0,05,1and2atev =0 for r, =1.
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Figure 3.17 The conductance (normalized by e’L?/2zh) as a function of g, for

differentz=0,0.5,1and 2atevV =0for r,, =10
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Figure 3.18 The conductance spectra (normalized by e’L*/2zh) of 2DEG/S junction

for different value of z, where o =0.4kr (@) rm=1(b) rn, =10

The conductance at the energy gap in this case is independent of the barrier
potential (see Fig. 3.18). Also, it is almost independent of the ratio of the effective

mass as shown in Fig. 3.19. Comparing Fig. 3.19 and Fig. 3.11, one can see that the
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conductances at the energy gap as a function of go in both cases are different. In this
case the dependence of the conductance at the gap on gy is linear over a large range of
Jo- Therefore, the conductance at the energy gap can be used to measure the strength

of RSOC more accurately in this case

eV =A

r o=l
m
——=1 =10
m

L

0 02 04 0.6 08 1
k)

Figure 3.19 The conductance (normalized by e*L*/27h) as a function of q, at

eV = Aand differentz=0,0.5,1, r,=1and 10.

Fig. 3.20 contain the plots of conductances at eV = 0 and eV = A as a function
of barrier potential with different ratios of the effective mass for a fixed value of qo.
The effect of potential barrier on the conductance at eV = A is nil, the same as in case

1. The conductance at zero bias voltage is decreased with the barrier potential.

In Fig. 3.21, the plots of conductance at eV = 0 and eV = A as a function of
the ratio of the effective mass for a fixed qo in the Andreev limit are shown. The
increase in the ratio of the effective mass does not affect the conductance at the

energy gap, but at zero bias voltage, the increase in the ratio of the effective mass



54

enhance and then suppress the conductance. When comparing this case and the

previous case, one can see that the ratio of the effective mass affects the conductance

ateV =0 in a different way.

0.8

0.6

Figure 3.20 The conductance (normalized by e*L*/2sh) as a function of z, go= 0.2,

rm=21and 10, at eV=0and A.

I
i |
; q,= ().2RF, z=0

Figure 3.21 The conductance (normalized by e®L®/27sh) as a function of r, where

z=0and g, =0.2 ateV=0 and A.
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3.2.3 Case 3: Ef lie below the crossing of the two energy branches

The tunneling conductance spectrum in this case is similar to when Er lies at
the crossing. That is the effect of the ratio of the effective mass and the potential
barrier on the conductance spectrum is the same as in the previous case. However, the
conductance spectrum at voltages below the crossing has a feature at the crossing (see

Figs. 3.22 and 3.23).

| — qﬂ:O.ZkF

-- ,=03k,
l R gy, =04k, |

(@)

0 0.005 0.01 0.015 0.02
eV/E .

Figure 3.22 The conductance spectra (normalized by e°L?/2zh) of 2DEG/S junction
. for different go = 0.2kg, 0.3k and 0.4kg (a) z=0and (b) z = 1. The arrows indicate

the feature at the crossing of the two energy branches.
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Figure 3.23 The conductance spectra (normalized by e*L? /2zh) of 2DEG/S junction

'rm=10,00=0.2,0.3,0.4 (a)z=0,(b)z=1. The arrows indicate the feature at the

crossing of the two energy branches.
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Figure 3.25 The conductance (normalized by e*L*/27h) as a function of z for fix

Qo = 0.2kg, rp=1and 10, ateV = 0and A.
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m

Figure 3.26 The conductance (normalized by e*L*/2zh) as a function of r, where

z=0and qp=0.2ateV =0 and A.

3.3 Conclusions

In this chapter, the tunneling conductance spectroscopy of 2DEG/S junction is
investigated. The effects of RSOC strength, potential barrier, the ratio of the effective
masses of the two sides and the different Fermi level of the 2DEG are studied. It is
found that the effects of RSOC strength, potential barrier, and the ratio of the effective
masses of the two sides on the tunneling conductance are different for different Fermi

levels of the 2DEG.

When the Fermi level lies above the crossing of the two branches, the
conductance over the range of the applied voltage less than the superconducting gap is
decreased with the RSOC. The conductance over this range can be increased with the

RSOC when a mismatch in effective mass exists and in the tunneling limit. The
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conductance peak at the energy gap is increased with the RSOC but independent on

the potential barrier.

In the case where the Fermi level of the 2DEG lies at the crossing, the
conductance spectrum below the energy gap is increased with the RSOC up to a
critical value and then is decreased with the RSOC. The effect of potential barrier is
similar to case 1. The effect of the ratio of the effective mass on the conductance at
zero voltage in this case is similar to that of RSOC, but the effect on the conductance

at the energy gap is similar to that of potential barrier.

For the Fermi level of the 2DEG is below the crossing, the effect of RSOC,
barrier strength and mismatch effective mass are similar to that in case where the
Fermi level is at the crossing. The only difference is that in this case the conductance

spectrum below the crossing and there exists a feature at the crossing.

In all cases of Fermi levels, the conductance peak at the energy gap is
increased with the strength of RSOC and independent on potential barrier. One can
use the height of this peak to measure the strength of RSOC. Also, it is shown that the
effects of the mismatch effective mass and the barrier potential are not equivalent as it

was believed (Yokoyama, Tanaka and Inoue, 2006).



CHAPTER IV

2DEG/D JUNCTION

In the previous chapter, the tunneling spectroscopy of the junction between
2DEG and s-wave superconductor was considered. The s-wave superconducting gap is
independent of direction. In this chapter, 2DEG/d-wave superconductor junctions will
be considered. The d-wave superconducting gap has four-fold symmetry, dependent on

the direction of the momentum.

The crystal structures of most high temperature superconductors are tetragonal
and their physical properties are quasi-two-dimensional. These superconductors have a

d ., “wave paring symmetry (Tsuei and Kirtley, 2000). The energy gap of such a

a’-

paring state, A,cos26 (& is the angle between wave vector k and the interface

normal vector, A, is the gap maximum) depend strongly on wave vector and has a

sign change at H:% and 49=3%. Due to this sign change, the existence of the

midgap surface states, were predicted (Hu, 1994). These midgap states cause the
presence of a peak at zero-bias voltage in the conductance spectrum of a metal/d-wave
superconductor junction (Walsh, Moreland, Ono and Kalkur, 1991; Cucolo and Di
Leo, 1993; Kashiwaya, Tanaka, Koyanagi, Takashima and Kajimura, 1995; Alff,
Takashima, Kashiwaya, Terada, Ihara, Tanaka, Koyanagi and Kajimura, 1997; Weil,

Yeh, Garrigus and Strasik, 1998; Wei, Tsuei, van Bentum, Xiong and Chu and Wu,
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1998; Iguchil, Wang, Yamazaki, Tanaka and Kashiwaya, 2000; Aubin, Greene, Sha

Jian and Hinks, 2002).

In this chapter, the a-b plane tunneling spectroscopy of 2DEG/d-wave
superconductor junction will be investigated. The effect of RSOC, potential barrier,

different Fermi levels of the 2DEG, and the junction orientation will be examined.

4.1 Assumption and Method of Calculation

The 2DEG/d-wave superconductor (2DEG/D) junction is modeled as an
infinite 2D system. The geometry of the junction is depicted in Fig. 4.1. The potential
barrier of 2DEG/D junction is represented by a delta-function potential of strength Hs.
The superconducting gap is assumed to be zero in the 2DEG and to be spatially

constant with a d , . “wave symmetry in the superconductor. That is, the
a?

2

superconducting gap depends on wave vector k as follows:

A(6,) = A, cos[2(6, —a)],
where 6, is the angle between wave vector k and the interface normal vector, and «

is the angle between the a-axis of the d , , -wave superconductor and the interface

normal vector. This angle specifies the orientation of the junction, for example, {100}

junction is equivalent toa=0. The sketch of the daz_bz gap function of the

superconductor of {100} junction is displayed in Fig. 4.2.
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H&(x)

AK)O(X)

2DEG I D

Figure 4.1 The sketch of the 2DEG/D junction

Figure 4.2 The sketch of dxkyz - wave superconducting gap function. Plus and minus

sign represent the phase of the gap
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Similar to 2DEG/S junction, the Hamiltonian of 2DEG/D junction is

H,+H,, +H5(X) 0 AO(X) 0
0 A, +H,, +H5(x) 0 AO(X)
T A - ,2)=Ew(X,2),
AB(X) 0 -H,+H_, —Ho(x) 0 W(X ) V/( )
0 AG(X) 0 —H,+H,, —H&(X)

(4.1)

where ﬁo and I—AIRN are the Hamiltonian of the free electron and Rashba Hamiltonian

of electron and/or hole with spin up and spin down respectively. That is,

~ ~ 1 .
H0 = pm p_ EF'5®(X)_ EF,ZDEGG)(_X) !

~ A P PN P 0
Her = P (O(=X)(001) By = Oy12) B,) + (0 01y By = O12) P, )O(=X))

~ A P PN P B
Hp, = 2 (O(=X)(022) Py = a2y P,) + (07,22 P — O 12y P, )O(-X)) ,

~ . . 1 1
where p is a momentum operator in 2D, ——

=——0(-x) +£®(x) is the effective
m(x) m m

mass of the system (m~ in 2DEG and m in the superconductor). y(x, z) is a four-

l//eT
We¢

ht
Vi

component wave function y(x,z) =

The wave function of the superconducting side is the combination of the four

transmitted excitations. That is,



64

u. 0 u, 0
ik x 0 ik x u ik, ik x ik,z
v, (x>0,z)=| ce™ +ce” +de ™ +d,e ™ e,
Vv Vv
k -k
-V 0 -V 0

(4.2)

where ¢, ¢,, d;and d, are the amplitudes of the four transmissions. u, and v, are

the electron-like and hole-like quasiparticle amplitudes and are difined as

4 = e (4.3)

JE+&f+af

A

v, = , (4.4)
JE+&f+laf

so that |uk|2 +|vk|2 =1. E is the quasiparticle energy and & is the electron energy of

state k in normal state. The relation between E, & and A (@) is

E, =& +AL(9) (4.5)

Since the energy range of interest is in order of meV, which is the order of the
maximum superconducting gap and is usually smaller than the Fermi energy of the

superconductor, so the approximation k™ =k~ =k. cos@ is used. Also, 6 ,_=7z-6,..

In the previous chapter, 2DEG/S junction was considered in 3 cases of different
Fermi levels of the 2DEG, i.e., the Fermi level is (1) above the crossing of the two
branches, (2) at the crossing, and (3) below the crossing. It was found that the last two

cases lead to the similar results. Therefore, in this chapter only the first two cases will
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be examined. Also, the effect of the ratio of the effective mass on the conductance

spectrum will not be considered. The ratio will be set to 10 throughout this chapter.

4.2 Results and Discussion

The conductance spectrum of 2DEG/D junction is dependent on the orientation of
the junction as that of metal/D junction (Tanaka and Kashiwaya, 1995; Pairor and
Walker, 2002). In all the following plots the conductance spectra is normalized by the

conductance at eV =0.02E.. This section is divided into 2 parts according to the

Fermi levels of the 2DEG.
4.2.1 Case 1: Er is located above the crossing

Fig. 4.3 shows the tunneling conductance spectra of {100} junction (a =0).
Unlike 2DEG/S and metal/D junction, there occurs a feature at the voltage less than
the maximum gap of the d-wave superconductor. The position of this feature depends
on the magnitude of the RSOC. In fact, it moves towards the peak at the maximum gap
as the strength of RSOC is increased. This feature is not robust against the potential
barrier, i.e., it gets smeared out as the potential barrier is larger. This feature also exists
in the conductance spectrum of the junction small with non-zero « (see Figs. 4.4(b)
and 4.5). Its position moves toward zero energy as « is increased (see Fig.4.5). The
shape of this feature is different from that of 2DEG/S junction due to the dependence
on wave vector of the d-wave superconducting gap which different from that of s-wave

superconductor.
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spectra of 2DEG/D junction with various ¢, where

a=0,r,=10 (@).z=0, (b) z=0.3(c) z=2. The arrows indicate the feature at eV<A
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2DEG/D junction case 1 :1_=10,q,=03k,,z=0
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Figure 4.5 The conductance spectra of 2DEG/D junction with various« , z =0,

rm=10and g, =0.3k;

As shown in Fig. 4.6, the potential barrier decreases the normalized
conductance at the bias voltage below the maximum gap similar to that in the spectrum

of M/D junction (Tanaka and Kashiwaya, 1995).

2DEG/D junction casel: M= 10, a,= 0.1 kr 2DEG/D junction casel: r, =10, q,= U.4kl_.‘ =0
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Figure 4.6 The conductance spectra of 2DEG/D junction with various z =0, 0.3, 1 and

2, & =0, =10 (a) g, = 0.1 . (b) g, =0.4k, .
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In the spectrum of junctions with « away from zero, there occurs a zero-bias
conductance peak (ZBCP), which is the signature of the surface bound states of the d-

wave superconductor (Hu, 1994). Fig. 4.7 shows the plots of normalized conductance
vs bias voltage of the {110} (« :%) junction with various values of RSOC strength

(go). It is found that in the Andreev limit go enhances the height but decreases the
width of ZBCP (Fig. 4.7(a)). In the tunneling limit, go reduces the height of the peak
but does not affect its width (Fig. 4.7(b)). Fig. 4.8 contains the plot of normalized
conductance for different value of potential barrier. It is found that the height of ZBCP
Is increased with z, whereas its width is decreased for small go. When qo is big, the

potential barrier does not affect the width of ZBCP.
The effect of the RSOC and the potential barrier on ZBCP in the conductance

spectrum of junction with « :% is the same as in that of {110} junction (see Figs. 4.9

and 4.10). There is a peak occurring at eV = A, cos2«a, where o :% as also seen in

M/D junction (Tanaka and Kashiwaya, 1995; Pairor and Walker, 2002).
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Figure 4.7 The conductance spectra with various RSOC, « :%, @z=0(b).z=2.

The inset is the close up plot of the conductance spectra near eV =0
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Figure 4.8 The conductance spectra of 2DEG/D junction with various z =0, 0.5, 1 and

2, a :%’ rm =10 (a) g, = 0.1k, . (b) g, = 0.4k
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2DEG/D junction case 1 : 1= 10,z=0, o0 =7/8
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Figure 4.9 The conductance spectra with various RSOC, « :%, @z=0().z=2.

The arrows indicate the feature at eV = A, cos2« . The inset is the close up plot of the

conductance spectra near eV =0
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2DEG/D junction casel: r,_= 10, q, = 0.1k, o= 7/3
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Figure 4.10 The conductance spectra of 2DEG/D junction with various z = 0, 0.5, 1
and 2, a =% , 'm=10(a) q, =0.1k;. (b) q, =0.4k-. The inset is the close up plot of

the conductance spectra near eV =0
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4.2.2 Case 2: Eris located at the crossing

For the {100} junction, in the Andreev limit the normalized conductance at
zero bias voltage is decreased with qo (see Fig. 4.11(a)). In the tunneling limit, the
conductance at zero voltage is increased with go and then later is decreased with qo
(see Fig. 4.11(b)). Fig. 4.12 contains the plots of normalized conductance for different
values of potential barrier for a fixed qgo. It is found that for small qo_potential barrier
suppresses the conductance at zero voltage, while for big qo, the potential barrier can

enhance it.

The conductance spectra for different values of go of junctions with « =%

and « :% are shown in Figs. 4.13 and 4.14. In the Andreev limit, the effect of go on

ZBCP is the same as in the previous case where Er is located above the crossing, that
Is, it enhances the height of ZBCP. However, in the tunneling limit, the increase in qo
can cause the height of ZBCP to decrease and after a critical value of qo the height start

to increase.

Figs. 4.15 and 4.16 contains the plots of conductance spectra of the junction

with a:% and a =2 for different values of z. It is found in junction with both

orientations that as the potential barrier is increased, the height of ZBCP is increased

for small qo, while for big qo the height of ZBCP is almost unchanged.
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Figure 4.11 The conductance spectra with various RSOC,a =0, (a)z=0(b).z=1
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2DEG/D junction case2: r =10, q,= 0.1k, =0
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Figure 4.12 The conductance spectra of 2DEG/D junction with various z = 0, 0.5, 1
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2DEG/D junction case 2 : ro= 10,z=1, o =7/4
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Figure 4.15 The conductance spectra of 2DEG/D junction with various z = 0, 0.5, 1

and 2, a =

NG

=0, rn =10 (a)q, = 0.1k, (b) g, = 0.4k,
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2DEG/D junction case2: r_ = 10, q, = 0.1k, o = 7/8
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Figure 4.16 The conductance spectra of 2DEG/D junction with various z = 0, 0.5, 1
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4.3 Conclusions

The tunneling conductance spectra of 2DEG/D junction show strong
dependence on junction orientation. In junction with {100} orientation, a peak near the
maximum gap of the d-wave superconductor is present in the conductance spectra. In
junction away from {100}, there occurs a ZBCP, which is the signature of the surface
bound states of d-wave superconductor (Hu, 1994; Tanaka and Kashiwaya, 1995).
Like in 2DEG/S junction, it is found that the effects of RSOC strength and potential
barrier on the tunneling conductance are different for different Fermi levels of the

2DEG.

When the Fermi level lies above the crossing of the two branches, there occurs
a peak at finite bias voltage but less than the maximum gap in {100} junction. The
position of this feature depends on the magnitude of the RSOC. However, this feature
IS not robust against the barrier potential, i. e. it disappear when the barrier potential is

in the tunneling limit. The normalized conductance at the bias voltage below the

maximum gap is decreased by the potential barrier. In the junction with « =% and

a :%, RSOC enhance the height but decrease the width of ZBCP in Andreev limit. In

the tunneling limit, RSOC reduce the height of the peak but does not affect its width. It
is found that the height of ZBCP is increased with the barrier potential, whereas its
width is decreased for small RSOC. When RSOC is big, the barrier potential does not

affect the width of ZBCP.

In the case where the Fermi level of the 2DEG lies at the crossing, for the

{100} junction, the normalized conductance at zero bias voltage is decreased with
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RSOC in the Andreev limit. In the tunneling limit, the conductance at zero bias voltage
is increased with RSOC and then later is decreased with RSOC. It is found that for

small RSOC, potential barrier suppress the conductance at zero bias voltage, while for
big RSOC, the potential barrier can enhance it. In the junction with « =% and a =%,

the effect of RSOC on ZBCP in Andreev limit is the same as in the case where Fermi
level lies above the crossing, that is, it enhances the height of ZBCP. However, in the
tunneling limit, the increase in RSOC strength can cause the height of ZBCP to

decrease and after a critical value of RSOC the height start to increase. It is found in
the junction with both a:% and a:% orientations that the barrier potential

increases the height of ZBCP for small RSOC, while for RSOC is big the height of

ZBCP is almost not affected.



CHAPTER YV

CONCLUSIONS

In this thesis, the tunneling conductance spectra of 2DEG/M, 2DEG/S and
2DEG/D junctions are theoretically investigated. The effect of RSOC and the
potential barrier on the conductance spectrum are examined in detail. For the
conductance spectra of 2DEG/S and 2DEG/D junctions, the effect of Fermi level of

2DEG is also considered.

For 2DEG/M junction, it is assumed that the Fermi level of 2DEG is much
higher than the Rashba energy. The results for the lower Fermi level can also be
obtained by be shifting the zero voltage according to the Fermi level. It is found in
2DEG/M junction that the injection from 2DEG can generate the spin polarization in
the metal. The spin polarization depends on the applied voltage. It is maximum at the
crossing of two energy branches. The increase in the barrier potential decreases the
spin polarization and also generally suppresses the conductance. As for the RSOC
strength, it enhance the conductance, but does not generally enhance the spin
polarization. From the plot of conductance as a function of bias voltage, it suggests

that one can use the tunneling spectroscopy to measure the strength of RSOC.

For 2DEG/S junction, the effect of RSOC, the mismatch effective mass, the
barrier strength and the Fermi level of the 2DEG on the tunneling conductance is
investigated. It is found that the effect of RSOC strength, potential barrier, and the

ratio of the effective masses on the tunneling conductance are different for different
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Fermi levels. When the Fermi level lies above the crossing of the two branches, the
conductance over the range of the applied voltage less than the superconducting gap is
decreased with the RSOC. The conductance over this range can be increased with the
RSOC when the mismatch in effective mass exists and the potential barrier is in the
tunneling limit. The conductance peak at the energy gap is increased with the RSOC

but independent on the potential barrier.

In the case where the Fermi level of the 2DEG lies at the crossing, the
conductance spectrum below the energy gap is increased with the RSOC up to a
critical value and then is decreased with the RSOC. The effect of the potential barrier
is similar to that in the previous case. The effect of the ratio of the effective mass on
the conductance at zero voltage in this case is similar to that of the RSOC, but the
effect of the ratio on the conductance at the energy gap is similar to that of the

potential barrier.

For the Fermi level of the 2DEG is below the crossing, the effect of RSOC,
barrier strength and mismatch effective mass are similar to that in case where the
Fermi level is at the crossing. The only difference is that in this case there exists a

feature in the conductance spectra at the crossing.

In all cases of Fermi levels, the conductance peak at the energy gap is
increased with the strength of RSOC and independent on barrier potential. One can

use the height of this peak to measure the strength of RSOC.

The tunneling conductance spectra of 2DEG/D junction show strong
dependence on junction orientation, which is characterized by the angle o between

the a-axis of the superconductor and the direction normal to the interface. In junction
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with {100} orientation («-=0), a peak near the maximum gap of the d-wave

superconductor is present in the conductance spectrum. In junction away from {100},
there occurs a ZBCP, which is the signature of the surface bound states of d-wave
superconductor (Hu, 1994; Tanaka and Kashiwaya, 1995). Like in 2DEG/S junctions,
it is found that the effect of RSOC strength and potential barrier on the tunneling

conductance are different for different Fermi levels of the 2DEG.

When the Fermi level lies above the crossing of the two branches, there occurs
a peak at finite bias voltage but less than the maximum gap in {100} junction. The
position of this feature depends on the magnitude of the RSOC. However, this feature
IS not robust against the barrier potential, i.e. it disappears when the potential barrier is
in the tunneling limit. The normalized conductance at the bias voltage below the
maximum gap is decreased by the potential barrier. In the {110} junction, RSOC
enhance the height but decrease the width of ZBCP in the Andreev limit. In the
tunneling limit, RSOC reduces the height of the peak but does not affect its width. It is
found that the height of ZBCP is increased with the potential barrier, whereas its
width is decreased for small RSOC. When RSOC is big, the potential barrier does not

affect the width of ZBCP.

In the case where the Fermi level of the 2DEG lies at the crossing, for the
{100} junction, the normalized conductance at zero bias voltage is decreased with
RSOC in the Andreev limit. In the tunneling limit, the conductance at zero bias
voltage is first increased with RSOC and then later decreased with RSOC. It is found
that for small RSOC, barrier strength suppresses the conductance at zero bias voltage,
while for big RSOC, the barrier strength can enhance it. In the {110} junction, the

effect of RSOC on ZBCP in Andreev limit is the same as in the case where Fermi
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level lies above the crossing; that is, it enhances the height of ZBCP. However, in the
tunneling limit, the increase in RSOC strength can cause the height of ZBCP to
decrease and after a critical value of RSOC the height start to increase. It is found in
the {110} junction that the barrier strength increases the height of ZBCP for small

RSOC, while for RSOC is big the height of ZBCP is almost not affected.
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APPENDIX A

8 x 8 EQUATIONS OF 2DEG/S JUNCTION

In this appendix, the8x8 equations for the reflection and transmission
amplitudes of each case of the 2DEG/S junction are written in details.
1) casel: Eris located above E.

b, sing +b,cose, —cu, —d,v, =—Cos@
—b, cos@ +b,sing; —c,u, —d,v, =sing,
—-a,sing, +a,cosp, —c,v, —d,u, =0
—-a,Ccosg, —a,sing, +cv, +du, =0

g, r.bsing +q,r.b,cose, + (k™ +2ik.z—q,r,)cu, — (kK —2ik.z+q,r,)d,v, =0, cos@,
—-q,r.b cose’ +q,r.b,sing, + (k™ +2ik-z+q,r,)c,u, — (k™ —2ik.z—q,r, )d,v, =—q T, sing
o, r,asing —q,r.a,cose, + (k™ +2ik-z +q,r,)c,v, — (k™ —2ik.z—q,r,)d,u, =0

0, 1,8,Ccosp, +0,r,a,sing, — (k™ +2ik-z—q,r,)cv, + (k™ —2ik.z+q,r,)d,u, =0

The above 8x8 equations are defined for the incident states from the plus branch. In
case of incident states from the minus branch, only inhomogeneous term of the above

equations is modified. That is, the right hand side of 8x8 equations
become(-sing;, —cosg;, 0, 0, g;r,sing;, g, cosg;, O, 0).
2) case2: Erislocated at E.

b, sing +b, cosg, —cu, —d,v, =—Ccosq,
—b, cos¢, +b,sing, —c,u, —d,v, =sing
—-a,Cos¢@, +a,Ccosg, —c,v, —d,u, =0
—-a,sing, —a,sing, +cv, +du, =0
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g r.bsing +q,r.b,cose, + (k™ +2ik-z—q,r,)cu, — (K" —2ik-z+q,r,)d,v, =q,'T, CoSe;
—q,r,b cose’ +a,r.b,sing, + (k" +2ik-z+q,r,)c,u, —(k” —2ik-z—q,r,)d,v, =—q, T, Sing
—Q, ,& CoS@, —0,r,a,Cos¢p, + (K" +2ik.z+q,r,)c,v, — (k™ —2ikez—q,r,)d,u, =0

—q, r,asing +0,r.a,sing, — (k" +2ik.z—-q,r,)cv, + (k™ —2ik-z+q,r,)du, =0

In the same way, these equations are defined for the incident states from plus branch.
For incident states are from the minus branch, only inhomogeneous terms are
modified. That is, the right hand side of 8 x8 equations become
(-sing;, —cosg;, 0, 0, q;r,sing;, g;r,cosp;, 0, O
1) case3: Eris located below E.
3.1. For E<E;

b, sing +b,cose, —cu, —d,v, =—Ccos@,
b, cos¢ +b,sing, —c,u, —d,v, =—-sing
a,sing, +a,cosg, —c,v, —d,u, =0
—-a,Ccosg, —a,sing, +cv, +du, =0

—Oy by Singy” + 0,10, cos gy + (KT +2ikez - o1, )eu, — (K™ —2ike 2+ 0,1, )dyv, = =0T, COS @
—0, b, cos g + 0,1, 0, sin @y + (K™ + 2K Z + g, )CoU, — (K™ — 2ike 2 — gk, )d,v, = =0T, sing
o, r,asing —q,r.a,cose, + (k™ +2ik-z +q,r,)c,v, — (k™ —2ik.z—q,r,)d,u, =0

—0, 1,8, C0S@, +0,r.a,sing, — (k™ +2ik.z—q,r,)cV, + (k™ —2ik.z+q,r,)d,u, =0

The above 8x8 equations are for the incident states with momentum -g,. For the
incident states with momentum @,, inhomogeneous term of the above equations is
modified. That is the right hand side of 8«8 equations become

(—singog, —-cose,, 0, 0, q,r,sing,, Q,r,cose,, O, 0)

3.2. For E > E;
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b, sing +b, cosg, —cu, —d,v, =—Ccosq,
—b, cos¢, +b,sing, —c,u, —d,v, =sing
a,sing, +a,cose, —c,v, —d,u, =0
—-a,Ccosg, —a,sing, +cV, +du, =0

q,r.bsing +q,r.b, cose, + (k™ +2ik.z—-q,r,)cu, — (k™ —2ik-z+q,r,)dv, =0T, CosSe’
=0, Tb, cos g +0, 1,0, sing, + (K™ + 2ik: 2+ g1, )CU, — (K™ —2ikez— ol )d,v, = —q/'T, sing;
g, r,asing —q,r.a,cose, + (k" +2ik.z+q,r,)c,v, —(k —2ik.z-q,r,)d,u, =0

—Q, 1,8, Cos@, +0,r,a,sing, — (k™ +2ik.z—q,r,)cyv, + (k™ —2ik.z+q,r,)d,u, =0

The above 8x8 equations are for the incident states with momentum ¢,. For the
incident states with momentum g,, inhomogeneous term of the above equations is

modified. That is the right hand side of 8x8 equations become

(-sing;, —cosg;, 0, 0, q;r,sing;, g;r,cosp;, 0, 0).



APPENDIX B

AVERAGE TUNNELING PROBABILITIES

In this appendix, the plots of the angle average of the Andreev reflection (Ay,
A Azand A,) and normal reflection (B;, B,, B,and B,) probabilities of 2DEG/S and
2DEG/D junctions as a function of energy are shown. The left (A1, A, By and By) and
right (A, A,, B, and B,) panels are the reflection of an incoming electron from plus

and minus branches respectively. Note that the energy is in unit of the Fermi energy of
the superconductor. The s-wave energy gap and the energy gap maximum of d-wave

superconductor are set to be one hundredth of the Fermi energy.
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Figure Al Average tunneling probabilities of 2DEG/S junction (casel) for r, = 1,
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Angle Average of Tunneling Probabilities of 2DEG/S Junction:r =1, z=1
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Figure A2 Average tunneling probabilities of 2DEG/S junction(casel) where r, =1,

z=1, A =0.01E.
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Figure A4 Average tunneling probabilities of 2DEG/S junction (casel) where ry, =

10,z =10, A= 0.01E.
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Figure A5 Average tunneling probabilities of 2DEG/S junction (case2) where r, = 1,

z=0, A =0.01E.
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Figure A6 Average tunneling probabilities of 2DEG/S junction (case2) where rp, = 1,

z=1, A =0.01E.
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Figure A7 Average tunneling probabilities of 2DEG/S junction (case3) where r, = 1,

z=0, A =0.01E.
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Figure A8 Average tunneling probabilities of 2DEG/S junction (case3) where rp, = 1,

z=1, A=0.01E
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Figure A9 Average tunneling probabilities of 2DEG/D junction (casel) where rpy, =

10,z=0, ¢ =0, A=0.01E.
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Figure A10 Average tunneling probabilities of 2DEG/D junction (casel) where rpy, =

10,z=1, ¢ =0,A=0.01E.
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Figure A12 Average tunneling probabilities of 2DEG/D junction (casel) where rpy, =

10,z=1, o =

i
4

, A =0.01E.
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Figure A13 Average tunneling probabilities of 2DEG/D junction (case2) where ry, =

10,z=0, ¢ =0,A=0.01E.
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Figure Al4 Average tunneling probabilities of 2DEG/D junction (case2) where ry, =

10,z=1, ¢ =0,A=0.01E¢.
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Figure A15 Average tunneling probabilities of 2DEG/D junction (case2) where ry, =

10,2=0, ¢ = %, A = 0.01Er.
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