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FUNCTIONAL DIFFERENTIAL FORMALISM OF QUANTUM FIELD THEORY/
DEPENDENT FIELDS/ ACTION PRINCIPLE/ QUANTIZATION RULES/ GAUGE
THEORIES/ FADDEEV-POPOV FACTOR/ CONSTRAINTS/ THE QUANTUM DY-
NAMICAL PRINCIPLE AND FUNCTIONAL CALCULUS/ GAUGE INVARIANCE/
GAUGE BREAKING INTERACTIONS.

Guided by the structures of present Lagrangians for elementary particles’ dy-
namics in High-Energy Physics and even their further generalizations, a systematic and
a unified analysis is carried out of constrained dynamics in the functional differential
formalism of quantum field theory via the application of the Quantum Dynamical Prin-
ciple. As all of the present theories of the fundamental interactions are gauge theories a
gauge constraint then necessarily arises in the theory. After a detailed derivation of the
so-called Faddeev-Popov factor by the above formalism, we show that a gauge invariant
theory does not necessarily imply the presence of this familiar factor and further modi-
fications, derived in the text, may arise. In particular this is shown to be also generally
true when gauge breaking terms are considered. Equipped with such results, a general
Theorem for constrained dynamics is proved and rules of applications are developed in
the above formalism as follows. General field theories are considered with interaction
Lagrangian densities £;(z; \), with A a generic coupling constant, such that the fol-
lowing expression OL;(x; \)/OX may be expressed as quadratic functions in dependent
fields but may, in general, be arbitrary functions of independent fields. These necessar-
ily include, as special cases, present renormalizable gauge theories. It is shown, in a

unified manner, that the vacuum-to-vacuum transition amplitude (the generating func-
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tional) may be explicitly derived in functional differential form which, in general, leads
to modifications to computational rules by including such factors as Faddeev-Popov
ones and modifications thereof which are explicitly obtained. The derivation is given
in the presence of external sources and does not rely on any symmetry and invariance
arguments as is often done in gauge theories and no appeal is made to path integrals.
The physical relevance of such a Theorem and of the underlying general analysis in
quantum field theory in the functional differential formalism is clear. We have also
carried out analyses of constrained dynamics in quantum physics and two different ap-
proaches were taken again in the functional differential formalism: [1] Given a Hamil-
tonian H(q,p) and a set of pairwise commuting operator functions G,(q(7), p(7)),
j = 1,..., k, transformation functions are derived corresponding to any Hamiltonian

H(q,p,Q,P) with constraints Q(7) — G(q(7),p(7)) = 0, for which P = 0, and
H(q,p,G(q,p),0) = H(q,p). [2] Given a Hamiltonian H(q, p), we consider a new
system by defining constraint operator functions G;(q(7),p(7)), j = 1,...,k, and
canonical conjugate momenta defined for them G(q(7),p(7)), j = 1,...,k, such
that G(q(7),p(7)) = 0, G(q(r),p(r)) = 0 and the new Hamiltonian is given by
H(q*,p*) = H(q, p)‘G:O,G:O with (q,p) — (q*,p*,G,G) defining a canonical

transformation.
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CHAPTER 1
INTRODUCTION

Quantum field theory, successfully uniting quantum physics and relativity, pro-
vides the non-phenomenological theoretical approach in describing the dynamics of
Elementary Particle Physics and is the basic tool for practical computations in High-
Energy Physics. The theories introduced so far in history to describe the fundamental
interactions in physics, include Quantum Electrodynamics (Dirac, 1927; Fermi, 1930;
Schwinger, 1948, 1949a, 1949b, 1951a; Feynman, 1949a, 1949b, 1950; Tomonaga,
1948; Dyson, 1949a, 1949b), the Unified Weak-Electromagnetic Theory (Salam, 1968,
1980; Salam and Strathdee, 1972; Weinberg, 1967, 1974, 1980; Glashow, 1959, 1961,
1980), Quantum Chromodynamics and unified theories involving strong interactions
(Bjorken, 1972; Pati and Salam, 1973; Georgi and Glashow, 1974; Buras et. al., 1978;
Gross, 1999; loffe, 2001; Gross, Wilczek, Politzer, 2004) even theories attempting
to include Einstein’s theory of gravitation and modifications thereof (Zumino, 1975;
Arnowitt et. al., 1975; Akulov et. al., 1975; Deser and Zumino, 1976; Wess and Zu-
mino, 1977; Brink et. al., 1978, Salam and Strathdee, 1978; Deser, 1986; 't Hoofft,
1986). The reason why it took years from the time of the development of quantum
electrodynamics to its extension to the weak and strong interactions was the necessity
of obtaining renormalizable theories (Salam, 1980; Weinberg, 1980; Glashow, 1980; ’t
Hooft and Veltman, 1999; see also Manoukian, 1983). At present there is no renormaliz-
able theory of gravitation and this fundamental interaction remains left out of the realm
of quantum physics as no theory is acceptable if it cannot be consistently renormalized
for proper physical interpretation and for actual computations. The reason for going
through the history of the fundamental interactions in physics is that all of these theo-
ries are not only gauge theories but are also constrained dynamical systems. [Theories

with constraints are difficult to handle even at the classical level and very little may be



found on it even in most authoritative books (cf. Goldstein, Poole and Safko, 2002)
on Classical Dynamics.]. The breakthrough in constrained dynamics came through
the classic work of Dirac (1950, 1951, 1958, 1967) restricted to Hamiltonian systems
which, in particular, necessitated generalizing the expression of the well known Poisson
bracket which had been used for years before. This method was successfully applied
in a path-integral context (Feynman, 1948; Feynman and Hibbs, 1965) to gauge theo-
ries by Faddeev (1969), Faddeev and Popov (1967); with pertinent contributions due
to De Witt (1964), Senjanovik (1976), Gribov (1978), Fradkin and Vilkovisky (1977)
(see also Henneaux and Teitelboim, 1994; Garcia, Vergara and Urrutia, 1996; Galvao
and Boechat, 1990; Batalin and Fradkin, 1986, 1987; Batalin, Fradkin and Fradkina,
1990; Batalin and Tyutin, 1993, Bizdadea and Saliu, 1996; Shimuzu, 1997; Bartlett
and Rowe, 2003). Due to the non-uniqueness problem encountered in gauge field the-
ories (e.g., Gribov, 1978; Zwanziger, 1981) several approaches have been taken in the
literature to constrained dynamics. The first is the path integral approach just men-
tioned. The second is the canonical operator approach (cf. Utiyama and Sakamoto,
1977; Mohapatra, 1971a, 1971b, 1972; ’t Hooft and Veltman, 1973; Weinberg, 1980)
which turned out to be not too economical in details as it involves S-matrix techniques,
using Wick’s Theorem, field equations, commutation rules and several difficulties in-
volving with Schwinger terms in ill defined commutators. The third approach used for
the first time in the quantization problem of gauge theories (Manoukian, 1986, 1987a,
1987b); also the recent work of Manoukian and Siranan, 2005) is based on the Quan-
tum Dynamical principle or Quantum Action Principle, pioneered by Schwinger, 1951b,
1951¢,1953a, 1953b, 1954; see also Lam, 1965; Manoukian, 1985). This approach gen-
erates the so-called Faddeev-Popov ghost factor (Manoukian, 1986, 1987a) of gauge
theories with no difficulty. The advantages of the quantum dynamical approach is that
it avoids making appeal to path integrals, avoids using commutation rules; it avoids,
in general, going through the complicated structure of the Hamiltonian in non-abelian

gauge theories, it avoids using S-matrix-Wick’s product techniques, it avoids guessing



weight factors as generated from the Feynman rules of the canonical formalism and
avoids altogether solving for field equations. The quantum dynamical principle gives
the variation of the vacuum-to-vacuum transition amplitude with respect to charges or
couplings, masses, frequencies, external sources and with respect to any parameter that
the theory may depend on. Unlike the path integral approach which depends on contin-
ual integrals, as an infinite product over spacetime points, which are often ill defined,
the quantum dynamical principle involves only differentiations with respect to external
sources of a well defined quantity, and is obviously much easier to differentiate than to
integrate.

Constrained dynamics in the quantum field theory of gauge fields lead, in gen-
eral, to a modification of the so-called naive Feynman rules. In a classic paper published
in Acta Physica Polonica in 1963, Feynman, dealing with quantum gravity (Feynman,
1963) as a gauge theory, had already emphasized that naive Feynman rules cannot be ap-
plied in the theory of gravitation and modifications are necessary to ensure the positivity
of the underlying theory and consistent positive definite probabilities of fundamental
processes may be obtained. Otherwise unwanted Ghosts would appear in the theory
leading to unphysical singularities and unphysical repulsive negative probabilities.

The main purpose of the present thesis is to prove, develop and analyse within
the functional differential treatment of quantum field theory (Schwinger, 1951a, 1951b,
1953, 1954, 1972; Manoukian, 1985, 1986, 1987, 2006; Manoukian and Siranan, 2005;
Limboonsong and Manoukian, 2006), as based on the Quantum Dynamical Principle
(QDP), also popularly known as Schwinger’s Dynamical (Action) Principle, constrained
dynamical systems. Our thesis is also involved with constraints in quantum physics, in
general, as well as will be discussed below and is developed in Chapters III and IV.
The Quantum Dynamical Principle in its very general form is given by the very useful
formula spelled out below. Suppressing spinor and tensor indices and denoting a general
field by x(z), coupled to an external source J(z) in the Lagrangian density, then for

an operator 0(z), the functional derivative of the matrix element (0 |0(x)|0_), with



respect to the external source J(x') is rigorously given by

)
J(x)

5
57 (z")

(1) <210, 16@)|0_) = (04 |(x(@)@))410_) — i <o+

O(x)

(o9

where (0 |0_) denotes the vacuum transition amplitude of the theory, (x(z')0(x))+
denotes time ordering with x(z') appearing first on the left-hand side for z/® > z"
and vice versa, and most importantly, the functional derivative 0 &(x)/d.J(z') in the last
term in Eq. (1.0.1) is taken with the independent fields and their canonical conjugate
momenta kept fixed. A complete rigorous proof of Eq.(1.0.1) is now available (see
Manoukian, Sukkhasena and Siranan, 2007).

If Z;(x) is the interaction Lagrangian density of the theory, then, in the func-
tional differential treatment of the theory, the vacuum-to-vacuum transition amplitude

(04 10_), in very special cases, in given by (see, e.g., Manoukian, 1986)

0,100) = exp [i / (dz) x/(;p)} (0, 10_), . (1.0.2)

where (04]0_), is the vacuum-to-vacuum transition amplitude in the absence of the
interaction term .Z7(z). Also .7 () is the interaction Lagrangian density with the
fields x(x) replaced by the functional differential operator (—i)d/d.J(x). In gauge the-
ories, and all present elementary particle dynamical theories in quantum field theory
are gauge field theories involving constraints. These constraints lead to modification of
the naive rules obtained from Eq. (1.0.2) by involving an additional multiplicative func-
tional factor in Eq. (1.0.2) as functions of functional differential operators (—i)d/d.J ().
The determination of such factors is quite difficult and this thesis is a rigorous study to
determine explicitly such factors in theories with constraints.

In developing such rules, we were guided by the explicit structure of present
Lagrangian densities in elementary particle physics. We have even generalized such

structures and obtained some very general rules. It is instructive to write down some



of the Lagrangians densities used in particle physics. For example quantum electrody-

namics is described by the Lagrangian density given below.

1 1[0 -0 _ _
Lopn = — 2 4 21O Gn O G b e A, (10.3)
4 2 1 1

in and obvious notation. Mathematically, QED has the structure of an abelian gauge
theory, with the symmetry group U(1) as gauge group. The gauge field which medi-
ates the interaction between the charged spin -1/2 fields is the electromagnetic field.
While the strong interaction describing the dynamics of quarks and gluons, referred to
as Quantum Chromo_Dynamics (QCD) is defined by

1 [0, - 0,
5 uiw 8“51‘;‘ ?/)j —%‘7“5@ Mi%

ZLocp =

pv

- 1
— m05ij77/1ﬂ/)j — Z Ga Ggu s (104)
where G}, are the gluon field strength tensor defined by

Go, = 0,AL—0,A% + go f AL AS (1.0.5)

(Tl 2

fab are the structure constants satisfying the relation:
foe = i(tn)be, (1.0.6)
and for the matrices t* we have
[t ] = ifebere. (1.0.7)

The matrices t* are the generators of the underlying algebra. QCD is a non-abelian
gauge theory as the generators t* do not commute. Quarks are massive spin -1/2
fermions which carry a color charge whose gauging is the content of QCD. Quarks
ae represented by Dirac fields in the fundamental representation 3 of the gauge group

SU(3). They also carry electric charge (either -1/3 or 2/3) and participate in weak inter-



actions as part of weak isospin doublets. They carry global quantum numbers including
the baryon number, which is 1/3 for each quark, hypercharge and one of the flavor quan-
tum numbers. Gluons are spin -1 bosons which also carry color charges, since they lie
in the adjoint representation 8 of SU(3). They have no electric charge, do not participate
in the weak interactions, and have no flavor. They lie in the singlet representation 1 of
all these symmetry groups. The electro-weak theory is also a non-abelian gauge theory
with Lagrangian density having the a general structure similar to the one in Eq. (1.0.4)
but also involve the so-called Higgs boson which is a scalar field and causes no further
difficulties as a constrained dynamics is concerned. The gravitational interaction most
popularly given by Einstein’s Lagrangian density is also a non-abelian gauge theory and
requires very special tools and will be discussed in the concluding chapter of the thesis.

The outline of the thesis is as follows. In Chapter III, we develop the following
construction of transformation functions for constrained dynamics in quantum physics.
We are given a Hamiltonian H(q, p) as a function of independent pairs of canonical
conjugate variables {¢;, p;,i = 1,...,n} = {q, p}, that s, it is defined in a phase space
of dimensionality equal to 2n. We are also given a set of pairwise commuting operator
functions {G,(q(t),p(t)),j = 1,...,k} of these variables. These allow us to describe
the dynamics of any Hamiltonian H(q, p, Q, P) in, a priori, (2n + 2k) dimensional

phase space in which constraints are imposed given by

Q;t) - Gi(q(t),pt)) =0 , j=1,...,k, (1.0.8)

with Q = (@1, ..., Qx), for which P = 0, such that

H(q,p,G(q,p),0) = H(q,p). (1.0.9)

In Chapter 4, we consider constrained dynamics in quantum physics in the following
manner. Given a Hamiltonian H (q,p) as a function of independent variables q =

(q1,--.,qn) and their canonical conjugate momenta p = (py,...,p,), we consider a



new system by defining constraint operator functions

G(q(t),p(t) = {Gi(a(t),p()),-..,Ckla(t),p))}, (1.0.10)

as of pairwise commuting operator functions G;(q(t), p(t)), which together we intro-

duce canonical conjugate momenta for them

G(a(t),p(t)) = {Gi(a(t),p()),-..,CGkla(t),p))} , (1.0.11)
such that
G(q(t),p(t)) = 0,
G(a(t),p(t)) = 0,
and

H(d"p") = H(a,P)|g_0a0 (1.0.12)

defines the new Hamiltonian of the system with constraints and with (q,p) —
(a*, p*, G, G) defining a canonical transformation H(q*, p*) describes dynamics in
a 2(n — k) dimensional phase space. As the analyses involve extensive applications of
functionals in quantum physics, we first, in Chapter II, apply such methods to a simpler
problem of determining the number of eigenvalues of a given potential. Chapters V, VI
and VII are entirely devoted to quantum field theory. In Chapter 5, functional calculus
is developed for dependent fields with applications to Maxwell’s Lagrangian with, a
priori, non-conserved external current 0,,J* # 0, so that variations with respect to all
the components of J# may be carried out independently - a required mathematical fact.
Chapter VI deals systematically with the modification of the so-called Faddeev-Popov

factor with explicit examples given for gauge invariant theories as well as to theories



which break gauge invariance. Chapter VII is of central importance in the entire thesis
as it establishes a Theorem for quadratic actions in dependent fields which are arbitrary
functions in the independent fields. Applications of this general Theorem is also given.
In quantum field theory, we consider units such that » = 1, ¢ = 1 as is often taken.
The final chapter (Chapter VIII) deals with our conclusion and a summary of the main

results obtained in the thesis.



CHAPTER 11
NUMBER OF EIGENVALUES
OF A GIVEN POTENTIAL:
EXPLICIT FUNCTIONAL EXPRESSIONS

2.1 Introduction

Over the years, upper bounds have been derived for the number of eigenval-
ues, falling within specific ranges, for given potentials. The first bound was due to
Bargmann (1952) who worked with spherically symmetric potentials and, in the pro-
cess, obtained a bound depending on the orbital angular momentum. This was then
extended by Schwinger (1961) for more general potentials, not mecessarily spherically
symmetric, and a similar result was obtained by Birman (1966). Related upper bounds
have been also derived by others, cf. Ghirardi and Rimini (1965). The most significant
application of the Schwinger bound for the number of eigenvalues of a given potential,
or more precisely of the negative of the sum of the negative eigenvalues, was carried
out in the problem of the stability of matter, (Lieb and Thirring, 1975; Manoukian and
Sirininlakul, 2005) and, in particular, in deriving a lower bound to the expectation value
of the kinetic energy operator. The purpose of this chapter is to derive an explicit func-
tional expression for the number of eigenvalues as well as for their sum. Our strategy
of attack is the following. We first obtain expressions for the quantities we are seek-
ing in terms of the spectral measure of the underlying Hamiltonian / in the problem.
We relate these expressions to corresponding integrals involving Green functions. We
then recast the derived results, by using in the process the quantum dynamical (action)
principle (Manoukian, 1985; Schwinger, 1951, 1953, 1960, 1962) in terms of trace

functionals of the transformation function (x7'|x0) and we finally carry out a Fourier
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decomposition (Schwinger, 1951, 1953) of the latter.

2.2 Explicit Functional Expressions for N (£) and N[¢]

For a given Hamiltonian /1, its spectral decomposition may be written as

H= /OO AdPg()) . 2.2.1)

The number of eigenvalues < &, counting degeneracy, may be simply written in the

form

N =[x [ ey awiru) (222)

where v denotes the dimensionality of space, and O is the step function. £ may be taken
to fall between eigenvalues. We may introduce an integral representation for ©, and

from the residue theorem, to rewrite (¢ — +0)

1 [~ ar .
g LT AT enmm
O =N =55 /_ T e’ ’ 223)
1 © qr ©
N(E) = — / d”"/ L e / A (x|Py(Nx) . (2.24)
2mi oo I — i€ oo

On the other hand, the Green (transformation) function (x7"|x'0) is given by
(xT|x'0) = / e MR A (x| Py (N)[X) | (2.2.5)
from the time evolution of the problem. Accordingly, (2.2.4) becomes

1 * dr ©
N(©) = 5= / dx / A eleT/h / e MM (x T|x0) . (2.2.6)
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For the sum of eigenvalues N[{] having values < &, we have to multiply the

integrand in Eq. (2.2.2) by A, to obtain
N[ = / d'x / AO(E — N) d (x| Pu(N)]x) 22.7)
From Egs. (2.2.5), (2.2.6) and (2.2.7), we then have
1 < dr . d
N = — v —— i p— (x T : 2.
€] 27Ti/dx/_ooT—iee 1th<x |x 0) (2.2.8)

Given a Hamiltonian H (x,p), we may couple x and p linearly to external c-

number sources F(7), S(7) and define the new Hamiltonian:

H(t)=AH —x-F(1)+p-S(7) . (2.2.9)

We may now use the quantum dynamical (action) principle (Schwinger, 1951,

1953, 1960, 1962; Manoukian, 1985), expression
i [T -
5 (x T|x 0) :--/ dr <XT‘5H‘XO>. (2.2.10)
b Jo

Hence for the functional derivative of (x 7'|x 0) with respect to F(7) we obtain

g

(—ih)éFiﬂ (xT|x0) = (—if) (—%) /OTdT<XT

= —(xT|—x|x0)

OF (1)

= (xT|x|x0). (2.2.11)

On the other hand, for the functional derivative of (x 7'|x 0) with respect to

S(7), we obtain



<m%§L>“7WXm _ ﬁ@(—%)%ﬁdr<xT

The action principle gives

. T
5 <TI0 = =5 [ ar e T 0),

:_ﬁé(hH%ﬂxﬂxm,

where

H(r) = H <—ih 5F5(T),ih 55%)) .

That is,

0 it L 0 0
§<XT|X0>: _ﬁ/o drH <_1h6F(T)’1héS(7)> (xT|x0),

or

12

(2.2.12)

(2.2.13)

(2.2.14)

(2.2.15)

/5<XT|xo> = —%/&/OTdTH(—ihdFd(T),méS‘zT)) (xT|x0), (2.2.16)

which upon integration gives

i " )
(xT|x0) = exp [_ﬁ/o dr H (—1715]?(7),17158(7))} (xT|x0),, (2.2.17)

where

xTx0) = xT[x0),_ ,

(2.2.18)
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and
(xT|x0), = (xT|x0)|,_, - (2.2.19)
Consider the simple Hamiltonian
H=-x-F(r)+p-S(1). (2.2.20)
The Heisenberg equations are
x(r) = S(7), (2.2.21)
p(r) = F(7). (2.2.22)
These equations may be integrated to
t t
/ dx(r) = / dr S(7), (2.2.23)
t
x(t) —x(r) = / dr' o(r' — 1) S(7), (2.2.24)
t/
t
x(r) = x(t)— / 47 O — 1) S(+) , (2.2.25)
t/
and
/ dp(r) — / dr B(7) (2.2.26)
t/ t’
t
p(7) —p(t) = / dr' o(r — ) F(7), (2.2.27)
t/

p(r) = p{)+ /t th/ O(r — ) F(7') . (2.2.28)
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Upon taking the matrix element of the above solutions between (x 7’| and |x 0)

for A = 0, we obtain

(xT|x(r)|x0), = -X(T) — /0 dr' e(r' — 1) S(T/):| (xT|x0),,(2.2.29)

xTIpnIx0), = [p0)+ [ dr' 6l = ) P (xTIx 0}, 22:30)

where x and p within the square brackets on the right-hand sides of the above two

equations are c-numbers, and we have used the relations
o (xT|x(T) = x o(xT|, (2.2.31)
p(0)[p0)y = PIPO), . (2.2.32)
for A = 0 at coincident times. Eqgs. (2.2.29) and (2.2.30) may be rewritten as

(S r T
ifg (TR 0), = _x—/o dr' O+ — 1) S(T’)} (xT|p0), , (2233)

ih

5 X TIp ), - :p+/0 a7 O(r — 1) F(#)} (xT|p0), . (2234

These equations may be integrated to yield

—ih

5F(z7_> <X T|p 0>0 = {X — /0 ar’ @(7" _ 7') S(T’):| <X T|p 0>0 , (2.2.35)

i

/6(xT|pO>O: h/(SF(T) [X—/OTdT, o' —1) S(T’):| (xT|p0),,

(2.2.36)
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(x T|p0), = A exp {%x-/OTF(T) dT}

xexp[——/ dT/ dr' F(r)-©(r" — 1) S(7)|,

(2.2.37)
and
) T
i xT|p0), = |p+ / ' O(r — ) F(r')| (x T|p0), . (2.2.38)
6S(7) 0
i T
/(5(XT|p 0) =— ﬁ/(SS(T) {p—l—/ dr’' o(r — 1) F(T’)} (xT|p0),,
0
(2.2.39)
; T
(xT|p0), =B exp [_ﬁ p- / S(7) dT:|
0
Xexp{——/ dT/ dr' S(r)-O(r — ') F(r)| .

(2.2.40)

To find A and B in Egs. (2.2.37) and (2.2.40), respectively, we use the identity
Eq.(2.2.34) = Eq.(2.2.37) . (2.2.41)

That is,
A exp [% x-/ dT:| exp [——/ dT/ dr F(r)-O(7' — 1) S(T/):|
0
:Bexp{—%p- S(T dT:|eXp|:——/ dT/ dr’' S(7) - O(r — 1) (7")}.
0

(2.2.42)
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The above equality gives the expressions
i T ; T
A =exp [—— p / S(7) dT:| , B=exp [— X / F(1) dT:| . (2243)
h™Jo hJo
For the boundary condition F = 0, S = 0, H — 0 and we have
H=H. (2.2.44)
For T' = 0, that is, for t = t/, we obtain
(xtlpt) = (x[U@)U'()|p)
= (x[p)
— exp (lx : p) . (2.2.45)

h

Hence
(x T|p0), = exp [%x-/DTdTF(T)} exp [—7—; p-/OTdT S(T)] exp <ihx-p)

. T T
X exp [—%/ dT/ dr’ S(r) - O(r — 1) F(T/)} : (2.2.46)
0 0

To obtain the expression for (x7'|x0),, we multiply Eq.(2.2.46) by

(p 0|x 0) = exp(—ix-p/h) and integrate over p, with measure d”p/(27h)", to obtain
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(xT|x0), = /Qd;;y<xT’p0>o<p0‘X0>

o [4 ["ar [ 5(0) -0t =) B2
<o (3xp) ew (1)

= St oo lix o] (sox- [Lorso)
xexp[__/ dT/ ar' S(r T_T>F<Tf>}

= o (x—x— [arse)ew[ix: [ arEer)

X exp [—— / dr / dr' S(r T—T)Fw)} @24

That is,

(xT|x0), = o (/OTde<T)>exp th./onTF(T)]
X exp [—— / dr / dr' S(r) - O(r — 7) (T')].(2.2.48)

Substituting Egs. (2.2.17) and (2.2.48) into Eqgs. (2.2.6) and (2.2.8) gives
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LT T
X exp [—— / dT/ dr’ S(7) - O(r — 1) F(T')]
ko Jo 0
L (7 AT ern _i/TdTH L
omi) T—ic" PR/, SF(r) " 6S(7)

x 8 (/OTdT sm) /d”x exp Ex-/OTdT F(T)}

X exp {—% /OT dr /OT dr' S(7) - O(r — 7') F(T')}

i [ e / oo 1 (g gy )|
X8 (/OTdT S(¢)> /d”%(h) exp [}l_b (%) -/OTdT F(T)]

i

X exp { - /OT dr /OT dr’ S(1)-O(r — 7') F(T’):|
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1 [ dr i (7 ) )
- = lT/R - dr H | —ih ih
omi ) T —ie . eXp[ h/o T ( SR () eS(r)

X 0¥ (/OT dr S(T)> (2nh)" & (/OT dr F(T))
xeXp[——/ dT/ dr' S(r T—T)F(T’)],
! _Z%eig/hexp [—%/{)Tdrﬂ' (—ihdFiﬂ,i%SiT))}

X (27h)" 6" (/OT dr S(T)) 5 (/OT dr F(T)>

X exp {—— / dr / dr' S(r) - O(r — 7) F(T')}. (2.2.49)

Similarly, we have
dT
_ v oi€T/h
NI[¢] o /d / 1h (XT|X0>

1 dT d
_ d'x Sl6T/h 5 S
2ri / — i€ dT

X exp {-%/fdf H (_ih(SFé(T)’ih(ssiT)ﬂ (x T|x0),

1 dT d
— v lgT/h
27 d'x / — i€ th

X exp [_% /0 “ar (—m 5F‘5(T) i 5si7>>}
5" (/OT dr sm) exp [% X /OT dr F(T)}
xexp{——/ dT/ dr’' S(r) - O(r — 1) (7’/)}
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1 (> dTr | d i [T 5 5
= — | —— i —— | dr H(—ih i7
omi ) T—ic dTeXp[ h/o ! ( RGeS (r)

><5”</ dr S(r )exp{——/ dT/ dr’ S(r T—T)F(T/):|
0
i T
x/d”x exp {%X/ dTF(T)]
0
L AT e 4 i/Td (il il
= —_— — _X _ R
omi ) T —ic ar P "n)y SF (1) "'6S(7)

><5V</0 dr S(r )exp[——/ dT/ dr' S(r T—T)F(T’)}
«(2mh)” 6 (/OT dr F(T>> ,

N8 = g e [ [ (g )|
X (27R)" 5" (/OT dr S(T)> 5 </OT ar F(T))
X exp {—— / dr / dr' S(r) - O(r —T)F(T’)} . (2.2.50)

Therefore we have obtained the following expression for N (), N[¢]:

1 [~ dT

N - — TR (T 2.2.51
1 [~ d7r . d

N[ = — —— MT/hip — K(T 2.2.52

&= on ) 7o g KO (2.2.52)

—0o0
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where

) = oo [ ()|
x (2mh)? & (/OT dr S(T)) & (/OT dr F(T))

. T T
X exp [_% / dT/ d'r/ S(T) . @(7’ _ 7-/) F(T/):| : (2253)
0 0

and the bar | corresponds to taking the limits S, F — 0, after the functional differentia-

tions are carried out.

2.3 Functional Fourier Analysis of N ({) and N [¢]

Since in Egs. (2.2.6) and (2.2.8), we are considering the trace operation, we may

carry out Fourier decompositions as follows:

F(r) = %n:ioan e i2mnr/T (2.3.1)
S(t) = %nim S,, e2m/T (2.3.2)
5F5(T) N nio . 8iFn’ .
53(27) — nio e i2mnr/T aisn’ (2.3.4)

where OF JOF? = 6 §,,, and so on. These spectral decompositions of the auxiliary
c-fields correspond to protections on subspaces, labeled by n, with which eigenvectors

of the Hamiltonian in question will be associated.



To simplify K (7)), consider the term 6" ( Jrar S(T)) in Eq. (2.2.53)

For n = 0;
1 T
— dr SO = So.
),
For n # 0;
1 T ) 1 T eianT/T
- d i2mnT /T Sn _ -~ Sn
T2 /0 Te T2 “m
n#0 n#0 0
_ 1 i2mn 1 S
T ;0 2 ) Sn

For all n, we may combine Eqgs. (2.3.5) and (2.3.6), to obtain simply

5 (/OT dr sm) = §(Sy).

Similarly, we may write

5 (/OTdTF(T)) = §(Fy).

22

(2.3.5)

(2.3.6)

(2.3.7)

(2.3.8)

For the last term of the right-hand side of Eq.(2.2.53) we have the following

equations:

exp —% /OT dr /OT dr' S(r) - O(r — ') F(T')}

[ T T . _ ,
= exp —% T2 Z S, - Fm/o dT/O dr’ 2™ /TQ (7 — 7/) e~i2mmT /T]



For n, m = 0;

23

(2.3.10)

. T
exp{—ﬁﬁSo FO/ dT/ dT:| = exp_ iliTQSO FO/O TdT}
i1 2T
= exp —ﬁﬁSOFo—
i1 T2
= exp —ﬁﬁSOFOT
[
= exp _ﬁ So'F0:|.

Therefore,

5 (Fo)5" (So) exp {—ﬁ SF} 5 (Fo)"(Sy)

For n, m # 0, we obtain
exp -_i i S -F /T dr /T dT/ e*l?ﬂm‘r'/T ei27‘rn7’/T
| hT? B 0

S127 nT /’1
/=0

(e—iQFmT/T _ 1) ei27rn7'/T:|

S .
= exp —i—Sn-Fm/ dr
i 0

i1 g T —i2rmt’ /T
- _ﬁﬁs"'Fm/o dT(—i27rme /

i1 T . .
= exp _l _ Sn . Fm/ dr (6127r(n—m)7—/T . el2Tl'7LT/T):|
L 0

i1 T T .
= €Xp _7_1 ﬁ 5nm Sn : Fm/o dT ( . > (1 - el2ﬂnT/T) + 01

—12mm

i1 T T T )
= _— -F _ i2rnT /T
exp T Onm Sp - Frn (—i?ﬂm) (/0 dr /0 dre )]

(2.3.11)
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i1 T [ T
- . F T 1-1
exp{ h T? Oum S - Frn —127rm) i 127m> ( )]}
i1 T2
- P __ﬁ T? Oum Sn - Fom (—i27rm)}
(1S, -F,
All told, we derive
CoT T
5 (F0)o" (So) exp | — / dr / &' 8(r) - O(r — 1) ()]
h Jo 0
1 S, -F
= §"(Fy)0"(S —- L= 2.3.1
(Fo) (0>eXp[nnZ = (23.13)

Substituting Eqgs. (2.3.7), (2.3.8) and (2.3.12) into Eq. (2.2.53) for the expression

of K(T) the corresponding simplifies to

K(T) = exp {—%/OT dr H (_ih5F(5(T)7ih5sd(T)>]

1 S, - F,
x (21h)” 6"(Sy) 0% (Fy) exp <ﬁ > oo > | . (2.3.14)

n

In evaluating the latter, we may use Egs. (2.3.3) and (2.3.4) in H with the latter corre-
sponding to the Hamiltonian of the system as appearing in Eq. (2.2.9) without external
sources. The expressions in Egs. (2.2.51) and (2.2.52) together with Eq. (2.3.14) are
the main results of this chapter. The expression for K (7') in Eq.(2.3.14) is directly

related to the spectral resolution of the time evolution operator expressed in terms of
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c-functional methods involving no quantum operators.

2.4 Illustration of the Rules

To verify the consistency of the formulation, consider the harmonic oscillator

problem with v = 1, H = p*/2m + mw?z?/2. Then from Egs. (2.3.3) and (2.3.4), we

have

n—=

hQTi{

_h2z<

n=—oo

—i27nT /T 9 i2nnT/T

S,

: J 0
e127rnT/T e—127rn7'/T

0

2
95,

e

0F, 0F_,

o 0

1 0

—n

22 0

OF, O0F_,

2

0 mw? 0 0

1 0

om 95, 95

0

2 0F, 0F_,

)

mw? 0 0

|

—0o0

1 0 0

om 08, 95_.

|

2 0F, 0F_,

2

mw?* 0 0

9m 88, 95,

(2.4.1)

|

2 O0F, 0F.,
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Substituting Eq. (2.4.1) into Egs. (2.3.14), we then obtain

0 mw? 9 0
T Z (2m 93, 05, 2 OF, 8F_n)

K(T) = exp

x (2wh)? 67 (Sy) 8" (Fy) exp ( - > 52’;]; ") | . (24.2)

n

where | means setting the external sources equal to zero after the functional differentia-

tions are carried out.
The steps for carrying out the differentiations in Eq. (2.3.14) with respect to £,

are as follows:

Forn = 0:
1 O\ mw? /[ 9\’
exp {1hT <850) + (8_FO> } (27h) 6(So) 0(Fo)
1hT o \? iWTmw? [ 0 \°
=(2mh) exp (850) ] d(So) exp 5 (aF0> d(Fo)

T o2 A s
<2”h>exp< 352) [/_m@e ]
X —ihme2 6_2 /OO & iX2 Fo
PN o) ) on €

=(27h) / i éAl) M50 g3 (-AD) / ) —32) oiheFo (BT (—X3)
oo 2T o (27

So—0,Fy—0

1 1 [ iRT\? © ihmw*T N2
—(27rh)2—7r)2—7r)/oo dA; exp (— Sy ) /OO dAs exp (—T>
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h mo[e dy iRTA2
— Vo ] — ) S _
o [ "\ T /_Oo NN eXp( om )

1 ) mw? T A2
x| Vom0 / 2 exp (—”””72) . (243)
ihmw oo oz 1
2m ihmw?T

Using the integral
& 1 —CC2/20'2
dx o e =1, 2.4.4)

where o in the two square brackets of the above equation are +/m/ihT and

\/1/ihmw?T, respectively, then for n = 0 becomes
1 9\’ N mw? [0\
2m aS[) 2 8F0

h m 1
= Y omy 22
2x TN T\ T

Lt (2.4.5)

exp {ihT

} (27h) 6(S0) 6(F0)

On the other hand, for n # 0, consider the n = 1 and -1 terms in Eq. (2.4.2):

o inr 0 0 +ihme2 o 0 . 18 R
P\2m a5, a5, 2 oF 0F, ) P |k 2x(1)

% ex iR 8 8 4 ihTmu)Q 8 8 ex l S_lF_l
P\2m as_, as, 2 oF, oF, ) "V |k 2n(—1)

= ex inf 9 _9 +ihTm(,u2i 0
N P m 85'1 85_1 8F1 8F_1

L 51 Fl}expll S‘lF‘l} (2.4.6)

*exp [E 2 (1) B 2n(—1)
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Or

o iRl 0 0 +ihme2 0 0
P\ om 85, 85, 2 OF OF

% ex iRT (9 6’ + ihmez 8 (9 ex l S_lF_l
P\2m as_, as, 2 oF, oF, ) " |k 2n(—1)

= ex int. 9 0 exp | ihTmw? 0 i
N P m 651 85_1 p 0F_1 0F1

1 Sl F1 1 S—lF—l
- = 24.7
e [h 27r<1>} . {h 2w<—1>} @47
Finally we use the translation operation property
d
[exp <a a)] flz) = f(x+a), (2.4.8)

to determine K (7).
Using Eq.(2.4.8), the second and the third terms in the right-hand side of
Eq.(2.4.7), become

ox ikl o0 0
P m 851 85’_1

iRl 0 0

exp

[ F, [ _ 1T 2
oxp [ 5L ] o [ 50 <F+ﬂ5)]

iR o0 0 iTmw?
=exp ( m asl 85’_1) exXp [m S_131:| . (249)
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Hence we may obviously write by a similar reasoning as above:

_ s il 0 0 iTmw?
(iwT)K(T) = gexp < 95 S_n) exp (_W S, S_n) | . (2.4.10)

To carry out the differentiations with respect to .S,,, we may use the convenient

representation
eflﬁs'n S_n — /OO d>\2 /oo % ei)‘l)‘Z efi)‘2S—'n e*lﬁ)\lSn , (2.4‘.11)
. oo 2m
with
Tmw?
= . 24.12
b = hamn)? (412

. at ikl o0 0 iTmw?
(WTK(T) = Hexp < — 5% 85_n> exp (_W S, Sn> ‘
m

= H/ dAQ/ —16Xp1/\1)\2)
n=1v"

ikl 0 0 ) .
X exp < m 09, 8S_n) exp (—iXoS_,,) exp (=16, A15,)

= H/ d/\g/ d—)\lexplz\)\g)
n=1Y >

) ikl 0 .
X exXp {—lb <S—n + o (?Sn)] exp (=i, A1)
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= H/ d/\g/ 2—1 exp(iAl)\Q) exp (—1)\25‘,”)
o _oo 2T ~—————
n=1

=1
KT 0 )
X exp <)\2E (9Sn) exp (—16,A15,)
= H/ d/\g/ & exp(id;A2) exp [—iﬂn)\l (Sn—i-)qh—T)]

n=1Y"

00 00 0o d)\ ‘
— H/Ood/\Q /002—; exp(iA;Ag)

n=1Y"

hT
X exp (—13,A1.5,) exp (—iﬁnAl)\Q—>
N — vl m

=1

e > 4\ AT
= 1] / d\s / —ZL exp(idiAg) exp (—iﬁn/\lAQ—)
) o 2T m

- I [ o (oo
00 —00 27 m

n=1""
T [ AT
= H/ dX\s 0 (AQ [1 —5n—D . (2.4.13)
n=1Y — m
The latter integrates out simply to give

(WK (T) = nﬁlm

We now substitute 3, = T'mw?/h(27n)? in the right-hand side of Eq. (2.4.14),

(2.4.14)

to get
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1 B 1
= 2
-3, h_T ] Tmw= hT
h(2mn)? m
1
_ = (2.4.15)
B Tw
2mn
Accordingly Eq. (2.4.10), becomes
(iwT)K(T) = H (1w i (2.4.16)
- o 2mn o

The latter is the infinite product representation of (Tw/2)/sin(Tw/2), i.e

mp-()]

iTw efiTw/Q

1 — e—iTw

= iTw) exp l—i% Fiw <n + %)} . (24.17)
n=0

The above equation then gives the following final expression for:

k) = LS o[ he (14

- iT 1
_ _= 1. 2.4.1
E exp{ 3 hw(n—l-z)] ( 8)
All told, Eq. (2.2.51) leads to

1 [~ dr |
N(E¢) = — | ——""EK(T
(&) omi ) T —ic® (T)

1 1
_ IET/R 4
2mi — le Z P { i ( 2)}
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=1 [~ dT , 1\ T
ORI

N(&) = i e (g — hw(n + %)) : (2.4.19)

n=0

and Eq. (2.2.52) leads to

A d
_ 1 ier/n iy 4
Nl omi | T gy K(T)

o0

1 [~ dr . d & iT 1
- o LNT/hsp 2 _ )
ori ) T —ie© lthZeXp{ I h‘”(”+2)}

[ dT . d iT 1

_ iET/h g & = e
2/_@T_i€e 1thexp[ hﬁw(n+2)}
S e v A i 1 iT 1

— _ - KT/h _ - _ = ht
;/_O@T—iee 1h[ hhw(n—i—Q)} exp[ hhw(n—l—Q)}
> 1 < qr T iT 1

= hw - T — hw -
Sone(nrg) [ oo (i) ow |- (0 )

S [ (o)) )

N[¢§] = ni; hw (n + %) e (g — hw(n + %)) . (2.4.20)

as expected, where we have used the integral respresentation of the step function after

carrying out the differentiation with respect to 7" in Eq. (2.2.52) to obtain Eq. (2.4.20).



CHAPTER III
CONSTRAINTS, DEPENDENT FIELDS
AND THE QUANTUM DYNAMICAL PRINCIPLE:
ENLARGEMENT OF PHASE SPACE

3.1 Introduction

The development of constrained dynamics in quantum physics in this chapter
was inspired by the situation occurring in quantum electrodynamics in the Coulomb

gauge. In this gauge, the vector potential components A;, i = 1, 2, 3, are related by
A = 0, (3.1.1)
from which we may, for example, solve for A3 as follows
Ay = —051(0,A,), (3.1.2)

with a = 1, 2, and treat A;, A, as independent variables, while A3 as a dependent one.
The canonical conjugate momenta 7!, 72 of A;, A, are given by (see Egs. (5.3.22) and
(5.3.23))

™ = 05 (0"F® - 9*°F™) | a=1,2 (3.1.3)

where

Fr = gAY — ¥ AM, (3.1.4)
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u,v = 0,1,2,3. By definition, the canonical conjugate momentum 7° of Aj is zero
with the latter being a dependent variable. Accordingly, we can extend Eq. (3.1.3) form

a = 1,2 trivially to 7« = 1, 2, 3 by rewriting Eq. (3.1.3) as

™ = 05 (O F® - 0°F") | i=1,2,3, (3.1.5)

since for ¢ = 3, we simply obtain 0 = 0 as is easily checked from Eq. (3.1.5), giving

™ = 051 (OPF® - 9°F®) = 0 (3.1.6)

In the Hamiltonian formalism this suggests to develop a formalism such that
a Hamiltonian H(q, p), as a function of independent variables q = (q1,...,¢,) and
their canonical conjugate momenta p = (py,...,py,), is obtained from Hamiltonians
{H(q,Q,p,P)} with constraints Q = G(q, p) and P = 0.

The purpose of this chapter is therefore to show within the functional differential
treatment of quantum systems (e.g., Schwinger, 1951, 1953, 1954,1972; Manoukian,
1985, 1986,1987, 2006; Manoukian and Siranan, 2005; Limboonsong and Manoukian,
2006), also known as the quantum dynamical principle (QDP), given independent
pairs of canonical conjugate variables {¢;(¢),p;(t), i = 1,...,n} = {q(t),p(t)}
and a Hamiltonian H (g, p), and a given set of pairwise commuting operator functions
{G;(a(t),p(t)), 5 = 1,...,k} of these variables defined, transformation functions
may be then explicitly given for constrained dynamical systems describing the dynam-
ics of a system with a Hamiltonian defined, a priori, in a larger phase space of dimen-
sionality > 2n, for which constrained are imposed. This is spelled out below. These
transformation functions are expressed as functional differential operations, involving
functional differentiations with respect to external sources, applied to a given functional
of these sources written in closed form. The very elegant QDP has been indisputably
recognized as a powerful tool over the years. There has been a renewed interest re-

cently in Schwinger’s action principle (see, e.g., Das and Scherer, 2005; Kawai, 2005;
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Schweber, 2005; Iliev, 2003; Faddeev and Popov, 1967; Fradkin and Tyutin, 1970) em-
phasizing generally, however, operator aspects, as deriving, for example, commutation
relations, rather than dealing with computational ones related directly to transformation
functions as done here. We note that in the functional differential formalism external
sources are, a priori, necessarily introduced to generate transformation functions and
matrix elements of various operators. It will be understood throughout the bulk of this
communication, that all these sources will eventually be set equal to zero after all the
relevant functional differentiations with respect to them have been carried out. The con-
nection of this work to the so-called Faddeev-Popov technique in path integrals will be
pointed out.

Our procedure, as well as the main results of this chapter may be summarized as
follows.

Suppose we are given a Hamiltonian H(q, p) as a function of independent pairs
of canonical conjugate variables {¢;, p;,;i = 1,...,n} = {q,p}, that is, it is defined
in a phase space of dimensionality equal to 2n. We are also given a set of pairwise
commuting operator functions {G,;(q(t),p(t)),j = 1,..., k} of these variables. These
allow us to describe the dynamics of any Hamiltonian H (a,p, Q,P) in, a priori, (2n+

2k) dimensional phase space in which constraints are imposed given by

Q;(t) = G;(a(t),p(t) =0, j=1,....k (3.1.7)

with Q = (Q1, . . ., Qy), for which P = 0, such that

H(q,p,G(q,p),0) = H(q,p). (3.1.8)

The transformation functions (q, Q,¢|q’, Q’,t') of the constrained dynamics is
given by
Y
(aQt|d Q) = exp (— 1 / (1) (@QtldQE)) [ (.19)

t
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where

A . Y l in d 141

(3.1.10)

n
—~
N

A:5k<Q—Ql—/ﬂtd7‘s(7)>exp< Q- /de >
X exp (——/ dT/ dr' s(r ) (.1.11)

(qt|q t'), =" <q— q — /t/th S(T)) exp (% q-/t/tdr F(T))
X exp (—%/ﬂt dr /t dr' S(7) -F(T'>> , (3.1.12)

and the vertical bar | in Eq. (3.1.9) refers to the fact that all the external sources are
to be set to zero after all the relevant functional differentiations have been carried out.
§F) (—ind /6f(-) — G/(+)) and 6 (ikd/(27Rh)ds(+)) in Eq. (3.1.10), as arising from the
conditions in Egs. (3.2.44) and (3.2.45), refer, each, to the product of k-dimensional

deltas with 7 running over all points in the interval [t t], i.e.,

s®(D H &*(D (3.1.13)

t'<r<t

The numericals Q, Q' are defined as follows:
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where Q°(7) is the classical function

¢ (at|G(a(7), p(7))|d't")
@w (at|q't’) ’
and in detail
1 ! I ! ! ! ! !4/
Q(r) = WG(T)eXp (—%/t dr H(T)) (at|q't), |,
where
N o Y . )
H'(7) = H( 1h5F(T,),1h58(7,)), (3.1.14)

obtained from H(q, p) by replacing q, p, respectively, by —ihd/6F(7'), ihd/0S(7'),

while

oo N R R S
H() = H < MSEE) sy lhaf(m’lhasm)’

as similarly obtained from a Hamiltonian H (q,p, Q, P). We note that because of the
equality in Eq. (3.1.8), we may replace H'(7) in Eq. (3.1.9) by H'(7) as a consequence

of the constraints imposed by the delta functionals:

5 (—ih(sf‘?) — G’(-)) 5 (%5;@) , (3.1.15)

in Eq. (3.1.10).
The procedure for describing the dynamics of a Hamiltonian H (q,p, Q, P) with

constraints may be summarized through the following:
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N D e e constraints
Phase Space of Phase Space of
dim(2n) dim(2n + 2k)

with the transformations functions of the constrained dynamics with Hamiltonian

ﬁ(q, p, Q,P) given in Eq. (3.1.9).

3.2 Functional Differentiations, Dependent Field and

Transformation Functions

Consider a Hamiltonian H (q, p) as a function of independent pairs of canonical
conjugate variables {¢;,p;, ¢ = 1,...,n} = {q,p}. We introduce external sources
{F(1),S:(1), i = 1,...,n} = {F(7),S(7)} and define the extended Hamiltonian

H(7), in the presence of these sources, by

H(t)=H(q,p) —q-F(1)+p-S(7), (3.2.1)

with F(7), S(7) vanishing outside an interval [t ] with ¢ < t. Of physical interest
are the transformation functions (q ¢|q't’), in particular, in the limit of vanishing ex-
ternal sources. To obtain these transformation functions, we first multiply H(q, p) in

Eq. (3.2.1) by a parameter A\ which we eventually set equal to one and define

H(r,\) = MH(q,p)—q-F(r)+p-S(7). (3.2.2)

The explicit functional derivative expression for the transformation functions is well

known (see, e.g., Manoukian, 2006, sect. 11.2) and is given by
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a ! 4! 1 ‘ ! 4!
splatld ) = = [ aratimap)a o). (23)
Satldty = 5 [[ar ) il 1) 624
I\ qtiq = h )y T T)\at|q ) -
i t
Slatlqt) = —ﬁdA/“drH%ﬂ(qﬂq%ﬁ, (3.2.5)
t/

which integrates out to

! 4/ 1 ! / ! 4!
tldt) = e |- [ariro)| @tla e, | (326
t/
where H'(7) is the functional differential operator
H'(r)=H | —ih 0 ih 0 (3.2.7)
e 0F(7)'0S(r) )’ -

obtained from H(q, p) in Eq. (3.2.1), by replacing q, p, respectively, by —ihd/dF(7),

ihd /0S(7) as elaborated upon earlier. For the simple Hamiltonian
H=—q-F)+p-S(7), (3.2.8)
the Heisenberg equations are
a(r) = S(7), (3.2.9)
p(r) = F(7). (3.2.10)
These equations may be integrated to

¢ t
/dq(T') = /dT’S(T'), (3.2.11)



q(t) —q(r) =

and

q(r) =

/t/ po(T) =
p(7) —p(t") =
p(r) =

40

t
/ dr’' e(r' — ) S(r), (3.2.12)
t/
¢
alt) — / dr' O — ) (), (3.2.13)
t/
/T dr F(7), (3.2.14)
t/
/ dr’' O(r — ') F(1'), (3.2.15)
t/
t
p(t) + / dr’' O(r — ') F(7), (3.2.16)
t/

and taking the matrix element between (q t| and |pt’) for A = 0, we obtain

(atla(r)|pt’), =

(at|p(r)|pt’), =

alt) — /t "4r 0 — 1) S(T')} @tlp' )y, (217

t
p(t') +/ dr' O(7 —7) F(T’)} (atp’th,, (3218
t/

where q and p within the square brackets on the right-hand sides of the above two

equations are c-numbers, and we have used the relations

olatlalt) = qolat], (3.2.19)

pt)pt)y, = plpt),, (3.2.20)

for A = 0 at coincident times. Eqgs. (3.2.17) and (3.2.18) may be rewritten as

—ih

5F5<T) (at|lpt), = [

t
q—/ a6 — 1) S| @t ty,, (221

t
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ih

(qtlpt), = {p +/ dr’ o(r — 1) F(T’):| (qtipt,. (3.2.22)

¢/

)
0S(T)

These equations may be integrated to yield

_ih(SF(S(T) (qtipth, = {q — / dr’ o(r' — 1) S(T/):| (qtipth,, (3.2.23)

p
/ atlp ), /5F { /dT o' — 1) S(r)], (3.2.24)
(atlpt),
i t
In(at[pt)y = q-/ F(7)dr
t/
- —/ dT/ dr' F(r)-6(r' — 1) S(7), (3.2.25)
t/ /
i t
(atlp =4 e | a- [ P ar]
t/

Xexp[ %/t/dr/t/th’F(T)-G)(T'—T)S(T/) :

(3.2.26)

where A is a normalization factor, and

ih

585(7') <qt’p t/>0 - {p%—/ﬂ d+’ @(7‘ — 7-/) F(T/):| <qt|p t/>0’ (3.2.27)

/%})pt’t;zo =— %/58(7‘) {p + /t/t dr’ o(r — 7') F(T')} , (3.2.28)

t
matlpth= -~ ;- [ S)dr
t/

1 / ar / a7’ S(r) - O(r — ') F(r'), (3229)
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(at|pt)y =B exp {_%p./ﬂtsw dT}

X exp [——/ dT/ dr’' S(r)-O(r — ) F(r)|, (3.2.30)
to find A and B in Egs. (3.2.26) and (3.2.30), respectively, we have
Eq.(3.2.26) = Eq.(3.2.30). (3.2.31)

Or

A exp [h /F( dT} exp {——/ dr/ dr' F(r)-©(r' — 1) S(T/)]
- peo[tp ['s@aren [k [0 [arsi o we)].

(3.2.32)

we have,
i t i t
A =exp {—ﬁ p / S(7) dT:| ., B=exp [£ q / F(1) dT} . (3.2.33)
t t
In the absence of external sources: F =0, S = 0, H — 0, and
ﬂ(f)‘ = H(q,p), (3.2.34)
in an obvious notation. When ¢ = ¢/
(atlpt) = (a|U)U'(t)|p)
= (a|p)

= exp (— q- p) : (3.2.35)
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This gives

(at|pt), = exp [%q~/t/thF(T)] exp [—%p~/tlthS(T)] exp (ihq-p)

X exp [——/ dT/ dr' S(r T—T)F(T’)]. (3.2.36)

To obtain the expression for (q¢|q't'),, we multiply Eq.(3.2.36) by (pt'|q't') =

exp(—i q' - p/h) and integrate over p, with measure d"p/(27h)", to obtain

@il = [P ailpr), el ),
[l [Carr)] e [ [ arso]
con [ [ar [(0rs(r)- - P
con(Lan)o (~Law).

X exp :i(q—q’ - /t/th S(T)) %}
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¢ - t
atld t)y = o (a-a~ [arse) e (fa- [ arrn)
v v
. t T
X exp (—%/ dT/ dr’' S(7) - F(T’)) , (3.2.37)
v v

defining a functional of F(7), S(7). Here we recall that the vertical bar | in Eq. (3.2.6)
means to set these external sources equal to zero after the functional differentiations
with respect to them, as defined in the exponential expression in Eq. (3.2.6) are carried
out.

Given a set of operator functions {G;(q(7),p(7)), j =1,...,k}, as mentioned
in the introductory section, with time development given by the Hamiltonian H(q, p),

we may introduce the following c-functions

gr(r) = (4116 a(r)p <T>’>|q't'>|7 23

qt\q’t’)

for 7 in the interval [t',]. We may promote the Q5(7) to quantum variables Q;(7) by
noting:

(A) The canonical conjugate momenta P;(7) of dependent fields (),(7) must vanish, by
definition.

(B) We may introduce external sources f(7), s(7) to generate functionals of the latter
fields as done for the ¢;(7), p;(7) fields and, in the process, make use of Eq. (3.2.37).
(C) H(q,p) in Eq. (3.2.1) is a function of independent pairs of the canonical conjugate
variables in {¢;, p;, i = 1,...,n}, and hence no explicit functional differentiation oper-
ations with respect to the sources f(7), s(7) appear in H'(7). We define the Hamiltonian

Jii (7, A), in the presence of these sources, by

H(r,\) = \H(q,p) —q-F(7)+p-S(7). (3.2.39)



45

To the above end, we note that Eq. (3.2.38) may be rewritten as

Qi()(at|d t")| = (at|G; (a(r),p(m))|d )], (3.2.40)
QS(r)(at|d t")| — (at|G; (a(r),p(r))|d t')| =0, (3.2.41)
[Q5(7) = Gi(D)] (at|d t')] =0, (3.2.42)
with
/ ) o .. 9
Gi(1) = G; (—1h SE(r)’ ih=s (7)> : (3.2.43)

by an immediate application of the QDP. By promoting the Q§(7) to quantum variables,
with (q t|q’' t') generalized to (qQt|q'Q't’), we must have from (A), (B), (C), above,

and Eq. (3.2.42)

—ih

- G;-<r>] (€Qt|4Qt)

)
af;(7)

= (aQt|Q;(7)|d' Q") | — (aQt|G;(a(r), p(7))|d'Qt))

= (aQt|Q;(7) — Gj(a(7), p(7)) |4 Q")

_— (3.2.44)

and

ih

5
55, () (AQUAQE) | = {aQtIP(7)ldQF)

= 0, (3.2.45)

for all #' < 7 < t. Since a relation zg(z) = 0, implies that g(z) involves the factor

d(z). We note from Egs. (3.2.44), (3.2.45) and (3.2.37), and finally from Eq. (3.2.6), by
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following a procedure as in deriving Eqgs. (3.2.3) and (3.2.4), that

a 14/ I ! ZaYu
55 9Qula @) = — 4 [ ar (aQtlH(a(r).plr) Q)
_ ] td H' t|q'Q't 3.2.46
— — 4 [ ) Qrla@r), (3.2.46)
0 (aQt|d'Q't) = —%dA / dr H'(1) (aQt|d'Qt') (3.2.47)

where H'(7) is defined in Eq. (3.2.7). Eq. (3.2.47) integrates out to

(aQta' Q) | = exp {—% /t dr H’(ﬂ] (aQta' Q)

, (3.2.48)

where (qQt|q'Q't’ )Q is determined below in Eq. (3.2.86). From Eq. (3.2.37)

rla vy = 5 (a=d = [arso)ew (- [ arem)

X exp (-% /t/tdf/t/tdr's,(f)-@(f—f’) F(r’)).

The conditions in Egs. (3.2.44) and (3.2.45), as mentioned earlier, that in a relation

x g(x) = 0, as applied to

. 5 / / 14/
with the formal substitutions
—ih d -G (3.2.50)
i 5.0 Hr)| — =, 2.
(aQt|d Q)| — g(z), (3.2.51)

imply that (qQt|q'Q’t’) must involve delta functionals as given below in Eq. (3.2.55).



47

On the other hand from Eq. (3.2.45),

ih

Y a2 _
5o (aQta Q)| =0, (3.2.52)

we may make the formal substitutions

.0
(qQt|d'Qt)| — g(x), (3.2.54)

implying finally that (qQt | q'Q't’) must involve the product of delta functionals

6" (—ih(sfé(_) — G’(-)) 6" (%%) . (3.2.55)

For the simple Hamiltonian
H=-Q f(r)+P-s(r), (3.2.56)
the Heisenberg equations are
Q(r) = s(7), (3.2.57)
P(r) = f(7). (3.2.58)

These equations may be integrated to

/T Q) =

dr s(7), (3.2.59)
Q) - Q(r) = ’

/
/

dr’ o(r" — 1) s(7), (3.2.60)
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Q) = Q) - /t Lar O — 1) s(r), (3.2.61)
and
L 4P(r) — /t Car £(7), (3.2.62)
P(r)— P() — /t 4 60— ) £(r), (3.2.63)
P(r) = P(#)+ /1t 4 O — ) £, (3.2.64)

and taking the matrix element between (Q ¢| and |P’ ¢') for A = 0, we obtain

(QtQ(n)IP' 1), = -Q(t)—/t/ dr’ O(r' — 7) s(r’)} Qt|Q't)Y,, (3.2.65)

(QtP(n)|P't), = _P(t’) + /t/t dr' O(r — 1) f(r’)} Qt|Q'th,. (3.2.66)
We have used the relations
Q1 Q) = QuQ1, (3.2.67)
Pt Pth, = PPt),, (3.2.68)
for A = 0 at coincident times. Eqgs. (3.2.65) and (3.2.66) may be rewritten as

) r t
—ihm QtIPt), = _Q — /t/ dr' o(r' — 1) S(T/):| QtIPth,, (3.2.69)

s
lh(ss(T)

QtPt), = _P + /t/t dr' O(r — 1) f(T’):| Qt|Pth,. (3.2.70)
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These equations may be integrated as before to yield

—ih(sf(zT) Q[P ), = [Q /tdr O — 1) s(r >]< (P 1), . (32.71)
/ %Qf‘—m] _ % / 5 () {Q - /t "4 e — 1) S(T’)} | (32.72)
n(Qt[P )= Q /
——/ dT/ dr' £(7) - O(+ — 1) s(+), (32.73)
(Qt|P ), = C exp {%Q-/;f(r) dT}
X exp [—— / dr / A £(7) - 0 — 7) s(7)| . (3274)
and
ih(ss((l) (QtIPt), = {P - /t/t dr’' ©(r — 7') f(T/):| (Qt|Pt,, (3.2.75)
/ % __ % / 5s(r) {P + /t Ry f(T')} C 3276)

n(Qt|Pt), = —%P-/t s(7) dr
——/ dT/ dr’ s(r)-O(r — ') £(7'), (3.2.77)
(Qt|Pt)y=D exp {—%P-/t S(T)dT:|

X exp [——/ dT/ dr’'s(t)-O(r =) f(7")|, (3.2.78)
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to find C' and D in Egs. (3.2.74) and (3.2.78), respectively, we have

Eq.(3.2.74) = Eq.(3.2.78). (3.2.79)
Or
¢ eXP{ Q- / dT} exp {——/ dT/ dr’ f(r)-O(r' — 1) S(T')}
—Dexp{—%P / s(7) dT]eXP{——/dT/ dr' s(r T—T)f(ff)},
(3.2.80)
we have,

. t . t
C =exp {—7—11 P- / s(7) dT:| , D=exp [% Q- / f(7) dT} . (3.2.81)
t/ t/

In the absence of the external sources: f = 0, s = 0, H — 0, and Eq. (3.2.39) reduces

to
H(1,\) — H(1,\), (3.2.82)
with H(7, \) given in Eq. (3.2.3). For t = t/
QtlPt) = (QUMU'(H)|P)
= (Q[P)

= exp (%L Q- P) , (3.2.83)
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then we obtain

(QEP ), = exp lihQ-/;de(T)} exp [—%P-/ﬂths(T)} exp (%Q-P)

X exp [——/ dT/ dr's() - O(r — ') £(7 ’)} . (3.2.84)

To obtain the expression for (Qt|Q't'),, we multiply Eq.(3.2.84) by (Pt'|Q't") =

exp(—iQ’ - P/h) and integrate over P, with measure d*P/(27h)*. This gives

d*pP
QtQ'th, = /(%h)k QtPt),(PQ ),

- [ s[iq ][ -fp s
o [4 [(ar [ a5t 0= 1)
con(tap)en(-ta-p)

- Jimenlia [
<ewfi(Q-@ - [(arsm) 7]

o [-4 [(ar (a5 0= 107,

- #(e-a- [arsm)en[ta o)

o [-4 [(ar [[ar'se) 000 - )10
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Qt|Q'thy, = & (Q -Q - /t/th s(T)) exp (}i_L Q- /t/th f(T))
X exp (——/ dT/ dr' s(7) - O(r — ') f(T')). (3.2.85)

From (qt|q't’), in equation Eq.(3.2.37), the conditions in Egs.(3.2.44), (3.2.45),
(3.2.49) - (3.2.55) and (Qt|Q't'), in Eq. (3.2.85), we then have

) ih ¢
1Oy +\ N sk) [ - . (k) 147
(qQt|d'Q't')y =6 <1h5f<.> G())5 <(27rh)_5s(-)><qt|qt>0 A,
(3.2.86)

where

A = 5’“(Q—Q'—/t/td7's(7')>exp< Q- //de )
X exp <——/ dT/ dr’ s(r > (3.2.87)

We recall that the vertical bar | in Eq.(3.2.48) refers to the fact that all the exter-
nal sources are to be set to zero after all the relevant functional differentiations have
been carried out. §**)(—ihd/5f(-) — G/(-)) and 6% (ihd/(27h)ds(-)) in Eq. (3.2.86),
as arising from the conditions in Egs. (3.2.44) and (3.2.45), refer, each, to the prod-
uct of k-dimensional deltas with 7 running over all points in the interval [t,¢], i.e.,
§®(D(+) =1, <, 0"(D(7)). We also note that functional differentiation operations
with respect to external sources commute, unlike quantum operators, showing the power
of the underlying formalism.

Accordingly, the transformation function (qQt|q'Q’t’) for the constrained dy-

namics may be written as

(aQt|q'Q't") = exp <—% / dr H’(T)) (aQt|d'Q't'), (3.2.88)




53

with (th|q’Q’t’>(/)\ defined in Egs. (3.2.86), (3.2.87) and (3.2.37), and the bar sign |
on its right-hand side in Eq. (3.2.88) means to set all the external sources equal to zero
after all the functional differential operations in Eq. (3.2.86) are carried out. Due to the

delta functionals

5k (—ih(sfé(_) — G’(-)) 5k (%%) : (3.2.89)

we may replace H'(7) in Eq. (3.2.88), and defined in Eq. (3.2.7) from the Hamiltonian
H(q, p), by any Hamiltonian operator functional A’ (7) which coincides with H’(7) for
—ihd /6f () replaced by G/(7) and 146 /ds(7) by 0. That is, the transformation functions

in Eq. (3.2.88) correspond to the dynamics of any Hamiltonian H (q, p, Q, P) for which

H(q,p,G(q,p),0) = H(q,p), (3.2.90)

corresponding to constraints Q — G(q, p) = 0 for which P = 0.

3.3 Contact with the Faddeev-Popov Technique

Eq. (3.2.48) for (qQt|q'Q’t') gives the expression for the transformation func-
tions with the constraints given in Egs. (3.2.44) and (3.2.45) for all 7 in [t/,¢]. They
involve functional differential operations, with respect to external sources, to be applied
to the functional [(qt|q't’), A] with the latter given in closed form in Egs. (3.2.86),
(3.2.37) and (3.2.87).

Finally we may make contact with the Faddeev-Popov technique, in the path
integral formalism, by noting that the path integral representation for [(qt |q't'), A] (see,

Manoukian, 2006, sect 11.4) on the extreme right-hand side of Eq. (3.2.86) is given by
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[{at[q't"), A]

[ Aao Qe PO (5 i), G

(t=a',Q(t")=Q’
where

o(r) = [p(r)-a(r) +P(7)-Q(7) + a(7) - F(7)
—p(7) - S(7) + Q(7) - £(7) = P(7) - s(7)], (3.3.2)

and we have to carry out the explicit functional differentiations with respect to the ex-
ternal sources in Eqgs. (3.2.88) and (3.2.86), and finally set the external sources equal to
zero. Here we note that the Hamiltonian of the system describing its time evolution ap-
pears 1in the first factor on the right-hand side of Eq. (3.2.88) as a functional differential
operator with respect to external sources as defined in Eq. (3.2.7).

By carrying out the functional differential operations in Egs.(3.2.88) and
(3.2.86), and using the expression in Eq.(3.3.1), contact will be made with the
Faddeev-Popov form in Eq. (3.2.48) for the dynamical systems described by Hamil-
tonian H(q, p, Q, P) with constraints as given in Eq. (3.2.90) This is shown below.

From Eqgs. (3.2.88), (3.2.86) and (3.3.1), we obtain

(aQt|q'Q't") = exp (—% / dr H’(T)) (aQt|q'Q't),

— 5 (_ihafé(.) B Gl(')) " <<2i:ﬁ> 55('))

X exp (_% /t "4 H'(T)) (atla?), A]|




55



56

X exp (%/ﬂ dr [p(7) - q(7) + P(7) - Q(7) + q(7) - F(7)

—p(7)-8(1) + Q(7) - f(7) = P(7) - S(T)]) ‘

—i [t a(t)=a,Q(t)=Q
(aQla Q) = e (5 [arire) [ Za(), p()ZAQ), P())

t)=a",Q(*")=Q’

% exp (;3 / dr [p(r) - 4(r) + P(r) - Q(7) + q(r) - F(7)

—p(1)-S(1)+ Q(7) - (1) — P(7) - S(T)]) ‘, (3.3.3)

which upon integration over Q(-), P(+) this is equal to

oo (31 [ o 1) / TR ). p0)

)=a',Q(t)=Q’

X exp (%/ﬂ dr [p(7) - q(7) —l—O-Q(T) +q-F(7)

—p(1)-S(1)+ G(r)-f(r) -0 - s(T)]) ‘ , (3.3.4)
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or

(@@l Q?) = o (. [ar ) [ " et p0)
X exp (% /t,t dr [p(7) - a(7) +q(7) - F(7)

—p(7)-S(7) + G(7) - f(T)]) ‘ ) (3.3.5)

After setting all the external sources equal to zero, we then have

a(t)=q i [t
(aQt|d'Q't") = /(t/): Za(),p()) exp <ﬁ/t dr [p-q(7) —H(q(t),p(t))]>-
(3.3.6)

3.4 Application

Consider the Hamiltonian in four-dimensional phase space in quantum mechan-
ics

pi + P34+ pipe

H(q,p) = 3

+ f(q1, g2), (3.4.1)

where f(q1, q2) is an arbitrary real function of (¢, ¢2) and m is a mass parameter.

Hamilton’s equations for the ¢; are

¢ = 8H' (3.4.2)
Op;

That is,

, 0 p% + p% + p1po
= |7+ fla,
q1 Op 3 f(Q1 Q2)

1
= 3, (2 +p2), (3.4.3)



and

@ = 0 - + (a1, q2)
= i(sz +p1) -
3am
From Egs. (3.4.3) and (3.4.4) we then obtain
3mq 2p1 +p2
2py 3mgr — p2
e 3may — pa ’
2
and
3mgs 2p2 +p1,
D1 3mgs — 2po .
Upon comparing Eqgs. (3.4.7) and (3.4.9), we have
M 3mqs — 2py ,
2
3mqy — p2 6mgs — 4pa
—p2 + 4p2 6mgs — 3mq ,
3p2 3m(2¢2 — 1)
P2 m(2¢a — G1) -

9 [pi+p3+pipe
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(3.4.4)

(3.4.5)

(3.4.6)

(3.4.7)

(3.4.8)

(3.4.9)

(3.4.10)

(3.4.11)

(3.4.12)

(3.4.13)

(3.4.14)
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Substituting Eq. (3.4.14) into Eq. (3.4.9), gives

1 = 3mgs —2m(2¢2 — ¢1)

= 3mgy — dmqgs + 2mqq

= 2mqg —mgqs,

p1o= m(241 — ¢2) - (3.4.15)

The Lagrangian L(q, q) of the system is defined by

L(q,q)

L(q,q)

1 . .
5 Z (paQa + Qapa) - H(qa p)

a=1,2

) . 1, . )
—(p1gr + @ipr) + 5(292(]2 + Gop2) — H(q, p)

| —

1 ) O ) ) )
2 [m@(h — G2)q1 + @m (241 — %)}
1 . . . ) )
+§ [m(2q2 — ¢1)G2 + Gam(24o — Qhﬂ — H(q,p)
L. o
E(qul — MmGaG1 + 2mg; — mqiqs)
1 ) . ) .
+§(2mq§ — mq1Gz + 2mdg5 — mgeg1) — H(q, p)
1, 5 . .
5(47”511 +4mgy — 2mqigs — QWQQ%) - H(q7 P) )

2mg? + 2mgs — méigy — miady — H(q, p) , (3.4.16)

which has to be expressed as a function of q, g only. To this end we note that we may
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write
) 3m q1, 492
1 9 . - \2 . S \2 . . . .
= 3, (241 — @2)* + (242 — @1)° + (261 — G2) (242 — @1)] + [ (a1, q2)
= 3(461? — 44142 + 43) + 3(4613 — 4oy + 47)
m . . 2 .2 . .
+§(4Q1Q2 — 247 — 245 + ¢2q1) + f(q1, 92)
m .2 ) ..
= 5(3(11 + 3¢5 — 3d2G1) + f(q1,q2) ,
H(q.p) = m(¢ + ¢ — dedr) + fa1, q2) - (3.4.17)

expressed formally as a function of q,,, ¢,. Upon substituting the expression for H(q, p)

in Eq. (3.4.17) into Eq. (3.4.16) gives
L(q,q) = m(2¢] + 26 — qide — GoG1) — m(d; + @5 — GoGr) — f(q1, @2)
= m(d} +d — qide) — flq1,q2) - (3.4.18)

This may be rewritten in a more interesting way as

mii | mi

5 5 (h — @)° — flq1, q2) (3.4.19)

L(q,q) = +

m
2
for the independent variables ¢;, ¢», where we note from Eqgs. (3.4.3) and (3.4.4), that

due to the independence of the variables p;, ps, that is [p1, ps] = 0, ¢; and ¢, commute.

The expression in Eq. (3.4.19) is highly suggestive as constrained dynamics of systems



61

with Lagrangians

L(QluQ?)Q&QI:QQ:QZ’)) = + + 3 _ V(Q1,2,Q3) s (3420)

with constraint

B—(n—q) = 0, (3.4.21)

for all times, and V' (q1, g2, g3) are any real function such that

V(qh q2, QS) - f((.ha q2) . (3422)

43=q1—4q2

Due to the fact that ¢;, ¢, are independent variables with canonical conjugate

momenta pq, ps, we have the commutators:

[g1. ;] = ih, (3.4.23)
g2, p2] = ih, (3.4.24)

and more generally
[Gas 6] = ihdap , a,b=1,2. (3.4.25)

From Egs. (3.4.14) and (3.4.15) we note that we may rewrite p;, ps as

p = mag+m(¢ —ga) , (3.4.26)

P2 = mgs — m((il - 6]2) . (3.4.27)

On the other hand, ¢35 = ¢; — ¢» being a dependent variable, its canonical conju-
gate momentum ps is zero by definition. Accordingly, as in quantum electrodynamics

(see the introductory section to this chapter), we may trivially extend Eqgs. (3.4.26) and
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(3.4.27) froma = 1,2,to ¢ = 1, 2, 3 by setting

ps = mgs —m(g — ¢2) , (3.4.28)

since g3 = q1 — @2 at all times implies that the right-hand side of Eq. (3.4.28) is zero,
and Eq. (3.4.28) gives the trivial equation that 0 = 0.

Thus we have succeeded, in extending Egs. (3.4.26) and (3.4.27) froma = 1,2
to: = 1,2,3. Since, ¢35 = ¢1 — ¢- as a consequence of the fact that g3 = ¢; — ¢o at all
times, we may use the latter equality for ¢35 = ¢; — ¢o2, together with the equalities in
Egs. (3.4.3) and (3.4.4) and the commutation relations in Eq. (3.4.25) to derive explicitly

that
[611741] = ¢ — Qq,

1 1
= q—C2p1+p2) — —Cp1+p2)an

3m 3m
B 2 n 1 2 1
= 3mQ1p1 3mQ1P2 3mP1Q1 3mp2€h;
- 2 )+ )
= 3, qipr — P1da 3m qip2 — P2q1) ,
= g pl+ i
= 3, q1,P1 3m qi,pP2| ,
) 2
1, d1) = S—m(lh), (3.4.29)
[CIth] = Q¢ — @ ,

G Cp+p) - =+ 1)
= Q13m P2 T D1 3m P2 T~ P1)q1 ,

2 1

2 1
= S—mfhm + 3—m(hp1 — S—mp2(11 - 3—mp1€h ;



[Ch, Cb]

[Ch, 43]

[Qh 43]

[Q2> 6]1]

2 1

3—m(Q1p2 — paqa) + 3—m(CI1p1 —pq)
2 (1, pa] + — a1, 1]
3m q1, P2 3m q1,P1],
1
— (ik
3m(1 )7
0193 — 4341

(g — ¢) — (@1 — @2)q1
Qg1 — @192 — (11 + ¢2q1
(Q1Q1 - Cth) - (Q1QQ - Cle) )

[Q1,Q1] - [CI1>QQ] )

2 (ih) — (i)

3m 3m

Ly,

3m

@0 — 192 ,

1 1
—(2 — (2
ngm( 1+ Do) 3m( p1+ P2)ge

2

2 1 1
— + — - — - — ,
3m Q201 3m 4202 Bmpl q2 3mPQQ2

2

( )+ )
3m q2P1 — P192 3m q2p2 — P242) ,

1

2 g 1] + o2, P2
3m 42, D1 3m q2,p2] ,
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(3.4.30)

(3.4.31)



2, d1]

[Q27 (iz]

[Q27 (iz]

[CI2> 43]

[CI2, 43]

[Q?n Ql]

1
— (ih
3m(1 ) 7
G292 — ¢2q2 ,

1 1
Q23—m(2p2 +p1) — 3_m(2p2 + 1)z,

2 1 2 1

- _|_ - - - ,
3m q2p2 3mQ2p1 3mP2Q2 3mp1Q2

2

( )+ —( )
3m q2p2 — P2q2 3m q2p1 — P192) ,

2 1

— (g2, p2] + %[C]mpl] ;

S_m(ih) :

Q243 — 4392

g2(q1 — G2) — (41 — G2)q2
©2G01 — 9292 — 192 + G292

(@261 — ¢192) — (@202 — ¢2q2) ,

[CI2,€]'1] - [Q2742] )

B0 — ¢1g3 ,

(Q1 - QQ)Ch - 611(Q1 - CIQ) )
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(3.4.32)

(3.4.33)

(3.4.34)



[Q?n (il]

[Q?n 6]2]

[Q37 (iz]

[CI?n 43]
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Qg1 — @q1 — @1+ 1q2 ,

(Q1Q1 - 41Q1) - (Q2(il - 4192) )

[Q1,Q1] - [@;%] )

2 1 .
%(17@ - %(lh) ,
L(ih) 3.4.35
5 ; (3.4.35)
4392 — G243 ,

(1 — @2)G2 — G2(q1 — q2) ,

G192 — G292 — @2q1 + ¢2q2 ,

(Q1Q2 - 622Q1) - (929'2 - 42Q2) )

[fha (12] - [QQ, Cb] )

——(ih) , (3.4.36)

4393 — 4343 ,

q3(d1 — G2) — (1 — 42)qs

q3q1 — G392 — 193 + 4293 ,

(361 — ¢1q3) — (q3G2 — G2q3) ,
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= (g3, @] — las, 4] ,
1 1
— gl = (—5 ) ),
. 2
a3, G3] = %(15) . (3.4.37)

2 1 1
in
ca]) = & | 3.4.38
(M qA) vl R 1 ( )
1 -1 2

In the Hamiltonian formalism, we then have

P2+ P32+ 2pipo
3Im

+ fq1,92) , (3.4.39)

H(q1,q2,p1,Dp2)

as the Hamiltonian of a system described, in particular, by a Hamiltonian

2 2 2
P B PP B8 (g g, gs),  (3440)

H(Q1,QQ7Q37pl7p27p3) = Im 3m 3Im 2m

with constraints

G—(nn—q) = 0, (3.4.41)
ps = 0, (3.4.42)
such that
Vg1, g2, 93) = fla, @) - (3.4.43)
g5=aq1—q2

In our general notation we identify () with g3, P with p; and G with ¢; — gs.
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From the Hamiltonian in Eq.(3.4.1) we are following from Eqgs.(3.2.38) -
(3.2.87), firstly, from Eq. (3.2.38) and define G(7) = ¢1(7) — ¢2(7), we obtain

(at[(qi(7) — @2(7))|d't)

Q°(1) = ) , (3.4.44)

Q°(7) {(at|q'?) | = (at|(q:(7) — q2(7))Iqt) |, (3.4.45)
Q°(7) (at|q't") | = (at|(q:(7) — @2(7))|d't') | =0, (3.4.46)
[Q°(7) = (a1 (7) — (7)) (at| ') | = 0. (3.4.47)

with ¢|(7) = —ihd/051(7), ¢h(T) = —ihd/dSs(T). By promoting the Q°(7) to a
quantum variable Q(7), with (qt|q't’) generalized to (qQt|q'Q’'t’), as applied to the

problem at hand, we must have from the conditions (A), (B) and (C) in Sect. 3.2 and

Eq. (3.4.47)
h 5 / / t / /tl
i () - )] (@l a Q)
= (qQt|Q(T)[d'Q't) | — (aQt|(q1 (1) — q2(7))|d'Qt")
Q@O — (@) — @) Q)
— (3.4.48)
and
i (qQt| Q)| = (aQtP(dQY)

ds(T)

— 0. (3.4.49)
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for all ¢ < 7 < t. Since a relation zg(z) = 0, implies that g(z) involves the factor
d(z), we note from Egs. (3.4.48), (3.4.49) and (3.2.37), and finally from Eq. (3.2.6), by

following a procedure as in deriving Eqgs. (3.2.3) and (3.2.4), that

t

, |
55 (@@t @) = — 4 [ ar (aQtIH(a pIaQY)

t

.t
S % / dr H'(7) (qQt|d'Q't') | (3.4.50)
)
. ¢
5 (@t Q) = — T dx / dr H'(7) (qQt| 4 Q'Y) | (3.451)
t/

which integrates out to

(aQt|q'Q't") . (3.4.52)

e [_ﬁ / ar H’(rﬂ (@Ot Q')

From Eq. (3.2.37)

rla ey, = 5 (a-a [arse e (fa- [arem)

X exp (—% /t/tdf/tlth'S(T)-@(T—ﬂ F(H)).

We note from the condition in Eqgs. (3.4.48) and (3.4.49), that as in a relation xg(x) = 0,

as applied to

() - qgmﬂ @QtlqQE)| = 0, (3453

with the formal substitutions

. 1)
[—mm—(qlm—w»] — (3.4.54)
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(@Qt[d'QT)| — g(z). (3.4.55)
On the other hand from Eq. (3.4.49),
: 5 / 14/
1FL55(T) (q@Qt|d'Q'tY| = 0, (3.4.56)
we may make the formal substitutions
)
(@Qt[d'Qt)| — g(z), (3.4.58)

implying that (qQt|q'Q't') must involve delta functionals §M(—ihd/df(-) —
G'()dW(ins/(2mh)Ss(+)).

For the simple Hamiltonian

H=-Qf(r)+ Ps(r), (3.4.59)

the Heisenberg equations are
Q1) = s(7), (3.4.60)
P(r) = f(r). (3.4.61)

These equations may be integrated to

[ Q) =

dr s(7), (3.4.62)
Q) — Q) = '

/
/

dr' (7' — 1) s(r'), (3.4.63)
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Q) = Q) - /t “ar O — 1) s(r) (3.4.64)
and
/t/ ap(r) - /t “dr (7| (3.4.65)
P(r)— P(t) — /t 4 6 — ) f(r). (3.4.66)
P(r) = P(t)+ /t ar o — ) £() (3.4.67)

and taking the matrix element between (() ¢| and | P t') for A = 0, we obtain

QuemIPt), = (@@ - [ ar e -0 s @elr ), Gasy

r t
(Q t\P(7)|Pt’)O = P(t’) —|—/ dr’ O(r — T’) f(T/):| (Qt|P t')o . (3.4.69)
L t
We have used the relations

oQtQE) = QoQt, (3.4.70)

P(t)|Pt), = P|Pt),, (3.4.71)

for A = 0 at coincident times. Eqgs. (3.4.68) and (3.4.69) may be rewritten as

) ) r 6o / / /
_lhéf(T) (Qt|Pt), = _Q—/t, dr' (1" — 1) s(r )] Qt|Pt),, (3472

) ) r t / , /

1h53(7) Qt|\Pt), = _P—i—/t, dr @(T—T)f(T):| (Qt|Pt), . (3.4.73)
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These equations may be integrated to yield

) 1)
e

/%}ig?}o -2 /5f(7) {Q - /ﬂt ' O — 1) s(T')} L (34T5)

n(Qt|P ), ——Q/f

QP ), = [Q - / dr' O — 1) S(T')} QUPE),, (474

_—/dT/ dr’ f(r)e(r’ — 1) s(r') , (3.4.76)

(Qt|Pt), = E exp {%Q/;fm dT}

X exp {——/ dT/ a7 [(1)O( — 1) s(r )}, (3.4.77)

and

s
in 3s(7)

/ igj—m - / 55(7) [P 4 /t “ar o - 7) f(T’)] L (3479

In(Qt|Pt),= —iP/t s(T) dr

Q|P 1), = [P + / dr' O(r — 7) f(r’)} QUIPE),, (478

h

——/dT/ dr’ s(r)e(r —7') f(), (3.4.80)
(Qt|Pt),=F exp [—%P/t s(T) dT:|

X exp [——/dT/ dr’ s(r)o(r —7") f(r')| . (3.4.81)
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To find £ and F' in Egs. (3.4.77) and (3.4.81), respectively, we note that
Eq.(3.4.77) = Eq.(3.4.81) (3.4.82)

and hence

E exp {% Q/;f(f) dr} exp {—%/j dr /; dr' f(r)O(r' — 1) S(T')}

= I"exp {_% P/t/ s(7) dT} exp [_;_i/t, dT/t, dr’ s(r)e(r — 1) f(T/):| )
(3.4.83)

This gives,
i t i t
E =exp {_i_i P/ s(T) dr} , F=exp {ﬁ Q/ f(7) dT:| . (3.4.84)
t’ t!
In the absence of the external sources: f = 0, s = 0, ﬁ — 0, Eq. (3.2.39) reduces to
H(r,\) = MH(q,p) —q-F(7)+p-S(7). (3.4.85)
Fort =1t
QtIPt) = (QUMHUT)|P)
= (Q|P)

= exp (% QP> : (3.4.86)
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Then we obtain

QP 1), = exp [% QLt dr f(T)} exp {—% P/; dr S(T)} exp (% QP)
X exp {——/ dT/ dr' (1) (r — 7 f(r )}. (3.4.87)

To obtain the expression for (Qt|Q't"),, we multiply Eq.(3.4.87) by (Pt'|Q't") =

exp(—iQ’P/h) and integrate over P, with measure dP/(27h), to obtain

QU = [ Grsl@uP O, (P

N R ey
con[-1 [ [[arsimere o) 1)
con (L) e (1 ap).

- [ eolief e o)
crli(o-e [uoo)y
S T p———

- i(ema- farm)enfie [
N ey
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Qi@ = i(e-a- [arstm)en (3o [ o)
X exp (—% /t “ar /t "4r' s(r) O(r — ) f(T')) (3.4.88)

From (qt|q't"), in equation Eq.(3.2.37), the conditions in Egs.(3.4.48), (3.4.49),
(3.4.53) - (3.4.58) and (Qt|Q't'), in Eq. (3.4.88), we then have

(aQt|d'Q't)y

=W [—ih% — ((—m)%“ — (—ih) 5F‘j(')>] 6 (%%()) (qt|q't), A,

(3.4.89)

where

1= i(e-a- [arsm)en(za [ ario)

X exp <—% /t dr /T dr’ S(T)f(T)) : (3.4.90)



CHAPTER IV
CONSTRAINTS, DEPENDENT FIELDS
AND THE QUANTUM DYNAMICAL PRINCIPLE:
REDUCTION OF PHASE SPACE

4.1 Introduction

The approach in developing the dynamics of constrained systems in quantum
physics, in the functional differential formalism via the application of the quantum
dynamical principle, in this chapter is based on the following. Given a Hamiltonian
H (q,p) as a function of independent variables q = (¢, ..., q,) and their canonical

conjugate momenta p = (py, ..., pn), we consider a new system by defining constraint

operator functions

G(q(7).p(1)) = {Gi(a(r),p(7),....Gr(a(r),p(7))} (4.1.1)

as of pairwise commuting operator functions G,(q(7), p(7)), which together we intro-

duce canonical conjugate momenta for them

such that

G(q(),p(r)) = 0, (4.1.3)

G(q(7),p(1)) = 0, (4.1.4)
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for all T in the interval [t', ¢].

The new Hamiltonian of the constrained dynamics is then defined by

H(q",p*) = H(q,p) o (4.1.5)

and Eqgs. (4.1.3) and (4.1.4) define the constraints, and with (q,p) — (q*, p*, G, G)

defining a canonical transformation, i.e., the Jacobian of the transformation is unity:

d(q,p)

J = ‘ i
J(q*,p*, G, G)

' =1, (4.1.6)

as obtained within a classical context.
The procedure for describing the dynamics of the new constrained dynamics

with Hamiltonian H(q*, p*) may be then summarized through the following:

H(q,p) —  H(qp)| . =H(qp"). 4.1.7)
—— N G=0,G=0 5

Phase Space of Phase Space of
dim (2n) dim (2(n — k))

Given the Hamiltonian H (q, p) with the constraints Egs. (4.1.3) and (4.1.4) now
imposed, the transformation function (qt |q't’)., with the q (and similarly the q') not

necessarily independent variables is then given by

atlat)e = o (_ih5f5(~) - G/(')) o <_ih5f5(-))

X exp <—%// dr ]:]’(7')) <qt|q/t/> <Qt‘Qlt/> : (418)
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where

7y = i (—inl il
H'(T) —H( lh5F(7’)’1h58>’ (4.1.9)

ilat) = (a-a - [(ars ) eo (fa- [ arFe)

et ¢
X exp <—%/ dT/ dr’' S(r) - O(r — T’)F(T’)) ,  (4.1.10)
v ¢

ey =t (Q-a' - [ s e (10 [arte)

ot ¢
X exp <—%/ dT/ dr's(t)-O(r — 7'/>f<7'/)) : (4.1.11)
t/ t/

and the numericals Q, Q' are defined as follows:

Q = Q)

=0, (4.1.12)

Q= Q)

=0, (4.1.13)

where Q°(7) is the classical function having the expression

(at|G(q(7),p(7))|d't)

) = (at|q't’)

= 0. (4.1.14)

4.2 Transformation Functions

Given a Hamiltonian H (q,p) with corresponding transformation functions

(qt|q't’), we may implement the constraints Egs. (4.1.3) and (4.1.4) as follows:

(qt|G(q(7),p(7))|q't)

Q@ (at|q't’)

=0, 4.2.1)
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(at|Gla(r).p(r)
(at|q't’)

q,t,>
P¢(r) = =0, 4.2.2)

for all 7 in the interval of interest [¢', £].

Egs. (4.2.1) and (4.2.2) suggest first to promote Q° and P¢ to quantum variables
by Q, P by coupling them to external sources f and s and specialize (qt|q't’), accord-
ingly, to a new transformation function (qt |q't’)., whose expression will be obtained

below, such that

5 \

(@t |Qlat)e = (il)gelatlatc| = 0. 4.2.3)
5 \

(Pl = @5 (arld)e] = 0, @24)

where the bar signs |, as usual, mean to set all the external sources equal to zero.
The conditions Egs. (4.2.1) - (4.2.4), then mean that (qt|q't’ >é necessarily in-

volve the product of the delta functionals as a factor:

50 (G'(-) - (—15)5%(.)) o ((_ih)%(-))

(4.2.5)

with the transformations functions (qt|q't’) for the constrained dynamics given by

Eq. (4.1.8).

4.3 Contact with the Faddeev-Popov Technique

From the path integral representation of

o (=3 [ ar ') tarlae) (@il Q) @30
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given by

q(t)=q,Q(t)=Q i t B
/ @(q(-)7p(-)>-@(Q(-),P(-))eXp—ﬁ/ dr [H(1) —v(7)], (4.3.2)
a(t)=a,Q(t)=Q’ v

where

v(r) = [p(r)-a(r)+P(r)- Q) +q(r) - F(r)

—p(7) - S(7) + Q(7) - f(7) = P(7) - s(1)], (4.3.3)

H(r) = H(a(r),p(r)), (43.4)

we have,
q(t)=q,Q(t)=Q

atlat) = [ 2 (a(-).p()2 (Q(), P()

qa(t")=q',Q(t")=Q’

xexp—% /t dr [A(r) - p(r) - 4(7)] 43.6)
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On the other hand,

H(r) G(1)=0,G()=0 = H(q'(7),p"(7)), 4.3.7)

(see Eq. (4.1.7), and with (q,p) — (q*, p*; G, G) defining a canonical transformation,

i.e., the Jacobian of the transformation is unity:

‘ d(qa, p)

_ ‘ =1, (4.3.8)
J(q*,p", G, G)

leading to the standard path integral expression for (qt |q't') .

4.4 Application

As an explicit illustration following the procedure developed through Eqgs. (4.1.8)

- (4.2.2), consider a Hamiltonian
H(q,p) = 5+ V(d’), (44.1)

in 3D which is obviously rotationally invariant with the dynamics occurring in the three
dimensional space, where V' is arbitrary. Now suppose one is interested in developing
the dynamics to be constrained to a fixed two-dimensional plane making a given angle
« with the (g1, g3)-plane.

To do this, we introduce canonical conjugate variables which we eventually set

equal to zero:
G1 = @qsina—gycosa, 4.4.2)

Gy = pisina—pycosa. (4.4.3)
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ai (p7)
fll(Pl)

/XN

N/

% sina
/

a2(p2) «\ Py 7 4
N \i/

/ —q2co8q

/
7/

Figure 4.1 In 3D, the introduction of the constraint generates a two-dimensional
plane (¢, g3)-plane with the parameter «, defining the angle between the

q;,qs(pi, ps) and g1, g3(p1, p3) planes.

The commutation relation between G; and G’l is equal to iA, i.e., in particular,
we show that [G, G1] # 0, as follow from the commutation relations, [qq, po] = ik and

[qa; po] = 0 for a # b. To this end,
[G1,G1] = [(qisina — gy cosa), (prsina — py cos )]
= (q1sina — g cosa)(p; sina — py cos )
—(p1sina — ps cos a)(qy sin @ — gy cos @)
= qup1sin® a — g1ps sin a cos o — gopy cos asin o + gaps cos® o
—(m@1 sin o — P1Qo SIN (¢ COS @@ — Pogy COS  SiN ¢ + Pago cos? Q)
= (qup1 — p1q1) sin® a + (qap2 — p2ga) cos®

—(qap1 — p1g2) sinawcos a — (q1p2 — p2q1) sin a cos «
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= ihsin?a 4+ ikicos? a

= ih(sin® a + cos® )

A

|G1,G1] = ih. (4.4.4)

ai (p1)

q1 cos \\ ,/

/ //ql sin av

«

P //qz sin av ’>/

- 3(05)

N\

\
/\41 Ccos &
%
7

Figure 4.2 The projection of the (g1, g3)-plane, with defining angle «, into the (q;, ¢3)-
plane.

The Hamiltonian of the dynamical system restricted to the two-dimensional

plane described above is then given by

*2
* * |Y *2
H = %4 445
(@"p") =5+ V(d™), (4.4.5)
where p* = (pi, p3), 4" = (g7, ¢3) with
p; = picosa+ pesina , Py = D3, (4.4.6)

¢, = qcosa+ gsina , ¢ =qs, (4.4.7)
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and hence with the (¢, ¢3 )-plane making an angle « with the (¢, ¢3)-plane correspond-
ing to a rotation about the ¢3-axis by the angle a.

Therefore it remains to show that the transformation

(qlapla q2, P2, q37p3) - (qakap; qgap;a Gla Gl) (448)

1s canonical. That is, the Jacobian

7= d(q1,p1, G2, P2, 43, P3) -1, (4.4.9)

a(QTapi qs:]?;a Gla él)

where ¢, ¢35, p1, p5, G1, Gl are defined, respectively, in Egs. (4.4.7), (4.4.6), (4.4.2) and
(4.4.3).
To the above end, we may solve for (q1, p1, ¢2, D2, g3, p3) in terms of the variables

(¢, pt, ¢, p5, Gy, G1) from just mentioned equations giving:

@1 = ¢icosa+Gisina, (4.4.10)
p = picosa+Gisina, (4.4.11)
@2 = ¢;sina—Gicosa, 4.4.12)
pe = pisina— @1 cos « , (4.4.13)
B = G, (4.4.14)
ps = Pa- (4.4.15)

From the above equations, we then obtain,

oq
dqy

— cosa, (4.4.16)



oq
dp1

oq
dq;

oq
Ips

oq
0G4

oq
0G4

892
dqy

0 q2
dp]

8q2
g3

0 q2
aps

0qs
0G4

g2
0G4

393
dqi

8q3
dp]

aQ3
g3

—cosa ,

84

(4.4.17)

(4.4.18)

(4.4.19)

(4.4.20)

(4.4.21)

(4.4.22)

(4.4.23)

(4.4.24)

(4.4.25)

(4.4.26)

(4.4.27)

(4.4.28)

(4.4.29)

(4.4.30)



0qs
Ips

94
0G

dqs
oG,

ap1
0qy

ap1
dp]

ap1
0q;

ap1
aps

opy
0G,

I
G,

ap2
oqy

ap2
dp1

ap2
g3

ap2
Ips

Op2
oG,

cos v,
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(4.4.31)

(4.4.32)

(4.4.33)

(4.4.34)

(4.4.35)

(4.4.36)

(4.4.37)

(4.4.38)

(4.4.39)

(4.4.40)

(4.4.41)

(4.4.42)

(4.4.43)

(4.4.44)



o2
G,

Ops
dq;

Ops
Ip1

Ops
g5

Ops
Ips

Ops
oG,

apzz
oG,

The Jacobian of the transformation as defined in Eq. (4.4.9) is then given by

oq
dqi
op1
J — ||9n

Ops
0qi

where H . H denotes the absolute value of the corresponding determinant | - |.

a(h
Op;
apl
op;

8173
Op1

—cos

I
oG,
(9p1
oG,

Ops
oG,
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(4.4.45)

(4.4.46)

(4.4.47)

(4.4.48)

(4.4.49)

(4.4.50)

(4.4.51)

(4.4.52)
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Substituting Egs. (4.4.16) - (4.4.51) into Eq. (4.4.52), we obtain

Ccos o 0 0 0 sin « 0
0 COS & 0 0 0 sin «v
sin « 0 0 0 —cosa 0
J = , (4.4.53)
0 sin o 0 0 0 —Ccos &
0 0 1 0 0 0
0 0 0 1 0 0
Find the determinant of matrix J:
J = [(0)(=1)"" Mg 4 (0)(—=1)""* Mgz 4 (0)(—1)°** Mes
+(1) (1) Mgy + (0)(=1)°"° Megs + (0)(—1)°"° Mg
J = |Me, (4.4.54)
and
CoS & 0 0 sin av 0
0 COS (v 0 0 sin «v
Mes = |sina 0 0 —cosa 0 , (4.4.55)
0 sin « 0 0 — Ccos o
0 0 1 0 0
J = [(0)(=1)>"'Ns1 + (0)(=1)°** N5z 4 (1)(—=1)""* N33

4+(0)(=1)"" Nyy + (0)(—1)°"° N5

J = |Nssl, (4.4.56)
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and
COS & 0 sin o 0
0 CoSs « 0 sin «v
Ny = 4.4.57)
sin o 0 — Ccos & 0
0 sin «v 0 — COS &
J = (O)(—1)4+1041 + sin a(—1)4+2042 + (O)(—1)4+3O43 — COS a(—1)4+4044
J = |Opsina—Oycosal, (4.4.58)
and
cosa  sSin« 0
O = 0 0 sin «v
sinoe — cos« 0
= (0)(—1)2+1P21 —I— (0)(—1)2+2P22 —|— sin a(—1)2+3P23
042 == —P23 sin o s (4459)
COS (v 0 sin «v
Oy = 0 CoS «v 0
sin o 0 — Ccos
= (0)(—=1)*"'Qa1 + cos a(—1)*"* Qo + (0)(—1)*"*Qa3
044 == Q22 cos &, (4460)

Substituting Egs. (4.4.59) and (4.4.60) into Eq. (4.4.58), we obtain
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J = | — Passin® a — Qqg cos® a (4.4.61)

and

cosa  Sina

P23 = )
sinaw —cosa
= —cosla—sina,
= —(cos’a+sin*a),
Py = -1, (4.4.62)
cosa  sinq
Q22 = )
sina —cosa
= —cosla—sina,
= —(cos’a+sin*a),
Qp = —1. (4.4.63)

Substituting Egs. (4.4.62) and (4.4.63) into Eq. (4.4.61), we obtain

J = |—(=Dsin*a— (~1)cos’af ,

= sin®a +cos’a,

J = 1 (4.4.64)

thus confirming that the transformation in Eq. (4.4.8) is indeed canonical.
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The power and simplicity of the functional differential formalism via the quan-
tum dynamical principle evident. The constraints are implemented by functional dif-
ferentiations, with respect to additional external sources, of transformation functions
generalized to dynamical systems, in the presence of dependent degrees of freedom,
which are readily spelled out from the corresponding systems with no constraints. We
emphasize that in the functional differential treatment, via the action principle, external

sources must, a priori, be introduced.



CHAPTER V
FUNCTIONAL CALCULUS AND DEPENDENT

FIELDS

5.1 Maxwell’s Lagrangian

The Lagrangian density for the photon field A*, in the presence of an external
source J#, is given by

1
L=~ F"Fut+ A" (5.1.1)

and the action for photon field is defined by the 4-dimensional integral:

W = / (dz) Z

= /(dx) [—EF‘“’FW +A,J" (5.1.2)
where "V = OFAY — 0" A* and u,v =0, 1,2, 3.
5.2 The Coulomb Gauge
In the coulomb gauge, we have the constraint

V-A = 94" =0, k=1,2,3. (5.2.1)

Equation (5.2.1) allows us to solve, for example, A? in terms of A!, A?%:

A* =0,
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HA + A% +054% = 0, (5.2.2)

or
A = 1 0,A% =1,2 523
= 5 Gad”, a=1,2. (5.2.3)

For the variation of this field, we have
3 a
0A” = —— 0.(0AY) | (5.2.4)

while simply,

0AY = A (5.2.5)
We may combine Egs. (5.2.4) and (5.2.5) into the form:

A" = (5 — 5@'3%) §A, i=1,2,3. (5.2.6)
3

5.3 Modification of Maxwell’s Equations for a Priori Non-

Conserved Current

From Eq. (5.1.2):

SW = / (dz) —}La(FWFWHJMaAM],

1 1
_ / (de) |~ F™6F,0 —  FudF™ + J"(SAM] ,

= / (dz) —}lea(aﬂAy —9,A,) — iFwé(a“A” — 0" AM) + JMSA,|
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1 1 1
= / (dz) [ — (F08A, + JFO,8A, — L Fu 0t A

_ /(dx)[

1
5 FudA + Jﬂ&AM] ,

1 1

- iFwaﬂaAu + {F5A, = (F 00 A

+iFW8"5A“ + J“&Au] ,

4

- / (dz) [ - iF“"aﬂcSA,, - }LFWaﬂaAy + g ovsan

- [t
- [
- [

+;LFW8”5A” + J“cSAM} ,

1 1
— S FMO.8A, + SFL0 A MA”] ,

1

1 1
—SFMO,0A, = SFMO,0A, + JH5A,

W = / (dz) [~ F"™ 0,6 A, + JUSA,] .

1
— S FMO.8A, + SFM0,0A, + T4 A,

(5.3.1)

For the first term of the above equation, we use the fact that A9B = §(AB) — (§A)B,

to obtain

oW =

/ (de) [=0,(F™6A,) + (9,F™)5A, + J'5A],  (532)

%dEuF’“’éAl, + / (dz) [(9,F™ + J*)5A,) . (5.3.3)
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and

/ (dz)d,(F™5A,) (5.3.4)

is a surface term. Accordingly, we have
W = / (dz) [(9,F" + J°) 6 Ao + (8, F* + J) 6 A;] (5.3.5)

or

oW = / (dz) [—(8,F" 4 J°) 6A° + (9, F* + J') §A'] . (5.3.6)

Using Eq. (5.2.6), we get

W = / (dz) [—(@Fﬂo + J%) 6A° + (9, F" + J) (5 - 5i3%> 5,4“]
3
0 0 0 a a a 3 3 aa a
_ /(d@[—(aﬁﬂ 40 6A° 4 (9, FF £ J%) 6A — (9, F" + J )3_5‘4}
3
- / (dz) (0, F"° 4 J°) §A° + / (dz) (9, F"* + J*) 6 A”
3 3 aa a
_ / () (@, + ) 5 54" (5.3.7)
3
Consider the third term given by:
— / (dz)(0,F*° + J3)% fA* = — / (d)0a {(QLF“?’ + J3)ai 5,4“]
3 3

- / (dz) [0.(8,.F" + J%)] al SA

= - 55 >, {(aﬂw3 + J3)ai 5,4&]

3

- / (dz) [0a(0,F™ + J?)] a% SA
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_ / (dz) [0u(8,F* + J9)] ai 540

3

= / (dx) 03@<0MFM3+J3) L 50
s s

_ / (de) s { [%(@MFMS + J3)] = 5A“}

3 3

- / (dz) | 20,7 1 g9 | 0yt 50
05 05

0 1
— a w3 3 a
§£d23 { [_83 (0, F"3 + J )] o dA }

- / (dz) @(aﬂFﬂMﬁ) agi §A
|05 | 70s

_ / (dx)(@uF“3+J3)%5A“ S / (dz) %@F#Mﬁ) AT, (538
3 L Y3 J

Substitute Eq. (5.3.8) into Eq. (5.3.7), to get

W = — / (dz) (0, F"° 4 J°) §A® + / (dz) (0, F"* + J*) 6 A"

— / (dz) {% (8MF“3+J3)} 5A°

3

= - / (dz) (9, F" + J°) §A°

- / (dz) {(aMFW + J%) — % (0, F" + J3)} SAY (5.3.9)

3

or

)4%

@ — _(auFMD + JO) 9 (5'3'10)
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= @ -2

w3 3
e o (OuF"+ 7). (5.3.11)

The field equations are then given by

—9,F = J°, (5.3.12)
a a aa 3 3
SO = U= SO 4 ) (5.3.13)
3
From Eq. (5.2.6):
, ) o)
Al — ia _ §1370 Ac
o ((5 0 83)5 ,
i ia i3aa a
59, A) = (6" =555 ) 5(9,47). (5.3.14)
3

On the other hand, from Eq. (5.3.6) we have:
W = / (dz) [—=(0,F"* + J°) 6A° + (9, F" + J') 6A"]
= / (d) [(—0pF*) 6A% — JOSA® + JI6A" + (8, F"") 6A']
= / (dz) [F*6(0pA%) — 0p(F*6A") — JOSA% + J'OA" + (0, F") A"
= / (dz) [F*06(0,A%) — JOSA® + J'6A" + (9,F*) 6A']
W = / (dz) [JO0A° + J'6A" — FM6(0pAo) + (0, ") 6 A’ . (5.3.15)

Consider the second term in Eq. (5.3.15) and use Eq. (5.2.6) to obtain
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/ (dz)J'0A" = / (dx)J’ (5%’“-5%’%) §A®
3

- / (dz)Je6 A — / (dx)ﬁ% §A
3

_ / (da)Je6.A° / (dz) 0, (J38i 5A“) + / (4)(00%) 5 04°

3 3

_ / (d) 75 A° + / (dx)(aaj3)a%5Aa

3

= / (dz) J* A" + / (dz) <J3ai3 5A“) — / (dx) (g—‘; J3) 0A

/ (dz)J'6 A" = / (dx)J S A" — / (dx) (% J3> SA*. (5.3.16)
3
That is,
/ (dx)J'6 A" = / (dx) (J“ — % J3> SA” . (5.3.17)
3

Consider the last term in Eq. (5.3.9) and use Eq. (5.3.14) to derive
/(dx)(@uF’”) AT = /(dx) 8H(F’”5Ai) — /(dx) F*”'(S(c‘?HA")

. / (dz) F¥5(9, A7)

- - / (dz) F¥* (5 = 5@‘32—:) 5(8,A)

S / (dz) Fr§(8,A%) + / (dz) F“‘”’% (0, A%)

= - / (dz) F*5(0,A%) + / (dz) Da {F‘“ais 5(6%4“)}

- [@n@.r) 5 5@,

3
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=~ [e) Prs@a0) ~ [ (o) @) 5 50,4°)
= - [ Peot@uan) - [(an) o, [P 50,0

+ / (dx)(aaF“?’)aig 5(9,A)

(dz)(9,F") 6A" = — [ (dz) F"§(0,A%) + [ (dx) @Fﬂ?’ §(9,A"),
3

(5.3.18)
or
/ (dz)(0,F") §A" = / (dz) (—F’“ + %F’”) §(9,A") . (5.3.19)
3
Upon substituting Egs. (5.3.17) and (5.3.19) into Eq. (5.3.15) this leads to:
0 a aa 3 a kO
ow = /(dx) [J 0Ao + (J ~ 3 J ) A — F*60(0xAp)
3
a aa 3 a
+ (| —F* +8—F“ §(0,A") | . (5.3.20)
3
The canonical conjugate momenta to A* are defined by
T, = mA'] = 5W _ W . (5.3.21)

5 An d(0g AH)

For the photon field, A° is a dependent field since its canonical momentum van-

ishes (7° = 0),

= n[Al] = —F°1+%F03, (5.3.22)
3

2 = 7w[A?] = —F2 4 = F% (5.3.23)



or
— a Oa afl 03
T, = WA = —F+ —~F ) a=1,2
05
But 72 = 0 since A? is not a dynamical variable. Also
PP+ FP + 0 FY = 0
_aSFOa - aaFi’)O — 80Fa3
_aBFOa 4 aaFOS — _aOFaS
0, O
_FOa ~a FOS _ Y Fa3 ]
M) 2
Therefore
0, o
a _ _FOa ~a F03 - _ Fa3
T "5 g

which may be generalized from a = 1,2 to k = 1, 2, 3 through

ak 03 _ _@

k Ok:
= —F
g 5 2,

k3
F*

giving, in particular, for k = 3, 73 = 0, as expected.

Also 7% = 0 since A° is a dependent field. On the other hand

ko

% Ok
— —FO F03 - _ Fk3
T n O, 9",
for p =0,1,2, 3, giving
0,0k
o'm, = O, = —0, FO% 4 ¢ pk 27 83 F%
k
— P 4 OOk pos.
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(5.3.24)

(5.3.25)

(5.3.26)

(5.3.27)

(5.3.28)

(5.3.29)

(5.3.30)

(5.3.31)

(5.3.32)
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while from Eq. (5.3.12) we have

o, = —J°+V—2F°3 (5.3.33)
1% - ) eI
03
or
030 0
Ak o ™o/ (5.3.34)
Substitute Eq. (5.3.34) into Eq. (5.3.31) to get
Fow  —  _gmy guk@ Fo3
o3
O ( 030, O3
k v 0
= i + H 8_3 ( V2 ﬁ J
0r0, )
= —qh4+ g"k—gz T+ g’”‘“v—k2 JO,
00" 0
Fo = (g“” — g %2 ) T, + g“’“v—’; JY, (5.3.35)

where p,v =0,1,2,3, k =1,2, 3.
Since 7° = 0 and 7® = 0, we have ¢"/7, = ¢g"*7® and 9,7 = O,7°. Equation

(5.3.35) gives

a9,\ , o
() 2
Ok _ _(5@_%) 7TG_{_%JO7 (5.3.36)

or

L
<ng 90 > = (5ka _ %) mo = ok % g0 (5.3.37)



We may generalize Eq. (5.3.35) into

v 1 ro 14 akaa 14 (6% akaa
F* 25[9“‘)(9 — g )—go(g“ — g

V2 V2
1 v v 1 17 14 a
(O — 0 M) — (g9 — 070" ) o5

Or using a notation b* = 9**9),/V? for b° = 0, this gives

Fr= —[(g"g" — g"°¢"*) — (¢"0" — g"'0")0*] 7o

N | —

+

N | —

We may write

Y A L A N A

= FM— " FY

which gives

S FM = §V g P — 57 FOr

= FY'— Vo F"

Now combine Eqgs. (5.3.40) and (5.3.41), to obtain

5ukau . 6Vka}M — R _ FVE 5MOFOV + 51/0F0u

5;1,ka1/ o 5uka,u — 9 + (gMOFOV - gI/OFOu)

)] =

1
(5,uka;u o 51/ka;1) _ E(g/mbu o gVObM)JO )
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(5.3.38)

(5.3.39)

(5.3.40)

(5.341)

(5.3.42)

(5.3.43)
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2FH = (5“ka” — 51’ka#) - (guOFOV - QUOFO#) (5.3.44)
v 1 kv v k 1 0 0v v0 170
e 5(5“kF — 0V FFry — §(g“ F% — "’ Fo") . (5.3.45)

On the other hand, using Eq. (5.3.35), the latter leads to

gMOFOV o gquO,u — gMO {_ (gua _ guk akan ) T, + g”k%Jo}

0,0 0
—g"° {— (g““ - g“"“—’“V2 ) To + “’“V—’ZJO}
00 00
- _ |:gu0 (gua gl/k kVZ ) _gVO <gua _guk kvz ):| T
nwo vk _v0 pk @ 0 4
(g9 — g ") o5 (5.3.46)

Substitute Eq. (5.3.45) into Eq. (5.3.46), to obtain the expression.

1 880‘ aaa
FH :§|:g,u0<gVOé_gl/k gQ)_gVO(gua_guk kv2 ):|7ra

A

1 1
+ 5(5;1ka1/ o 51/ka;¢) o §(guoguk - gl/Og,uk)v2 JO ]
1
In Coulomb gauge A® = —8—(81,141’), b=1,2,and
3
D a3
a __ _ Y Fa
™ )
— _@ (8(1143 _ 83Aa>
s
= goar— P g
03

. 0p0® 1
— A% — - Ab
s ( s % ) ’



Or
Forc=1,2

(5ca o
By definition,

(5&1 _

vQ

0.0,

VQ

)*

= :5cb +
= :56” +
= :ad’ +
= :50” +

— 5cb +
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1a aaab 1 b
= A"+ GAE A’ (5.3.47)
%0, |
ab b b _
[5 1 (03)2} A ab=1,2. (5.3.48)

_ 5chb7

— 5cb +

— 5cb +

%) P — (5ca_ %) |:5ab+ 0 ab:| Ab

VQ (83)2

00 00" 9.0, 9] 4
(83)2 V2 V2 (83)2

0.0y 00y 0204 0.05]
0 " V2 () V2 ] A" (5.3.49)

V2 = 0,0, + (05)?, and we may write

0Dy _ 00y _ (V2= (@) D] 4
(ag)Q VQ (63)2 VQ

0Dy _ 00y (V2 Y D] 4
<83>2 V2 (83)2 V2

8681, VQ acab 1 b
(14— -1 A
(0)? ( MEEAE > W}

2.0, V2 acab} -,

A

(03)2  (05)* V2

(03)*  (05)

acab acab :| Ab

(5.3.50)
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giving the useful expression

acaa a Ac
(56@ - W) T = A (5.3.51)

We use Eq. (5.3.36) to obtain

0k _ ka kYa a k 0
0 ba bYa a b 70
— _|__2 , ( )
V2 ) a’7 ) . e

The functional derivative of the vacuum-to-vacuum transition amplitude with

respect to an external source J* is

J
6.J,(x)

(04]0-) = (04 ]A*(2)[0-) , (5.3.54)

—i

and for any operator-valued (q-number) function &(x)

90 vl )
AT (04 10(2)]0-) = (04 |(O(2)A (a;))+’0>+<0+ ) O(x) O> _
(5.3.55)
In terms of the expectation value of the photon field A*(x):
(Ar()) = A @I0) (5.3.56)

(0410-)

we have

iy — L L d
(AF(z)) RO, ( M(fv)) (04]0_) . (5.3.57)



From the field equations, Eqgs. (5.3.12) and (5.3.13), we have

—9F = J°,

and

—O P = Jv — %@FW’ +J%),
3

for a = 1, 2. But Eq. (5.3.13) is also true for a replaced by 3:

0:

—0,F" = J — (0, F" + J?) , i=1,2,3.

s

We may combine Egs. (5.3.12) and (5.3.58) as follows

0;

—0,(FFO+ Fr) = JO+ J — (0, F" + J?)

s

R
=9, F" = JO+ J — (0, F" + J?)

s

0;0;
s

—0,0,F" = 0yJ° + 9 J" —

VQ

—0,0, " = O,J" — —(9,F" + J?) |

s

Using 0,0, F" = 0, we also have

VQ
0 = 90" — —(0, "+ J%)
s
v? 3 3
o J" a—(ﬁuF“ +J°) # 0,
3
giving
! 0, F" 4+ J? ! O J*
8_3( W1+ J7) w2 Ok

(0uF" + T°)
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(5.3.58)

(5.3.59)

(5.3.60)

(5.3.61)

(5.3.62)

(5.3.63)

(5.3.64)

(5.3.65)
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Substituting Eq. (5.3.65) into Eq. (5.3.58) leads to

. o,
—a“FW = JZ —_— ﬁ au(]'u ; (53.66)
which may be rewritten as
) ) az’aa )
-0, F" = (gm — W) Ja , 1=1,2,3. (5.3.67)

We may combining Eqgs. (5.3.12) and (5.3.66) into one equation of the form

) ) 8iaa
—0,F" — 9, = JO 4 (gm - W) Jo s (5.3.68)
. 0,0°
g = ( o W) I, (5.3.69)

leading to the modified Maxwell’s equations for a priori non-conserved current given

by:
-0, F" = (¢"* —0b"0%) Jo, (5.3.70)
where
o= g % . (5.3.71)
For a conserved current 0,J“ = 0, we obtain the well known Maxwell’s equa-
tions:

-0, F" = JV. (5.3.72)



In the Coulomb gauge (9, A* = 0),

—OFM = —0,(0MAY — 0" AM)

= 00" A" + 00, A

= —0,0"AY + 0¥ (0, A° + 9, AF)

—O M = —OA” + 00 A° |

where O = (9y)? + V2. Equations (5.3.73) and (5.3.69) then give

—OA” + 90 A° = (gm g %0 ) Jo -

VZ
For v = O:
—0A° 4+ 0°9,4° = (go"‘ —g" 8%8:‘) Jo
—V2A° = )0 and AY = _1V2 JO.

From Eq. (5.3.76), we obtain the time derivative of A° as

Substitute this into Eq. (5.3.74) to get

0;0° y
—0AY = <gua _wa) Ja -9 aOAO

va Viaiaa 81/80 0
= (g -9 v2)Ja+ SE J

107

(5.3.73)

(5.3.74)

(5.3.75)

(5.3.76)

(5.3.77)
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L00% 90,

v 0
= gt et o)
, 070" i 0:0° 0”0 0"
= gt e g et g b
, 070" 0% 0
= J—FWJQ—Q VQJa_ V2 Jz
, . 070° i 0,0° i 070"
= J—FWJa—g V2Ja— wt]a
o | OVO% L 0,0% 00"
= |9t Y e Y e Ja s
0,0 va ok OK0°
gAY = <g” - g*’ﬁ) e (g ~9 ’“%) Ja - (5.3.78)

Or for a priori non-conserved current we have:

0" o~
_DAV — |:guoc+ v2 _buaa _baau:| Ja
= (9" = 010")gro (97" = 170%) Ja . (5.3.79)

On the other hand for 0,J¢ = 0, we obtain

—gA” = (gm - gm’%) T . (5.3.80)

e JE=0 V2

In particular, for v = k = 1, 2, 3 this specializes to

oo 000 .00,
k ka ki~ ai 7
—OA® = {g +W—g NE — g V2}Ja
ko 00~ 0%0; .
k k L 0
= T e i o =
k . .
= Jh— 970 J, (5.3.81)

v2
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or
o O0k0;\
—gAF = (5’“— %) J' (5.3.82)
Equation (5.3.78) gives
v [ ro 9" 0" Vi aiaa g alay
—-0A g +V2_ vz Y V2}JO‘
[ oHo” 0 L 0;0M 0% i 0i0M0”
—gotA”Y g ot + v ”’7—9 v }Ja, (5.3.83)
and
[ ot - 0;0% i 010"
—OA* g+ o _gmv2 —q V2}Ja
[ oY oro™ - 0;0" 0% i 0i07O*
—go” A* gheo” + v g v g T} Jo . (5.3.84)
Equations (5.3.83) and (5.3.84), lead to
I . 0;0M0“ ,0;,0"0
—D(@“A” _ auAu) — (guaau _ guaau> _ gm SF + gu w2 } Ja , (5.3.85)
uv [ Vo Qo v Vi QW i Qv aiaa
—OFY = (970" = g"0") = (970" = g0 ) 5 | Ja
- 0;0¢
= (guAau _ gu)\au)g)\a <gaa _ g% S ) T, (5.3.86)
or
—aF* = [(g"0* — ¢g"*0") — (b"O" — b'0")0] J,
= (g0 — g™ 0"V gro (g7 — b70%) . . (5.3.87)



For 0,J% = 0, we obtain
arFw = orJV —0o"J",

and Eq. (5.3.79) gives

a‘ual’ L YV 12
S — V5| ().

_OAH N 77
o) = |9+ %

We may solve for A*(z) from Eq. (5.3.89) in the form:
W) = [@)DE )l

—0A*(x) = /(dx') [—OD! (x,a")] J,(2) .
Using the integral
[ @)t - 1) = fla),
we may rewrite Eq. (5.3.89) as

alp,a/u
VQ

—odte) = [t - ) {gw ;

Upon comparing Eq. (5.3.91) and Eq. (5.3.93), lead to

DI (x,a") = g™+ 00" vror — b ot §*(x — 2')
L V2 —0O — e ’
or
D (a2) = (9" Vgapl9™ — V)~ 5z — )

—0O —ie

—Wm—wwpmw
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(5.3.88)

(5.3.89)

(5.3.90)

(5.3.91)

(5.3.92)

(5.3.93)

(5.3.94)

(5.3.95)
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We note that

v ! [ v Day kakay vk ak 1 !
aﬂDi (ZE,J]) = _6 + NE - Hg“ —V2 ﬁ O —ic 54(1'—17)
[ v 0o 8’“8k " vk Ok 1 " ,
B AR TR €ﬂﬂ—u—u@($_x>
— E v vk 1 4 o
- o (0" —g¢ ak)—D — 0 (x—2'), (5.3.96)
or
8 Duu / o l/Oéa Vka 1 54 /
(DY (2,2") = —(9"0a — g k)ﬁ (z — ')
TN P, 5.3.97
= 90— z') . (5.3.97)
Upon multiplying Eq. (5.3.97) by 0,, we have
v / 4 a /
0,0,D" (z,a") = —g OaVv_Oz §*(x — ')
0°0, ,
- — V20 5z — )
Do)? ,
z(ézﬁw—m). (5.3.98)

Let
w;;_/m@meﬂme@qu@ﬂapw

= /(d:r;)(dx’) J, () (g“” + g — b — b"@“)

1
—0O —ie

X

5 (x — ') J,,(x’)] , (5.3.99)

Oa J¥=0
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using Eq. (5.3.92), we may rewrite .<7 as

oro”

o = / (dz) J,(z) <gW I b”c‘)“)

1
—0O —ie

= | [ e @ - vor) 10)

0o J*=0

= | @0 g (- 95 ) 5 J”(‘”)Lajao

_ /(dx)Ju(x) 9

Ju(@) (5.3.100)
or
o = /(dx) J.(x) D (2, 2") J,(x) . (5.3.101)

Therefore o7 is a gauge invariant quantity

[/ (A2)(d2") Ju(z) DI (z, o' Ju<m’>] — [ () 1) 2 o).

B JO=0 —D—1e
(5.3.102)

5.4 The QDP, Dependent Fields and Canonical Commutation

Relations

We consider the matrix element of A*(x) defined by

(0, | 4(2)]0_)
0100

(AW () (5.4.1)
with A#(z) obtained in Eq. (5.3.90). (A*(z)) is then given by

(A (z)) = /(dx’) DY (x,2") J,(2) (5.4.2)
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where D" (x, z') is the exact photon propagator in the presence of an external source

J" in the Coulomb gauge. Obviously, for the vacuum expectation value of the photon

field A*(x) in the absence of an external source .J/ this gives

<A“(z)>J:0 =0.

(5.4.3)

The functional derivative of the vacuum-to-vacuum transition amplitude

04 10_) with respect to J,(x) may be obtained from Egs. (5.3.54) and (5.4.2) to give
1 g

J
i6J,(x)

/ 5(0410-) _ . / 5.7,() / (dz') D" (z,2") J, (')

(0;107)

i (0-]0-) = 5 [(d)(do) D2 (o) Ao

0:10-) = e [ [(@an) Do) 1)

0100 = [(de) D (aa!) dufa') 0 ]0-)

5.44)

(5.4.5)

(5.4.6)

5.4.7)

In taking the functional derivative of, the photon field A*(z) with respect to J*,

we have to keep A(z) fixed, but not for the dependent field A°(z) which depends on

J? through Eq. (5.3.76).

In particular, we obtain

§A°(x) iy ,
o) w2 @)
which generalizes to
JAH(x)

10.J,(x)

and their right-hand sides are both c-numbers.

(5.4.8)

(5.4.9)
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From Eq. (5.3.55), we note that

0 _ v JAH ()
i6.J, (2" (04 |A*(2)|0_) = (04 [(A*(x)A"(2"))L|0-) + <0+ ST 0_> _
(5.4.10)
The expectation value of A* depend on J*:
(@) = [ @) D) dla),
()| = D) (5:4.11)
l(SJl,(l’/) o + ) . S

Equation (5.4.10), gives

L s vy 0Ll A7) o)
05100 167, O+ A @)10-) (0, ]0-)
0, 0
K )
JAH(x)

= ((A*(z)A"(2")1) + <15J,,(a:')> . (5.4.12)

JAH(x)
10.J,(x)
(0410-)

and we note that

Sy 0 0@
s ) = ST 00

1 ) i
= 0,100 0@ (04 1A% (2)[0-)

(04 [A*(x)]0-) 1 0

- (04]0-) (04 ]0_) i0J,(2) (04 | 0—>l

-~

= (04 [A"(z")]0-)



- Gl wE O

(04 [A*(2)[0-) (04 |A*(27)]0-)

000 0u00)
) i B 1 5 i
5. @) = T Bre O @)

(A" () )(A" (')

Substituting Eq. (5.4.12) into Eq. (5.4.13), leads to

S () = () A).) + <§§<<>> > (A (A ()

For J = 0, (A*(x)) ,_, = 0, this specializes to

4] 0AH(z
l(SJl,(Z‘,) <Aﬂ(x)> = <(A‘“(x)Au<x/))+>J:0 + <15Ju((x,>) >J—O

Equation (5.4.9), consistently gives

DE(aa) = W((AM@)A"())1),_, + 00" gy 0w — )

V2
From Eq. (5.3.86), we may write
—OF" = (g0 — g 0”) — (90" — ¢"0") %] Ja

or for its matrix element (0. |-|0_), we have

0,0
v2

—0 {04 [F]0-) = [(g7°0" — g0¥) — (90" — g

115

(5.4.13)

(5.4.14)

. (5.4.15)

(5.4.16)

(5.4.17)

Ja <O+ |O—> )

(5.4.18)
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0;0¢

%% — vaqu Moy Vi QY
(04 [F]0-) = ———— | (¢"°0" = ¢"°0") = (90" = g"'0") o5 | Ja (0+]0-)
=D ] (z) (04 ]0_) , (5.4.19)
where
1 , , 0;0"
D = veort — ghtov) — (g7 o" — g o") —=—| . 5.4.20
e |90 = g"0") — (g 9"0") <2 ( )
Accordingly,
(04 [F*]0-)
— D/’“/aJQ €T e Fy,z/ €T y (5.4—.21)
and
) DHre
124 — 4 A
i6.7,(2) (B (@) o w=a)
= —iD"* §(x —2'). (5.4.22)

Equation (5.3.55), also gives

0 uv _ 1% v
7 O P00 = (0[P )4 @), )
+ <0+ fg (g)) 0> , (5.4.23)
1 0 SFM (z)

(0, [0_) 10, (a") (04 [F (2)[0-) = ((F"(2)A"(2'))+) + <15 T (x,)>. (5.4.24)
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In terms of the matrix element (0, |-|0_) / (0, |0_) of F**, we have

5 gy 8 {000
6.7, (") (F(e)) = i6,(«) (0, ]0_)
- (()Jj()_> i(5Jf(x’) (O [F(x)[0-)
(04 [F o) 1 5
o0 000 187, (@) <0+|0—z’
= (04 |4%(a")]0-)
0 5
7w O = e e O P el-)
—(F"(2)) (A" (2")) | (5.4.25)
1 ) , 5 3} ) o
00100 o, (O E@I0-) = gy (@) + (P (@) (A()
(5.4.26)

Therefore by equating Eq. (5.4.24) and Eq. (5.4.26), it follows that

<(Fuv(x)AV(x/))+> + <f£:y(f§))> = i5Jf(x’) <FIW(ZE)> + <Fuv(x)><AV(x/)> 7

(5.4.27)

J

OF™ (x
(@A) = 5 )~ (G570 )

+ (F* (z)){A¥ (2)) . (5.4.28)
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In particular, for J = 0

("™ (2) A" (@) 4 ),y =

(m)>} - <‘fg V((lf’f )> >J_O . (5.4.29)

1
In the Coulomb gauge A® = —a—(abAb ) with a sum over b = 1, 2, and from Egq.
3

(5.3.31) we may write

_ go (akAB 83A’“)

k
= gropat — gD
03

AS

— NkAk+ ukaoa (abAb)

d; \ O
00y
— ukAk+ ik ’H’A7
(05)
T = gtk {A’w %3’; Ab}. (5.4.30)

1
Using the gauge constraint A = _8_<8bAb)’ gives
3

0.0y
po— gha | fa A
" g " (0s)? }

[ 0.0y
— na 5ab a
g NN

] Ab (5.4.31)

withp =0,1,2,3, k=1,2,3and a,b = 1,2.



or

From Eq. (5.4.30), we may solve for 8bAb as follows:

m
o,

OpA® =

. 0.0y .
— wk k kYb b
9" 0, [A + —(83)2 A]

000, 4,
(05)?

v:o.
= 9, A°
(83>2 b 9

(05)? (05)% o 4
%8,‘7#‘ = %&m )

Substituting this in Eq. (5.4.30) leads to

or

and

T =

g,u,k:Ak

Gin g#k Ak

, o .
k Ak k b
g,u A + gl‘« W &,A

g,LLk:Ak _i_g,uk ak (83)2

@) V2 o,m

uk% v

g AR 4 g o2 T
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(5.4.32)

(5.4.33)

(5.4.34)

(5.4.35)

(5.4.36)



By using Eq. (5.3.37), we may write

or

and

We may combine Eq. (5.4.37) with 9, A° = —

to obtain

Ai

o A°

gmAz' =

— <gw .

v?

0;0" )
T,

oM

= Gip <—FO“ + = JO)

— _F0z+

:AOI—

v2

O

VQ

JO

V2

1
ﬁﬁoJO:

% o _ I

v2

Y
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(5.4.37)

(5.4.38)

(5.4.39)

(5.4.40)

(5.4.41)



AH

The canonical commutation relations, for a,b = 1, 2 are given by

[A%(z), 7"(2")]

glﬂ <gw -

au
0 0
—F% 4+ — JO.

and upon using the equality

§(z° — 2")0°(x — x')

we have from Eq. (5.4.43)

20— /0

= 66 (x — %),

5z — '),

§(z° — 2°) [A“(x),wb(x’)} = 100z —2')

for the quantization rule of the physical degrees of freedom A! and A?.

Since 7 = 0 and 7® = 0, we may generalize Eq. (5.4.45) to

(5(330 . .T/O) [Aa(ﬂf),gyb’ﬂb(x/)}

or

6(z" — 2" [A%(z), 7" (2")]

1
and using A3 = ——
O3

[A%(x), 7" (2")]

0a
_Zape
s

(0,A%), we get

(), 7" (2')

20—/0

20—/0

i(Sabng54(.T o l’/) 7

ig"e6*(x — a')
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(5.4.42)

(5.4.43)

(5.4.44)

(5.4.45)

(5.4.46)

(5.4.47)

(5.4.48)

(5.4.49)



3 v,/ _ -uaaa 3 !
(@), @)| = gt e —x).,

20—/0 3

or

6(z" — ) [A%(2),7"(a")] = —ig”“g—: 5z —2') .

We may combine Egs. (5.4.47) and (5.4.51), in the form:

(5(:L'O—x’0)[Aa(;z:)+A3(:z:), u( /)] 1g1/a64( —SEI)—' va ~a 54(513—561),

(5(1‘0 o x/O) [Ai(m),ﬂ”(x')] — igz/a (51'11 o 51’32_;) (54($ o x/) ’

with:=1,2,3anda =1, 2.

1
Since A° = —§J 0 is just a c-number,

0

5($0 —.TIO) [guiAi(.CE),ﬂ'V(iEl)] — lguzgua (52'(1 o 5i3a_a) 54(1, —.’L'/) 7
3

we note that

and Eq. (5.4.54) becomes,

§(z° — 2°)[A*(z), 7% (2")] = ig"g"* (5““ 5% 23) 5z — ') .

Using Eq. (5.4.42) for j = 1,2, 3, gives

A ! vi a/a(/l « v a
A () = g (gja - ) ™+g OV(;JO
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(5.4.50)

(5.4.51)

(5.4.52)

(5.4.53)

(5.4.54)

(5.4.55)

(5.4.56)
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7 (00— 22 ) (407"

[A¥(2), A”(a")]

20=4/0

] a'aa 1o 7 7,a /
(1o 2 e (5 5

lgmgm (5]k _ %) <5Zk (5138 ) 53<X — X) (5457)

20=7/0

V2 O3
where
0
= 4.
a, Dy’ (5.4.58)
and
0 0
2= g 4.
\V4 ) 2" Dl (5.4.59)

Consider the expression

(5]’1@ . %) (511@ . 613%) — 6]k61k . 5jk5i3a_ énk:a ak 5138 akak
3

V2 0 s V2 Dy V2
von 3O ;0 9;
_ sitksik 543 ik i3
5kt — § 5 — T+ 3
o 2 0:0
— §ikgik _ ik %Q’f , (5.4.60)

which may be rewritten as

(yk _ %) (yk - 5i3%> _ ik ((wf av(zk> . (5.4.61)
3
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In terms of the transverse delta function

L e
= (6" = b;0;) *(x —x'), (5.4.62)
and
0 (x—a") = 6" —2"°) 6 (x—x), (5.4.63)
we obtain
) W[, = g (o = ) x)
= ig"g”o" 51 (x - X)
= ightg 5 (x — X) . (5.4.64)
Or equivalently,

(0 — )[4 (), A"()] = g (e — o)

= ighg"* o (x — 2') . (5.4.65)
Equation (5.4.42) provides the equality
. 0¥
v Ov 0
A = =P+ 5,

this leading to

5(2° — 2°)[A*(2), F*"(2)] = —ig"g”* 6T (z —2'). (5.4.66)
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We may generalize Eq. (5.4.66) for all the components of F*# = —F5 a5 fol-

lows:
02 — 2)[A(x), F*°(2')] = ig"(g™g™" — g**¢™) 6 (x =), (5.4.67)
and
(2" = 2 [F* (x), F*P(a")] = i[(g™9™" — g**9™) (9" 0" — ¢"'D")

— (97" = g"*g"*) (970" — g™0")] 6 (x — '),

(5.4.68)
We note that
§(z" — ) [F¥(z), F¥(2)] =0, (5.4.69)
6(z" — ) [F (), F"(2')] =0, (5.4.70)
§(a® — &) [F (x), F™™(2)] = +i(6™9™ — ™9™ 5% (v — 2')
= +i(oFom — §Fmom)ot(x — ') (5.4.71)
8(x° — &) [F™™(2), FU(2)] = —i(6™0™ — 6™d")6F (v — )
= —i(0"9™ — 5oz — ) . (5.4.72)

For the bosonic g-number fields «7(z) and %(z’), the time-order product is de-

fined by

(A2)B(2')y = O(x° — 2°)eA2)B(2)) + O(2° — 2°)B(2")eAx) ,  (5.4.73)
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and hence

((Ax)B(2))1) = O — ") Ax)B(2)) + O (2" — 2°)(B(a') Hz)) . (5.4.74)
Using the fundamental identity,
2@(t—t’) = §(t—1t) (5.4.75)
5 = , 4.

with

o =

50 (5.4.76)
gives
Op((Aw)B(2")+) = O’ — ") (Ax)0 ("))

+ <,£Zf($)e%’(x')>66@(x0 — 2

+ 02" — 2°)(0, B(2) Ax))

(A=) B())1) = O(a" —2")(Ax)0A(x))

+ 0(2"° — 2°)(B(2") A x)) , (5.4.77)
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or to the equations
O((A2)B(2))1) = (A2)0pB("))1) — 0" — 2"°)([oAz), B()]) , (54.78)
and
R{(A) B ) = ((Ax)RB()),) - (5.4.79)
We may combine Eqs. (5.4.78) and (5.4.79) through the following:
— guo O(A2)B(2") 1) = — guo((Ax)0B(2"))+)
+ guo 0(2° — 2")([Ax), B(2')]) . (5.4.80)
0,((Ax)B(a"))+) = ((A)0,2(z"))+)
+ guo 0(2" — ) ([Ax), B(2)]) , (5.4.81)
(Ax)0,B(x)1) = I ((Ax)B(2)))
— guo 0(" — 2)([Ax), B(a")]) . (5.4.82)

Equation (5.4.28) gives:

<(FW(35)A“(;U’))+> — A <F#V<I)> — <f§]iy((x

8

)
)

)

+ (F(x))(A* () (5.4.83)

~
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and we have
(P (2)0" A (a")) ) = O ((F" () A* (")) )
+ g% 6(a° — ) ([F*(x), A*(2')]4) - (5.4.84)

Substitute Eq. (5.4.83) into Eq. (5.4.84), to obtain

§ » 5/ OF" (x)
S ) - aﬁ< 5, () >

+ 0 (P (@) (A°()))

(F™(2)9°A°(2)))y) = o

+9% 6(a — ) ([P (2), A*(2)])

0 OFM (x
() = st - ()

+ <F“"(m)>8’B<A°‘($’)>
+ g™ 5(2" — 2OV ([F" (2), A*()]) . (5.4.85)
By defining the functional differential operator

T—
A = AAOR (5.4.86)

and the operator

F'™(x) = 0*A"(x) — 0" A" (x)

) )
— R |
0 10.J,(x) ? 10.J,(z) (5487



we may write the quantum dynamical principle in Eq. (5.3.54) as

A¥(x) (04]0-) = (04]A*(2)[0-) ,

and write the equation (5.4.14) as

AV (@) (A (z)) = ((A"(2)A"(2")+) — (A"(x) (A" (@)

+ <A'O‘(x')A“(m)> ,

where

" _ 1 I
(At(x)) = m!‘l (@) (04 ]0-) .

We may rewrite Eq. (5.4.83) as

(PP (@) A%(2')),) = A° (@) (FW(2)) — (A()) P (x

+ <F“”(x)><Aa(x')> ,
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(5.4.88)

)

(5.4.89)

(5.4.90)

(2))

(5.4.91)

as a consequence of the fact that F*%(z') = §/* AP (2) — 9P A%(z"). From Eq. (5.4.85),

we then obtain

(F(@)F(a)e) = ((F"(2)0*AP(@")4) = (F" ()07 A% (2')))

= A - A (P )

= ([0°A7(2") — 9P A ()] P ()

+ <F“”(x)> [8'°‘<A’6(:pl)> - 3'5<A°‘(x’)>]
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+9°0 0(a — &) ([F* (), A7(2')])

= g™ 6(a® — 2 )([F" (), A*(a")]) |

((Fr(@)FP(al)) ) = FoP@)(F™ (x) — (F° (') F* ()
H(F () (F*(a"))
+ g% 8(a” — 2 )([F" (), A%(")])
— g™ §(z° — ) ([F" (), A*(2")]) , (5.4.92)
where
nv T — ]‘ /v T
(F" (z)) 0100 F'"™ () (04 ]0_) . (5.4.93)
We note that
) (o)) 1 ) o
i0.J5(2") (B (@) (04 10_) i6J5(2") FH () (0+10-)

L g, 1 5
0,100y & @ 001 1G0T @)

(0410-)

1 5 (s
= 0.0 ey L@ 0410-)

— (AP () (F* (z)) , (5.4.94)
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or

PP @) = g PP @) (0410

1

0,100 F'*P(a') {0410-)

_ <FIW(x>>

- (OJM FoR () ' () (0., | 0_)

— (FM(x))(F*P (') . (5.4.95)

We may then rewrite Eq. (5.4.92) as

1
(0410-)

(F"(@)F°(a")4) = FP (@) P (2) (04 ]0-) — (F"(2))(F*(a'))

— (F"P (2" P () + (F* () )(FO ("))
+ g% 62 — &) ([F* (x), A% (2")])
_ gﬂO 5(560 _ x’0)<[F#V<x>’ A"‘(x’)]> , (5.4.96)

where [F"(z),A%(2')] is a c-numbers, and we have ([F"(z),A%(z')]) =
[F'(x), A%(z")]. Accordingly, we get
1

(F"(@)F(a")4) = 0100 F2 (@) F™ () (04.]0-) — (F'*(2') F* ()

+ 9% 8(a = &) ([F* (), A7(2')])

— g™ 5z — $/0)<[FIW($)’A0‘($’)]> . (5.4.97)



Equation (5.3.39) leads to:

= % [(g"°g"* = g"g"*) — (g"°b” — g"°b")0*] 7a
+ %(MkF’“’ — 0" M) — %(g"obl’ —g"n)J°,
giving
ffj};g = —% g™ (9" — g"V") 0 (x — )
= % 9% (g"0" — ") % (x — 2')
or to
AP () = L0 — g ) 8 ),
and
IPA (L (x) = % g0 (g"°b” — g"%b) 6% (z — o’
Using the identity
FreB(a)y = 9°AB ) —oPA (),
we get

F’aﬁ(x')F“”(x) = a'O‘A/B(:U/)F“”(x) - 8”8A'a(x')F“”(ac)

_ %(gﬂ()a/oz o gaOa/,@>(gu0bV _gVObu) (54(55 . .T,'/)

).
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(5.4.98)

(5.4.99)

(5.4.100)

(5.4.101)
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— %(gﬁ’Oaa . gaOaﬂ)(guObu N guoby) 54(ZL’ . $/> : (5.4.102)

which is just a c-number, and {F"*%(2)F* (z)) = F'*%(2') F" (z).



CHAPTER VI
ACTION PRINCIPLE AND MODIFICATION OF
THE FADDEEV-POPOV FACTOR
IN GAUGE THEORIES

6.1 Introduction

Over the years (Manoukian, 1986, 1987; Manoukian and Siranan, 2005), we
have seen that the quantum action (dynamical) principle (Schwinger, 1951, 1953, 1954,
1972, 1973; Lam, 1965; Manoukian, 1985) may be used to quantize gauge theories in
constructing the vacuum-to-vacuum transition amplitude and the Faddeev-Popov (FP)
factor (Faddeev and Popov, 1967), encountered in non-abelian gauge theories (e.g.,
Abers and Lee, 1973; Rivers, 1987; 't Hooft, 2000; Veltman, 2000; Gross, (2005);
Politzer, 2005; Wilczek, 2005), may be obtained directly from the action principle with-
out much effort. No appeal was made to path integrals, and there was not even the
need to go into the well-known complicated structure of the Hamiltonian (Fradkin and
Tyutin, 1970) in non-abelian gauge theories. For extensive references on the gauge
problem in gauge theories see Manoukian and Siranan. The latter reference traces its
historical development from early papers to most recent ones.

In the present investigation, we consider the generic non-abelian gauge theory

Lagrangian density

Ly = L+ Zs, (6.1.1)
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and modifications thereof, where

£ =~ GLGE + (BB — 7 0,] — mady
+ 9o AN (6.1.2)
Ls = q+un+ JLAL, (6.1.3)
Ay = A% Guo= 0A, - 0A, —iglAL A, (6.1.4)
G = G%ta, (6.1.5)
Go, = 0,AL— 9,A% + gof AL AL . (6.1.6)

The ¢ are generators of the underlying algebra, and the %%, totally antisymmetric, are
the structure constants satisfying the Jacobi identity, [t%, t"] = if®t°. Note that A, is a
matrix. Zs is the source term with the J; classical functions, while 7, 7] are so-called
anti-commuting Grassmann variables.

The Lagrangian density .Zin Eq. (6.1.2) is invariant under simultaneous local

gauge transformations:

v — Uy, »— U™, (6.1.7)

A, — UAHU‘1+giU8“U‘1, (6.1.8)
0

G, — UGLU, (6.1.9)

where

U =U(@) = expligf?t’] , 0 = 6% , 0 = 6(x). (6.1.10)
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Upon setting
V. = 0,—1904A, , (6.1.11)
with fa%¢ = i(t2)% — feab = (¢)% we have
V., = 0,—1ig4,
= O —igoA,t", (6.1.12)
veb = §%9, — igoA;(tc)ab
= 50, — gof° Ac
Ve = 570, + gof*CAS (6.1.13)
We next consider the basic commutator defined by
V.. V,] = V,V,-V,V,
= (Op —igoAu) (0, —igoA,) — (O — igoAy) (9 — igoAy)
= 0,0, —ig00, A, —igoA,0, — g ALA,

— 0,0, +igo0, A, + 190 A0, —i—ggA,,Au
S~~~ ——

e 8;1811 = igOA#a,,
= —igy0, A, +1igo0, A, — ggAuAu + ggAl,Au

= —igo0uAlta +ig00, A%ta — g3 (AL A, — ALA,)
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= —igo0uAlta +ig00, Alita — g3 Au, A
= —igoBu ALty + igod, A%, — galt", 1] ALAS
= —igo0, Alta +1igo0, Alte — ga(if e t*) AL A
= —igo0uAlta + 1900, Alta — g (if ") AL AC
= —igoBu A%, + igod, A%, — ig2 [t AL AS |

Vi, V] = —igo(9,Alts — B, A%, + go f*t, AL AS) .

That is
V..V, = —igeGu . (6.1.14)
We also prove the following identity:
(VuVo) = S[V,0.) ~ (V9 + L[(V,V0) + (VY1

1 1
= 5([Vu, V.])* + 5({V,“ V. e, (6.1.15)

1 1
(ViV) Gl = (V0 V)™ G 4 S (Y, Vo) G2
symmetric antisymmetric

1
= (VW V) G 0
1 : b ac v
= 5 [~igo G, (1) GE]

2

[—igo G}, (—if") G2

N | —
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— _@ GnybachV ’
2 ———
=0

(V. V)G = 0. (6.1.16)

That is,
VIVEGE = 0. (6.1.17)

[The latter generalizes the elementary identity 0,0, F'*” = 0, in abelian gauge theory,
to non-abelian ones, where F'* = gFAY — 0¥ A*.]

We consider gauge invariant (Sect. 6.3) as well as gauge non-invariant (Sect. 6.4)
modifications of the Lagrangian density and show by a systematic use of the quantum
action principle that the familiar FP factor needs to be modified in more general cases
and explicit expressions for these modifications are derived. In particular, we show that
a gauge invariant theory does not necessarily imply the familiar FP factor for proper
quantization, as may be perhaps expected (cf. Rivers, 1987, p. 204), and modifications
thereof may be necessary. Before doing so, however, we use the action principle to
derive, in Sect. 6.2, the FP factor and investigate its origin for the classic Lagrangian
density .Z, without recourse to path integrals, as an anticipation of what to expect in
more general cases. Throughout, we work in the celebrated Coulomb gauge 9, A* = 0,

k =1,2, 3 as always.

6.2 Action Principle and the Origin of the FP Factor

To obtain the expression for the vacuum-to-vacuum transition amplitude
(04 ]0_), in the presence of external sources J¢, n® 7% as the generator of all the
Green functions of the theory, no restrictions may be set, in particular, on the exter-
nal current J;j, coupled to the gauge fields A¥, such as (9“ij = 0, so that variations
of the components of J;; may be carried out independently, until the entire analysis is

completed, and all functional differentiations are carried out to generate Green func-
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tions. This point cannot be overemphasized. As we will see, the generality condition
that must be adopted on the external current .J;; together with the presence of dependent
gauge field components in (A%), as a result of the structure of the Lagrangian density .¢’
in Eq. (6.1.2) and the gauge constraint, are responsible for the origin and the presence
of the FP factor in the theory for a proper quantization in the realm of the quantum
action principle.

We define the Green operator D(z, 2') satisfying the differential equation
[690% + go f*° ALOR| DYz, 2") = &*(x,2')6 . (6.2.1)

Since the differential operator on the left-hand side of D“(x, 2’) is independent of the
time derivative, D (z,2’) involves a 6(2° — 2/°) factor. Using the gauge constraint,
one may, for example, eliminate A3 in favor of A!, A%. That is, we may treat the A2 as
dependent fields.

The action in question is defined by
Wr = / (dx) &
= [an{ - { Grer + 1@~ br0,0] - mab
+goby, AP + ) + Uy + Jg;Ag} , (6.2.2)

and for its variation we have

Wy = / (dx){ - i 5(Ga,GH) + % 8 [(Du0) ¥ 1h — Py Bb] — med ()

+g06 (Vy, A1) + 70 + (59)n + Jj;(SAZ} . (6.2.3)
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The first term in the integrand in Eq. (6.2.3) is worked out as
6(G, G = G0GE + GLYGY,
= GO AL = 0 AL+ go AL AY)
+G16(Oua, — 0, A + gofabCAZAf,)
= GU,0M6AL — G0 0 A + go f° G, 0(A) AY)
G 0,6 A% — GRY 9,0 A% + go f GV S(ALAS)
= GEO,0AL + GI 0,048 + go f G, 0( AL AY)

FGE O, AL + GO, AL + go G S(ALAS)

5(G,GH) = AGEO,5AL + gof™GE,S(ALAY) + go f TG G(ALAS) .

ur~"a
(6.2.4)
Using AdB = 6(AB) — (6A) B, we obtain
GHo,04;, = QL(GZ‘”(SAZ) - (@Gg“’)éAﬁ , (6.2.5)
and

/(dx)@u(G“”(SAZ) = %dEM G'"oA;, = 0, (6.2.6)

and we have
GH0,0A;, = —(8#GZ”)5Aﬁ ) (6.2.7)

Upon substituting Eq.(6.2.7) into the first term on the right-hand side of
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Eq.(6.2.4), gives

5(G3,GI) = —A(0,GI)BAL + g0 f PGl B(ALAY) + go f G 6(ALAT)

wr~a
= —4(0uGL")OA, + gof "G, 0 (AFAL) + gof Gl 0(AFAD)

S(G2,GH) = —4(8,G)SAL + 290 f° G2, 5(ALAY) . (6.2.8)

wr~a

On the other hand for the second term on the right-hand side of the above equation we

may write:
200/ "Gy, 0(ALAY) = 2g0f "Gy, [ALSAY + (5A})AY]
= 290 f" G, ALSAL + 2o f*°GY (S A}) AL
= 20" AYGY, 0AL + 290 [ (6 AY) Gy, AL

prte

= 2g0be“A§GZZ,5AZ + 290 fP*(0AMGE AY

prte

= 290 f* VARG SAY + 290 [P (GAL)GE A

pv< e

= —2q f“c”A{jGZV(SAZ —2qo f“Cb(cSAZ)GZVA’g ,

200G O(AAY) = —dgo f*PALGY GAY . (6.2.9)

Substituting Eq. (6.2.9) into Eq. (6.2.8), then gives

§(GL,GHY) = —4(0,GH)0AL — dgo f*PALGY 0AL,  (6.2.10)
1 5(Ge,GH) = (D,GM)FAL + gof*PALGE S A . (6.2.11)

4
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The second term may be rewritten as:

+% §[(Bub)y" o — Yy o] = % {618, 0] = 6(y D) }

1 _ _
Z [(@ﬂﬂ)v“w + 5(@M¢)7u¢

—Uy"6(0,0) — oy (9,) ,  (6.2.12)

while for the third term we have,

—mod(Yy) = —mg[PdY + (3¥))]
= —mohd — mo(5Y)Y . (6.2.13)
On the other hand, the forth term may be expressed as
900 (U AMY) = go [y, A8 + 8 (¢, AM)Y]
= go{ AT + [$7(04") + (50) A ] }
= o[V 1A Y + Yy (6A" )Y + (69) . A"
900 (U, AM) = gty AV + oty (0A" )¢ + go(0) 7, At . (6.2.14)

Upon substituting Egs. (6.2.11) - (6.2.14) into Eq. (6.2.3), we obtain
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Wy = / <dx>{<auez”>5Az 90 f* LG O AT = moYdy — mo(59)

2 (O + 80,1 — 5*3(0,) — 50 (9]

+ 9007 A" 6Y + gothy, (6A* )Y + go(60)7, A

709 + (6¢)n + Jg‘éAz} , (6.2.15)
and
OWr 1oL
50 —mo¢+21(8uw)'y +21(6,ﬂb)’y + goyu AY 4 1)
= 0, (6.2.16)
leading to
_ _ r)/ll _
—mot) + (0,0)— + gy, A* = —177, (6.2.17)
1
_ au B
(0 7MT+QO'VMAM_mO = -, (6.2.18)
_ \V)
w(v“ i“—mo) = -7, (6.2.19)
and
Wr 1, 1, .
5 mot 57 (0u¥) 5 7 (0u¥) + govuArY +1

= 0. (6.2.20)
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Or
oo T
mot) + T(aﬂ)) — g A" = n, (6.2.21)
f)/l’l’
(T O — 9oV A" + mo) v o= n, (6.2.22)
(W¥ﬁ+m0w = 7. (6.2.23)

with p, v = 0,1, 2, 3 and where V, is defined in Eq. (6.1.11).
Consider the terms not containing §¢» and 47 in Eq. (6.2.15). The first in this is

given by
(0uGL)0A, = (0,GL°)AG + (9,G4")0A;
— (9,GM)5AL + (9,61 (yﬂ‘ _ 5k3g_) 540

3

= (DuGE)OA+ (D,GE00AT — T (2,054
3

(0,G")5A2 = §P0LGEOSAS + §70,GL G AY — o 60, G5 AT | (6.2.24)
3

while for the second term we have
QoS PALGLOAL = g0 ALGE A

= gof* " (ASGLU0AG + AL GRS A

— gofacb |:A2G1506A8 + AZng’ (5k1 . 5]632_) 5A;1:|
3

ac c a c ) a al c a
R (AkG’goéAO +ACGES AT — 8—3AHG§35AZ.) ,
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The third may be rewritten as

Gobyt (6 ALY =

ai
03

gof " ALG AT + go AL GO AT

gof “CALGYOAT

Gt (A7)

Gt Y [vo(6 A7) + ’Yk(514§)}

gt

gt

gt

70(6A) + (5’“’ — 5’“3@) 5Ag]

s

’YD(CSAg) + (51“’}% - 51@3,}%%) 5AZ:|
L 3
(BAD + 216, — 9% 645

L 3

G0yt (ALY + gothy't* (S AL)Y

_ u 0
—goty’t

Finally for the last term we have,

JESAL =

JESAL =

8—;(5AZ)¢ :

JOSAG + JES AL

@i

JOSAL + T <5’“’ - 5k3—> A

s

az‘

JOSAG + " JEGAG — §F3JF— 5 AY |

JOSAS + JiSAS — J3

3

ai
0AT .
a 83 )

145

(6.2.25)

(6.2.26)

(6.2.27)
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Substituting Egs. (6.2.24) - (6.2.27) into Eq. (6.2.15) leads to

Wr = / (dx){é"’bﬁkG’gOéAg + 079, Gy AL — g— 00, G5 AY
3
A o
+0 /" ALG S AT + gof T ALGLOAT — o gof " ALGLOAT
3

- [OD)7 + 80D — D7 8(0,) — 0 (0,0)]

_ o . R
+ 900t (S AL + gy t* (S AL — 90¢V3taa—3(514a)1/)

—mothd) — mo (Y + goy, A*6Y + go(d0) v, A*Y

+700 + (80)n + JOSAL + JL6 AL — Jg’g— 5Ag} , (6.2.28)
3

= 0"OGL + gof TALGE + govn "t + Ty

- 0. (6.2.29)

These equations lead to the following

3P0 Gy + gof*CALGE = —goyy 't — T (6.2.30)
(67 0k + gof*"A) G = —gotnthy — I, (6.231)

VG = —gon 'ty — Jy (6.2.32)
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On the other hand,
5WT ab i 61 ab 3 achb pc i 81 achb pc 3
5A;1(I) - 6 6MG£L — 6_3 5 6MGII: +gof A,LLGII: — 6_3 gof AMGéL
YT O o 34 i O
+9oy' Y — o gyt + J, — - J;
05 03
= 0, (6.2.33)
gives
ab wi ach pc 1t 82 ab w3 al achb pc 13
0 = ((5 Gy +gof AuGb)— 8—(5 0.Gy, —i—a—gof ALGy
3 3
ai 7 3ia al 3 7 iga i
=\ 7 9oyt 4 =Jg |+ go Y + T, (6.2.34)
05 O3
i al a ach pc
0 = (0t a)6E - 5 [040, + aor )Gt ]
—@( VY + J7) + gody 't + (6.2.35)
05 Jo¥y a JoPry a- g
That is we have,
i 61 a 7 a T iga i
N EAE 2 (VPG + gty + J2) = gyt +J.,  (6.2.36)
where
Ve = 60, + gof* A, . (6.2.37)
The canonical conjugate momenta to A* are defined by
ow ow
b= glA'] = — = ) 6.2.38
T m[AH] 5, 5 A ( )
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To obtain the expressions for the latter, consider the first term on the right-hand

side of Eq. (6.2.15). This is given by

JCBICRE

with

/ (dz) [(8,G1°) 648 + (9,GH%) 648] . k=1,2,3

/ (de) [ (8,G2°) 648 + (9,G%) <5’“’ - 5'@??) 5A?1
3

/ (dz) | (9,G*) 5 A8 + <8“iji - g— aﬂag?’) 5,47} :
3

- -
[ @ceron = [wn|-crs@.a - (-5 6) o,
L 3
(6.2.39)
The canonical conjugate variables to Al, A2, are then given by
. O
{2 _GO’L _GOS
7Ta a + 83 a
o 9 a0
G, — =G, (6.2.40)
s
™=0 ™ =0. (6.2.41)
We may rewrite Eq. (6.2.40) as
™ = GM — 05t g"*0,G0 . (6.2.42)

Upon multiplying Eq. (6.2.42) by V5", we get

Vil = VG = Vioy gt oGy (6.2.43)



We make use of the field equation

VILGY = = (8750% = g™ 0 D™V) [J7 + gotn te]
VG = — (06" — g™ 0 D" V) [J7 + govy 7t

= —J) — g0t

and substitute the above equation into Eq. (6.2.43), to obtain

VZ“WZL = _Jl? — g(ﬂ/—J’}/Otbl/) — Vzaﬁgl(?kGio ,
Viog oG = — [ + 9o tvp + Viiat] .

Let V20, = 0™ (x), 05 G = A,(x) to obtain from Eq. (6.2.47):

where

Jb = —[J) + go 'ty + Vzaﬂfj] )
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(6.2.44)

(6.2.45)

(6.2.46)

(6.2.47)

(6.2.48)

(6.2.49)

We now define the Green operator D (x, 2') satisfying the differential equation

VoD w2y = 6%z, 2)6*,
to obtain from Eqgs. (6.2.48), (6.2.47)

95'GY = —Dg [Jy + g0 tei) + VZQWZL] -

(6.2.50)

(6.2.51)
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Finally we make use of Eq. (6.2.47) to solve for 7# as follows:

= G+ ¢"* 0k Doy [ I} + 9ot + ViTY] (6.2.52)

a

In particular, one may then readily express G as in the form
G = il — g" 0Dy [y + gountvth + V] . (6.2.53)

We note that the right-hand side of Eq. (6.2.53) is expressed in terms of the in-

dependent fields A!, A2, and their canonical conjugate momenta and involves no time

1

L, A% with no time deriva-

derivatives. Here we recall that A3 is expressed in terms of A
tive. Accordingly, with the (independent) fields and their canonical conjugate momenta

kept fixed, we obtain the following functional derivative of G#°(x) with respect to J} ()

to be
0 ©0 g m uk 0 7.0 be, v
(SJV(.%’) Ga (:U) = (5JV(:L") [Wa — ¢ Ok Dy (Jb + govy ) + V7 WC)]
b b
) _
= 5y [~ 0D (0 + ol £ ViR
b
or

o
10 —  __ uks0 !
5Jéj<l'/) Ga (:L') g 0 yakDab(fE, I) ) (6254)

where p,v = 0,1,2,3 and k = 1,2,3. On the other hand, G¥' = 9*AL — &' Ak +
GofeAL A¢, k1 = 1,2,3, may be expressed in terms of the independent fields Al, A2
and involves no time derivatives. Accordingly with A!, A2 and their canonical conjugate

variables kept fixed, we also have

GHz) = 0. (6.2.55)
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Similarly, with i) and QZ kept fixed, we have the obvious functional derivative

expression

570 @) [Y(z)y"tY(z)] = 0. (6.2.56)

The action principle gives

i<0+|o,> = i<o+ / (dz) % o>, (6.2.57)
990
where
5 d
L = —Z. (6.2.58)
990

The first term on the right-hand side of Eq. (6.1.2) may be expressed as
—i G G = _411 (@LA,% — O0,A} + gof“bCAZAf/) (8“145 —0"Al + gof“bcAg‘A’c’) ,
= [ ar — 0,45 AL+ (0,45) g0l ALAL
— 0, ALO" AL + 0, ALY Al — (8,A%) gof " A AL
+gof " ALAL (0" AY) — gof T ALAT (07 AL)

+ (gofe)* AL ACALAY
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1 1 1
= = OALAL + § 0 ALV AL — (0, A7) go AT AY
! 0, AL AY ! 0,A%0" Al ! 0, AS abe A1 AV
+Z”u a v a+1(”u)90f b4
1 abc Ab Ac w AV 1 abc Ab pc VAW
_4_1 gOf A;,LAV (8 Aa) + Z_l gof A,LLAI/ (a Aa)
1 abc\2 4b pc n AV
1 (gof ) AL AVAY AL,
1 a Qi AV 1 a Qi AV 1 w AV abc Ab pc
= 7 QuALAL = L DAL AL — 2 (0 AL) gof A,
1 aqu AV 1 a Qi AV 1 w AV abc Ab pc
5 QAL AL = DA AY — (DAL o ALA;
1 abc Ab Ac VAR 1 abc Ab Apc VAL
+Z gOf AuAV (a Aa) + Z gOf A/,LAZI (8 Aa)
1 abe\2 4b qc AR AV
—1 (gof ) AL AVAY AL,
L e = gm0y - Lo an) gy ac
g4 e T (% a 9 a) 90 wtv

1
+5 9of " ALAL (97 AT) — 7 (90 Feb)® AL Ac AR AY. (6.2.59)

=] =

Substituting this into Eq. (6.1.2), gives for the Lagrangian density
1
<z = —0,A,0"'A; — 5 (0" AY) gofabCAZA,C/
1 abcbcu,ul abe\2 Ab pc Al pv
+§ Gof*CALA (0" AY) — 1 (gof ) AL AL A AL

1 7 T - —
+5: (0w = VY "] = movtp + govyuA™ Y . (6.2.60)
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The derivative of the Lagrangian with respect to the coupling parent gy is given

by
0 0 1
— % = —< —0,A%0"AY — — (0" AY abe gb A¢
agO ago{ wty a 92 ( a) gOf wity
1 abcAb Ac 81/Au 1 abe 2Ab ACAMAI/
+590f 1 1/( a)_zl(gof ) pivith f e
1 _ _ _ _
+Z [(auwhuzﬁ - 1/W“8uw] — moy) + 90¢7W4N¢}
_ 1 M AY abcAb Ac 1 abcAb AC (9 AP
- _5( a)f n u+§f n l/( a)
1 _
_(2)1_1 gofabCfabcAZAlc/AgAZ + w,-yMANw :
d 1 abc Ab Apc v v abc v 7
G = G ALAL (AL = AL+ o ALAY) A
0
or

1 b b 7
9 g = fabegb gequ Aty 2.61
50 L S AL AR 4y, A (6.2.61)

We may also write
pabe AZ ACGHv = fabegb g GOV fabe gb g iy
= A + AN
fEALAGGED - [ AL TG

— ALK+ PAAG + [ALAGE.

FRALALGE = 2 ALAGGRD 4 fabe Al ASGE (6.2.62)

wva
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In the sequel, we set (—i)0/6.J% = A, (=1)6/6 = ¢/, (=i)d/én = 4. [Here
we note that G;f on the right-hand side of Eq. (5.30) of Manoukian (1986) should be

replaced by I, = 0, A} — 0, A}
Now we use the rule of functional differentiations (cf. Manoukian, 2006, Chap.

11; Manoukian et al., 2007) that for an operator &/(z)

s 0100} = O fap@oE) o) i (0. | 0 ot

o),

(6.2.63)

where (. ..); denotes the time-ordered product, and the functional derivative of &(z) in

the second term on the right-hand of Eq. (6.2.63) is taken as in Eqgs. (6.2.54) - (6.2.56)

with the (independent) fields and their canonical conjugate momenta kept fixed. Here
1

we recall that A2 may be expressed in terms of A!, A% and involves no time derivatives.

From Eqgs. (6.2.57) and (6.2.61), the action principle gives:

0
— (0,10 =1(0
- (04]0-) 1<+

/ (dz) {—% fereAb Ac g +¢7“Au¢] ‘0_> . (6.2.64)

Thus Eq. (6.2.62), leads to

0
—04]0-) = 1i(0
ol = i,

1
[ -5 @raaer + gt

eoadp)

1
[ o= sl - Ay

+1/_}7MAIJ‘77Z)) ‘O— > ’
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0
5o (0010 = =i [ (d) (00| (F A5G 0.

—5 [ @) o | aiGio)
+i / (da) (04 [y Auap|0-) (6.2.65)

Now we use the rule of functional differentiations of an operator &(x), and for

the first term of the right-hand side of Eq. (6.2.65), we obtain

—i / (dz) (04 | (f*e AR AGGEO) [0-) = —1i / (dz) f* AL (04 |A5GE[0-)

= i [ (@o)ea {(—i) ) Jf(x,) (0, |G¥]0-)

vi(o:

Using Eq. (6.2.54) in the last term of above equation and denoting (—i)0/0.Ji = A, as

0 kO
5700

0_> } . (6.2.66)

always, we obtain
—i [ () 0, | (A5G - )
= i / (dz) fobe A [A{)CG;’“O (0410-) + (04 |[—0k Dae(x, 2')]0_) }
— / (cr) AR [ A (0, [02) — 10Dl () 04 ]0_)
= [ (@) = AT (0,]0-) — £ YD (o) (01 0-)

= / (d2)| = P APAGGI (04]02) = [ ALOLD, (. ) (0+]0-) |

(6.2.67)
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The second term on the right-hand side of Eq. (6.2.65) may be expressed as

-5 [ (o) (0. |z aiGto.)

i

- / (dw) fA (0, |AsGH|0_)

. T - 0
- %/ (do) A [(_1)5J£(x/) (0 ]Ga]0-) +i <0+ 57

o).

(6.2.68)

Using Eq. (6.2.55) this simplifies to
i i
—5 o) (o raaicton) = - 5 [ @nrtagarci o o)

= [t (~greagareit) oo

(6.2.69)
For the last term on the right-hand side of Eq. (6.2.65) we get
i / (d) (0, [ A,0|0_)
=+ i/(dx) (04 ‘@fy“AZtaw|O,>
:+i/(dx)[(—i)L<o | Dy ta]0 >+i<o i (vy*ta1) |0 >}
A erit 6T (2 ]
(6.2.70)

and using Eq. (6.2.56) this again simplifies to the following
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+i () 0. |Gval0) = i [ oAzt 0,]0-)

_ / (da) i/4" Al (0,0_) . (6.2.71)

Equations (6.2.67), (6.2.69) and (6.2.71), may be then used to rewrite Eq. (6.2.65) in the

form

a s pabc A6 plc 1KO iabc b plc 1kl S a
5o (0010 = [ ()] =i APATGE - 3 Fo ARG i A

' ALOD, (2, 3)] (0. ]0-)
= / (dz) [i.,éﬂ,’(:c) — [** A0 D, (z, )] (04]0_) . (6.2.72)

Using a matrix notation

ab
Dz, 2") = [<x x’>] , (6.2.73)

1
( 0” — igo Aok )

the notation

Tf] = / (dz) (. 7). (6.2.74)

and the fact that f** A} = i(A;)°, we may rewrite the second factor within the square

brackets in Eq. (6.2.72) as

5o (0:10-) = [(@n[i (@) = 40D (o )] (0 |0-)

_ {/(dx) i () — /(d@%} (05]0-)

—iA, 0,

_ {1 / (dz) Z (x) +Trm} (04]0_) | (6.2.75)
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/ 5(0,]0_) = / 50 [i / (dz) & () + Tr %] (0410_). (6.2.76)

which integrates out to

0, ]0.) /god [i/(dx)a?/(x)+Tr —i40 }(o 0.)
_ = X a2 . Ao - ’
+ 9 p . Jo I [82—ig0Agal] + 0
(6.2.77)
where
~A Lt 1 _
S (z) = -3 JECARALGE 4 )y, A (6.2.78)
That is,

(0+10-),, = [expi/(dx) f/(x)} exp Trn [1 - igO%A;ﬂk} (0410-), , (6.2.79)

where

1

/ la g 1 i / ! / YY) 7! / /
Z1(2) = = GG + SO — 0] — moll ' + gol 3 AV

(6.2.80)

Using the identity det M = exp TrIn M, we may rewrite Eq. (6.2.79) as

(04]02) = {expi/(d@ GZ/(:B)} det [1 - igO%Aﬁg@k} (0410-), ,  (6.2.81)

where for simplicity of the notation we have written the exact expression for (0 [0-)
simply as (0 |0_).
Thus we learn that the naive Feynman rules are modified by the presence of the

multiplicative factor

det {1 — igO%Amk} , (6.2.82)

as a functional differential operation in the expression for (0, |0_) o



159

6.3 Gauge Invariance and Modification of the FP Factor

Now consider the modification of the Lagrangian density .Z’in Eq. (6.1.2):

L— L+ MYGe G =4, (6.3.1)

uv~"a

which is obviously gauge invariant under the simultaneous local gauge transformations
in Egs. (6.1.7) - (6.1.9).
The Lagrangian density £ = £ + %5, where %5 is defined in Eq. (6.1.3) , is

given by
Lir = LH+ZLs
1 1 . - - -
= GG+ QW)Y — 57 O] — motd + ot AN
FAPGL, G+ + O + JEAS (6.3.2)
The action in question is defined by

W= / (dz) Lir

1 1 . - _
=[] - jener (@0 - v - maiv
+ g0V AN + MYGL G 4 M+ + Jé:AZ}

- /<dx){ - i(l B 4)\@/;1/}) GuGa” + % [(8;1@[))7“@/} — " M@Z)}

—moh + goy AMY + Y + P + J:Az} : (6.3.3)
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1 - 1 - _
w =[] - 0- 000 56,61 + L5000 — 0r+0,0]

—mod () + god (AU + 0 + (5 + J:;Mz} |

(6.3.4)
Corresponding to the first term in Eq. (6.3.4), we have the variation:
0 [(1—4Mp)Ge, G ] = (1 —4Xp)d (G, GHY) + 6(1 — 4Mp) G, Gl

= (1 —4 ) [GzyéGg” + 5GZV(G5”)]
—4\ [Yoy + (3¥)Y] G, GRY

— (1 - 4\0) [waa (01 AV — O A 4 go f™° AL AY)
+5 (0, A% — 9, A% + go fUe AL AC) GgV]
—AND(30) Gl G — ANV G, G

= (1 —4\0) GhO0M0AL — G070 AL
+g0f "G 0(AYAL) + 0, (6 A7) GL

—0,(6A%)GE + gof“bcé(AZA,ﬁ)Gg‘”

—AAD(SY) G G — AN(P)WGe G

wr~a wr~a
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G OMSAY — G 'S AY + go fGE, (AL AY)
+0,(6AL)GE — 0, (0AZ) G + go f** 0 (AL AS)GAY

— NG, DAY + ANPPGE, DS AL

— AN go f* Gy, (AL AY) — AN, (6 AG) Gl
FANPPO, (ALY G — ANipgo 26 (AL AS)GHY

— AN (0Y) G, GE — AN ) Ge, G

GH 0, (0AL) + GE 9,6 A% + go f*°G, 6 (A} AY)
+GHY 0, (BAL) + GEY 0,0 AL + go [ G (AL AL)
—ANpYGEY 0, (8 AT) — 4D Gl 9, (0 A3)
—AMpPGEY8,(5AT) — ANPYGEY D, (A7)

—AXgo fGE, B (AL AY) — dNpgo [ GV 6 (AL AT)
—ANP(6) G, G — ANV G, G

AGEY 9, (0 A3) — 16ApYGEY 0, (3 A3)

+(1 = AMp) go fGE, 0( AL AY)

(1 — AMp) go fGEY 5 (AL AS)

—4AM)(6) G G — AN(6V) VG G

wr~a pla >



or

6 [(1—4Mp)Ge, G = A1 — AMp)GE D, (5 AL)

pra

+2(1 = AMP) go f* G, 0(AF AY)
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—4AMp(5P) G G — AN(6Y) G, G* . (6.3.5)

w-'a wr~a

From Egs. (6.2.5) - (6.2.7), we also obtain
FeG 0(AYAY) =[Gy, [AYOAL + (6A7)AY)

= febeqn, AUSAY v fGE, (5AL) A

I

— fabCAZGaV(SAz + fabC(CSAZ)Ga AV

I wtte

= [UANGESAL + fUOALGY, AL

urite

= [ ARGh AL+ [V (OAL)GE, AL

pv*te

- acb b v acb v b
- _f AgGyuéAa - f (5Aa)G,u1/AéL )
fGn 0 (ALAY) = —2f"ALG) SAL .

Substituting Eqgs. (6.2.7) and (6.3.6) into Eq. (6.3.5), gives

5 [(1 = AAP)G2,GH] = — A(1 — AN) (9,GM™) 5 AL

ur~a
—A(L — AN g f " ALGE, S A

— AND(60) G G — AN(SY )G G

wr~"a p'a o

(6.3.6)

(6.3.7)
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10 [0 ARG, GI] = (1 - ANG0) (,GL) A
T (1= NG go f* ALGY, S A
+ MG GHY A+ NS Ge GH (6.3.8)

pr~a pw'a

Using Egs. (6.3.8) and (6.2.12) - (6.2.14), we can rewrite Eq. (6.3.4) as
Wir = (@] (1= 000) .02 345 + (1 - NI A2G, 0.1
FAD(09) G, G+ N0 Gy, G

42 [(BuB)00 + (007" — 51#5(8,0) — (0000

—mot) — mo(09) + gotby, A6 + gotby, (S A" )4

+90(09) 1, A + 70 + (6¢)n + Jf;éAz} : (6.3.9)
oW _ 1 - 1 _ B B
L= MGG + (D + = YO — mot + goy AT + 7]
0 2i 2i
= 0, (6.3.10)
or

_ 1 _ _ _

MGG+ B YO0 — moY + gopy, A = —1j, 6.3.11)
. a v au _

Y| NG, G+ VMT —mo + g0V, A | = -7, (6.3.12)

uv~a

7 MV; a uv _ —
@/)[7 — MGG —mo] _— (6.3.13)
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and

Wir 1 1

5w = )‘1/}GZVGZV - i'yu ;L¢ - EVH uqu) - m0¢ + gOquAM@Z) +1n

- 0. (6.3.14)

Thus we obtain

1
“MG, G+ Ol ot — v At = (6.3.15)
(—AGZVGZ” + 7“@ +mg — 90%14“) Y o= 7, (6.3.16)
1
v# a v
WL —XGLGE +mo| Y = 1, (6.3.17)
1

with p, v = 0,1, 2, 3 and where V, is defined in Eq. (6.1.11).
Consider first the terms not containing §7) and ¢ in Eq. (6.3.9). The first term

in this combination is given by
(0uG12) DAL = (D, G1°) 64T + (9,G1*) 54

— (9,G0) 5AZ + (9,GMF) (5’“ = 5’{?%) SA?
3

= (9,G"°) 643 + (9,617 6 AL — g (0,G3) 5A2
3

(0,GM) 5 A = 60, GRS AL + 60, GL' S AL — 7 620, G5 AT | (6.3.18)
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and
(1 — 4 ) (0,G*) AL = (1 — 4 ) {5@‘@(;’;05143 + 079, Gl 5 A

—g—; 5“”6HG’I;‘35A§‘} : (6.3.19)
For second term in this combination we have
(1 — 4Mpp)go f*"ALGY 0 A,
= (1 —4\y)go f*" AL G S A}

— (1 — 4\ go S (A;G;;%Ag n A;G@L’f&Ag)

= (1 —4\py)go f* [AgG’,fO(SAg + AsGht <5’“’ — 5k39> 514;11

05
n i a 8z c a
= (1 — 4 ) go f? (AngoaAg + ASGLOAY — a—SAHG;;%Ai)
7 i a 8Z ach pc a
= (1—4Mv) {gofaCbAiGlgoéAg + gof* AL GYOAT — 8_390f bA,JGf?’(SAi} '

(6.3.20)

On the other hand for the third in this combination we obtain

oV (GAM)Y = goy, t*(SAR )Y

= got Yy, (8AL)

= goPt"y [0 (6A2) + i (54%)]
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= got™ |y (5A2) + Vi ((5’” — 5’“3%) 5A3]
L 3

T . ) _
= gotP |70 (549) + (5’“% - 5k37ka_3) 5A;]

T o o
= oty |0 (6A) +~"0A, —~°

L HA
r‘y 63 a:| )

oY (SA )Y = govyot® (8A4.) & + 9oty t* (8AL) ¥ — gotht vy’ 5 ’cw

(6.3.21)
Finally for the last in this combination we get
JgéAZ = J(S(SAS + deA%
0 a k ki k3 a a
= J.0A+ J, (5 -9 ) 0AS
03
0 a ki 1K a k3 1K a a
= JJ0AG+ 0" J;0AT — O Jaa 0A;
a 0 a 7 a 3 al a
J(’jéAM = J,0AG+ J0A7 — Jaa— 0AS (6.3.22)

We now substitute Egs. (6.3.19) - (6.3.22) into Eq. (6.3.9), to obtain

Wir = / (da:){(l — ANpy) {5“1’&67’;05148 + 00, Gy AL — g— 070, Gl 5 A
3

+(1 — 4 ) <go FUPALGEOS AL + gof " ALGY S AY

o4
"o, 7

pr~a wr~'a

o " A “35A“) + MD(61) G G + NG, G

2 [(BB)700 + (007" — 51#5(8,0) — (0000
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—mohdt) — mo(8Y) + goy, A*SY + gotbyot® (FAY) ¥

. . _ O _
+ g0yt (6AL) o — gowt“wv3a—3 OA, + go(00) v, Al

+70%) + (59)n + JOSAG + JLSAL — Jjg—; 5Ag} : (6.3.23)
War (1 — AXpp) 5™ ORGEC + (1 — ANp) go o ASGRO + gobyot®ah + J°
(5A8(1’) b 0 EYb 07710 a
= (1= 4Mp) (0P0G° + go f*PALGL) + gotryot ™t + Jo
_— (6.3.24)
Or
(1= 4Mp0) (0P0GL° + gof*PALGY) = —godot™ — J; . (63.25)
(1 — 4pp) (80 + o [*P AL GL° = —goyot™y — J0 ., (6.3.26)
(1 — 4Mp)VPGE = —gopyot®™ — JO . (6.3.27)

For the variation with respect to A%(x) we derive

5W1T _ . " ab e ' ab w3
gy = (- 9w) (5 0,G4' — 5 00,0

o°
gofachZGg?))

(1 — 4\00) (gof“CbA,iG’Zi -5

- B R |
+ g0yt Y — gt Yyt = + Ji — I3
03 O3

= 0, (6.3.28)
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or

0 = (1—4Mp) (8"0,GL" + gof* " ASGY)

ai

—(1—4x0) (— 0"0,Gl° + gof“bA;Géf?’)

ok . .
(g Yty 3 + J3— ) ) + gyt + J,
= (1—4Mpp) (670, + go f*PA) G

—(1— 4A¢¢) (5aba + g0 A) GI

0; o T isa i
5 (govt* vy + J2) + govy't"¢ + J}

= (1—4AMp)VPGy — (1—4A¢¢) vabGM?’

—8—; (9ot + J2) + goty't"y + J.

0 = (1—4 ) <vgbG;;i—a—v;ng3>

03
0; Taa,) 3 3 Tiga i
5 (g0t + J3) + goy't™ + J . (6.3.29)
Thus we have
) i 9 ga O a T iga i
(1 — 4\p) (v;f’Gg — a—gvubc;g?’) -5 (got™y® + J3) = —gopy'tap — J. .

(6.3.30)

From Eg. (6.3.9), we will obtain the canonical conjugate momenta to Al, A2
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using the expression for the canonical conjugate momenta to A* are defined by

™ = n[At] = 6W = ddd

5Au 5(60AM) '

Consider the first term on the right-hand side of Eq. (6.3.9):

/ (da)(1 — 4NT) (9, GP) G AT

= / (dz)(1 — 4Mp) [(9,GH°) S AG + (9,G1*) S AY] ; k=1,2,3

= / (dz) (1 — 4Agep) :(aMGgO) SAL + (9,G"F) (5’“' — 5’“32—;) M?} pi=1,2
= / (dz)(1 — 4\p) :(aMGgO) SAG + (aﬂGgi — g—; auGg?’) M?}

= / (dz)(1 — 4Xgpr)) :—Gﬁfoé(@#Ag) - (Gg”' — g—; Géf”) 5(3#14?)} - (6.331)

1

1. A2 are then worked out to be

The canonical conjugate momenta to A

i IWhr
© T §(A)
7 0i _ 9" o3
v (e-Za)
s
= (1 -4 ) G? — 2—(1 —A\PpYP) G i =1,2, (6.3.32)
3
while for the dependent field A°, A3 we have
D=0 , =o0. (6.3.33)

We note that Eq. (6.3.32) is also valid if we replace ¢ by 3. That is, for £k = 1,2, 3, we



may rewrite
Ty = (1—=4M0) G = 9519 (1 — 4pp) G
Upon multiplying Eq. (6.3.34) by V% this gives
Vitme = (1= 4M) VG — (1 - 4Mpy)Vitay oG .
We make use of the field equation
Vi [(1= 4x) G| = = (8750 = g™ 0e DY) [J7 + govyTte]
Vi [(1 = 4Mp) G3¥] = = (0%50" — g™ 0 D™ V) [ + goty "t ]
Vit [(1 = 4Mpy) Gi°] = = Ty — goun "t
and substitute the above into the right-hand side of Eq. (6.3.35), to obtain
Vims = =gy — g0yt — (1 — ) V05 0" GY
(1= D) V05 10" G’ = = [} + gotn "t + Vi'm,] .

Let V20F = 0" (), [1 — 4\))051G = A,(x) and set

where
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(6.3.34)

(6.3.35)

(6.3.36)

(6.3.37)

(6.3.38)

(6.3.39)

(6.3.40)
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Using the Green operator equation:
VeoLD Yz, 2') = 6z, 2) 6, (6.3.41)
we then obtain
(1 — 4AP)05 'GP = —D[J0 + gyt + Viorh] . (6.3.42)
Upon substituting the above equation into Eq. (6.3.34), gives
TE = (1= AMpY) GFO 4 9D J0 + gonOtt + Vit (6.3.43)

or
1~ NG G2) = mh(o) = o [ (@) Dl o) [ ()
+go(a )0ty (a') + Vi (2)], (6.3.44)
1 - NG G2e) = mh(o) = o [ (&) DunGe ) [ ()
+g00 ()t (2') + Vol (2)] , (6.3.45)

k =1,2,3 and with 72 set equal to zero.
With the (independent) fields and their canonical conjugate momenta kept fixed,

we then have the following functional derivative expression

[1 - 4/\1/_}(1‘)¢(:E)]5Jé/5(x,) GI;,O(:E) = _akDab(xv l’/) 50V : (6346)

The canonical commutation relations of A%(z), w°(z') are given by

[A%(z), 7"(2)] = 16783 (x —X). (6.3.47)
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Using

§(2° —2°) *(x —x) = d(z—2), (6.3.48)

the equal time commutation relations of the independent fields Al (x), A2(z) may be

then rewritten in the form

6(z° — 2°) [AL(z), 7 (z))] = 6076 (z —2'), (6.3.49)
0(z" — 2% [Al(2), ¢"m) ()] = i6wd7 g6 (x — ), (6.3.50)
§(z° — %) [Al(2), m ()] = i0wg"0*(z —2'). (6.3.51)

From the gauge constraint,

A3 = _a Al gAY = g _ ka0 SA", (6.3.52)
83 a3
we may then write
[Al(z), m(2")] = 10" *(x—X), (6.3.53)
-_@ i ! /_ _ li@ 3(w !
Al (z),m(2)| = —i0wg ' = 6°(x—X'), (6.3.54)
s ] s
0__ .0 -_@ i Lyt ] s li% LYW
o(z” — ") Al (z),m(2)| = —ibwg = 0 (z—2a). (6.3.55)
| O ] s

We may combine Egs. (6.3.51) and (6.3.55), in the form

5(z° — a’) [Al(z) + Ad(z), mp(2')] = i0uwg" 6" (x — o) — iéabg”% 5z — '),
3

(6.3.56)
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or

I
§(z0 — %) [Ak(2), m(2")] = idu <gli5ki - 5k3g—> 6z —2) . (6.3.57)
3

This allows us to obtain the expression
§(2° — %) [Ak(2), m(2)] = 6 [6" — 60510 6% (x — '), (6.3.58)
withnow k,l = 1,2, 3.
Equations (6.3.44) and (6.3.58), will allow to derive the commutation relation in
Eq. (6.3.59) below
[L—4M () ()] G5’
= 7, (z) — Ok / (da") Dap(, ") [ (2') + gotb (2"t (2) + Vel ()]
[1—4M) () ()] [Aq(a"), G&° (2)] 6(a” — 2)
= [A(@), mg(2)] (2 — o)
_ 5 / (da") Day(r, 2") V"% [A2(e"), wd(2")] §(a° — o)
= 1640 [6"* — 0%005 10" 6" (x — o)
— O / (dz") Dap(, 2" )V [Af(2), 7 (2")] 6(a° — 2”°)

= 2i0,,6* (v — 2') — O /(da:") Day(z, 2" )V [Ag(2"), 71(2")] 6(2° — ),

» e

(6.3.59)
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where we recall that D, (z, 2”) involves the factor §(z° — 2'°). The latter then implies

that the last term in Eq. (6.3.59) is given by
5, / (da") Doyl ")V [A2 ('), wd(2")] §(2° — ")
= — 0O /(dx”) Doy (z, 2" )V*i64.[6" — 6" 0571076 (& — ")
— 0, / (d2") Dy, ")V [ — §850,7197) 6% (x — x")6(a° — ) . (6.3.60)
Now we take the limit X’ — x in the latter and integrate over d3x to obtain
— i/(da:”) /d3x Ok [5’” — 5k30§_18’j}Dab(x, x”)V}'baé?’(x’ —x")o(2° — )
— i [ (@) [ Ex (07 - 01Dl VS x50 0"
- 0. (6.3.61)

This result will be used later in deriving the modification of the FP factor.

The action principle gives

(%(0+|o_> = i<0+ /(dx)ZT 0

- i<0+ [@)52alo >

= i [t buepero

)

)

S5 (04100) = i [ (@) (0. [ @E ) . 636

where we refer to Eq. (6.3.1) for the appearance of the coupling parameter .
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We note that
GIJJJG“V = GOVGOV + GiVGiV

= GG +GoGY + GG + GGV .
——

=0
That is
GG" = 2GuG"+ GyGY . (6.3.63)
Consider the matrix element
(0, (G )6 @) |o)
_ 2<0+‘( zocpx??%xv)+‘0_>4—<o+‘( zxx)cﬁ%x3)+’o_>.(6:&64)
The second term is simply equal to
1) G (') (04 10-) (6.3.65)

expressed in terms of functional derivatives using our notation below Eq. (6.2.62). From

Eq. (6.1.6), we may rewrite
0(x) = OpAL — DAL + gofrCAL A
= (OWAG + gof " ALAG) — Do Af
= (D0 AG + go f " ALAS) — Do Af

= (0O + gof e AL) AG — DoAY,
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rol(z) = ViTAG— doAy (6.3.66)

and subsequently use the integral
flz) = / (dz) 6*(x — 2)f(2) . (6.3.67)

To determine the first term on the right-hand side of Eq. (6.3.64), we rewrite

tolz) = /(dz) §(x — 2)VE(2)A§(2) — /(dz) 'z — 2)0:AL2) . (6.3.68)

We then have the useful identity:

(04| (Gtol@)GE @) J0-)
= Gio(x) Gi°(2') (04]0-)

+ /(dz) 5z — 2)8(2° — 2%) <OJr ‘ [Az(z), Gso(x')} |O_>

5 g
G

c

—i / (dz) 6*(z — 2)Vie(2) <0+

0_> , (6.3.69)

where the second term comes from the non-commutativity of the time derivative and
the time ordering operation as resulting from the last term in Eq. (6.3.68), and the third
term follows from the rule of functional differentiation in Eq. (6.2.63) as resulting from
the first integral in Eq. (6.3.68).

From Eqgs. (6.3.44), (6.3.59) and (6.3.61), the right-hand side of Eq. (6.3.69) sim-

plifies for ' — x to

o) G0(a) + ()] (0410-) (6.3.70)
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where

Alz) = 2/(dz) 0"z —2) K'(z,2) (6.3.71)
1= (@) ()]

K'(z,2) = i[éaa54(0) + % 95V () D). (x, z)] , (6.3.72)

involving a familiar §%(0) term.

All told, the expression Eq. (6.3.62) becomes

5504100 = i [@oF @ @66 ) 0.0-)

+21/(dm)&’(w)¢'(m)A'(m) (04]0-) (6.3.73)

which upon an elementary integration over \ leads to
(0.]02) = ™ exp [m / () () () Gl ()G () [ (04102) 3+ (6.3.74)
where
M = - / (dz)(dz) 6*(z — 2) In [1 — AN/ ()¢ (z)] K' (2, 2), (6.3.75)

and (04]0_),_, is the vacuum-to-vacuum amplitude corresponding to the Lagrangian
density .7 in Eq. (6.1.1) involving the FP factor in Eq.(6.2.82). That is, the famil-
iar FP factor gets modified by a multiplicative factor exp[iM’] for the gauge invariant

Lagrangian density .#; in Eq. (6.3.1).

6.4 Gauge Breaking Interactions

In the present section we consider the addition of a gauge breaking term to the

Lagrangian density .Z in Eq.(6.1.2). It is well known that even the addition of the
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simple source term %5 in Eq. (6.1.3) to £ causes difficulties (cf. Rivers, 1987, p.204)
in the quantization problem in the path integral formalism as the action [(dz) Zr(z),
with % (z) defined in Eq. (6.1.1), is not gauge invariant. We will see how easy it is to
handle the addition of a gauge breaking term to .Z7 in our formalism in the functional
differential approach to quantum field theory.

Consider the Lagrangian density

Loy = L+ %AZAI;W , (6.4.1)
where from Eq. (6.1.1),
P =~ GO + 3 [0 — 7 0,0] - mady
+gotb v A + T 4 + JEAS + gAZAZzW . (6.4.2)

The action is
WQT == /(dZL‘) XQT
1 a v 1 n 7
= [an{ - euer+ zl@bns - o)
— o) + gothyu A" + T +
+JHAY + éA“A“@Z@/}} (6.4.3)
a‘tu 9k a ) .

with the variation defined by
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1 1 - _
wer = [(an] - a(Gu0w) + 5 3@ e - 0
—mod (V1) + god (V. A") + 76 + (69)n
TS AL 1 2 §( A ARG 6.4.4
+a ,u+§(,u.aw¢)‘ ()
Consider the last term in the above equation:
A @ AuT
5 6(A#Aa¢¢)

_A
)

| As AL 3(w) + (A AL) by |

= S{Anan[iow + (00 + [z + GA AL v

= % [AZAM(W + AL AR (50) ) + AL (GAL )Y + (5AZ)A5W} . (6.4.5)
From Egs. (6.2.11) - (6.2.14), we can rewrite Eq. (6.4.4) as

War = [(@0)] (0,62)045 + g0 A1GL 045 oo w0y

+% [(%&)7’”(51& + 8(0)yHp — Y8 (Dup) — Sy (D))
+ 9007 AR + gobyu(GA* ) + go(69) 7, Ay
+70tp + (60)n + JLOAL

2 [ALARGOG + ALALGE + ALGAL)IG + (DAL ALy

(6.4.6)
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2% 1., - 1, - - D
5o = 5O (0 godrA” = mod + i+ SALAL
= 0. (6.4.7)
Or
_ Ak _ A _ _
((MJ)VT + goy A" + §AZA5¢ —mep = -7, (6.4.8)
/) u@ AH éAaAu_ — _5
/lp ,y 1 + 907u + 2 i a mO - n 9 (64'9)
s V: A a —
V(=R g AL —mo ) = T (6.4.10)
On the other hand,
oW 1 1 A
S = O = O+ gAY — o+ ALY
= 0, (6.4.11)
or
# A
(@ﬂﬁ)% — g0V ArY — §A‘;A¢;¢ +mey = 7, (6.4.12)
s A e
T O — goyAY — gAﬂAZ +mo Y = 7, (6.4.13)
A
(7“% — §AZAZ + m0> o= 1, (6.4.14)

with p1, v = 0,1, 2, 3 and where V, is defined in Eq. (6.1.11).
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Consider only terms involving the variation 0 A}, as appearing in the last term of

the right-hand side of Eq. (6.4.6) given by

A

2

A

2

A

[A;(M5)W+ (5A;)Agw] _ §[Ag(5AZ)W+ (5AZ)A§1W]

= AppALSAL
= MY (ALSAL + ALSAY)

= M [AgéAg + Af (5’“’ - 5’“3@) 5145}

03
N 0 a i a al 3 a
= A <Aa6A0 +AIGAT — a—AacSAi)
3
n 0 a % a a’l 82 % a
= At [A%AL + ATsA — L[240 ) 5A
03 03

_ . % .
= <A25Ag + ALSAY + yAgdAg) ,
3

82

[AZ (SAM) b + (5AZ)A§1M] = MUARSAG + MYALSAT + N 5 AL AT
3

(6.4.15)

From Egs. (6.2.24) - (6.2.27), we can rewrite Eq. (6.4.6) as

War = / (dx){(sabakc;,’jOaAg + 5700, GlIS AT — A 579, GI 5 A

o'
7. %0 foPALGY S AY

+o0f P ALGLOAG + gof*PALGIOAT —
1 _ _ _ _
455 [ @50 4+ 8(00) 0 = 516(0,) — 607" (D,0)

+ 90U AMOY + go(01) 7, APp — mohdt) — mg(01p)i)
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_ _ , D
g0t (AW + goty t* (6 AL )¢ — gowv3t“a—3(5z4a)w
= n 0 a ) a 38i a
+70Y + (0Y)n + J,0A5 + J.0 AT — Jaa— )A]
3
_ - -8 .
F AP AL AL 4+ Npp AL S AT + N yAZcSA?
3
Y _ _
+5 | Ap oy + AZAZ‘((Sw)w] } , (6.4.16)
5W2T _ Jg +90@E70ta¢ + 5abakGlch + gﬂfaCbAiG’bCO + )\&wAg ;
JAS(x)
= 0, (6.4.17)
or
0PORGY + gof* ARG = —J7 = MW — g7t (6.4.18)
(00 + gof*"AL) GE° = —J) — NAWY — gopy tat) (6.4.19)
VRGY = —J) = MW — gogn’tay . (6.4.20)
Similarly,
OWar _7i 3 0; T T3 9; ab Wi
514?(1‘) - Ja Ja 5 + 90¢7 ta@b 90¢7 taas ¢ + 0 auGb
ai ab u3 achb Ac 1pt al achb Ac 1u3
% 0POLGY” + 9o f*TALGY — 8_3g0f ALG
- _ 9*
FMPPA, + X5 A,
3

=0, (6.4.21)
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or

i al a achb pc 7
(60, + go f*"AS) Gy, _8_3( 50,GY° + go f*PACGY + goy Pt + JF)

_ A - _ 8% .
= — go¥y'tat) — Jy — MY A, — AW?A; :
3

0;

(5(166“ + gOfaCbAZ) G,;u_a_g

(678, + gof*PAS) G + goir*to) + T2

82

= — o teth — Jy — (1 + ?) ADPAL | (6.4.22)
3

i 0 .
VG - 2 (VG + g0y tat) + J2)

= — goy'tat) — Jy — <1 + ‘;’—;) YA, . (6:4.23)
We make use of the field equations, to write
GR = 78— 9Dy [J2 + AAWY + gonty + VY] . (6.4.24)
Also from Eq. (6.1.6), we have
G = QAL — AL gofUALAY
GM = 9FAY — 90AF 4 gy fate AR AL (6.4.25)

thus

RGO = 0,08 A° — 0% (0L, AF) +gofoOL AR AY
~——

=0
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= 5‘“’8;@8’“142 + gof‘ICb@kA’jAg

= (670" + gof P AY) 0 A |

OGO Vo, AY . (6.4.26)

Upon multiplying Eq. (6.4.24) by

vcaalﬁ ak ’

and using Eqgs. (6.2.50) and (6.4.26), we get

1
vcaal? HGY = (v;ﬂa’?vgb@ A)

— vcaal82 ak 2:

al
Vcaa—akak ab [Ty + ANAWY + got typ + Vorr!]

= vwal 5 Ot
—6 (2, 2')5 [ I+ NAYYY + go "ty + VY] |
vmal? WG = v,ma% Oyt
=6z, ) [J? + ANAWY + gov ) + VTl ], (6.4.27)

or

1 _
(Vfaal?vgbao A) = —J0—2A%p + .. (6.4.28)
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where the dots correspond to terms independent of .J;) and A). We introduce the Green

operator N%(x, z') satisfying
{vgaa%vzbak+Acscb1;(x)¢<x>1 NY(z,2)) = 0%z —2a'), (6.4.29)
to obtain from Eq. (6.4.28)
[v;aal%vzbak + AéCsz(x)z/J(x)] A) = —J0+ .., (6.4.30)
A) = N"(z,2)[-J0+...],(643])
= —N"(z,2). (6.4.32)

Hence the action principle and Eq. (6.4.32) give
0 . 0
a <O+’O,> = 1<0+ /(d.ﬁ)a XQT O>

- 1o fanmads.)

= /dx (04 |A% Alapp]0_)

i 0 7
= 3 /(d$) {(—I)W (0 [Afv]0-)

+i(0.

= 5 [ [z .00 v (0,

)|

0 0

)

G JO(x")

= 5 [ @) [aparsy 0100 - NS o) (010 ]
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i _
55 0100 = 3 [(@nA2@ A @ @ @) 0:]0-)
1 _
+3 / (dz )y (z)2 () N (z, ) (04 |0_) . (6.4.33)
Upon integrating the latter over \, by using in the process Eq. (6.4.29), we obtain

/5<0+|0> = %/5A|:/(d$)A;fA;uw/w/+%/(dm)w/w/]\]/bb} <0+‘07>>
(6.4.34)

which integrates out to

i\ - 1 -
.10, = oo |5 [anagazire 5 [@ondwn] o0,
(6.4.35)

Consider the second term in the exponential on the right-hand side of Eq. (6.4.35), and

using Eqs. (6.4.29) and (6.2.74). This may be expressed as

1 NN ! 1 NN 1
5 Jaen = 3 fani— —
[ngalgv;cabak +/\¢/¢/

'y
1 -
Vi)l g ViehOh + My

1
= 3 Tr (6.4.36)

Thus we obtain

Ay
1 _
Vi D! Sy Vit Oy + M

i\ - 1
(04]0-), = exp %/(dx)AfA;“@//@//%- §Tr

x (04 10-),— > (6.4.37)
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1 A T
(04]0-), = exp [—5 Trln (1 + V;@l(BQ)_IVﬁC@kw (8 )]

X exp [% /(d$)A;ng%/_/1//} (0410-) g (6.4.38)

showing an obvious modification of the FP factor with latter occurring in (04 |0_),_,.
The quantum action (dynamical) principle leads systematically to the FP of non-abelian
gauge theories with no much effort. It is emphasized, in the process of the analysis,
that no restrictions may be set on the external current J¢, coupled to the gauge field
Al (such as 9J; = 0), until all functional differentiations with respect to it are taken
so that all of its components may be varied independently. We have considered gauge
invariant as well as gauge non-invariant interactions and have shown that the FP fac-
tor needs to be modified in more general cases and expressions for these modifications
were derived. [It is well known that even the simple gauge breaking source term .Zs in
Eq. (6.1.3) causes complications in the path integral formalism. The path integral may,
of course, be readily derived from the action principle.] The presence of the source term
Zs in the Lagrangian density is essential in order to generate the Green functions of the
theory from the vacuum-to-vacuum transition amplitude, as a generating functional, by
functional differentiations. We have also show, in particular, that a gauge invariant the-
ory does not necessarily imply the familiar FP factor for proper quantization. Finally
we note that even for abelian gauge theories, as obtained from the bulk of this chapter
by taking the limit of f% to zero and replacing t* by the identity, may lead to modi-
fications, as multiplicative factors in (04 |0_), as clearly seen from the expressions in

Eqgs. (6.3.75) and (6.4.38).



CHAPTER VII
QUADRATIC ACTIONS IN DEPENDENT FIELDS
AND THE ACTION PRINCIPLE: A THEOREM

7.1 Introduction

The purpose of this chapter is to investigate systematically, in a unified man-
ner, within the functional differential formalism of quantum field theory (Schwinger,
1951, 1953, 1954; Manoukian, 1985, 1986, 1987, 2006; Limboonsong and Manoukian,
2006; Manoukian, Sukkhasena and Siranan, 2007), field theories with interaction La-
grangian densities £;(x; A), with \ a generic coupling constant, such that 9L (x; \)/OA
may be expressed as quadratic functions in dependent fields and, in general, as arbitrary
functions of independent fields. These include, as special cases, present renormaliz-
able gauge field theories(see, Chapter 1). For example, the non-abelian ones, such as
QCD, are quadratic, while QED is linear in dependent fields. The functional differen-
tial treatment necessitates the introduction of external sources in order to generate the
vacuum-to-vacuum transition amplitude, as a generating functional, from which ampli-
tudes for basic processes may be extracted. The novelty of this work is that we show
that for all the general Lagrangians, mentioned above, the vacuum-to-vacuum transition
amplitude may be explicitly derived in functional differential form, in a unified manner,
leading to modifications of computational rules by including such factors as Faddeev-
Popov ones (Faddeev and Popov, 1967; Fradkin and Tyutin, 1970) and modifications
thereof. The derivation is given in the presence of external sources, without recourse to
path integrals, and without relying on any symmetry and invariance arguments. There
has also been a renewed interest in Schwinger’s action principle recently (see, e.g., Das

and Scherer, 2005; Kawai, 2005; Iliev, 2003) emphasizing, in general, however, oper-
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ator aspects of a theory, as deriving, for example, commutation relations, rather than
dealing with computational ones related directly to generating functionals as done here

in our work.

7.2 General Class of Lagrangians

Consider Lagrangian densities which may depend on one or more coupling con-
stants. We scale these couplings by a parameter A which is eventually set equal to one.
The resulting Lagrangian densities will be denoted by £(x; \). The class of Lagrangian

densities considered are of the following types
L(x;N) = L(2;0) + Lr(z; N) + Ji(z) xi(z) + T (x) n;(z) (7.2.1)

where y; () and 7;(2) are independent and dependent fields, respectively. Ji(x), J3 ()
are external sources coupled to these respective fields. The interaction Lagrangian den-

sities sought are of the following forms
. 1 .
Li(z;N) = B(z;\) + B (z; M) n;(z) + ) B (3 A) () me(x) (7.2.2)

with £7(z;0) = 0, where

OB(xz;\) 0B/ (x;X)  0B™(x;\) OB (x; ) (7.2.3)
ox ox O\ B O\ ’ o

may be expressed in terms of the independent fields, and the latter two may involve
space derivatives applied to the dependent fields 7;(z). By definition, the canonical

conjugate momenta of the fields 7;(x) vanish. That is, formally,

OL(w;))

= . 724
900, (2)) 724
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Let
OL(x;0)
On;(x)

The constraint equation of the dependent fields 7, (z) follow from Egs.(7.2.1) and

= A*(z)n(x) . (7.2.5)

(7.2.2) are obtained as follows. We rewrite Eq. (7.2.1) in detail as
L(z;A) = L(z;0) + B(w;A) + B (2;A) (@)
o B ) () (o)
+Ji(z) xi(2) + J(2) n;(z) (7.2.6)
with
L(x;0) = L(z;0) = B(z;A) — B (w;A) ()

_Z Bjk(x; A) nj(x) ne(x)

—Ji(x) xi(x) = J3(x) n;(x) ,

0L(x;0) B \) — Ji(z
—B*(z; \) () (7.2.7)
6577((())) + B N) pel(z) = —[Bl(x;\) + F(2)], (72.8)
A () () + B (s A) () = =[BY (2 A) + ()], (7.2.9)

(A% (2) + B (5, \)] mi(x) = —[B(2;\) + J()] (7.2.10)
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leading to the important equation:

MM (s A) () = =[B(x;A) + ()], (7.2.11)

where

M*(z; \) = AT (x) + BI*(2; ) . (7.2.12)

Let D, (z,2"; \) denote the Green operator function satisfying

M (x; X) Djg(z, 23 A) = &), §*(x,2') . (7.2.13)

We use the notation

M*(z;\) = 07%(x) (7.2.14)

and denote the right-hand side of Eq. (7.2.11) is J7(z), that is

J(z) = —[B(x,\) + Ji(z)] . (7.2.15)

From Egs. (7.2.14) and (7.2.13), we note that

Oyt (x) = J(z), (7.2.16)
0% (z) DM(z,2') = 6z, 2")0" . (7.2.17)

Hence
W(z) = / (dz) D*(z,2") J*(') (7.2.18)

and we may write

ni(z) = — /(dx') Djp(w,2"; N) [B¥(2; \) + J5 (2], (7.2.19)
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giving a constraint which is explicit source .J5-dependent, and is also a function of the

independent fields.

7.3 The Quantum Dynamical Principle at Work and Explicit

Expression for the Vacuum-to-Vacuum Transition Amplitude

Let |0x) denote the vacuum states of a theory before/after the external are
switched on/off, respectively. We are interested in the variation of the vacuum-to-
vacuum transition amplitude (0, |0_), governed by the Lagrangian density £(z; ) in
Eq. (7.2.1), with respect to the parameter A as well as with respect the external sources
Ji(x), JJ(x). To this end, we invoke the quantum dynamical principle which states

(see, e.g., Manoukian, 1985, 1986, 1987, 2006; Manoukian, Sukkhasena and Siranan,

2007)
%<0+|0_> = i<0+ /(dx)((%/j](x;)\)‘o_>, (7.3.1)
() Mf(x) 0,102) = (04 u(@)0_) , (732)
. 1)
(D557 04100 = Oulstalo-) (7.3.3)

Consider the matrix element (0 |F(z; A, Ji, J2|0_) of an operator which is not
only a function of the independent fields but which may also have an explicit depen-
dence on \ and the external sources J?, JJ. An explicit )\, JJ dependence may occur,
for example, when the dependent fields 7;(z) are expressed in terms of the independent
fields and Jg as given in Eq. (7.2.19).

The quantum dynamical principle, in particular, then states (see, Limboonsong

and Manoukian, 2006; Manoukian, 2006; Manoukian, Sukkhasena and Siranan, 2007)
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that

o
—1)— Oy [F(x; A\, Ji, J2|0-
(1>6Jg(x’)<+| (z 1, J2(0-)

)
———F(x; A, J1, Ja)

= Ol A ) el =3 (0.

o_> . (7.3.4)

where (...); denotes the time-ordered product, and the functional derivative, with re-
spect to J3 (2 ), in the second term on the right-hand side of Eq. (7.3.4), is applied to the
explicit Jo-dependent term (if any) that occurs in £'.

Let 9B (x; \)/0\ denote OB (x; \)/O\ with the fields x;(x) in the latter re-
placed by the functional derivatives (—i) §/8.J¢(x). From Eq. (7.3.4),

(—1)% <0+ 9 B (z; A)‘0_>

_ <o+ 0_> —i<0+

where we have used the fact that 9B7 (z; \) /O is expressed in terms of the independent

0 ﬁBj(x;A)‘o_>, (7.3.5)

(aﬁ)\ B (z; A) () 4 W@A

fields and has no explicit .J5-dependence, and hence the second term on the right-hand
side of Eq. (7.3.4) is zero for this corresponding case.

Then from above equation we have

()5 i BN 0:10-) = (o

(a% Bi(a;\) nk(x’)) 0_> . (1.3.6)

On the other hand, let F'(z; \, J1, J2) = 0B*(x; \) ny(2) /O and replace ny (')

+

by (—i) §/0J%5(z'), Eq. (7.3.4) also give
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where from Eq. (7.2.19),

m@) = = [(@) Dl s VBN + )
m(z') = — /(d:v") Dy’ 2" \)[B? (2" ) + Jg(x”)] , (7.3.9)
and hence
5 / / 1
571 me(x') = —Dy;(a", 2" N\) . (7.3.10)

Therefore the second term on the right-hand side of Eq. (7.3.8) is simply
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L <0+

;

0 ‘
i B (x;\) Dyj(2, 2" )\)’O_>

0 i 5 ,
(5 B (; \) D (@ ))+ 0_

8 '4 / PN
= s B*(a; N) Dy (2, 2" ) (0402 (7.3.11)

with Dy (2',2";X) denoting Dy;(z',2";\) with the fields x;(r) replaced by
(—i) 6/8.7{ (x).
All told, we may solve for (0 |0L;(x; A\)/OX|0-) in terms of functional deriva-

tives, with respect to the external sources, as applied to (0, |0_) directly from

Egs. (7.2.2), (7.3.1) and (7.3.5) - (7.3.11) by considering Eq. (7.2.2),

Li(x;)) = Bl A) + B (3 M) nj(z) + % B (x5 \) nj () me(x)

and

1 /0 .
+5 (5 @) (o) wto), (13.12)

and by substituting the above equation into the right-hand side of Eq. (7.3.1), to get

0 )
55 0:100) =1 (0,

/(d:c)(% El(a:;)\)‘0>

[ 55 B+ (55 B ) n

+5 (5 M ) o) . @13
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To find the second term on the right-hand side of the above equation we use

Eq. (7.3.6), and note that

(00| f1an) (5 20 miefo- )

(5 BN )

)

— / (o) (~1)—o— 2 Bz 0) (0. ]0.) | (7.3.14)

+

and find out that the last term on the right-hand side of the Eq.(7.3.13), by using
Eq.(7.3.8), is

(o

[} (a% B (a; A>) 15(2) ()

-5 [ <o+

)

+i<o+

From Eq. (7.3.10), we also have

0>] . (7.3.15)

(5 B 5J;(x)nk<x>)+

ne(x) = —Dyj(z,x; M), (7.3.16)
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and we get

b

/(dx) % <% B (x; A)) nj(@) ()

)

) %/(dx) [(_i)wg(x)(_i)dﬁ(x) ) B7*(a; A) (04]0-)

N
-5 [ [<—l> 37 V7 o PN 0410

.0 ,
—iay B*(2; \) Dl (z, ;) <0+|0_>] . (7.3.17)

Upon substituting Egs. (7.3.14) and (7.3.17) into Eq.(7.3.13), we obtain the

chain of equalities:

) . 0 o i
gy (0+10-) = 1/(dx){a—AB<fc;A>+(1)

. 0 "Gk (. ! .
—igy B* (3 \) ij(x,x,)\)} } (0410-)
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—i % B7*(z; \) Dy (w, x; )\)} } (041]0-)
= 1/(dx){ L,% B'(z;\) + T]j(x)(%\ B (x;)\)

+ % n;(z) nk(:v)a% B7*(a; A)}

i a /5 /
~5 o B*(x; \) Dy (w, a; A)} (0410-)

- [i/(dx) %(B’(m; A) + nj(x) B (z;A)

5 my() o) B9 )

+%/(dx) ((% B/jk(x;)\)> Dij(x, x; A)] (0410-)

0 . O
i (04]0-) = [1/((1@5 Lr(x; A)

+%/(dx) ((% B/jk(x;)\)> Dz, x; A)] (0410-)

(7.3.18)

where £ denotes L;(z; \) with x;(x), n;(x) replaced in the latter by (—i)d/0.Ji(x),
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(—1)0/6.J)(x), respectively.

Upon integrating Eq. (7.3.18) over A from O to 1, give through the initial equation
0 . 0
oy (0+10-) = [1 /(d:v)a Li(x; )

+%/(dx) <% B’f’f(x;A)> Dy(z, A)] (0410-) ,

(7.3.19)

the integral expression

50, ]0_) = ol (de)2- ()
0 )

#3 [0 (55 87 G) D;j@,x;A)] (0:10-) .
(7.3.20)

or,

(0, ]0.) = exp { /01 d [i/(dx)% £ (o A)]
+ /0 " B / (dz) ((% Bt )\)) D,’Cj(x,x;/\)} }<o+|0_>0

~ exp {1 / (dz) £} ()

i % /(dx) /01 d\ <% B'j’“(x;)\)> Dy(x, z; /\)} (0+]10-)q -

(7.3.21)
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That is, we have

(0,10.) = exp [i [ @) £ite)

+ %/(dx) /01 dA (a% B’J”f(x;A)) Dj;(z, A)] (0410-),

(7.3.22)

where (04 |0_), is governed by the Lagrangian density [L(z;0) + Ji(z) x;(x) +

J(x) m;(2)] in Eq.(7.2.1), and L;(z) = L4(x;0), with the latter defined below
Eq.(7.3.18).

Equation (7.3.22) provides the solution for the generating functional (0, |0_) in

the presence of external sources. We thus see that for interaction Lagrangian densities

such that OL;(x; \)/OX are quadratic in dependent fields (OB7*(x; \)/ON # 0), as

described above, the rules for computations, via the generating functional (0, |0_) are

modified by the presence of the multiplicative functional differential operator factor

1
exp B /(dm)/ A (a% B’J'k(x;A)) Dy (x, x; )\)] . (7.3.23)
0

7.4 Applications to Abelian and Non-Abelian Gauge Theories

As special cases of the general Lagrangians described through Eq. (7.2.1) and

developed above, consider non-abelian gauge theories with Lagrangian densities
L=L+Ls, (7.4.1)
L= 1 GG+ o [0y — 57 0,0] — mols + goby, A (142
- 4 MY a 21 M PY Py 12 mo g(] fy;,t ) ST

Ls=pp+ipp+ JLAS (7.4.3)
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Ap= Aty Gl =0, A, — 0,4, — igo[Au, A | (7.4.4)
G = Gty | (74.5)
Gy, = OuAL — 0, A5 + go f*" AL A (7.4.6)

The t* matrices are generators of the underlying algebra, and the £, totally anti-

symmetric, are the structure constants satisfying the Jacobi identity
[te, 1% = ifebete . (7.4.7)

Lg is the source term with the J# classical functions, while p, p are so-called anti-
commuting Grassmann variables.
Upon setting
Ve =60, + go f*VAS (7.4.8)

working in the Coulomb gauge 9; A’ = 0,7 = 1,2, 3, and introducing the Green opera-

tor function D*(x, 2'; go), satisfying
[69°0% + go f** AL O, Dz, 2'; go) = 6*(x, 2) 6%, (7.4.9)

k = 1,2,3, one may solve for G’;O (see, Limboonsong and Manoukian, 2006) as fol-

lows. First we note that in detail

[~
I

L+ ﬁs ,
1 a v 1 7y / /) )
L = —1 GG+ o [0y — 03" 0,] — mouth + gothy, A

P+ D+ JEA (7.4.10)
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and the action is given by

W= () Lia)

- [

1 1 . .
~1 GGy + 2 [0, 07" — Py O] — mopyp

—

+ g0y, AP + P+ Pp + J;:Az} , (7.4.11)

with its variation having the general form:

1 1 - - _
ow = [ <dm>{ — 1 O(GRGE) + o B0, — 57 0,] — mod($0)

+90 6 (P, AMY) + p 6 + 5(P)p + JSMZ} : (7.4.12)
For the first term on the right-hand side of the above equation we have
1 1
—1 G, GhY) = ~1 (GZV 0GEY + GHY G, )

pur~"a pv

_i (G 0 (0"AL — 0" Af + g0 f " A AY)

FGHS (9, AL — 0, AL + go fe AL AL)]

_ _i (G2, 00 AL — G AL + go [ G, 5(ALAY)
+G,0,0AL — G 0,6 A% + go f*°GH 5 AL AL)]

1 y a v a abe a v
=~ [GLO0A7 + GLY 0,045 + gof "G, 0( AL AY)

FG 0,048 + G 9,0 AL + go f G §(ALAS))] .
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That is,
L(Ge,Gr) = — L [4G10,6A0 + gofoteG, S(ALAY
_Z_l ( uv a) - _Z[ a YK V+gof p,l/( b c)

+g0f G (ALAL)] (7.4.13)

By using the identity A0B = 6(AB) — (0A)B we have

Gh0,0A, = 0,(GE70A;) — (0,GEY)0 A (7.4.14)
and
/(dx) 0,(GR6AY) = %dEu GO A
= 0, (7.4.15)
leading to
G 0,0A; = —(0,GL) 0 A, . (7.4.16)

Upon substituting Eq.(7.4.16) into the first term on the right-hand side of

Eq. (7.4.13) gives

1
_211 3G, GY) = = [FA0.G) AL + gof ™ Gy, S(ALAY)

pur~"a

+g0f* G}, 0(AFAY)]

1
= 40,6 543 + 290" G, S(AFAY)]

1
= (9,G") JA% — 5 9o fabe G, 6(ALAY)

1
= (GuGe") 0A] = 5 gof ™ G [0 AL + (5A7) AT
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1 1
= (0,GL") 6A; — 3 gof " G, ALY S AL — 3 gof " G, (8 A} AL
1 1
= (0,G") JA% — 5 90 febe An G, 6AY — 5 90 fe(sAny Gge A

uv<tc

1 1
= (0,G8") 0L — 5 g™ AL G, AT — 2 gof"°(5A%) G}, AL

purte

1 1
= (0,GL") 0A; + 3 gofocb AH wa A, — 3 Gof*P(0A") Gb AV

pr*te
— (0,GM) DAL+ & gofTA G SAY + & g0 fN(OAT) GO, AV
- n~"a v 2 9o c uv a 9 9o

pve e

or
= 5(G“ GH¥) = (9,GH) SAL + gof*PALGY, SAY. (7.4.17)

ur~"a

For the second and the third terms on the right-hand side of Eq. (7.4.12), we get

52 010t ") = & VO] — mo 84 )
= {5 VY] = 6(4h A1) } — moldh 8¢ + (39)¢]
= [OuD) 7 50+ 5(0,0) 4 — & 2 S(0,) — 69 1*(0,0)]
—moh 6 —mo(3¢) ¥, (7.4.18)
Finally for the fourth term on the right-hand side of Eq. (7.4.12), we derive

0 0(0 v AP) = gol 7 AP + 6(¢ 7, A

= 9o{¥ 1A 0y + [ 7.(04") + (09) 7, Ao}
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= o[t VA" Y + b 1 (SAM)Y + (60) v, AMY]

90 (0 v A*Y) = gob 1, APSY + gotp vu(8AM)Y + go(60) v, AMY

(7.4.19)

Upon substituting the above equalities into Eq. (7.4.12), we obtain
oW = [ (@)@ AL+ g0 T ALGE, 542 — maod — mo(53)0
o[B80+ 8(0 )y — 075(0,0) — 60 (9,0
+9007u A" 0% + goty, (0A") + go (09, A"
+p 60 + (5)p + Jg‘(SAZ} . (7.4.20)
We recall that the canonical momenta conjugate to A* defined by
ow ow

b= glA*] = — = . 7.4.21
s m[AH] 5, 500 A, ( )

Consider the first term on the right-hand side of Eq. (7.4.20). To this end we have

/ (de)(9,G) 5A° — / (de) [(8,GH0) 643 + (8,GH*) 6AT], k=1,2,3

= /(dx) [(0,G1%) 6AF + (9,G1%) (6% — 5’“32—) 0A?

3

_ / (dz)[(8,G) 543 + (9,GH — g— 0,G3) § A% |
3
) (0,67 64 = [ (da)[ — GH08(9,4%) — (G — D3y (9,40
1 1410 B 1
3

(7.4.22)
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The canonical conjugate momenta, 7’ are given by the equations

e =
“ d(0pA%)
&
— _GOZ i G03
a + 83 a
o0 9 5
= GY——g", (7.4.23)
03
and, for the dependent fields A2, A3:
=0 ™ =0. (7.4.24)
That is, we may write
T = G — 95 g 0,GO (7.4.25)
Upon multiplying Eq. (7.4.25) by Vfﬁ gives:
Vil = VRGH — Vo g 0,GY (7.4.26)
From the field equations,
VG = —(0"50% — g™ 0. DN IS + goy )] (7.4.27)
VG = —(6%0" — g" 9,.D"*V)J + goty L] (7.4.28)
=0
VG = —J) = oty "t (7.4.29)

we may rewrite Eq. (7.4.26) as,

Vit = —Jy — goun "ty — V05 " 0,.GYY (7.4.30)
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and also

V0o g 0GY = —Jy) — gty — Vitwh (7.4.31)
VRO g 0,G = —J) — oty — ViR (7.4.32)
VO, 051G = —J) — gopy Pty — ViR (7.4.33)

Using Eqgs. (7.4.9) and (7.2.16) - (7.2.18), we derive that

051G = —Dy[JP + gty + V1 (7.4.34)

Substituting the above equation into Eq. (7.4.25), gives

= G g 0D [T + gothn typ + VO] (7.4.35)
GO = 7t — g0 Doy [J0 + gotn ty) + Vo] (7.4.36)
Gy’ = 75— WDalJy + gonte) + Vitmy] (7.4.37)
GM = —OuDyJ) + FF. (7.4.38)

written in a matrix notation, where F* is not an explicit function of the dependent fields

and of the external sources. From the very definition of G’;O in Eq. (7.4.6), we also have

G, = 0.AL—0,A% + gofALAS

[k 2

G = 9FAO — 50 AF 4+ goFre AR AO (7.4.39)
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RGO = 0,0F A0 — 900, A% + go e AF O AD
= §PO%A) + gof* P AL A}
= [670% + go f*PALOL) A
G = VG AY (7.4.40)
Hence we may solve for A to obtain
0 1

AV = 0,.G*O 7.4.41
b 00+ gofet AL " ( )

Now we substitute Eq. (7.4.38) into above equation to obtain

1
A0 = O(=0"Dgy JY + F*
b [5ab32 + gofecb AS O] h ( vy + Fy)

1
= —0°DyJ) + O FF)
[5aba2+gofachiak]< bJp + k a)

A = —Dy8’D,J° + K, , (7.4.42)

where K, is not an explicit function of the external sources.
Now we show that the time derivative 9y A may be solved in terms of A? and

the independent fields themselves. To this end, we note that

GE = MAL — QUAL + g [ ALAY

AL = OFAY 4 gof*CALAY — G (7.4.43)
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PAE = A+ gofreAL AL — GO

= 5ab8kA2 + gofad’Afng — GI;O

= (0apOk + gof“”A’j) Ag - G’;O )

AL = VEA)-GE (7.4.44)

and from Eq. (7.4.42) we also have

Dyed Dy = —(A) — ), (7.4.45)
1
8°D.,,J° = —(A-K,), 7.4.46
00 0” + G0 P ATD,] o = TA-K) (7.4.40)
0°D.,J° = —[0p0% 4+ gofPALOL(A) — Ky) , (1.4.47)
Dot = —[5;#% Fedb 440,1( A9 — K

= 108" 4 5 6T ALDL) (A~ K)
= [Dea + % FeB 499,15 (A° — K,)
Dead? = —[b0+ % FPALDN (A0 — K,) . (7.4.48)

Accordingly, Egs. (7.4.44), (7.4.48) and (7.4.38) lead to the following expression
for 9° A¥:

PAE = T AD_ Gho

= VEA) — [-0"DyJ) + FF
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= VA +0FDyJ) — FH

a

1
= VhA) — 0 0a + 3 9o “CALO) (A — K,) — FY

1
= (60" 4 gof*PAR)AY — 0" [0ap + 77 % A0, (A° — K,) — FF

= S0 AY + gofrPARAY — 975,, A + 8K 5 K

ok b ok b .
5 Gof* A5 OLAL + 2’ o f*ALOK, — F,

oF
= gof*PAEA) — 57 %0 frPALOA) + L)

ach k a 0 acb 8k l 0 k
01k __ acbi Ak il o ak l 0 k
9 Aa - gﬂf [Ac 82 62 A ] alA + La 5 (7449)

where LF has no explicit dependence on the external sources and on the dependent fields
A9
Now we substitute Eq. (7.4.6) into Eq. (7.4.2). For the first term of Eq. (7.4.2),

we have
1
SO = (0L~ QLAY+ o[ ALA) (O A — 0 A+ g0 ALAY)

1 1 1
=~ OuALO" AL+ 10, A0 AL — 2 (0, A0) g0 [ AL AL
1
0, AL AL — La, ALV A 4 = (a A%)go fe AL AY
1
_ZgofabcAZAi(aMAV) + ggf“bcAb A¢ (8VAM)

1
— o f e AL A AL AY
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1 a v 1 a v 1 v abc Ab Ac
= —L—lﬁuA,ﬁ“Aa — ZGHAV{?“AG — Z(@“Aa)gof ALAY
Lo, Asor AY — 2o, Asor ar — (0 a7)g, pobe a0 A
_ZMV a_ZMV a_Z( a)gof uwty
1 abc Ab Ac AV 1 abc Ab pAc (v
+Zg0f A,uAy(a Ag) + ZgOf A,uAu(a Ag)
1 abc 2Ab ACAILAI/
_Z(gof ) pnt vt th c )

1 1
—LGLG = QAL — (0" Ao f AL

4 uv a
1 1
+§gof“bCAZAi(6”Ag) — Z(gof“bc)zAZAﬁAgAZ ) (7.4.50)
That is, we may write £ as

1 1
L = —0,A,0"A; — 5(8“Ag)gof“bcAZA5 + §g0f“bcAZA§(8”Ag)

1 1 _ _
—Z(Qofabc)zAzAiAfAZ + 5[(@#@7’% — Y0,

—motp + goy AMY (7.4.51)

and

0 0 1 1
— o aqp AV _ T (A AV abc pb fgc - abc A\b AcrAav AR
70 - _390{ DAL AL = S(O" AD)go ™ ALAT + Sg0 A} AL (0 AL)

1 1 _ _
—Z(gofabc)zAZAiAf;AZ + 2—[(3u¢)7“¢ — "0,

i

—moYy + 907;%14“7?}
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_%(a“AZ) foheAbAC + % fee AL AL (0" AY)

2 g AL AT A AL 4 A

_% frALA (0" AL — 0" A + go f*CAYAL) + Py A
_% fabe A ACQ 1y Abop

wtv~a

1 -
5 (resasey + preagasl) + i

1 aoc Cc aoc c aoc Cc
5 (£ s G+ FAAGY 4 o ALY

=0
+f“bcA§1AfG'Zl> + U A
5 (Fbasn & g asale + Al
+Yy, A
_% (fabCA;)AnglO 4 fabCAZAgGl;O 4 fabCAZAfG§l>
ey At
5 (27 apaga e aaic) + it

1 _
—frbeAb ASGRO 3 fobe AL ASGR 4 oy, AP (7.4.52)
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Finally we record the above expression in the form

1 _
% L = —freAb(ASGHO - §A§G’;l) + by, AFp (7.4.53)
0

From the definition of G*° in Eq.(7.4.6), and the fact that 9° A* may be expressed in
terms of the AY, as shown in Eq. (7.4.49), and the independent fields themselves, we see
that Eq. (7.4.53) is quadratic in the dependent fields AJ.

The structure G’;O in Eq. (7.4.6) may be expressed, from Eq. (7.4.49), as a linear

function of the dependent fields A?, and directly from Eq. (7.4.38) we have

G = —0*DyJ) + FF
= —0° Dy J¢ + FF (7.4.54)
0 kO 0 !
5T G = =0, OxDa(x,2';90) - (7.4.55)
b

Hence Eqgs. (7.3.1) - (7.3.4), (7.3.6), (7.3.8), (7.4.53) and (7.4.55) give

furds )

1
[ = rmaase + Saic)

9 0,00 = i<o+

dgo

Wwfl%} ‘0—> :

0
—(04+10-) = 1(0
0oy = (o,

[ (= seapagor

1 _
—Qf“*’CAZA,CG’;l + wmA%) ‘0_>. (7.4.56)
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The first term on the right-hand of Eq. (7.4.56) may be rewritten as

i<0+ 0_>

= —i / (dz) fe AL (04 (A5 GEO)L]02) . (7.4.57)

[ (= s apager)

Using the quantum dynamical principle, we have from Eq. (7.3.4) that

Y . )
(04 |(A§ GENL]02) = (1) =5 (04 |GE|0-) +1( 04 | =5 GE{0_ ) . (7.4.58)
0J¢ 0J¢
On the other hand, from Eq. (7.4.55) we also obtain
6 kO 0 !
W Ga = =9 v akl)ab('l‘?a7 a.g[)) )
b
0 ko 0 /
m Ga = —0 0 akDac(xwr ;90)
= —0pD,. . (7.4.59)

That is, we have the equality

(04 (A5 GEY4|0-) = AFGL (04 ]0-) =i D, (w,75.90) (04 [0-) . (7.4.60)
We note that

i <OJr 0_>

= —i / (dz) fee AL (04 | A5 GE0l0_)

ﬂMWWM%W%

= =i [ ()AL [ATGE (04 0-) = 0D (o3 0) (02]0-)
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= / (dx)[—if“bcALbAécG;ko (04 10-) = fr AL ORDl(, 25 90) (04]0-) | -

(7.4.61)

The second term on the right-hand side of Eq. (7.4.56) may be also rewritten in

the form:

(0.

[ (= groaacy)

)

_ _% / (dz) febe A} <0+ (A; G’;l) ‘o_> . (7.4.62)
+
From Eq. (7.3.6), we then have
o (4c6) o) = (=)= &M o, (o 7.4.63
|(ArGl) Joo) = (55 G040 (7.4.63)

Upon substituting the above equation into Eq. (7.4.62), gives

i<o+ / (dz) (—% f“bCAgA,CG’;l) ‘0_>
_ _% / (dz) fabCA;f<o+ (45 G’;l>+‘0_>

i !/ !/ !/
=~ [ @ ARG 0 o)

— / (dz) {—% feALALGH (0, | 0_>} . (7.4.64)

Finally for the third term on the right-hand side of Eq. (7.4.56) we have:

(0

[@ina

0-) = i [ (0. [praelo-)
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— i f(a [(—o& (0 | ta0]0-)

A (o )|

J

5T (" tar)

=0

or

(0.

Equations (7.4.61), (7.4.64) and (7.4.65), allow us to rewrite Eq. (7.4.56) as

[nira

0_> = / (da)ig'y"* AL’ (04[0-) . (7.4.65)

/ / / 1 ! !
e (0010} = [ (an)| i (A5Eie + arc)

ALY — [0 A D (. go>] (05]0.)

= |1 f @0 o e

- / (dz) be“A;f(:c)é)kD/“C(x,x;go)} (0.0}, (74.66)

where A? = (—i)d/§JF. Upon using the definition of D (z,2’; go) in Eq. (7.4.9), and

integrating Eq. (7.4.66) over gy, and using a matrix notation

1 ab
— | |0_ 7.4.67
<32 - igOAkak)’ >} ’ ( )

Tr [f] = /(dx)f“a(m,x) , (7.4.68)

Dab($7$’390) = [<0+

the notation
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and the fact that f*@A% = i(A},)®, we have from Eq. (7.4.66) the important result:

0oy = [i [ o - [0 .0

dgo g0 0% —igo A0,
~ {i [an g o+ 1| m oo
(7.4.69)
/5(O+]O> = exp {/590{ / (dz) aigoﬁ(x go) + Tr [%]}]
X (0410-), (7.4.70)
which integrates out to
.10 = e i [ (a0) 210
x exp TrIn [1 — 18—A’ 8k] (0410-), , (7.4.71)
we obtain the modifying Faddeev-Popov multiplicative factor
exp TrIn { go Al akl . (7.4.72)

The general derivation given above for interaction Lagrangian densities such that
0L (x; X)/OX may be expressed as quadratic functions in dependent fields involves no
symmetry arguments. As a matter of fact, we may consider the addition of a gauge-
invariant breaking term glAgAZsz /2 to the Lagrangian density in Eq.(7.4.2) which
is again quadratic in A? and presumably contributes to the generation of masses to
the vector fields through a non-vanishing expectation value of 1)1). A detailed analysis

shows (see, Limboonsong and Manoukian, 2006) that the modifying extra multiplicative
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factor to exp(i [(dz) L}(x)) (04 |0_) |o occurring in (0, |0_) is given by

1 [ T
—=Trl 1
exp{ 5 rn( +V;81(32)1V;€ak¢¢)}

x exp Trln (1 - igO%A;ﬁk> , (7.4.73)
where ¢/ = (—i)6/6p, ' = (—i)6/6p, and L/, is the new interaction Lagrangian density
functional differential operator expressed in terms of functional derivatives with respect
to the external sources.

We have seen, within the functional differential formalism of quantum field the-
ory in the presence of external sources, that interaction Lagrangian densities L£;(z; \)
such that 9L;(z; A\)/O\ may be expressed as quadratic functions of dependent fields
(i.e., B (x; \)/OX # 0 in Eq.(7.2.2)) and arbitrary functions of independent fields,
necessarily lead to modifications of the rules for computations, via the generating func-
tional (0. |0_) as a functional of the external sources which are coupled to the fields,
and no appeal was made, through the analysis, to path integrals. The general expres-
sion for such a modification is given in Eq. (7.3.22) as a functional differential operator
occurring as a multiplicative factor in (0 |0_). Such Lagrangians play central roles in
fundamental physics and present renormalizable gauge theories fall into this category.
It is important, however, to emphasize that such modifications are not tied up to non-
abelian gauge theories, through the emergence of so-called Faddeev-Popov factors, as
one might naively expect, but apply to theories which, in general, are quadratic func-
tions in dependent fields as described above. As a matter of fact the addition of a gauge
term breaking term in the form (g;/ 2)A“AH1MJ to the interaction Lagrangian density
of QED (abelian gauge theory), which is again quadratic in A°, leads, according to

Eq. (7.4.73), the following extra functional differential multiplicative factor

exp {—%Tr In (1 n %‘Wﬂ , (7.4.74)
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multiplying expli [(dz) L£}(x)](04+]0_),, where L(x) is the new interaction La-
grangian density functional differential operator including the additional term just men-
tioned as a simplified version of Eq. (7.4.73). That is, a non-trivial modification arises
even for such an abelian gauge theory. The technical question now arises as to what
happens to model Lagrangian densities that one may set up which are cubic or of higher
order in dependent fields in the sense investigated above. The main complication with
such theories becomes obvious by noting that the correspending Green function opera-
tor function to the one in Eq. (7.2.13) will now depend on dependent fields themselves.
Accordingly, when we apply the corresponding rule in Eq. (7.3.8) for finally express-
ing the matrix element (0 |(0L;/0\)|0_), as a functional differential operator, with
respect to the external sources, to be eventually applied to (0, |0_), the expression
om (") /873 (x") will again depend, rather non-trivially, on the dependent fields 7, ().
This makes the procedure of expressing the matrix element just mentioned as a func-
tional differential operation to be applied to (0, |0_) quite unmanageable. Such field

theories require very special tools and will not be considered here.



CHAPTER VIII
CONCLUSION

In this final chapter, we summarize the main results developed, proved and ob-
tained in the thesis. We were guided by the structures of all present Lagrangians
in quantum field theory describing the dynamics of elementary particles in High-
Energy Physics to systematically study, prove and establish rules for the construction
of the vacuum-to-vacuum transition amplitude in the functional differential formalism
of quantum via the application of the Quantum Dynamical Principle in the presence
of constraints and in the presence of external sources, where necessarily and a pri-
ori no conservation laws are imposed on these sources so that all of their components
may be varied independently. In particular we note that the entire analysis and all the
general Lagrangians considered in this work are physically relevant. The reason why
constraints are considered here is that all of the Lagrangian describing the dynamics
of elementary particles are gauge theories. In gauge theories, a gauge constraint then
necessarily arises. Throughout, we work in the so-called Coulomb gauge for the mass-
less spin 1 gauge field to ensure the positivity of the underlying Hilbert space and that
only two polarization states consistly exist for the gauge field. Before carrying out sys-
tematically constraints in the differential formalism of quantum field theory, we have
also developed rules for computations in quantum physics with constraints, again in
the differential formalism, and explicit expressions for the transformations were devel-
oped. The rules developed are as follows: [1] In developing the rules to follow, we
were inspired by the situation occurring in quantum electrodynamics in the Coulomb
gauge. Suppose we are given a Hamiltonian H(q, p) as a function of independent pairs
of canonical conjugate variables {¢;, p;,i = 1,...,n} = {q, p}, thatis, it is defined in a
phase space of dimensionality equal to 2n. We are also given a set of pairwise commut-

ing operator functions {G;(q(t), p(t)),j = 1,...,k} of these variables. These allow
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us to describe the dynamics of any Hamiltonian H(q, p, Q, P) in, a priori, 2(n + k)

dimensional phase space in which constraints are imposed given by

Qj<7—> _Gj(q7 (T>7p(7—)) = 07 j = 17'-'7k7 (801)

for all 7 in an interval [¢', t], with Q = (@1, . .., Qk), for which P = 0, such that

H(q,p,G(q,p),0) = H(q,p). (8.0.2)

The transformation functions (q, Q,t|q’, Q’, ') of the constrained dynamics is

given by
. t _ /\
(aQt|d'Q't") = exp (—% / dr H’(T)) (@Qt|d'Qt)y |,  (8.0.3)
v
where
1) ih )
'y I\ sk [ iy Y e (k) ( " ¥ 14/
515 = (it 1) 8 (gt )ttt 4
(8.0.4)

A=6F (Q—Q’—/;de(T)) exp (i Q-[drf(r))
X exp (—fl_L /t 4 /t " s(r) -f(T)) , (8.0.5)
il =5 (a-d - [ arse)ew (- [ arr)

: t T
X exp (—}i_b /t dr /t dr' S(r) -F(T’)), (8.0.6)

and the vertical bar | in Eq. (8.0.3) refers to the fact that all the external sources are

St |

to be set to zero after all the relevant functional differentiations have been carried out.
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§F) (—ind /of(-) — G'(-)) and 6 (ihd/(27h)ds(-)) in Eq.(8.0.4), as arising from the
conditions in Egs. (3.2.44) and (3.2.45), refer, each, to the product of k-dimensional

deltas with 7 running over all points in the interval [t t], i.e.,

s¥(D() = [ 6" (D). (8.0.7)

t' <7<t

The numericals Q, Q' are defined as follows:

Q = Qn)

Q = Q)

where Q°(7) is the classical function

c (at|G(a(7),p(7))ld't)

) (at|q't’) ’

and in detail
1 i 7
Q) = i G ([ a1 ) tatla, |
where
1o B o .. 0
H'(r"Y = H ( 1h5F(7_/),1h58(7_/)) : (8.0.8)

obtained from H(q, p) by replacing q, p, respectively, by —ihd/6F(7'), ihd/0S(7'),

while

as similarly obtained from a Hamiltonian H (q,p, Q, P). We note that because of the
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equality in Eq. (8.0.2), we may replace H'(7) in Eq. (8.0.3) by H'(7) as a consequence

of the constraints imposed by the delta functionals:

5" (—ih(sfi') — G’(-)) 5" (%55(1')) : (8.0.9)

in Eq. (8.0.4).
The procedure for describing the dynamics of a Hamiltonian H (q, p, Q, P) with

constraints may be summarized through the following:

N N e’ constraints
Phase Space of Phase Space of
dim(2n) dim(2n + 2k)

with the transformations functions of the constrained dynamics with Hamiltonian
H (q,p, Q,P) given in Eq.(8.0.3). [2] On the other hand, suppose, we are given a
Hamiltonian H (q, p) as a function of independent variables q = (¢i, - . ., ¢,) and their
canonical conjugate momenta p = (py, ..., p,), we consider a new system by defining

constraint operator functions

G(q(7).p(1)) = {Gi(a(r),p(7),....Gi(a(r),p(7))} (8.0.11)

as of pairwise commuting operator functions G,(q(7), p(7)), which together we intro-

duce canonical conjugate momenta for them

~

G(a(r),p(r)) = {Gi(a(r),p(7)),...,Gk(a(r),p(7))} , (8.0.12)

such that

G(q(),p(r)) = 0, (8.0.13)
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G(q(7),p(r)) = 0, (8.0.14)

for all T in the interval [t', ¢].
The new Hamiltonian of the constrained dynamics is then defined by

H(q",p*) = H(q,p) (8.0.15)

G=0,G=0

and Eqs. (8.0.13) and (8.0.14) define the constraints, and with (q,p) — (q*, p*, G, G)

defining a canonical transformation, i.e., the Jacobian of the transformation is unity:

d(q,p)

J = ‘ i
J(q*,p*, G, G)

' =1, (8.0.16)

as obtained within a classical context.
The procedure for describing the dynamics of the new constrained dynamics

with Hamiltonian H(q*, p*) may be then summarized through the following:

H(q,p) —  H(a,p)| . =H(,p"). (8.0.17)
—— N G=0,G=0 5

Phase Space of Phase Space of
dim (2n) dim (2(n — k))

Given the Hamiltonian H (q, p) with the constraints Eqs. (8.0.13) and (8.0.14)
now imposed, the transformation function (qt|q't’), with the q (and similarly the q')

not necessarily independent variables is then given by

(atqt)e = % (—ih(sfi.fG/(')) o <—m§fi_))

<" ((271rh) (m 5:(.> B Gl”)) " ((21?71) 555(‘))

X exp <—%// dr ]:]’(7')) <qt | q/t/> <Qt ‘ Qlt/> ’ (8018)
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where

N A Ry )
H'(7) _H( 1h5F(T),1hés), (8.0.19)

ilat) = (a-a - [(ars ) eo (fa- [ arFe)

. n ‘
X exp <_%/ dT/ dT/ S(T) . @(7— _ Tl)F(T’)) 7 (8020)
t! t

ey =t (Q-a' - [ s e (10 [arte)

ot ¢
X exp <—%/ dT/ dr's(t)-O(r — 7'/>f<7'/)) : (8.0.21)
t/ t/

and the numericals Q, Q' are defined as follows:

Q = Q)

=0, (8.0.22)

Q = Q) =0, (8.0.23)

where Q°(7) is the classical function having the expression

(at|G(q(7),p(7))|d't)

= 0. 8.0.24
(at|q't’) ( )

Q(r) -

The analysis carried out in quantum field theory, is in the functional differential formal-
ism as well. We have first investigated the origin of the classic Faddeev-Popov factor.

To this end, we consider first the generic Lagrangian density:
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Ly = L+ Ly (8.0.25)
P = =5 GO + LD — 0] — mady

+ gotpy, A" (8.0.26)

Ls = q+yn+ JLAL, (8.0.27)

A, = Alte . Guw = 0,4, —0A —iglALA],  (8.0.28)

G = Gita, (8.0.29)

Go, = 0uAL—0,A% + gofAL A (8.0.30)

The ¢ are generators of the underlying algebra, and the %, totally antisymmetric, are
the structure constants satisfying the Jacobi identity, [t%,t’] = if**“t°. Note that A,
is a matrix. L is the source term with the J; classical functions, while 7, 7 are so-
called anti-commuting Grassmann variables. We have worked in the Coulomb gauge
OkAY = 0, k = 1,2,3. The multiplicative factor in the exact vacuum-to-vacuum
transition amplitude was then derived in the functional differential formalism to be
det [1 —igo % A;ﬁkl, where A% (x) = —i§/§J2(x), and A; = A2t*. We have then
considered a generalization of the Lagrangian density in Eq. (8.0.26) which is still gauge
invariant and requires a modification of the Faddeev-Popov factor just given. The La-
grangian density is given through the following: We consider the modification of the

Lagrangian density .Z’in Eq. (8.0.26):
L — L+ Y6, G = 2 (8.0.31)

which is obviously gauge invariant under the simultaneous local gauge transformations

in Egs. (6.1.7) - (6.1.9).
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The Lagrangian density £ = £ + Zs, where %5 is defined in Eq. (8.0.27) ,

are given by
Lr = L+ Ls
1 a v 1 7 n y /s
= —1GLG + 5 [(Ou0)V 1 — Py Buap] — mothh + gotpy, Ay

FXPUG, G + i+ pn + JLAS (8.0.32)

The corresponding vacuum-to-vacuum transition amplitude (0 |0_) was then derived

to be
(0410-) = ™ exp {M / (da)'(2)¢' ()G, (2) Ga () | (0410-)5 » (8.0.33)

where
M = - / (dz)(dz) 6*(z — 2) In [1 — AN/ ()¢ (z)] K'(z,2), (8.0.34)

and (04 |0_),_, is the vacuum-to-vacuum amplitude corresponding to the Lagrangian
density 7 in Eq. (8.0.25) involving the FP factor det [1 — igo % A;ﬂk} That is,
the familiar FP factor gets modified by a multiplicative factor exp[iM'] for the gauge
invariant Lagrangian density .Z} in Eq. (8.0.31).

On the other hand for an interaction with a gauge breaking term:

Sy = $T+5A“A#W, (8.0.35)

2 m

where from Eq. (8.0.25),
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S = 3 GG+ o (OB — O] — oy
+ g0t AP + T 4 + JEAS + AAaszp (8.0.36)

we derive for (0 |0_), the expression

7 _1 A NN
(04]0-), = exp{ 2Trln(1+V;@l(BQ)_1V§€ak¢¢)]

i\
xexp[z / (dx)A’“A’“wwl (0,100),, ) (80.37)

showing an obvious modification of the FP factor with latter occurring in (04 |0_),_,. It
is most interesting to note that even in abelian gauge theory, that is of QED, the addition
of a gauge breaking term \A, A*1)/2 to ZLopp generates a modifying factor. From

Eq. (8.0.37) this may be read to lead to
1 A N
(04]10_) = exp —§Trln 1+§¢¢

\ B
cowp (i [ (@) [ Zmota) + 5 A5 )
% (04 ]0_), (8.0.38)

where (04 | 0_), is the vacuum-to-vacuum transition amplitude of electron free electrons
and photons.

Finally, we have realized that all the Lagrangians density in quantum field theory
of elementary particles are at most gquadratic in the dependent fields. This is true even
for the generalizations of such interactions as we have discussed above and accordingly
we have established and proved the following theorem: Consider Lagrangian densities
which may depend on one or more coupling constants. We scale these couplings by a

parameter \ which is eventually set equal to one. The resulting Lagrangian densities
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will be denoted by L(x;\). The class of Lagrangian densities considered are of the

following types
L(2;0) = L(2;0) + Lr(2;\) + Ji(z) xi(2) + T (2) n;(z) (8.0.39)

where ;(z) and 7;(z) are independent and dependent fields, respectively. Ji(z), Jj(z)
are external sources coupled to these respective fields. The interaction Lagrangian den-
sities sought are of the following forms

Lr(x;\) = B(x; \) + B (5 \) nj(z) + % BI*(x; \) n;(x) ne(z) (8.0.40)

with L;(z;0) = 0, where

OB(x;\)  0BI(x;X)  0B*(x;))  OBM(x;\)

ox 7 ox o)) ox 7 (8.041)

may be expressed in terms of the independent fields, and the latter two may involve
space derivatives applied to the dependent fields 7;(x). By definition, the canonical

conjugate momenta of the fields 7;(x) vanish. That is, formally,

OL(z; )

=\ 8.0.42
900, (2)) (8042

Then we have the explicit solution:

(0,10_) = exp {i [ £

n %/(dx) /01 dA (&% B'jk(x;A)) Dj;(z, x; A)] (0410-)g

(8.0.43)

where (04 |0_), is governed by the Lagrangian density [L(z;0) + Ji(z) x;(x) +
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JJ(x) n;(2)] in Eq. (8.0.39), and L} () = L} (z;0).

Equation (8.0.43) provides the solution for the generating functional (0 |0_) in
the presence of external sources. We thus see that for interaction Lagrangian densities
such that OL;(x; \)/ON are quadratic in dependent fields (0B (z; \)/OX # 0), as
described above, the rules for computations, via the generating functional (0 |0_) are

modified by the presence of the multiplicative functional differential operator factor

1
exp E /(dx)/ dA ((%\ Bljk(‘f?}\)) D;cj(xax; /\)] : (8.0.44)
0

All the present Lagrangians in gauge theories of elementary particles are special cases
of this theorem including the more generalized theories we have developed in the bulk
of the thesis. Special applications of Eq. (8.0.44) were given in Sect. 7.4. We close this
chapter by pointing out that one of the greatest challenge is to handle rigorously, at the
level of the present work, quantum theory of gravitation where the Lagrangian density
in the dependent field (in a Coulomb-like gauge) is not quadratic not even cubic but of

infinite order!
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Explicit functional expressions are derived for the number of eigenvalues of a given poten-
tial as well as of their sum. These functional forms involve direct functional differentiations
of a given functional written in closed form. The expressions are obtained from trace func-
tionals which allow, in the process, of a direct Fourier analysis.

Over the years, upper bounds have been derived for the number of eigenval-
ues, falling within specific ranges, for given potentials. The first bound was due to
Bargmannl) who worked with spherically symmetric potentials and, in the process,
obtained a bound depending on the orbital angular momentum. This was then ex-
tended by Schwinger? for more general potentials, not necessarily spherically sym-
metric, and a similar result was obtained by Birman.?) Related upper bounds have
been also derived by others, cf. Ghirardi and Rimini.¥) The most significant appli-
cation of the Schwinger bound for the number of eigenvalues of a given potential,
or more precisely of the negative of the sum of the negative eigenvalues, was carried
out in the problem of the stability of matter,”:% and, in particular, in deriving a
lower bound to the expectation value of the kinetic energy operator. The purpose of
this communication is to derive an explicit functional expression for the number of
eigenvalues as well as for their sum. Our strategy of attack is the following. We first
obtain expressions for the quantities we are seeking in terms of the spectral measure
of the underlying Hamiltonian H in the problem. We relate these expressions to cor-
responding integrals involving Green functions. We then recast the derived results,
by using in the process the quantum dynamical (action) principle” =9 in terms of
trace functionals of the transformation function <a: T | T 0> and we finally carry out
a Fourier decomposition” of the latter.

For a given Hamiltonian H, its spectral decomposition may be written as

H = /_OOA APy (N). (1)

The number of eigenvalues < &, counting degeneracy, may be simply written in the
form

N = [ae [ 6lc- N de[Puti]a). 2)

*) Corresponding author. E-mail: edouard@sut.ac.th or manoukian_eb@hotmail.com
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where v denotes the dimensionality of space, and @ is the step function. £ may be
taken to fall between eigenvalues. We may introduce an integral representation for
O, to rewrite (e — +0)

~omi / / T /_Ze‘”T/ﬁd<w\PH(A)!w>. (3)

On the other hand, the Green (transformation) function (& T'|x’0) is given by
S .
(xT|x'0) = / e NT/h d (x| Py (\)|z") (4)
—o0

from the time evolution of the problem. Accordingly, (3) becomes

2m/d” / ’5T/h<wT‘mO> (5)

For the sum of eigenvalues N[¢] having values < &, we have to multiply the
integrand in (2) by A. From (4), (5), we then have

, d
sz/h .
=5 / / T e zh—dT (xT|x0). (6)

Given a Hamiltonian H(x,p), we may couple  and p linearly to external c-
number sources F'(7), S(7) and define the new Hamiltonian:

H'(r)=H—a-F(r) +p-S(7). (7)
We may now use the quantum dynamical (action) principle,”) =% expression

(xT|x0) = exp {—ﬁ/ dTH( héF(S(T) , z’hé;(ﬂﬂ (T|x0),, (8

(®T|x0), =06 </0Td7' S(r )) exp [; /TdrF( )}

X exp [/ dT/ i’ S(r TT)F(T')], ()

where

to obtain, upon integration over @, the explicit functional expressions for N (&), N[¢]:

N(E) = —— /oo Td_T_ T/ g (T, (10)

21 — 1€

1 [~ dr d
_ el TRy @
N[¢] 27ri/ T © zth K(T), (11)
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where

wry= e[ 4 [arn(cangds Y]
(2wh)”5”</TdT S(r )> 5"(/:6“ F(r )>
Xexp[——/dT/dTS T—T)F(T')}

and the bar | corresponds to taking the limits S, F — 0, after the functional differ-
entiations are carried out.

Since in (5) and (6), we are considering the trace operation, we may carry out
Fourier decompositions® as follows:

(12)

o

— % n;m F, e 2m7/T (13)
_ %n:ioo S, 2T (14)

where OF! /OF3, = 6“8, and so on. These spectral decompositions of the auxiliary
c-fields correspond to projections on subspaces, labeled by n, with which eigenvectors
of the Hamiltonian in question will be associated.

K(T) in (12) then simplifies to

s =g [ [0 (g mésm

x (21h)V 6" (Sg) 6 (Fo) exp hz

AT

In evaluating the latter, we may use (15), (16) in H. The expressions in (10), (11)
together with (17) are the main results of the paper. The expression for K (7') in (17)
is directly related to the spectral resolution of the time evolution operator expressed
in terms of c-functional methods involving no quantum operators.

To verify the consistency of the formulation, consider the harmonic oscillator
problem with v = 1, H = p?/2m + mw?z?/2. Then from (15) and (16), we have

/Td il —in? O —RT Z 0
o TENTSEE) ) s 2m85 9S_,
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met 00 ] (18)

t % oF, oF,

Carrying out the differentiations in (17) with respect to F),, we obtain

- i 9 9 iTmw®

To carry out the differentiations with respect to .S,,, we may use the convenient
representation

‘ oo ¥ . ,
efz,asns,n :/ d)\z/ 2_1 61)\1/\2 671)\25771 efzﬂ)\lsn7 (20)
e oo 2T

which gives for K(T') the final result

K(T) :gexp [—%m} (m%ﬂ (21)

upon recognizing the infinite product representation of (Tw/2)/sin(Tw/2). All told,
(10) and (11) lead to

N(f):;@(fhw<n+%>>, (22)
N[{]:gm<n+%>@<£—hw(n+%>>, (23)

as expected, where we have used the integral representation of the step function after
carrying out the differentiation with respect to 7" in (11) to obtain (23).

The explicit expressions for N (&) and N[¢] in (5), (10) and (6),(11) are exact
ones in contrast to earlier ones’) =% which are formulated in terms of bounds. Our
expressions are expressed in terms of c-functional methods thus avoiding quantum
operator techniques. There are some advantages using our formalism. For example,
(17) may be efficient in carrying out a perturbation expansion. For example for the
anharmonic oscillator Hamiltonian H = p?/2m + mw?x? /2 + Ax3, we readily obtain

/OTdT H(—ih(SF(S(T) , ih55i7)>
2

=71 & 9 mw? 9 0
_ 32 L
- th;OO {QW 95, 95_, 2 OF, 0F_,

0 0 0

- 3

HINST ) OF, OF,. OF,. (24)
ni1+n2+n37#0
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and from (17) to

2whm ihTmw? 0 0
K(T) = \/ o €XP (72 n;m oF, —aF_n>

0 0 0
2
x exp [ R“TA Z OF,. 9F,, OF,,

n1+nz2+nz#0
o0 .
I F,F_,
O (F - 25
x 0(Fp) nl;[lexp < (2mn)2  mh ) (25)
A similar calculation as worked out through (19) and (20) gives
>, T 1
K = N —
(T) Zexp{ hcu<n+2>
n=0
Bo\? (30n2 + 30n +11)
—\? o 26
A (2mw> hw i (26)

up to second order in A in the exponential from which N(§) and N[¢] are directly
determined.

Our expressions given in (5) and (6) are also useful in obtaining the so-called
first quantum correction [cf. Ref. 10)] to the semi-classical one with (x 7|z 0) given
by

mo\V/2
(@ ]e0) = (5m7) e
h27? 7@'7127'3

X exp LQmVQV(w) i (VV(x))? (27)

written in terms of the parameter 7 = T'/h for a given potential V(x).
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The quantum action (dynamical) principle is exploited to investigate the nature and
origin of the Faddeev—Popov (FP) factor in gauge theories without recourse to path
integrals. Gauge invariant as well as gauge non-invariant interactions are considered to
show that the FP factor needs to be modified in more general cases and expressions
for these modifications are derived. In particular we show that a gauge invariant theory
does not necessarily imply the familiar FP factor for proper quantization.

KEY WORDS: action principle; gauge theories; Faddeev—Popov factor; quantization
rules.
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1. INTRODUCTION

In earlier communications (Manoukian, 1986, 1987; Manoukian and Siranan,
2005), we have seen that the quantum action (dynamical) principle (Schwinger,
1951a,b, 1953a,b, 1954, 1972, 1973; Lam, 1965; Manoukian, 1985) may be used
to quantize gauge theories in constructing the vacuum-to-vacuum transition ampli-
tude and the Faddeev—Popov (FP) factor (Faddeev and Popov, 1967), encountered
in non-abelian gauge theories (e.g., (Abers and Lee, 1973; Rivers, 1987; 't Hooft,
2000; Veltman, 2000; Gross, 2005; Politzer, 2005; Wilczek, 2005)), may be ob-
tained directly from the action principle without much effort. No appeal was made
to path integrals, and there was not even the need to go into the well-known com-
plicated structure of the Hamiltonian (Fradkin and Tyutin, 1970) in non-abelian
gauge theories. For extensive references on the gauge problem in gauge theories

!'School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima,
30000, Thailand.

2To whom correspondence should addressed be at School of Physics, Institute of Science, Surana-
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see Manoukian and Siranan (2005). The latter reference traces its historical devel-
opment from early papers to most recent ones.
In the present investigation, we consider the generic non-abelian gauge theory
Lagrangian density
=S+ s 1)

and modifications thereof, where

7=~ JGULGE + GG ~ Ty 01— moT + 0T AN )
So =T+ T+ JEAS )

A, = AZta, G =0,A,—0,A,—ig[A.A)] “)

G = Gt )

GY, = 3, A% — 8,A + go [ AL AC. 6)

The ¢¢ are generators of the underlying algebra, and the £, totally antisymmetric,
are the structure constants satisfying the Jacobi identity, [¢¢, *] = i f%°1¢. Note
that A, is a matrix. s is the source term with the J /‘j classical functions, while 7,
7 are so-called anti-commuting Grassmann variables.

The Lagrangian density & in (2) is invariant under simultaneous local gauge
transformations:

v— Uy, ¥ — U @)

A, — UAU + L U8, U™ ®)
2

Gy — UG, U™! ©)

where U = U(0) = exp [igoft*], 0 = 09t%,0 = O(x).
Upon setting

V/L = au. - igOA;L (10)
with
Vﬂab — 8abau 4 gofach; (11)
we have the basic commutator

[V/u V] = _ig()G/w (12)
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and the identity
VENeGE = 0. (13)

[The latter generalizes the elementary identity 0,0, F*" = 0, in abelian gauge
theory, to non-abelian ones, where F*’ = 9*AY — 9VA*.]

We consider gauge invariant (Section 3.) as well as gauge non-invariant
(Section 4.) modifications of the Lagrangian density and show by a systematic use
of the quantum action principle that the familiar FP factor needs to be modified in
more general cases and explicit expressions for these modifications are derived.
In particular, we show that a gauge invariant theory does not necessarily imply
the familiar FP factor for proper quantization, as may be perhaps expected (cf.
Rivers (1987, p. 204), and modifications thereof may be necessary. Before doing
s0, however, we use the action principle to derive, in Section 2., the FP factor and
investigate its origin for the classic Lagrangian density <, without recourse to path
integrals, as an anticipation of what to expect in more general cases. Throughout,
we work in the celebrated Coulomb gauge ;. A’; =0,k=1,2,3.

2. ACTION PRINCIPLE AND THE ORIGIN OF THE FP FACTOR

To obtain the expression for the vacuum-to-vacuum transition amplitude
(04 10_), in the presence of external sources J, x[f’ n%, n*, as the generator of all
the Green functions of the theory, no restrictions may be set, in particular, on the
external current J:, coupled to the gauge fields A}, such as 8“]: =0, so that
variations of the components of J,; may be carried out independently, until the
entire analysis is completed, and all functional differentiations are carried out to
generate Green functions. This point cannot be overemphasized. As we will see,
the generality condition that must be adopted on the external current Jjj together
with the presence of dependent gauge field components in (A%), as a result of
the structure of the Lagrangian density .~ in (2) and the gauge constraint, are
responsible for the origin and the presence of the FP factor in the theory for a
proper quantization in the realm of the quantum action principle.

We define the Green operator D®?(x, x') satisfying the differential equation
[590% + go £ A3 ] D (x, x') = 8%(x, x)5%. (14)

Since the differential operator on the left-hand side of D°?(x, x’) is independent
of the time derivative, D°(x, x') involves a §(x° — x’o) factor. Using the gauge
constraint, one may, for example, eliminate A; in favor of A;, Ag. That is, we
may treat the A> as dependent fields.

The field equations are given by

VPG = — (8% 6% — g™ 8 DN) [JC + g0y i) (15
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1834 Limboonsong and Manoukian

with u,v=0,1,2,3, k=1, 2,3, and

V,
[V“l—." +mo]w =1 (16)
v
w[wT“ - mo] =-7 (17)

where V, is defined in (10).
The canonical conjugate variables to A, A2, are given by

=G0 -3 19Gr, i=1,2 (18)
With 70 = 0, 72 = 0, we may rewrite (18) as
ml =G — 87" 0 G)Y (19)
k = 1,2, 3. One may then readily express G/ % as follows:
G0 = ml — g™ Doy [J) + g0y ¥ + V1] (20)

We note that the right-hand side of (20) is expressed in terms of the independent
fields A}, AZ, their canonical conjugate momenta and involves no time derivatives.
Here we recall that A3 is expressed in terms of Al, A2 with no time derivative.
Accordingly, with the (independent) fields and their canonical conjugate momenta

kept fixed, we obtain the following functional derivative

G"(x) = —g"* 8%, 8 Dyp (x, x' 21
577G e (x)=-g ke Dap(x, x7) (21
w,v=0,1,2,3, k=1,2,3. On the other hand, G¥ = 3*A! —d'Ak k. I=
1, 2, 3, may be expressed in terms of the independent fields A}l, Ai and involves no
time derivatives. Accordingly with A}, A? and their canonical conjugate variables
kept fixed, we also have

kl _
57 O ) =0 (22)

Similarly, with ¢ and v kept fixed, we have the obvious functional derivative
expression

)

_ i B
5T (x") [Y )yt (x)] = 0. (23)

/(dx) 5”1

The action principle gives

0 .
Ton (0410-) =1 <0+
80

0> 24)
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where
ca — d & — 1 abcAbAc v e KA 25
7= agof——zf WAGy Yyt AY. (25)

We may also write
FUALAGY = 2f T ALAGG + [ ALATGY (26)

and set (—i)8/8J) = A", (=i)8/8m =/, (—i)8/8n = W’. [Here we note that

W
G;fv on the right-hand side of (5.30) of Manoukian (1986) should be replaced by
F;fv =9,A — avA’;.]
Now we use the rule of functional differentiations (cf. Manoukian (2006),
Ch. 11) that for an operator O(x)
. 3
(D570 0+ 10@I0-) = (04 |(A300000), [o-)

_i <o+ ‘%O(x)‘O,) 7)

where (...); denotes the time-ordered product, and the functional derivative of
O(x) in the second term on the right-hand of (27) is taken as in (21)—(23) with
the (independent) fields and their canonical conjugate momenta kept fixed. Here
we recall that A> may be expressed in terms of Al, A2 and involves no time
derivatives.

From (24)—(27), together with (21)—(23), we obtain

d N , rac
a—(0+|0_)=/(dx) [i%(x)—f”cm,f’a"p (x,x)] 0410_).  (28)
80

1 ab
(q—> x’>i| ’ (29)
82 — ig()Akak

Trif] = f (dx) £ (x, ). (30)

Using a matrix notation

D% (x,x") = |:<x

the notation

and the fact that f b""AZ = i(Ar)“, we may rewrite the second factor within the
square brackets in (28) as

1
Tr{—iA;{ Bk_.—}. 31)
[ — ig0Al 9]
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An elementary integration over go from 0 to some gy value then gives the familiar
FP factor for (04 |0_) in (28)

1
det [1 - igoé—zA/k ak} ) (32)

3. GAUGE INVARIANCE AND MODIFICATION OF THE FP FACTOR
Now consider the modification of the Lagrangian density « in (2):
7 — I+ MWYG G =5 (33)

which is obviously gauge invariant under the simultaneous local gauge transfor-
mations in (7)—(9).

The field equations corresponding to the Lagrangian density &t = ] + %5,
where 5 is defined in (3), are given by

Vuab ([1 _ 4‘)\-%1/[] G}I;W) - _ ((SUU Sac _ gvkakDabVch)

X [J + go¥y ty] (34)
i VH a Y
y i AG,, Gy +mo Y =1 (35)
A I Vrl a v —
U v =E GG —mo | = . (36)

1
a

7= [1 = HGYIGO — 0719 [1 — 4y 1G @37

The canonical conjugate momenta to A!, A2 are given by

i = 1, 2. One may then express G** as follows:
[1 =40 (Y (@)] GE(x) = 75(x) — / (dx") Dap(x, X[ J (")

+ g (WY () + V()] (38)

k=1,2,3, with 7103 set equal to zero.
With the (independent) fields and their canonical conjugate momenta kept
fixed, we then have
)
8J,;)(x")

[1 = 4P )y ()] GOx) = =k Dap(x, x') 8%, (39)
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The equal time commutation relations of the independent fields A Lll (%), AZ (x)
are given by

8(x% — xO[AL(x), 7] ()] = 184587 8% (x — x') (40)
with i, j = 1, 2. From the gauge constraint, we may then write
8 — X [AR (), mh ()] = 84 [81 — 80710 s*x — ) (41)

withnow k,/ = 1,2, 3.
From (38), (41), we then obtain the commutation relation

[1 = 49 )Y )] [Arax), GOx)]8(° — 2"

= 2i8,,8%x —x) — 8 / (dx") Dap(x, x")V"*

X [ Ay, 7l (x)]8(x° = x™%), (42)

where we recall that Dy, (x, x”) involves the factor §(x° — x”°). The latter then
implies that the last term in (42) is given by

—idg / (dx") Dap(x, x") V'[85 — 58395719183 (x = x")8(x" — 1), (43)
Now we take the limit X' — x in the latter and integrate over d>x to obtain
—i f @dx") [d*x [8; — 3;] Dap(x. x”)Vj”b“83(x X8 — X% =0. 44

This result will be used later in deriving the modification of the FP factor.
The action principle gives

(04100 =i [@olo. FeweeLwerwl). @)
Consider the matrix element
(04 (G4, @GL" (), [0-) = 201 |(G{y(x)GL(x)) , [0-)
+{04 (G ()GY (x),|0-). (46)
The second term is simply equal to
Gy()G, (') (0410-) 7

expressed in terms of functional derivatives using our notation below Eq. (26).
While to determine the first term, we rewrite

Go(x) = / (d2)8*(x — V() AS(2) — /(dz)54(x _O0AND.  (48)
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We then have
<0+ ](Gzo<x>Gf,°<x’>)+ ]0_> = GG, (x') (0410-)
+ / (d2)8*(x — 25" — ¥ (0, |[ A2, G°)][0-)

1)
8J(z)

—i / dz)8*(x — )V (2) <0+ GE(x")

0_> (49)

where the second term comes from the non-commutativity of the time derivative
and the time ordering operation as resulting from the last term in (48), and the
third term follows from the rule of functional differentiation in (27) as resulting
from the first integral in (48).

From (38), (42), (44), the right-hand side of (49) simplifies for x’ — x to

(GG @) + A'(x)](0410-) (50)
where
4 —
Ax) = 2/(a’z) 5 (i, *) K'(x, 2) (51)
[1—4ry ()P (x)]
K'(x,2) = i[(Saa54(O) + %3,?%“10(2)1);5()6, z)] (52)

involving a familiar 8%(0) term.
All told, the expression (45) becomes

0

57 (0+10-) =i / (@)Y ()Y ()G, ()G (x) (0410-)

+2i /(dx)?(x)W(X)A'(X) (0410-) (53)

which upon an elementary integration over A leads to

(0,410_) = ™ exp [ix f (dx)W(xW(x)G;:’u(x)G;“”(x)] (0410-),0  (54)
where

M =— / (dx)(dz) 8*(x — 2) In[1 — 9 ()Y OIK ' (x,2)  (55)

and (04|0_),_o is the vacuum-to-vacuum amplitude corresponding to the

Lagrangian density #r in (1) involving the FP factor in (32). That is, the fa-

miliar FP factor gets modified by a multiplicative factor exp[i M’] for the gauge
invariant Lagrangian density &7 in (33).
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4. GAUGE BREAKING INTERACTIONS

In the present section we consider the addition of a gauge breaking term to
the Lagrangian density ¢ in (2). It is well known that even the addition of the
simple source term 5 in (3) to & causes difficulties (cf. Rivers (1987), p. 204) in
the quantization problem in the path integral formalism as the action [ (dx)#1(x),
with #r(x) defined in (1), is not gauge invariant. We will see how easy it is to
handle the addition of a gauge breaking term to .

Consider the Lagrangian density

S = s+ A“ ALY (56)
Then an analysis similar to the one in Section 3. shows that
Gy =1y = % Dap [y + AAZY + gV 0¥ + V) x]. (57)
Using the fact that
HGX = VP A) (58)
we obtain upon multiplying (57) by
eal o
1 52 k
and using (14), we obtain

1 _
<vwafa V“”a> =—J" 2 A%y + .. (59)

where the dots correspond to terms independent of J,? and Ag. We introduce the
Green operator N”¢(x, x') satisfying

[vwa’ = Vb o —I—Aéd’w(x)w(x)] Nbe(x, x') = 88*(x —x')  (60)

to obtain from (59)

A%(x) = — NP 1
5Jb()b() N™(x, x). (61)
Hence the action principle and (61) give
0 ; —
Iy (0410-) =5 [fidx) Ajf ()AL ()9 ()P'(x) (04 10-)

— L @) ¥ 0w N, x) (04100) . (62)
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Upon integrating the latter over A, by using in the process (60), we obtain

1 A —
0,]10_) =ex ——Trln 1+_,— !
I A,

A —
X exp [ii /(dX) Ay OAY ()Y (X)W'(X)] {0410-),—0 (63)

showing an obvious modification of the FP factor with the latter occurring in
(0110,

5. CONCLUSION

The quantum action (dynamical) principle leads systematically to the FP of
non-abelian gauge theories with no much effort. It is emphasized, in the process
of the analysis, that no restrictions may be set on the external current J¢, coupled
to the gauge field AY (such as 8“],‘; = 0), until all functional differentiations with
respect to it are taken so that all of its components may be varied independently.
We have considered gauge invariant as well as gauge non-invariant interactions
and have shown that the FP factor needs to be modified in more general cases
and expressions for these modifications were derived. [It is well known that even
the simple gauge breaking source term s in (3) causes complications in the
path integral formalism. The path integral may, of course, be readily derived
from the action principle.] The presence of the source term s in the Lagrangian
density is essential in order to generate the Green functions of the theory from the
vacuum-to-vacuum transition amplitude, as a generating functional, by functional
differentiations. We have also shown, in particular, that a gauge invariant theory
does not necessarily imply the familiar FP factor for proper quantization. Finally
we note that even for abelian gauge theories, as obtained from the bulk of the
paper by taking the limit of ¢ to zero and replacing t* by the identity, may
lead to modifications, as multiplicative factors in (0, |0_), as clearly seen from
the expressions in (55) and (63).
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Abstract General field theories are considered, within the functional differential formalism
of quantum field theory, with interaction Lagrangian densities ££;(x; A), with A a generic
coupling constant, such that the following expression d.£;(x; A)/dA may be expressed as
quadratic functions in dependent fields but may, in general, be arbitrary functions of inde-
pendent fields. These necessarily include, as special cases, present renormalizable gauge
theories. It is shown, in a unified manner, that the vacuum-to-vacuum transition amplitude
(the generating functional) may be explicitly derived in functional differential form which, in
general, leads to modifications to computational rules by including such factors as Faddeev—
Popov ones and modifications thereof which are explicitly obtained. The derivation is given
in the presence of external sources and does not rely on any symmetry and invariance argu-
ments as is often done in gauge theories and no appeal is made to path integrals.

Keywords Functional differential formalism of quantum field theory - Dependent fields -
Action principle - Quantization rules - Gauge theories

1 Introduction

The purpose of this communication is to investigate systematically, in a unified manner,
within the functional differential formalism of quantum field theory [1-13], field theories
with interaction Lagrangian densities £, (x; 1), with A a generic coupling constant, such
that 9L, (x; A)/9X may be expressed as quadratic functions in dependent fields and, in gen-
eral, as arbitrary functions of independent fields. These include, as special cases, present
renormalizable gauge field theories. For example, the non-abelian ones, such as QCD, are
quadratic, while QED is linear in dependent fields. The functional differential treatment ne-
cessitates the introduction of external sources in order to generate the vacuum-to-vacuum
transition amplitude, as a generating functional, from which amplitudes for basic processes
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may be extracted. The novelty of this work is that we show that for all the general La-
grangians, mentioned above, the vacuum-to-vacuum transition amplitude may be explicitly
derived in functional differential form, in a unified manner, leading to modifications of com-
putational rules by including such factors as Faddeev—Popov ones [14, 15] and modifications
thereof. The derivation is given in the presence of external sources, without recourse to path
integrals, and without relying on any symmetry and invariance arguments. There has also
been a renewed interest in Schwinger’s action principle recently (see, e.g., [16—18]) empha-
sizing, in general, however, operator aspects of a theory, as deriving, for example, commu-
tation relations, rather than dealing with computational ones related directly to generating
functionals as done here.

2 General Class of Lagrangians

Consider Lagrangian densities which may depend on one or more coupling constants. We
scale these couplings by a parameter A which is eventually set equal to one. The resulting
Lagrangian densities will be denoted by £(x; A). The class of Lagrangian densities consid-
ered are of the following types

L(x5 A) = L3 0) + oL (x; ) + J{ () xi (x) + J3 () (x) (1)

where x;(x) and n;(x) are independent and dependent fields, respectively. Ji(x), sz (x)
are external sources coupled to these respective fields. The interaction Lagrangian densities
sought are of the following forms

. 1 .
L1(x; k) = B(x; &) + B (x; Mn;j(x) + 5BM; ;o) (x) )

with «£;(x;0) =0, where dB(x; A)/0A, B/ (x;1)/OA, dB/*(x;A)/0r = OB (x; 1)/9A
may be expressed in terms of the independent fields, and the latter two may involve
space derivatives applied to the dependent fields n;(x). By definition, the canonical con-
jugate momenta of the fields n;(x) vanish. That is, formally, 9L (x; 1)/3(dpn;(x)) = 0. Let
0L(x;0)/0n;(x) = AJ*(x)ni (x). The constraint equation of the dependent fields 1 (x) fol-
low from (1, 2) to be

M (e M () = —[BY (x5 2) + J{ (0)] 3)

where
M7 (x; 1) = A7 (x) + B* (x5 ) (C))

Let Djx(x, x’; 1) denote the Green operator function satisfying
MY (x; ) Dy (x, x5 1) = 848 (x, x) €
From (3), this leads to

0 (x) = — / (d¥') D e (x. x5 MIBH (s 1) + JEG)] ©)

giving a constraint which is explicit source Jf-dependent, and is also a function of the inde-
pendent fields.
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Let |05) denote the vacuum states of a theory before/after the external are switched
on/off, respectively. We are interested in the variation of the vacuum-to-vacuum transition
amplitude (0, |0_), governed by the Lagrangian density £(x; A) in (1), with respect to the
parameter A as well as the external sources J 1’ (x), sz (x). To this end, we invoke the quantum
dynamical principle which states (see, e.g., [7-10, 12, 13])

0] 0]
37 (0+10-) =i(0+|f(dX)ﬁ L (x;4)10-) N
(_i)éJ{(x) (0410-) = (04 [ xi (x) 10-) ®
. )
(_1)612-’(x) (0410-) = (04[m;(x)[0-) C))

Consider the matrix element (0, | F(x; A, Ji, J>) |0_) of an operator which is not only a
function of the independent fields but which may also have an explicit dependence on A and
the external sources Jli, sz . An explicit A, JZJ dependence may occur, for example, when
the dependent fields n; (x) are expressed in terms of the independent fields and J;' as given
in (6).

The quantum dynamical principle, in particular, then states (see [11—-13]) that

(—1) (O4] F(xs &, J1, J2)10-)

AED)

= (04| (F (x5 A, Ji, )n;(x) 4 10-) —1(04] F(x;a, Ji, J2)10-)  (10)

874 (x")
where (...); denotes the time-ordered product, and the functional derivative, with respect
to J5 (x), in the second term on the right-hand side of (10), is applied to the explicit
J>-dependent term (if any) that occurs in F'.
Let 3B (x; A)/d) denote 3B/ (x; A)/9X with the fields x;(x) in the latter replaced by
the functional derivatives (—i)8/8J%(x). From (8-10), we then have
( ')—aB/j( 1) (0410-) = (0 I(aBj( A) (/)) 10-) an
—1 — X; _) = — X, X —
575 (x') OA * AT mE )
where we have used the fact that 3B/ (x; 1)/ is expressed in terms of the independent
fields and has no explicit Jz" -dependence, and hence the second term on the right-hand side
of (10) is zero for this corresponding case.
On the other hand, (10) also gives

(=1) ° (—1) ° iB’jk(X'?»HO 10_)
sJI(x7y 8JE() an G
=(0 |<iB"k(X')»)n-(X'/)n (x/)> [0-) —i(0 I(iBjk(x')») n (X’)) 10-)
AN PR RS T AN i )
(12)
where from (6),
M (x') = =Dy (x', x"; 1) (13)

84 (x")

@ Springer

263



Int J Theor Phys (2008) 47: 1424—-1431 1427

Hence the second term on the right-hand side of (12) is simply
: 0 1jk ’ o
+1ﬁBj (x5 2) Dy (x7, x75 2) (04 10-) (14

with D,’(j (x', x”; 1) denoting Dy;(x’, x”; 1) with the fields x; (x) replaced by (—i)5/5]{ (x).
All told, we may solve for (0| 9L (x; A)/9A |0_) in terms of functional derivatives, with
respect to the external sources, as applied to (0, 10_) directly from (2, 7, 11-14) to obtain

0

. 0 ..
a5 (0+10-) = [l/(dX)aoC (x: A)

1 0 .
+5 /(dX)(a—AB”"(x; k)) Dy, (x, x; k)] (0410-) (15)

where £ (x; A) denotes «£;(x; 1) with x;(x), n;(x) replaced in the latter by (—i)(S/(SJf (x),
(—1)8/8J5 (x), respectively.
Upon integrating (15) over A from O to 1, gives

(0,10_) = exp(i / (dx)£’,(x)>

1
x exp[%/(dx)/ dx (%B’f'k(x;x)> D;j(x,x;x)} (0410_) (16)
0

where (04 |0_), is governed by the Lagrangian density [£(x; 0) + J{ X)) xi(x)+ sz (x)n; ()]
in (1), and £ (x) = L} (x; 0), with the latter defined below (15).

Equation (16) provides the solution for the generating functional (0, |0_) in the pres-
ence of external sources. We thus see that for interaction Lagrangian densities such that
AL (x; L)/dA are quadratic in dependent fields (d B'*(x; 1)/dX # 0), as described above,
the rules for computations, via the generating functional (04.|0_) are modified by the pres-
ence of the multiplicative functional differential operator factor

1
exp[%f(dx)/o dx(a%s/fk(x;x))D;q.(x,x;)\)] (17)

As special cases of the general Lagrangians described through (1) and developed above,
consider non-abelian gauge theories with Lagrangian densities

L=LA+Ls (18)

1 1, - ; - -
L=—=G Gl + E[aﬂwww — Uy — moW Y + o v AN Y (19)

4
Ls=pY+yp+ JLAS (20)

A/L = Aztm Guu = ap,Av - aL'A/L - igo[A/u Au] (2])
Guv =G 1 22)

G4, = 8, A% — 3, A" + g, [ AL AS (23)
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The t* matrices are generators of the underlying algebra, and the f<, totally anti-
symmetric, are the structure constants satisfying the Jacobi identity [¢¢, t?] =i f%°t¢. Ly is
the source term with the J# classical functions, while p, p are so-called anti-commuting
Grassmann variables.

Upon setting

Vzb = 6aba/t + gofUCbA; (24)

working in the Coulomb gauge 9; A}, =0, i = 1,2, 3, and introducing the Green operator
function D (x, x'; g,), satisfying

[69°9% + g, P AL 1D (x, x'; g,) = 8 (x, x')8“ (25)
k=1,2,3, one may solve for GX0 (see [11]) as follows
GX = —3*D,,JY + FF (26)

in a matrix notation, where F j is not an explicit function of the dependent fields and of the
external sources. From the very definition of G(’;O in (23), we also have

#GY = V"o A)
=579 + g, f*" A 1A} 27
Hence we may solve for A to obtain
AY) = —D}.8*D I + K, (28)

where K, is not an explicit function of the external sources.
Now we show that the time derivative GOA’,; may be solved in terms of A? and the inde-
pendent fields themselves. To this end, we note that

3" AL = Vo Ay — G (29)
and from (28)
1 .
D, J! = _[5m + e fedaad ak} (A° - K,) (30)
Accordingly, (29, 30) and (26) lead to

o ok
30k = g, foct [A’;? - yA’C]a,Ag + Lt @31

where L has no explicit dependence on the external sources and on the dependent fields Ag.
Finally we note that

9
080

1 _
Ly =—fcAl (AgG’;O + 5A;‘ij) + Yyt ALY (32)

From the definition of G° in (23), and the fact that 3° A* may be expressed in terms of the
Ag, as shown in (31), and the independent fields themselves, we see that (32) is quadratic in
the dependent fields Ag.
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The structure G’;O in (23) may be expressed, from (31), as a linear function of the depen-
dent fields AS, and directly from (26) we have

G (x) = =8 & Dup(x, x'; go) (33)
57}

Hence (7-12, 32, 33) give

. a
T (04100 = me)@oc,(x;go)

- / (dx)f”‘“AZ(x)D/“‘(x,x;ga)] (0410.) (34)

where A}\,b(x) = (—i)6/6]f(x). Upon using the definition of D*“(x, x’, g,) in (25), and in-
tegrating (34) over g,, we obtain the modifying Faddeev—Popov multiplicative factor

1
exp Trln[l - ig(,yA}(ak] (35)
as a special case of (17), where

Tel f] = / (dx) £9(x, x) (36)

The general derivation given above for interaction Lagrangian densities such that
L (x; X)/90X may be expressed as quadratic functions in dependent fields involves no sym-
metry arguments. As a matter of fact, we may consider the addition of a gauge-invariant
breaking term (g;/ 2)A‘;A,‘11/_n/f to the Lagrangian density in (19) which is again quadratic
in A2 and presumably contributes to the generation of masses to the vector fields through a
non-vanishing expectation value of 1. A detailed analysis shows (see [11]) that the mod-
ifying extra multiplicative factor to exp(if(dx)oﬁ/, (x)) (04 10-) |0 occurring in (04 |0_) is
given by

1 81 7T />:|
exp| —=Trln({ 1 + —————
p[ 2 ( v;a,(az)*lv,gakw v
1
xexpTrln(l —ig(,yA}cak) 37)

where ' = (—1)8/8p, ¥’ = (—i)8/8/, and L} is the new interaction Lagrangian density
functional differential operator expressed in terms of functional derivatives with respect to
the external sources.

3 Conclusion
We have seen, within the functional differential formalism of quantum field theory in
the presence of external sources, that interaction Lagrangian densities £;(x;A) such

that 0.L;(x; A)/0X may be expressed as quadratic functions of dependent fields (i.e.,
dB7*(x;1)/dx # 0 in (2)) and arbitrary functions of independent fields, necessarily lead
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to modifications of the rules for computations, via the generating functional (0, |0_) as a
functional of the external sources which are coupled to the fields, and no appeal was made,
through the analysis, to path integrals. The general expression for such a modification is
given in (17) as a functional differential operator occurring as a multiplicative factor in
(0410_). Such Lagrangians play central roles in fundamental physics and present renormal-
izable gauge theories fall into this category. It is important, however, to emphasize that such
modifications are not tied up to non-abelian gauge theories, through the emergence of so-
called Faddeev—Popov factors, as one might naively expect, but apply to theories which, in
general, are quadratic functions in dependent fields as described above. As a matter of fact
the addition of a gauge term breaking term in the form (g,/2)A*A M/_mp to the interaction
Lagrangian density of QED (abelian gauge theory), which is again quadratic in A°, leads,
according to (37), the following extra functional differential multiplicative factor

exp —l Trln(l + g—%ﬁ'lﬂ) (38)
2 92

multiplying expli [ (dx)L}(x)](04+|0_),, where £;(x) is the new interaction Lagrangian
density functional differential operator including the additional term just mentioned as a
simplified version of (37). That is, a non-trivial modification arises even for such an abelian
gauge theory. The technical question now arises as to what happens to model Lagrangian
densities that one may set up which are cubic or of higher order in dependent fields in the
sense investigated above. The main complication with such theories becomes obvious by
noting that the corresponding Green function operator function to the one in (5) will now
depend on dependent fields themselves. Accordingly, when we apply the corresponding rule
in (12) for finally expressing the matrix element (0, | (d.L;/dA) |0_), as a functional differ-
ential operator, with respect to the external sources, to be eventually applied to (04 |0_),
the expression 87, (x)/8J; (x”) will again depend, rather non-trivially, on the dependent
fields n;(x). This makes the procedure of expressing the matrix element just mentioned as
a functional differential operation to be applied to (0, |0_) quite unmanageable. Such field
theories require very special tools and will be investigated, within the functional differential
formalism, in a subsequent report.

Acknowledgement The authors would like to acknowledge with thanks for being granted a “Royal Golden
Jubilee Award” by the TRF (Grant No. 0117/2545) for partly carrying out this project.
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Abstract

Within the functional differential formalism of quantum systems, referred to as the quantum
dynamical principle, given independent pairs of canonical conjugate variables

{q:(t), pi(®), i =1, ..., n}={q(2), p(t)}, and a set of pairwise commuting operator
functions {G,(q(?), p(?)), j =1, ..., k} of these variables defined, transformation
functions are explicitly given, for constrained dynamical systems, expressed as functional
differential operations applied to a given functional written in closed form. In the functional
differential treatment external sources are, a priori, necessarily introduced in the theory.
The connection of this work to the so-called Faddeev—Popov technique in path integrals is
pointed out.

PACS numbers: 03.65.ca, 03.65.Db, 11.10.Ef

1. Introduction eventually be set equal to zero after all the relevant functional
differentiations with respect to them have been carried out.

The purpose of this paper is to show within the functional The connection of this work to the so-called Faddeev—Popov

differential treatment of quantum systems (e.g. [1-9]), technique in path integrals will be pointed out.

also known as the quantum dynamical principle (QDP),

given independent pairs of canonical conjugate variables 2. Functional differentiations and constraints

{gi(@®), pi(®),i=1, ..., n} ={q@),p()} and a set of

pairwise commuting operator functions {G;(q(t), p(t)), Consider a Hamiltonian H(q, p) as a function of independent

j=1, ..., k} of these variables defined, fransformation pairs of canonical conjugate variables {g;, p;,i =1, ...n}
functions may be then explicitly given for constrained ={q,p}. We introduce external sources {F;(t), S;(t),
dynamical systems. These transformation functions are i=1,...,n}={F(r),S(z)} and define the extended

expressed as functional differential operations, involving Hamiltonian H(t), in the presence of these sources, by
functional differentiations with respect to external sources,

applied to a given functional olf) these sources written H(z)=H(Qq.p)—q-FE)+p-SE) M
in closed form. The very elegant QDP has been indis- with F(r), S(1) vanishing outside an interval [¢',¢], with
putably recognized as a powerful tool over the years. There ¢ < ¢. Of physical interest are the transformation functions
has been a renewed interest recently in Schwinger’s action (qt|q't’), in particular, in the limit of vanishing external
principle (see, e.g. [10-15]) emphasizing generally, however, sources. The explicit functional expression for the latter is
operator aspects, as deriving, for example, commutation well known (see, e.g. [4, section 11.2]) and is given by

relations, rather than dealing with computational -
i
—exp <—£/ drH’(r)) <qt\q/t/)0‘, @
p

ones related directly to transformation functions as (qth’t/)
done here. We note that in the functional differential

formalism external sources are, a priori, necessarily where H’(7) is the functional differential operator
introduced to generate transformation functions and matrix

elements of various operators. It will be understood H'(t) = H<fih s it 4 > 3)
throughout the bulk of this paper that all these sources will §F(r)  48S(7)

0031-8949/08/065010+03$30.00 1 © 2008 The Royal Swedish Academy of Sciences Printed in the UK
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obtained from H(q, p) in (1), by replacing q,p, respectively,
by —ind8/8F (), ih8/8S(t). Here (qt|q't’)¢ is given by

(ar1q'?)y=08" (q -q - / dr S(t))
o
i t
X exp <£q . / dr F(r)>
X exp (—l / dr /T dr’S(7) -F(r’))
nl )

defining a functional of F(t), S(t). The vertical bar | in (2)
means to set these external sources equal to zero after the
functional differentiations with respect to them, as defined in
the exponential expression in (2), are carried out.

Given a set of operator functions {G,(q(t), p(1)), j =
1, ..., k}, as mentioned above, with time development given
by the Hamiltonian H(q, p), we may introduce the following
c-functions:

Q)

(at|G;(@(@), p(2))|q'7)
(at[q)|

05(r) = (5
for 7 in the interval [¢,¢]. We may promote the Q;(r)
to quantum variables Q;(r) by noting: (A) The canonical
conjugate momenta P;(t) of dependent fields Q;(r) must
vanish, by definition. (B) We may introduce external sources
f(7), s(7) to generate functionals of the latter fields as done for
the g;(t), p;(7) fields and, in the process, make use of (4).
(C) H(q, p) in (1) is a function of independent pairs of the
canonical conjugate variables in {q;, p;,i=1,...,n}, and
hence no explicit functional differentiation operations with
respect to the sources f(t), s(t) appear in H'(t).
To the above end, we note that (5) may be rewritten as

[05(Dat1q'7') —(ar|G(q(x), p(x)|q'7)] [ =0 (6)
or from which we have
[05() -G (] (at1 g7} =0 @)

with

G\(r) =G, <_1 ®)

hL i L)
SF(r)" 8S(v)
by an immediate application of the QDP. By promoting
the Q? (t) to quantum variables, with (qf¢|q't’) generalized
to (qQ¢|q'Q’t')”, we must have from (A), (B), (C), above

and (7)

. ) ’ 10y +/\N
[—lh ACH G,,-(r)} (aQr[q'Q7)"|

=(qQ¢|[Q; (1) — G, (@), p(x)]|q Q)"

=0, (€

. 1) A n
i (a1 a Q)| = (e [Pl a Q)|

=0 (10)
forall #' < T < t. Since a relation xg(x) = 0, implies that g(x)
involves the factor § (x), we note from (9), (10), (4) and finally

from (2) that

i

(aQr Q)| =exp (7 / drH’(r)) (aQr1q Q7))

)

(11)
where
)
oy +/\N — st [ (.
(qQ:1q Q1)) =6 ( lhaF(-) G())
x 8® (ih 5;(.)) (at1q't'),4. (12)
A=26F (Q—Q’—/ dr s(r)) exp (%Q/ dtf(r))
t t
o t T
X exp <—%/ dr/ dr/s(r)~f(r’)> (13)

and the vertical bar | in (11) refers to the fact that all
the external sources are to be set to zero after all the
relevant functional differentiations have been carried out.
80 (—ins/8f(-) — G'(-)) and 8 (i78/8s(-) ) in (12), as arising
from the conditions in (9) and (10), refer, each, to the product
of k-dimensional deltas with 7 running over all points in
the interval [¢, ¢], i.e. 80 (D(-)) = My <, <, 8*(D(7)). We also
note that functional differentiation operations with respect
to external sources commute, unlike quantum operators,
showing the power of the underlying formalism.

3. Conclusion

Equation (11) for (qQt|q'Q’t')"| gives the expression for the
transformation functions with the constraints given in (9) for
all 7 in [#, ¢]. They involve functional differential operations,
with respect to external sources, to be applied to the functional
[(qt]q't")oA] with the latter given in closed form in (4) and
(13).

Finally, we may make contact with the Faddeev—Popov
technique, in the path integral formalism, by noting that the
path integral representation for [{q¢|q't')o A] (see, [4, section
11.4]) on the extreme right-hand side of (12) is given by

fartat)y] = |

q(t)=q.Q(t")=Q

q4()=4¢.Q("H=Q
D(q(), p() DQE), P()

X exp (l /l drv(r)) s (14)
hJ
where
(1) =[p(r)-4() +P(1) - Q(x) +q(r) - F(1)
—p(r)-S(1) +Q(z) - f(r) —=P(7) -s(z)] (15)

and by carrying out the explicit functional differentiations
with respect to the external sources in (11) and (12) and by
finally setting the sources equal to zero. Here, we note that
the Hamiltonian of the system describing its time evolution
appears in the first factor on the right-hand side of (11)
as a functional differential operator with respect to external
sources as defined in (3).
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As an explicit illustration following the procedure
developed through (5)—(13), consider a Hamiltonian

2
P
H(@,p)=5-+V(q") (16)
m

in three-dimensional (3D) which is obviously rotationally
invariant with the dynamics occurring in the 3D space, where
V' is arbitrary. Now suppose one is interested in developing
the dynamics to be constrained to a fixed 2D plane making a
given angle o with the (¢, ¢3)-plane. To do this, we introduce
canonical conjugate operators

G| =gq;sine — g, cosa,

a7
(18)

The Hamiltonian of the dynamical system restricted to the 2D
plane described above is then given by

G = p;sina — pycosa.

p*’ 2
H(gx, px) = — + V(q%°), (19)
2m
where p* = (p*1, p*2), qx = (g*1, g*2) with
p¥1 = picosa+ pysina, px; = p3, (20)
g*1 =qicosatqysine, g* =gqs, 21)

and hence with the (g%, g*;)-plane making an angle o
with the (g1, ¢3)-plane corresponding to a rotation about
the g3-axis by the angle «. By carrying out the functional
differential operations in (11) and (12) and using the
expression in (14), it is readily seen that one obtains
the Faddeev—Popov form in (11), upon including an extra
multiplicative factor appearing in (12) given by §(i%8/8s; -
—G’l(~))6(—ih8/6f1 (), for the dynamical system described
by the Hamiltonian in (16) to satisfy both constraints G| = 0,
Gi=0 by noting, in the process, that under such constraints
the Hamiltonian in (16) reduces to the one in (19), and finally
setting the external sources equal to zero.

The power and simplicity of the functional differential
formalism via the QDP are evident. The constraints are

implemented by functional differentiations, with respect
to additional external sources, of transformation functions
generalized to dynamical systems, in the presence of
dependent degrees of freedom, which are readily spelled out
from the corresponding systems with no constraints. Contact
with the path integral formalism is also directly made from
the explicit expression one has of transformation functions for
simplified ‘Hamiltonians’ involving only dynamical variables
coupled to external sources as given in (14) and (15). We
emphasize that in the functional differential treatment, via
the action principle, external sources must, a priori, be
introduced.
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