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GAUGE BREAKING INTERACTIONS.

Guided by the structures of present Lagrangians for elementary particles’ dy-
namics in High-Energy Physics and even their further generalizations, a systematic and
a unified analysis is carried out of constrained dynamics in the functional differential
formalism of quantum field theory via the application of the Quantum Dynamical Prin-
ciple. As all of the present theories of the fundamental interactions are gauge theories a
gauge constraint then necessarily arises in the theory. After a detailed derivation of the
so-called Faddeev-Popov factor by the above formalism, we show that a gauge invariant
theory does not necessarily imply the presence of this familiar factor and further modi-
fications, derived in the text, may arise. In particular this is shown to be also generally
true when gauge breaking terms are considered. Equipped with such results, a general
Theorem for constrained dynamics is proved and rules of applications are developed in
the above formalism as follows. General field theories are considered with interaction
Lagrangian densities £;(z; \), with A a generic coupling constant, such that the fol-
lowing expression OL;(x; \)/OX may be expressed as quadratic functions in dependent
fields but may, in general, be arbitrary functions of independent fields. These necessar-
ily include, as special cases, present renormalizable gauge theories. It is shown, in a

unified manner, that the vacuum-to-vacuum transition amplitude (the generating func-
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tional) may be explicitly derived in functional differential form which, in general, leads
to modifications to computational rules by including such factors as Faddeev-Popov
ones and modifications thereof which are explicitly obtained. The derivation is given
in the presence of external sources and does not rely on any symmetry and invariance
arguments as is often done in gauge theories and no appeal is made to path integrals.
The physical relevance of such a Theorem and of the underlying general analysis in
quantum field theory in the functional differential formalism is clear. We have also
carried out analyses of constrained dynamics in quantum physics and two different ap-
proaches were taken again in the functional differential formalism: [1] Given a Hamil-
tonian H(q,p) and a set of pairwise commuting operator functions G,(q(7), p(7)),
j = 1,..., k, transformation functions are derived corresponding to any Hamiltonian

H(q,p,Q,P) with constraints Q(7) — G(q(7),p(7)) = 0, for which P = 0, and
H(q,p,G(q,p),0) = H(q,p). [2] Given a Hamiltonian H(q, p), we consider a new
system by defining constraint operator functions G;(q(7),p(7)), j = 1,...,k, and
canonical conjugate momenta defined for them G(q(7),p(7)), j = 1,...,k, such
that G(q(7),p(7)) = 0, G(q(r),p(r)) = 0 and the new Hamiltonian is given by
H(q*,p*) = H(q, p)‘G:O,G:O with (q,p) — (q*,p*,G,G) defining a canonical

transformation.
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