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Preface

These notes comprise an introductory course in stochastic differential equations
given in term 2/2550. The purpose is to introduce an audience of graduate students
with no prior knowledge of measure theory or probability to the concepts of stochas-
tic integral, It6 formula, and solutions of linear stochastic differential equations, in
order to let them understand what this subject is about, and to foster interest for
further study. Thus, severe limitations had to be imposed on the material presented.

The course begins with an introduction to measure theory. Naturally there
is no opportunity to prove a some major theorems such as Fubini’s theorem or
the Radon-Nikodym theorem; however, care is taken to introduce the notions of
measure and Lebesgue integral at a slow and detailed pace in order to develop the
student’s insight and understanding. Then the basic probabilistic concepts such
as independence and conditional expectation are introduced. We present simple
examples in order to help the student develop probabilistic intuition. The part on
stochastic processes and the Ito integral is fairly standard although for the sake
simplicity, the Ito integral is discussed for square integrable processes only. With
very few exceptions, most theorems on stochastic processes being used are also
proved. In particular we present a proof of the general [t6 formula, however with
a boundedness restriction necessary to avoid the difficult concept of stopping time.
The course ends with a brief encounter of reducible stochastic differential equations,
applied to linear equations.

As asgeneral rule, proofs are layed out in great detail. While his may have resulted
in loss of elegance of presentation, it should make the material better accessible to
the intended audience. At any rate, at the end of a course a student can be expected
to prepare a summary in his or her own manner and extract the main ideas of the
proofs. The text contains numerous exercises which constitute an essential part of
the course and should all be attempted by the student.

il



Chapter 1

Background from Measure Theory

The motivating idea of measure is to generalize the well-known concept of ”area”
or "volume” of sets in the plane or in three-dimensional space to subsets of general
spaces. Intuitively, the volume of subsets of R% has the following properties:

1. If A, B are subsets of R? whose volumes can be computed and are finite, then

vol(A U B) = vol(4) + vol(B) — vol{AN B).

2. If {A4,}%2, is a collection of disjoint subsets of R? whose volumes can be

computed, then
vol(U An> = Zvol(An).
n=1 n=1

Now given a general set {2, we need to

i) describe the class of subsets of {2 whose "volume” we can compute — this will
be the concept of o-algebra, and

ii) describe the notion of "volume” on these sets satisfying properties 1. and 2.
above — this will be the concept of measure.

1.1 Measurable Spaces

Definition 1.1. Let € be a non-empty set. A collection F of subsets of 2 is called
a o-algebra on €, if the following properties hold:

(S1) heF
(S2) If A€ F then A€ F

(83) IfAl,Ag,Ag,"‘Ef,then UAHEF

n=1

The pair (2, F) is called a measurable space. Elements of F are called measurable
sets.
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Remark 1.1. Let F be a o-algebra on .

1. To clarify this concept, elements of a o-algebra F are sets, namely the sets to
whom we want to assign a ”volume”.

2. Since 2 = ¢, then by (S1) and (S2), Q € F always.

3. Let Ay, A, As,--- € F. Then by (52), A, AS, A5, -+ € F as well. Thus we
obtain from (S2) that

(S4) Fjl A= ( @1 a)er

4. Obviously, (S3) and (S4) also hold for finite collections of elements of F. For
let Ay, Ag, As, ..., Ay € F. Setting A, := Ay for n > N we obtain

N 00
(S3) Udn=U 4, €F, and
n=1 n=1
N 00
(S4) N A, = A, € F.
n=1 1

n=

5. Let A, B € F. Then by (S2) and (S4’),
(S5) AAB=ANnB e F.

Thus, a o-algebra is closed under formation of differences, and of countable unions
and intersections.

(Here we make the convention that countable means either finite, or countably
infinite.)

Example 1.1. Let us give some simple examples of o-algebras:
1. Let € be a non-empty set. The following are o-algebras on )

(a) F1:={0,9Q}. (This is the smallest o-algebra on .)

(b) Fo:="P(Q2). (This is the largest o-algebra on €).)
Here P(Q), also denoted by 2%, is the power set of Q.

(¢) F3:={0,E,E°,Q} where E is an arbitrary, fixed subset of Q.
(This is the smallest o-algebra on © containing E.)

(d) More generally, let {E;})L, (where N € N or N = c0) be a countable
collection of subsets of Q satisfying

N
ENE; =0 fori#j and UEizﬁ.
i=1

(We call such a collection {E;}¥ | a partition of .) Then
Fy:={A CQ: Ais the union of some sets E;, or A =0 }

is a o-algebra on Q. The sets E; are called its atoms.
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2. Let Q be an infinite set.

(a) First set

Fs:={ACQ: Ais finite or A° is finite}.

Then F5 is not a o-algebra.

For suppose to the contrary that Fy is a o-algebra. Pick a countably
infinite subset {1, %2, 23, 24,...} of 1, and set

A = {x, 4,6, Ts, ... }.

Since each singleton {z,} is finite, then {z;} € Fs and hence by (S3),
A € F5. However, A is not a finite set, hence A° must be finite. On the
other hand, i

A€ 2 {1131,133,%5, . }

contradicting finiteness of A°. Thus, F5 cannot be a o-algebra.

(b) Next set

Fe:={ACQ: A is countable or A°is countable}.

It is an easy exercise to show that Fg is a o-algebra.

3. Let = R? and set

O :={ACR?: Ais open}.

Then O is not a o-algebra. In fact, if A € O then A° is closed. But nontrivial
closed subsets of R® are never open, hence A° ¢ O. That is, (S2) does not

We thus need to work with a larger class of subsets of R? which will be
introduced at the end of this section. The idea is to use the ’'smallest’ o-
algebra containing O. First we must clarify what is meant by 'smallest’ here.

Exercise 1.1. Prove that F, and Jg are o-algebras.

Theorem 1.1. Let {Fy}rea be a family of o-algebras on a set 2. Then

f:sz)\

is also a o-algebra on €.

Proof. Let’s simply verify the three axioms for a o-algebra.

(S1): Since § € Fy VA, then § € | Fr=F.

AEA

(S2): Let A € F. Then A € F,, V. Now as each F) satisfies (S2), then A° € F\V \.

Hence, A€ (| Fa=F.

AeA
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(S3): Let Ay, Ag, As,--- € F. Then A, € Fy VA, Vn. Since each F) satisfies (S3),

then |J A, € Fx VA Hence, |J 4, € (| Fa=F.
n=1 n=1 AEA

O

Definition 1.2. Let K be a collection of subsets of €. Denote by {Fa}icq the
collection of all o-algebras on 2 containing IC (that is all o-algebras F, satisfying

K C fA). Set
o(K):= (] Fa (1.1)

A€EA

By theorem 1.1, 0(K) is a o-algebra on Q. Obviously, £ C ¢(K). Observe that
if F is any o-algebra containing X, then F = F) for some A and hence by (1.1),
o(K) C F. Hence, o(K) is the smallest (in the sense of inclusion) o-algebra on Q
containing IC. We call o(K) the o-algebra generated by K.

Example 1.2. 1. Let 2 be any non-empty set, and £ C ). Then
c({E}) = {0, E, E*, Q.
2. Let 2 be any infinite set, and let
K={ACQ: Ais finite}.

Then
o(K) ={A CQ: Ais countable or A is countable}.

3. (Generalization of 1.) Let O be a non-empty set, and {F;}Y, (N € N or
N = 00) a partition of Q. Then

oc({E:}Y,) = {AC Q: Ais the union of some sets E;, or A = (}}.
Exercise 1.2. Prove 2. and 3. above.

Definition 1.3. Let X be a topological space (e.g. a metric space) and O := {A C
X : A is open} the collection of open subsets. Then

o(0) = o-algebra generated by the open sets in X

is called the Borel o-algebra on X, denoted by B(X). Its elements are called Borel
sets.

Remark 1.2. 1. There is no easy characterization of Borel subsets of R?. How-
ever, the following are typical Borel sets, as can easily be seen by use of
(S2)—(S4):

a) every open subset E of R? (as O C B(R?)).
b) every closed subset F of R? (as F' = E° for some open set E).
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¢) every set of the form A = () E,, E, open in R% (Such sets are called
n=1
Gs-sets.)

d) every set of the form A = |J F,, F, closed in R%. (Such sets are called
n=1
F,-sets.)

2. We know by Lindelsff’s theorem that every open subset E of R? is a countable

[oe]
union of open balls, £ = |J B.,(z,). (we even may choose z,, to have ra-
n=1

tional coordinates, and ¢, to be rational.) Hence, B(R?) is also the o-algebra
generated by the collection of open balls.

In case of R, the Borel o-algebra is generated by infinite intervals with rational
endpoints,

(a) B(R)=0(K;) where K;={(-o0,a):aecQ}
(b)  B(R)=0(K;) where Ky={(—00,a]:a€ Q}
(c) BR)=0(K;3) where K;3={(a,o0):a€Q}
(d) B(R)=0(K4) where K4={[a,00):a€ Q}

Obviously, in the above we may replace "Q” by "R”. Let us prove (a); the
remaining identities are proved similarly and left as an exercise.

Since K1 € O then obviously,

(K1) Co(0) = B(R).
For the reverse inclusion, we need to show that O C ¢(K). For then it will
follow that

B(R) = 0(0) C o(Ky).
Thus, let E € O, that is, E is an open subset of R.
Case 1: E is a bounded, open mterval with rational endpoints, i.e. E = (a,b),
with a,b € Q. Choose N such that + & < b—a and write

@)= la+ 2.5 = | [(~o0.0)\(~00,a+ )],
nz==N n=N

Since (—00,b), (—o0,a + 1) € K1, then (a,b) € o(K1) by (S5) and (S3).
Case 2: If FE is an arbitrary open set, then by Lindeloff’s theorem, we can

write -
E=|]J I
k=1
where each [} is a bounded, open interval with rational endpoints. By case 1,

I € 0(K,y) for all k. Hence by (S3), E € o(K;) .

Since intervals are Borel sets, it is an easy exercise to show that for every
interval I,

BI)={Ee€BR):ECI}.
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1.2 Measures and Measure Spaces

Definition 1.4. Let (€, F) be a measurable space (that is, F is a o-algebra of
subsets of ). A measure on (£, F) is a function

p:F —[0,00]
satisfying
(M1) (@) =0,

(M2)  If Ay, Ay, As, ... € F is a countable collection of pairwise disjoint sets, then
o o0
u( U An> = Z w(Ar) (” o-additivity”).
n=1 n=1

The triple (Q, F, p) is called a measure space.

Remark 1.3. In the above definition, [0, 00] := (0,00) U {co}. Furthermore, if the
right-hand series diverges or any of its terms has the value oo, then the series will
be assigned the value co.

Remark 1.4. If 4(Q) < oo, then p is called a finite measure, and (§2, F, p) a finite
measure space. (In this case, u(E) < oo for all £ € F by the next theorem.)
If there exists a countable collection A;, Ay, As, ... of sets in F satisfying

0= U A, and  p(4d,) <oo Vn
n=1

then p is called a o-finite measure and (2, F, 1) a o-finite measure space.
Remark 1.5. (M2) implies that for any finite collection of pairwise disjoint sets
Al,AQ,A?,,...,AN < f,

N N
(M2) y,( U An> =3 u(An) (7 additivity” ).

n=1 n=1
To see this, simply setA, = @ for all n > N, and apply (M2) using the fact that
pu(Ay) = p(@) =0 for alln > N.

Example 1.3. Let Q be any set, and F be any o-algebra on Q. One can introduce
several measures onto (§2, F):

1. Two trivial measures are given by setting

i) wuE)=0forall Ee€F,or
i) w(®) =0and u(E)=ooc forall E€ F, E#0.
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Note that if we set
w(@) =0, wE)Y=1 VEe€F, E#0
then in general we do not obtain a measure as (M2) is not satisfied.
2. The counting measure is defined by
R P A

Observe that p is a finite measure < 2 is a finite set.
Furthermore, p is a o-finite measure < (2 is a countable set.

3. Fix a point w € ). The Dirac point measure &, is defined by

5u(E) = 1 ifwek
0 fwé E

for £ € F. Obviously, 9,, is finite.
Exercise 1.3. Verify that 2. and 3. above are measures.

Example 1.4. Consider the measurable space (Rd,B(Rd) ) Any measure p on
this space is called a Borel measure. One can show the following: (see standard text
books on measure theory, such as [2] or [3], for example.)

There exists a unique measure A on B(R?) having the property that

d
M) = vol(1 H (b; — a;)
i=1

for every bounded d-interval I = la1,b1] X [ag,b2] X -+ X [a4,bq]. (The intervals
(as, b;) may also be open, or half-open.) ) is called the Lebesgue measure on R%. It
has the following additional properties:

1. ) is defined on a o-algebra My on R?, with B(R?) C M.

2. Given E€ Myandz € RY, set s+ E:={z+y:y € E}. Then z+ E € M,
and

Mz + E) = AE). (translation invariance)
3. Given E € M,, set —E :={—y:y € E}. Then —F € M, and
AM—E) = \E). (inversion invariance)

4. X is compatible with the topology on R? in the following sense.
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(a) For all K C R? compact, A\(K) < oo
(b) For all 2 € M,
ME) = inf{\(U) : U is open and E C U} (" outer regularity”)
(c) For all E € My,
ME) = sup{\(K) : K is compact and K C E} ("inner regularity”)
Theorem 1.2. Let (Q, F, p) be a measure space.
1. For all E,F € F with E C F we have
w(E) < p(F). | "monotonicity”)
2. For all E,F € F with EC F and u(F) < oo we have
W(E\E) = () — 1(E)

3. For every countable collection Ay, Ag, As, ... € F we have
( U An> < Z,LL(An) ("o -subadditivity”)
n=1 n=1

Proof. 1. Write F' = E U (F\E), a disjoint union. Then

W(E) < p(B)+ w(F\E) = n(BU(F\E)) = u(F) (1.2)

2. If u(F) < oo, then by (1.2), u(FE) < oo and we can subtract u(£) from (1.2)
to' obtain

W(F\E) = u(F) — p(E).
3. Let {4}, C F. Set

Bl = Al € F
BQ = AQ\Al eF

and in general
n—1

B, = A\ JAie F. (1.3)

i=1

Observe that for each N,
N

N
B, = A.. (1.4)
n=1

n=1
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N N
To see this, note that since B, C A, for all n, then |J B, € | A,. For the
n=1 n==1
N
reverse inclusion, let w € |J A,. Let n, be the smallest index n such that

n=1
we A, Thatis,w € A,,, but w ¢ A; fori =1,2,---,n,—1. Then w ¢

ne-1 N
B,, = A,,\ U A; and hence w € |J B,. This shows the reverse inclusion,
f==] n=
N N '
namely that |J A, C |J Bn. It now follows from (1.4) that
n=1 n=1
oo oo N oo N e}
n=1 N=1n=1 =1n=1 n=1

Observe also that by definition (1.3), the sets B, are mutually disjoint. Thus,

(Un)=u(UB.) g X um) < S nian)

This proves the theorem.
O

Remark 1.6. Let Ay, Ay, - -, Ay € F be a finite collection. Setting A, := ) for
n > N, we easily obtain ”subadditivity”,

o(Ua) =n(Ua) g Sman. =D utan)

Definition 1.5. A sequence {A,}>2; of sets is called
1. increasing if A, C Apy1 Vn. We write {4,} 1.
2. decreasing if A, D Any1 Vn. We write {A,}].

Example 1.5. Given a sequence {4;}$2, of sets, set
B, =|JA and C.:={)A.

Then {B,} 1T and {C,} |.
Theorem 1.3. Let (Q, F, 1) be a measure space and {An}or, C F.

1. If {An}/]\; then M([j/%) = lim u(A,).

n—00
n=1

[e¢}

2. If {A}] and u(Ay) < oo, then ,u(ﬂAn> = h_,r%o 1(Ay).
n=1 '
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Proof. For the proof of part 1., set By := A; and in general, set

n—1

Bn = A\ |J A = A\

i=1

inductively as in the proof of part 3. of theorem 1.2. The right identity holds since
{A,}7. As the sets B, are disjoint, we have

00 00 0 N
N(TLL:JlAn) (;)M(nL:JIBn> (MZQ)HZ:;M(Bn) = ]\}Enoo ;M(Bn>

N N
(M:2’) ]\171—I>noo M('nL:Jl B") (1.0) ]\}I—I-)noo ,U«<nL=J1An) {E}T Alfgnoo w(Aw)-
As for the proof of part 2., for each n we set |
E, = A\A,.
Then {E,} 7T as {An} |, so that by part 1,

(U ) = Jim w(E) = Jim A\ Ax)
n=1

— i [p(A) — p(An)] = p(A) - i p(Ay). (16)

thm 1.2 N—oo

Observe that all computations are well defined, since by assumption and monotonic-
ity of the measure, p(A,) < oo for all n. On the other hand,

OE" = G(Al\An) :A1\<aAn).

n=1

As p(A;) < oo, then by part 2 of theorem 1.2,

w(Um) = a0 -u(N4:) 07

Comparing (1.6) and (1.7) we see that

i (4-) = Jim, w4
This proves the theorem. O

Remark 1.7. In part 2. of the theorem, one can not omit the assumption that
(A1) < oo. (At the very least, one needs that p(Ay) < oo for some n.)

For example, consider the measure space (R, B(R), A). Let A, = [n,00). Then
MA,) = oo for all n, and

)\( ﬁ An) = \(0) = 0 # o0 = lim A(A).

n—0Q
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Corollary 1.4. (Borel-Cantellini Theorem). Let (2, F, 1) be a measure space, and
{A,}2, C F a countable family of measurable sets. If

Z w(A,) < oo (1.8)

n=1
then

ﬁGA@) =0,

n=11i=n

N

1

Proof. For each n, set E, := |J A;. Then

i=n

1. {E,}], and

2. wW(E,) = M( U Ai> N gl ; Z w(4;) < ZN(Ai) < oo for all n by assumption.
=n P ien i=1

We can thus apply part 2. of theorem 1.3 to the sets {£,} to obtain

(ADA) %) 1o, s
n=1i=n n=1
=t u(Ua) =, Jim 3oud) =0
by assumption (1.8). O

Remark 1.8. Orie easily checks that

oo o0
w € ﬂ U A; & w € A,; for infinitely many 7.

n=1i=n

o0
So Borel-Cantellini’s theorem says that if > u(A,) < oo then

n=1

{we Q:we A, for infinitely many n}

has measure zero.

1.3 Measurable Functions

Recall: A mapping f: X — Y between topological spaces is continuous

fHU) isopenin X VU CY open.

definition

For mappings between measurable spaces, we have a similar notion:
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Definition 1.6. Let (£, ;) and (§s, F3) be measurable spaces. A mapping
[ —
is called (Fy, Fp)-measurable (or often simply measurable) if
ffAeF, VAeh (1.9)
(that is, if the pre-image of every measurable set is measurable.)

Remark 1.9. If (Qy, F) = (R% B(R?) then we often call such a function F;-
measurable.

If (O, F1) = (R™,B(R™)) and (Qs, F2) = (R%, B(R?)), then we call f a Borel
function or a Borel-measurable function.

If (Q, F1) = (R™, M,) and (Q, F2) = (RY, B(RY)), then we call f a Lebesgue-
measurable function. Every Borel function is Lebesgue-measurable.

In general, it suffices to verify (1.9) for genera{:ing sets of the o-algebra Fu:

Theorem 1.5. Let (Qy, F1) and (Qq, F2) be measurable spaces, and Fy = o(KC), the
o-algebra generated by K. Then

f:Q — Qo is measurable <& 14 er VAek.

Proof. =: This is obvious as K C Fo.
<: Suppose, f1(A) e F; VAeK. Set

E={AcF: f A e Ff}

Then obviously, K C & C F,. We need to show that £ = F,. For this we claim that
£ is a o-algebra. In fact,

i) Since § € F» and f~H(0) =0 € F, it follows that ) € £.

ii) Let A € £. That is, A € F, and f~'(A) € F1. Now as F, is a o-algebra, then
A® € Fy as well. Also, f71(A°) = [fH(A)]° € Fi as f71(4) € Fy and Fi is a
o-algebra. Hence, A° € €.

iii) Let {4,}%2, € €. Then A, € F, and f~'(A,) € F; for each n. Since F3 is a
o-algebra, then |J A, € F; as well. Also, f’1<U An) = U f (4, e A
n=1 n=1

n=1

as f~1(A,) € Fi and F; is a o-algebra. Hence, |J An € €.

n=1

This proves the claim. Now as ¢(K) is the smallest o-algebra containing K it follows
that Fy = 0(K) C €. Hence, £ = F; and the theorem is proved. O

Corollary 1.6. Every continuous function f : R™ — R? is Borel-measurable.
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Proof. Here we are dealing with the measurable spaces (1, F1) = (R™, B(R™)) and
(Q, Fa) = (RY, B(RY)). Now recall that B(R?) = ¢(O), where

Oz{Ung:Uisopen}.

Now as f is continuous, f~*(U) is open in R™ for all U C R? open, and hence,
f~YU) € B(R™). Thus by theorem 1.5, f is (B(R™), B(R?))-measurable. O

Corollary 1.7. Let (2, F) be a measurable space, and f : Q@ — R a function. Then
the following are equivalent:

1. f is F-measurable,
{weQ: f(z)y<aleF VYaeQ.
{weQ: f(z)<aleF VaecqQ.
{lweQ: f(x)>a}eF VaeQ.
5 {weQ:f(z)2ateF VaecQ
Furthermore, in the above, "V a € Q7 can be replaced by "V a € R”.
Proof. Recall that by remark 1.2,

BR) =0o(K1) = o(K2) = 0(K3) = o(K4)

e

where
Ki={(-00,a):a€Q}
Ko={(-0,a]:a€eQ}
Ks={(a,0):a€Q}

The corollary is proved using this characterization together with theorem 1.5.
Let us prove 1. < 2. By theorem 1.5,

f is F-measurable = fFllA)eF VAek,

el [ ((~o0,0)) €F  VaeQ
— {we:flw)<aleF VaeQ.
The remaining equivalences are proved similarly. O
The composition of measurable functions is measurable:
Theorem 1.8. Let (2, Fy), (, Fa) and (2, F3) be measurable spaces. If
fiQ— Q9 is (Fy1, Fa)-measurable

and
gy — Qs is (Fa, F3)-measurable
then
gof:fh — s is (F1, F3)-measurable.
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Proof Let A € F3 be arbitrary. Since g is (Fa, F3)-measurable, then g H(A) € F.
Now as f is (F1, Fo)-measurable, then

(go )M =F(g'(A) e A

This shows that g o f is (Fi, F3)-measurable. O

Remark 1.10. We will usually make use of this theorem in case Fy and F3 are
Borel o-algebras. Then the statement of the theorem becomes:

Let (Q,F) be a measurable space. If f:Q — R™ s F-measurable and
g:R™ — R? is Borel measurable then go f:Q—R? is F-measurable.

Often we want to give a set § the smallest o-algebra making a function f: Q —
RY or each fi : Q — R? in a family {fi}rea measurable:

Definition 1.7. Let © be a set, and {f}aea a family of functions f : & — R?. Set
K= {fi1(A): Ae BRY), Ae A}.
Then o(K) is called the o-algebra generated by { .}, also denoted by a({fr})-

Observe that if F is any o-algebra on ) in which the functions f) are measurable,
then
FHA) eF  VYAeBRY), AeA

and hence K C F. It follows that

0({f,\}) =o(K)CF.

Obviously, every f is o({f} )-measurable. So o({f\}) is the smallest o-algebra,
on  making all functions f) measurable.

If we have a single generator f : 2 — R, then we simply denote a( {f} ) by o(f).
We have a simple description of this o-algebra.

Theorem 1.9. o(f) = {f1(A) : A € BRY)}.

Proof. Set
K= {fYA):AeBR)}
Since o(f) = o(K) is the smallest o algebra containing K, it is enough to show that
KC itself is a o-algebra.
i) As 0 € B(RY) then 0= f'(0)eKk.

ii) Let E € K be given. Then E = f~1(A) for some A € B(RY). As B(R?) is a
o-algebra, then A° € B(R?), Now E° = [fH(A)]° = f~1(A°); hence E° € K
as well.
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iii) Let {E,}52, C K. Then for each n there exists as set 4, € B(R?) such that
E, = f"1(A,). As B(R?) is a o-algebra, then |J A, € B(R?Y). Now
n=1

Ue.=U @)= (U4 )
n=1 n=1 n=1
hence |J E, € K as well.
n=1
This shows that K is a o-algebra and proves the theorem. O

Definition 1.8. Given functions f,g: 2 — R, define

max(f,g): Q=R by  max(f,g)(w) = max(f(w),g(w))
min(f,g): Q=R by  min(f,g)(w) = min(f(w), g(w))

for every w € ). We also set
fT = max(f,0) and  f7 = max(—f,0).

Observe that f*, f~ > 0 (by this we mean that f*(w), f~(w) > 0 for all w € Q),
and

f=f—f ad |fl=f"+["

Theorem 1.10. Let (2, F) be a measurable space, and f,g : Q@ — R measurable
functions. Then

fto af fo g max(f,g), min(f,g), f* S, Ifl

are also measurable. Here, o is any real number. Furthermore, in the case of § we
require that g(w) # 0 for all w.

Proof. We omit the proof for af, fg and %. This missing part is left as an exer-

cise. (In the case of fg, prove first that f? is measurable, and then write fg =
(f+9)*—(f~9)* )
1 .

: We claim that for each a € Q,

{we: (f+9)(w)<a}= U[;{wEQ:f(w)<r};ﬂiw€Q:g(w)<a—r};].
reQ c€F as f i;;rleasurable c€F asg istneasurable
(1.10)
In fact, let w be such that (f + g)(w) < a. Pick € > 0 such that f(w)+g(w)+e < a.

Now pick 7 € Q such that f(w) <7 < f(w) + €. Then

glw)<a—[flw)+e] <a-r
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That is, f(w) < r and g(w) < a — r which shows that ”C” holds in (1.10).
Conversely, if f(w) < r and g(w) < a — r for some r € Q, then obviously,
fw) + g(w) <r+ (a—r)=a. This shows that ”2” holds in (1.10), and the claim
now follows.
Now since the right-hand sets in (1.10) belong to F, it follows by corollary 1.7
that f + ¢ is F-measurable.

max(f, g), min(f, g)|: For each a € Q we have

{weQ:max(f,g)(w) <a} ={weQ: flw) <a}N{weQ:gw) <a} € F.

EF as f isvmeasurable EF as g is‘;easurable
{weQ :min(f,g)(w)<a}={we: flw)<alU{weQ:gw) <a} €F.
EF as f is\;neasuréble EF as g i;:neasurable

Hence by corollary 1.7, max(f, g) and min(f, g) are F-measurable.

T, f7,|f|} Measurability of these functions follows from the identities

fr=max(f,0), f"=min(f,0), |fI=f"+f,

together with what has already been proved and the fact that constant functions
are always measurable. O

Exercise 1.4. Complete the proof by showing that af, fg and 517 are F-measurable.

Exercise 1.5. Let f: R — R be increasing (to be precise, non-decreasing). Show
that f is a Borel function.

Exercise 1.6. Let (Q,F) be a measurable space and A C Q. The characteristic
function x4 of A is defined by

1 fwecAd
xalw) =

0 ifwd¢A
Show: x4 is F-measurable <« AeF.

Theorem 1.11. Let (2, F) be a measurable space, and {f,}°2, a sequence of F-
measurable functions, f, : 2 — R. Then

sup fn, inf f,, limsup f,, liminf f,, lim f,
n n n n n—00

are all F-measurable, provided they exist and are finite valued.

Proof. We will again make use of corollary 1.7.

sup f, | Recall that sup f, is defined pointwise by

(sup fn)(w) = sup fr(w) VweQ.
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Note also that for every M C R and a € R,
supM >a <« dye M withy > a. (1.11)
Hence for all a € Q,
{we: (sup fo)(w) > a} = {w € Qsup fu(w) > a}

= Jfwen: fiw)y>a}er

~
€F as fp is measurable

as F is a o-algebra. Hence by corollary 1.7, sup f,, is F-measurable.

n

inf f, | Arguing as above, we have that for all a € Q,

{wEQ:(i%ffn)(w)<a}= Diweﬂzfn(w)<a}J€F.

n=1

€F as fpn is measurable

Hence by corollary 1.7, inf f,, is F-measurable.

limsup f,, || Recall that if {y,} is a sequence of real numbers, then

lim sup y,, = inf (sup yx). (1.12)

n o k>n

Now lim sup f,, is defined pointwise, hence for all w € €,
n

(im sup f,,)(w) = limsup f,(w) " )inf (sup fr(w))

n n A2) m p>n
= inf((sup fi)(w)) = (inf sup fi) (w). (1.13)
o k>n N k>n
Now as already proved, g, := sup fr is F-measurable for each n and similarly,
k>n

limsup f, = infsup fx = inf g, is F-measurable.
n (1L13) 7 k>n n

liminf f, | In a similar way one shows that
n

limninf fo = s%p ]irzlﬁ fr-

Now as already proved, h, := ]11>1f fr is F-measurable for each n and similarly,

lim inf f, = sup h, is F-measurable.

lim f,} Recall that if {y,} is a sequence of real numbers and y € R, then

lim y,=v < limsupy, = liminfy, =y.
n—o0 n

n
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Since lim f,, limsup f, and liminf f, are defined pointwise, one easily deduces that
n—0o0 n

for a function f :nQ — R,

lim f,=f < limsupf, = liminf fo=1
So if f,, — f, then f =limsup f,; hence f is F-measurable as shown above. O

Remark 1.11. Let (Q, F, ;1) be a measure space. One can show that if f,g:Q —
R? are F-measurable vector valued functions, then so are f + g and af for each
real number o. Similarly, if {f,}%2, is a sequence of F-measurable vector valued
functions, f, : Q — R¢, which converges, say fa(w) — f(w) Vw € Q, then the limit
function f is also F-measurable. We will not prove these facts, but make use of
them freely.

1.4 Almost Everywhere

Definition 1.9. Let (€, F, u) be a measure space. A set A € F is called a null set,
or set of measure zero, if (A) = 0.

Example 1.6. Consider the measure space (R, B(R), A).

1. Every singleton {z} is a null set. In fact,

1 1 2

A({z}) =>\<ﬁ [x—l,ac—kl]) = lim A([m—;,:ﬁ——]) = lim —=0.

1 n n thm 1.3 n—oo n n—oo N
n=—

2. Every countable subset A of R is a null set. In fact, write the elements of A
as a (possibly finite) sequence, A = {z,}72;. Then by o-additivity,

A(A) =)\<U {xn})(@)x M {zn}) -——Z 0=0.

3. There exist uncountable subsets of R which are null sets. (e.g. the Cantor set,
see [2].)

Example 1.7. Consider the measure space (N, P(N), p) where p denotes the count-
ing measure. Thus for A € F we have

Aisanullset & pA)=0 & cad(4)=0 & A=0
Note that if A = {x} is a singleton, then p(A4) = 1.
Remark 1.12. 1. Let {A,}%2, C F be a collection of null sets. Then by o-

additivity,
M(U An> =3 w4 =Y 0=0.
n=1 n—1 n=1

That is, the countable union of null sets is again a null set.
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2. Let A, B € F with B C A. If u(A) = 0, then by monotonicity of the measure,
w(B) = 0. That is measurable subsets of null sets are again null sets.

Definition 1.10. A measure space (2, F, i) is called corriplete, if whenever A € F is
anull set and B C A, then B € F. (That is, all subsets of null sets are measurable.)

Example 1.8. 1. Let Q be any set, F = P(Q)) and u any measure on (£, F).
Then (2, F, ) is complete.

2. One can show (see [2], [3]) that

(a) (R% B(R?),\) is not complete. However,
(b)  (R¢, My, ) is complete.

Definition 1.11. Let (2, F, 1) be a measure space, E € F and (P) a statement
about the elements of F. We say that (P) holds almost everywhere ("a.e.”) on E if
there exists a null set A € F such that

B :={w e E: (P) is not valid at w} C A.
If £ =Q, then we say that property (P) holds a.e.

Remark 1.13. In this definition, the set B itself is not required to be measurable.
However, property (P) must hold for all w outside of the null set A.

In case that (2, F, p) is complete, then B will also be measurable and by mono-
tonicity of the measure, u(B) < pu(A) = 0. That is, B will also be a null set, and
the above definition can be restated as

(P) holds a.e. on E < pu( {w € E: (P) does not hold} ) = 0.

Example 1.9. Let (Q, F, 1) be a measure space.

1. Let f,g: 2 — R be two functions. The statement ” f(z) = g(z) a.e.” means:
There exists a null set A € F such that

{wel: flw) # gw)} C A
Equivalently, w ¢ A implies that f(w) = g(w).
If (2, F, u) is complete, then

Pf(z) =g(z) ae” & {weQ: f(w)#g(w)}is anull set.

2. Let {f.}°°, be a sequence of functions, f, : & — R™. The statement ” f,(z)
converges a.e.” means: There exist a function f : Q@ — R™ and anull set A € F
such that

falw) = flw)  VwgA
If (2, F, u) is complete, then
Pfulz) — fae” & {we: f(w) A f(w)}is anull set.
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Theorem 1.12. Let (Q,F, i) be a complete measure space, and f,g : Q — R
Suppose that

1. f is F-measurable,

2. f(z)=g(z) a.e.
Then g is also F-measurable.

Proof. Let
A={weQ: f(w)#g(w)}
Since f = g a.e. and (Q, F, i) is complete, then A € F and pu(A) = 0. Now for all
E € B(R?),
g HE)={weQ:gw) e E}
= [{weQ:gw) e E}NA U [{weQ:gw) € EyNA]
—[{we: fweEINA|U[{weQ:gw) € E}nA]

N
=B

Il

[fFHE)NA°]UB

since g(w) = f(w) on A°. Now f~}(E) € F because f is F-measurable. Also, since
B C A€ F and (Q,F,u) is complete, then B € F as well. Thus, g H(E) e F. As
E was an arbitrary Borel set, it follows that g is F-measurable. O

Remark 1.14. Let (Q, F, 1) be a measure space, not necessarily complete.

1. Let f: Q — R? be F-measurable. Given a null set A € F, let us modify the
values of f on A to be constant by setting

2oy f(w) fwgA
10 if we A

(We could replace 0 by any constant of choice.)

Claim: f is also F-measurable.

In fact, for all E € B(R?),

FUBE)={weQ: f(w) € E}
= [{wEQ:f(w)GE}ﬂAC]U[{weQ:f(w)EE}ﬂA]
=[{weQ: fweEynA U{we A: fv) € E}
_{f%EWMPef if 0 ¢ E
B NA UAEF if0ec E

as f is F-measurable and f = f on A°. This proves the claim.
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2. Next let {f.}52, be a sequence of F-measurable functions, f, : 2 — R4,
converging a.e. That is, there exist a null set A € F and f : @ — R? such
that

folw) — flw) Vwe A°

For each n, set

~ . fr(w) ifwég A

folw) = {0 fweA
and also set

2oy ) flw) ifwgA

Jw):= {o if we A

Then each f, is F-measurable as shown in part 1. and
falw) = flw)  YweQ.

It follows from theorem 1.11 (respectively remark 1.11) that f is also F-
measurable. Furthermore, since

folw) — f(w) ae. (thatisVw ¢ A)
and f(w) = f(w) for w ¢ A, we may replace f by f, that is, take f as the
a.e. limit of {f,}. Doing so, we obtain:

If f. is F-measurable for allm, and f, — f a.e., then (by choosing an appro-
priate f) f is F-measurable.

3. Now suppose that (Q, F, u) is complete. In this case, since f is F-measurable
and f(w) = f(w) a.e., then by theorem 1.12, f is also F-measurable. We thus
obtain:

If fn is F-measurable for alln, and f, — f a.e., then f is F-measurable.

4. Slmllar arguments apply to 1nf fos sup frs hm inf f, and lim sup fn in case of

real valued JF-measurable functlons fn Q- R

1.5 The Lebesgue Integral

Throughout this section, (£2,F, ) will denote a fixed measure space. Thus, the
words ”measurable function” will mean ” F-measurable function.”. We are now
ready to define the Lebesgue integral

/fdu

of a measurable function f : 2 — R. Although one usually defines the Lebesgue
integral for complex valued functions as well, we will not do so because in probability
one deals mostly with real valued functions. The integral is defined in several steps.
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Recall from exercise 1.6 that the characteristic function of a set A C €} is given

by
() 1 ifweA
W)=
x4 0 ifweAd
and that x4 is an F-measurable function iff A € F.

Definition 1.12. A function of the form
N
QOZZCkXAk, cr € R, A, C Q) N eN (114)
k=1

is called a simple function.

A few observations are in order:

Remark 1.15. 1. Obviously, the range of a simple function is a finite set, as
N i
range(yp) C {Z (ck)™, mq,...,m € {0, 1}}
k=1

and the right-hand set has cardinality < 2N Conversely, if ¢ : & — R has
finite range, say range(¢) = {c1,...,cn}, then

N
v = Z Ck XAy where Ay = ¢~ ({ck})
k=1

and hence ¢ is a simple function. That is, simple functions are precisely the
finite-range functions.

9. A simple function ¢ may have several representations of form (1.14). If
range()\{0} = {c1,...,cn} then we can write

N
Y= Z cexa,  where A = ¢ ({cr}) (1.15)
k=1

which is called the canonical representation of . Obviously, A; N Ay = 0 if
j # k, that is, the sets Ay are disjoint. (Sometimes it will be convenient to
allow ¢, = 0 in the canonical representation.)

3. Let ¢ be a simple function as defined by (1.14). If Ay € F for each k, then by
exercise 1.6 and theorem 1.10, ¢ will be F-measurable.

Conversely, let ¢ be an F-measurable simple function with canonical repre-
sentation (1.15). A simple application of corollary 1.7 shows that each set
Ay, = o' ({cx}) is F-measurable. We thus obtain:

A simple function @ is measurable < each set Ay, in its canonical represen-
tation (1.15) is measurable.
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4. Tt is an easy exercise to show that
Vei={p:Q — R: ¢ is simple and F-measurable}

is a real vector space.

Example 1.10. Let (2, F) = (R, B(R)). Then

N
$= Z Cr X1y (I an interval)
k=1

is called a step function. As intervals are Borel sets, it follows that every step
function is Borel-measurable.

The next theorem says that every non-negative measurable function is the a.e.
limit of an increasing sequence of simple, measurable functions. It is the crucial
ingredient in the definition of the Lebesgue integral.

Theorem 1.13. (Structure Theorem for Measurable Functions) Let f: & — R be an
F-measurable function. There exists a sequence {@,}o2, of simple, F-measurable
functions with

0<|pn(@) <|f(W)]  YweQ, Vn

such that
on(w) — fw) Vw € €.
If f > 0, then we may choose 0 < v, (w) < ppr1(w) Yw € Q, Vn  (we write {e,}T).

Proof. 1. Assume first that f > 0. Set

0 if0< flw)<i
1 (w) = —;— 1f—§-§f(w)<1
“ 1 if flw)>1
and for general n, set
on(w) = 5l if f(w)<nand B < f(w) < 5 for some 1 <4< n2" (1.16)
n if flw)>n
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Since f is measurable, then A; € F for all i, 0 < i < n2". Hence, each ¢, is an
F-measurable simple function, and 0 < ¢, < f by definition.

We now show that {@,}]. In fact let n be fixed, and w € Q.
a) Suppose, 0 < f(w) < n. Then there exists 4, 1 <4< n2" so that

i—1 )
< -
on ‘f<w)<2n’

and ¢, (w) = &2, Now compute ¢nt1(w). The above inequality gives

2’n
21— 2 21

2n+1 S f<w) < 2n+1'

If 31;? < flw) < gf;}, then by (1.16),

21— 2
Pny1(w) = o Pn(w),

while if 255 < f(w) < 547, then

20—1 _ 21—2
Pnt1(w) = onrl = gntl = (W)

b) Suppose, n < f(w) <n+ 1. Then ©n(w) =n, and

1—1
(Pn-i-l(w) = on+1

where i is the unique positive integer satisfying 2—’,;—11 < flw) < @%T Note that

;,;ﬁ > n since f(w) > n. Hence,

i—1
(pn—kl(w) = on+1 > n(pn(w>~

¢) Finally, suppose that f (w) > n+ 1. then

Pnpiw)=n+1>n= ©n(W).

This shows that @n41(w) > ¢n(w) for all w.
Next we show that ¢, — f. Let w € € be given. By construction (1.16) of pn,
we have

02 F() = pulw) < 57— 0

as n — oo. Hence, g, (w) — f(w).

2. Next let f be arbitrary, F-measurable. Then f* and f~ are F-measurable.
Let {¢n}T, {¥n}1 be sequences of simple, F-measurable functions constructed in 1.,
with

0<@n < fF,  0<Pn<f7
for all n, and
(Pn—)era (U

Then {¢Yn — ¥n tneq 1S & sS€quence of F-measurable simple functions satisfyin
n=1 7 Yy g
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L. |(pn_¢n|S’@n’+’¢n|:(Pn+1/)n.<_f++f—=|f|, and
2. (on — )W) = @p(w) — Yp(w) — fT(z) — f(2) = f(w) for all w.
This proves the theorem. O

Definition 1.13. (Lebesgue integral of simple, non-negative functions). Let

N
= Z Ck X Ay, (1.17)
k=1

be an F-measurable, non-negative (i.e. ¢, > 0 Vk) simple function in canonical
form. We define its integral by

N .
/wdu = p(Ar). (1.18)

k=1

Remark 1.16. 1. It may be possible that u(Ay) = oo for some k. In this case,
as ¢ > 0, we can make the convention that ¢ - 0o = 00, so that [ ¢ dp = co.
In order to also permit ¢; = 0 in the canonical representation (1.17) and hence
in the definition of the integral (1.18), we make the convention that 0-oco = 0.

2. Suppose we have a representation of ¢ of the form
M
o= ajxs a;>0, BjeF Vj (1.19)
j=1

with the sets B; mutually disjoint. Then for each j, a; € range(yp), that is,
a; = cy(;) for some k = k(j) and hence B; C Apk)- We can thus rearrange

(1.19) as
Z Ck XBj'

1 {j:k(5)=k}

N
(p:
k‘:

Observe that
A4 = o '{ah) = U B
{7:k(5)=k}
and hence

Ck u( U Bj>

{7:k(5)=k} k=1 {j:k(5)=k}

That is, in the definition of the integral (1.18) we don’t require that (1.17) be
the canonical representation of ¢, but only that the sets Aj; are disjoint.
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3. Using 2. above, it is not difficult to show:

Let ¢, 1 be simple, non-negative F-measurable functions and a > 0. Then
(o)  [le+y)du= [ewdu+ [Pdy (”additivity”)

(b) [opdp=oafpdy (7 positive homogeneity”)

(c) If p<9 then [wdu< [Pdu ("monotonicity”)

The proof is left as an exercise. (The idea is to choose representations of ¢
and ¢ with identical sets Ag.)

. Let

M
o= ajxs 420, B €F V]
j=1

be any representation of. ¢. Then by part 3. and definition of the integral of
a characteristic function,

/wdu => a /XB]- dp =Y a;p(By).
j=1 j=1

That is, in the definition of the integral (1.18) we may even allow the sets Ay
to overlap.

Example 1.11. Consider the measure space (R, B(R), \). If ¢ is a step function,

N
¥ = Z Ck X1
k=1

where ¢, > 0 and each I is an interval with endpoints ay and by, ax < by, then

N

/(pCD\:ZCk)\(Ik)Z ck(bk-—ak).
k=1

k=1

Definition 1.14. (Lebesgue integral of non-negative functions). Let f: Q — [0,00)
be F-measurable. Then by theorem 1.3, there exists an increasing sequence {on}1
of simple, non-negative F-measurable functions such that

on(w) = flw) Yw € .

By monotonicity of the integral, then

(o,

is an increasing sequence in [0, 00) which either converges, or diverges to infinity.
We can thus set

/fdu = lim /gond,u. (1.20)
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Remark 1.17. 1. Obviously by definition, [ fdp € [0, co].

2. One needs to show that this integral is well defined. By this we mean that
the limit in (1.20) is independent of the sequence {¢,} chosen. So one must
show that if {¢,} T is another increasing sequence of simple, non-negative
F-measurable functions such that ¢,(w) — f(w), then

lim [ ¢,dy= lim /gpn du.
n—oo n—r0o0
This is left as an exercise.

3. It is also left as an exercise to prove:

Let f, g be non-negative F-measurable functions and o > 0. Then

(a) [(f+g)dp=[fdu+ [gdu ("additivity”)
) [afdp=affdu ("positive homogeneity”)
(c) If f<g then [fdu< [gdu ‘ ("monotonicity”)

Definition 1.15. (Lebesgue integral of arbitrary functions). Let f : & — R be
F-measurable. Then by theorem 1.10, f*,f~:Q — [0,00) are also F-measurable.
Since f = f* — f~ we define

[tawi= [ du= [ 1 au (1.21)

provided that the right-hand side is not of the form co — oc.
We say that f is integrable if [ f* and [ f~ are both finite (i.e. # oo). Thus, f
is integrable iff [ f dy is defined and is finite.

Remark 1.18. Let
L' = {f:Q— R: fis F-measurable and integrable}.
One can show:

1. L' is a vector space, and f — [ fdu is a linear functional on L'. That is, if
f,g € L' and o, B € R, then

(a) af+Bge L and
(b) /(af+ﬁg)du=a/fdu+ﬁ/gdu.

2. The integral is monotone: If f,g € L1 with f < g, then

/fduﬁ/gdu-

The proof of 1. and 2. is left as an exercise.
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3. Since

0< fHfm<fr+f =1/l

we have by linearity and monotonicity of the integral that

/lfldu<oo & /f+du<oo and /f‘du<oo.

Thus by definition of ”integrable”,
/|f| du<oo < fisintegrable.

In particular, if 4(Q) < oo and f is bounded, say |f(w)| < M for all w, then
by monotonicity of the integral,

/|f|dM§/Mdu=M-p(Q)<oo.

That is, f is integrable.

. Let f be F-measurable and g € £! with |f| < g. Then by monotonicity of the

integral,

/!flduﬁ/gd/KOO-

That is, every bounded and measurable function f on a finite measure space
is integrable.

. Let f be integrable. Since

=fI<f<IA

then by linearity and monotonicity of the integral,

—/|f|d/¢=/—lflduﬁ/fdué/lﬂdu

From —a <b<a<& |b <a,fora>0,becR weobtain

]/fdu\s/mdu.

. One uses various notations for the integral. For example

/Qfdu /Qf I /Qf(w)du(w) /Qf(w)dw

all denote [ fdp.

Exercise 1.7. Let f,g: Q — R be F-measurable. Show:

If f(w) = g(w) a.e., then

/fdu is defined < /gdu is defined.

Furthermore, if these integrals are defined, then they are equal.
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1.6 Convergence Theorems

The following three convergence theorems constitute one of the strengths of the
Lebesgue integral and we will need to use them as tools throughout. We will omit
their proofs which can be found in [2] or [3], for example. Throughout, (£2, F, u) will
be a measure space, and {f,}2; will denote a sequence of F-measurable functions,
fn 1 @ — R. The theorems answer the question: Is [ nh_)rgo fn= nh_}rgo Jfa?

The first theorem deals with increasing sequences of functions. Thus, for each
w € Q the sequence {f,(w)} either converges, or diverges to oo. The implicit
assumption here is that {f,(w)} converges a.e. (w € Q). Observe that the functions
here need not be integrable, i.e. some of the integrals below may be infinite.

Theorem 1.14. (Monotone Convergence Theorem, MCT). If { f,}T and f, > 0 for
all n, and f.(w) — f(w) a.e., then

Jran = [ goin

In the second theorem, the sequence {f,} need not converge. Since all functions
involved are non-negative, some of the integrals may again be infinite. This theorem
is often used to show that [ fdu is finite.

Theorem 1.15. (Fatou’s Lemma). If f, > 0 for alln, and f = liminf f,, a.e., then

/fdu < liminf/fndu.

In the third theorem, the functions involved may take negative values. This
requires the condition that all functions be dominated by an integrable function.

Theorem 1.16. (Lebesgue Dominated Convergence Theorem, LDCT). Suppose
1 fulw) — flw) ae.
2. There exists g € L such that |f,(w)| < g(w) a.e., for all n.

Then f € L (i.e. f is integrable) and

[ fan =t [ fudu

Exercise 1.8. Consider the measure space (R, My, A).

1. Let

-

Show that [ fd\ = oo while [gd) is undefined. (So both functions are not
integrable, but for different reasons.)

i z€n,n+1)

and g(z) :{ n

0 else.

r € [nn+1)
else

O 3=
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2. Let

D if 1
By = VT e Ein )
0 else.
Show that A is unbounded, but integrable.
Next we define the integral over a measurable subset of €.

Definition 1.16. (Lebesgue integral over a measurable set). Let A € F. We define

/Afdu :=/fodu

provided that the right-hand integral is defined.

Remark 1.19. 1. If f>0and A, B € F with A C B, then as y4 < xp we have
by monotonicity of the integral,

/Afdu=/fx,4du S/fdeu=/deu.

2. If f € £ and {A;}32, is a disjoint collection of subsets of F, let us set
oo}

B, := |J Ay and B := |J Ax. Now as
k=1 k=1

(fxB)W) = (fxs)w) Yw  and  |flxs, <|flxs < |fle L
we have by linearity of the integral and the LDCT,

[ taw = [ rxudn = [ 1 pxa,dn = [ rxa,d
B n—00 n—oo
=t [ 7(Yea) doe = tim 3 [ fracdu=tim S [ fan

That is,

[, o san=3% [ rau
k=1 ¥ Ak

k1 Ak
3. Using remark 1.18 one easily checks that f+— [ 4 f du is also linear and mono-
tone.

Exercise 1.9. One can prove the following theorem:

If f: la,b) — R is Riemann integrable, then f is Lebesgue-measurable and
Lebesgue-integrable on [a,b], and Riemann and Lebesque integrals coincide,

R—/abf(x)dx = /fd)\.
[a:b]

(Here the left integral denotes the Riemann integral).
This is no longer true for improper Riemann integrals. In fact, show:
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o0 : .
1. R- / e dx  converges, but / SnE dA  is undefined.
0 z T

(0,00)

2. If f > 0 and f is Riemann integrable on each bounded interval [0,¢], t > 0,
and if the improper Riemann integral

R—/Ooof(x)dx

converges, then f is Lebesgue integrable on [0, c0) and

R—/Ooof(x)d:c = /fd)\.
[0r00)

Recall the Fundamental Theorem of Calculus: Let f : [a,b] — R be Riemann
integrable. Fix z, € (a,b) and set

Flz) = / fOdt (xe o).
If f is continuous at z,, then F is differentiable at z, and f(z,) = F'(z,). That is,

flwg) = lim L Ee T = F@o) 1 / %Jrhf(t) dt.

h—0 h h—0 h

Given € > 0, setting h = € and h = —e, respectively, we obtain

e—0+ €

fay=m * | " pw)at

and

e—0+ —¢

(@) = lim — / = tm 2 [ pea

Averaging both equations,

f@) = & lim X / Ny dt= tim ! / e at

2 0+ € Jo . —0t Nzo — €, +€) Sy, o

where \(zo — €, 7, + €) denotes the length(=Lebesgue measure) of this interval.
This generalizes to the Lebesgue integral for the proof see [3]:

Theorem 1.17. (Lebesgue Theorem). Let f : RY — R be Lebesgue integrable. Then
for a.e. x € R,

. 1
flz) = El_lglJr ——)\(B(x,e)) /B(“) fdX (1.22)

where B(x,€) denotes the open (or closed) ball with center x and radius €. (In case
d = 1 we may replace the open balls by half-intervals (z — €, €], respectively [z, z+€.)
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1.7 [LP-spaces

Let (Q, F, 1) be a measure space and p be fixed, 1 < p < oo. Set

[P = [P(Q) = IP(Q, F,p) == {f : @ — R f is F-measurable and / |fIP dp < o0}
(To be precise, we identify functions which are equal a.e. Thus, elements of L7 ($Y) are
equivalence classes of functions, but for simplicity, we identify each equiva lence Cl.a 5
with a member function. As a consequence, any property of a function dependmg
on the elements w of 2 can hold only a.e. on 2. However, this identiﬁcatlon does
not pose a problem for the integral; exercise 1.7 shows that functions in the same
equivalence class have identical integrals.) Observe that f € L? < |f [P €

The proofs of the following two theorems can be found in any bext
measure theory, such as [2] or [3], for example.

book on

Theorem 1.18. LP(2) is a Banach space with norm

90 = [ [ 117 du] v

In particular, for all f,g € L?,

1+ glly < 1£ 1l + gl (* Minkowski’s inequality”)
Theorem 1.19. Let 1 < p < co and let g be such that % + % =1 (q:”conjugate of
p’, 1< q<o0.) Then for all f € LP(Q) and g € LI(§Y), we have

1. fg is integrable (i.e. fg € L}(R))

2 [Voldu<flplsle  (Holder's inquality”)

Remark 1.20. If p = 2 then ¢ = 2 as well, and one easily verifies that

<f,g >:=/fgdu

(For this reason,

defines an inner product on L?(f2) making it a real Hilbert space.
» i case p = 2.)

Holders’s inequality is also called the ” Cauchy-Schwarz inequality

The Lebesgue Dominated Convergence Theorem has a version for the LF-spaces:
Theorem 1.20. Let 1 < p < 0o and let {f,}52, a sequence of f_measumble func-
tions such that

1. folw) = flw) ae

2. There exists g € LP(2) such that |fn(w)] < lg(w)] a.e

Then f,, f € LP(Q) and f, % ¢,
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Proof. By assumption,
[fa@)PP = |f(W)P ae  and  [fu(w)]” <]g(w)[" ae.
As lg|P € L}(£2), then by the LDCT,
[fulP, [ fI7 € LHQ)  thatis  |fal, | f] € LP().

Now since LP(2) is a vector space then |g| + |f| € LP(Q) which is equivalent to
[l + |71]" € L'(%). From

|fr{w) = f(w)]P — 0 ae.

and
[falw) = F@)P < [[fal@)] + 1f@)]” < {lg@)] + f@)I]" a-e.
it follows by the LDCT that

tim 15— Al = i [ 100 fPdn o [0du=0

LDCT

which proves the theorem. O

Integrals over ”small” sets are small:

Theorem 1.21. Let (Q,F, i) be a measure space, and g € L'(Q) be fized. Then
for each € > 0 there exists § > 0 so that

/ lg| dp < € VE € F with p(F) < 4.
B

Proof. Let € > 0 be given.
1. Assume first that g is bounded, say |g(w)| < M for all w € Q, where M > 0. Set
6 = §7. Then for all measurable sets E with u(E) < 6 we have

€
/ 9| dp = / l9lxEdp < / Mxgdu= Mu(E) < M - =€
E Q Q
2. Next let g be arbitrary. For each n € N, set
A, ={we Q:|gw)] <n}.

Then A, € F. So if we set g, := gxa,, then g, is an F-measurable function.
Furthermore for all w,

L fga(w)] < |g(w)| € L1(2), and

2. gp(w) — g(w).
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Hence by theorem 1.20,
lg—gali—0  asn— oco.

In particular, there exists n such that

€

Hg_gn||1< 9

Applying part 1. to gy, there exists § > 0 such that

/Elgn\ dp < % whenever u(FE) < 0.

Thus for all measurable sets E with p(E) < 6 we have

/E|g|du§/Elg—gnldu+/Elgn|du

</| ldu+ < = h+s<s+s
— 0n — = — g — —_ —_ = €
Qg g H 9 g — gnjl1 5 5 5

which proves the theorem. O

Theorem 1.22. (Chebychev inequality). Let 1 <p < oo and f € LP(QY). Then for
each M > 0,

u({w e Q: W) = M}) < M| fE, (1.23)

Proof. Set
Ey ={weQ:|flw)|> M}

Then by monotonicity of the integral,

Il = / fPduz / P> [ MPdu—m / e = M u(Eyr).
M

Dividing by M? > 0 we obtain the assertion (1.23). O

Ey

Exercise 1.10. Let (Q, F, u) be a finite measure space, and 1 < p < ¢ < oo. Show:
1. L) C LP(Q) and
1_1
1fllp < ()7 7 flly  Vf e LUQ).
(So in particular, if 4(Q2) = 1 then || f{l, < || flls)

2. IP(R) € LI(R) and L*(R)  L*(R).
(In particular, 1. need not hold if p(£2) = cc.)
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1.8 Modes of Convergence

Throughout this section, fix a measure space (2, F, ). Let {f.} be a sequence of
F-measurable functions, f, : @ — R, and let f :  — R. We are already familiar
with the following modes of convergence:

1. pointwise convergence:
fo—f & lim f,(w)=fw) YweQ.
N-—+00

In this case, f is also Fmeasurable by theorem 1.11
2. a.e. convergence:

fo—f ae. & 3JAeF, pu(Ad)=0 st. lim f,(w) = f(w) Yw e A°

n—oo

In this case, f is equal a.e. to a measurable function (so we may assume f to
be measurable) by remark 1.14.

3. uniform convergence:

fa=f & lim sup |fp(w) - f(w)]=0.

o0 L,eQ
Obviously, 3. = 1. = 2.
4. convergence in the p-th mean: Suppose, f., f € LP(Q). Then

I .
fo—=f & lim [lfa=flp =0

Definition 1.17. Suppose, f is also F-measurable. We say that {f,} converges to
f in measure and write

fam= f

if for each € > 0,
lim ({0 € 0 [uw) = F@)] > }) = 0.

That is,
f28f & lim u(B,.)=0 Ye>0

where E, . ={w € Q:|f.(w) — f(w)] > €}.

Exercise 1.11. Show:

1. We may replace ”|f,(w) — f(w)| > € by 7|fu(w) — f(w)| > € in the above
definition.
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9 The limit in measure is essentially unique: If f, g are F -measurable and
LIESE ad ™S
then f(w) = g(w) a.e.
3. Let fn, f,gn, g be F-measurable, and «, B real numbers. If
f, 2 f and g =g
then
afo+ Bgn = af + B9
Example 1.12. Consider the measure space (R, B(R), \).
1. Let fo= =X©Omn)- |
(a) Since for all z € R, [fa(z) — 0] < 1 _,0then f,=0 onR.

"

(b) Obviously, f, € LP(R) for all 1 <p < oo. Now for all m > n,

1 1
= Fulli = [ |0 = o

1 1 1
:/‘—"——lX(O,n] d>\+/ —X(n,m) AA
m n m

dA

_ \n—m n+i(m—n)= m—n+m—n 22_22
nm m m m m
which shows that
Hfm - anI > 1
whenever m > 2n. Hence, {f,} is not Cauchy and thus does not converge

in L'(R).
On the other hand, if p > 1 then

16 =0l = [ | 2x00

P 1 1 1
dA:ﬁ/X(O,n)dA:ﬁ;n ’)’W_l__)O

as n — o0o. This shows that f, LY LP(R) for all 1 < p < o0.
(c) For fixed € > 0, set
Epe={weQ:|fulw)—0] > ¢}

Let us choose N such that % < ¢. Then for all n > N and =z € R we have

|fu(@)] <
that is, B, = 0. Hence
lim A E,.) = lim A(0)= lim 0=

n—00 00 n—oo

meas

which shows that f, — 0.
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2. Now let f, = X (n,n+1)-

(a) For m s n we have

sup | fm(z) — fn(2)| = 1

z€eR

which shows that {f,} is not uniformly Cauchy, hence does not converge
uniformly.

(b) On the other hand, given z € R, pick n € N such that z < N. Then for
all n > N we have z ¢ (n,n + 1), that is, f,(z) = 0. This shows that
fn(x) — 0 pointwise on R (and hence trivially, f,(z) — 0 a.e on R).

(¢) Next let p be arbitrary, 1 < p < co. We have for all m # n,
1/p
P
d)\]

1/p
= / [X(m,m—i—l) + X(n,n—}-l)] d)\:l = \17§-

”fm - anp = / IX(m,m+1) — X(nn+1)

Hence, {f.} is not Cauchy and thus does not converge in L*(R).
(d) Now let € be given, 0 < e < 1. For each n set

Enc={weQ:|fulw)—0] > €}
Then E, .= (n,n + 1) by definition of the functions f,,, and
lim /\(En,e) = lim )\((n,n—l—l)) = lim 1=1.

meas

This shows that f, / 0. It will follow from theorem 1.23 below that if
this sequence f, converges in measure to any f, then f(w) = 0 on each
bounded interval; thus {f,} does not converge in measure at all.

The second example above shows that even if f, — f a.e., then f,, need not
converge in measure. However, for finite measure spaces we have:

meas

Theorem 1.23. Suppose, u(Q) < co. If fo =5 f then f, 5 f.

Proof. Suppose, f, — f a.e. Then (replacing f by an appropriate function if neces-
sary as in remark 1.14) f is also F-measurable.
Now given € > 0, let

E,=FE,.={weN:|fulw)— f| > €}

We need to show that lim u(E,) = 0.

n—00
To do so, for each k we set

Ay = UE" (={w: |falw) — f(w)| > € for some n > k).
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Observe that {A} | and

w € ﬂ A, <= w is contained in infinitely many E,

o 18
= |falw)— f(w)| > ¢ for infinitely many n
= folw) A fw).

Thus, .

kﬂl Ap CH{w: folw) 7 flw)}

By assumption, the right-hand set is contained in some null set, hence

u(fjl Ak) = 0.

Now as () < oo we have by theorem 1.3 that

hm w(Ag) = (ﬂ Ak) = 0.

Since E), C Ay, for all k£ we can apply the Sandwich theorem to obtain that

lim p(Ey) =0

k—o0

as well. This proves the theorem. O

The next example shows that the converse statement of this theorem is wrong.
meas

In fact, it shows that if f, — f then {f.} need not converge a.e.

Example 1.13. Define a sequence of measurable functions f, : [0,1) — R as follows.
For each n € N, there exist a unique pair k = k(n) € No and m = m(n) € N,
0 < m < 2%, such that

n =28+ m.
Set
I =X g mp)
For example,
J1= X1, fa=x (0,3) fa= X[3,1) f4=X[0,1), fs = X[1,2y, f6:X[%,%)7

f7=X[g,1), fs = X[0,1) f9=X[§,§)> f10=X[ 3y fu=x X(2,4)
Observe that k(n) — oo as n — oo. We now consider various modes of convergence

for the sequence {f,}.
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Claim: : f, =5 0.
In fact, for each ¢, 0 < e < 1, we have

m m+1
Frei= {0 €9 fuw) ~ f@)] > & = [57, 7o)
Hence,
m m-+1 1
)\(En,e)—)\([2—k, o ))ZW‘*O e

This proves the claim.

Il

. Claim: : f,—0 foralll <p < oco.

In fact,

m m+1 1
|’fn—0|]£:/|fn|pd/\=/X[ka’mz_tl) dA:A([EE’ ok ]) = ok(n)

as n — 00. This proves the claim.

— 0

a.e.

. Claim: : f, /0

(Observe that if f, — f a.e., then by theorem 1.23 and part 1, f = 0 a.e.)
Let z € [0,1) be arbitrary. Now for each &,

0 1 1 2K
is a partition of [0, 1] into subintervals of equal length. Thus for each k there

exists a unique my, 0 < my, < 2* with z € [%, mg,fl). Set

n=24+mp  (k=1,2,3,...).

Then
for (@) = X[z mat1) (z) =1

ok ' ok
for all k, that is,
klim foi(z) = 1.

We have shown that for each z € [0,1), fn.(z) /4 0, hence the claim follows.

Observe that in the above example, one can construct various subsequences

of {f.} converging to 0 a.e. For example, if we choose n, = 2* then we have
Jo(2) = X[o . )(x) — 0 for all z # 0.
oF

72

In fact, we have in general:

meas

Theorem 1.24. If f,— f then there exists a subsequence {f., }2>, such that
fon 51
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Proof. By assumption, for each € > 0 we have
JLII;OH(ER,E) =0 where E,.:={we€Q:|fp(w)— flw)|> e}
That is, given § > 0 there exists N = N(e, d) such that
u({wEQ:Ifn(w)—f(w)|>e}> <é Vn > N. (1.24)

Now we extract a subsequence of {f,} inductively. By (1.24), choosing € = 1

and § = %, there exists n; € N such that

u“@e@:%ﬂﬁ—f@ﬂ>u><% Vn > ni.
Next choosing € = % and 6 = %, there exists my > my such that
p({w e 1hw) - 1@ > 51) <3 Vn >y
Suppose we have picked a positive integer ny such that
u({weﬂz Ifn(w)—f(w)|>%}) <§E Vn > ng. (1.25)
Then by (1.24), choosing € = k—}ﬁ and § = 271@, there exists ng41 > ng such that
u@peﬂzmm@—fwn>?%i)<§%i Wn > nger.

We thus obtain a subsequence {f,, } of {f.} satisfying

1
;&fweQﬁhAm—fWN>%igﬁ- VE.
/Y
Set o o
A=A
j=lk=j
Since - -
SomA) <Y 2 =1
k=1 k=1

then by the Borel-Cantellini Theorem, p(A) = 0.

Now let € A° (i.e. outside of a null set). Then z & (J Ay for some j, that is,
k=)
x & Ay for all kK > j. Equivalently,

(W) = f(W)] <
It follows that |f,, (w) — f(w)| — 0 as k — oo. We have shown that

S (W) = f(w) Vz & A
and thus proved the theorem. O

vk > j.

| =
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Theorem 1.25. Let 1 < p < 0o and suppose fn, f € LP(2, F, 1) for all n.

If fu 5 f then  fu 7.

Proof. Let € > 0 be arbitrary. Then be Chebychev’s inequality,

p({w €9 1fu@) = F@) > o} ) = {o € 2210 = N > )

<e?|fn—fllp—0

as n — oo by assumption. This shows that f, — f. |

Exercise 1.12. Suppose, f, = f on (2. Show:
L fo=f
2. If u(Q) < oo then f, L5 7.

3. If u(2) = oo then {f,} need not converge to f in | - ||,.

1.9 Product Spaces and Fubini’s Theorem
Given two sets X and Y which carry a measure space structure, we want to make
X x Y into a measure space compatible with the structures on X and Y. We just

give a brief overview over the main ideas here, proofs of the theorems can be found
in [2] or [3], for example.

First let (X, F) and (Y, ) be two measurable spaces. We introduce a o-algebra
onto X x Y a follows.

Start with sets of the form

AxB AcF, Be&.

Such sets are called measurable rectangles. Then we define
FRE = U({A X B: A X B is a measurable rectangle}).

Thus, F x £ is the o-algebra generated by all measurable rectangles. We call F x £
the product o-algebra on X x Y.

Remark 1.21. In a similar way, if (X1, F1), (Xa, F2), -..,(Xn, Fr) is a finite col-
lection of measurable spaces, we define the product o-algebra by

FixF@ @ Fimo {Aix Ay x oo x Ay A€ Fiyi=1...n} ).
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Example 1.14. Consider the measurable spaces (R, B(R)) and (R, B(R?)). One
can show that

BRY =B(R) @ BR)® BR)®--- ® B(R).

(For the proof, see [3].) So the Borel o-algebra on R? is generated by measurable

rectangles. Similarly,
BR™™) = B(RY) @ B(R™).
However, if My(R?) denotes the o-algebra of Lebesgue measurable subsets of

R¢, then
MH(RY) 2 My(R) @ MA(R) @ MA(R) ® -+ - @ My(R).

Example 1.15. Let (X, F) and (Y, €) be measurable spaces, let f : X — R be
F-measurable and g : ¥ — R be £-measurable. Then f and g define functions
f,0: X XY which are constant with respect to one variable by

~

flz,y) = f(z) and  g(z,y) = g(y).

Claim: f is F ® E-measurable. In fact, for each a € (Q we have

{(zy)e X xY: f(z,y)<a} = {(z,y) € X xY : f(z) < a}
= ixEX:f(:c) <ak><Y,

€F by cor. 1.7

a measurable rectangle in F ® £. By corollary 1.7, the claim follows.
One shows in a similar way that § is F ® E-measurable. It follows that

A

Mz, y) .= f(z)gly) = f(z,v)§(z,y)
is a product of F ® E-measurable functions, and hence is measurable.
Theorem 1.26. Let (X, F) and (Y, E) be measurable spaces.

1. Let E€e FRE. Guenxz € X andy €Y arbitrary but fized, set

E.,.={yeY:(z,y) € E) (7z-section”)
EY:={zeX:(zx,y) € E) ("y-section”)

Then I, € £ and E, € F.

2. Let f: X XY — R be F ® E-measurable. Given x € X andy € Y arbitrary
but fized, define

fo: Y =R by  faly) = f(z,v) ("z-section”)
ff: X >R by f¥(z) = flz,y)  (Py-section”).

Then f. is E-measurable and fY is F-measurable.
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Now let (X, F, ) and (Y, €, v) be measure spaces. Given a measurable rectangle
A X B we set
(b x V)(A x B) := p(A)v(B)

and hope to be able to extend p X v to a measure on F ® €.

Theorem 1.27. Let (X, F, ) and (Y, E,v) be o-finite measure spaces. There exists
a unique measure on (X X Y, F ® E) denoted by p x v and satisfying

(u x v)(A x B) = u(A)v(B) VAc F, Beé.

(Consequently, we call the measure space (X xY, FQE, uxv) the product measure
space of (X, F,u) and (Y,&,v).)

Theorems 1.26 and 1.27 generalize to products of more than two spaces, as does
theorem 1.28 below.

Example 1.16. Consider
B(R?Y) = B(R) ® B(R) ® B(R) @ - - - @ B(R).

One can show that the Lebesgue measure Ay on B(R?) is the product of the Lebesgue

measures A on B(R),
M=AXAXAX o XA

Theorem 1.28. Let (X, F,pn) and (Y,E,v) be o-finite measure spaces and let f :
X xY — R be F ® E-measurable.

1. (Tonelli’s Theorem). Suppose, f > 0. Then the function

/fz Ydv = / f(z,y)dv(y 1s F-measurable
=/fy(37) dﬂz/ f(z,y) du(z) is £-measurable
X X

and the double integral can be written as an iterated integral,

Xxyf(my (k) //fﬂfydvdu— //fwydudu (1.26)

—g(m)
2. (Fubini’s Theorem). Suppose, f € LNX x Y, F @&, x v). Then

fe € LMY, E,v)  ae x
fYe lNX,F,u) ae y

and

:/ foy) dv = / f(z,y)dv(y) € (X, F, )

Y Y

=/fy(:v)dﬂz/f(w,y)du(x)GLl(Y@V)
X X

and identity (1.26) holds.

(1.27)
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Remark 1.22. 1. In Tonelli’s theorem, it may happen that g(x) = oo or h(y) =
oo. For the outer integrals in (1.26) to make sense, one thus needs to introduce
the concept of measurability as well as the Lebesgue integral for eztended real
valued functions f : Q — [0,00]. Measurability can be defined using the
equivalent properties of corollary 1.7. Since the structure theorem 1.13 holds
for such functions as well, definition 1.14 can be used to define the integral of
such functions.

We have not introduced extended real valued functions earlier, since we usually
do not encounter them in probability.

2. In Fubini’s theorem, Since f,, fY € L! a.e. only, the functions f(z) and g(y)
are defined a.e. only. However, as usual by suitably modifying f, on null
subsets of X, and f¥ on null subsets of Y, the integrals in (1.27) can be made
to make sense.

3. Given a F x E-measurable function f: X XY — R, one usually first applies
Tonelli’s theorem to |f| in order to check whether f € L'(X x Y). Then one
can use Fubini’s theorem to express the double integral of f as an iterated
integral as in (1.26). The next example illustrates this idea.

Example 1.17. Let (X, F, u) and (Y, &, v) be o-finite measure spaces, f € L}(X)
and g € LY(Y). Set h(z,y) := f(z)g(y). Then by example 1.15, h is F x &-
measurable.

Claim: : h is integrable, and

/Xxy h(z,y)d(p x v) = [/X f(z) dﬂ] [/y 9(y) dy].

In fact, we have

/X Ihe)ldwx p) = /X /Y (e, )| dvdp (by Tonelli)

= | [ v@liswlavdn= [ 151 [[ ol av]an

= [1r@llahdi =Tl [ 15 dn =gl 191 < oo
X X

Hence, h € L*(X x Y) and we can apply Fubini’s theorem to repeat essentially the
same computations,

/Xxyh(iv,y)d(yxm=/ / h(z,y)dvdu (by Fubini)
//f y)dvdu
/f(x / dy du— /f ) dp [/Yg(y)dy]‘

This proves the claim.
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1.10 The Radon-Nikodym Theorem

Definition 1.18. Let x and v be two measures on a measurable space (€2, F). If
for all £ € F,
wE)=0 = v(E)=0

then we write ”v < u” and say that v is absolutely continuous with respect to p.

Note that v < p does not mean that v(E) < u(F) for all E € F. Instead, it
means that every null set of i is also a null set of v.
We have all the tools available to prove:

Exercise 1.13. Let (2, F, 1) be a measure space and fix an F-measurable function
h:Q — [0,00). Set

v(E) :=/hdu VE € F.
B
Show:
1. v is a measure on (£, F).

2. Let f: ) — R be any F-measurable function. Then for every null set £ € F,

/Efdu=0.

(Hint: Use exercise 1.7).
3. p=<v.
4. If f:Q — R is F-measurable, and either f > 0 or f € L*(Q2 F,v) then

/fdy:/fhdu.

5. v is a finite measure < h e LYQF, ).

6. If h is another such function with corresponding measure 7, 0(E) = [ hdpu,
and h = h a.e. then v = 7.

It turns out that every measure v which is absolutely continuous with respect to
i is of this form:

Theorem 1.29. (Radon-Nikodym Theorem). Let yu and v be o-finite measures on
a measurable space (2, F). Suppose that v < p. Then there exists an F-measurable
function h > 0 such that

I/(E)=/hdu Vb e F.
E

h is essentially unique. That is, if hois another F-measurable function with the
property that v(E) = [,hdu VE € F, then h = h a.e.
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Proof. See [2] or [3]. O

Remark 1.23. o-finiteness cannot be dropped in this theorem. For example, con-
sider the measurable space (R, B(R)) with the Lebesgue measure A and the counting
measure p. Obviously, A < u as the only set with zero counting measure is the empty
set. Now suppose, there exists h as in the theorem. Let {z} be any singleton. We
obtain

0= A({e}) = /{ i [ 1ty s = @) = o)

so that A(x) = 0 for all z € R. But then for all £ € B(R),

A(E)z/Ehduz/EOdu:O

which contradicts the fact that X 0.



Chapter 2

Fundamental Concepts in
Probability

The fundamental object in probability is a finite measure space (€, F, ) where
w(§2) = 1. However, one uses a vocabulary different from measure theory:

Measure Theory (Analysis) Probability Theory
measure space(2, F, 1) probability space (2, F, P)
finite measure p, p(2) =1 probability measure P
point w € €} outcome w

measurable set A € F event A

measurable function f: — R | random variable X : @ — R

measurable function f : Q — R¢ | d-dimensional random variable X : ) — R4

integral of f, [ fdu expectation (or mean) E(X) of X
f e Lr() X has finite p-th moment, or

| X is a LP-random variable
fis iﬁtegrable E(|X]|) < o0
almost everywhere (a.e.) almost surely (a.s.)
convergence in measure convergence in probability
regular Borel measure y on R¢, | distribution

MRY) =1

characteristic function x4 indicator function 14
F 7 ((0,00)) = {w: flw) > a} | {X>a}={w: X(w)>a}
YA ={w: f(w) € A} {Xe Al ={w: X(w) € A}
p({w: flw)>a}) P(X >a)=P({w: X(w) > a})

u({w: f(w) € A}) P(X € A) = P({w: X(w) € A})

We will freely switch between both sets of vocabularies.

47



48 CHAPTER 2. FUNDAMENTAL CONCEPTS IN PROBABILITY

2.1 Random Variables

Let us introduce the basic vocabulary of probability by an example:

Example 2.1. Suppose we are throwing an unloaded die. We are thus considering
the sample space
0=1{1,2,3,4,5,6}.

The outcomes, i.e. the elements w of this sample space, are simply the six numbers
on the die. As o-algebra we choose F = P(Q).

The word ”unloaded” means that each number will be thrown with exactly the
same probability, so that

P({w}) = é Yw € Q

Thus, the probability measure P on 2 is the scaled counting measure. Now the
(measurable) set A; = {1,2,3} constitutes the event "a number < 3 is thrown”
while the set Ay = {2,4, 6} constitutes the event "an even number is thrown”. The
probability that the latter happens is obviously

P(Az) = P({2}) + P({4)) + P({6}) = 5.

Now suppose we play for money, with wins and losses at each throw as outlined
in the following table:

Number thrown | money gained
(outcome w) X(w)
wy =1 —300
Wy =2 —100
wg =3 0
wyg =4 50
wy =5 100
we =6 200

The random variable (= function) X (w) tells us what the win/loss at each outcome
is. For example,

P(X > 0) = P({w: X(w) > 0)) = P({4,5,6}) = % — 50%

is the probability that we win some money. On the other hand, the probability that
we loose some money is '

P(X <0)=P{w: X(w)<0})=P{1,2}) = % = 33.3%.
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In spite of these favourable odds, throwing the dice is not profitable as the expected
win (=average win) is

p=EX)= /QXdP = > X(wi)P({wi})

1 =50 1
= [—300—200+O+50+100+200]-6 =5 = —85 < 0.
This means that if we repeat throwing the die many times, then we will loose 8%
units of money per throw on average. (This is called the ”law of large numbers”.)
Now suppose, the rules change and at each throw we have different rules for
winning/loosing money:

Number thrown || 1st throw 2nd throw 3rd throw

(outcome w) X (w) Xo(w) X3(Q)
wp =1 —300 —-500 —1000
Wo =2 —100 —200 —800
w3z =3 0 0 —500
wy =4 50 100 —400
ws =5 100 200 500
wg =6 200 500 —2000

We now have a sequence
X1, Xo, Xa,...

of random variables, called a (discrete) stochastic process.

Example 2.2. A factory produces boxes in the shape of a cube whose edges each
have length 100cm. Because of old machinery, the actual length of the edges of each
box produced differs from 100cm by an error w; each box produced is still a cube.
Experience shows that —10cm < w < 10cm.

We thus choose as sample space the set {2 = [—10,10]. Since the o-algebra F
should contain all intervals, we choose F = B([—IO, 10]). The probability measure
P should be chosen so that for all subintervals I of [—10, 10],

P(I) = probability that the error lies in I.

For example I = [—1,1] is the event ”the error is < lcm” and P([—1,1]) is the
probability that the dimensions of the box fall within 1cm of the desired value.
Similarly, P((0, 10]) is the probability that the box is larger than desired.

The computed the error in volume will be given by a random variable X (w),

X (w) = (100 + w)® — 100 = 30000w + 300w? + w®. ~ (units in cm?®)

Thus P(]X| < 2) is the probability that the volume of a box produced is within
2cm?® of the desired volume of 10% ecm3. Similarly, P(X > 0) is the probability that
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the box produced is larger than desired; hence we must have P(X > 0) = P((0, 10}).
The ezpected (average, mean) error in volume of a box produced is

p=EX)= X(w)dP(w).

-10

We now define the notions of mean, variance and standard derivation. For this,
let (2, F, P) be a probability space. Since P(€2) = 1, then by exercise 1.10, L(Q2) C
L) for all 1 < p < o0, and

XN < 11Xl VX € LP(Q).
Definition 2.1. Let X : Q@ — R a random variable.
1. Suppose X € L}(Q2). The mean p or also expectéd value of X is

p=EB(X) = /Q X dP

2. Suppose X € L?(Q2) (and hence X € L'(9) so that u is defined). The variance

of X is
var(X) i= B[ (X = )] = |IX — ull} (2.1)
The standard deviation of X is
var(X) 1= /B[ (X ~ p)?] = IX — plly (2:2)
Remark 2.1. 1. Since P is a finite measure, the constant function p is square

integrable; hence var(X) is well defined. Variance and standard deviation tell
us by how much X (w) differs from its mean p in the square mean.

2. Let X € L*(Q). Then

var(X) = /Q(X — p)*dP = /Q(X2 —2uX + p*)dP

=/Aﬂﬂt@u/XdP+ﬁ/ﬂﬂ%:ﬂX%—m£uQ+uWL
Q Q

as P(Q) = 1. Now since p = FE(X) we obtain
var(X) = BE(X?) — E(X)*|.

Example 2.3. Consider X (w) of example 2.1. As X(w) = —8% = —2 and

1 152500 228750
E(X?) = [(~300)% + (—100)% + 0% + 50% + 100* + 200° ] - Rt el
we obtain
625 228125 2
var(X) = B(X2) — B(X)? = 22%750 e S

22812
o(X) = 1/ 89 >~ 159.21.



2.2. DISTRIBUTIONS AND DENSITY FUNCTIONS 51

2.2 Distributions and Density Functions

Many properties of random variables can be discussed independently of the under-
lying probability space (2, F, P). In fact, below we will show:

1. Each random variable X naturally defines a measure ux on B(R) (resp. B(R?)).

2. If ux = px for two random variables X and X on probability spaces (2, F, P)
and (©, F, P), respectively, then loosely speaking, X and X can be identified.

Exercise 2.1. Let (Q, F, 1) be a measure space, (Q, &) another measurable space
and f: ) —  a fixed measurable function. For each A € £ define

pr(A) = p(f7HA).
Show:
1. py is a measure on (€, €).
2. If i is a probability measure, the so is py. |

3. If h: Q) — R is any E-measurable function, then h o f is F-measurable, and

/hdﬂfz/ ho fdu
Q Q

whenever either integral is defined. Furthermore, h € LY(Q, &, us) < hof €
LYQ, F, p).

Definition 2.2. Let (€2, F, P) be a probability space, and X : 4 — R? a random
variable. Set (€, &) = (R% BRY)).

1. The probability measure on B(R?) defined as in assignment 2.1 is called the
dzstmbutzon of X. That is, for all A € B(RY),

px(A) = P(XHA)) = P({we Q: X(w) € A}).

In short, we write

px(4) = P(X € A)}

Observe that by assignment 2.1, for every Borel measurable function / : R —

R we have
/ honPz/ hdux (2.3)
o) Rd

provided that either of these integrals is defined.

2. The function Fx : R? — [0, 00) given by
Fx(t) := px((—o00,t]) = P(X € (~00,1]) = P({w € Q: X(w) < t})

is called the distribution function of X.
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Remark 2.2. In the above definition, if d # 1 and t = (t1,%s,...,tq) then we
understand (—o0,t] to denote the d-interval

(—00,t] i= (—00,t1] X (—00,t3] X -+ X (—00, t4].
Thus, if X = (X1, Xa,..., X4), then
Fx(t) = P({w e Q: Xi(w) < t; Vi}).

In shortened form,

Fx(t) = P(X < 1)}

Remark 2.3. From now on we will assume that all random variables are scalar
valued, that is d = 1. This is for the sake of ease of presentation; most results below
have a simple and natural generalization to the vector valued case.

Example 2.4. Consider the random variable X (w) of example 2.1. For all A €
B(R),

px(A) =P(X € A)=P({weQ: X(w) € A})

1 1
=8 card({w € Q: X(w) € A}) (P is g counting measure)
1
=g card( X (Q) N A) (X is one-to-one)
1
= 6card(Erm). (E = {-300, —100, 0, 50, 100, 200})
and thus the distribution function is given by
(0 <300
§  —300<t< 100
. 3 —100<t<0
Fx(t);ux((—oo,t])=6card((—oo,t]ﬂE)= 5 0<t<50
2 50<t<100
2100 <t <200
|1 t > 200.

Theorem 2.1. Let X : Q — R be a random wvariable. The distribution function
F = Fx has the following properties:

1. F s increasing.

2. F is continuous from the right. That is, for each a € R,

lim F(t) = F(a).

t—at

3. lim F(t)=0 and lim F(t) = 1.

t——00 t—o0
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Proof. Note that by definition, 0 < Fx(t) = P(X € (—o0,t]) < P(2) =1 for all ¢.

1. Let t; < ty. Then (—o0,t;] C (=00, t5]; hence by monotonicity of the measure,

F(ty) = px ((—00,t1] ) < px ((—00, ] ) = F(ta).
This shows that F' is increasing.

2. Fix a € R. Let {t,} be any sequence in R with ¢, > a for all n, and ¢, — a.
Set

Sy 1= sup tg.
k>n

Then {s,} is a decreasing sequence, a < s, for all n, and s, — a as well. Thus
considering the intervals (—oo, s,,], we have

{(=oo,si] }or L and  [7)(~00, 5] = (~00,al.

n=1

Now as py is a finite measure, then by theorem 1.3,

lim F(s,) = lim ux((—oo,sn])

= x () (-000]) = (00,01 = o).

However, a < t, < s, for all n; thus by monotonicity of F,

lim F(t,) = F(a)

n—00

as well. Since {t,} was arbitrary, it now follows that lim F(t) = F(a).

t—sat

3. We proceed just as in 2. First let {¢,} be an arbitrary sequence in R with
t,, — —o0. Let s, be defined as above, so that s, — —oo. Then

0< lim F(sn) = JL%MX((_OQ Sn]) = NX(Fj(—OQ 5n]> = px(#) =0

while by monotonicity of F,
0 < F(t,) < F(sn)

for all n. It follows that lim F(t,) = 0. As the sequence {t,} was arbitrary,

n—oo

we conclude that tlim F(t) =0.

Next let {¢,} be an arbitrary sequence in R with ¢, — co. For each n, set

Sp = inf .
k>n
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Then {s,} is an increasing sequence, and s, — oo. Applying theorem 1.3 we
obtain

Jim P(se) =t g (=0 50]) = o (00, 8]) = x(®) = 1.

Using monotonicity of £’ and the fact that s, < ¢, for all n we obtain that
F(s,) < F(t,) <1

for all n, so that lim F(t,) = 1 as well. As the sequence {t,} was arbitrary,

n—00

we conclude that tlim F(t)=1.

—00

]

Remark 2.4. One can show a converse statement (see [2] or [3]): Given any Borel
measurable function F' satisfying 1.-3., there exists a unique probability measure p
on B(R) satisfying

p((=o0,8) = F(t) -

for all ¢ € R. Thus, there is a one-to-one Correspondénce between distributions and
distribution functions.

Example 2.5. Let (2, F, P) be any probability space.

1. First let X be integrable, that is, X € L'(Q, F, P). Choose h(z) = z. Then

E(X) = /Q X (w) dP(w) = /Q (ho X)(w) dP(w) — /R h() dpix ().

(2.3)

By choice of h,

E(X) = / vdpx(z) | (2.4)
R
. Next let X be square integrable, that is, X € L*(Q, F, P). Choose h(z) = z2.
Then
E(X?) = / X (W) dP(w) = / (ho X)(w) dP(w) = / h(z) dpix ().
Q Q 23) Jr
By choice of A,
B(X?) = / 22 dpux (z) | (2.5)
R

Now choose h(z) = (z — p?) where u = E(X) denotes the mean of X. We
obtain

var(X) = /Q (X(w) - p)* dP(w) = / (ho X)(w) dP(w) = /R h() dpix ().

Q (2.3)

That is,

var(X) = /R(LI? — ) dux(z)| (2.6)
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Definition 2.3. Two random variables X and Y over probability spaces (€2, F, P)
and (2, F, P) are said to be identically distributed, or equal in distribution, if

Hx = Hy.

(or equivalently, if Fiy = Fy.) We write

XLy
By the previous example, if X 2 Y, then E(X) = E(Y) and var(X) = var(Y').

Definition 2.4. Let (Q, F, P) be a probability space, and X a random variable
with distribution px. Suppose that ux < A. (that is, px is absolutely continuous
with respect to A.) Then by the Radon-Nikodym theorem, there exists fx € L'(R),
f >0, such that ‘

i (A) = / fx(z) dA(z) v A € B(R). (2.7)

Thus, if Fx is the distribution function of X, then

F(t) = px((-o0,8) = [ fxla)ara)| 2.8)

fx is called the density function of X (or of Fx or ux).

Remark 2.5. Let h be a Borel measurable function with either A > 0 or h €
LY(R,B(R), x). Then by assignment 1.13,

R R
Thus, (2.4), (2.5) and (2.6) become

E(X) = /R 2 fx(z) dA(z) (if X € L'(Q)) (2.10)
B(X?) = /R 22 fy () dA(z) (if X € I2(Q)) (2.11)
var(X) = /R(a: — 1) fx(z) d\(z) (if X € L*(Q)). (2.12)

Example 2.6. Return to example 2.4 of throwing a die. We claim that the distri-
bution px has no density function.
In fact, by example 2.4,

1
px(A) = écard(A NE) vV A € B(R),
where E = {—300, —100, 0, 50, 100, 200}. In particular,

px(E) =1+#0=AE).

This shows that pux A A (ux is not absolutely continuous with respect to A.) Then
by assignment 1.13, part 3, pux has no density function.
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Example 2.7. Let Q = [0,1], F = B([0,1]) and P = X\. Consider the two random
variables
X(w)=w and  Y(w)=1-w.

Obviously, X # Y a.e. We claim that X Ly,
Observe that range(X)=range(Y). Thus

A0)y=0 ift <0
Fx(t) = px((—00,t]) = P({w: X(w) <t}) =< A([0,8]) =t ifo0<t<l1
A([0,1)) =1 ift>1
while
A®)y=0 ift<0
Fy(t)=py((—o0,t]) = P({w:Y(w) <t}) =< M[1-t,1]) =t #f0<t<1
A([0,1]) = ift> 1.

So Fiy = Fy = F and hence ux = py = u. This proves the claim.
Observe that for all £ € R,

Fit) = / 101)(x) d\(z)

Hence the distribution function is f(t) = 1(o1)(¢).
In general, a distribution px is called uniform if its density function is of the
form fx = $=1(p). In this case we write ”ux is U(a, b).”

Example 2.8. Let us begin with the density function

Ft) = — o =228
2ms

where p and s > 0 are constants. Using residue theory or polar coordinates one can

show that
/ e dr = V.
R

Thus for all x4 and s we have

1 202 1 )
) dt = —(t—p)*/2s dt=———/ =ty =1 2.13
/Rf() - / vl (2.13)

where we have substituted = = (t — u)/(v/2s).

Now set , . .
Ft) .= z)dx = / e~ (@=1?/25* 40
0= [ f@dr=—=[
Using (2.13) it is easy to see that

1. F(t) is increasing,
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2. F(t) is differentiable, hence continuous,
3. F(t) = 0ast — —oo and F(t) — 1 as t — 0.

Hence, F is a distribution function. Observe that ¢(t)f(¢) € LP(R) for any polyno-
mial ¢(¢) and any 1 < p < o0.

Now let (£, F, P) be a probability space, and X : Q@ — R a random variable
whose distribution function is . Then

1 2 /0.2
F(X) = zf(x)dx = T — 4+ p) e @2 gy
)z, | ot @dr=—— [ @=u+n)

1 N2 /962 14 / (N2 /5.2

— (z—p)?/2s (z—p)?/2s

T e dr + e dx
\V27ms /R( ,u) 2rs Jr

1 2 /942 il / _22/942
o x?/2s z?/2s _ —
= Te dx + e dr = 0+ p=
e—ztu /27 /R V2ms Jr (2.13) Her

because the first integrand is an odd function. That is, u is the mean of X. Similarly,

var(X) = /R (x — p)?f(z)dz = ! / (z — p)? e @M% g

(232) 27s Jr

= ! / z-ze % g
roatp A28 JR
1 1 2/0.2 | 1 2792
p= — . - /23 ] — - /28 d }
by parts /278 { |::C —2/282 ¢ —© /R —2/2826 ¢

s? —x2 /252 2
=0+ e dr = s
27s JRr (2.13)

22

as lim e ™ = 0. In summary,

|z|—o0
E(X) = u, var(X) = s?, o(X)=s.

We say that the distribution pp determined by F' is a Gaussian or normal dis-
tribution with mean p and variance s and write ” up is N(u, s2)”.

Incase y=0and s =1 (i.e. pr is N(O, 1)) then upp is called standard normal
distribution.

Exercise 2.2. Let X be a N(0,r)-random variable. Show:
1. X e IP(Q2) for all 1 < p < 0.
2. B(X?) =r and E(X*) = 3r%
3. aX is N(0, a®r) for each scalar « # 0.

Exercise 2.3. For each k € N, let d, denote the one-point Dirac measure at k.
That is, for all subsets A of R,

ok(A) =

1 ifkeA
0 ifk <A
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Fix a > 0 and set

0 k
—a a
[,LQ(A) =e E ?" (Sk(A) (A C R)
k=1
Show:

1. p, is a Probability measure on R (called the Poisson distribution).

2. The mean and variance of y, equal a. (That is, if X is any random variable
with distribution fs,, then E(X) = var(X) = a.)

3. ug has no density function.

The following note is for the sake of completeness only; we will not make use of
it.

Remark 2.6. (Convergence in distribution) Let X,, X : @ — R? be random vari-
ables on a probability space (2, F, P). We say that X,, converges to X in distribution

and write X, 4 X if
/ fdpx, — / Jdux
R4 R

for all bounded and continuous functions f : R? — R.

Note 1: One can replace "for all bounded and continuous functions f” by all ”for
all continuous functions f vanishing at infinity” (i.e. V f € C,(R?).)
Observe that

X, 4% o [ fdu, —>/ £ dpix
Ré R4

@AfoXndPHLfonP
o B(506)) — B0)

for all f:R? — R bounded and continuous (respectively, for all f : C,(R%).)
Note 2: One can show that if X,, — X a.s., or in probability, or in || - ||,, then
X, 5 X,

Note 3: In advanced books on measure theory (see [3]) one shows that the set M (R¢)
of all finite Borel measures on R? is a Banach space, and that M (R?) is isometrically
isomorphic to the dual space of C,(R%). Hence,

weak-*

Xo 5 X & < fiux, >>< fux > Vf € CRY) & ux, "™ px.
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2.3 Independence

Independent Events

Let us explain the concept of independence with an example first.

Example 2.9. Consider again our example of throwing a die:

Q=1{1,23456), F=PQ), PA) = =card(A).

6
Let us set
E=1{1,2,3} (we throw a number < 3)
A=1{2,4,6} (we throw an even number)

Then P(A) = P(E) = 3.
Suppose now that event F holds, i.e. we have thrown a number < 3. The
probability that this number is even is now only %, and not -;—! We say the the events

E and A are dependent. In fact, set

P(A|E) := probability of A given event E has occurred

Also
P(A N E) = probability that both A and E has occur.
Then A )
P(ANE
=/ 2.14
PUAIE) = 25 (214)

provided that P(F) # 0. For example, in the above

__P{2py 5 _1 _ 1
PAR = Py~ 1 ~37 W=
Now let
F:=1{1,2,3,4} (we throw a number < 4)

The probability that an element of F'is even is %, in fact

P(AlF)ZP(AﬂF)_ P({2,4}) =§:

P(F)  P({1,2,3,4}) = P(4)!

In this case, we say that the events A and F' are independent.

Thus, events A and E are independent iff P(A|E) = P(A) where P(A|E) is
defined as in (2.14). Since in 2.14 the denominator must not be zero, we multiply
this equation by P(E) and obtain a definition valid for null sets as well:
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Definition 2.5. Let (2, F, P) be a probability space. Two events A, F € F are
called independent if

P(ANE)= P(A)P(E)|
If this identity does not hold, then A and E are called dependent.

For an infinite number of events we have:

Definition 2.6. Let (2, F, P) be a probability space. A collection {FE,}aea of
events is called independent, if for every finite subcollection { Ey,, . .., E4, } of distinct
elements of F we have

P(Eo, NEyN...Ey) = P(Ea)P(E,,) ... P(Ea,). (2.15)

Exercise 2.4. Let Q = {w1,ws,ws,ws}, F = P(Q) and P{w}) =1 i=1...4
Find three events A, B, C' which are

1. pairwise independent (i.e. any two sets are independent)

2. but not independent.

Independent Random Variables
Return to the example of throwing a die.

Example 2.10. Let us throw the die several times in a row. Let X, denote the
win/loss at the n-th throw, as in example 2.1. Common sense says that the result
of any throw should not depend on the other throws. That is, for any n distinct
throws ny,...,n, and any k sets By, ..., By € B(R) we have

P(Xn, € B, X0, € By, ..., X0, € By) = P(X, € B1)P(X,, € Bs) ... P(X,, € B
or equivalently,

P(X, N (B)NX, (Ba)N: - NXH(By)) = P(X, 1 (B) P(X,; ) (B2)) ... P(X,} ((Bk))).
2.16
That is the sets
X7 N(By), XM (Ba),- - X (By)

or in different notation, the sets
{Xn, € Bi}, {Xs, € Ba}, ..., {X,, € By}
are independent.

Definition 2.7. A collection {X,}aca of random variables on a probability space
(Q, F, P) is called independent if the collection of events

— N
{Xak € By }]JCV:I = {Xakl(Bk) }k:l

is independent for all finite subcollections { X, }fj:l and all Borel sets By.
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Remark 2.7. Usually we will deal with scalar valued random variables as in the
above definition. However, this definition makes perfect sense for d-dimensional
random variables X, :  — (R, B(R%)), or even for measurable maps X, : Q —
(X4, Ea) where the (Xq, &) are possibly different measurable spaces.

Exercise 2.5. Let Q = [~1,1], F = B([~1,1]) and P = 3.
1. Let X(w) = w and Y{(w) = w? Show that X and Y are dependent.

2. Let Z(w) = w be the Heavyside function, Z(w) = 2. Show that Y and Z are
independent, but X and Z are dependent.

Now let (2, F, P) be a probability space, and X : ) — Rfand YV : Q — R™ be
two random variables. Define

Z: Q=R =R'xR™ by Z(w)=(X(w),Y(w))

Claim: Z is a B(R**™)-measurable random variable.
In fact, first let

A x B € BR?Y) ® BR™) = B(R*™)
be a measurable rectangle. Then

ZY AxB)={w: X(w) € Aand Y(w) € B}

—{w: Xw eA}n{w:Y(w)eB}=X"(A)NY '(B) e F
eF eF

since X and Y are measurable. Now as B(R?) @ B(R™) is generated by the collection
of measurable rectangles, the claim follows from theorem 1.5.
Now consider the following two Borel measures on R4F™:

1. The distribution puz = pxy) determined by Z = (X,Y) called the joint
distribution of X and Y. That is

) (B) = P((X,Y) € E) = P({w: (X,Y)(w) € E})
for E € B(R**™). Observe that in case of measurable rectangles A X B,

pxyy(Ax B)=P({w: X(w) € Aand Y(w) € B})
=P({w: X(w) € A} N{w:Y(w) € B}) (2.17)
=P(X €A YeB).

2. The product px X py of the distributions (i.e. product measure) px and py.
It is given on measurable reactangles A x B by

(1x % piv)(A % B) = ux(A)puy(B) = P(X € A)P(Y € B). (2.18)
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It is natural to ask: Do both measures coincide 7
Theorem 2.2. pxyy=px Xpuy << X andY are independent.

Proof. Recall:

X and Y are independent

& the sets {X € A} and {Y € B} are independent V A € B(R?), B € B(R™)

& PX€A YeB)=PXeAPYeB) vV A € B(RY), B € B(R™)
& puxyv(AxB)=(ux xpy)(Ax B) V¥V AecBRY, BecBR™)

W&oty (B) = (ux x py)(E) Y B e BR®™)

where we have used (2.17) and (2.18). O

Theorem 2.3. Let (Q, F, P) be a probability space, and X : Q) — R? andY : Q) —
R™ be two independent random variables.

1. If h: R™*™ — R is a Borel function with either h > 0 or ho (X,Y) € LY(Q)
then
= / /Rd Wz, y) dpx(z) dpy (y)-

2. If f :R* - R and g : R™ — R are Borel functions with either f,g > 0 or
foX,goY € LYQ) then

Proof. Observe that the compositions A(X,Y), f(X) and ¢g(Y) are scalar valued
random variables.

1. Let h be as given. Then the integral (=expectation) of h(X,Y") is defined, and
E[MX,)Y)] = / h(X,Y)dP
Q

= / h(z,y) dpce vy (z,y) (by exercise 2.1)
R (2.19)

/Rdm Mz, y) d(px * py)(z,y) (by theorem 2.2)

/M/Rd z,y) dpx (@) duy (y).

In the last line we use Tonelli’s theorem in case A > 0 and Fubini’s theorem
in case ho (X,Y) € L1(€2), which is equivalent to h € L}(R™™, ux X uy) by
exercise 2.1.
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2. Let f and g be as stated and set

h(z,y) = f(z)9(y).
Then by theorem 1.26, h is Borel measurable. Note that if f,g > 0 then
h(X,Y) > Osothat E[h(X,Y)] is defined. On the other hand, if foX, goY €
L'(2) it is not obvious why h o (X,Y) should be in L'(€2). For this, we
implicitely use independence of X and Y which was required in the proof of
part 1. In fact,

Jmxiar = [ [ o) duxd) oy

= [ ] 11@!1s)lduxe) dur )
= [ o[ 1#@dux(o)] dur(v) (2.20)

= [ 1r@lan@] [ lowlduriv)]

= [[exeiar)[[wove)ar] <o

by assumption. This shows that ho (X,Y) € L}(Q). Thus, we can compute
as in (2.20) but without absolute values,

E[f(X)g(Y)] = E[MX,Y)]
/foX dP [/ngY(w)dP]=E[foX]E[goY].

This proves the theorem. O

Choosing f(z) = z and g(y) = y we obtain as a special case:

Corollary 2.4. Let (Q, F, P) be a probability space, and X,Y : @ — R be two
independent scalar random variables with X, Y € LY(Q). Then XY € LY(Q) and
E[XY]= E[X]E[Y].

Exercise 2.6. Show that the converse of theorem 2.3 also holds: If
E[f(X)9(YV)] = B[ f(X)]E[9(Y)]

for all bounded Borel functions f,g > 0, then X and Y are independent.
(Hint: Given A € B(RY) and B € B(R™), consider f = 14 and g = 15.)

Exercise 2.7. Prove: Let (Q,F, P) be a probability space, and X :  — R? and
Y : Q — R™ be two independent random variables Then for all Borel-measurable
functions

f: R = R*, g:R™ - R
the random variables
f(X)=foX and g(Y)y=goY

are also independent.
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Independent o-algebras

Definition 2.8. Let (Q, F, P) be a probability space, and {F,}sca a family of o-
subalgebras of F. (That is, each F, C F and F, is itself a o-algebra.) We say that
the family {F,}aca is independent if for any finite number of indices ay, ..., ay,
every collection of sets {E;}I_; with E, € F,, is independent.

Since every o-algebra contains the space 2, it is not difficult to obtain the fol-
lowing simple characterization of independent o-algebras and independent random
variables:

Exercise 2.8. Let (€, F, P) be a probability space. Show:
1. A finite family Fi, Fy,...Fy of g-subalgebras of F is independent iff

P(EANEyN...NEN)= P(E\)P(E,)--- P(EN) VEy, € Fi. (2.21)
2. A finite family X1, Xa,..., Xy of random variables X}, : @ — R% is indepen-
dent iff the o-algebras 0(X1),0(X>),...,0(Xn) are independent.
Example 2.11. Let (2, F, P) be as in exercise 2.5. Set
Fi={EeF:—FE=FE}
the collection of symmetric Borel sets. Also, set
Fa =140, [-1.0)[0,1], [-1,1] }.

It is an easy exercise to verify that F; and J; are independent o-algebras.

Remark 2.8. Let (Q, F, P) be a probability space, and X : @ — R?and Y : ) —
R™ be two F-measurable random variables. By theorem 1.9,

Fii=0(X)={E=X"A4): AeBRH} (" o-algebra generated by X”)

Fo:=0)={F=YB): BeBR™)} (" o-algebra generated by Y7)
are o-subalgebras of F. Then

X and Y are independent

& P(XHA)NY(B))=PX"A)P(Y(B) VAeBR?, BeBR™

& P(ENF)=P(E)P(F) VEeFi, FekF

< F; =0(X) and Fy = o(Y) are independent.

This motivates the following definition:

Definition 2.9. Let X : & — R% be a random variable on a probability space
(Q,F, P), and F, a o-subalgebra of 7. We say that X and F, are independent, if
o(X) and F, are independent o-algebras.

“Exercise 2.9. Keep the above notation. Show:
X and F, are independent
< X and 1,4 are independent random variables VA € F,.

Example 2.12. (Continuation of example 2.11.) Let X (w) = 1ppy;. Then o(X) =
Fy (verify !) and hence X and F; are independent.
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2.4 Conditional Expectations

Let (2, F, 1) be a measure space, and F, a o-subalgebra of 7. In general, a function
f: Q2 — R which is F-measurable need not be F,-measurable

Example 2.13. (example 2.11, continued) Let f(z) = z*.

1. Since f is continuous, it is F-measurable, where F = B([—1, 1]) denotes the
Borel o-algebra on [—1, 1].

2. However, if we set Fp = {0, [-1,0), [0,1], [-1,1]}, then f is not Fy-
measurable. For example

loerrisw<ib=(-33)¢5

3. Notice that f is F;-measurable, where F; consists of all symmetric Borel sets,
Fi={EeB(-1,1]): —E=E}

In fact, for all a € R we have

@G.Fl, a<0
{wel[-1,1]: f(w) <a} =14 (—/a,Va) € F, 0<a<l
~1,1] € 7, a>1.

It is easy to see that a Borel function g : [—1, 1} — R is Fi-measurable if and
only if it is even.

The idea of conditional expectation is to find an F,-measurable function g which
is " closest” to f.

Definition 2.10. Let (2, F, P) be a probability space, and F, a o-subalgebra of F.
Furthermore, let X : Q — R be a F-measurable random variable, X € LYQ, F, P).

The conditional expectation of X given F, is the random variable Y : { — R
satisfying:

(C1) Y is F,-measurable.
(C2) [,YdP= [, XdP VA€F,

We write
Y = E[X|F,)

For this definition to make sense, we must show that Y exists, and is unique.

Theorem 2.5. E[X|F,] exists and is essentially unique. That is, if Y and Y are
random variables satisfying (C1) and (C2) above, then Y =Y a.e. Furthermore,
E[X|F,) € LY, F,, P).
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Proof. 1) Existence of Y.

a) Suppose first that X > 0. Set
v(A) ::/XdP VA e F.
A

By assignment 1.13, v is a finite (as X € LY, F, P)) measure on (Q,F),
hence on (2, F,), and v < P. Thus by the Radon-Nikodym Theorem, there
exists and F,-measurable random variable Y : Q — [0, co) such that

V(A)Z/ YdP VA€ Z,
A

That is,
/ X dP = v(A) =/ vdP VAT,
A A

b) Given an arbitrary X € L}(Q, F, P), write X = X — X~. By part a), there
exist F,-measurable random variables Y .Y~ : 2 — [0, 00) such that for all
AeF,

/X+d_P=/Y+dP<oo and /X—dP:/Y_dP<oo.
A A A A
(2.22)

Set Y =Y+ —Y~. Then

(a) Y is F,-measurable.
(b) For all A € F,

/XdP:/XWP—/X—dP(QE)/Y+dP—/Y—dP=/de.
A A A A A A

This proves existence. Note that this proof also shows that
E[X*|F,) =Y = E[X|F,|* and EX~|F,) =Y = E[X|F,]".

In addition,

/ledP:/YerPJr/Y‘dP
Q Q Q

(2@2)/ X+dP+/ X—dpz/ [X[dP<oo. (2.23)
Q Q Q

That is, E[X|F,] € L} (2, F,, P).
2) Uniqueness. Let Y and Y be random variables satisfying (C1) and (C2). For
each n € N, set

A, = {weQ:(Y—f/)(w)zl}e}’O.

n
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(In short, this set can be written as 4, = {Y =Y > 1}.) Then

0 = XdP—/ Xdp@/ de—/ Vdp
An An An n

_ /n(Y—f/)dP > /nldP ~ ~P(4,)

n n

which shows that P(A,) = 0 for all n. So if we set

A+:{we§z:(Y—?)(w)>o}

then -
At =] 4,
n=1
and thus

P(A") = i P(A,) = 0.
By symmetry, if -
A= {weQ:(Y—?)(w)<o}= {weQ:(Yf—Y)(w) >0}
then P(A~) = 0. Thus,
P <{w €Q:Y(x) # V(#)}) = P(ATU A7) = P(A") + P(A7) = 0.

That is, Y = Y ae. O

Example 2.14. Suppose that X is already Fo-measurable. Then Y := X satisfies
(C1) and (C2) above. That is,

X = E[X|F,).
Example 2.15. Suppose, X is independent of F,. That is,
P (X Y(B)nA4) =P (X '(B)) P(A)

for all A € F, and all Borel subsets B of R.
Claim: E[X|F,] is the constant function,

E[X|F,] = E(X).
In fact, as X and 14 are independent by assignment 2.9, we have

i) The constant function ¥ = E(X) is trivially F,-measurable, and
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i) For all A € %,
/XdP = /XlAdP = E(X1,)
A Q
= E(X)E(1,) = B(X) / 1dP = / E(X)dP.
A A

The claim now follows from (C1) and (C2).
Example 2.16. (Continuation of examples 2.11 and 2.13.) Recall that
1
Q=[-1,1], F=B(-1,1)), P:§>\
.71={E€.7:1E=—E}, FQZ{G; [_170)? [0’1]7 Q}

Using inversion invariance of the Lebesgue measure together with the definition of
the Lebesgue integral, it is an easy exercise to check that if f is a Borel measurable
function, then for every Borel set £ we have:

/Efd)\z/_Efd)\.
/Efd)\z—/_Efd)\.
/EfdAzf_Efd/\.

Now let X : [~1,1] — R be F-measurable. We want to compute E[X|F] and
EIX|F).

i) If f is even, then

ii) If f is odd, then

i) If f(z) := f(—x) then

1. Assume first that X is even. We claim that X is Fj-measurable. In fact, as
X is even, then for each Borel subset B of R and each w € [—1, 1],

we X YB) & —we X H(B),

that is, X1(B) is a symmetric subset of B([—1,1]). But since X is F-
measurable, then X 1(B) € F as well, and hence X ~'(B) € F;. This proves
the claim.

It follows from the claim and example 2.14 that

E[X|F] = X. (2.24)

On the other hand, since F; and F, are independent (see example 2.11) and
X is Fi-measurable, then X and F; are independent. Hence by example 2.14,

E[X|F2] = mean of X = E(X). (2.25)
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2. Next assume that X is odd. Then for every A € F; we have

/AX(w)dpz—/_AX(w =, /X

from which we conclude that

/A X(w)dP =0 — /A 0(w) dP. (2.26)

Since A € F; was arbitrary, it follows that
E[X|Fi]=0. (2.27)
Now observe that every Fo-measurable fun;:tion Y is of the form
Y =alj_10) +blpy

for some real constants a and b. Thus, if Y. = E [X|F2) then

0 = / XdP = / Y dP
(2.26) (C2)

-1,1] -1,

1 1 1
= / [al[_l)o) + b].[()’l]] §d>\ - —2- ad + '2— bd\ = (G,-f- b)
{~1,1] [~1,0) [0,1]
so that @ = —b. On the other hand,
/XdP :/Yd P=b dP=
(c2)
[0,1] [0,1] (0,1
That is,
b=2 / XdP=2E(X1py)
(0,1}
and hence
E[X|F) =2E (X1p1)) 11 — 1-10)]- (2.28)

For example, if X (w) = w then b = 2 fol w (1d)\) = £ so that

E[X|Fs) = 5 [1py — Li-10)] -

wlr—l

3. Now we split an arbitrary random variable X into its even and odd parts and
write X = X, + X, where

Xe(w) =

X(w) + X (—w) _ (X—i—X

5 )(w) (an even function)
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X, () = X(w) - X(—w) _ (X;X

Then by linearity of the conditional expectation (see the following theorem),

) (w) (an odd function).

BIX|F] = E[X. + X,|F] = E[X.|Fi] + E[X,JA] = X. +0= X,
while also
E[X|F,] = E[X. + Xo|Fo) = BlX | Fo] + E[X,|F). (2.29)
Now by (2.25) above,

X+ X

E[Xe‘fﬂ = E(Xe) = 2

[——111]

ip / X dP = B(X)1_1y
11

and by (2.28),
E[X,|Fo) =2E (X,1p1) (Lo — 1i-1,0))-

Note that

X -X iii
2E(X01[0,1])=2/ ——dpP = /XdP— / X dP
[0,1] [0,1] [-1,0)

= E(X1py) - E(X110) = E{(X (Lo~ 110)) -

Thus, (2.29) becomes

- BX|R] = By + B (X(Tpy — 1-10) ) Loy = 1-ag) (2:30)

Exercise 2.10. Let F3 denote the o-algebra generated by the collection of sets

{1~1,-1),[-3,0),[0,1), [3,1] }, and let X(w) = w. Find E[X|F3).

Theorem 2.6. Let (Q, F, P) be a probability space, F, a o-subalgebra of F, and
X, X : Q — R F-measurable and integrable. Then

1. (Linearity) For all o, B € R,

ElaX + X | F.] = aE[X|F,) + BE[X|F,]

’ £ (E[X|7)) = E(X)
8. If Z:Q — R is F,-measurable and ZX € L*'(Q, F, P) then

E[ZX|~FO] = ZE[X|-7:0]
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Proof. 1. Let Y = E[X|F,], Y = E[Y|F,) and a, 8 € R. By linearity of the
integral we have for all A € F,,

/A(aX+ﬂ)~()dP=a/AXdP+,6/AXdP
= a/AYdP—kﬂ/AYdP:/A(aYJFﬁ?)dP

That is, ; 5 N
ElaX + BX|F,] = aY + Y = aE[X|F,] + BE[X|F,].

2. Let Y = E[X|F,]. Then

E(Y) = /YdP—/XdP E(X).

(C2)

3. Throughout, let Y = E[X|F,]. Note that ZY is F,-measurable, as Z and Y are.
We need to show:
EZX|F,) = ZY,

that is,
/ ZX dP = / ZY dP (2.31)
A A
for all A € F,.

1. First let Z = 15 for some E € F, and X > 0. By the proof of proposition
2.7, part 1), Y > 0 as well. Then for all A € F,,

/ZXdP=/1EXdP: XdP:/ Y dP
A A ANE (C2) Janke

:/ lEYdP=/ ZY dP,
A A

that is, (2.31) holds.

2. Next let Z be simple and non-negative, say

7 = Z clp, (Ek eF,, ¢ > 0).

while still X > 0. Then for all A € F,,
N N
/ ZXsz/ > exlp,| X dP = ck/ 15, X dP
A A Tp=1 k=1 A
N N
- Y. / 1EdeP=/ > cklEk]Ysz/ ZY dP
) = A A Tp=t A

by linearity of the integral.
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3. Now suppose, Z > 0 and still, X > 0. Pick an increasing sequence {Z,} 7,

Zn > 0, of F,-measurable simple functions such that Z,(w) — Z(w) at all w.

- Then for all w € Q,

Z,X 20, {Z,X}1, Zuw)X(w)— Zw)X(w)
Z,Y 20,  A{ZY}1,  Zy(w)Y(w) - Z(w)Y(w)

Hence by the Monotone Convergence Theorem, for all A € F,,

/ ZXdP = lim Z, X dP = lim ZY =/ ZY dP.
A A A

n—o0 J 4 (b) n—oo

. Finally, let X, Z be arbitrary, with ZX € L'(Q, F, P). Observe that

ZX=Zt-Z7)Xt-X")=(ZTXt+Z " X")—(Z XT+ZtX") (2.32)
and similarly,
ZY =(Zt-Z )Y T =Y )= (ZYT+Z7Y) - (Z7YT + ZTY 7). (2.33)
Now by the proof of proposition 2.7, part 1),
EXHF]=Y"* and  E[XT|F|=Y".
Furthermore, by assumption
ZEX*E < |Z||X|=1ZX]| € I,

so that Z*X* € L! as well. Thus by part (c), for all w € Q,

/ ZEX* AP = / ZEY*dP < o0 (2.34)
A A

and hence,

/ZXdP = /Z+X+dP+/Z‘X‘dP—/Z'X+dP—/Z+X_dP
A (232) S 4 A A A

= /Z+Y+dP—|-/Z—Y_dP—/Zhy+dP—/Z+Y'dP = /ZYdP.
(2.34) A A A A (2.33) A

This proves part 3. and the proposition.
O

Theorem 2.7. (Transitivity of the conditional expectation) Let (£, F, P) be a prob-

ability space, and Fo C Fy C F o-subalgebras of F. Then for every random variable
X e LYQ, F, P),

B[ X|F] ZE[E[XIJ:J l fz]-
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Proof. Let Yy = E[X|F], that is,

/ X dP = / Y1 dP (2.35)
A A
for all A € F;. Similarly let Yy = E[X|Fy), that is,

/ XdP=/ YodP (2.36)
A A
for all A € F5. We must show that Yy = E[Y;|F,], that is,

/YldP:/YgdP
A A

for all A € Fs. However this identity follows directly from (2.35) and (2.36). O
The following technical result will be required for the discussion in chapter 3.

Theorem 2.8. Let (Q,F, P) be a probability space and F, a o-subalgebra of F.
Furthermore, let X : Q — RY be F,-measurable, and Xy : ) — R™ be F-measurable
and independent of X1. Given a bounded Borel measurable function H : R x R™ —
R, set

h(z1) = E[H(z, X2)] = /Q H (21, Xa(w) ) dP(w), (z1 €RY.  (2.37)

Then
1. h is Borel measurable, and
2. h(X1) = E[H(X1,Xs) | F,].

Proof. Let us first show that the integral defining h exists. By theorem 1.26, for
fixed x1, the function
Ty — H (LDl, LEQ)

is B(R™)-measurable. Hence the composition
w € Q> H(z1, Xo(w)) (2.38)

is F-measurable, for all z; € RY. Now as H is bounded and P(f2) < oo, each
function (2.38) is integrable. That is, the integral in (2.37) exists, for each z; € R%

Next we show that the function A is B(R¢)-measurable. Let ux, and ux, denote
the distributions of X; and Xy, respectively. As H is bounded, and px, X px, a
probability measure ( (ux, X fx,)(R™™) = ux,( R px,(R™) = 1-1 =1 )it
follows that H(z,z2) is px, X ux,-integrable. Now

h(zy) = /Q H(z1, X5(w) ) dP(w) = - H(z1,z2) dpx,(x2). (2.39)



74 CHAPTER 2. FUNDAMENTAL CONCEPTS IN PROBABILITY

As H is px, X px,-integrable, Fubini’s theorem says that the right-hand integml
exists a.e. £ (because H is bounded and uy, a finite measure, this integral even)
exists at every z1) and defines a Borel-measurable function h(x;) which is an eleme”
Ll(Rdv B(Rd)a ,qu)'

‘Now we compute A(X1). Let Y : Q — R be an arbitrary bounded, F,-meast
function and consider the random variable

rable

Z=(Y,X1):Q—=RxR%

£
By the claim in the discussion before theorem 2.2, Z is F,-measurable. Not€ tha
the function ¢ : R4 x R™ — R given by

o( (y,21),32) = yH (w1, 25) (y €R, 71 € RY, 25 €R™)
ot of Fo

is Borel measurable by example 1.15. Now by assufnption, X5 is independe
and hence independent of Z. It follows that

H(Z,X2) = Kz X Xy

Since Y and H are bounded, then Y H(X1, X») is integrable, and we have

/QYH(Xl,XZ)sz/Qgo((Y,Xl),Xg)dP:/Qcp(Z,Xg)dP

:/ @(27 CEQ) d:u’(Z,Xz)(Z7 Z‘2>
RI+dxRm

e / / yH (w1, 2) dpux, (z2) duz(z)
ubini R1+d m

_ /R  h(z:) dp(z) = /Q Yh(X1)dP.

_ (240)
(2.39)

Now given A € F,, choose Y = 14. Then the above becomes

/AH(Xl,XQ)sz/Q1AH(X1,X2)dP=/Q1Ah(X1)dP=/Ah(X1)dP’

which shows since h(X) is F,-measurable that
B[H (X1, X3) | F,] = h(X1).

This proves the proposition.



Chapter 3

Stochastic Processes and
Brownian Motion

We are now ready to introduce the concept of stochastic processes and discuss some
of their properties. A process of particular interest is Brownian motion, and we will
discuss some of its peculiar features. Throughout this chapter, (Q2, F, P) will denote
a fixed probability space.

3.1 Stochastic Processes

Definition 3.1. Let I = [a,b] or [ = [a,00). A family {X;}sc; of F-measurable
random variables
X0 — R4

is called a (d-dimensional) stochastic process.
Remark 3.1. Given t € [ and w € 2, we also set
X (t,w) = X(t)(w) = X(w).
We thus can look at a stochastic process in several ways:
1. For each fixed t € I, the map
w e N Xy(w)
is a random variable, as in the definition.
2. For each fixed w € €2, the map
telr— Xi(w)
is a function defined on I, called a sample path.

3. The map
(t, w) — Xi(w) = X (t,w)

is a function defined on I x €.

75
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4. The map

is a vector valued function defined on I, with values in the linear space of
‘random variables on (Q, F, P).

Throughout, we will use various notations to denote a stochastic process, such

(X(@):tel}, {X@):t= 0}, {Xita<i<h {Xi}teer

for example. For simplicity, we will mostly choose I = [0, 00) and write {X(¢)}:0-
In practice, we identify ” similar” processes:

Definition 3.2. T'wo stochastic processes {Xt}ier and {Yi}ier are said to be modi-
fications (or versions) of each other, if for every t € I,

X, (w) =Yy(w) as.
Remark 3.2. Observe the subtle difference between the following two concepts:
1. "{X;}ier and {Y: }1er are versions of each o’cher"‘7 means that for each ¢t € I,
Ap = {w: Xy(w) # Yi(w)}
is a null set.
2. "{Xi}ier and {Y; }ser are equal a.s.” means that
A={w: 3t el X(w)#Yi(w)}
is a null set.

Obviously, 2. implies 1.

Remark 3.3. Suppose, {Xi}er and {Y;}ier are modifications of each other. For
each t € I, let p, and v, denote the distributions of the random variables Xi,
respectively Y;. We claim that p; = v4.

In fact, for all B € B(R?),

i(B) = P(X, € B) = P(X(B)) (3.1)

while also
w(B) = P(Y, € B) = P(Y;'(B)). (3.2)

Let A = {w: X;(w) # Yi(w)}. Then Ae F and P(A) =0. Now
X B) = {we A Xw) € Biu{w € A°: X,(w) € B} and

a null set

Y, (B) = l[w e A:Y,(w) € Biu{w € A°:Y,(w) € B}
amIllﬁset

Now by choice of A, the two sets on the right coincide. Hence, X;~ Y(B) and Y, (B)
differ only by a null set. It thus follows from (3.1) and (3.2) that

u(B) = P(X7(B)) = P(Y'(B)) = m(B):
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Example 3.1. Let ¢ be a N(0,1) random variable. Let us first show the following:

Claim: For each k € R, A :={w € Q: p(w) = k} is a null set.
In fact, observe that

P(Ai) = P(p € {k}) = po({})-

Now if F is the distribution function of ¢,

F(t) = /_ flx)dz  with  f(z) = \/%6_12/2

then

o9 = 06 20) 2 - 10)

:nm(ﬂm—F@—5)=hm kf@Mm:O

n

by continuity of the integral. This proves the claim. (Note that this argument
applies to any random variable ¢ having a density function, because then p, < A.)

Now set
Xo(w) =t —pw)* (=0

and

ftmpwp it e
Yilw) {t if t = p(w)?.

Claim: X; and Y; are F-measurable random variables V¢ > 0.
In fact, since constant functions and ¢? are measurable, this is obvious for X;.
Now compare Y; with X;. Obviously, Yo = Xo. On the other hand, if £ > 0 we set

Bi={weQ: X,(w) #Yi(w)} = {weQ:pw) =t}
:{weﬂch(w)-———\/E}U{weQ:go(w)=\/¥}=A_ﬁUAﬁ.

(Written in short form, B, = {X; # i} = {¢* #t} = A_sUA ;) Then B, is a
null set by the above claim. It follows that

1. Xy(w) =Y {w) as.
2. For all a € R,

(B N{w: Xy(w) <a} €F ifa<t

@ﬂﬁwﬂﬁﬂ={Qaymwnxm»s@)u&WUAﬁEF ifazt

which shows that Y, is F-measurable.
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This proves the claim and furthermore, that {X,}+>0 and {Y;}s>0 are modifications
of each other.

For ease of notation, we will from now on assume that I = [0, oc), although the
discussion can easily be applied to arbitrary intervals I. There are several choices
to make a stochastic processes compatible with the topological structure on I:

Definition 3.3. A stochastic process {X,;}>0 is called

1. left continuous, if

lim X (w)=X(w) V>0, Vwe

s—tt

2. right continuous, if

lim X,(w)=X,(w) V>0, Vwel

s—t™

3. continuous, if it is both left and right continuous.

An alternative and clearer definition would be to say that ”sample paths are
(left /right) continuous”.

Example 3.2. ( Example 3.1, continued)

1. Let w € Q be fixed. The sample path ¢t — X;(w) = t — p(w)? is a linear
function, hence is continuous on [0, co). That is, {X;}:>o is continuous.

2. Next pick w such that ¢(w) # 0 and let ¢ = ¢(w)?, so that Y;(w) = ¢. Then

lim Yy(w) = lim s~ (W)’ =1t — pw)? #t = Yi(w)

s—tt s—tt

which shows that {Y;}+>0 is not (left) continuous at ¢. Observe, however, that
{Xi}i>0 is a continuous version of {V;}i>o.

3. As mentioned above, p(w) # 0 for almost all w. The argument in 2. shows
that for such w there exists ¢ such that s — Y;(w) is not continuous at t. Hence
there cannot exist a continuous process {Z;};>¢ such that ¥; = Z; a.s.

Let {X.}1>0 be a stochastic process. If s # ¢, then the o-algebras generated by
X, and X; may be different. However, we want the events at time s < ¢ to be also
available at time t. We therefore introduce the concept of filtration:

Definition 3.4. A family {F;}.>0 of o-algebras is called a filtration if
Fs CFCF forall0 < s < t.

Definition 3.5. Let {F;}i>0 be a filtration. A stochastic process {X;};>0 is called
(F1)-adapted if for each ¢ > 0, the random variable X, is F;-measurable.
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Remark 3.4. Let {X;}>0 be (F;)-adapted. Since X, is F;-measurable and F; C F,
for s > t, it follows that X is Fs,-measurable for all s > ¢ as well. However, X; need
not be Fs-measurable for s < t.

Example 3.3. Let {X;}:>0 be a stochastic process. Recall that for each ¢,
o(X,) = {X7'(B): B eBRY},
is the smallest o-algebra in which X, is measurable. Now for each ¢, set
Fi=0({X,:0<s<t})=c({X;(B): Be€ BRY), 0<s<t})CF,

the o-algebra generated by the collection of random variables { X} with 0 < s <.
By this definition,

1. FX C FX for r < t, ie {FX};>0 is a filtration, and
2. {X:}i>0 is (F{X)-adapted, since for each ¢, éT(Xt) C FX.
We call {FX};50 the natural filtration of {X,;}i>o.
Now suppose {X;}:>0 is adapted to another filtration {F}};>o.
1. Since X, is F;-measurable, then
X YB)eF  VBeBR?Y
and thus o(X;) = {X; }(B) : B € B(R%)} C F, for each t.

2. As {F.} is a filtration, then by 1.,

o(X,)CF CF V0<s<t

and hence
FX=0({X,:0<s<t})CFR

for all t > 0.
Thus, the natural filtration is the smallest filtration to which {X;}:>0 is adapted.

Often it is not enough to consider X, to be F; measurable for each fixed ¢.
Instead, we want the function X (¢, w) of two variables to be measurable:

Definition 3.6. Let {F;}:>0 be a filtration. A stochastic process {X,}i>0 is called
(Fy)-progressive, if for every T > 0, the function

X(t,w):[0,T] x Q — R

is B([0,7T]) ® Fr-measurable.



80 CHAPTER 3. STOCHASTIC PROCESSES AND BROWNIAN MOTION

For simplicity of presentation, above we chose a process defined on [0, 00). It is
obvious how to define the notions of ” F;-adapted” and ”progressive” to processes
{X:}a<t<sy defined on an arbitrary closed and bounded interval.

Remark 3.5. If {X:}.>0 is (F})-progressive, then its is also (F})-adapted.

To see this, fix an arbitrary T' > 0. Since X (t,w) is B([0,T]) ® Fr-measurable,
then in particular, by theorem 1.26, the restriction to one variable, Xy @ w
X(T,w) is Fpr-measurable. Changing T to t it follows that {X;}¢>0 is (F:)-adapted.

For the converse we have:

Theorem 3.1. Let { X, }i>0 be left-continuous and adapted to the filtration {F;}i>o.
Then {X:}i>0 is progressive.

Proof. Let T' > 0 be arbitrary. If 7' = 0, then [0,7] x Q can be identified with
and B([0,T]) ® Fr with Fy as

B([0,T]) ® Fr=B({0}) @ Fo = {{0} x A: A € Fy },

and X (t,w) : {0} xQ — R? with Xy(w). Since Xo(w) is Fo-measurable, then X (¢, w)
is B({0}) ® Fo-measurable.

We thus may assume that 7 > 0. We now construct a sequence X"(t,w) of
B([0,T]) ® Fr-measurable functions such that

X"t w) — X (¢, w) (3.3)

pointwise. It then will follow from theorem 1.11 that X is also B([0,T]) ® Fr-
measurable.

For each n € N, partition [0, 7] into subintervals of length L by choosing parti-
tions ,

P (o LIy
\ n'n’ n n

Now let ¢ € (0, 7] be given. For each n there exists a unique j = j(t,n), 0 < j < n,
such that t € (Z£, (JH)T] Let us set

()T

p(t,n) = .

Then
T
t——<p(t,n) <t
n

for all n, so that

p(t,n) =t~ as n — 00.
Now set,
X"(t,w) = Xo(w)Lioy(t) + Z Xz (w) iz gt (t). (3.4)

Jj=
We note:
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i) For given ¢ > 0, X" (¢, w) = Xpun)(w).

ii) Since {X.} is (F;)-adapted, each term is B[0,T] ® Fp-measurable by example
1.15, hence so is the finite sum X™(¢, w).

Let n — oco. If ¢ = 0, then X"(t,w) = X"(0,w) = Xo(w) = X(0,w) so trivially,
X"(0,w) — X(0,Q). H0<t<T, then

X (t,0) = Xpum(®) = Xow) Vo

since p(t,n) — ¢t~ and X, is left continuous. This proves (3.3) and the theorem. [

3.2 Brownian Motion

Throughout this section, {F;}:>0 will denote a filtration on (2, F, P).

Definition 3.7. An (F;)-adapted process {B:}i>0, B: : @ — R, is called (F)-
Brownian motion if

(B1) sample paths ¢t — B;(w) are continuous VYw € §2,
(B2) for every 0 < r < ¢, the random variable
B; — B,
is independent of F,,
(B3) for every 0 < r < ¢, the random variable
B; — B,
is Gaussian with mean zero and variance ¢ — 7.
If in addition,
(B4) Bo = 0, then {B:}i>0 is called standard Brownian motion.
Remark 3.6. 1. Let 0 <r < t. Then
AB := B, — B,

is called an increment. (B3) says that increments have normal distribution
N(0,t — r). In particular,

(a) AB=B;— B, € LP(Q2) forall 1 <p < oo by exercise 2.2.
(b) E[B;— B,] = E[AB] = 0 and hence
E[(B, - B,)?] = E((AB)?] = E[(AB)?] — E[AB)® =var[AB] =t —r

or in short,
E[(AB)?] = At

where At =¢ —r.
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(c) By (B2), example 2.14 and (b) we have that
E[AB|F,) = E[B, — B,|F,| = E(B,— B,) = 0.

In applications, this has the following meaning: If B; denotes the amount
of money in a game, then E[B; — B,|F,], represents the winnings over
the time interval [r,t] as predicted at time r. The above equation says
that the predicted winnings are zero. This is called a "fair game” )

2. If {B;}+>0 is standard Brownian motion, then choosing r = 0 we see that B
is N(0,t) for all t > 0.

3. Recall that the collection of events A € F, is interpreted as containing all
information at time s. So if 0 < s < r < ¢, then (B2) implies that AB =
B, — B, is independent of the information at time s which is interpreted as
”increments are independent of the past”.

4. One can show that there exists a great variety of Brownian motions.
5. By theorem 3.1, Brownian motion is progressive.
Exercise 3.1. Let {B;}:>0 be (F:)-adapted Brownian motion

1. For each t > 0 set B, := B, — By. Show that {ét}tz() is standard Brownian
motion.

2. (Left shift of Brownian motion.) Fix ¢, > 0 and for each ¢ > 0, set F, = Fit
and set By := By, ;. Show that {F};>o is a filtration, and {B;}1>0 is (Fy)-
adapted Brownian motion.

Theorem 3.2. Let {B;}i>0 be (F;)-adapted Brownian motion, and 0 < to < 11 <
to < -+ < t,. Then the random variables

Bt(), Btl - BtO’ Bt2 - Btl? veey Btn - Bt’n—l
are independent. (We say that ”Brownian motion has independent increments”.)

Proof. We use exercise 2.8 and induction on n.

Induction start (n = 1). Since {B;}s>0 is (Fi)-adapted, then o(By,) C Fy. Now
by property (B2), o(By, — By,) is independent of F,. It follows that o(By,) and
o(By, — By,) are independent o-algebras, that is, By, — By, and By, are independent
random variables by exercise 2.8,

Induction step. Suppose the assertion holds for some k > 1. That is (using exercise
2.8),
U(Bto)a U(Bt1 - Bto)a U(Btz - Bt1)’ R U(Btk - Btk—l) (3'5)

are independent o-algebras. We need to show that

U(Bto)a U(Bt1 - Bto)v U(Bt2 - Bt1)7 R J(Btk - Btk:—l)’ U(Btk+1 - Btk) (3'6)



3.2. BROWNIAN MOTION 83

are independent o-algebras. For this, let
E() S O'(Bto), El € O-(Bti - Bti—~1> (1 S ) S k)

which are independent by induction assumption (3.5), and let Exi1 € 0(By,,, — By,)-
Now as {Bi}>0 is (F)-adapted and {F;}:>o is a filtration, we have that

A=FENEN---NE, €Fy.
On the other hand, 7}, and o(B,,, — By,) are independent by (B2). Hence,

P(EoNE1N---NE,NEpy1) = P(AN Egy1) = P(A)P(Egi1)
= P(Ey))P(E\)P(E,) ... P(Ey)P(E.).

(3.6)
Since Ey, E1, ..., Exy1 were arbitrary it follows that the o-algebras in (3.6) are in-
dependent. The theorem now follows by induction. O

Notation: In many of the proofs which follow we will make use of the following
notation:
Let t > 0 be fixed, and let {P,}22, be a sequence of partitions of [0, ¢] such that

P — 0 as  t— 0.
Recall here that if we list the partition points of each partition as
Po={0=t{ <t <t <. <t =1}
(so the n-th partition has m,, + 1 partition points) then

- (n) (n)
1Pl = max_ [66% - 7).
When working with a given partition we will often drop the symbol (n) for ease of
notation; for example,

AW ) 4

Aj =141 —t; will be used instead of ; jr1 b

Similarly,

AB;:= B;,,, — By; will be used instead of ABJ(-n) = Bt(n) — Bt(n).

j+1
i+ j+1

Theorem 3.3. Let {B,}i>0 be (F;)-Brownian motion. Given t > 0, let {P,}22, be
a sequence of partitions of [0,t] with ||P,|| — 0 as n — co. For each n, set

So(w) = mf (B (@)~ B (@)] :

Then Sn(w)wnf in L*(2) as n — oo.
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Proof. After dropping the index (n) we need to show that

Sy=> (AB)" —t inL*Q).

J
Now by (B3), AB; has distribution N(0, At;), hence by exercise 2.2,
E[(ABJ)2] - At] and E[(ABJ)4] = 3(Atj)2

Also, by theorem 3.2, AB; and AB; are independent for i # j. Hence by exercise
7 (AB;)? and (AB;)? are also independent for 4 # j. Thus,

150 — £ = /Q(Sn(w) _4))2dP = E[ (S, — 1)*] = B[ 2 — 25, + 1]

—E (Z(ABi)Q) (Z(AB]-)2> 2t Y (AB) 41

L { J
=FE Z B)* +) (AB)*(A 'Q—ZtZ AB'Q—i—tZ}
i#]
—ZE [(AB)*] + ) E[(AB)’ —2tZE B[]
1#£]
_23 (At:)? + ) E[(AB)*(AB;)? —ZtZAt +t2
i#]

where we have used linearity of the integral. Now applying corollary 2.4,

1S, — t]12 = 32 (At)?+> E[(AB)] E[(AB)))] —2t-t+1°
i#j
=3 (At + > At AL — 202 + ¢
i i

= 2Z(Ati)2 + (Z Ati> <Z Atj> — ¢
= 22(Am)2 +bot—12 J

< 2||P,|| Z At; = 2||P,]|t = 0 as n — oo.

This proves the theorem. O

Remark 3.7. A function F is said to be of bounded variation on [a, b], if there exists
M > 0 such that

z_: | F(tjp1) — F(t;)| < M (3.7)

for all partitions P = {a = to < t; < ty < --» < ty, = b} of [a,b]. (Here m is
arbitrary ! Intuitively, the graph of F' has finite length.)
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Claim: Every F' € Cla,b] is of bounded variation. For let

K := max ‘F’ ‘

a<t<b

Then for any partition P of [a, ],

3
R

3

| F(tj41) — F(t) | < | K (tj1—t;)| = K(b—a) < o0

Il
=)
.

Il
=)

J
by the Mean Value Theorem.

Claim: If F' is of bounded variation on [a, b], then it is bounded.
In fact, let M be as in (3.7). For each t € [a, b] we have

|F(t)| < | F(t) - F(a) | +|F(a) |(3<7)M+ |F(a)|

Claim: Let F be continuous and of bounded variation on [a,0]. If {P,}52, is a
sequence of partitions of [0, ¢] with ||P,|| — 0 as n — oo and if

mp—1 9

Soi=Y [F(tg.’fl)—F(tg.”))] :

=1

then S, — 0 as n — oo.
In fact, let € > 0 be arbitrary, but given. Since F' is uniformly continuous, there
exists 0 > 0 such that

|[F(t)— F()| < % whenever It — 1] <6, t,t € [a,b]
where M is the constant in (3.7). Thus if n is sufficiently large, we have

7 n €
P - FE)| < o

for all partition points tg.n) since|| P, || — 0. It follows that

Mp—1
5= 3 [ - F)| - [P - P
j=1
mp—1 €
(n)
Z‘F i) — Pt )S_MMZE

for sufficiently large n. This proves the claim.

Example 3.4. Let {B:}:>0 be Brownian motion and T > 0. Then sample paths

€[0,T] — Bi(w)
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are not of bounded variation a.e. w.
To see this, choose a sequence {P,} of partitions of [0, T] with ||P,|| — 0. Let

S, be as in theorem 3.3, so that

o 2

2
S = Z By ) = Bon(@)] £5 T

J:

Now by theorems 1.25 and 1.24 there exists a subsequence S, such that
Snw) =T  aec w

Relabeling the sequence { P, } to {F,}, there exists a set A € F, P(A¢) = 0 such
that

Mp—1
Su) = > [Buy, @) = Beo @] =T#0 Yoed (39
=1

Choosing F'(t) = Bi(w) in the previous claim, we see that
t€[0,7T] — Byw)

cannot be of bounded variation Vw € A, that is, a.e.

Definition 3.8. An (F;)-adapted process {X;}+>o is said to have the Markov prop-
erty relative to {F;}i>o, if

E[f(X)| 7] = E[f(X,)]o(X,)] (3.9)
for every bounded Borel function f: R — R and every 0 < r < t.

Remark 3.8. 1. For ease of notation, one usually writes E [ F(Xy) i XT] instead
of E[ f(X:)|o(X,)]. Then (3.9) becomes:

E[f(X)|F] = B[ f(X)| X, ]

for every bounded Borel function f and every 0 <r < ¢.

2. (Interpretation) Recall that [ f(X;)|F. ] is the F,-measurable random vari-
able 7closest” to f(Xi), i.e. which best predicts f(X;), given time r. Thus,
(3.9) means that besides the information which we know through X, already,
no other information available at time r (=events in F,) can help predict the
future value f(X,).

3. If {Xi}e>0 has the Markov property relative to {F;}¢>q, then it also has this
property relative to the natural filtration {F/}i>o. In fact, since

o(X,) CFXCF,
for all r, then by theorem 2.7,
Bf(x)|FX] = B[ BLf(x) | 7] | 7]
=B Ef(X)|X] |FX]|=El/(X)]X]
. 2

r
o(Xr)-meas. = FX-meas.

for 0 < r < ¢, which was to be shown.
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Theorem 3.4. If{B:}:>¢ is (F:)-Brownian motion, then it has the Markov property.
That is,

E[f(B)|F] =E[f(B)|B:]
or every bounded Borel function f and every 0 < r < t.
Proof. By (B2), B,—, and F, are independent. Hence we can apply theorem 2.8 to
Fo=F, Xi1=DB,, Xy=B;—B,, H(z,1)= f(z1+z3)
to obtain that
WMB,) = E[ (B, + (B, — B.)) | 7]

that is,
h(B,) = E[f(B)|F:]. (3.10)

On the other hand, since h(z;) is Borel, then the composition h(B,) is o(B;)-
measurable so that

B[ f(B)|B.] = B[E[f(B)|%]|B] = E[hB)IF]

thm 2.7 (3.10)

= h(B,) = E[f(B)|F].

expl 2.14 (3 10)

This proves the theorem. O

Remark 3.9. We can even give a formula for I/ [ f(By) ‘ Fr } Keeping the notation
of the theorem, we have

 h(z1) = E[H(z1, B, — /H z1, (B; — )( )) dP(w)
N(Ot )
/H 113'1,152 L —332/[2t r]diE
Vit 1)
1
/f T1+ By) = '(t ) e "3/ P0t=r)] dxs Ty — Ty — T1
—(@a—w1)?/[2(t—7)]
——_— T dzy
\/ t—r /f 2

and thus

E[f(B) | F ](w) = M(B;)(w) = h(B,(w))
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3.3 Martingales

ace with filtra-
Throughout this section, (2, F, P) will denote a fixed probability spP o value at time
tion {F;}i>0. A martingale is an integrable stochastic process WhO

r is the best predictor for its value at ¢ > 7 , .
)/martznagle, if
t

Definition 3.9. An (F;)-adapted process { M;}¢>¢ is called an (Ft
Mal) M, € L} Q) forallt >0,
(Ma2) E[M,|F.]=M, forall0<r <.

If in addition,
(Mal’) M, € L*(Q) forallt >0,

then it is called a square integrable martingale.

Theorem 3.5. Let {X:}is0 and {Yi}iso be (Fi)-martingales. ft)-martingale
1. For all real numbers o, B, the process {aX:+8Y;}i>0 is also ar

(so the set of (F;)-martingales is a real vector space),

2. The expected value is constant, that is,

E(X,)=E(X,) vY0<r<t.
and the latter
Proof. Lets first prove 1. Since for each t > 0, X, Y; € LY, Fro” 10X, + BY: hizo
is a vector space, it follows that oX,; + 8Y; € LI(Q F:, P). That 5 ’f +he conditional
is an (F;) adapted, integrable process. Furthermore, by linearity °
expectation, for each 0 < 7 < ¢,
BlaX; + Y| F. | = aB[ X, | F ] + BE[Y,| ;] "

a2)

Y,.
aXT+ﬂ

This shows that {aX; 4+ 8Y:}i>0 is an (F;)-martinagle.
To prove 2., observe that for all 0 < r < ¢,

E(X,) B E(E[X,|F]) > E(X,).

This proves the theorem.
The limits of martingales are also martingales:

Theorem 3.6. Let 1 < p < o0, and let

{Mn(t) > 0}00

n=1

be a sequence of (F;)-martingales with M,(t) € LP(Q) V¢ >0, A
If {Mn(t)}22, converges in LP(Q)) for all t, say

M) 010) >0

then {M(t) : t > 0} is also an (F;)-martingale.
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Proof. For each t, since M, (t) € LP(Q, F,, P), since M,(t) — M(¢) in LP(Q, F, P)
and since LF(Q, F;, P) is complete, it follows that M(t) € LP(Q, F;, P). Thus by
exercise 1.10, M (t) € LY(Q, F;, P) for all ¢, and hence { M (¢) : t > 0} is (F;)-adapted.

We thus need only verify the martingale property (M2). That is, we need to
show that for all 0 < r < ¢,

/M(t) iP - / M) AP (YAEF). (3.11)

In fact, for all s and all A € Fy,

‘/ Mn(s)dP—/M(s) ap g/|Mn(s)—M(s)|dP§/|Mn(s)—M(s)|dP
A A A Q

= ||M, — M|, < ||M, — M|, —0 as n — 00
by exercise 1.10. That is, ‘

/AMn(s) dP—>/AM(s) dP. (3.12)

for all s and all A € F,. Now as {M,, : t > 0} is a martingale, identity (3.11) holds
for each M, and hence applying (3.12) to s =7 and s =t and A € F, C F; we have

/M(t) dP = lim [ M,(t)dP = lim [ M,(r)dP = /M(r) dP.
A (3.12) n—oo f 4 (8.11) n—o0 J 4 (3.12) J 4
This proves the theorem. O

Remark 3.10. In the above proof, we have to be careful what limit process we
choose. Recall that functions in LP(Q), F;, P) are defined up to a null set only.
By concluding in the proof that ”M(t) € LP(Q, F;, P)” we mean: ”There exists

M(t) € LP(Q, F, P) such that M,(¢) 1% pr(t).”
On the other hand the statement "If M(t) € LP(Q2, F, P) and M,(t) M”»M(t)
then M(t) € LP(Q, F;, P)” is not correct in general; M(t) need not be Fi-measurable.

However, if Fy (and hence F;) contains all null sets of F then by applying theorem
1.12 to'the o-algebra F; we can be sure that this latter statement is correct.

Example 3.5. Every standard (F;)-Brownian motion { B }i>o 1 a square integrable
(F:)-martingale.
In fact, since {B:}i>0 is standard, then
Bt:Bt-Oth—BO

is N(0,t). Hence by exercise 2.2, B, € LP(Q2) for all 1 < p < oo. In particular, B, is
square integrable.
Next we need to verify the martingale property. By (B2) we have for all0 < r < t,

B(B,| ] = Bl(Bi— B,) + B, | F.]
= E[B;,— B, |F. |+ E[B. | ]
= FE[B, — B, | + B. (by examples 2.14 and 2.15)
=0+ B, = B,. (B;— B, is N(0,t — 1))

Thus proves the assertion.
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Exercise 3.2. Let {B:}i>0 be standard (F¢)-Brownian motion. Show:

1. Set Y = B} —t. Then {Y:}i>o Is an { F;}-martingale.
(Hint: write B} = B2 +2B,(B,— By) + (B — B)2for 0<r<t.)

9. If X(w) is an N(0,r) random variable, then eXW ¢ [P(Q) for all 1 < p < o0.

3. Set Z, := e@B—0"/2) (0 # 0 is constant). Then {Z;}i>0 18 an { F;}-martingale.
(Hint: write By = (B; — B,)+ B, for 0 <r < t.)



Chapter 4

Stochastic Integrals

Throughout this chapter, (Q, F, P) will denote a probability space with filtration
{Fi}i>0 and {B;}i>0 (one-dimensional) (F;)-Brownian motion.

Given an (JF;)-progressive stochastic process { ft}t=0, we want to work with inte-
grals

O Flw) = / f(s,w)dAs)  (we)

and

(II) I(w) = / f(s,w)dBs(w) (we ).

:/abf(s)ds and I=/abf(5)dB

If s —» f(s,w) is integrable for all w then obviously, the integral (I) exists.
However we still need to show that F(w) is Fp-measurable.

Consider the integral (II). Recall that for a.e. w, the map s — B,(w) is not of
bounded variation. Hence, given a partition P of [a,b], the values of AB;(w) =
By, (w) — By (w) will vary extremely as At; = t;,1 —t; — 0. We thus can not
expect that the sums

In short,

th w)AB;(w)

converge for each w, as ||P]| — 0. In fact, we will define this integral as a limit in
the mean square instead of a pointwise limit.

4.1 The Classes V[a, b and W|a, b]

Return for a while to the integral (I). If f € L ([a, ] x Q, B([a,b]) ® Fy, A x P) then
by Fubini’s theorem, this integral is defined a.e. and there exists F' € L'(Q2, %, P)
such that

= /bf(s,w) dP  ae we (4.1)

91
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In fact, inspection of the proof of Fubini’s theorem (see [2], [3]) shows that (4.1)
holds at every w where s — f(s,w) is integrable. Thus in particular, if f : [a, b] X
is Fy-measurable and bounded, then (4.1) holds at every w.

If f is not integrable on [a, b] x Q we still have:

Theorem 4.1. Let f : [a,b] x ) be B([a,b]) ® Fyp-measurable. Suppose that
s — f(s,w) € L'a, b} Vwe . (4.2)
Then b
F(w) =/ f(s,w)ds
is Fp-measurable. ’

Proof. The idea is to approximate f by bounded processes.
For each n € N, let

A, ={(s,w) € [a,b] x Q: ]f(s,ug)] < n}.

Then A, is a B([a, b)) ® Fp-measurable by assumptioﬁ on f; hence f, 1= fl,, isa
B([a, b]) ® Fr-measurable function. Observe that for all (s,w) € [a, b] x £,

(a) lfn(svw)l <n,
(b)  {fals, W) < 1f(s W),
©)  fals,w) = f(s,w).

Now as each f, is bounded, by the above remarks,

R = [ o) ds

is defined for all w, and is JF,-measurable. Since {f,} is dominated by f € L{a, 8],
we can apply the Lebesgue dominated convergence theorem to obtain that

b b
Flw) = [ fulsw)ds =l [ fuls,)ds = lim Folow)

—
Nn—00 a

for each w € €. Thus by theorem 1.11, F' is Fy-measurable. O

For the integral (I) we will be working with progressive processes in the following
class:

Definition 4.1. Given a closed interval [a, b] with a > 0, set

Wia,b] = {g: [a,0] x @ = R : {g:}a<i<s is (F;)-progressive
and t— g(t,w) € L'a,b] VYw }.

We also set

W[0,00) == {g:[0,00) x Q=R : geW[0,T] VT >0}
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Thus, the elements of W[0, o) are (F:)-progressive processes with ¢ — g(¢,w)
integrable on each [0,77] for fixed w. Note however that ¢ — g(¢,w) need not be
integrable on [0, 00).

Corollary 4.2. Let g € W[a, b]. Set

Gi(w) = /tg(s,w) ds. (a <t<b)

Then {Gi}a<t<o 15 (Fi)-adapted and continuous (hence progressive).

Proof. Pick t, a < t < b. By assumption, g(s,w) is B([a,t]) ® F; measurable.
Applying the previous theorem to the interval [a,t] we thus obtain that Gy is (F;)-
measurable. Since G, = 0 it follows that {G:}e<i<p is (F:)-adapted.

Next we show that {G,} is left-continuous on [a, b]. In fact, let t, € (a,b] and fix
w € . Let € > 0 be given. By theorem 1.21 there exists 4 > 0 such that

[ lots.)lds <

whenever F C [a,t,] and A(E) < §. In particular, if max(a,t, — ) < t < t, we have

6 = Gl =| [ tsra] < [latsllas <

As € was arbitrary, it follows that lim Gy(w) = G, (w). Right continuity on [a, b] is

t—t,

proved similarly. Hence continuity follows. O

Corollary 4.3. Let g € W[0,00). Set

Giw) = /o g(s,w)ds. (t>0)

Then {Gi}iso is (Fi)-adapted and continuous (hence progressive).
Proof. Apply the previous corollary to each interval [0,T], T > 0. a
For the integral (II) we work with a smaller class of stochastic processes:

Definition 4.2. Given a closed interval [a,b] with a > 0, set
Via,b) == {f € L*(la, ] x Q) : {fi}a<e<s is (F;)-progressive }.
We also set

V[0,00) = {f(t,w) : [0,00) x @ =R : feV[0,T] VT >0}.

Thus, the elements of V[0, 00) are (F;)-progressive processes which are square
integrable on each [0, T]x Q. Note that f need not be square integrable on [0, co) X 2.
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Remark 4.1. 1. It is straightforward to verify that Vla,b] is a closed subspace
of L2([a,b] x Q) in the L2-norm,
b
/ ft,w)dt|.

2. If [a,b] C [e,d], then each f € V]a,b] can be considered an element of Ve, d]
by setting f(s,w) = 0 for s ¢ [a,b]. This gives rise to an isometric embedding
of of V]a, b] in of V¢, d].

Conversely, each f € V[c,d] when restricted to [a,b] becomes an element of
Via, b).

18 = [ [ serar=s

Just as every integrable function on a measure space can be arbitrarily approx-
imated by an integrable simple function, we want to show that every element of
Vla, b] can be arbitrarily approximated by a square-integrable simple function in the
following sense.

Definition 4.3. A function ¢ : [a,b] x © — R is called simple, if it is of the form

m—1

¢(t7u)) = ¢0(w)1{0}(t) + Z ¢j(w)1(tj»tj+1] (t) (43)

=0
for some partition
P={a=ty<ti <ty <+ <tp,=>0b}
of [a, b] where each ¢; is an F;-measurable random variable.

Remark 4.2. 1. Since {a} is a null subset of [a, b], we may drop the first term
¢o(w)1i0} in practice.

2. Let t € (a,b] be given. Then there exists a unique 7 such that ¢ € (t;,¢;41],
and

¢(t) = ¢5. (4.4)
It follows that the process {¢(¢) : a < ¢ < b} is

(a) (Fi)-adapted: In fact, since ¢; is F;;-measurable and ¢; < ¢, then ¢(t) is
Fi-measurable.

(b) left-continuous: In fact, given ¢ € (a, b] as above, we have for all s with
t; < s <t that

¢(s) = ¢; = ¢(t)
and hence lim ¢(s,w) = lirtn_ o(t,w) = ¢(t,w) for all w.

s—t—

(¢) (Ft)-progressive. This follows from (a) and (b).
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(d) an element of Wia, b]. This follows from (c) and the fact that for each w,

i+1 m—1
/I(bswlds-Z/ (s,w)d Z¢j(w)Atj<oo'
5=0

3. Let’s compute the LP norm of ¢. We have for 1 < p < o0,

/Q/ab|¢(t,w)|pdth — /rz—:l /:Hl |6(t, w)[P dt| dP
/ Zldy w)P At; | d
= m; At /Q|¢j(w)|f’ ar (4.5)

(Atj = tjr1 — 1))

and hence

m—1 m—1
Atmm;/gm(wﬂp P < /Q /ab|¢(t,w)|pdth < Atm;/ﬂm(w)w P

where Aty = min At; and Aty.x = max At; = || P||, or equivalently,
j j

m—1 b m—1
At ; E(j¢;) < E[/ 68, w)IP dt| < At Za E(|5]7)-

It follows that
pelP([a,b] x Q) & ¢, elP() VI<j<m
In case p = 2 then
p€V[,b o ¢ l*(Q) VIi<ji<m (4.6)

in which case its norm in V|a, b] is given by

1/2
Z At; Il%llzl =

1/2

19122 sy =

m—1
> At E(¢))
=0

by (4.5).
Definition 4.4. Let us set
Sla,b) :={é € Vl]a,b] : ¢ is simple }.

It is easily seen that S[a,b] is a linear subspace of V[a,b]. In fact, it turns out
that its closure is V[a, b]:
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Theorem 4.4. Let f € V|a,b]. There exists a sequence {¢n}or, in Sla,b] such that

bn 15 f
in the norm of L?([a,b] x ).

Proof. To simplify notation, we will assume that a = 0 and set T = b, that is
consider the interval [0, T]. The proof for general a is done in exactly the same way.
We prove the theorem in stages:

Lemma 4.5. Let f € V[0, T] satisfy

1. f is bounded,

2. The process { f(t) : 0 <t < T} is left-continuous.
Then the assertion of the theorem hold.

Proof. Let M be such that |f(t,w)| < M for all (t, w) [0,T] x Q.
For each n, partition the interval [0, 7] into 2" subintervals of length £ each and

set
on—1

¢n = F(O)1y0) + Z f<‘ ) (T, Gty (4.7)

just as in the proof of theorem 3.1 (with a slight change of notation). Since {f:}
is Fi-adapted, then obviously, ¢, is simple. Furthermore, since [ is bounded, then
F(35) (w) € L*(Q) for each 0 < j < 2". Thus by (4.6), ¢ € V[0, T].

27L
As shown in the proof of theorem 3.1,

b (t,w) — f(t,w) pointwise on [0, T] x €.

Now as |¢n(t,w)| < M for all (t,w), we can apply the dominated convergence theo-
rem for LP-spaces (theorem 1.20) to obtain that

bn(t,w) — f(t,w) in L*([0,T] x ).
This proves the lemma. O

Lemma 4.6. Let h € V[0,T] be bounded. Then there exists a sequence {gn}nz, i
VI[0,T] and satisfying

1. gy 1s bounded for each n,
2. the process {g,(t) : 0 <t < T} is left-continuous

such that g, Wz 1y i the norm of L2([0,T] x Q).
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Proof. The idea is to represent each g, as an integral with the variable ¢ appearing in
the limit of integration. Then boundedness and continuity of g, are easily derived.

1. Construct g,: Since {h:}o<i<r is (F;)-progressive and bounded, then by corollary
4.2, the process { H; }o<t<T given by

Hiw) = [ hlosw)ds

is continuous and also (F;)-progressive. For each n, set

gn(t,w) = n[Ht(w) M (w)] = n/t: h(s,w)ds

where ¢, = max{t — 1,0}.
2. Show that g, € V[0, T]: Observe that
() each gn(t,w) is (F¢)-adapted, as H, is (F;)-adapted and ¢, < ¢.

(b) for each w € , the map ¢ — g,(t,w) is left continuous, as ¢ — Hy(w) is
continuous, and ¢ — H;, (w) is the composition of the continuous maps ¢ —
max (t — 1,0) and ¢t — Hy(w).

Hence by theorem 3.1, {g,(t,w) : t > 0} is (F;)-progressive on [0, T].
Now as h is bounded, say h(t,w) < M, we have for all 0 <¢ < T and w € {,

S|+

nttl < [ s )lds <n M-t Snoar L=

That is g, is bounded and in particular, square-integrable. Hence, g, € V[0, T].

3.. Show that g, LLLYW By Lebesgue’s theorem (theorem 1.17) we have for each w

that

” t ¢
lim g,(t,w) = lim n/ h{s,w)ds = lim —-——1—&7/ h(s,w)ds = h(t,w)
tn tn

n—00 n—00 n—oo )\( (t,m

a.e. t € (0,T]. As |ga(t,w)l|, |M{w)| < M for all (t,w) it follows from the Lebesgue

Dominated Convergence Theorem for LP spaces (theorem 1.20) that for each fixed

w,

”'“LZ[O,T]
—

gn(t>w> h(t, w)

that is,

Kolw) = ln(e0) = B gy = [ lan(si) = h(s,0)Pds = 0

as n — oo. Observe that for all w,

T T
K@) < 119260202y + 1A+ ) 20 < /0 M2ds + /0 M2 ds = 2MT.
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Applying the Lebesgue Dominated Convergence Theorem we obtain by Tonelli the-
orem that

ll9n — Blf2gom1xe = // |gn(s,w) — (s,w)|2dsdP:/QKn(w)dP—>0

as n — oo which proves the lemma. O

Lemma 4.7. Let f € V[0,T] be bounded. Then there exists a sequence {h,}5; in
V[0, T), with each h,, bounded, such that h, Il ~= f in the norm of L*([0,T] x ).

Proof. We clip f to make it bounded: For each n € N, let

-n if f(t,w) < —n
hp(t,w) =< ft,w) if —n< ft,w)<n

n if f(t,w) > 7.
Then |
1. h,(t,w) — f(t,w) for all (t,w) € [0,T] x Q,
2. |h(t,w)| < n, i.e. hy, is bounded,

3. each h, is (F;)-progressive. To see this, let ¢ € [0,T] be given. We must show
that h,, is B([O, t]) ® F,-measurable. Set

Ay ={(s,w) € [0,t] x Q: f(t,w) > n}
_={(s,w) €[0,¢] x Q: f(t,w) < —n}
A=A, UA_.

Then A+, A_,A € B([0,t]) ® F, since f is (F;)-progressive and hence is
B([0,4]) ® F-measurable. Now as

hn = flAc + n1A+ — n1A~
is follows that h, is B([0,t]) ® F;-measurable.

Now as |h,| < f and f € L*([0,T] x Q) we conclude that h,, € V|[a,b]. Furthermore,
using (a) we can apply the Lebesgue Dominated Convergence Theorem for LP spaces

to obtain that "
‘|2

hn - f
as well. Thus, the lemma is proved. O
We are now ready to complete the proof of theorem 4.4. Fix f € V[0,T] and let
€ > 0 be given. By lemma 4.7 there exists a bounded process i € V[0, T such that

|f = Pllz2qomxe) <

Qolm
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Now by lemma 4.6 there exists a bounded and left-continuous g € V[0, 7] such that
€
1A = gllezqomxay < 3
Then by lemma 4.5 there exists ¢ € S [0, T'] such that
€
3
Combining the above three inequalities we obtain by the triangle inequality that

llg — ¢”L2([O,T]xn) <

£ = @llzqomxe) <€

Now choosing € = 1 we obtain a sequence {¢,} in S[0, 7] such that

n

1
”f — (anLQ([O,T]XQ) < 5 Vn.
This proves the theorem. O
Definition 4.5. A function ¢ : [0,00) x £2 — R is called simple, if it is of the form
B(t,w) = do(w)Lioy(t) + Y &5(w) Lty 5,1 (2) (4.8)
§=0

where 0 = ¢y < t; <ty < -+ < t, < ... with lim {; = oo and each ¢; is an
j—o0
JFi,-measurable random variable.
We set
S[0,00) := {¢ € V[0, 00) : ¢ is simple }.
Remark 4.3. 1. For each fixed ¢, exactly one term in (4.8) is nonzero. Thus we
need not worry about convergence of this infinite series.

2. It ¢ € S0, b] for some b, then obviously, ¢ € S[0,00) as well. Conversely, the
restriction of an element ¢ € S[0, 00) to an interval [a, b] defines an element of

Sla, b].

3. Let ¢ :[0,00) x 2 — R be simple. Then ¢ is left-continuous. Furthermore,
just as in remark 4.2 one verifies that

p€S8S0,00) & ¢l Vi=12,...
4. Let f € V[0,00). Then f € V[0,n] for all n € N. By theorem 4.4 there exists

én € S[0,n] (and hence ¢, € S[0,00)) such that

1
lén = fllL2qomxe) < -

for all n.

Consider now the sequence {¢,}. Let T" > 0 be arbitrary, but given. By
construction, for all n > % we have

1
ln — fllz2qomxe) < llon — fllrzgqonxa) < ~ 0

as 1 — OQ.
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We want the equivalent of theorem 4.4 for the class W]a, b]. Inspection of the
proof shows that theorem 4.4 is valid for the space L'([a,b] x ) (and in fact for
each L? space). That is, we obtain:

Let {gi}azi<p be (Fi)-progressive with g € L'([a,b] x Q). There exists a sequence
{dn} of simple, (F;)-adapted and integrable functions such that

[RE!
—_— g

Pn (4.9)

in L'([a, 0] x Q)
Since the class Wa, b] is larger than V]a, b], some additional work is now required.

Theorem 4.8. Let g € Wia,b]. There exists a sequence {ér} of simple and inte-
grable functions in Wia, b] such that

() Bg(w) e w
in L'[a,b]. ‘
Proof. For each n € N, set
A= A{(sw) €[a,b] x 2 : |g(s,w)| <n}

and set g, := gla,. Then g, is bounded and (F;)-progressive with |g,| < |g| for all
n and gn(s,w) — g(s,w) on [a,b] x Q. Hence by the LDCT for LP-spaces (theorem
1.20), gn(,w) — g(-,w) in Ll[a, b] for each w, that is,

”gn('aw) —g(':w) ”Ll[a,b] — 0 Vw. (41())

and hence by theorem 1.23,

prob.

“g"("w) - g(,w) HLl[a,b] — 0.

On the other hand, by (4.9), for each n there exists a sequence {¢}52_, of simple,
integrable functions in Wia, b] such that

/l|¢ gn(w ”Llab P:/Q/ablﬁbzl(saw)*gn(S,w)[dsdP

= ||y — QnHLl([a,b]xQ) —0

as m — oo. As L'-convergence implies convergence in probability (see theorem
1.25), then

m rob.
Hd) Hw) = gn(,w ”Llab =0

as m — oo0. Now we do a diagonalization process as in the proof of theorem 1.24.
For each k (choosing € = 5-) we pick ny such that

M<{w [ gme () —9(',9) HLl[a,b] > 51%}) < 51%471
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Then for each k we pick ¢ (call it ¢, for simplicity) such that

M({w | @r(sw) = gng () HLl[a,b] > QIE }) < 57@1+—1

It follows that for each k,

o(fo o =56 iy > 1 )
<u( {o s 16600 =) g > 3 )

+ M( {w f || g (o w) = g, w) HLl[a,b] > §1E })
1 1 1 |

et e T

< ST = 3

Arguing now as in the proof of theorem 1.24 we conclude that

” or(w) — g(-w) “Ll[a,b] — 0 a.e. w.

Thus, the theorem is proved. O

4.2 The It6 Integral

Just as for the Lebesgue integral, we first introduce the It6 integral for simple
functions. Then we define the integral of an arbitrary f € Vla,b| as the limit of a
sequence of integrals of simple functions.

Definition 4.6. Let ¢ € S[a,b]. That is,

m—1
(b - ¢01{0} + Z ¢j1(tj,tj+1] (411)

j=0

for some partition
P={a=ty<t;<ty<- <tm=>0b}

of [a,b] where each ¢; is a square-integrable F; -measurable random variable. We
define its Ito integral by

m—1

I(¢) = / (ﬁ(S,Cd) dBS<W> = Z Qsj [Btj+1 (w> - Btj (w)] (4'12>

=0

or in short,
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Remark 4.4. The verification of the following properties are left as an exercise.
Most make use of the easily verified fact that when replacing the partition P by a
refinement in (4.11), the integral (4.12) does not change.

1. I(¢) is independent of the representation (4.11) of ¢ chosen.
2. If a = b then I(¢) = 0.

3. Since each ¢; and B;, are Ji,-measurable, and ¢; < b for all j, it follows that
the Ito integral (4.12) is Fp-measurable.

4. The map ¢ € Sla,b] — I(¢) is linear.

5. If we split [a, b] into subintervals [a, ] and [c, b] then
b c b
/ 4(s)dB. = [ o(s)dB.+ / #(5) dB..

Exercise 4.1. Prove properties 1., 4. and 5. in the above remark.

Lemma 4.9. The map
b
6 16) = [ o(s)dB,

is a linear isometry of Sla,b] into L*(Q, Fy, P). In particular,

| () l2() = | & | 2(ab1x2)

or equivalently ("Ité isometry”),

{ / o9 st} 2

Proof. By remark 4.4 it is only left to show that I(¢) € L*(f2) and that the Ito
isometry (4.13) holds. Not that for ¢ as in (4.11) we have

{ bfﬁ(s)strz {ng%ABJ‘r

E =F

/b P(s,w)? ds} . (4.13)

for all ¢ € Sla,b).

I($)*

i
s}

3

1

m—1
$2 (AB))* + > ¢:AB; ¢; AB,

=0 1,5=0
i
m—1 m—1
= $2(AB)? +2 ) $:;AB:¢; AB;. (4.14)
J=0 i,j=0

1<
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We need to show that each term is integrable. By (B2), AB; = B,
independent of ¢,. Hence,

—_ Btj 18

Jj+1

¢5 € L'(Q) and (AB;)? € L*(Q)
are also independent. It follows from corollary 2.4 that

¢; (AB;)” € L'(Q)
N~
el el!

as well, so that ¢;AB; € L*() for all j.
Now applying Holder’s inequality we conclude that

iABi i Ll Q
G:lAB; 5 € (€2)
€L?  ¢l2

Now using (B2) again, we have for i < j as ¢;AB;¢; is F,-measurable that
$:AB;®; € L'(Q) and AB; € L'() are independent, hence by corollary 2.4 again,

¢:AB;¢; AB; € L'(R).
N e N~
eLt eLl

Thus, each term in (4.14) is integrable, which shows that I(¢) € L*(Q).
To prove the It6 isometry, observe that by (4.14) and linearity of the integral,

m—1 m—1
E[1(¢)*] =Y E[¢2(AB;)?*] + 2 E[¢:ABi ¢; AB;]
j=0 1;‘J<::jO
m—1
(:01?:2.4 E[QS?}E[ 2 + 22 ¢AB ¢J [ABJ]
j=0 1,7=0
i<j
m—1
=Y E[¢7] Ay (AB; is N(0, At;))
7=0
m-—1
=L Z ¢J2'(tj+1—tj)} (Atj =tj1 —t;)
j.—_
b m—1
= E{ (s,w)st] . (¢* = g3 1oy + Z @2' Lt 45041 )
a =0
This proves the lemma. O
Remark 4.5. Let .
¢=dolioy + > _ bl € SO, T] (4.15)

j=0
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for some 7" > 0, where
P={O=t0<t1<tg<-'-<tm:T}

is a partition of [0,7]. As mentioned in remark 4.3, ¢ € S[0,¢] for all t > 0. (By
restriction if ¢ < T, or rewriting (4.15) as

m—1

¢ = ¢olyy + Z Gilits 500 T 0 Lizyg

=0

if ¢t > T). Thus we can set

M@:A¥@Mﬁ

for all t > 0. Obviously, 1;(¢) is constant on [T, 00).

Lemma 4.10. Let ¢ € S[0,T] for some T > 0. Then {I,(¢)}i>0 is a continuous,
square-integrable (F;)-martingale.

Proof. Lemma 4.9 shows that [;(¢) € L?(§2, F;, P) for each t > 0. That is, {Z;(#) }+>0
is (F;)-adapted and square-integrable.

Continuity: This essentially follows from continuity of Brownian motion. In fact,
let t € (0,00) be given. Going to a refinement of the partition P we may assume
that £ € P, say t = t;, for some 1 < k < m. Then

k-1 m~1
¢ = Polioy + Z G5 Lt t5) T+ Z D51 (1) t5441 (4.16)

and
t k-1 k—2
I(¢) = /0 $(s)ds = ¢;AB; = > ¢;AB;+ ¢e_1(By, — Bu,_,)
j=0 5=0

Increasing T if necessary by adding a zero term in (4.16), we may assume that
e =t <T.
First let s — ¢t~ = t,. If s is sufficiently close to t;, then s € (t4_1, t] and hence

k—2

Is(¢) = Z (abj ABJ' + Pr-1 (Bs - Btlc—l)

=0

Thus for all w € £,

1{(9)(w) — L($)(w) = ¢p—1(w)(Bs, (w) — Bs(w)) — 0

as s — t, =t by continuity of By(w).
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Next let s — t* = ¢{. (In this case, we may also allow ¢t = ¢, = 0.) If s is
sufficiently close to ¢y, then s € (t, tx—1] and hence

k-1

I(¢) = > _ é; AB; + ¢(Bs — B,)

Thus for all w € €, _
L($)(w) = L(#)(w) = ¢(w) (Bs(w) — By, (w)) — 0

as s — t; =t by continuity of B;(w). Thus, continuity follows.
Martingale Property: Let 0 < r < t. On [0, t] we write ¢ in the form

k—1 m—1

¢ = ¢01{0} + Z ¢j1(tj>tj+1] + Z ¢j1(tj»tj+1]
§=0 j=k

where P is a partition of [0, ¢] chosen so that r € P, say r = t;. Then
P={0=ty<t;<ta<-: <tpy=t}

and
m—1 k—1 m-—1 m—1
L(¢) =Y ¢;AB; =Y ¢;AB;+> ¢;AB;=1.(¢)+ Y ¢;AB;.  (4.17)
§=0 j=0 j==k j=k

Now for all k < j <'m, as ¢; is F3,-measurable, AB; is independent of F3; hence of
ftk = FT and is N(O, Atj),

E[¢;AB; | 7] = &GE[AB;|F] = #;B[AB;]=¢;-0=0.

Hence in (4.17) we obtain by linearity of the conditional expectation,

m~1
E[L@$)|F] = E[L(®)|F | + Y Ele; ABj| F] = L(¢)+0=1L(g).
: s
This proves the lemma. O

Definition 4.7. Lemma 4.9 says that the Ito integral
I:¢ € Sa,b)— I(¢) € L*(Q, T, P)

is a linear isometry between normed linear spaces. Since S[a, b] is dense in V[a, b] and
L*(Q), F, P) is complete, it follows immediately from a basic theorem on bounded
linear operators that I extends uniquely to a linear isometry

I:Va,b] = L*(Q,F, P).

This extension is determined as follows: Given f € Vla, b], pick an arbitrary sequence
{¢n} € Sla,b] converging to f. Then

I(f) is called the Ité integral of f.
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Remark 4.6. We easily conclude:
1. If a = b then I(f) = 0 as I(¢n) = O for all n.
2. Being a limit in L*(Q, 7, P), the integral I(f) is Fy-measurable.

3. If we split [a, b] into subintervals [a, c] and [c, b] then

/abf(s)st:/acf(s) st—i—/cbf(s)st.

Exercise 4.2. Prove property 3. in the above remark.

Now let f € V[0,00). Then f € V[0,t] for each ¢t > 0, so I;(f) is defined and
L(f) € L*(Q, F¢, P). We thus have an (F;)-adapted process { I(f) }i>0. Obviously,
the map

Udisom {1} o = { [ 148,12 0)
is linear.

Theorem 4.11. Suppose, Fy contains all P-null sets. Then for each f € V[0, 00),
{L(f) }+>0 is a square-integrable (F;)-martingale.

Proof. Tt is only left to prove the martingale property:
E[LH)|F]=L{f) VYo<r<t

Let {(bn} be a sequence of simple functions in S[0, 00) that such for all ¢ > 0,
¢n, — fin L*([0,t] X 2), as shown in remark 4.3. By lemma 4.10, each { I,(¢,) }s>0 is

an (F;)-martingale. By definition of the It6 integral, I;(¢,) L\ I(f) for each ¢t > 0;

thus it follows from theorem 3.6 and the remark following it that { I,(f) }:>0 is also
an (F;)-martingale. O

While each { I;(¢y) }>0 is continuous by lemma 4.10, this need no longer be true
for { I,(f) }+>0. However, one can prove the following (see [5]):

Theorem 4.12. Keep the above notation. Suppose that (Q, F, P) is complete and Fy
contains all P-null sets. Then { I,(¢n) }i>0 has a continuous version { Jy(¢n) }iso-

From now on, we will always choose this continuous version as the Itd integral.
Thus we will throughout assume that (2, F, P) is complete and Fy contains all
P-null sets.
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4.3 Some Special Integrals

In this section, we will discuss two simple [t integrals which will be needed later.

First we integrate Brownian motion {B;};>¢ itself. For this we must verify that
{Bi}+>0 € V[0, 00). We already know that Brownian motion is progressive. Now fix
t > 0 and observe that since By — By is N(0,s — 0) then for all ¢ > 0,

t t t2
/E[(BS—BO)Q]ds=/sds:——<oo
0 0 2

which shows that {B, — Bo}o<s<: € L2([0,] x ©2). So if we assume in addition that
By € L*(€)) then we will be assured that

{Bs}Yo<s<t = {Bs — Bo}o<s<t + {Bo}oss<t € L*([0,1] x )

for all ¢ > 0 as required.
Recall that in the usual Riemann integral, if f(s) = s we have

2/ sds=52] = t2.
0 0

In case of the It6 integral we have an extra term:

Theorem 4.13. Let {B;}:>0 be (F:)-Brownian motion with By € L*(Q). Then for
allt > 0,

t
33—33:2/ B,dB, +t
0

Proof. The assertion is obvious for ¢ = 0. Thus let ¢ > 0 be arbitrary. First we
approximate B(s,w) by simple functions on [0, ] x €,

Claim:  ¢n(s,w) &Bs(w) in L%([0,¢] x Q) for each ¢t > 0.
In fact,

|én(s) / / 6u(s,w) — By(w)]’dPds  (Tonelli)

(J+1)t

. / /[¢n<sw> B, ()] dP ds
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As AB, is N(0,t) this becomes

(G+1)¢

§ " [s——‘%]ds

() -

1t
n

n—1

n—1 % i+

Z / sds (s — s+ l—)
j=0 70 n

2 12
Nne—=——9{ as n — oo.
2n?  2n

I

This proves the claim.
Now by definition of the It6 integral,

n—1

t t
/ B,dB, = lim / bn(s) dB, = lim Z Bﬁ[ (e — B]t] (4.18)
) n—0Q 0 -

as a limit in L*(Q), while

n—1
Z [B (it J (telescoping sum)
j=0
n—1 9 n—1

[B<j+1>t °Bﬂ_] +22B£ [B(j+1)t —‘Bj_t]
j:O n n j:() n n n

t
——>t+2/ B, dB, as n — oo
0

in L*(Q) by theorem 3.3 and (4.18). This proves the theorem. O

Remark 4.7. It follows immediately that for 0 < r <71,

t r i
B2 B2 = [2/ BsdBS+t]~[2/ Bsst+r]:2/ B,dB, + (t — 7).
0 0

r

Next we consider an integral of the form

/Ot h(s)dB

where h(s) is a deterministic function, that is, independent of w. We will need the
following result:

Theorem 4.14. Let (Q,F, P) be a probability space, and {X, }n_l a sequence of
N(0,r,) random variables (where r, >0 for alln).

1. If X,, — X in probability, and r,, — 7, then X is N(O,r).
2. If X1, ..., X, are independent, then Xy +---+ X, is N(O,r1 + -+ 4+ 1y).
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Theorem 4.15. Lett > 0 and h : [0,t] — R be continuous, h # 0. Set

7 = /Oth(s) dB,.

Then Z is a N(0,7) random variable, where

t
O L

Proof. We approximate h by deterministic simple functions,
n—1 .
It
$a(s) == h(O) 1y + 3 11(5)1(13 ] (9).
jZO n? n

Since h is uniformly continuous on [0, ¢] then ¢, — h uniformly on [0,¢]. Now all

these functions are constant with respect to w, hence ¢,, — h uniformly on [0, ¢] x

as well. Thus, ¢, 12k in L2([0, 4] x Q).

Now by definition of the It6 integral.

t n—1 .
i
Z((.d) = 7111—>Ilc;lo an(w) st = nh_?;loz h<%> I:B(j+1)t - B]T_Lt] (OJ)
0 IJ=0 N — -

=0 g IZABn’j (w)

For convenience, set

n—1
Zn(w) = Znjw)  where  Z,;(w) = cn;AB,;(w)
J=0
so that Z, — Z in L*(Q).

1. Since Brownian motion has independent increments, for each n, the random
variables

{Z.;= an,jABn,j};:ol

are independent, and by (B3) and exercise 2.2 they are N(0, (o ;)*At) where
At =1

n

2. Thus by theorem 4.14, each Z, is N(0, o,) where

n—1 n—1 . 2
an =Y (oms)?At =) [h(%)} At >0
§=0 §=0

provided that h(%) # 0 for at least one j. (This is the case if n is sufficiently
large as h # 0 and h is continuous; in all series above we remove the terms
corresponding to h(Z) = 0.)

Now let n — co. Then by theorem 4.14 again, we obtain that Z(w) is N(0, r) where

L[] ae= [
r= lim o, = lim {h — } At=/ h(s)?ds

as a Riemann integral. This proves the theorem. O
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Chapter 5

It6’s Formula

The Riemann and Lebesgue integrals are difficult to compute directly from their
definitions. Instead, we usually make use of the Fundamental Theorem of Calculus
for their computation. The situation for the It6 integral is similar; the main tool
here is called 1t6’s formula.

Recall the chain rule of differentiation: If F’ (a:) and g(s) are differentiable func-
tions, then

L F(g(s)) = F'(g(5))d (). (5.1)

Now if F,g € C(R) then by the Fundamental Theorem of Calculus we obtain the
integral version of the chain rule,

(o) - Flo@) = F(s6)] = [ Pl dsls)  62)
where dg(s) = ¢'(s) ds.
Similarly, let F(y,z) € C1(R?) and g(s) € C*(R). Then by the chain rule,

d

ds F(s,g(s) = F,(s,9(s)) + F, (s,9(s))d'(s). (5.3)

So setting dg(s) = ¢'(s) ds we obtain the integrated version,

b

b b
F(b,g(b)) — F(a,g(a)) = F(s,g(s))]a :/ Fy(s,g(s)) ds +/ Fm(s,g(s)) dg(s).
(5.4)

Our goal is to obtain similar formulas for the It6 integral. Note that if in (5.2)
we choose F(z) = x?, g(s) = s and a = 0 and b =t we obtain

g(t)? — g(0)? = 2 / o(s) dy(s)

Now if formula (5.2) generalized directly to Brownian motion, setting g(s) = By we
would obtain

t
Bf-Bgzz/ B, dB,
0

111
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which is incorrect: Theorem 4.13 shows that there is an additional term ¢. In general,
the generalizations of the above formulas will contain additional terms.

Throughout this chapter, (Q, F, P) will denote a complete probability space, Fo
containing all null sets. Hence the It6 integral

L(f)(w) = / £(s,w) dB.(w) (t>0)

will have a continuous version. We will furthermore assume that {B;}:>¢ is either
Brownian motion with By normally distributed, say N(0,s,) for some s, > 0, or
standard Brownian motion (i.e. By = 0 in which case we set s, = 0). Then as
pointed out in the previous section, {B;}i>0 € V[0,00). In addition, by theorem
4.14, B, = (B; — By) + By is N(0,t + s,) for all ¢, and hence B, € L*(f2) for all ¢.

5.1 1Itd’s Formula

We begin with a particularly simple case of Itd ’s formula.

Theorem 5.1. (It6’s Formula for Brownian Motion.) Let F € C*(R) and suppose
that

(A) F'(Bs(w)) € L*([0,¢] x Q)  Vt>0.
Then for all 0 < a < b,
b 1 b
F(By) — F(B.) = / F/(B,)dB. + 5 / F(B,)ds| (5.5)
Remark 5.1. 1. Observe the extra term involving the second derivative of F'

when compared to (5.2).

2. Since s — By(w) and F' are continuous, so is the composition s — F'(By(w) ),
for each w. Obviously, the process {F'(B;)}s>o is (Fi)-adapted by continuity
of F'. Hence by theorem 3.1, this process is also (F;)-progressive. Thus,
condition (A) is equivalent to:

(&) {F'(B.)} 50 € VI0,00)

3. If we integrate over the fixed finite interval [a,b] only, then it is enough
to require that {F'(B;)}a<s<s € V]a,b], or equivalently, that F'(By(w)) €
L2([a, 8] x Q).

4. One can define the Ito integral for processes {f;}:>0 not in V[0, 00), but only
satisfying
s+ f(s,w) € L?0,t] V>0, ae w.

Since F” is continuous and Brownian motion has continuous sample paths, the
process {F'(B;)}s>o satisfies this assumption. Hence working with this more
general case, condition (A) is not required.
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Example 5.1. Let F(z) = e*. Obviously, F' € C*(R); in fact, F = F' = F".
First consider the process {633}320. By our standing assumption on Brownian
motion, {B} is N(0,s + s,). Thus by (2.9),

E[(eBs)2] =

2
62:26 z?/2(s+s0) dr

R A/ 27(8 + o)
= / _1———-6_[332—41‘(54‘50)]/2(34‘30) dx
R v/ 27(s + 8,)

e—[x—2(5+so)]2/2(s+so) dr = 62(3—1—50)

1
2(s+50) / - -
e
R \/27(s + S,) (2.13)

t t ‘
/ E[(GBS)Q] ds = / e2st50) ds < 0.
0 0

It follows that {F”(B;)}es0 = {€P*}s50 € V[0, 00), i.e. condition (A) is satisfied.
Now we apply It6’s formula to obtain for all ¢ > 0,

t 1 t
eBt — ePo = / ePs dB, + —/ ePs ds.
0 2 /o

So X(t) := eP is the solution of what is called a stochastic integral equation

and hence

t 1 t
Xt:Xo—f—/ Xsst+§/ X,ds. (5.6)
0 0

with initial condition X (0) = eP°. In order to shorten this equation we write it in

differential form,

1

This last equation is called a stochastic differential equation (SDE). We have shown
that X (t) = eP* is the solution of the SDE (5.7) with initial condition X (0) = e?.

Definition 5.1. A stochastic process {X;}:>o is called an [té process, if there exist
f € V[0,00) and g € WI0, o) such that for all t > 0,

(B) Xe=Xo+ /Otf(s) dB, + /Otg(s) ds  ae w|

Remark 5.2. 1. Writing (B) in differential form we obtain
(C) dX, = f(t)dB; + g(t) dt.
We call this equation the differential of the It6 process {X;}.

2. By theorem 4.2 we know that the It6 integral has a continuous version. Fur-
thermore, by corollary 4.2 the integral of g on the right is continuous. Hence,
every Itd process has a continuous version which we may choose as the process
itself. Since the integrals in (B) are (F;)-adapted, then by theorem 3.1, the
continuous version is (JF;)-progressive.
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Example 5.2. 1. Brownian motion X(t) = By is itself an It process. In fact,
setting Xo = Bo, f(s) = 1 and g(s) = 0, the right-hand side of (B) becomes

t
B0+/ 1dBSZBQ+(1)[Bt—BQ] :Bt.
0

2. By example 5.2,

t 1 t
ePr = ePo 4 / ePe dB, + = / ePs ds.
0 2 Jo

So X (t) = eP* is an Itd process with f(s) =eP and g(s) = LeP.

We are now ready to state the general Ito formula for Ité processes. Recall here
that by definition, an It6 process is a solution of the SDE

iX, = f(t)dB, + g(t) dt

where f and g satisfy the assumptions of definition 5.1. Thus by an integral of the
form f: G(s) dX, we will mean

/ab G(s)dX, := /ab G(s)f(s)dBs + /ab G(s)g(s)ds. (5.8)

Theorem 5.2. (General It formula). let {X,}i0 be an Ité process, and let F(y, )
be continuously differentiable in the first variable y, and twice continuously differ-
entiable in the second variable z. Suppose that

(A) Fo(s,X(s))f(s) € L*([0,] x Q) V=0
Then for all0 < a <b,

b b

F,(s,Xs) ds-{—/ F,(s, X5)dX;

a

F(b X)) -~ Fo,X() = [

a

b
+ %/a Fzz(87Xs>f<s>2 ds a.5. (59)

Remark 5.3. 1. Observe the extra term involving the second derivative of F
when compared to (5.4).

2. By (5.9) and (5.8) we have for all £ > 0,

F(t, X (t)) = F(0,X(0)) + /Ot F,(s, X,)f(s)dBs

1 1 N
+A \:Fy(saXs) + Fx(s,Xs)g(s) + éFzm(SaXs)f(S) ]ds a.S. (51())
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. Because we always choose the continuous version of an Itd process, the map
s — X,(w) is continuous. Furthermore, F, is continuous by assumption; hence
the composition s — Fj (s, Xs(w)) is continuous for each w.

Similarly, as each X, is F,-measurable and F,(s,-) is continuous, the compo-
sition w — Fy(s, X,s(w)) is F, measurable for each s. That is,

{Fw(‘s?XS)}szo

is (F,)-adapted. Hence by theorem 3.1, it is (Fs)-progressive. On the other
hand, by assumption in definition 5.1, {f(s)}s>0 is (Fs)-progressive. Hence
the product process

(R, X)F(5)) o
is also (F;)-progressive. ‘
It follows that condition (A) is equivalent to:
() {Fuls, X)(5)} 0 € VIO, 00)

which is required for the Ito integral in (5.10) to make sense.

. Since F,, F, F,, are continuous, the same argument shows that the processes
{F(s, X0} oo {Fe(,X5)9(8)} 5 and  {Faa(s, X)f(5)"} 450
are (F)-progressive. Furthermore, the maps
s — Fy(s, Xs(w)), s— Fu(s,Xs(w)) and s— Fp(s, Xs(w))

are continuous ; hence bounded on all intervals [0, ¢] for each w. By assumption
in definition 5.1, g(s) is integrable over all intervals [0,%] for each w. Also,
f € L2([0,¢] x Q) for each ¢ > 0, hence f? € L ([0,¢] x Q) which by Fubini’s
theorem implies that s — f(s,w)? € L[0,¢] for each ¢, a.e. w. It follows that

Fy(s, X,) + Fa(s, X3)g(s) + %FM(S,XS) FS2EL04]  Vi>0, as,

so that the Lebesgue integral in (5.10) is defined a.s. (and is defined at every
w in case f is deterministic).

. Observe that by definition 5.1, the process {F(t, X:)},., given by (5.10) is
again an Ito6 process. B

. If we only integrate over [a, b], then it is enough to require in (A) that
F,(s,X(3)) f(s) € L*([a,b] x ).
. If f =1and g =0, then dX, = dB, and the general It6 formula (5.9) becomes

b b
F(b,Bb)—F(a,Ba)z/ Fy(s,Bs)ds-i—/ F,(s,B,) dB,

1 s
+§/ Fp(s,Bs)ds  Vw. (5.11)

If in addition, F' = F(z) is a function of the variable = only, then we recover
the It formula for Brownian motion (5.5).
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5.2 Proof of Ito’s Formula

This section is devoted to the proof of the general [t6 formula. First we need to
discuss some tools required for the proof. Let us begin with a generalization of
theorem 3.3.

Theorem 5.3. Let {g(t)}a<i<r be a continuous and bounded (F;)-adapted process.
Let {P,}°°; be a sequence of partitions of [a, b],

Po={a=t{" <t <’ <... <t =1}

satisfying || P.|| — 0 as n — oo. For each n, let
mp—1 ; )
S, = Z Q(tg.”)) (w) [Bt(n) (w) — Btg,") (w)]

Jj+1
=0

be a random variable determined by g and F,,. Then,

b
Sﬂ”ﬁ,/ g(s)ds as n — 0o

m LQ(Q, fb, P)

Proof. Observe that the assumption implies that {g(t) }a<i<p is (F;)-progressive. For
ease of notation, we drop the index ”(n)” and often drop w. As usual, we also set
Atj = tj+1 - tj and ABJ = Bj+1 - Bj. Then

—

m—

Su=>_g(t;)(AB))" € LA, F, P).

7=

Since s — g(s,w) is continuous for all w, the above integral is a Riemann integral
for each fixed w, and hence
m—1

, _
/g(s,w)ds = lim Zg(tj,w)Atj . (5.12)

N e’ 7=0
=:Z(w) ~ —
e ) .

Riemann integral =:Zn(w), Riemann sum

J

for each w € 2. As g is bounded, say |g(¢t,w)| < M on [a,b] X Q, we have
m—1
(1) 1Z.(w)] < > MAt; = M(b—a) € L*(Q), and
j=0

(i) by (5.12), Z,(w) — Z(w) for all w.
It follows from the LDCT for LP-spaces (theorem 1.20) that

b
ZnM—2>Z:/ g(s)ds
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that is, the limit in (5.12) is a limits in L?(2, F, P) as well. So it is enough show
that

150 = Znll2 = 0 (5.13)

because (5.13) will imply, using the triangle inequality, that
150 = Zll2 < |80 = Znll2 + 120 = Z||2 — 0.
To prove (5.13), we compute.

IS0 = Zull3 = E[(Sn — Z0)*]

=E ( m_—l 9(t;) [(ABJ)2 - Atj] )2}
=S B[ ate 2 [(am) - o]
j=0 ~ (}3 -
+2 3 B g(t)e(t) [(ABi)Q - Ati] {(ABj)2 . Atj] ] (5.14)
zj<=] h (1) ]

Here we have made use of the fact that by linearity of the integral,

m~1 m—1
El (Zaj)gl :E[ Zaiaj]
=0 i,j=0
m~1
=) Eloiay]
4,j=0
m—1 m—1 m—1
= Z E[aiozj] + Z E[aiaj} + Z E[aiaj}
,j=0 i,j=0 i,j=0
=) i<j i<i
m—1 m—1
=Y El(@)*]+2 ) Elaay]
Jj=0 1,j=0
i<j

provided that E(a;«;) is defined and finite for all 4,5. (In (5.14) this is certainly
satisfled with a; = g(%;) [(ABj)2 - Atj] as will be shown now.)

First consider the terms of form (I). Since g is bounded, g(t;)* € L*(Q, F;, P).
As AB; € LX), At; € L*(), then [(ABj)Q—At]-]Q € L'(Q) by Hélder’s inequality.
Now by (B2), AB; is independent of F,, and hence of g(¢;)®. Hence by exercise
(2.7) (applied to f(z) = z*> — At; and g(y) = y in the notation of the exercise),

[(AB))? - Atj}Q and g(t;)* are independent. We can thus apply corollary 2.4 to
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Blo(t;)) B[ [(AB)* - At T7]
Blg(t)*) B[ (ABy)* — 200, (AB;)" + (A;)? ]

— E[g(t;)2){ E[(AB))*] —2At; E[(AB,)*] + E[(A4;)°] }
Elg(t;
Eg(

Next consider the terms of form (IT). As AB; € L*(), At; € LY(€Q) and g is
bounded, then [(AB;)*— At;] € L'(Q) and g(ti)g(t; ) [(AB;)? —At;] € LYQ, F,, P).
(note that 4 < j so g(t:), g(¢;) and [(AB:)* — At] are all J;-measurable !) Using
again independence of AB; and Fy; as above, we sec that [(AB;)? — — At;] and
g(t)g(t;) [(AB:)? — Aty ;] are mdependent Applying corollary 2.4 once more, we see
that (II) € L'(£2) and |

sy sl (o))

| = 2[stt B[
E[g ]{E - B[Ay] )
f[ IC

I
)] { 3(At;)* — 2At; - Aty + (Atj>2} (by (B3) and exercise 2.2)
t5)7] - 2(At)°.

ll

I

9(t:)g £, — J} (as AB; is N(0,At;))

I

Hence (5.14) becomes

50— Zul = 3 Bla6)) - 260

m—1

< 2M*||P,|| Z At; (monotonicity of the integral)
=0
= 2M?*||P,||(b—a) =0  asn-— oo

This proves the theorem. O

Remark 5.4. 1. As a special case, choosing g(t)y =1, a=0and b =1t we
obtain theorem 3.3.

2. (a) Using the definition of the Ito integral one can show that

Y g(t)AB; 1B /bg(t) dB; (5.15)

as n — oo, similar to the proof of theorem 4.15.
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(b) The above theorem says that

m-—1 b m—1
> o)) [ ga= lim 3 ot
=0 a TS0

as n — oo (where the right-hand limit is a point-wise limit of Riemann
sums, but also an L2-limit as shown in the proof of the theorem).

For this reason, one often writes ”(ABt)2 = At” or " (dB;)? = dt”.
Exercise 5.1. Prove that (5.15) holds for any g € V[a, b].

The proof of the next theorem can be found in [1]. It is an important ingredient
in the proof that the It integral has a continuous version. Compare this theorem
with Chebychev’s inequality !

Theorem 5.4. Let {M,}.<i<p be a continuous square-integrable (F)-martingale.
Then for each € > 0,

1
P[ S<‘11<3b|Mt‘ 2 6} <3 “MbHig(ﬂ)‘

Lemma 5.5. Let f,, f € V]a,b] be such that
fa U—2>f in V|a, bl.

Furthermore, let g,,g € Wla,b] be such that

gn(,w) —>g(-,w)  in L'[a,b] a.e. w
Set
t t
Xn(t) :/ fn(S)st+/ gn(8) ds
=15 (2) .2 (1)
and
t t
X(e) = [ fs)dB.+ [ o) ds
=S() =21
Then

X, () — X (t) wuniformly on [a,b], in probability.

Proof. First consider the deterministic integral part. For all ¢ < ¢ < b and all w,

| Zn(t,w) — Z(t)(t,w) |</ lgn(s, w) — sw|ds</ lgn(s,w) — g(s,w)| ds
and hence
| Za(yw) = Z(w) ||, = sup [Za(t,w) = Z()(t,w)] < || ga(w) = g w) [[;, =0

a<t<b
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a.e. w, by assumption. It follows by theorem 1.23 that
H Zn(ryw) — Z(-,w) Hu — 0 in probability.

Next consider the It6 integral part. By theorems 4.11 and 4.12, {Sn(t)}a<t<s and
{S(t)}a<t<p are continuous, square integrable martingales, hence by theorem 3.5, so
is each {S,(t) — S(t)}a<t<s. Thus for all € > 0,

P[n Sulyw) = S(w) |, = e] - P[ sup | (S, — S)(,w) | = e]

a<t<b
1
< 22 H (Sn = S)(b) Hiz(m (by theorem 5.4)
1 b 2
= 3| [ G- pieas.
e L@
1 A .
T e H fn—f Hi?([a,b]xn)) — 0 (Ito isometry)

as n — oo by assumption. That is
H Sp(,w) — S(-,w) Hu — 0 in probability.

Finally, for each € > 0,

| IS

€
2

P
< P[ | Salw) = SC,0) |, > % or || Za(w) = Z(-w) ||, =
< P[Il Su(yw) = S(,w) |, > % } +P[H Za(w) — Z(,w) |, > % ] 0

as n — oo, This proves the theorem. O

Remark 5.5. Theorem 1.24 deals with pointwise convergence of functions only.
However, if we replace each line ” | f,(w) — f(w)[” by || fu(w) — f(w)ll” in the proof
of theorem 1.24, we immediately obtain the following statement:

Let { fn}a<i<t, {f }azi<p be (Fi)-progressive processes. If
fn(t) = f(t)  uniformly on [a,b], in probability
then there exists a subsequence { fn, treq such that

fr () = f(t)  uniformly on [a,b], a.s.

Now let {X,} be as in lemma 5.5. From the above remark we conclude that
there exists a subsequence {X,, } such that

X, () — X(t) uniformly on [a,b], a.s.
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Proof of Ité’s formula.
We prove the formula under the additional condition that the partial derivatives F,
F, and F,, are bounded, say

for some M > 0 and all z and all a < y < b. (This is to avoid introduction of
stopping times.) This assumption guarantees in particular that condition (A) is
satisfied.

So let

X(t) = X(a) —l—/t f(s) st+/t ggs) ds (a <t<b) (5.16)

be an It6 process, where f € V[a,b] and g € Wia, b]. Set
Y(t):=F(t,X(t)).
We need to show that
Y(b) —Y(a) = F(b,X (b)) — F(a,X(a))

= / [F, + F.g+ %meQ] (s,X(s))ds+ / [F.f](s,X(s)) dB, a.s. (5.17)

(Note that f and g are functions which depend on s, but not on X (s). For ease of
notation, we have written f(s, X(s)),... above.) The assertion is obvious if b = a,
hence we may assume that b > a.

Since Fy, F; and F;, are continuous, and s — X, (w) is continuous for all w, the
compositions

W.5) = (1, X(), @)= B(n.X(6),  (55) - Fua(y, X(s))
are continuous, as are the compositions
s — Fy(s,X(s)), s — Fp(s,X(s)), s Fup(8,X(s)).
We will make use of this continuity throughout the proof. Furthermore, the maps
w— Fy(s,X(s,w)), wr Fp(s,X(s,w)), w i Fpp(8,X(s,w))

are (F,)-measurable, hence the three processes {F,(s, X)}tacs<t, {Fz(8, Xs)} o<zt
and {Fye(s, Xs)Ya<s<s are progressive. (This was already observed in remark 5.3.)

Case 1: f and g are constant random variables. That is, f(s,w) = f(w) and
g(s,w) = g(w) are independent of s, are F,-measurable, and f(w) € L*(Q, %, P).
Choose a sequence {P,} partitions of [a, b] with || P,|| — 0 as n — oo, say

Po={a=ty<t; <ty < -+ <tm=b}
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where as usual, we omit the index (n) and set
AB]' = Btj+l - Btj; Atj = tj+1 — tj‘

(Since we already know that all integrals involved exist, we can choose the partitions
as we wish.) Similarly, given a function h(t) defined on [a, b], we set

Ahj - htj+1 - ht..

J

For each partition P,, we have the telescoping sum

Y(b) ~Y(a)= Y (b1, X (1)) = F(4, X(4))] = ST AR, (5.18)
=0 =:XFj 1 J=0

Let a point (y,, ,) be given. We apply the one-dimensional Taylor formula at ¥, to
obtain

F(y,x) = F(yOax) + Fy(@vl‘)(y - yo)

I o
~

remainder term

for some point § between y and y, (depending on x). Now choose z = z, and apply
the Taylor formula to the second variable to obtain

1 .
F(yoa x) = F(yoa xo) + Fz(ym $0)($ - 330) + §sz(yoy $)(IE - -’Eo)Q

—

Vo
remainder term

for some point & between = and z,. Combine both equations,

F(y,x) = F(Yo, o) + Fy (7, 2)(y — Yo) + Fo(Yo, To) (x — o) + -;—Fm(yo, £)(z ~— x,)%.

Applying this identity to y, = t;, y = t;j11, 2o = X(t;) and z = X (t,;41) we obtain
- 1 ~ .
AF; = Fy(t, X (tj1)) Aty + Fo (8, X (t;)) AX; + 5 P (£, X (£)) (AX;)?

for some #; and #; between #; and t¢;,;. Here we have used the fact that X (t) is
continuous; the intermediate value theorem guarantees that there exists t} between
t; and t;41 so that £ = X (£;). Observe that #; and #; depend on w ! Bquation (5.18)
can now be written as

m—1
Y(b)-Y(a) = Fy (15, X (tj41)) At
=0
o
m—1 1 m—1
+ Y Fu(t;, X(4)AX; + 5 Y Fua(t;, X(E))(AX,). (5.19)
=0 =0

" — —’

(?}) (IVH)
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We need to show: (I)+ (I1) + 3(I/1I) — right-hand side of (5.17) a.s. asn — oo.
We consider each sum separately.

Claim:

n—eoo

lim (1) = / "R (s X(s))ds V. (5.20)

Since this is a deterministic integral, we let w be arbitrary, but fixed. By continuity
of s = F, ( s, X (s) ), the above integral is in fact a limit of Riemann sums,

b m—1
/ Fy(s,X(s))ds= lim > F,(t;, X(t;)) At
@ n—o0 i
, (Ia)
So if we show that
lim | (I) — (Ia) | =0, (5.21)

n—aoo
then the triangle inequality will yield

b

\(1)—/5@(3,)((3))@‘ < |(1)_<1a)|+[(1a)—/a Fy(5,X(s)) ds| = 0

as n — 00, and the claim will be proved.
To prove (5.21), we consider

m—1 m~—1
i(])—(]a)tz Fy(t X(t ]+1 12 tjaX
J=0 J=0
m—1 _
<3| B X)) - R X)) |,
7=0

)
Let € > 0 be given. Since (y,s) — F,(y, X(s)) is continuous on [a,b] x [a,b], it is
uniformly continuous. Thus there exists § > 0 such that

|y — o] <6 and  |s; —s9| <&
imply
€
b—a

‘Fy(be(sl)) — F,(y2, X (52)) ‘ <
Now if || P,|| < ¢ then we obtain from
lt;—t;l <6 and [t —t] <6

that

and hence
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provided that || P,|| < 8. As € was arbitrary, then (5.21) and hence the claim follow.

Claim:

lim (,[I):/ Fm(s,X(s))f(s)st—i—/ F.(s,X(s))g(s)ds a.e. w.

n—00
(5.22)
In fact, since X (¢) is an Itd process, then
41 . ti+1
AX; = X(ty) = X(6) = [ f)dBor [ gts)ds
i Y
= fAB; + gAt, a.e. w (5.23)

where we have used the fact that f and g are constant with respect to s. Hence,

m—1 m-—1
(II) = Fz(tJ,X(tJ»fABJ + Z Fm(tJ,X(tJ»g Atj a.e. w.
7=0 3=0 ‘ -
(e1) @

Now as {F,.(s, X,) Ya<s<s is (Fs)-progressive, f(w) € L*(Q, F,, P) and F, is bounded,
then (s,w) — Fy(s, X (s,w))f(w) € L*([a,b] x Q) and is also (Fs)-progressive, that
is, constitutes an element of V[a, b]. Hence by exercise 5.1,

(c1) I, /b F.(s,X(s))f dB;

as n — o0o. Replacing the sequence of partitions {P,} by as suitable subsequence,
we have

(cl) —>/ F.(s,X(s))f dB, a.e. w.

On the other hand, for each w, (¢2) is simply a Riemann sum (recall here that
s — F,(s,X(s)) is continuous and g is constant with respect to s), hence

(c2) —>/ F.(s,X(s))gds Vw

as n — oo. This proves the claim.

Claim:
lim (III)=/ Fo.(5,X(s))f(s)*ds a.e. w. (5.24)

n—o
This claim takes a fair amount of work to prove. In fact, by continuity of s —
Fuz(8,X(s)), this integral is a limit of Riemann sums,
m—1

/b Fio(5,X(s) ) f(s)" ds = lim 3" Fu(ty, X (1)) £2 Aty
a 0

—

(Iﬁa)
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So if we can show that

im |(I1I)— (IIIa)| =0  ae w (5.25)

n—00
then an application of the triangle inequality will yield the claim, just as in the case

of sum (I) above.
To prove (5.25), we consider

3
3
L

| (I11) = (I11a) | = Foo(t;, XE))(AX)? =Y Foa(ty, X () f2 Aty

g

{ Pea(t, X (5)) = Fa (15, X (1)) J(AX;)?

o~

.
Il
=)
I
=)

3

IA

0

(<.
I

(d1)

—_

3

Fo(t;, X (1)) [(AXJ‘)Q - fQAtj] ‘

o

(.

>

(d2)
First consider (d1). Here, we let w be arbitrary but fixed, as we will make use
of continuity of sample paths. Let € > 0 be given. Set
€
(fw)?+1)(b—a)
Now uniform continuity of the map (y, s) — Fi.(y, X(s)) on [a,b] x [a,b] implies
that there exists § > 0 such that

€ 1=

ly1 —yo| <6 and  [s1— s <6

imply
{Fm yhX(sl)) - F;ca:(yQ,X(SQ)) | < €.

Now if ||1D || < & then we obtain from
[t — 1] < 6

that
| Foo(t;, X (&) — Faa (5, X (8)) | < &

and hence

S

d1) | < nf | Fua (b5, X (0) = Fua (8, X (1)) | (AX,)? < & S (AX) (5.26)

J

I
<)

We thus need to estimate the right-hand sum. Note that by (5.23)

m—1 m—1 m—1 m—1
(AX;)? = fAAB)? +2)  fgAt;AB; + Y g*(Aty) (5.27)
7=0 3=0 7=0 7=0

(1) (e2) (e3)
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Consider (el). By theorem 5.3, we have

m—1

Z(ABJ-)Q Wl /blds:(b—a).

4=0

Replacing the sequence of partitions {P,} by a suitable subsequence, this becomes
a.e. convergence as well, and hence

Jay

= f? (AB;)? — f*(b—a) a.e w
7=0
as n — oo.
Next consider (e2). For future use, let use consider more general sums of the

form
m—1

> H(t;)At;AB;

J=0 ‘
where { H(t)}o<i<p 18 an (F;)-adapted and bounded process. For each n, set

m—1

foi= ) H(t) Al e, € Via, b].

J=0

LEY

Since H is bounded, then f, — 0 uniformly on [a,b] x 2, and hence f,, — 0 in

Vl[a,b]. Hence by the It6 isometry,

m—1

b
H(t AtAB—/fn ds”‘—”%/ozo

j=0

in L2(Q2). Replacing {P,} by a suitable subsequence, this becomes a.e convergence
as well. Now choosing H = 1 we obtain

m—1

(€2) = fg Z At;AB; — 0 a.e. w.

=0

Last we consider (e3). A simple calculation gives

m—1 m-—1
(63) = " 3 (M) < @RI Y Aty = g*Pall(b = a) = 0

as n — 00, for each w. Combining (el), (e2) and (e3) we obtain from (5.26) that
limsup |(d1)| < & limsup [(el) + (€2) + (e3)]
=é[f(Wb—a)+0+0] <
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for a.e. w. As e was arbitrary, we conclude that
|(d)] =0  ae w (5.28)

as n — 00.
The estimate for (d2) is done similarly. By (5.23) and the triangle inequality we
have

(d2)] < f? mz 2 (85, X (t; (ABj)Q—m_l Foo (15, X (t5)) Oty
=0 1==0
(kD) - (k2) -
+ ‘ 2fg z—: Foo(t;, X(t)) AL AB; |+ | ¢ mz_:l Fo.(ty, X(t5)) (Aty)
= =0
) (k3) ’ ; (k1) ’

for all w. Now by theorem 5.3,

(k1) 1 / ’ Fy. (s, X(s)) ds

and replacing {P,} by a suitable subsequence, this is also a.e. convergence. Now
(k2) is precisely a Riemann sum for this integral, hence

b
(k2) —+/ Fo.(s,X(s))ds  Vw
so that (k1) — (k2) — 0 a.e. Applying the argument for (e2) above (to the process
H(t) = F,.(t,X(t)) ) we obtain that (replacing {P,} by a suitable subsequence)
(k3) -0  ae. w.

Finally,

) < 3 MAL)? < MR S At = MIP(b—a) =0 W

§=0

3
L

I
=)

J
as n — oo. Combining the last four convergence results, we conclude that

(d2) -0 ae w

as n — oo. Together with (5.28) we now obtain that (5.25) holds; thus the claim
holds.

By combining all three claims the theorem is now proved in the case of constant
f and g.

Case 2: f and g are (F;)-adapted simple functions. That is (choosing a common
refinement) there exists a partition

z{a=u0<u1<u2<---<uk:b}
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of [a, b] such that

b

-1

f’i 1(ui,u¢+1]) f’L € L2<Q7 fui’ P)

S~
Il

%

k

Il

0
1

(5.29)

S
Il

9i L(us uign)y g; is F,.-measurable.

Il
<)

Then by case 1, for a.e. w,

k—

V) -Y(@) =Y [ ¥(uwn) — Y (w)|

=0

—_

ko

-1 Ui+1

{7 pa 3P s x ) s+

Uy

Il
iNg

Fof) (s, X(5)) st}

k

I
—

I

{/:H [F, + F.g+ —;—meg] (s,X(s)) ds+ /:H[Fxf] (s, X(s)) st}

<o

:/ [Fy-l—Fxg-l—%meﬂ (s,X(s)) ds+/ [ f1(s, X (s)) dBs

where we have used the fact that all integrals are independent of the values of f
and g at the partition points wu;, and that f and ¢ are constant on the interior of
the partition intervals.

Case 3: General f and g. The idea is to approximate f and ¢ by sequences
of simple functions, and to show that all integrals converge as required. Since
f € Vla, b], there exists a sequence {f,} of simple functions in V[a, b] with

“ f=1n ”L?([a,b]xn) — 0.

Similarly, since g € W]a, b], there exists a sequence {g,} of simple functions in
Wla, b] with
H 9(,w) — gu(",w) ”Ll[a,b] — 0 a.e w.

Now consider the It6 processes

t t
Xn(t) := X(a) +/ fn(s) dB +/ gn(s) ds
a 0
and , \
X(t):=X(a) + / f(s)dB; +/ g(s)ds
a 0
for a <t <b. By case 2, for each n,

Yo (b) — Yo(a) = F(b, X, (b)) — F(a, Xn(a)) (5.30)

b b
:/ [Fy+Fxgn+%me3} (5,Xn(8)) d8+/ [Feful(s, X0(s)) dBs.  (5.31)
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We must show:

(5.30) — left-hand side of (5.17) a.e. w
(5.31) —  right-hand side of (5.17) a.e. w.

Consider first equation (5.30). Replacing {f,} and {g,} by subsequences if
necessary, remark 5.5 guarantees that for almost all w,

X, (t) — X(t) uniformly on [a, b]. (5.32)
Since uniform convergence implies pointwise convergence and by continuity of I,
Y, (b) = Yo(a) = F(b, X, (b)) — F(a,X,(a))
— F(bX(5)) = F(a,X(a)). = Y(5) ~ Y (a)

Next consider equation (5.31). We discuss the two integrals separately. By
continuity of Fy, Fy,, Fy, and X (¢) and uniform convergence (5.32), it follows that

EF,(5Xa(s)) — F,(sX(s))
Fo(s,Xa(s)) — Fx(s,X(s))
Fm( 3, X () ) — Fm(s, X(s) )
uniformly on [a, b], for almost all w. Hence the corresponding sequences of integrals

will converge, for example,

b

/HF (5, X,(5)) = By s X(s))H%ds:Mn(b—a)—»O ac w  (5.33)

Similar computations hold for F, and F,, with constants K, and L, (depending on
w of course), respectively.
Consider first the deterministic integral in (5.31). Since

// )2 ds dP = | fa = £[| 2oy = O

then (replacing {f,} by a subsequence if necessary)

b
an('7w> - f(.’w)Hiﬂ[a,b] = / [fn(s,w) - f(S,CU)}QdS — 0 a.e. w

so by continuity of the norm,

G apey = 1Moy 2o
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We have (note that all terms also depend on w !),

b b
/ [Fy + Fagn + %meﬂ (5,Xn(s)) ds — / [Fy + Fag + %meﬂ (s,X(s))ds

b
</
aQ

Fy (s, X,(s)) — Fy(s, X(s))' ds

o[ le

’ lgn ——g(S)'dS
b
+/
a 1 b
+—2‘/a

b

-

< Mn(b - a) + M “gn - gHLl[a,b] + Kn..g”Ll;[a,b]
M L,
+ E'Ulfn’)%z[a,b] - ”fH%z[a,b]] +5 [fllZen — 0 ae w.

F, (s,Xn(s)> — Fz(s,X(s))l ’g(s)l ds

Faa (5, X (8)) | [1al5)? = £()*] s

Faa (5, Xa(5)) = Fua (5, X(5))| | £(5)?) ds

Thus, the deterministic integral in (5.31) converges to the deterministic integral on
the right side of (5.17) a.s.

Now look at the Itd integral in (5.31). By linearity of the integral and Itd
isometry,

b

[ s X)) aB— [R5, X(5)) am,

a

L3(Q)

_ H Fo (5, X0(3)) fuls) — Fu(s, X(5)) £(5)

L2([a,b]x$2)

<

Fo (s, Xu(s)) [fa(s) — £(s)]

L2([a,b]x Q)
# (R x0) - o, X6)] 6

< M||fa - f”L?([a,b]xQ) + Kn”f“m([a,b]xg) — 0

L2([a,b]x )

as n — oo. Replacing {f,} by a suitable subsequence, it follows that

b b
/[Fxfn](s,Xn(s)) dB, — /[Fxf](s,X(s)) dB,  ae. w.

as n — oo. That is, the stochastic integral in (5.31) converges to the stochastic
integral on the right side of (5.17) a.s. The theorem is now proved. O



Chapter 6

Stochastic Differential Equations

In this chapter we apply [t6’s formula to find solutions of stochastic differential
equation. For lack of time, we will touch on the theory only briefly, and focus on
particularly simple linear equations.

Throughout this chapter, (£2, F, P) will denote a complete probability space with
filtration {F;}:>0. We assume that F (and hence each F}) contains all null sets.
Furthermore, {B;}t>0 will be standard (F;)-Brownian motion.

6.1 Existence and Uniqueness of Solutions
We consider the stochastic differential equation (SDE)

which is to be understood as the integral equation

Xe=Xo+ / f(s,X,)dB, + / g(s, Xs) ds. (6.2)
0 0

with the initial value Xy assumed to be Fy-measurable.

Definition 6.1. By a solution of (6.1) we mean a continuous (F;)-adapted (hence
progressive) process {X;}>o such that (6.2) holds a.s., for all ¢ > 0.

We say that pathwise uniqueness holds if whenever {X;}+>0 and {)A(:t}tzo are two
solutions of (6.1) satisfying the same initial condition, Xy = Xy a.s., then

X, =X, Vt>0 as

(That is {w : X,(w) # X,(w) for some t} is a null set.)
Theorem 6.1. (Global existence and uniqueness) Suppose,
1. f(t,z) and g(t,z) are Borel measurable on [0,T] x R,

131
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9. There exists K > 0 such that for allt € [0,T] and z,y € R,
£ (t,2) — ()] + ot 2) — 9(ty)] < Klz —y] (6.3)
(”Lipschitz condition”) and
Flt,z)? + gt =) < K*(1+2%) (6.4)
(”growth condition”).
3. Xo € LA, Fo, P).

Then there exists a solution X (t) of (6.1) defined on [0,T] with X (t) € L*(Q) for
all t, and in fact,
sup || X(#®)|l2 < 0. (6.5)

0<t<T

Furthermore, this solution is pathwise unique.
Proof. See [4], theorem 3.1. | 0

Remark 6.1. 1. Inequality (6.5) implies that X (t) € V[0, T]. Furthermore, to-
gether with growth condition (6.4) it implies that f(s,X(s)) and g(s, X(s))
satisfy the conditions of definition 5.1, so that {X.} is an It6 process.

2. One can show that the growth condition is not required, but the proof is
difficult.

6.2 Reducing Stochastic Differential Equations

A common technique used to solve differential equations is the transformation of
an equation to a simpler equation by a change of variables. This idea applies to
stochastic differential equations as well, as we shall see now.

Consider a stochastic differential equation

dX, = f(t,X;) dB, + g(t, X;) dt (6.6)

where f # 0 and f; and f., exist and are continuous. Our goal is to transform it

into a simpler equation 3
dY, = f(t)dB,+ g(t) dt (6.7)

(which can be solved through integration) by a change of variables
y = h(t,x) (t>0, z,y € R) (6.8)

where z — h(t,z) is an invertible, sufficiently smooth function for each t, say its
inverse is

z = k(t,y). : (6.9)

Then
Yy = h(t, k(t,y)) and T = k(t, h(t, :z:))
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So let a change of variables (6.8) be given. Set
Y(t) = h(t, X(t)).
Then by the general 1t6 formula,
Y(t) = Y(0) + /Ot f(s,X(s)) dBs + /Otg(s, X(s)) ds
where

f<t7 CU) = [hwf} (t7 :17)
3(t,2) = [h + hog + %hmfﬂ (t, ).

(Throughout, we will assume that condition (A) is satisfied.)
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(6.10)

(6.11)
(6.12)

Definition 6.2. Equation (6.6) is called reducible if there exists h as in (6.8) such
that the functions f and § are independent of z, for (¢, z) in some open subset D of

the right half-plane plane {(¢,z) : ¢ > 0} and where f # 0 on D.

Suppose, (6.6) is reducible by some h. That is, (6.11) and (6.12) are of the form

F(8) = [haf](t, )
3(0) = [het heg + Shacf?](0,0)

on D. Differentiate (6.14) with respect to z,

0 1 9
On the other hand, by (6.13),
()
he(t,z) =
0= 5,

as f is continuous and does not vanish on D. Differentiating further,

and also

(6.13)
(6.14)

(6.15)

(6.16)

(6.17)
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As f is independent of z, this equation is equivalent to

f, .fft ~0 (g 1z,
or ~
! i 0 1
~— m) .

Note here that f(£) # 0 as f(t,2) # 0 on D and h(t,-) is invertible. Now since
the left-hand side of (6.18) is independent of z, the right-hand side must also be
constant with respect to z.

Conversely, suppose the right-hand side of (6.18) is defined and independent of
z for (¢,z) in some open set D. Then solving the differential equation

JZ/
7
(which always has a nonzero solution by assumptions on f and g) we obtain a
function f(t) which does not vanish on some open interval and satisfies (6.18).
Using equation (6.16) we have now found a pair f and h, satisfying (6.13). Observe
that since h,(t,z) # 0, any choice of h must be (at least locally) invertible with
respect to the variable z. 3
Now we can find §: Since equations (6.17) and (6.18) are equivalent — as f is a
function of ¢ only — then (6.17) holds. But the left-hand side of (6.17) was obtained

by differentiating the right-hand side of (6.14) with respect to z and using identity
(6.16) which holds by our choice of h,; hence

M@ (6.19)

d 1

That is, if we use equation (6.14) to define §, then § will be a function of ¢ only, for
all possible choices of A satisfying (6.16).
We have shown:

Theorem 6.2. Equation (6.6) is reducible if and only if

fi 0 (9) L

A 2 (It 6.20
1s independent of x.
Example 6.1. (Autonomous equation.) Consider an equation

where f and ¢ are independent of £. Such an equation is called autonomous. By
theorem 6.2, equation (6.21) is reducible < '

;0
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is independent of x for (¢,z) in some open set. However, as f and g do not depend
on t, then M cannot depend on ¢ either and hence f; = 0; it follows that (6.21) is

reducible < 5 .
Y B A N
M"f{ 8x<f)+2fm]

is constant for x in some open interval I.
Suppose this is the case. Then solving (6.19) we obtain one particular solution

f(t) =™
Then by (6.16),
oMt
hy = :
/(=)
Integrate,
h(t,z) = M % (6.22)

where a € I is arbitrary. Now § is computed by (6.14),

6.3 Linear Equations
A stochastic differential equation of the form
dX, = [f1(t) + fo(t)Xi] dB; + [g1(t) + g2(t) X;] dt (6.23)

is called linear. So here,

Equation (6.23) is called
e homogeneous if fi(t) = fa(t) =0,
e narrow-sense if fo(t) = 0.

Suppose also that we are given an initial condition X (0) = Xo € L?(Q, Fo, P).
In general, a linear equation is not reducible. In fact the condition of theorem
6.2 becomes

f

[l + )z 0 ( g1(t) + ga(B)x

f(t,z)? Oz (i, ) )] is independent of z,
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since fr, = 0. Computing the derivative, this is equivalent to

A+ 0z e@UAR) + )] — [01() + g2(t)z] fo(¢)
f(t,z) ft,z)

is independent of x,

or

_ A®) + £z — L)) + £ ()
At) + f(D)2

Differentiating, this equation is equivalent to

féfl - (f:{ — fige + f291)fo = 0.

This is obviously not satisfied in general. Let us consider two special cases:

M(t,z) : is independent of z. (6.24)

Case 1: The equation (6.23) is homogeneous,
dXt - fQ(t)Xt dBt + QQ(t)Xt dt

with f, € C[0,00) and go € L'[0,#] for all ¢ > 0. Then the fraction in (6.24)
becomes )
L)

— f(t)
and is independent of z. That is, a homogeneous linear equation is reducible. Equa-
tion (6.19) now becomes

M(t,x)

JO _ oy = LG
TR0
hence we can choose
f(t) = falt)
Equation (6.16) gives us
B = Ft) L)

so that we can choose

y = h(t,z) = In|z|| (6.25)
Also, by (6.14) . .
§(t) = 0+ —[ga(t)e] = 55 [fa(t)a]”

that is,

The transformed equation (6.10) is thus

dY, = fo(t) dB, + (gg(t) ~1 fQ(t)Q) dt
Y (0) = h(0, X(0)) = In(Xo)

(6.26)
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(assuming that Xo(w) > 0 for all w), and its solution is

Y(t)=Y(0) + /Ot fa(s)dBs + /Ot (92(8) — %f2<8)2> ds.

Now we have to revert to the original variables. Solving (6.25) for z we obtain z = e¥
(assuming that > 0.) Hence, X (¢) = ¢¥®, that is

x(0) = Xoosp| [ fals) .|| [ (a0~ 2ae)as]. 621

Observe that if Xo(w) < 0 for all w then we choose y = In{—z) and in the
resubstitution, z = —e? to arrive at the same formula (6.27).

Case 2: The equation (6.23) is narrow-sense,
dX, = f1(t) dBy + [91(t) + g2(t) X¢] dt (6.28)
with f; # 0 € C[0,00) and g;(t), go(t)L*[0,¢] for all £ > 0. The fraction in (6.24)
peeomes RO~ 5000 _ {0
M _ J1 — J1lt)g2 _ J1 .

and is independent of x. That is, a narrow-sense linear equation is reducible. Equa-
tion (6.19) now becomes

f@ _ _ i)
o 0=y el
Solving for f, we obtain one choice
)= AOpOL  where  pt)=e $70F
Equation (6.16) gives us
&) A@pE)
S O R AR
Hence we can choose
y = h(t,z) =p(t)x| (6.29)
By (6.14)
9(t) = —g2()p(t)x + p(t) [91(t) + g2(t)z] — O
that is,

g(t) = p(t)g(t) }
The transformed equation (6.10) is thus

Y, = f1(t)p(t) dB, + g1 (t)p(t) dt

(6.30)
Y (0) = h(0,X(0)) = p(0)Xo = Xo
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and its solution is
Y(t) =Y(0) +/0 f1(s)p(s) dBs —i—/o g1(s)p(s) ds.

Now we have to revert to the original variables. Solving (6.29) for x we obtain

T = ﬁy. Hence, X (t) = ;(%Y(t), that is

1 t t
X0 = {XO s [ e+ | gl<s>p<s>ds} (6.31)
where .
p(t) _ 6—592(3) ds.

(Compare these solutions with the solutions of deterministic first order linear
differential equations !)

Example 6.2. The equation ;
dX, = ocdB; — bX, dt (0, b constant) (6.32)

is called the Langevin equation. Here the deterministic part looks like the equation
of exponential growth/decay, This equation is narrow-sense linear, with fi(t) = o,
91(t) = 0 and go(t) = —b. It is also autonomous. The equation models, for example,
the velocity of a grain of pollen in a viscous liquid. The deterministic part reflects
reduction in velocity due to water resistance, and the stochastic part introduces
"random acceleration”.

Its solution is given by (6.31). Since

t t
~ [ g2(s) ds fbds
J — o bt

pt) =e =e

then \
Xt)=e™ {Xo + 0/ e’ st} :
0

The solution {X;}so is called an Ornstein- Uhlenbeck process.

Assume that the initial condition is deterministic, X (0) = zo. Then the solution

becomes .
X(t) = z,e” + ae“bt/ e dB,.
S—— 0

=p(t) S ———t
=K(t)

t
/ e dB,
0

is an N(0,7(¢))-random variable, where

2 b b 1
|L2[o,t] = /0 e ds = Q_b(e%t -1),

Now by theorem 4.15,

r(t) = H b
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so that by exercise 2.2,

2 2
K(t) i N0, gz (e = 1)) = N(0, 2 (1~ ).

Now as u(t) is constant with respect to w, it is an easy exercise to verify that

X(t) is N(u(t), g—;(l - B_th)>.

(In general, if Y = ¢ = constant and Z is N(0,r), then X +Y is N(c,r).) Observe

that
2

lim p(t) =0  and tlim var(X;) = lim (—7—(1 -

t->00 — t—00 2b

20

So as time passes on, the mean velocity of the pollen will decrease to zero (which is
. . . 1 - 2

expected because of friction) while the variance will increase from zero to %-.

oy _ O

Example 6.3. Consider the equation
dX, = aX;dB, + X, dt (o, B constant). (6.33)

This is a linear, homogeneous equation (with f2(¢t) = o and go(¢t) = 8). It is used
to model population growth. The stochastic part reflects random growth, while the
deterministic part coincides with the usual equation of exponential growth/decay.
Since the population is always positive, we have Xo(w) > 0 for all w. The solution
of this equation is given by (6.27),

X(t) = Xgexp Votast] exp Uot(ﬁ - —;—aQ)ds} .

e
=:b

Since the integrands are all constant,
X(t) = XO 6aBt+bt.

The process {X,}:>o is called geometric Brownian motion.
Note that by exercise 3.2,
{eaBt—-azﬁt}
>0

is an (F,)-martingale. Now by theorem 3.5, martingales have constant expectation.
Hence,
a? o2
E[X(t)] = B[ Xoe®P*™ ] = E[e”Xoe*P~T!| = P B[ Xy e BT ]
a2 a2

= eﬁtE[Xo} E[eo‘Bt_’ft} = eﬁtE[Xo] E[eO‘BO"T'O}

=e""EB[Xo]E[’] = "' E[ Xo].
where we have used the fact that B is independent of 5y, hence of X, and {B:}i>01s

standard Brownian motion. Thus, the expected value of X () increases exponentially
without limit.
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Exercise 6.1. Consider an autonomous equation

dX; = cX;dBy + g(Xy) dt (¢ constant).

with X (0) = Xp > 0. Show:

1.

This equation is reducible < g is for the form
g(z) = Lz — Kzn |z|

for some constants K, L.

. If the equation is reducible and K # 0, then its solution is

—-Kt

X(8) = X)) exp {c% (1- e'Kt)] exp {ce—m /0 s st}

where N = % —

[\-1]e}
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