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Chapter I

INTRODUCTION

The work investigates the dependence of static properties of the octet

baryons, such as masses, charge radii, electromagnetic form factors and magnetic

moments on the pseudoscalar meson masses in the Perturbative Chiral Quark

Model (PCQM) and compare the theoretical results with experimental data and

lattice QCD (Quantum Chromodynamics) data and chiral extrapolations. Since

the PCQM is one of the effect field theories derived in the spirit of QCD and the

lattice QCD is a numerical approach to evaluate physical obserables in the frame-

work of QCD, we would like first to give a brief description of QCD before we go

to PCQM and lattice QCD.

1.1 Introduction to Quantum Chromodynamics

Fundamental particles like electron, photon and neutrinos are structureless

and pointlike. In the 1960s a growing number of new particles was being discov-

ered, and it became clear that they could not all be elementary. Physicists were

looking for the true theory to explain this phenomenon. In 1964 Gell-Mann and

Zweig provided a simple idea which solved the problem, they proposed that all

mesons comprised of a quark and an antiquark and all baryons comprised of three

quarks. Up to now, it has been accepted that quarks come in six flavors: u (up),

d (down), s(strange), c (charm), b (bottom) and t (top), and carry fractional elec-

tric charge (up, charm and top quarks carry charge +2
3
e, and down, strange and

bottom carry charge −1
3
e). Quarks also carry another property called color charge
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which was introduced by (Greenberg, 1964), and by (Han and Nambu, 1965).

Quarks and antiquarks combine together to form hadrons in such a way that all

observed hadrons are color neutral and carry integer electric charge.

Quantum Chromodynamics (QCD) was proposed in the 1970s as a theory

of the strong interactions, describing the quarks and gluons degree of freedoms

in the Standard Model. The theory of QCD has a remarkable simplicity and

elegance at the classical level, with its under-lying non-Abelian SU(3) color sym-

metry as revealed by a whole spectrum of contrasting behaviors over a wide range

of energy scales, from confinement to asymptotic freedom, in addition to various

possible phase transitions under extreme conditions. It was widely accepted after

the discovery of asymptotic freedom by (Gross and Wilczek, 1973) and (Politzer,

1973) as it offered a satisfying explanation to some of the puzzling experimental

results. Asymptotic freedom turned out to be a very useful property for studying

high energy QCD. It allows one to treat the coupling constant perturbatively for

sufficiently small distances and therefore calculate physical properties under con-

sideration in a systematic and controlled manner. Confinement is an important

property of the strong interaction that is widely accepted and incorporated into

any model claiming to imitate strong QCD. Quark confinement is often defined as

the absence of isolated quarks in nature as they have never been experimentally

observed. Seeking for free quarks normally focus on free particles with fractional

electrical charge. But the observation of a particle with fractional charge does not

necessarily mean that a free quark has been observed. Although, at high energies

it is perturbative, i.e. observables can be expanded in terms of the strong coupling

constant αs. However the theory becomes highly non-perturbative at low energies

since αs becomes large. The dependence of the coupling on the energy scale and

the experimental data are shown in Fig. 1.1.
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Quantum Chromodynamics (QCD), the nonabelian gauge theory of interacting

Figure 1.1 The coupling of strong interactions αs(µ) and its dependence on the
energy scale: taken from the Particle Data Group

quarks and gluons, can be described by the QCD Lagrangian;

L = ψ̄q(iγ
µDµ −mq)ψq − 1

4
Ga

µνGaµν (1.1)

where Ga
µν is the non-abelian field strength tensor of the gluons, ψq is the quark

wave function, Dµ is the covariant derivative, mq is the quark mass, and a is an

index for the three color charges. The field strength tensor of the gluons is given

by

Ga
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAb

νA
c
µ (1.2)

where Aj
µ(j = a, b, c) are the gauge potentials of the gluon fields, g is coupling con-
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stant for the gluon, and fabc are the complete antisymmetric structure constants

of the gauge group SU(3). The covariant derivative is given by

Dµ = ∂µ − ig
∑

a

Aa
µT

a (1.3)

where T i are the gauge group generators in the representation matrices and the

generators obey the commutation relation [T a, T b] = ifabcT c. The coupling con-

stant g is normally rewritten in terms of the strong coupling constant αs = g2/4π.

Nowadays, it is widely believed that the true theory of strong interaction is

QCD. The main confirmation of QCD comes from considering the processes at high

energies and high momentum transfers, because of asymptotic freedom regime, the

high precision of theoretical calculation is achieved and comparison with exper-

imental data confirms QCD with a very good accuracy. In the domain of low

energies and momentum transfers, because of confinement regime, the situation is

more complicated: the strong coupling constant αs is large and many loops per-

turbative calculations are needed. Understanding of their properties and structure

will probably lead us to a deeper understanding of the mechanism of the strong

interaction in nature. Experiments indicate that the nucleon is not a point-like

particle but contains a subtle structure. First evidence has taken from investi-

gating of the magnetic moment of the nucleon in which a strong deviation from

the value of the point-like particle, because of an anomalous magnetic moment,

was observed. An information of the spatial distribution of the electromagnetic

current in the nucleon was achieved by elastic electron scattering on the nucleon.

Deep inelastic scatterings of electrons on the nucleon, leads to the evidence for

point-like scattering centers in the nucleon and consequently to the knowledge of

the quarks and gluons degree of freedom. Other evidence for the structure of the
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nucleon is taken from the enhance excitation spectrum of the nucleon. The search-

ing for and the determination of the structure of the nucleon is one crucial task

in nuclear and particle physics. Among all the fundamental interactions, the elec-

tromagnetic interaction of the nucleon gives an ultimate information. This leads

to the knowledge of the electromagnetic structure of the nucleon which gives us

the information of charge and current distribution in the nucleon. The important

one for fulfilling measurement of the electromagnetic form factors of the nucleon

from various laboratories leads to more precise data, which is significant for the

theoretical study. QCD is still far from the final state of the strong interactions.

One of the main problems is the difficulty to explain much of the experimental

data on the particle properties from the first principles. In particularly QCD at

low energies regime, a central role is played by the spontaneously and explicitly

broken chiral symmetry, has been and still is the framework from the theoretical

as well as experimental approach. The framework is actively studied both on theo-

retical and experimental sides. The useful methods are: the chiral effective theory,

lattice calculations and various model approaches. The framework is desirable to

have a compatibility of all these approaches with QCD calculations at low energy

and momentum transfer square Q2 about 1 GeV2.

1.2 Introduction to Lattice QCD

The lattice formulation of gauge theory was firstly proposed in 1974 by

Wilson and individually by Polyakov and Wegner. They propose the implement

of continuous SU(3) gauge symmetry of QCD and lattice field theory provided

a non-perturbative definition of the functional integral. The basic idea was to

replace continuous finite volume space-time with a four dimensional lattice size

L3T . The cells are separated by the lattice spacing a. The quarks and gluons
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fields are supposed at discrete points. A theoretical point of view, the lattice and

finite volume provide local gauge-invariant ultraviolet and infrared cutoffs regions,

respectively. A great advantage of the lattice formulation of gauge theory is that

the limit of strong coupling. It is particularly simple and revealed a confinement

phenomenon. The lattice QCD calculation is needed the extremely high perfor-

mance computing technology and incorporated with the efficiency of Monte Carlo

simulations. There are still main problems in approximations must be done in

order to obtain results and good accuracy in the technology of today. The lattice

formulation of QCD is well established and is a powerful tool for studying the

structure of nucleons. The computation of nucleon properties in lattice QCD is

progressing with steadily increasing accuracy (Procura et al., 2006b)-(Ali Khan

et al., 2004). Accurate computations of the nucleon mass with dynamical fermions

and two active flavors are now possible (Ali Khan et al., 2002; Aoki et al., 2003) in

lattice QCD. In practice, these computations are so far limited to relatively large

quark masses. Direct simulations of QCD for light current quark masses, near the

chiral limit, remain computationally intensive. To extract predictions for observ-

ables, lattice data generated at high current quark masses have to be extrapolated

to the point of physical quark or pion mass. Therefore, one of the current aims

in lattice QCD is to establish the quark mass dependence of quantities of physical

interest, such as the nucleon mass, magnetic moments and form factors. The ma-

jor tool in establishing the current quark mass dependence of lattice QCD results

are methods based on chiral effective field theory. Recent extrapolation studies of

lattice results concern the nucleon mass (Procura et al., 2006b, 2004; Young et al.,

2003; Bernard et al., 2004; Frink et al., 2005), its axial vector coupling constant

and magnetic moments (Young et al., 2003; Bernard et al., 2004; Holstein et al.,

2005), the pion-nucleon sigma term, charge radii (Hackett-Jones et al., 2000a),
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form factors (Hemmert and Weise, 2002; Hemmert et al., 2003b; Leinweber et al.,

2000; Wang et al., 2007), and moments of structure functions (Detmold et al.,

2001). Lattice QCD is still limited in the lattice spacing and size of volume used

in the calculations due to the performance of computer. In last decade, there

has been in a improvement of chiral extrapolations within ChPT as well as tech-

niques to try to get a handle on the systematic errors inherent to the lattice QCD

calculation.

1.3 Introduction to Chiral Effective Filed Theory

This thesis will report here on some of these in the framework of Chiral per-

turbation theory (ChPT) to the case when nucleons are presented and extended

to a whole baryon octet with the quark states point of view. The ideas underlying

ChPT have been generalized to the nucleon sector where one has to deal with

a nonperturbative problem. The central idea of the effective field theory (EFT)

approach was formulated by Weinberg in 1979. It is formulated in terms of the

asymptotically observed states replacing the quark and gluon degrees of freedom of

the fundamental theory. It requires both the knowledge of the general Lagrangian

up to and including the given order one is interested in as well as an expansion

scheme for observables. EFT has been used to study the low energies domain phys-

ical properties and is also able to describe and predict hadron spectrum, namely

dynamical properties. The EFT is chiral perturbation theory which is governed by

chiral symmetry, a symmetry of QCD. It has been considered as an approximate

symmetry of the strong interactions. One of the most interesting feature of QCD

reveals spontaneous, explicit, and anomalous symmetry breaking which these bro-

ken symmetries can be analyzed underneath an effective field theory formulations.

An important consequence of the spontaneous breakdown of a symmetry is the
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existence of a massless mode, the so called Goldstone-boson (meson cloud). In

our case, the Goldstone boson are the pseudoscalar meson, namely pion, kaon and

η-meson (in the case of two-flavor sector is only pion). If chiral symmetry was a

perfect symmetry of QCD, the meson should be massless. Since chiral symmetry is

only approximated, we expect the pion to have a finite value but small mass. This

is the basic idea of chiral perturbation theory, which is very successful to describe

physical pion mass. It is the chiral effective field theory (χEFT) of the strong

interactions at low energies. In the context of the strong interactions these ideas

have been applied to the interactions among the Goldstone bosons of spontaneous

symmetry breaking.

Chiral Quark Models were proposed early 1980s, describing the nucleon as

a bound state of valence quarks with a surrounding pion cloud, have played an

important role in the description of low-energy nucleon physics. These models

include the two main features of low-energy hadron structure, confinement and

chiral symmetry. The original type of chiral quark models assumes that the va-

lence quarks content dominates the nucleon, thereby treating pion contributions

perturbatively. Originally, this idea was formulated in the context of the cloudy

bag model. By imposing chiral symmetry the MIT bag model was extended to in-

clude the interaction of the confined quarks with the pion fields on the bag surface.

With the pion cloud treated as a perturbation on the basic features of the MIT

bag, pionic effects generally improve the description of nucleon observables. By

introducing a static quark potential of general form, these quark models contain

a set of free parameters characterizing the confinement and/or the quark masses.

The perturbative technique allows a fully quantized treatment of the pion field up

to a given order in accuracy. Perturbative chiral quark models are formally close

to chiral perturbation theory on the hadron level. Alternatively, when the pion
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cloud is assumed to dominate the nucleon structure this effect has to be treated

nonperturbatively. This model is based on the concept that the QCD instant on

vacuum is responsible for the spontaneous breaking of chiral symmetry, which in

turn leads to an effective chiral Lagrangian at low energy as derived from QCD.

As a further development of chiral quark models with a perturbative treatment

of the pion cloud. The Perturbative Chiral Quark Model (PCQM) is based on an

effective chiral Lagrangian describing quarks as relativistic fermions moving in a

self-consistent field (static potential). The model potential defines unperturbed

wave functions of quarks which are subsequently used in the calculation of baryon

properties. In the PCQM baryons are described by three relativistic valence quarks

confined in a static potential, which are supplemented by a cloud of pseudoscalar

Goldstone bosons (π, K and η-meson), as required by chiral symmetry. The inter-

action of quarks with Goldstone bosons is introduced on the basis of the nonlinear

model. When considering mesons fields as small fluctuations we restrict ourselves

to the linear form of the meson-quark interaction. With the derived interaction

Lagrangian we do our perturbation theory in the expansion parameter 1/F (where

F is the pion leptonic decay constant in the chiral limit).

The basic ideal of building blocks of the atomic nuclei, namely the nucleon

is treated as identical particles of proton and neutron, has been playing an impor-

tance role in physics. In recent years nucleon properties have been in the focus

of manifestly Lorentz covariant Chiral Perturbation Theory (ChPT), improved

lattice QCD computations and chiral extrapolations (see e.g. Refs. (Becher and

Leutwyler, 1999)-(Hemmert et al., 2003a)). The chiral expansion in chiral ef-

fective field theory (χEFT) has been used to study the quark mass (pion mass)

dependence of the magnetic moments, magnetic form factors and the axial-vector

coupling constant (Hemmert et al., 2003b; Procura et al., 2006a) of the nucleon
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for extrapolations of lattice QCD results, so far determined at relatively large

quark masses corresponding to pion masses of mπ ≥ 0.8 GeV, down to physical

values of mπ. In the chiral limit, with mπ → 0, QCD at low energies is realized in

the form of an effective field theory with spontaneously broken chiral symmetry,

with massless pions as the primary active degrees of freedom. The coupling of

the chiral Goldstone bosons to these spin-1/2 matter field produces the so-called

”pion-cloud” of the nucleon, an important component of nucleon structure at low

energy and low momentum scales.

1.4 Thesis Arrangement

In this thesis we firstly investigate the dependence of nucleon properties

(mass, magnetic moments and electromagnetic form factors) on pseudoscalar me-

son masses applying the perturbative chiral quark model (PCQM) (Lyubovitskij

et al., 2001a,b,c, 2002a,b; Simkovic et al., 2002; Cheedket et al., 2004) and ex-

tend this work to a whole baryon octet. This simple phenomenological model

has already been successfully applied to the charge and magnetic form factors

of baryons, sigma terms, ground state masses of baryons, the electromagnetic

N → ∆ transition, and other baryon properties (Lyubovitskij et al., 2001a,b,c,

2002a,b; Simkovic et al., 2002; Cheedket et al., 2004), and it has been extended,

in Refs. (Faessler et al., 2006c,b), by constructing a framework which is manifestly

Lorentz covariant and aims for consistency with ChPT.

Our strategy is as follows. First, we study the dependence of nucleon prop-

erties (mass, magnetic moments and electromagnetic form factors) on the pion

mass in the two-flavor sector (only u and d quarks involved). Second, we extend

our formalism to the three-flavor sector including kaon and η-meson degrees of

freedom with fixed masses. Finally, we probe the static properties of the whole
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baryon octet. All calculations are performed at one loop. The chiral limit, where

current quark masses approach zero with m̂, ms → 0, is well defined. We compare

the obtained quark mass dependence of the nucleon observables with the results

of other approaches (lattice QCD results and chiral extrapolations).

The thesis is organized as follows. In Chapter II we give a short overview

of our approach, namely Perturbative Chiral Quark Model. In Chapter III we

give the formula development of static properties (charge radii, electromagnetic

form factors and magnetic moments) of the nucleon and other octet baryons in

the PCQM. The numerical results are given in Chapter IV for the dependence

of octet baryon properties on the pion mass in the two- and three-flavor pictures

(included K and η meson) in the PCQM and are compared with other theoretical

approaches, namely chiral extrapolation and lattice QCD calculations. In Chapter

V we discuss and conclude our works.



Chapter II

PERTURBATIVE CHIRAL QUARK MODEL

The perturbative chiral quark model (Lyubovitskij et al., 2001a,b,c,

2002a,b; Simkovic et al., 2002; Cheedket et al., 2004) is based on an effective

chiral Lagrangian describing baryons by a core of three valence quarks, moving

in a central Dirac field with Veff(r) = S(r) + γ0V (r), where r =| ~x |. In order to

respect chiral symmetry, a cloud of Goldstone bosons (π, K and η) is included,

which are treated as small fluctuations around the three-quark core. The effective

Lagrangian Leff , derived in Ref. (Lyubovitskij et al., 2001b), is

Leff = Llin
inv + LχSB, (2.1)

where Llin
inv is the chiral-invariant Lagrangian

Llin
inv = ψ̄(x)[i 6∂ − S(r)− γ0V (r)]ψ(x) + LΦ − Lint, (2.2)

and a term LχSB is the explicitly breaks chiral symmetry which arises from the

nonvanishing of the quarks mass matrix M

LχSB = −ψ̄(x)Mψ(x)− B

8
Tr{Φ̂(x), {Φ̂(x),M}}, (2.3)

corresponding to the mass terms for quarks and of the octet of Goldstone bo-

son (Lyubovitskij et al., 2001b).
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The chiral-invariant interaction Lagrangian is introduced as

Lint = −ψ̄(x)S(r)

[
U + U †

2
+ γ5U − U †

2

]
ψ(x),

= −ψ̄(x)S(r) exp

[
iγ5 Φ̂

F

]
ψ(x), (2.4)

and kinetic term of the meson fields

LΦ =
F 2

4
Tr[∂µU∂µU †]. (2.5)

The eight Goldstone bosons are most conveniently summarized in a matrix U ∈
SU(3), the chiral field can be represented by the exponential parameterization

U = exp

[
i
Φ̂

F

]
' 1 + i

Φ̂

F
+ o

(
Φ̂

F

)
, (2.6)

the octet matrix Φ̂ of pseudoscalar mesons is defined as

Φ̂ =
8∑

i=1

Φiλi =
√

2,




π0

√
2

+
η√
6

π+ K+

π−
−π0

√
2

+
η√
6

K0

K− K̄0 −2η√
6




. (2.7)

We rely on the standard picture of chiral symmetry breaking (Gasser and

Leutwyler, 1985) and for the masses of pseudoscalar mesons we use the leading

term in their chiral expansion (i.e., linear in the current quark mass):

M2
π = 2m̂B, M2

K = (m̂ + ms), M2
η =

2

3
(m̂ + 2ms)B. (2.8)
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Meson masses obviously satisfy the ”Gell-Mann-OakesRenner” and the ”Gell-

MannOkubo” relation as well,

3M2
η + M2

π = 4M2
K , (2.9)

in the evaluation we use the following set of QCD parameters (Gasser and

Leutwyler, 1982):

m̂ = 7MeV,
ms

m̂
= 25, B =

M2
π+

2m̂
= 1.4GeV. (2.10)

Therefore, the model Lagrangian is

L(x) = ψ̄(x)[i 6∂ − γ0V (r)−M]ψ(x)

+
F 2

4
Tr

[
∂µU(x)∂µU †(x) + 2MB(U(x) + U †(x))

]

− ψ̄(x)S(r)

[
U(x) + U †(x)

2
+ γ5U(x)− U †(x)

2

]
ψ(x) , (2.11)

where ψ = (u, d, s) is the triplet of quark fields, U = exp[iΦ̂/F ] is the chiral field

in the exponentional parametrization, F = 88 MeV is the pion decay constant in

the chiral limit (Gasser et al., 1988), M = diag{mu,md,ms} is the mass matrix

of current quarks and B = −〈0|ūu|0〉/F 2 = −〈0|d̄d|0〉/F 2 is the quark conden-

sate constant. In the numerical calculations we restrict to the isospin symmetry

limit mu = md = m̂. We rely on the standard picture of chiral symmetry break-

ing (Gasser and Leutwyler, 1982) and for the masses of pseudoscalar mesons we

use the leading term in their chiral expansion (i.e. linear in the current quark

mass). By construction, our effective chiral Lagrangian is consistent with the

known low-energy theorems (Gell-Mann-Okubo and Gell-Mann-Oakes-Renner re-
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lations, partial conservation of axial current (PCAC), Feynman-Hellmann relation

between pion-nucleon σ-term and the derivative of the nucleon mass, etc.). The

electromagnetic field is included into the effective Lagrangian Eq. (2.11) using

the standard procedure, i.e. the interaction of quarks and charged mesons with

photons is introduced using minimal substitution.

To derive the properties of baryons, which are modeled as bound states

of valence quarks surrounded by a meson cloud, we formulate perturbation the-

ory and restrict the quark states to the ground-state contribution with ψ(x) =

b0u0(~x) exp(−iE0t), where b0 is the corresponding single-quark annihilation oper-

ator. The quark wave function u0(~x) belongs to the basis of potential eigenstates

used for expanding the quark field operator ψ(~x). In our calculation of matrix

elements, we project quark diagrams on the respective baryon states. The baryon

states are conventionally set up by the product of the SU(6) spin-flavor and SU(3)c

color wave functions, where the nonrelativistic single quark spin wave function is

simply replaced by the relativistic solution u0(~x) of the Dirac equation

[
−iγ0~γ · ~∇+ γ0S(r) + V (r)− E0

]
u0(~x) = 0, (2.12)

where E0 is the single-quark ground-state energy. For the description of baryon

properties, we use the effective potential Veff(r) with a quadratic radial depen-

dence (Lyubovitskij et al., 2001a,b):

S(r) = M1 + c1r
2, V (r) = M2 + c2r

2, (2.13)

with the particular choice

M1 =
1− 3ρ2

2ρR
, M2 = E0 − 1 + 3ρ2

2ρR
, c1 ≡ c2 =

ρ

2R3
. (2.14)
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Here, R and ρ are parameters related to the ground-state quark wave function u0:

u0(~x; i) = N0 exp

[
− ~x2

2R2

]



1

iρ~σ(i) · ~x/R


 χs(i)χf (i)χc(i), (2.15)

where N0 = [π3/2R3(1+3ρ2/2)]−1/2 is a normalization constant; χs, χf , χc are the

spin, flavor and color quark wave functions, respectively. The index ”i” stands for

the i-th quark. The constant part of the scalar potential M1 can be interpreted as

the constituent mass of the quark, which is simply the displacement of the current

quark mass due to the potential S(r). The parameter ρ is related to the axial

charge gA of the nucleon calculated in zeroth-order (or 3q-core) approximation:

gA =
5

3

(
1− 2ρ2

1 + 3
2
ρ2

)
. (2.16)

Therefore, ρ can be replaced by gA using the matching condition Eq. (2.16). Note

that since PCAC is fulfilled in our model (Lyubovitskij et al., 2001b), on the tree

level the axial charge gA is on the tree level related to the pion-nucleon coupling

constant GπNN by the Goldberger-Treiman relation

GπNN =
mN

3F

(
1− 2ρ2

1 + 3
2
ρ2

)
≡ mN

F
gA, (2.17)

where mN is the physical nucleon mass. The same condition holds even for their

form factors. The analytical expression for the pion-nucleon form factor in the

chiral limit is given by

GπNN(Q2) =
mN

F
gA(Q2),

≡ mN

F
gA(Q2)FπNN(Q2), (2.18)
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where Q2 is the squared Euclidean momentum of the pion and FπNN(Q2) is the

πNN form factor normalized to unity at zero recoil Q2 = 0:

FπNN(Q2) = exp

(
−Q2R2

4

){
1 +

Q2R2

8

(
1− 5

3gA

)}
. (2.19)

The parameter R is related to the charge radius of the proton in the zeroth-order

approximation as

〈r2
E〉PLO =

∫
d3xu†0(~x)~x2u0(~x) =

3R2

2

1 + 5
2
ρ2

1 + 3
2
ρ2

. (2.20)

In our calculations we use the value gA=1.25. Therefore, we have only one free

parameter in our model, that is R or 〈r2
E〉pLO. In previous publications R was varied

in the region from 0.55 fm to 0.65 fm, which corresponds to a change of 〈r2
E〉pLO from

0.5 to 0.7 fm2. Note that for the given form of the effective potential Eq. (2.13)

the Dirac equation Eq. (2.12) can be solved analytically [for the ground state see

Eq. (2.15), for excited states see Ref. (Cheedket et al., 2004)]. The expectation

value of an operator Â is then set up as:

〈Â〉 = B〈φ0|
∞∑

n=1

in

n!

∫
d4x1 . . .

∫
d4xnT [LI(x1) . . .LI(xn)Â]|φ0〉Bc , (2.21)

where the state vector |φ0 > corresponds to the unperturbed three-quark state (3q-

core). Superscript ”B” in the equation indicates that the matrix elements have to

be projected onto the respective baryon states, whereas subscript ”c” refers to con-

tributions from connected graphs only. Here LI(x) is the appropriate interaction

Lagrangian. For the purpose of the present paper, we include in LI(x) the lin-

earized coupling of pseudoscalar fields with quarks and the corresponding coupling

of quarks and mesons to the electromagnetic field (see details in Ref. (Lyubovitskij
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et al., 2001a)):

LI(x) = −ψ̄(x)iγ5 Φ̂(x)

F
S(r)ψ(x)− eAµ(x)ψ̄(x)γµQψ(x)

− eAµ(x)
8∑

i,j=1

[
f3ij +

f8ij√
3

]
Φi(x)∂µΦj(x) + · · · , (2.22)

where fijk are the SU(3) antisymmetric structure constants. For the evaluation

of Eq. (2.21) we apply Wick’s theorem with the appropriate propagators for the

quarks and pions. For the quark propagator we use the vacuum Feynman prop-

agator for a fermion in a binding potential restricted to the ground-state quark

wave function with

iG0(x, y) = u0(~x)ū0(~y)e−iE0(x0−y0)θ(x0 − y0). (2.23)

For the meson field we use the free Feynman propagator for a boson field with

i∆ij(x− y) = 〈0|T{Φi(x)Φj(y)}|0〉 = δij

∫
d4k

(2π)4i
e−ik(x−y)∆Φ(k), (2.24)

where ∆Φ(k) = [M2
Φ − k2 − i0+]−1 is the meson propagator in momentum space

and MΦ is the meson mass.



Chapter III

BARYON PROPERTIES IN PCQM

3.1 Nucleon Mass

We first define and discuss the quantities relevant for mass and wave func-

tion renormalization. Following the Gell-Mann and Low theorem we difine the

mass shift of the nucleonic three-quark ground state ∆mN due to the interaction

with Goldstone mesons as

∆mN = B〈φ0|
∞∑

n=1

in

n!

∫
iδ(t1)d

4x1 . . .

∫
d4xnT [LI(x1) . . .LI(xn)Â]|φ0〉Bc . (3.1)

At one-loop, with an order of accuracy o(1/F 2), the diagrams that contribute to

the mass shift are shown in Fig. 3.1. The so-called ”meson cloud” (MC) diagram

of Fig. 3.1(a) describes the emission and reabsorption of the meson on the same

quark, whereas the ”meson exchange” (ME) diagram of Fig. 3.1(b) connects two

quark lines.

(a) (b)

Figure 3.1 Diagrams contributing to the nucleon mass shift: meson cloud (a) and
meson exchange diagram (b)
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The MC and ME diagrams are examples of one and two-body operator, respec-

tively. The nucleon wave function is conventionally set up by the product of the

SU(6) spin-flavor WF and SU(3)c color WF, where the nonrelativistic single quark

spin WF is replaced by the relativistic ground-state solution of Eq. (2.15). Pro-

jection of ”one-body” diagrams on the nucleon state refers to

χ†f ′χ
†
s′I

f ′fJs′sχfχs → 〈B|
3∑

n=1

(IJ)(i)|B〉, (3.2)

where the single-particle matrix element of the operators I and J , acting in fla-

vor and spin space, is replaced by the one embedded in the nucleon state. For

”two-body” diagrams with two independent quark indices i and j the projection

prescription reads as

χ†f ′χ
†
s′I

f ′f
1 Js′s

1 χfχs ⊗ χ†k′χ
†
σ′I

k′k
2 Jσ′σ

2 χkχσ → 〈B|
3∑

n 6=1

(I1J1)
(i) ⊗ (I2J2)

(i)|B〉. (3.3)

The physical nucleon mass at one loop is given by

mN = mcore
N + ∆mN , (3.4)

where

mcore
N = 3

{
E0 + γm̂

}
= 3

{
E0 +

γ

2B
M2

π

}
, (3.5)

is the contribution of the three-quark core (the second term in the r.h.s. of Eq. (3.5)

is the contribution of the current quark mass) and

∆mN = ΠMC + ΠME, (3.6)
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is the nucleon mass shift due to the meson cloud contribution. The diagrams that

contribute to the nucleon mass shift ∆mN at one loop are shown in Fig. 3.1 (see

details in Refs. (Lyubovitskij et al., 2001a,b)). Fig. 3.1(a) corresponds to the so-

called meson-cloud (MC) contribution and Fig. 3.1(b) is the meson-exchange (ME)

contribution. The operators ΠMC and ΠME are functions of the meson masses and

are expressed in terms of the universal self-energy operator

Π(M2
Φ) = −I24

Φ , Φ = π, K, η. (3.7)

Here we introduce a notation for the structure integral in terms of which all further

formulas can be expressed:

IMN
Φ =

(
gA

πF

)2
∞∫

0

dppNF 2
πNN(p2)

(M2
Φ + p2)

M
2

,M, N = 0, 1, 2, ... (3.8)

and

I0N
Φ ≡ IN ≡

(
gA

πF

)2
∞∫

0

dppNF 2
πNN(p2) =

(
gA

πF

)2(
2

R2

)N+1
2

× Γ

(
N + 1

2

)(
1

2
− N + 1

4
β +

(N + 1)(N + 3)

32
β2

)
, (3.9)

where β = 2ρ2/(2−ρ2). The function FπNN(p2) is the πNN form factornormalized

to unity at zero recoil (p2 = 0):

FπNN(Q2) = exp

(
−Q2R2

4

){
1− Q2R2

4
β

}
. (3.10)

The meson cloud contributions to the mass shift are then given
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1) in SU(2) as

ΠMC =
81

400
Π(M2

π), (3.11)

ΠME =
90

400
Π(M2

π). (3.12)

2) in SU(3) as

ΠMC =
81

400
Π(M2

π) +
54

400
Π(M2

K) +
9

400
Π(M2

η ), (3.13)

ΠME =
90

400
Π(M2

π)− 6

400
Π(M2

η ). (3.14)

Finally, the effect of a finite current quark mass m̂ on the nucleon mass shift is

taken into account perturbatively, resulting in the linear term 3γm̂ in Eq. (3.5).

3.2 Electromagnetic Form Factors in PCQM

The measurements of the electromagnetic form factors of the proton and

the neutron gave the first hints at an internal structure of the nucleon, and a theory

of the nucleon cannot be considered satisfactory if it is not able to reproduce the

form factor data. The overall trend of the experimental results for small and

moderate values of the momentum transfer Q2 could be described reasonably well

by phenomenological (dipole) fits

GD(Q2) =
1

(1 + Q2/0.71GeV2)2
. (3.15)

Recently, the form factors of the nucleon have been studied experimentally with

high precision and deviations from this uniform dipole form have been observed,
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both at very small Q2 and in the region above 1 GeV2. It is therefore of great

interest to derive the nucleon form factors from QCD. Since form factors are typical

low-energy quantities, perturbation theory in terms of quarks and gluons is useless

for this purpose and a non-perturbative method is needed. If one wants to avoid

additional assumptions or models, one is essentially restricted to lattice QCD and

Monte Carlo simulations. In view of the importance of nucleon form factors and

the amount of experimental data available, it is surprising that there are only a few

lattice investigations of form factors Refs. (Richards, 2007; Leinweber et al., 2005;

Suganuma et al., 2001). The structure of the nucleon is encoded in several form

factors. For example, the electromagnetic Dirac and Pauli form factors F1(Q
2)

and F2(Q
2), or equivalently the electric and magnetic Sachs form factors GE(Q2)

and GM(Q2), parameterize the matrix elements of the electromagnetic current

operator and are well-known over a wide region of momentum transfer squared

Q2. The electromagnetic form factors are matrix elements of the current operator,

Jµ(x), between nucleon states of different momentum (exact expressions for the

nucleon electromagnetic form factors can be found in Ref. (Lyubovitskij et al.,

2001a)):

〈N ′(p′)|Jµ(0)|N(p)〉 = ūN ′(p′)
{

γµFB
1 (Q2) +

iσµνqν

2mN

FB
2 (Q2)

}
uN(p), (3.16)

where q = p′ − p is taken as space-like momentum transfer squared given as

Q2 = −q2 = ~q2. According to the Lagrangian, the one loop Feynman diagrams

which contribute to the nucleon magnetic moments are draw in Fig. 3.2. The

charge (Dirac) form factor is FN
1 , normalized such that FN

1 (0) is the nucleon

charge, and the magnetic (Pauli) form factor is FN
2 , normalized such that FN

2 (0) is

the anomalous magnetic moment. Instead of working with FN
1 (Q2) and FN

2 (Q2), it
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is convenient to consider linear combination constructed as electromagnetic form

factors in the definitions of physical properties are given from the Sachs form

factors with the space-like. The nucleon charge GN
E and magnetic GN

M form factors

can be written in the form of the Dirac and Pauli form factors by

GN
E (Q2) ≡ FN

1 (q2) +

{
q2

4m2
N

}
FN

2 (q2), (3.17)

GN
M(Q2) ≡ FN

1 (q2) + FN
2 (q2). (3.18)

At zero recoil (q2 = 0) the Sachs form factors satisfy the following normalization

conditions:

Gp
E(0) = 1, Gn

E(0) = 0, Gp
M(0) = µp, Gn

M = µn, (3.19)

where the magnetic moments µp ∼ 2.793 and µn ∼ −1.913 in units of nuclear

magnetons. In the Breit frame coincides with the center-of-mass frame, in par-

ticular frame the energy transfer vanishes and thus the photon carries the four-

momentum qµ = (0, ~q) and therefore Q2 = ~q2, the initial momentum of the nucleon

is p = (E,−~q/2), the final momentum is p′ = (E, ~q/2) and the four-momentum of

the photon is q = (0, ~q) with p′ = p + q.

〈N ′
s(~q/2)|J0(0)|Ns(−~q/2)〉 = GN

E (Q2)χ†N ′
s
χNs , (3.20)

〈N ′
s(~q/2)| ~J(0)|Ns(−~q/2)〉 = GN

M(Q2)χ†N ′
s

i~σN × ~q

2mN

χNs . (3.21)

where J0(0) and ~J(0) are the time and space component of the electromagnetic

current operators; χNs and χ†N ′
s

are the nucleon spin WFs in the initial and final

state; ~σN is the nucleon spin matrix. The charge radii of the nucleons are given
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by

〈r2〉pE = −6
dGp

E(Q2)

dQ2
|Q2=0, 〈r2〉nE = −6

dGn
E(Q2)

dQ2
|Q2=0,

〈r2〉NM = − 6

GN
M(0)

dGN
M(Q2)

dQ2
|Q2=0. (3.22)

In the framework of the PCQM and in the Breit frame, the Sachs form factors of

the nucleon evaluated at one loop are defined by

χ†Ns′
χ†Ns

GN
E (Q2) =N< φ0|

2∑
n=0

in

n!

∫
δ(t)d4xd4x1...d

4xne
−iqx

× T [Lstr
r (x1)...Lstr

r (xn)j0
r (x)]|φ0 >N

c , (3.23)

χ†Ns′
iσ̄N × q̄

2mN

χ†Ns
GN

M(Q2) =N< φ0|
2∑

n=0

in

n!

∫
δ(t)d4xd4x1...d

4xne
−iqx

× T [Lstr
r (x1)...Lstr

r (xn)~jr(x)]|φ0 >N
c . (3.24)

Exact expressions for the nucleon electromagnetic form factors can be found in

Ref. (Lyubovitskij et al., 2001a). Here we just present the typical results for the

magnetic moments in SU(2) and SU(3). The two-flavor result is obtained from

the three-flavor one when neglecting kaon and η-meson contributions.
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Z - 1

(a) (b)

(c) (d)

(e)

Figure 3.2 Diagrams contributing to the electromagnetic form factors of the baryon
octet: three-quark diagram (a), three-quark counter-term diagram (b), meson
cloud diagram (c), vertex correction diagram (d), and meson-in-flight diagram (e)
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The magnetic moments of the nucleons, µp and µn, are given by the expressions

µp = µLO
p

[
1 + δ − 1

400

{
26I34

π + 16I34
K + 4I34

η

}]
+

mN

50

{
11I44

π + I44
K

}
,

µn = −2

3
µLO

p

[
1 + δ − 1

400

{
21I34

π + 21I34
K + 4I34

η

}]
− mN

50

{
11I44

π + I44
K

}
, (3.25)

where

µLO
p =

2mNρR

1 + 3
2
ρ2

, (3.26)

is the leading-order contribution to the proton magnetic moment. The factor

δ = −
(

m̂ +
ΠMC

3
· 1 + 3

2
ρ2

1− 3
2
ρ2

)
2− 3

2
ρ2

(
1 + 3

2
ρ2

)2Rρ, (3.27)

defines the NLO correction to the nucleon magnetic moments due to the modi-

fication of the quark wave function (Lyubovitskij et al., 2001a). Note that the

well-known SU6 relation between nucleon magnetic moments µn/µp = −2/3 can

be easily deduced from Eq. (3.25). If (i) we restrict to contributions from one-body

diagrams in Figs. 3.2(a) - 3.2(d), corresponding to the additive quark picture and

(ii) apply the SU(3)-flavor limit (Mπ = MK = Mη = MΦ). In particular, we have

µ(SU6)
p ≡ −2

3
µ(SU6)

n ,

= µLO
p

(
1 + δ − 23

200
I34
Φ

)
+

9

50
mNI44

Φ . (3.28)

Taking into account the meson-in-flight diagram Fig. 3.2(e) generated by two-body

forces leads to a deviation of the ratio µn/µp from the naive SU6 result.
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RESULTS

In this section we present our numerical results of octet baryon properties

in PCQM. Shown in Table 4.1 are the evaluated nucleon mass with various values

of the pion mass. Both the SU(2) version, considering only the pion cloud contri-

bution, and the SU(3) one, including in addition kaon and η-meson cloud contribu-

tions, are considered. The total result is normalized to the physical value (coincid-

ing with the proton mass treated as the reference point) mN ≡ mp = 938.27 MeV

by fixing the ground-state quark energy to E0 ' 397 MeV [in case of SU(2)] and

E0 ' 411 MeV [in case of SU(3)]. We also indicate the separate contributions of

the 3q-core and the meson cloud. It is found that the values obtained in the chiral

limit are consistant with the results of Refs. (Faessler et al., 2006c; Borasoy and

Meissner, 1997; Frink et al., 2005). For the dependence on the pion mass we choose

mass values in the range of M2
π ' 0.15− 1.2 GeV2 and the resulting nucleon mass

is directly compared to both chiral extrapolations and lattice data (Orth et al.,

2005; Ali Khan et al., 2004). It is found that our results are consistent with the

corresponding values of the extrapolations and the lattice QCD results.
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Table 4.1 Nucleon mass (in GeV) in the SU(2) and SU(3) versions and at different
values for M2

π

Nucleon mass SU(2) SU(3) Other approaches
3q-core 1.203 1.247 -
Meson loops (total) -0.265 -0.309 -
π loops -0.265 -0.265 -
K loops - -0.042 -
η loops - -0.002 -
Total 0.93827 0.93827 -

Chiral limit 0.887 0.831 0.880 (Procura et al., 2004);
0.890 (Frink et al., 2005);
0.832 (Faessler et al., 2006c)
0.883 (Procura et al., 2006b);
0.770 (Borasoy and Meissner, 1997);

M2
π (in GeV2)

0.153 1.122 1.128 1.182(26) (Orth et al., 2005)
0.162 1.133 1.138 1.195(42) (Orth et al., 2005)
0.175 1.148 1.154 1.104(20) (Orth et al., 2005)
0.240 1.212 1.220 1.228(31) (Orth et al., 2005)
0.348 1.310 1.320 1.356(21) (Orth et al., 2005)
0.413 1.360 1.371 1.377(19) (Orth et al., 2005)
0.462 1.400 1.412 1.410(17) (Orth et al., 2005)
0.557 1.475 1.490 1.533(28) (Orth et al., 2005)
0.588 1.500 1.515 1.509(16) (Orth et al., 2005)
0.678 1.566 1.582 1.637(27) (Orth et al., 2005)
0.774 1.638 1.656 1.631(30) (Orth et al., 2005)
0.810 1.664 1.682 1.619(16) (Orth et al., 2005)

0.258 1.231 1.239 1.253(15) (Ali Khan et al., 2004)
0.271 1.240 1.248 1.275(82) (Ali Khan et al., 2004)
0.297 1.266 1.275 1.300(22) (Ali Khan et al., 2004)
0.310 1.275 1.284 1.320(19) (Ali Khan et al., 2004)
0.314 1.280 1.288 1.412(61) (Ali Khan et al., 2004)
0.354 1.314 1.324 1.348(13) (Ali Khan et al., 2004)
0.502 1.431 1.444 1.497(77) (Ali Khan et al., 2004)
0.514 1.442 1.456 1.506(94) (Ali Khan et al., 2004)
0.536 1.458 1.742 1.509(18) (Ali Khan et al., 2004)
0.540 1.462 1.476 1.519(11) (Ali Khan et al., 2004)
0.578 1.493 1.507 1.657(26) (Ali Khan et al., 2004)
0.607 1.515 1.530 1.629(20) (Ali Khan et al., 2004)
0.776 1.640 1.658 1.679(36) (Ali Khan et al., 2004)
0.874 1.710 1.730 1.741(29) (Ali Khan et al., 2004)
0.883 1.717 1.736 1.781(15) (Ali Khan et al., 2004)
0.894 1.725 1.744 1.878(28) (Ali Khan et al., 2004)
0.901 1.730 1.749 1.785(35) (Ali Khan et al., 2004)
0.913 1.738 1.758 1.798(85) (Ali Khan et al., 2004)
0.921 1.744 1.764 1.801(14) (Ali Khan et al., 2004)
0.940 1.758 1.778 1.809(17) (Ali Khan et al., 2004)
1.201 1.943 1.965 2.063(26) (Ali Khan et al., 2004)
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Presented in Table 4.2 are our results for the nucleon magnetic moments in the

SU(2) version for different values of the model scale parameter R at Mπ = 0 and

at the physical pion mass. In Table 4.3 we give the analogous results for the SU(3)

version with fixed masses M2
K and M2

η . The results show that the scalar parameter

R around 0.6 fm gives the best fits to the nucleon magnetic moments experimental

data, µexp
p

∼= 2.793 and µexp
n

∼= −1.913. It is found that the theoretical results for

the neutron magnetic moment are almost the same for both the SU(2) and SU(3)

versions though the results for the proton magnetic moment are a little bit larger

in the SU(2) version.

Table 4.2 Nucleon magnetic moments in SU(2)

µp µn

R (fm) Mπ = 0 Mphys
π Mπ = 0 Mphys

π

0.50 3.896 2.984 -2.948 -2.015
0.55 3.828 2.947 -2.871 -1.970
0.60 3.796 2.945 -2.823 -1.952
0.65 3.792 2.969 -2.797 -1.954
0.70 3.803 3.012 -2.789 -1.973

Table 4.3 Nucleon magnetic moments in SU(3) for fixed masses M2
K and M2

η

µp µn

R (fm) Mπ = 0 Mphys
π Mπ = 0 Mphys

π

0.50 3.512 2.598 -2.976 -2.043
0.55 3.466 2.585 -2.984 -1.993
0.60 3.456 2.605 -2.843 -1.972
0.65 3.471 2.648 -2.815 -1.972
0.70 3.505 2.709 -2.804 -1.988
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Shown in Table 4.4 are the pion mass dependence of the nucleon charge and

magnetic radius. By choosing ρ = 0.39(gA = 1.5) and scale parameter R = 0.6

fm, we obtain 〈r2〉pE = 0.74 fm, 〈r2〉pM = 0.74 fm and 〈r2〉nM = 0.79 fm, which

are consistent to the experimental data. The predicted values for the proton and

neutron charge and magnetic radii are also presented for larger pion masses. Our

results indicate that the nucleon charge radii are almost independent of the pion

mass.

Table 4.4 Nucleon charge and magnetic radii (fm2)

Slope 3q-core Meson cloud Total Data
〈r2〉pE 0.603 0.133 0.736 0.74

M2
π = (Mphys

π )2 〈r2〉pM 0.412 0.330 0.742 0.74
〈r2〉nM 0.362 0.431 0.793 0.77
〈r2〉pE 0.589 - - -

M2
π = 0 〈r2〉pM 0.407 - - -

〈r2〉nM 0.358 - - -
〈r2〉pE 0.614 0.065 0.678 -

M2
π = 0.1 GeV2 〈r2〉pM 0.411 0.076 0.487 -

〈r2〉nM 0.361 0.093 0.454 -
〈r2〉pE 0.616 0.049 0.665 -

M2
π = 0.2 GeV2 〈r2〉pM 0.408 0.038 0.446 -

〈r2〉nM 0.358 0.042 0.400 -
〈r2〉pE 0.617 0.043 0.660 -

M2
π = 0.3 GeV2 〈r2〉pM 0.405 0.025 0.430 -

〈r2〉nM 0.356 0.025 0.381 -
〈r2〉pE 0.617 0.034 0.657 -

M2
π = 0.4 GeV2 〈r2〉pM 0.403 0.019 0.422 -

〈r2〉nM 0.354 0.017 0.371 -
〈r2〉pE 0.616 0.031 0.654 -

M2
π = 0.5 GeV2 〈r2〉pM 0.402 0.016 0.418 -

〈r2〉nM 0.353 0.013 0.366 -
〈r2〉pE 0.616 0.028 0.644 -

M2
π = 0.6 GeV2 〈r2〉pM 0.401 0.014 0.415 -

〈r2〉nM 0.352 0.010 0.362 -
〈r2〉pE 0.616 0.026 0.642 -

M2
π = 0.7 GeV2 〈r2〉pM 0.400 0.013 0.413 -

〈r2〉nM 0.351 0.008 0.359 -
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In Fig. 4.1 we show the dependence of nucleon mass on meson masses both in

SU(2) [M2
π-dependence only] and in SU(3) [M2

K and M2
η -dependence included].

It is found that the pion-mass dependence of the nucleon mass is considerable

and the results are almost the same for the SU(2) (dotted curve) and SU(3)

(solid curve) cases. In the SU(3) case Kaon and η-meson contributions have been

included with their physical masses.
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Figure 4.1 Dependence of nucleon mass mN on meson masses M2
Φ: mN(M2

π) in
SU(2) (dotted line) and mN(M2

π), mN(M2
K) mN(M2

η ) in SU(3) (the other lines)

The M2
K and M2

η -dependence of nucleon mass, separately shown in Fig. 4.1,

indicates that their contributions, especially for the η meson, are negligible.
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Our results for the M2
π-dependence of the nucleon mass in both the SU(2) and

SU(3) cases are compared with lattice QCD calculations at order p3 and p4

of Ref. (Procura et al., 2006b) in Fig. 4.2. Again, it is found that the pion-

mass dependence is dominates over the Kaon and η ones. Note that, in Fig. 4.2,

our results are closer to the lattice QCD results at order p4 (Procura et al., 2006b).
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lattice QCD at order p
3

lattice QCD at order p
4

Figure 4.2 Dependence of nucleon mass mN on pion mass M2
π : mN(M2

π) in SU(2)
(dotted line), SU(3) (solid line) and from lattice QCD (Procura et al., 2006b) (the
others) at order p3 and p4

Shown in Fig. 4.3 are our results for the pion-mass dependence of nucleon

mass in both the SU(2) and SU(3) cases, compared to lattice QCD calculations

from various collaborations (Orth et al., 2005; Ali Khan et al., 2004). The
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curves show a good consistence with various lattice QCD results, especially

at low M2
π regime (≤ 0.4 GeV 2). At large M2

π regime our results are gen-

erally lower than the lattice QCD predictions. Our results may be improved

by including contributions from excited quark/antiquark states in the meson loop.
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Figure 4.3 Pion-mass dependence of nucleon mass mN(M2
π) in SU(2) (dotted line)

and in SU(3)(solid line) compared to lattice data from various collaborations

Shown in Figs. 4.4 and 4.5 are our results for the nucleon magnetic mo-

ments as functions of M2
π , compared with lattice QCD calculations (Holstein

et al., 2005) and sum rules (Wang et al., 2007). Our results, shown as the solid

curve, are close to the results from other approaches at small M2
π masses.
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Figure 4.4 M2
π-dependence of the proton magnetic moment µp(M

2
π) to one-loop

from sum rules (Holstein et al., 2005) (dotted curve), lattice QCD (Wang et al.,
2007) (dashed curve) and our results in SU(3) (solid curve)
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Figure 4.5 M2
π-dependence of the neutron magnetic moment µn(M2

π) to one-loop
from QCD sum rules (Holstein et al., 2005) (dotted curve), lattice QCD (Wang
et al., 2007) (dashed curve) and our results in SU(3) (solid curve)
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We probe also the strange quark mass ms-dependence of the nucleon magnetic

moments. Shown in Figs. 4.6(a) and 4.6(b) are our results of the nucleon magnetic

moments as functions of M2
π at different values of the strange current quark mass

ms. It can be seen that the nucleon magnetic moments are not sensitive to a

variation of ms.
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Figure 4.6 M2
π-dependence of the nucleon magnetic moment µN(M2

π), with ms =
50 - 200 MeV: (a) for proton and (b) for neutron

In Figs. 4.7(a) and 4.7(b), we show our results for the nucleon magnetic moments

as functions of current quarks mass m̂ at different values of ms (50 - 200 MeV). The

results are not sensitive to ms, the same as the previous plots of M2
π-dependence.

Note that, the relation of m̂ and M2
π can be approximated by Eq. 3.5 (m̂ ≡ M2

π).
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Figure 4.7 Current quarks mass m̂-dependence of the proton magnetic moment
µp(M

2
π), with ms = 50 - 200 MeV: (a) for proton and (b) for neutron

In Figs. 4.8(a) - 4.8(d) we demonstrate the dependence of the nucleon mag-

netic moments on the scale parameter R. It is found that the theoretical

results are not sensitive to the parameter at low M2
π region (below the physical

mass), but at high pion mass region the scale parameter R plays an important role.
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Figure 4.8 Nucleon magnetic moments as functions of M2
π , with various scale

parameter: (a) for proton µp in SU(2), (b) for neutron µn in SU(2), (c) for proton
µp in SU(3) and (d) for neutron µn in SU(3)

The proton charge form factors Gp
E(Q2) are presented in Figs. 4.9(a) and 4.9(b)

for the two-flavor sector SU(2) and three-flavor sector SU(3), respectively, for

various values of pion mass M2
π . It is clear that the M2

π-dependence of the form
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factors is very slightly. Note that we have normalized the Sachs form factors to

1 at zero momentum transfer, for example, Gp
E(0) = 1. It is also found that the

proton charge form factors are almost the same in SU(2) and SU(3) rectors.
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Figure 4.9 Proton charge form factor Gp
E(Q2) with various M2

π : (a) in SU(2) and
(b) in SU(3)

Presented in Figs. 4.10(a) - 4.10(d) are our results of the nucleon magnetic form

factors for various M2
π . The Sachs form factors are normalized to the nucleon

magnetic moments at zero momentum transfer, that is, Gp
E(0) = µp and Gn

M(0) =

µn. It is found that the pion-mass dependence of the magnetic form factors is

much stronger than for the proton charge form factor. And again the results from

the SU(2) and SU(3) sectors are almost the same.
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Figure 4.10 Proton magnetic form factor Gp
E(Q2) for various M2

π (a) in SU(2) and
(b) in SU(3). Neutron magnetic form factor Gp

M(Q2) for various M2
π (c) in SU(2)

and (d) in SU(3)

The pion-mass dependence of the nucleon magnetic moments is studied in the

PCQM in the SU(2) case. Shown in Figs. 4.11(a) and 4.11(b) are the theoretical

results of contributions of three-quarks core, meson cloud, and three-quarks core
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plus meson cloud respectively. Our theoretical results are fairly consistent with

lattice QCD calculations in Refs. (Hackett-Jones et al., 2000b) and (Lee et al.,

2005a,b). It is also found that only the meson-cloud contribution to the nucleon

magnetic moments is sensitive to the pion mass, especially at the low pion mass

region (M2
π ≥ 0.2 GeV2), and the meson-cloud contribution tends to zero when

M2
π gets to 1.0 GeV2.
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Figure 4.11 Dependence of µN on pion mass M2
π in SU(2): quark core dressed

with cloud (solid line), bare quarks (dashed line), meson cloud (dotted line) and
lattice QCD [solid squares taken from (Hackett-Jones et al., 2000b), and solid
circle taken from (Lee et al., 2005a,b)] (a) for µp and (b) for µn

As an extension, we have studied the pion-mass dependence of magnetic moments

of the whole baryon octet in the SU(3) sector. Presented in Figs. 4.12(a) - 4.12(f)

are the theoretical results for µΣ+ , µΣ− , µΞ0 , µΞ− , µΣ0 , and µΛ, respectively. We

obtain a fair consistence with lattice QCD calculations (Lee et al., 2005a,b),

especially with the improved lattice QCD results (Lee et al., 2005a).
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Figure 4.12 Dependence of µB on M2
π in SU(2): quark core dressed with cloud

(solid line), quark core (dashed line), meson cloud (dotted line) and lattice QCD
[solid squares taken from (Hackett-Jones et al., 2000b), and solid circle taken
from (Lee et al., 2005a,b)] (a) µΣ+ , (b) µΣ− , (c) µΞ0 , (d) µΞ− , (e) µΣ0 , and (f) µΛ
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Note in Figs. 4.12(e) and 4.12(f) that the meson cloud has no contribution to the

µΣ0 and µΛ magnetic moments, and in Figs. 4.12(c) and 4.12(d) that the quark

core contributions are independent of the pion mass at one-loop approximation of

the PCQM.



Chapter V

DISCUSSION AND CONCLUSIONS

In this work we have applied the perturbative chiral quark model at one loop

to describe the dependence of the baryon octet properties on the meson masses. It

is found that that the meson-mass dependence of the baryon octet properties such

as the mass, magnetic moments, electromagnetic form factors, both for the two

and three flavor sectors, are reasonably described in comparison to present lattice

QCD and chiral extrapolation of these results. Given also the simplicity of this

model approach, the evaluation at one loop seems sufficient to correctly describe

the pion mass dependence of the discussed observables.

Starting point for the perturbative chiral quark model is based on the con-

cept of effective chiral Lagrangian describing baryons by dressing the three valence

quark operators by the chiral fields (the eight Goldstone mesons) which moving in

a central Dirac field with a static potential. The underlying Lagrangian is moti-

vated by the one of Chiral Perturbation Theory (ChPT), where the fundamental

fermionic degrees of freedom are three valence quarks. The pseudoscalar mesons

as additional degrees of freedom are included in our study as well. The supple-

mentary of three valence quark operators by the chiral fields (a cloud of mesons)

are projected on the baryonic level in order to obtain hadronic matrix elements.

The parts concerning the meson cloud and three valence quarks factorize in the

matrix element. Both parts can be separately calculated. The meson cloud part

involves the chiral dynamics which arises from the chiral Lagrangian and can be

calculated to the order of accuracy desired. The three valence quarks part in turn



45

can be relegated to a quark model with specific assumptions concerning confine-

ment and hadronization, hence modelling three valence quarks structure. At this

stage the factorization scheme can be viewed as a well-defined method to include

chiral dynamics in a valence quark model. The chiral Lagrangian contains a set

of low energy constants (LECs) which are parameters encoding short-distance ef-

fects and contributions due to heavy particle states. In corporate with the impact

of chiral symmetry breaking (e.g. spontaneous and explicit breaking) and chiral

symmetry constraints (e.g. Gell-Mann-Oakes-Renner relations, Gell-Mann-Okubo

relation, Goldberger-Treiman relation and partial conservation of axial current)

are included.

In our framework we investigate the internal structure of the baryon octet,

by probing the dependence of their static properties such as mass, charge radii,

electromagnetic form factors and magnetic moments on the pseudoscalar meson

masses. Our results of the electromagnetic form factors and magnetic moments

for the baryon octet display a significant role of the meson cloud at low Q2, which

is necessary to reproduce the detailed structure of these observables. The results

may indicae that virtual mesons (meson-cloud) exist mainly outside the quark

core.
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APPENDICES



Appendix A

SOLUTIONS OF THE DIRAC EQUATION

FOR THE EFFECTIVE POTENTIAL

In this section we indicate the solutions to the Dirac equation with the

effective potential Veff(r) = S(r) + γ0V (r). The scalar S(r) and time-like vector

V (r) parts are given by

S(r) = M1 + c1r
2,

V (r) = M2 + c2r
2, (A.1)

with the particular choice

M1 =
1− 3ρ2

2ρR
, M2 = E0 − 1 + 3ρ2

2ρR
, c1 ≡ c2 =

ρ

2R3
. (A.2)

The quark wave function uα(~r) in state α with eigen-energy Eα satisfies the Dirac

equation

[−i~α~∇+ βS(r) + V (r)− Eα]uα(~r) = 0. (A.3)

Solutions of the Dirac spinor uα(~r) can be written in the form (?)

uα(~r) = Nα




gα(r)

i~σ · r̂fα(r)


Yα(r̂)χfχc. (A.4)

For the particular choice of the potential the radial functions g and f satisfy the
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form

gα(r) =

(
r

Rα

)l

L
l+1/2
n−1

(
r2

R2
α

)
e
− r2

2R2
α , (A.5)

where for j = l + 1
2

fα(r) = ρα

(
r

Rα

)l+1[
L

l+3/2
n−1 (

r2

R2
α

) + L
l+3/2
n−2 (

r2

R2
α

)

]
e
− r2

2R2
α , (A.6)

and for j = l − 1
2

fα(r) = −ρα

(
r

Rα

)l−1[
(n + l − 1

2
)L

l−1/2
n−1 (

r2

R2
α

) + nLl−1/2
n (

r2

R2
α

)

]
e
− r2

2R2
α . (A.7)

The label α = (nljm) characterizes the state with principle quantum number

n = 1, 2, 3, ..., orbital angular momentum l, total angular momentum j = l ± 1
2

and projection m. Due to the quadratic nature of the potential the radial wave

functions contain the associated Laguerre polynomials Lk
n(x) with

Lk
n(x) =

n∑
m=0

(−1)m (n + k)!

(n−m)!(k + m)!m!
xm. (A.8)

The angular dependence (Yα(r̂) ≡ Ylmj(r̂)) is defined by

Ylmj(r̂) =
∑

ml,ms

(lml
1

2
ms|jm)Ylml

(r̂)χ 1
2
ms

(A.9)

where Ylml
(r̂) is the usual spherical harmonic. Flavor and color parts of the Dirac

spinor are represented by χf and χc, respectively.

The normalization constant is obtained from the condition

∞∫

0

d3~ru†α(~r)uα(~r) = 1 (A.10)



58

which results in

Nα =

[
2−2(n+l+1/2)π1/2R3

α

(2n + 2l)!

(n + l)!(n− 1)!
{1 + ρ2

α(2n + l − 1

2
)}

]−1/2

, (A.11)

The two coefficients Rα and ρα are of the form

Rα = R(1 + ∆EαρR)−1/4, (A.12)

ρα = ρ

(
Rα

R

)3

, (A.13)

and are related to the Gaussian parameters ρ and R of Eq. (2.15). The quantity

∆Eα = Eα−E0 is the difference between the energy of state α and the ground state.

∆Eα depends on the quantum numbers n and l and is related to the parameters ρ

and R by

(∆Eα +
3ρ

R
)2(∆Eα +

1

ρR
) =

ρ

R3
(4n + 2l − 1)2. (A.14)

The potential of harmonic oscillator is widely employed to study the inter-

action in quark-antiquark system of mesons and three quarks system of baryon.

The main character of potential considered to be harmonic is

V (r) ∝ r2. (A.15)

In the spherical coordinate, the radial schrödinger equation is

[
d2

dr2
+

2µ

h̄2
(E − 1

2
µω2r2)− l(l + 1)

r2

]
u(r) = 0 (A.16)

where

u(r) = rR(r) (A.17)
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Eq. (A.16) can be contracted to

[
d2

dρ2
− l(l + 1)

ρ2
+ λ− ρ2

]
u(ρ) = 0 (A.18)

by introducing the dimensionless variable

ρ = αr

λ =
2E

h̄ω
(A.19)

where

α =
(µω

h̄

)1/2

(A.20)

The study of an asymptotic behavior of u(ρ) leads to, when ρ → 0,

u(ρ) ∼ ρl+1 (A.21)

and, when ρ →∞,

[
d2

dρ2
− ρ2

]
u(ρ) = 0. (A.22)

The solution of asymptotic equation is

u(ρ) ∼ e−ρ2/2. (A.23)

According to the asymptotic behaviors in eqs. (A.21) and (A.23), the solution of
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u(ρ) in (A.18) is assumed as

u(ρ) = e−ρ2/2ρl+1g(ρ). (A.24)

Introduced y = ρ2 and inserted (A.24) into (A.18), equation of g(ρ) becomes

y
d2g(y)

dy2
+

[
(l +

3

2
)− y

]
dg(y)

dy
−

[
1

2
(l +

3

2
)− λ

4

]
g(y) = 0. (A.25)

This is the Kummer-Laplace differential equation whose solution, regular at the

origin, is

g(y) = CF

(
l

2
+

3

4
− λ

4
, l +

3

2
, y

)
(A.26)

where C is a constant and F is the confluent hypergeometric function,

F (α, γ, ρ) = 1 +
α

γ

ρ

1!
+

α(α + 1

γ(γ + 1)

ρ2

2!
+ . . .

=
∞∑

k=0

(α)k

(γ)k

ρk

k!
(A.27)

The spherical wave function or the simultaneous eigenfunction of the observables

(H, L2, Lz) reads

ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ) (A.28)

where Rnl(r) is the radial wave functions and Ylm(θ, φ) is the spherical harmonics.

From (A.26), the radial wave function behaves

Rnl(r) ∼ (αr)le−
1
2
α2r2

F (−n, l +
3

2
, α2r2). (A.29)
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The normalized wave function reads

Rnl(r) = α3/2

[
2l+2−n(2l + 2n + 1)!!√

πn![(2l + 1)!!]2

]
(αr)le−

1
2
α2r2

F (−n, l +
3

2
, α2r2). (A.30)

It is more often and convenient to write the above equation in terms of Lagurre

polynomials,

Rnl(r) =

[
2α3n!

Γ(n + l + 3
2
)

]
(αr)le−

1
2
α2r2

Ll+1/2
n (α2r2). (A.31)

where L
l+1/2
n (α2r2) are the associated Laguerre polynomials

Ll+1/2
n (α2r2) =

n∑

k=0

(−1)k

k!

Γ(n + l + 3
2
)

(n− k)!Γ(k + l + 3
2
)
r2k (A.32)

The radial wave functions have the orthogonal property

∫ ∞

0

r2drRnl(r)Rn′l(r) = δnn′ (A.33)

By the Fourier transformation, the analytical wave function of a harmonic oscil-

lator in momentum space is shown

ψnlm(~p) =
1

(2π~) 3
2

∫
d~rψnlm(~r)e−i~p·~r = (−i)2n+lRnl(p)Ylm(~p) (A.34)

where

Rnl(r) =

[
2β3n!

Γ(n + l + 3
2
)

]
(βr)le−

1
2
β2r2

Ll+1/2
n (β2r2). (A.35)
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and

β =
1

α~
(A.36)

In our calculation, the spatial wave functions in momentum space are always used

and β is interpreted as a size parameter in unit of GeV−1. For mesons (quark-

antiquark boundstates), ~p is the momentum of the center of mass

~p =
~p1 − ~p2

2
(A.37)

where ~p1 and ~p2 are momentums of quark and antiquark, respectively.



Appendix B

γ-MATRICES AND TRACE TECHNOLOGY

Four dimensional γ-matrices are defined by the anticommutation relation

{γµ, γν} ≡ γµγν + γνγµ = 2γµν + 1n×n. (B.1)

Definitions base on “An Introduction to Quantum Field Theory”∗ with priority.

Specific Weyl or chiral representations are

γ0 =




0 1

1 0


 ; γi =




0 σi

−σi 0


 (B.2)

where σi is Pauli matrices,

σ1 =




0 1

1 0


 ; γ2 =




0 −i

i 0


 ; γ3 =




1 0

0 −1


 . (B.3)

To easily attack QED problems, the trace techniques produced by R. P. Feynman

has been a very important tools. Here are some proves and properties. The prove

∗Michael E. Peskin and Daniel V. Schroeder, 1995
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of trace of one γ matrix is

trγµ = trγ5γ5γµ since (γ5)2 = 1

= −trγ5γµγ5 since {γµ, γ5} = 0

= −trγ5γ5γµ using cyclic properties of trace

= −trγµ (B.4)

where γ5 =



−1 0

0 1


. Any parameter equal to minus itself must be vanished.

The result is also applied to trace of odd number of γ matrix. For the trace of two

γ matrices, we use the anticommutation property and the cyclic property of trace,

trγµγν = tr(2gµν · 1− γµγν) (anticommutation)

= 8gµν − trγµγν (cyclicity) (B.5)

Hence trγµγν = 4gµν . The trace of any even number of γ matrices are evaluated

in the same way by anticommuting the first γ matrix all the way to right, then

cycle it back to the left. For the trace of four γ matrices, we have

tr(γµγνγργσ) = tr(2gµνγργσ − γνγµγργσ)

= tr(2gµνγργσ − γν2gµργσ + γνγρ2gµσ − γνγργσγµ) (B.6)

Using the cyclic property on the last term and move it to the left hand side, we

obtain

tr(γµγνγργσ) = gµνtrγργσ − gµρtrγµγσ + gµσtrγνγρ

= 4(gµνgρσ − gµρgνσ + gµσgνρ) (B.7)
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For γ5 = iγ0γ1γ2γ3, the trace of γ5 and any odd number of other matrices is

vanish. The trace of γ5 itself, however, is also zero,

trγ5 = tr(γ0γ0γ5) = −tr(γ0γ5γ0) = −tr(γ0γ0γ5) = −trγ5 = 0. (B.8)

These are summary of trace theorems;

tr(1) = 4

tr(any odd # of γs) = 0

tr(γµγν) = 4gµν

tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ) (B.9)

tr(γ5) = 0

tr(γµγνγ5 = 0

tr(γµγνγργσγ5) = −4iεµνρσ.

The last formula can be simplified by

εαβγδεαβγδ = −24

εαβγµεαβγν = −6δµ
ν (B.10)

εαβγδεαβρσ = −2(δµ
ρ δν

σ − δµ
σδν

ρ)

The order of all γ matrices can be reversed,

tr(γµγνγργσ . . .) = tr(. . . γσγργνγµ) (B.11)
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Two γ matrices with similar indices dotted together can be reduced by

γµγµ = gµνγ
µγν =

1

2
gµν{γµ, γν} = gµνg

µν = 4. (B.12)

In addition, several γ matrices dotted together and having the following form can

be reduced by contraction identities, easily proved by using the anticommutation

relations,

γµγνγµ = −2γν

γµγνγργµ = −2gνρ (B.13)

γµγνγργσγµ = −2γσγργν .

All these properties are important in the QED calculation of differential cross

section.



Appendix C

BASIC NATATIONS OF THE SU(3) GROUP

The group SU(3) is defined as the set of all unitary, unimodular and 3× 3

matrices U i.e.

U †U = 1, det(U) = 1. (C.1)

In mathematical terms, SU(3) is an eight-parameter, compact Lie group. This

implies that any group element can be parameterized by a set of eight independent

real parameters θ = (θ1, ..., θ8) varying over a continuous range. Elements of SU(3)

can be obtained from the exponential representation:

U [θ] = exp

(
−i

8∑
a=1

θa
λa

2

)
(C.2)

with θa real numbers, and where the eight linearly independent matrices λa are

the so-called Gell-Mann matrices, satisfying

λa = λ†a, (C.3)

Tr(λaλb) = 2δab, (C.4)

Tr(λa) = 0. (C.5)
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where λa are the Gell-Mann matrices with the explicit forms

λ1 =




0 1 0

1 0 0

0 0 0




, λ2 =




0 −i 0

i 0 0

0 0 0




, λ3 =




1 0 0

0 −1 0

0 0 0




,

λ4 =




0 0 1

0 0 0

1 0 0




, λ5 =




0 0 −i

0 0 0

i 0 0




, λ6 =




0 0 0

0 0 1

0 1 0




,

λ7 =




0 0 0

0 0 −i

0 i 0




, λ8 =

√
1

3




1 0 0

0 1 0

0 0 −2




. (C.6)

The commutation relations of the Gell-Mann matrices indicate the structure of

the Lie group of SU(3) with

[
λa

2
,
λb

2

]
= ifabc

λc

2
, (C.7)

where fabc are the totally antisymmetry structure constants. The non-vanishing

values of fabc are

f123 = 1,

f147 = −f156 = f246 = f257 = f345 = −f367 = 1/2,

f458 = f678 =
√

3/2. (C.8)
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Other important relations of the Gell-Mann matrices are their anti-commutation

relations

{λa, λb} =
4

3
δab + 2dabcλc, (C.9)

where the totally symmetric real constants dabc are

d118 = d228 = d338 = −d888 =
1√
3
,

d146 = d157 = −d247 = −d256 = d344 = d355 = −d366 = −d377 =
1

2
,

d488 = d588 = d688 = d788 = − 1

2
√

3
. (C.10)



Appendix D

THE ELECTROMAGNETIC FORM FACTORS

IN BREIT FRAME

The electromagnetic current operator for the baryon Jµ can be written as

〈B′(p′)|Jµ(0)|B(p)〉 = ūB′(p
′)[γµFB

1 (q2) +
iσµν

2mB

qνF
B
2 (q2)]uB(p)

= ūB′(p
′)[γµFB

1 (q2) + {γµ − 1

2mB

(p′ − p)µ}FB
2 (q2)]uB(p)

= ūB′(p
′)[γµFB

1 (q2) + FB
2 (q2)− 1

2mB

(p′ − p)µFB
2 (q2)]uB(p).

(D.1)

where

ūB′(p
′)iσµνqνuB(p) = ūB′(p

′)[−1

2
(γµγν − γνγµ)(p′ − p)ν ]uB(p)

= −1

2
ūB′(p

′)[{(2gµν − γνγµ)− γνγµ}p′ν

− {γµγν − (2gνµ − γµγν)}pν ]uB(p)

= −1

2
ūB′(p

′) [2gµνp′ν − 2γνp′νγ
µ − 2γµγνpν + 2gνµpν ] uB(p)

= −ūB′(p
′) [p′µ −mBγµ − γµmB + pµ] uB(p)

= ūB′(p
′) [2mBγµ − (p′ + p)µ] uB(p). (D.2)
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and

ūB′(γ
νpµ −mB) = 0, ūB′γ

νpν = mBūB′ (D.3)

(γνpν −mB)uB = 0, γνpνuB = mBuB. (D.4)

The Sachs form factors can be written by

GB
E(Q2) ≡ FB

1 (q2) +
q2

4m2
B

FB
2 (q2), time component (D.5)

GB
M(Q2) ≡ FB

1 (q2) + FB
2 (q2). space component (D.6)

The current matrix elements can be decomposed into two components, namely

time and spatial component:

〈B′(p′)|J0(0)|B(p)〉 = {FB
1 (q2) + FB

2 (q2)}ūB′(p
′)γ0uB(p)− E

mB

FB
2 (q2)ūB′(p

′)uB(p)

= {FB
1 (q2) + FB

2 (q2)}χ†s′χs − E

mB

FB
2 (q2)

E

mB

χ†s′χs

= {FB
1 (q2) + (1− E2

m2
B

)FB
2 (q2)}χ†s′χs

= {FB
1 (q2) +

q2

m2
B

FB
2 (q2)}χ†s′χs

= GB
E(Q2)χ†s′χs. (D.7)



72

and

〈B′(p′)|J̄(0)|B(p)〉 = {FB
1 (q2) + FB

2 (q2)}ūB′(p
′)γ̄uB(p)

= {FB
1 (q2) + FB

2 (q2)}χ†s′
iσ̄B × q̄

2mB

χs

= GB
M(Q2)χ†s′

iσB × q̄

2mB

χs. (D.8)

by using the free Dirac equation to get the solution:

ūB′(p
′)γ0uB(p) = χ†s′χs (D.9)

ūB′(p
′)uB(p) =

E

mB

χ†s′χs (D.10)

ūB′(p
′)γiuB(p) = χ†s′

iσ̄ × q̄

2mB

χs. (D.11)

where

uB(p) = N




1

σ̄ · (−q̄/2)

E + mB


 χs,

ūB(p) = Nχ†s′

(
1

−σ̄ · (q̄/2)

E + mB

)
, N =

√
E + mB

2mB

. (D.12)
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Therefore

ūB′(p
′)γ0uB(p) = N2χ†s′

(
1

−σ̄ · (q̄/2)

E + mB

)



1 0

0 −1







1

σ̄ · (−q̄/2)

E + mB


 χs

=

(
E + mB

2mB

)
χ†s′

(
1− (σ̄ · q̄/2)2

E + mB

)
χs

=
m2

B + 2EmB + (E2 − q̄2/4)

2mB(E + mB)
χ†s′χs

=
m2

B + 2EmB + m2
B

2mB(E + mB)
χ†s′χs

= χ†s′χs. (D.13)

and

ūB′(p′)uB(p) = N2χ†s′

(
1

−σ̄ · (q̄/2)

E + mB

)



1

σ̄ · (−q̄/2)

E + mB


 χs

=

(
E + mB

2mB

1 +
(σ̄ · q̄/2)2

(E + mB)2

)
χ†s′χs

=
E2 + 2mBE + (m2

B + (q̄/2)2)

2mB(E + mB)
χ†s′χs

=
2E(E + mB)

2mB(E + mB)
χ†s′χs

=
E

mB

χ†s′χs. (D.14)
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and

ūB′(p
′)γiuB(p) = N2χ†s′

(
1

−σ̄ · (q̄/2)

E + mB

)



0 σi

−σi 0







1

σ̄ · (−q̄/2)

E + mB


 χs

= N2χ†s′

(
σi σ̄ · q̄/2

E + mB

+ σi σ̄ · (−q̄/2)

E + mB

)
χs

=

(
E + mB

2mB

)(
σi σ̄ · q̄/2

E + mB

+ σi σ̄ · (−q̄/2)

E + mB

)
χ†s′χs

=
1

4mB

χ†s′{−σi(σ̄ · q̄) + σi(σ̄ · q̄)}χs

=
1

4mB

χ†s′{−σiσjqj + σjqjσ
i}χs

=
1

4mB

χ†s′{−σiσj + σjσi}qjχs

=
1

4mB

χ†s′{−iεijkσk + iεjikσk}qjχs

=
1

4mB

χ†s′{−iεijkσk − iεijkσk}qjχs

=
1

4mB

χ†s′
(−2iεijkσk

)
qjχs

= − i

2mB

χ†s′ε
ijkσkqjχs

=
1

2mB

χ†s′i (σ̄ × q̄)i χs. (D.15)
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The analytical expression of the electromagnetic form factors relevant the dia-

grams.

Three-quark diagram [Fig. D.1]:

Figure D.1 Three-quark diagram

Gp
E(Q2)|3q = Gp

E(Q2)|LO
3q + Gp

E(Q2)|NLO
3q , Gn

E(Q2)|3q ≡ 0,

Gp
M(Q2)|3q = Gp

M(Q2)|LO
3q + Gp

M(Q2)|NLO
3q , Gn

M(Q2)|3q ≡ −2

3
Gp

M(Q2)|3q, (D.16)

where

Gp
E(Q2)|LO

3q = exp

(
−Q2R2

4

)(
1− ρ2

1 + 2
3
ρ2

Q2R2

4

)
,

Gp
E(Q2)|NLO

3q = exp

(
−Q2R2

4

)
m̂r Q2R3ρ

4(1 + 3
2
ρ2)2

×
(

1 + 7ρ2 + 15
4
ρ4

1 + 3
2
ρ2

− Q2R2

4
ρ2

)
,

Gp
M(Q2)|LO

3q = exp

(
−Q2R2

4

)
2mNρR

1 + 3
2
ρ2

,

Gp
M(Q2)|NLO

3q = Gp
M(Q2)|LO

3q · m̂r Rρ

1 + 3
2
ρ2
×

(
Q2R2

4
− 2− 2

3
ρ2

1 + 3
2
ρ2

)
. (D.17)
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Three-quark counterterm (CT) [Fig. D.2]:

Figure D.2 Three-quark counter-term diagram

Gp
E(Q2)|CT ≡ (Ẑ − 1)Gp

E(Q2)|LO
3q , Gn

E(Q2)|CT ≡ 0,

Gp
M(Q2)|CT ≡ (Ẑ − 1)Gp

M(Q2)|LO
3q ,

Gn
M(Q2)|CT ≡ −2

3
Gp

M(Q2)|CT . (D.18)

Meson-cloud diagram (MC) [Fig. D.3]:

Figure D.3 Meson cloud diagram
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GN
E (Q2)|MC =

9

400

( gA

πF

)2
∫ ∞

0

dpp2

∫ 1

−1

dx(p2 + p
√

Q2x)

×FπNN(p2, Q2, x)tNE (p2, Q2, x)|MC ,

GN
M(Q2)|MC =

3

400
mN

( gA

πF

)2
∫ ∞

0

dpp4

∫ 1

−1

dx(1− x2)

×FπNN(p2, Q2, x)tNM(p2, Q2, x)|MC , (D.19)

where

FπNN(p2, Q2, x) = FπNN(p2)FπNN(p2 + Q2 + 2p
√

Q2x),

tpE(p2, Q2, x)|MC = C11
π (p2, Q2, x) + 2C11

K (p2, Q2, x),

tnE(p2, Q2, x)|MC = −C11
π (p2, Q2, x) + C11

K (p2, Q2, x),

tpM(p2, Q2, x)|MC = D22
π (p2, Q2, x) +

4

5
D11

K (p2, Q2, x),

tnM(p2, Q2, x)|MC = −D22
π (p2, Q2, x)− 1

5
D22

K (p2, Q2, x),

Dn1,n2

Φ (p2, Q2, x) =
1

wn1
Φ (p2)wn2

Φ (p2 + Q2 + 2p
√

Q2x)
,

Cn1,n2

Φ (p2, Q2, x) =
2Dn1,n2

wΦ(p2) + wΦ(p2 + Q2 + 2p
√

Q2x)
. (D.20)
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Vertex-correction diagram (VC) [Fig. D.4]:

Figure D.4 Vertex correction diagram

GN
E(M)(Q

2)|V C = Gp
E(M)(Q

2)|LO
3q

9

200
(

ga

πF
)2

∫ ∞

0

dpp4

× F 2
πNN(p2)tNE(M)(p

2)|V C . (D.21)

where

tpE(p2)|V C =
1

2
Wπ −WK(p2) +

1

6
Wη(p

2),

tnE(p2)|V C = Wπ −WK(p2),

tpM(p2)|V C =
1

6
Wπ − 1

3
WK(p2)− 1

6
Wη(p

2),

tnM(p2)|V C = −2

3
Wπ +

1

3
WK(p2) +

1

9
Wη(p

2). (D.22)

WΦ(p2) =
1

w3
Φ(p2)

. (D.23)
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Meson-in-flight diagram (MF) [Fig. D.5] :

Figure D.5 Meson-in-flight diagram

Gp
E(Q2)|MF ≡ 0, Gn

E(Q2)|MF ≡ 0,

Gn
M(Q2)|MF ≡ −Gp

M(Q2)|MF , (D.24)

Gp
M(Q2)|MF =

9

100
mN(

gA

πF
)

∫ ∞

0

dpp4

∫ 1

−1

dx(1− x2)

×FπNN(p2, Q2, x)D22
π (p2, Q2, x). (D.25)
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Abstract

We discuss the sensitivity of nucleon properties (mass, magnetic moments

and electromagnetic form factors) on the variation of the pseudoscalar meson

masses in the context of the perturbative chiral quark model. The obtained

results are compared to data and other theoretical predictions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years nucleon properties have been in the focus of manifestly Lorentz covariant chiral

perturbation theory (ChPT), improved lattice QCD computations and chiral extrapolations (see,

e.g., [1–23]). The lattice formulation of QCD is well established and is a powerful tool for

studying the structure of nucleons. The computation of nucleon properties in lattice QCD is

progressing with steadily increasing accuracy [4–8]. Accurate computations of the nucleon

mass with dynamical fermions and two active flavors are now possible [9, 10] in lattice

QCD. In practice, these computations are so far limited to relatively large quark masses.

Direct simulations of QCD for light current quark masses, near the chiral limit, remain

computationally intensive. To extract predictions for observables, lattice data generated at

high current quark masses have to be extrapolated to the point of physical quark or pion mass.

Therefore, one of the current aims in lattice QCD is to establish the quark mass dependence

of quantities of physical interest, such as the nucleon mass, magnetic moments and form

factors. The major tool in establishing the current quark mass dependence of lattice QCD

results is methods based on chiral effective field theory. Recent extrapolation studies of lattice

results concern the nucleon mass [4, 5, 11, 12, 14], its axial vector coupling constant and

3 On leave of absence from the Department of Physics, Tomsk State University, 634050 Tomsk, Russia.

0954-3899/08/025005+14$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1
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magnetic moments [11–13], the pion–nucleon sigma term, charge radii [15], form factors

[16–18], and moments of structure functions [19]. The chiral expansion in the chiral effective

field theory (χEFT) has been used to study the quark mass (pion mass) dependence of the

magnetic moments, magnetic form factors and the axial–vector coupling constant [20, 21]

of the nucleon for extrapolations of lattice QCD results, so far determined at relatively large

quark masses corresponding to pion masses of mπ � 0.6 GeV, down to physical values of mπ .

In the chiral limit, with mπ → 0, QCD at low energies is realized in the form of an effective

field theory with spontaneously broken chiral symmetry, with massless pions as the primary

active degrees of freedom. The coupling of the chiral Goldstone bosons to these spin-1/2

matter fields produces the so-called pion-cloud of the nucleon, an important component of

nucleon structure at low energy and low momentum scales.

In the present paper, we investigate the dependence of nucleon properties (mass, magnetic

moments and electromagnetic form factors) on pseudoscalar meson masses applying the

perturbative chiral quark model (PCQM) [24–26]. In the PCQM baryons are described by

three relativistic valence quarks confined in a static potential, which are supplemented by

a cloud of pseudoscalar Goldstone bosons, as required by chiral symmetry. This simple

phenomenological model has already been successfully applied to the charge and magnetic

form factors of baryons, sigma terms, ground-state masses of baryons, the electromagnetic

N → � transition, and other baryon properties [24–26]. Note that in [27, 28] we extend this

approach by constructing a framework which is manifestly Lorentz covariant and aims for

consistency with ChPT.

In this work, our strategy is as follows. First, we discuss the nucleon properties (mass,

magnetic moments and electromagnetic form factors) in dependence on the pion mass in the

two-flavor sector. Second, we extend our formalism to the three-flavor sector including kaon

and η-meson degrees of freedom with fixed masses. All calculations are performed at one

loop. The chiral limit, where current quark masses approach zero with m̂,ms → 0, is well

defined. We compare the obtained quark mass dependence of the nucleon observables to the

results of other approaches (lattice QCD, chiral extrapolations).

This paper is organized as follows. In section 2, we give a short overview of our approach.

In section 3, we discuss dependence of nucleon properties on the variation of the pion mass

in the two- and three-flavor picture in the context of the PCQM and compare them to other

theoretical approaches. In section 4, we give our conclusions.

2. The perturbative chiral quark model

The perturbative chiral quark model [24–26] is based on an effective chiral Lagrangian

describing baryons by a core of three valence quarks, moving in a central Dirac field with

Veff(r) = S(r) + γ 0V (r), where r = |�x|. In order to respect chiral symmetry, a cloud of

Goldstone bosons (π,K and η) is included, which are treated as small fluctuations around the

three-quark core. The model Lagrangian is

L(x) = ψ̄(x)[i�∂ − γ 0V (r) − M]ψ(x) +
F 2

4
Tr[∂µU(x)∂µU †(x) + 2MB(U(x) + U †(x))]

− ψ̄(x)S(r)

[

U(x) + U †(x)

2
+ γ 5 U(x) − U †(x)

2

]

ψ(x), (1)

where ψ = (u, d, s) is the triplet of quark fields, U = exp[i�̂/F ] is the chiral field in the

exponential parametrization, F = 88 MeV is the pion decay constant in the chiral limit [29],

M = diag{mu,md ,ms} is the mass matrix of current quarks and B = −〈0|ūu|0〉/F 2 =
−〈0|d̄d|0〉/F 2 is the quark condensate constant. In the numerical calculations we restrict

2
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to the isospin symmetry limit mu = md = m̂. We rely on the standard picture of chiral

symmetry breaking [30] and for the masses of pseudoscalar mesons we use the leading term

in their chiral expansion (i.e. linear in the current quark mass). By construction, our effective

chiral Lagrangian is consistent with the known low-energy theorems (Gell–Mann–Okubo and

Gell–Mann–Oakes–Renner relations, partial conservation of axial current (PCAC), Feynman–

Hellmann relation between pion–nucleon σ -term and the derivative of the nucleon mass, etc).

The electromagnetic field is included into the effective Lagrangian (1) using the standard

procedure, i.e. the interaction of quarks and charged mesons with photons is introduced using

minimal substitution.

To derive the properties of baryons, which are modeled as bound states of valence quarks

surrounded by a meson cloud, we formulate perturbation theory and restrict the quark states to

the ground-state contribution with ψ(x) = b0u0(�x) exp(−iE0t), where b0 is the corresponding

single-quark annihilation operator. The quark wavefunction u0(�x) belongs to the basis of

potential eigenstates used for expanding the quark field operator ψ(�x). In our calculation

of matrix elements, we project quark diagrams on the respective baryon states. The baryon

states are conventionally set up by the product of the SU(6) spin-flavor and SU(3)c color

wavefunctions, where the nonrelativistic single quark spin wavefunction is simply replaced

by the relativistic solution u0(�x) of the Dirac equation

[−iγ 0 �γ · �∇ + γ 0S(r) + V (r) − E0]u0(�x) = 0, (2)

where E0 is the single-quark ground-state energy.

For the description of baryon properties, we use the effective potential Veff(r) with a

quadratic radial dependence [24, 25]:

S(r) = M1 + c1r
2, V (r) = M2 + c2r

2 (3)

with the particular choice

M1 =
1 − 3ρ2

2ρR
, M2 = E0 −

1 + 3ρ2

2ρR
, c1 ≡ c2 =

ρ

2R3
. (4)

Here, R and ρ are parameters related to the ground-state quark wavefunction u0:

u0(�x; i) = N0 exp

[

−
�x2

2R2

] (

1

iρ �σ(i) · �x/R

)

χs(i)χf (i)χc(i), (5)

where N0 = [π3/2R3(1 + 3ρ2/2)]−1/2 is a normalization constant; χs, χf , χc are the spin,

flavor and color quark wavefunctions, respectively. The index ‘i’ stands for the ith quark. The

constant part of the scalar potential M1 can be interpreted as the constituent mass of the quark,

which is simply the displacement of the current quark mass due to the potential S(r). The

parameter ρ is related to the axial charge gA of the nucleon calculated in the zeroth-order (or

3q-core) approximation:

gA =
5

3

(

1 −
2ρ2

1 + 3
2
ρ2

)

. (6)

Therefore, ρ can be replaced by gA using the matching condition (6). The parameter R is

related to the charge radius of the proton in the zeroth-order approximation as

〈

r2
E

〉P

LO
=

∫

d3xu
†

0(�x)�x2u0(�x) =
3R2

2

1 + 5
2
ρ2

1 + 3
2
ρ2

. (7)

In our calculations we use the value gA = 1.25. Therefore, we have only one free parameter

in our model, that is R or
〈

r2
E

〉p

LO
. In previous publications R was varied in the region from

3
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0.55 fm to 0.65 fm, which corresponds to a change of
〈

r2
E

〉p

LO
from 0.5 to 0.7 fm2. Note that for

the given form of the effective potential (3) the Dirac equation (2) can be solved analytically

(for the ground state see equation (5), for excited states see [26]).

The expectation value of an operator Â is then set up as:

〈Â〉 = B〈φ0|

∞
∑

n=1

in

n!

∫

d4x1 . . .

∫

d4xnT [LI (x1) . . .LI (xn)Â]|φ0〉
B
c , (8)

where the state vector |φ0〉 corresponds to the unperturbed three-quark state (3q-core).

Superscript ‘B’ in the equation indicates that the matrix elements have to be projected onto the

respective baryon states, whereas subscript ‘c’ refers to contributions from connected graphs

only. Here LI (x) is the appropriate interaction Lagrangian. For the purpose of the present

paper, we include in LI (x) the linearized coupling of pseudoscalar fields with quarks and the

corresponding coupling of quarks and mesons to the electromagnetic field (see details in [24]):

LI (x) = −ψ̄(x) iγ 5 �̂(x)

F
S(r)ψ(x) − eAµ(x)ψ̄(x)γ µQψ(x)

− eAµ(x)

8
∑

i,j=1

[

f3ij +
f8ij
√

3

]

�i(x)∂µ�j (x) + · · · , (9)

where fijk are the SU(3) antisymmetric structure constants.

For the evaluation of equation (8) we apply Wick’s theorem with the appropriate

propagators for the quarks and pions. For the quark propagator we use the vacuum

Feynman propagator for a fermion in a binding potential restricted to the ground-state quark

wavefunction with

iG0(x, y) = u0(�x)ū0(�y) e−iE0(x0−y0)θ(x0 − y0). (10)

For the meson field we use the free Feynman propagator for a boson field with

i�ij (x − y) = 〈0|T {�i(x)�j (y)}|0〉 = δij

∫

d4k

(2π)4i
e−ik(x−y)��(k), (11)

where ��(k) =
[

M2
� − k2 − i0+

]−1
is the meson propagator in momentum space and M� is

the meson mass.

The physical nucleon mass at one loop is given by

mN = mcore
N + �mN (12)

where

mcore
N = 3{E0 + γ m̂} = 3

{

E0 +
γ

2B
M2

π

}

(13)

is the contribution of the three-quark core (the second term on the rhs of equation (13) is the

contribution of the current quark mass) and

�mN = �MC + �ME (14)

is the nucleon mass shift due to the meson-cloud contribution. The diagrams that contribute

to the nucleon mass shift �mN at one loop are shown in figure 1 (see details in [24, 25]).

Figure 1(a) corresponds to the so-called meson-cloud (MC) contribution and figure1(b) is the

meson-exchange (ME) contribution. The operators �MC and �ME are functions of the meson

masses and are expressed in terms of the universal self-energy operator

�
(

M2
�

)

= −I 24
� , � = π,K, η. (15)

4
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(a) (b)

Figure 1. Diagrams contributing to the nucleon mass shift.

Z - 1

(a) (b)

(c) (d)

(e)

Figure 2. Diagrams contributing to the nucleon electromagnetic form factors.

Here we introduce a notation for the structure integral in terms of which all further formulae

can be expressed:

IMN
� =

(

gA

πF

)2 ∫ ∞

0

dppNF 2
πNN (p2)

(

M2
� + p2

)
M
2

, M,N = 0, 1, 2, . . . (16)

and

I 0N
� ≡ IN ≡

(

gA

πF

)2 ∫ ∞

0

dppNF 2
πNN (p2) =

(

gA

πF

)2(
2

R2

)
N+1

2

×�

(

N + 1

2

)(

1

2
−

N + 1

4
β +

(N + 1)(N + 3)

32
β2

)

, (17)

where β = 2ρ2/(2 − ρ2). The function FπNN (p2) is the πNN form factor normalized to

unity at zero recoil (p2 = 0):

FπNN (Q2) = exp

(

−
Q2R2

4

){

1 −
Q2R2

4
β

}

. (18)

The meson-cloud contributions to the mass shift are then given

5
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Figure 3. Dependence of nucleon mass mN on meson mass M2
�: mN

(
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)
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(1) in SU(2) as

�MC =
81

400
�

(

M2
π

)

, �ME =
90

400
�

(
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)

, (19)
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Figure 8. µN at M2
π = 0–1 GeV2 and R = 0.5–0.7 fm in SU(2).

Exact expressions for the nucleon electromagnetic form factors can be found in [24]. Diagrams

contributing to these quantities are shown in figure 2. Here we just present the typical results

for the magnetic moments in SU(2) and SU(3). The two-flavor result is obtained from the

three-flavor one when neglecting kaon and η-meson contributions. The magnetic moments of

the nucleons, µp and µn, are given by the expressions

µp = µLO
p

[

1 + δ −
1

400

{

26I 34
π + 16I 34

K + 4I 34
η

}

]

+
mN

50

{

11I 44
π + I 44

K

}

,

µn = −
2

3
µLO

p

[

1 + δ −
1

400

{

21I 34
π + 21I 34

K + 4I 34
η

}

]

−
mN

50

{

11I 44
π + I 44

K

}

,

(21)

8
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Figure 9. µN at M2
π = 0–1 GeV2 and R = 0.5–0.7 fm in SU(3).
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Figure 10. Proton charge form factor G
p

E(Q2) as function of M2
π in SU(2).

where

µLO
p =

2mNρR

1 + 3
2
ρ2

(22)

is the leading-order contribution to the proton magnetic moment. The factor

δ = −

(

m̂ +
�MC

3
·

1 + 3
2
ρ2

1 − 3
2
ρ2

)

2 − 3
2
ρ2

(

1 + 3
2
ρ2

)2
Rρ (23)

defines the NLO correction to the nucleon magnetic moments due to the modification of the

quark wavefunction [24].

9
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3. Numerical results

In this section, we discuss the numerical results for the dependence of nucleon properties on

a variation of the pseudoscalar meson masses.

In table 1, we present our results for the nucleon mass in dependence on the pion mass.

Both the SU(2) version, considering only the pion cloud contribution, and the SU(3) variant,

including in addition kaon and η-meson cloud contributions, are indicated. The total result

10
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Table 1. Nucleon mass (in GeV) in the SU(2) and SU(3) versions and at different values for M2
π .

Nucleon mass SU(2) SU(3) Other approaches

3q-core 1.203 1.247 –

Meson loops (total) −0.265 −0.309 –

π loops −0.265 −0.265 –

K loops – −0.042 –

η loops – −0.002 –

Total 0.938 27 0.938 27 –

Chiral limit 0.887 0.831 0.880 [5, 12], 0.883 [4],

0.770(110) [31], 0.890(180) [14],

0.832 [27]

M2
π (in GeV2)

0.153 1.122 1.128 1.182(26) [7]

0.162 1.133 1.138 1.195(42) [7]

0.175 1.148 1.154 1.104(20) [7]

0.240 1.212 1.220 1.228(31) [7]

0.348 1.310 1.320 1.356(21) [7]

0.413 1.360 1.371 1.377(19) [7]

0.462 1.400 1.412 1.410(17) [7]

0.557 1.475 1.490 1.533(28) [7]

0.588 1.500 1.515 1.509(16) [7]

0.678 1.566 1.582 1.637(27) [7]

0.774 1.638 1.656 1.631(30) [7]

0.810 1.664 1.682 1.619(16) [7]

0.258 1.231 1.239 1.253(15) [8]

0.271 1.240 1.248 1.275(82) [8]

0.297 1.266 1.275 1.300(22) [8]

0.310 1.275 1.284 1.320(19) [8]

0.314 1.280 1.288 1.412(61) [8]

0.354 1.314 1.324 1.348(13) [8]

0.502 1.431 1.444 1.497(77) [8]

0.514 1.442 1.456 1.506(94) [8]

0.536 1.458 1.742 1.509(18) [8]

0.540 1.462 1.476 1.519(11) [8]

0.578 1.493 1.507 1.657(26) [8]

0.607 1.515 1.530 1.629(20) [8]

0.776 1.640 1.658 1.679(36) [8]

0.874 1.710 1.730 1.741(29) [8]

0.883 1.717 1.736 1.781(15) [8]

0.894 1.725 1.744 1.878(28) [8]

0.901 1.730 1.749 1.785(35) [8]

0.913 1.738 1.758 1.798(85) [8]

0.921 1.744 1.764 1.801(14) [8]

0.940 1.758 1.778 1.809(17) [8]

1.201 1.943 1.965 2.063(26) [8]

is normalized to the physical value (coinciding with the proton mass treated as the reference

point) mN ≡ mp = 938.27 MeV by fixing the ground-state quark energy to E0 
 397 MeV

[in case of SU(2)] and E0 
 411 MeV [in case of SU(3)]. We also indicate the separate

contributions of the 3q-core and the meson cloud, and, in addition, the value obtained in the
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Table 2. Nucleon magnetic moments in SU(2).

µp µn

R (fm) Mπ = 0 M
phys
π Mπ = 0 M

phys
π

0.50 3.896 2.984 −2.948 −2.015

0.55 3.828 2.947 −2.871 −1.970

0.60 3.796 2.945 −2.823 −1.952

0.65 3.792 2.969 −2.797 −1.954

0.70 3.803 3.012 −2.789 −1.973

Table 3. Nucleon magnetic moments in SU(3) for fixed masses M2
K and M2

η .

µp µn

R (fm) Mπ = 0 M
phys
π Mπ = 0 M

phys
π

0.50 3.512 2.598 −2.976 −2.043

0.55 3.466 2.585 −2.984 −1.993

0.60 3.456 2.605 −2.843 −1.972

0.65 3.471 2.648 −2.815 −1.972

0.70 3.505 2.709 −2.804 −1.988

chiral limit, consistent with the values of [14, 27, 31]. For the dependence on the pion mass

we choose mass values in the range of M2
π 
 0.15–1.2 GeV2 and the resulting nucleon mass is

directly compared to either chiral extrapolations or lattice data [7, 8]. In both comparisons our

results are consistent with the corresponding values of either the extrapolations or the lattice

data. In figures 3 and 4, we indicate the full functional dependence of the nucleon mass on

M2
π ,M2

K and M2
η , respectively, and compare them (in the case of the SU(2) M2

π -dependence)

to results of lattice QCD at orders p3 and p4 of [4]. In figure 5, we compare the results for the

nucleon mass both in SU(2) and SU(3) to lattice QCD data from various collaborations [7, 8]

as functions of M2
π .

In table 2, we present our results for the nucleon magnetic moments in the SU(2) version

for different values of the model scale parameter R at Mπ = 0 and at the physical pion mass

M
phys
π . In table 3, we give the analogous results for SU(3). In figures 6 and 7, we draw the

curves for the nucleon magnetic moments as functions of M2
π and compare them to results of

lattice QCD [13, 18]. Note that the nucleon magnetic moments are not sensitive to a variation

of the strange current quark mass ms . In figures 8 and 9, we demonstrate the sensitivity of the

nucleon magnetic moments as functions of M2
π on the variation of the scale parameter R.

Finally, in figures 10–12 we present results for the nucleon form factors G
p

E(Q2),

G
p

M(Q2)
/

µp and Gn
M(Q2)

/

µn at different values of M2
π . A larger pion mass leads to an

increase of the normalized (at Q2 = 0) form factors.

4. Conclusions

In this work, we apply the perturbative chiral quark model at one loop to describe the

dependence of nucleon properties on the meson masses. It has been previously verified

that the model is successful in the explanation of many aspects of nucleon properties [23–25],

such as magnetic moments, the axial vector form factor, the N → � transition amplitude, the

meson–nucleon sigma-term and πN nucleon scattering. Here we demonstrate that the meson
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mass dependence of nucleon properties such as the mass, magnetic moments, electromagnetic

form factors, both for the two- and three-flavor variants, is reasonably described in comparison

to present lattice data and extrapolations of these results. Given also the simplicity of this

model approach, the evaluation at one loop seems sufficient to correctly describe the pion

mass dependence of the discussed observables.
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