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SPACETIME DESCRIPTION OF QUANTUM FIELD THEORY/ PROPAGATION
OF PHOTONS IN SPACETIME AS TIME EVOLUTION PROCESSES/ QUANTUM
FIELD THEORY OF REFLECTION OF PHOTONS IN SPACETIME.

The major analysis involved in this thesis is to provide a rigorous formalism for
the propagation of photons in spacetime as a time evolution process with associated
amplitudes of transitions between different spacetime points in quantum field theory.
After a detailed analysis of the corresponding situation for non-relativistic particles in
quantum physics dealing with the intriguing problem of reflections of such particles off
a reflecting surface according to quantum theory, the analysis is extended to the situa-
tion of photons, as ultra-relativistic particles, in spacetime in quantum field theory. A
QED formalism is systematically developed to describe photon propagation in space-
time as a time evolution process based on the actual physical process of propagation be-
tween emitters and detectors as applied, in particular to the reflection of photons. This
development, as well as early studies by Feynman, clearly show that a practical, com-
putational and predictive dynamical formalism in spacetime was lacking. The present
one generalizes to different experimental situations and other interacting field theories
as well emphasizing the practicality of the problem treated here. For example, by using
a unitarity expansion of the vacuum-to-vacuum transition amplitude (0, |0_), supple-
mented by the expressions for the amplitudes of emission, by an emitter, and detection,

by a detector, of photon excitations, the corresponding amplitudes of propagation of
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photon excitations between different spacetime points in infinitely extended space as
well as in half-space, as time evolution processes, and show that they do not coincide
with the so-called Feynman propagators with the corresponding boundary conditions in
half-space. In the quantum field theory formalism, derived amplitudes are associated
with the localization of photon excitations in configuration space, that lead, in the quan-
tum probabilistic sense, probabilities as to where these excitations were in space within
given time spans. In particular, these amplitudes satisfy important completeness rela-
tions for the internal consistency of the formalism. As photon excitations travel from
an emitter to a detector, they may have points of impact at any point on a reflecting sur-
face. A key result is that the quantum field theory treatment via the derived amplitudes
mentioned above, show that all amplitudes with points of impact at any point on the
surface are exponentially damped relative to the classical point of impact. Finally in an
Appendix, we have also derived a closed expression for the i-quantum correction to the

average number of photons emitted in synchrotron radiation.
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CHAPTER 1
INTRODUCTION

A non-speculative quantum mechanical treatment of the propagation of photons
in spacetime has been an intriguing problem for years and is certainly a difficult one
and far from trivial to develop. Several attempts have been made in recent years (e.g.,
Bialynicki-Birula, 1998; Allard et al., 1997) to describe the localization of photons in
space (e.g., Hong and Mandel, 1986). It is fair to say, however, that there was still no
explicit dynamical, non-heuristic, actual quantum (field) theory QED formalism worked
out in spacetime as dictated by the latter. In spite of the spatial localization of photons
in the laboratory (Hong and Mandel (1986), see also Ou, Hong and Mandel (1987);
Hardy (1991)), as just mentioned, there were no completely satisfactory theoretical de-
scriptions of their localization. The great difficulty of providing a theoretical framework
of the localization of photons became clear through the ingenious work of Newton and
Wigner (1948), see also Pryce (1948); Foldy and Woutheysen (1950); Tani (1951); Cini
and Touschek (1958); Bose, Gamba and Sudarshan (1959); Wightman (1962); Bacry
(1981), (1988a), (1988b); Manoukian (1990); Mourad (1993); Ingall (1996)) who tried
to define position operators for quantum relativistic particles, and of course, the pho-
ton being massless is an ultra-relativistic particle. In general, a quantum relativistic
particle of mass M cannot be localized within a volume of extension smaller than its
Compton wavelength /i/Mec. As the photon is massless, one already sees the difficulty
encountered in localizing it. The construction of position operators for quantum rela-
tivistic particles turned out to be a difficult one and depends heavily on the assumptions
made in a theory to define them. For example, Newton and Wigner insisted on the com-
mutativity of the three components X;, [X;, X;| = 0 of the position operator but this

condition was relaxed in several other attempts (Pryce (1948); Jauch and Piron (1967);



Amrein (1969); Bacry (1988); Mourad (1993); Brook and Schroeck Jr. (1996)) . The
reconciliation of the definition of a position operator, defined as a three vector, with
relativity was also investigated (McDonald (1970); Broyles (1970); Johnson (1971);
Han, Kim and Noz (1987); Kim and Wigner (1987); Bacry (1993). A notable contri-
bution was due to Acharya and Sudarshan (1960) who showed the possibility of plane-
localization (in the form of a wave front) of light as opposed to a localization at a point.
Many attempts were also done in constructing “wave function” as solutions extracted
from Maxwell’s equations (Pike and Sarkar (1987); Ziokowski (1989); Palmer and Don-
nelly (1993); Adlard, Pike and Sarkar (1987); see also Amrein (1969)) which have at
least shown a rapid vanishing properties spatially of the solutions with a power law
x|~*, a > 0, for x| — 0, The momentum description of a photon and its interaction
with elementary particles such as QED (Schwinger (1948), (1949a), (1949b), (1951¢);
Feynman (1949a), (1949b), (1950); Tomonaga (1948); Dyson (1949a), (1949b)) and
in the Electro-Weak theory (Salam (1980), Weinberg (1980) and Glashow (1980)) has
been, however successfully handled. The spatial description of a photon, however, be-
comes important when describing its localization by a detector or a photon counter,
or, in general, in describing its interaction with a macroscopic object such as a re-
flecting surface. The importance of investigating the role of a quantum mechanical
particle, and in particular the photon, in typical classical situations was particularly em-
phasized by Feynman (1985) in his fascinating, though non-technical lectures on QED
and matter, a topic on which much research was done before and since then (Ballian
and Duplantier (1977), (1978); Schwinger De Raad Jr. and Milton (1978); Deutsch and
Candelas (1979), Kenedy, Critchley and Dowker (1980); Manoukian (1987a), (1987b),
(1989a), (1989b), (1989¢), (1989d), (1990a), (1990b), (1991), (1992a), (1992b), (1993),
(1996), (1997)). In particular, the correlation of photons and their tendency to travel in
the same direction, as in beam formation, is worked out in Manoukian (1992b). Basic
experiments involving photons interacting with macroscopic objects, in a momentum

description, however, were also given (see also Manoukian, (1992a), (1993), (1996),



(1997)). A spacetime description of massive quantum particles interacting with macro-
scopic objects were carried out (Manoukian (1987a), (1987b), (1990)) as well as for
stimulated emissions (Manoukian (1988)). Some progress has been also made on the
propagation of photons, in spacetime as formally propagation between an emitter and
a detector (Manoukian (1989b), (1989c), (1990), (1991)). The quantum field theoreti-
cal description of localized photons in spacetime has remained, however, a formidable
problem. Even a quantum field theory description in spacetime of a simplest experi-
ment as the reflection of photons off a reflecting surface as a time evolution process was
lacking. This is certainly remarkable in the progress of physics, knowing that QED has
been around for sometime and as Feynman (1985, p. 3) puts it, it has been thoroughly
analyzed, in his legendary Alix G, Mautner Memonal Lectures. The latter fascinating,
though heuristic treatment (Feynman, 1985) in words is of course, far from a definite
theoretical description but, in spite being addressed to non-specialists, the discussion
clearly indicates, and as the present analysis shows, that a theoretical formalism, as
stated above, to explain a simplest experiment in spacetime in a quantum (field) the-
ory QED setting was lacking, For one thing, the amplitude of propagation of photons
in spacetime, as a time evolution process in infinitely extended space. for example,
from a point z} to a point x4, turns out to be given by (i/(7)?)(x5 — 29)%/[(x9 — x1)?]?
rather than by the familiar Feynman propagator i/(zy — x1)?, with the former satisfy-
ing a key completeness relation for the internal consistency of the theory as formulated
in spacetime. The purpose of this work is, in particular, to develop such formalism in
detail based on the actual physical process of the propagation of photons from emit-
ters to detectors obtained from the so-called vacuum-to-vacuum transition amplitude
for the underlying theory. This method has been quite successful over the years in
the easiness of momentum space computations of physical processes, avoiding of in-
troducing so-called wavefunctions, not to mention of the elegance of the formalism
as opposed to more standard techniques, and at the same time gaining much physical

insight as particles propagate from emitters, interact, and finally particles reach the de-



tectors as occurring in practice. The present analysis rests on three general key points:
(i) By working directly in spacetime for the vacuum-to-vacuum transition amplitude,
for given boundary conditions (B.C.), and from the expressions of the amplitudes for
the emission and detection of photon excitations by the external sources, an amplitude
of propagation between different spacetime points from emitters to detectors, causally
arranged, is extracted and, as mentioned above, it does not coincide with the Feynman
propagator for the corresponding B.C. This step already shows the power of determin-
ing amplitudes of propagation by introducing external sources. (ii) The amplitude of
propagation is shown to satisfy a completeness relation as photons propagate between
different points critical for the internal consistency of the theory in spacetime: (iii) Ap-
plication of these amplitudes to describe in detail the experiment on reflection being
sought by showing, in the process, very rapid exponential damping beyond the clas-
sical point of impact for the corresponding amplitude of occurrence. The reader will
soon realize that our theoretical quantum (field) theory QED formalism is reduced to a
non-operator approach and opens a way to describe, as a time evolution process, photon
dynamics in spacetime and other field theory interactions in different experimental situ-
ations as well. Let |0) denote the vacuum states before/after the external current J*(z),
coupled to the vector potential A, () in Maxwell’s Lagrangian, is switched on/off. The
boundary conditions taken are (0, |E(z)[0-) = 0,(04|B_|(z)|0-) = 0 for z — 40,
where the reflecting surface is taken to consist the 2! — 22 plane, with 22 = 2 > 0, and
E||/B denote the components of the electric/magnetic fields parallel/perpendicular to
the ' — 22 plane. The vacuum-to-vacuum transition amplitude (0. |0_) in particular, is
derived. By carrying a unitarity expression of (0, |0_) for photon excitations between
emitters and detectors, coupled to the expressions for the emissions and detections by
these sources, the amplitudes for propagation of photon excitations between different
spacetime points in infinitely extended space as well as in half-space as time evolution
processes are extracted. In particular, we show, that by an explicit derivation, that the

photon excitations may reflect off the reflecting surface at any point. All such points are



shown to be exponentially damped relative to the classical point of impact. By local-
ization, it is understood that one may associate an amplitude for any pair of spacetime
points (29, x1), (29, x2) for 2§ > ¢ for which |x, —x; | may be chosen arbitrarily small.
In reference to a reflecting surface, the amplitude for reflecting off the classical point
is exponentially dominating over any other point on the surface, thus attributing a high
degree of localization of a photon excitation at classical pint of impact at a given time in
the history of its time evolution process. In Chapter 11, the spacetime propagation of a
non-relativistic particle in half-space for application in the reflection process, according
to quantum physics, is developed as a guide for the far more complex problem dealing
with photons in quantum field theory analyzed in Chapter V. Chapter III deals with a
momentum description of reflection and thus provides no information on the spacetime
propagation of photon excitations. In Chapter 1V, the spacetime description of photon
excitations is developed first in infinitely extended space and then in half-space and the
corresponding amplitudes of propagation between different spacetime points are de-
rived. The intriguing application of the half-space formalism, as developed in Chapter
IV, is then applied rigorously to the reflection process in Chapter V in a spacetime de-
scription as a time evolution process where photon excitations encounter an obstacle.
Finally in an Appendix, a closed expression for the exact ~A-quantum correction to the
average number of photons emitted in synchrotron radiation is derived. Chapter VI
summarizes our findings and emphasizes key steps in the development and the applica-
tion of our investigations. In the quantum field theory analyses in this thesis, we choose

units such that 4 = 1, ¢ = 1 as is customary done.



CHAPTER 11
NON-RELATIVISTIC PARTICLE
IN HALF-SPACE: RECONCILIATION
WITH THE LAW OF REFLECTION

2.1 Introduction

Before discussing the propagation of photons in spacetime in Chapters III and
IV, we consider first the propagation of a non-relativistic particle in space as a time
evolution process and apply the study to investigate the law of reflection by restricting
the particle to move in half-space. This will provide us guidelines to investigate the far
more complex problem involving photons in quantum field theory.

We first recall that the amplitude of propagation of a particle of mass m from a
space time point (x1, t;) to a space time point (X, t3), in the infinitely extended space,

in quantum physics is given by the well known formula:

m ))3/2 mlxe = xaf* 2.1.1)

27Tih(t2 - tl

(X9, 12 |X1,t1) = (

We will, however, consider the propagation of such a particle in half-space as
a time evolution process. The interesting question to consider here is what quantum
mechanics says about the reflection of this particle off a reflecting surface. This question

is answered through the following two sections.



2.2 Most Probable Detection Sight

The time-dependent Green’s function G(r,r’z, 2/, T'), withr = (21, 25), —00 <
T < 00,—00 < Ty < 00,3 = 2z > 0,7 =t —t > 0 and similarly for ' and 2/, is

given by

B b e (M \3/2 im|r — r’|? im|z — 2'|?
(=0)G(r,x'z, 25 T) = (27rihT) xp [ ont \ P | 2nT

: 12
[

where the second term ensures that G (r, vz, 2'; T')| ,—o = O and G(r, 1’2, 2"; T)| 1= = 0
so that the particle remains restricted in the upper half region of space. We consider the
reflecting (infinite) surface to lie parallel to the (x, y)-plane with the surface extending
above the z-axis by a small amount z ~ ¢, where the order of magnitude of o will be
discussed later.

We consider the following experimental situation. Suppose that a particle start at
space-time (z1,y1, 21, 0) reaches, at a three-dimensional region encompassing a point
(%0, Yo,0) and then “reflects off” somewhere (location unknown) to the z > 0 region
in an additional time 75. Given that this has occurred, we determine the conditional
probability that it reflects off to a space-time point (2, Yo, 22, 11 +15). To make the cal-
culations easier, and hence more transparent, we consider a Gaussian (Feynman, 1965)
region, centered about the point (zg, ¥y, 0), where oy, 09,0 in the (z,y, z)-directions,
respectively, where o, and o9 are arbitrary. (For simplicity of computations we inte-
grate symmetrically about the point z = 0, with o small). Consider the Green functions

in one dimension, with coordinate (x,y, z) ,

Gz(.Tl,LUQ) = / dl’,G:U(ZL'Q,SC,)G;U(.Z',,SUl) = C{Il, (222)

—oC



oo

Gy(y1,y2) = / dZ/,Gy(y%Z/')Gy(y,;%) = C§I2: (2.2.3)
G,(z1,22) = /dZIGz(ZQ,ZI)Gz(ZI,Z]_) = Ci1s. (2.2.4)
0

For a particle go from (xy, 41, 21) to (2, Y2, 22), The Green functions in 3 dimensions

can be written as

G(RQ, Rl) = Gz(a:Q,xl)Gy(yQ, yl)Gz(ZQ, Zl) = C{CéCéIlfgfg, = I, (225)

where Ry = (21,41, 21), Ro = (%2, y2, 22), and the T7, T5 dependents were supposed.

We are thus led to evaluate the integrals

m 3/2 m 3/2
I'= 20109V/270) " I, 226
<2th1> <2th2> (20109V2m0) " 11 1215, (2.2.6)
where
N [ im(a1 — o)’ im(zz — ')’ — (2 — xp)?
hi=) & T onT, — o A N
1 /_ . Z' exp T onT } exp [ SHT, exp 207 . ( )

o] [ YAV : _ a2 A 2
I, :/ dy' exp —lm(z;thy) }exp {—lm(yQ y) }exp [—(y yo) } ,  (2.2.8)

b o [ ]

: _ 2 : 1\2 2
x [exp [%} — exp [MH exp [— Z—} (2.2.9)
1

To evaluate these integrals, we use the following useful integral of the product



of three Gaussian functions:

/ " [exp[—(rrl — )*/207] exp[—(zs — x)*/203] exp[—(z3 — x)*/207]
_ 27TO'1 \/%0-2 \/%03

o0

1 B
- exp | — —|, (2.2.10)
VA [ 2A}
where
A =olos + 030: + 0703, (2.2.11)
B = 02(x) — 29)* + 02(x1 — x3)° + 07 (w9 — 23)% (2.2.12)
We can use the integral of product of three Gaussian functions mentioned above
for I
0o im(z1—a')? im(zo—a')? —(zo—2')2
I, = 270105V/2 /dlexp[ (2'11T1)}8Xp[ (Q;sz)}e}{p[(ga%)}
= 2mo109V 270 x ,
! 17 ’ ) V21o, V2o, V21os
(2.2.13)
where
=53 o=\
Qth 20'% m
o2hT, 203 72 = V om '
o: =01, (2.2.14)

we then write I, as

I = 27 (@) (@) V2ro;
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T exp [FE ] exp [ exp [l
% / dx/ 1 2 3

., (2.2.15)
V2moq V21O, V2mos

— 00

from (2.2.10) we get the result of /; as

2nih__ih B,
= ,/——T —T - 2.2.16
A, m lm 2016XD[ 2A1:|7 ( )

where

2.9 2 9 2.9 2,2 2 2 2. 2 2
Ay = 005 + 0505 + 0301 = o5(07 + 05) + 0507, 05 = 03

1 T\ Thoh?
— o (1 + 1) - LD (2.2.17
m m
iRT: iRT:
B = o3 (x) — x9)* + 172(% —z0)* + 171(@ — )% (2.2.18)

Also by using (2.2.10) we obtain [, as

— B
=\ o T Taovexp [——2] (2.2.19)



where

2 2 2 2 2 2 2/ 2 2 2 2 2 2
Ay = 0505 + 0503 + 0301 = 07 (01 + 02) + 0507, 03 =07

ih T, Tyh?
=0t (M +T) — — o,
m m
ikl ihT;
By =03 (yn — y2)” + 72(211 —yo)® + #(3& — %)%,

we can write I; and I as

27TihT1T2ihT2 —BJ .
]J:’,mQ—A]UJeXp 2AJ s ]:1,2,

ih  T\T,h?
A'j_|:UJ2(T1+T2)E_ 142 :|’

m2

il ihT;
B = lo2(x: — g 24 M2 2 ML 2
1 [01 (371 1'2) + m (371 1170) m (J?Q 330) )

ihT,

m

, ihTy

By — [a%(yl — 1)+ — (v —w)” — —— (v - yO)z} '

In particular, in absolute values squared we have
2

ormih, ih B;
LIP=|/>=—T\—Ty 0, -

2T h2 2 BJ
= A_JWTlTQ O'j exp |:—A—J:|

11

(2.2.20)

(2.2.21)

(2.2.22)

(2.2.23)

(2.2.24)

(2.2.25)
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thTQO' 1
|L;|> = 27 exp {——{'} } : (2.2.26)
where
4 2 22 hQ

{‘}1 = 0'?(T1 + TQ) [TQ(Z’] — l'())2 + Tl(xQ — 3:0)2] — TlTQO'%(.’,Ul — 1172)2, (2228)

{}2=03(T1 + T3) [To(yr — yo)* + Ti(y2 — w0)?] — T1To05(y1 — y2)°. (2.2.29)

To establish the /3 , we suppose that a particle emitted at #' + 0 from a point Q
at a height 2/ >> § above z = 0 plane , reaches the reflecting body (location within
unknown), at some time, say 75 . Given that this has occurred with probability one, we
determine partial contribution amplitude of finding the reflected particle at any given z
at time 7.

We consider the reflecting Gaussian region along the z axes about the point
z = 0/2 with standard deviation, we integrate, for simplicity, symmetrically for the

amplitude along the z-axes . we thus have the latter amplitude the expression

1

1
2 /2
m m
I 2.2.30
<2th2> <2th1> 5 ( )

and using the z-dependent part of Green function mentioned above,

o

B , im(z = 2)°] im(z; + 2')?
I3 = / dz {exp |:72th exp T

—0oQ0

. N2 . N2 (A 2
X {exp [%} — exp [%} } exp [%} (2.2.31)
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for small 0. We have extended the 2’ integration beyond the region 0 < 2’ < ¢ ,which

is justified provided the integral

202 202

0 00

I 2 1 2
/ dz' exp — (2 =9/2) S /dz' exp _E =027
oc o '6

1 oo

- dz' exp —2?/2, (2.2.32)
= / p—2"/

§/20

s
is small, where the first equality follows from symmetry, An upper bound to integral

above is given by

1 2" 2 exp —a?/2
—— [ d exp—— < /= ———,a=6/20 >0, 2.2.33
Tw/ P / (2.2.33)

N\

™ a

giving the upper bound 16 x 10~2* in comparison to 1. I3 can be carried out by using

integral of the three Gaussian functions formula,

7 1P = (21 = 2)*207] exp [ (22 — 2)°/203] exp [~ (23 — 2)*/207]
K \/%01 \/%02 \/%03

1 B
— exp | —— | , (2.2.34)
2V A P [ QA]
where
A = olo5 + o305 + 0307, (2.2.35)

B = 0'12(22 — 23)2 + 0'3(21 — 23)2 + 0'?2)(22 — 21)2. (2236)
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For 03 = 0 and z3 = §/2 we then write
o0

1 N2 . N2
= [ a4 im(z — 2] [im(a +2)?
3 ' / 4 {exp [ onT, exp onT,

—00

= [ e [T oo [ e [FE ]
e o [ ][] [ 12t
e [ ] o ] o [ 12t
¢ [ o [ B o ) o ]

)
exp
=V2ro1V2no9V2no /dz'

— 00

1
V2moy V2mo, V2mo

ool oo [ o
- 4

2oy V2moy V2ro
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_ 2 _ 2 (o 2
o Jaume 5] oo [557] ol

(2.2.37)
vV 2moy V2mog V2o
Evaluate the first integral in (2.2.37),
[ o [5] o [58)
z
E V2ro? V20?2 V2mo?
1 -B
= , 2.2.38
o \/Zexp {2 A} ( )
where
A =o0j0o5 + 050° + 0°0; = 07(0F + 05) + 0507
ih  TyThh?
— o2 (T) +Th) m_ 4 22 7 (2.2.39)
m m
inT: inT:
B =02z — )+ —2(21 — 6/2)* + (2, — 6/2)% (2.2.40)
m m

We now prove the product of three Gaussian integral formula to use for integrat-

ing the other integral that like the product of three Gaussian integral.

exp |:_(221;1Z’)2:| exp [—(z;o;z’)2:| exp |:—(z23(;3z/)2:|

dz'
V2mo? V27102 V27103

— 00

2 2 2 2 2 2 2
207 2071 205 205 20% 203 203

V2ro?\/2n02 /2702

2 2 2
fe'e) 2 2 ' 12 z 2 / 2 z 2 ' 2
= [ dz

—00
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/K—)(——)(
= z

V2mo? \/2mo3/ 2o}

B fdz,exp — [P2” 4+ Q72 + R]
B S

_ 1 [r (Q°-4PR
sV ap
where

2 221 222 223 2
(@)= { <2a% N 203 * 202

2 2 2 2 22\ 2

B <2210203 + 2290307 + 2230102>
- 222
2070507%

2 242 2 2 2 2.2 9 2
_ (2210202)° + (222020%)° + (2230202) + 821 2002020202
212
(2070303)
2.2 9 9 2.2 9 9
8212305050705 + 8222305030707
2 2 _2)2 ’
(20{030%)

_ 2205035 + 220301 + 230102

2020302

1 1 1
4P =4 —
<20 o2 202 * 20§>

(2.2.41)

(2.2.42)

(2.2.43)
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2 9 2 2 2 9
0505 + 0307 + 070
:4(23223212 12), (2.2.44)
010503
2 2 2 2 2 2 2 2 9 2.2 2 2 92 2
APR — <0203 + o20? + 0102> <210203 + 230307 + z30102>
- 2 2 39 2 2 9 )
2070503 2070503
4 (2202020202 + 2202030202 + 2202030203 + 2202020207 + Z2030%0202)
2 2 22
(2‘71‘72‘73)
2.2 2 2 9 2.2 92 2 2 2.9 2 2 9 2.2 9 2 2
2501050503 + 2105050105 + 2505010105 + 2501050507 (2.2.45)
5 ) 2.
(20{0303)

From integration of Gaussian function

“s\VpHP AP

/ 4P —(P2?2-QZ+R) 1 [x {(-Q)-4PR}
S sV P ’

. 1

2m\/0}03 + 0303 + 0307

03 (29 — 23)% + 03(23 — 21)* + 05(21 — 22)?
X €Xp | — 29 9292 99
2(0%0% + 0503 + 050%)
1 B
= exp [—=— |, (2.2.46)
VA T { 214}
where

A = o{o; + 0305 + 0307, (2.2.47)

B =07(2 — 23)* +03(23 — 21)* + 03(21 — )% (2.2.48)
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For integrating the second integral in (2.2.37),

exp |:—(Z210——|—1z’)2i| exp |i—(z22(;2z’)2i| exp [—(zso;z/)2i|

dz'
2 2 2
V2moy V2mo; V2rmoj
—0oQ

exp — i+ﬁ/+£+i_2ﬁz’+ﬁ+ifﬁz’+ﬁ

/ R, p 207 207 207 203 203 203 202 203 203
= z

o V2ro?\2n02 /2702

V2102 \/2m02 /2702

o0 S Y [ ST ST S R/ 221 223 223 ) 1

/d’eXp [(2a%+20§+20§)z +<2af 203 20%)2}
= z

— 0

V2102 \/2mo2 /2702

Foew— ()]
! 1 2 3
+ /dz : (2.2.49)

P and R are the same as that of the first integral, but (% is different from that of the

early case, we will have,

2 2 2 92 92 2 2 92 92 2 2 2 2 92 92 2 2 2 92 9
APR —4 <2102030203 + 25030705071 + 2501050105 + 2105050507
- 2 2 9
20705073
2 2 2 92 2 2 2 2 2 9 2 2 2 92 92 2 2 2 92 9 2 2 2 2 9
2503010505 + 2501050505 + 2105050105 + 2503010705 + 2301020301>
2 2 2 )
2070507%
(2.2.50)
2
(Q)2 < 221 222 223 )
2 2 2
207 205 203
2
B (2210305 — 2290307 — 2z30f0§)
- 2 2 2
2070507%
2 _2\2 2 _92\2 2 212 2.2 2 2
_ (2210503)" + (2200307)" + (2230705)" + 8212205050507

- 2
(2070303)
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8212305050705 + 8292305050707

(2.2.51)
(20%0303)"
From the Gaussian integration
/ 1P ~(P"+Q<+R) 1 [n exp {(Q)* — 4PR}
_ S SV P 4P ’
B 1 o [_ 0%(z0 4+ 23)% + 05 (23 — 21)* + 02 (21 — 22)*
2m\/0%03 + o302 + 0307 2(0t03 + 0303 + o307)
1 B
= ——exp|——]|, (2.2.52)
VA [ 2A}
where
A = o70) + 0305 + 0307, (2.2.53)
B = 0%(2 + 23) + 02(z3 — 21)? + 05 (21 — 2)% (2.2.54)

We now consider the third integral in (2.2.37),

exp [—(Z;;z’)2:| exp [—(z;:;’)2:| exp |:—(z23(;3z/)2:|

dz!
V2ro? V2103 V27103

—0oQ0

2 2 2 .

oo 7 2/? Zy 222 I 22 23 223 I 22

/ p exp [20% 20%2 + 207 203 20%2 + 203 + 203 2U§Z + 203
= dz

V2102 \/2m02 /2702

—00
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2 2 2
o] - 1 12 2Z1 229 223 ! 27 25 23
/d oo (g v o o) +( Pt ag _203)2 + (o + o + o)

V212 / 27ra§ V2mo?

—00

(2.2.55)

P and R are the same as that of the first integral, but (% is different from that of the

early case, we will have,

2 2 92 92 92 2 2 2 92 9 2 2 92 92 2 2 2 92 92 2
PR —4 2105030505 + 2505010307 + 2501050105 + 2105050507
- 2020252
010503
z%a%a%a%a% + z%a%a%a%a% + zfa%a%a%a% + z%a%a%a%a% + z%a%a%aga%
2020202 ’
(2.2.56)
2
(Q)2 < 221 22’2 22’3 >
5 2 9.2 o5 2
207 205 203
2 —2 —2 2\ ?
20%0%0%
2 2
(220303)% + (2200307)% + (2230702)" + 8212003030307
(2‘71‘7203)
2 2 2 9 2 2 2 9
8212305050705 + 8222305050107 (22.57)

2
(20t030%)

By using the Gaussian integral, i.e.,

[ exp—(P22+Q7 +R) l\/f {(Q)? — PR}
/dz 5 =3 Pexp 1P , (2.2.58)
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we get
Q) = 1 {_a%(zg — 23)? +03(23 + 21) + 05(21 — 29)?
21\/0}03 + 0303 + 0307 2(0fo3 + 0303 + 0307)
1 B
= ——exp |[——|, (2.2.59)
VA [ 214]
where
A = olos + o305 + 0301, (2.2.60)
B =02z — 23)* + 02(23 + 21)? + 02 (21 — 22)°. (2.2.61)

Considering the 4" integral in (2.2.37),

exp [7_(“”,)2} exp [7_(‘?2“,)2} exp [7_@3_2,)2}

7 ) )
207 205 205

V2mo? V27102 V27mo?

dz

— 00

2 2 2
o0 | ALy 2 0y 22 2 229 0 2 25 223 0 27
/ ,eXp [20% + 20%2 + 20% + 20% 20%'2 + 20% + 20% 20%2 + 20%

= dz

o0

V2ro? \/2m03 /2703

2 2 2
o] - 1 1 1 12 221 229 223 ! 27 25 23
/ 1 P (tamte) (-8 (G m o)
= Z .

V2mo? \/2mo3 /2703

—00

(2.2.62)

P and R are the same as that of the first integral, but Q? is different from that of the

early case, we will have,

(z%a%a%a%ag + 22020%020% + 230i020%0% + 2203030507

4PR =4

2 2 2
2070504
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2202030502 + 2202030205 + 2102050305 + 23042070203 + z%a%a%a%a%)
b

2020303
(2.2.63)
2z 2z 223\
2_ [ z2L o, 272 273
(@) = <20% T 202 20%)
(221030} + 2250307 — 2230702\
B 2020303
(2210202)" + (2200307)” + (2230702)° + 8212003030307
(20%0303)°
—821 2305030303 — 8z;230§0§0%0%. (2.2.64)
(20%030%)
By using Gaussian integration (2.2.62) becomes
B 1 b [_ 0%(29 — 23)2 + 03 (23 + 21)* + 02(21 — 22)?
2m\/0%03 + o302 + 0307 2(ofo3 + 0303 + 0307)
1 B
_ exp |- 2 (2.2.65)
21V A [ 214}
where
A = ojo) + o305 + 0307, (2.2.66)

B =07(z — 23)* + 05(23 + 21)* + 03(21 — 29)%. (2.2.67)



23

We now can write I3 as

_(222;;/)2 :| exp |:—(z'2—0(;/2)2 :|

V210, V2ro

I3 =V 270V 2mooV 2o

—(z 2! 2 —(z 2! 2 —(z'— 2
o 5] 5] o 52
+ 2
/ v 2oy V2mos V2o

:\/ﬁalmUQ ( ! )

2.2 1 2.2 2.2
271'\/0'10'2 + 0505 + 0307

% exp _O-%(ZQ —Z3)Q+O%(Z3 —21)2+O'§(Zl —22)2
2(0%02 + 0202 + 020?)

~exp ai(m+ ) +oi(m—a) +oi(z - 2)°
2(0%202 + 0202 + 020?)
T2, N2 2 2, 90 \27
~exp 0122 — 23)° + 03(2 + 21)° + 03(21 — 29)

2 2 2 2 2 2
2(cios + 050% + 0507%)

- exp [ of(z—2)* +oi(z—2)* + ‘72?2»(21 + 22)"] } _ (2.2.68)

2 2 2 2 2
2(0t0% + 0503 + 050%)
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Letting 03 = o and 23 = §/2, so we have

= Ufag + 0302 +o0

20_%

= 0%(0? + 02) + o202
ih  TyThh?
:O'Q(T1+T2)1—* ! 22
m m
iRT: 1RT
B=02(z — 2)% + =2(z — 6/2° + ol (2 — 6/2)%, (2.2.69)
m m
we then have I as
ik ihT: 1
I; =V2n l—1\/27r 1—2\/27ra . A
m m 27‘(\/02 (Ty + T3) % — —Tlgéhz

. {exp [_

_E22 22
};Zl (ZQ — %)2 — hm—Tf(% — 21)2 + 0'2(21 — 22)2
2 [0? (T + T) B — B3]

(224 2)2 4+ 02(2 — 21)2 + 0%(21 — 22)

— exp

— exp

+ exp

Is

—h/T\T,
e ——— 2
m V 4TTO

2
m?2

2 [02 (T, + T3) % — T—szhz]

(o, 4 4 B 4 0+ o'
: 2
2 [02 (Ty + T5) Eh — T_I,Z;%h }

02(z9 — 23)% + 02(23 — 21)* + 03 (21 + 22)?
2(0%03 + 0303 + 030?)

)

1
V0! (T + Tp) 1B LTy
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22 22
o [ = 4 B s e
2 [02 (Ty + T3) % — T—ITJLQ}

m2

m

Cexp | (22 4+ 224+ 02(2 — 21)2 + 0%(21 — 22)?
2[02(T) + Tp) 2 — BB

Cexp |- ‘hTT(zQ — g)2 + %(g +21)2 4+ 0%(21 — 22)?
2[0% (T + Tp) B — B
T 2 — 20)2 200 _ 5 )2 2 2
Texp |- (22 — 25) :?(232 221) —2023(21 + ) ] } : (2.2.70)
| 2(0f03 + 0505 + 0307)
We now consider a case of delta is equal to zero we get constant A as
9 ih h?
A=o0o (T1 + TQ)— — T1T2—2 =v—w (2271)
m m
. 9 ih h?
A= —0o (T] + TQ)— — T1T2—2 = —U — W (2272)
m m
4 o 2 —
AA* =0 (T1 +T2) W—FTITQW
n\ h?
— <a4(T1 +Ty)* + TfT§W> —
h2
=C— = ' (2.2.73)
m

In the case of § = 0 we then write I3 as

L WOL oo 1 exp P (23) + SR (2) + 02 — 22120 + 23)
m VA 2A



26

UL(3) ¥ B (a) + o — 2 F )

— exp |——2 oA
%(zg) + %(z%) +0%(2? — 22129 + 23)
—exp |— 2 ‘ 5
dm (22) 4 A (22) 4 62(22 + 22129 + 22
+exp _th( 2) nTQ( 1) — ( 1 1<2 2) ’ (2.2.74)
let
i, i,
o Cop= 2 2.
o= (23); - (27) (2.2.75)
c=0%(20 = 22129 + 25);d = 0% (27 + 22129 + 25), (2.2.76)

we then can write I3 as

W T, o
m

a+b+c] [ a+b+c}

1
Io— — L
3 JA {eXp{ 24 24

Cexp |2 OFe o |_atbtd
P 24 P 24

W 1 a+b+c a+b+d
= — m \/%O'ﬁ {—exp [—T] —|—eXp |:—T:|},
(2.2.77)
s . [ RVTT 11 ,
|I3|" = I315 = [—T\/ﬁg] _A\/E{'}{}
LT P AT Aty (2.2.78)
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where

(= {—exp [_a%—b—l—c} 4 exp {_a+b+02(z§1: 22122+z§)}}

2(.2 2
e [_a-l—b} {exp [_i] exp [_0 (zl+§j@+22)}}_

(2.2.79)

(a—|—b)A*+(—ab)A]

o {_ 2AA
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_ exp [(c —djut (e d)w} + exp {d—w] } . O = AA

20"

(a+0) u] {exp {02(2«% — 22129 + z%)w}

[(02(,2% — 22129 + 23) + 02(22 + 22129 + z%))w}
— exp

2C"

—02(22 —-9 2 2(.2 9 2
" {exp [( o?(22 2129 + z2)2—c|—’/0 (21 + 22129 + 23))v

+exp (02(22 — 22129 + 25) — 0% (2} + 22120 + 23) v
20"

o?(23 + 22129 + z%)w} }

+ exp [ ol

|



{ [4—02421221)} {—02421221)
X exp | ————| +exp | ———

+ exp [

=exp

X

(

2C"

Cl

ATy 22 ihTo2? i
=2 %) o*(Ty + T) 2

m
h?
Coz

eXp |:0'2221ézT1T2:| + eXp [ L

2.2, 2.9 29
(0%2i+0 ZQ)w} exp [0 zlew} }

(0222 + 0%25) TV Ty

exp { C

—02221 20T T :|

2

exp

2

+o24z 2202(T1 +T5) %
[ i + exp

2 2 ih
—0“4z1220 (Tl—I—TQ)IE
2C"

=exp [—

2

(Ty22 + TQZ%C)’O'Q(Tl + Tz)} exp [

(022 + O'QZg)TlTQ}
C

|

29
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eXp |:0'22z1é2T1T2:| _|_ eXp |:—0-22,zleT1T2j|

C
2

X 2

exp [”T/Sf”)] + exp [—wT/gm}

— . 2.2.80
5 (2.2.80)
Substituting (2.2.80) into (2.2.78) we then have
A kT Tho? [ o?
LIP =12 exp | —— (1222 + T222
|13 N p C'( 2741 1 23)
2T, Tyo? 2(T), +T5) o*
X {COSh % — COoS (Th _E’hjq)na 122 } (2.2.81)

Given that the particle starts at space-time point (x1, y1, 21, 0), reaches, at a given
time, the Gaussian region encompassing the point (xg, yo,0) in the reflecting body,
and reflects somewhere (location unknown) to the z > 0 region in an additional time
T5, We determine the conditional probability that the particle reaches a specific point
(22,92, 22)(z > 0). To do this we have to compute [~ dzy [~ dys [*° dz,|I|? and
then finally divide |7|? by the later. To evaluate the above-mentioned integral we use
the integral of the product of two Gaussians obtained from (2.2.10) by multiplying both
sides of the latter equation by /2705 and then taking the limit o3 go to infinity or

o3 > 01, 03 we have,

o0

/ 1y P [—(z1 — x)?/20%] exp [~ (z2 — x)?/203]
V2ro V2ro,

—00

(21 — x2)2] . (2.2.82)

1
V2103 + 0% [ 2(0f +03)
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To compute probability that the particle arrives point o, y2, 22(22 > 0),

P(x9,ys,29) = Py Py Ps. (2.2.83)

We first evaluate the probability of the particle in z-direction

P, = |11|2// \1L)? duz,. (2.2.84)

From (2.2.26) we rewrite |I;|* in detail as

orih __ih B, 1°
L7 = EETIETQ orexp {_Q—Aﬂ

h
mC'1

=27

1
TITQ O'% exp |:—5 {O’% (T1 + T2) [Tg(l’l — g;o)2 + T1($2 — xO)Q]}
1

X €xXp [_C’i {0%T1T2($1 - 152)2}} ) (2.2.85)
1

where

T2T2h?

m2

Cr =0 (Ty +Th)* + (2.2.86)

Considering the denominator of (2.2.84)

o0

/|11|2d56'2: /d$2 2%%7}7—% 0'12
1

— 00

1
X exp |:——C {U% (T1 + Tz) [Tg(ﬂﬁl — 1‘0)2 + T1($2 — 330)2} — O-%T]_TQ(J:]_ — .272)2}
1
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1
X exp [_F {U% (Ty + T3) [TQ (z1 — 20)° + T (22 — 330)2} — ot VT (21 — 332)2}
1

o

1
=" [ ansexp |~ 5 {0 (0 + 1) [T (5} - 20vtn + )
1

—0o0

+ 15 (x% — 2x9xg + x%)} — O'?TlTQ (3:? — 2T129 + x%)] ,

where C" is a constant, and in turn the above integral is equal to

1
o / dzyexp [—? {o? (11 + To) [Ty (27 — 22130 + 2§ + Th23)] — o1 Ti Toa?
1

— 00

+ 15 (xg — 2x9x + x%)] — O'?TlTQ (:1:? — 2T + x%)]

+ [O’% (T1 + TQ) T1 — U%T1T2i| l’g + [—20% (T] + TQ) Tll'(] + QU%TlTQQZJ .’172} .

(2.2.87)
By using the integral
Ji / 2_4p
/ drexp —(Pz* + Qz + R) = %exp {Q4—PR} (2.2.88)

L2 day = C" a
/’ 1" dzs \/(a% (T + 1) Tt — 02Ti 1) /C,

exp | (5200 (T +T) Tu + 20171 To) /Ch)”
4(0’% (T1 + TQ) T1 — U%T]_TQ)/C]_



—4 [(O'% (T1 =+ Tg) T1 — O'%TlTQ)/Cl]
4(0’% (T1 + TQ) T1 — O'%T]_TQ)/C]_

% [(O’% (T1 + TQ) (TQ(ZE% — 21‘1150 -+ IL%) + Tl.l‘g) — O‘%T]_TQ./L‘%] /01

™

— C”
\/(O’% (T] + TQ) T1 - O-%TITQ)/Cl

(—(20'% (T1 + TQ) Tlflf() + 20'%T1T2$C1)/01)2
4(0‘% (T1 + TQ) T1 — O'%T]_TQ)/C]_

xexp[

—CAIQ(O'? (T1 + TQ) T1 — O'%TlTQ)

+
4(0’% (T1 + TQ) T1 — U%TITQ)/Cl

« [—O'% (T1 + TQ) (TQ(.ZL% — 21‘11[50 + 333) + Tlil,'%) — O'%TlTQZL'%]

™

— C/I
\/(0% (T' + 1) Ty — 01T T3)/Cy
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[((20% (T\ + T) Tuwo + 2031 T11) /C1)* = (03 (T1 + To) Ty — 03 Ti )
X exp

4(0’% (T1 + TQ) T1 - O'%TlTQ)/Cl

(=0t (Ty + 1) (To(a} — 2ayw0 + ) + Thag) — of T That)

(2.2.89)
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We can get P, as

1| Ty |o} o} 2
Pl = ﬁ = ﬁ — eXp —a [330 (T1 + Tz) — (l‘lTQ + CL‘QTl)]
f |Il| dl‘Q
(2.2.90)
And also for P,
~ |’ / [ 1k,
T2 2 2

T —= exp C 2{yo (Th + To) — (T + y2T0))7| - (2.291)

For P; we can get by start from

= ’I3|2// | I3 das, (2.2.92)

and we have to consider the integral term,

I [ A hT Tyo? 02
/|I3|2d22 = m—\/éexp |:_6(T Zl +T122%)
0

% J cosh 2T1T20'2212’2 ¢S 2 (T] + TQ) 0'42122 d
C Ch/m 2

2T, Tho?
exp — 2 co thZQ

_AnhTTyo?
B C

my/C

c\g
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3 4
— / exp — CT2Z2 cos 2(h zz;;zna le2dzg . (2.2.93)

0

We use the formulas,

oo

_ar? _l\/i L
Q/exp[ az’] cos (bz) dz = 5\ 5 &P |~

0

7exp [—az?] cosh (bz) dz = 1\/Eexp b (2.2.94)
2V a da |’ -

0

A hT Tro? 2
/|13|2 dzy = Wm—\l/gjeXP—%ngf

0

1 | nC AT T304 23 1 | xC AN+ 1) 0822
T 5 exp > — = 5 exp —
2\ o217 C? (4‘7 T2) 2\ o277 C’Qh (4" T2)
4 hT\ Tyo? . o? 0" 1 [ nC
= — ° ex R
e YT o202

(T1 + T2)2 0'62%
C L T?

y {exp {T% zl} -
C

We now can get for P;

P; = |I5)? / / |I5)* dz,. (2.2.96)
0

N (47ThT1T20'2
myvC

} . (2.2.95)

o2
exp [—6(7’221 +TE23)



{ 2T Tho? 2, 29 2(Ty +Ty) 0%z 29
X 4§ cosh ———

C T Ohm

4T\ Tho? . 02T2 2 1 | nC
AL =5y

(T] +T2) U Zl

X {exp [T20 Zl} — exp
C

h? 72

CLT:
2Ty 2.2 2 Tho221 20 2Ty +T%)o* 21 29
e exp [ 17 Zz] {Cosh T TS T G

T2 2,2 (T1—|—T2)2c76z2
exp [—1] — exp |:_—CT2 e
1?2
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)/

} . (2.2.97)

So now we can calculate the probability that a particle reaches the point

($2» Y2, 22) as,
P(«’L’2; Y2, 22) = P PPs.
In particular, in the classical limit (classical particle),
m 2 2 2
—min(o?, 07, 03) > h — (0 or gyor ay) > h,
T1 Tl

with a macroscopic limit

AV le—’z . \/ le—é
—
oK T+ T min(zy, 29), = 0 K T TQ(zlorZQ)

In the classical limit, P3, P, P, simplify, respectively, as shown below.

(2.2.98)

(2.2.99)

(2.2.100)
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In particular,

2 2 2 2T +T%)o*
2 [ exp [— %szg] {COSh Tonz — cog N4 Ts)o 2z le?}

v\ © Ch/m
P; = . —— (2.2.101)
exp [121]  exp [ 222t
1 m2
We now consider only the exponential terms of (2.2.101)
o T2 TEz2
exp — = exp —m s (22 102)
where
0'2 0'2 (72
C T AR T o (11 17+ )
= ! (2.2.103)
a 0'2(T1+T2)2. o
Considering next the exponential term in (2.2.101)
exp o Cex T222
C O'2 (T1 + TQ)Q

CcT2 12

1 m?2

< (T1 + T2)2 0'62%)
exp | — = exp

=exp | —
T2 (T} + T3)* 02

( (T1 + T2)2 2%0'4 1 )

2 4
— = | — 0. (2.2.104)
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And consider the hyperbolic cosine term

ITT: T\ Ty 2, 2
osh 2T Tho 22122 _ exXp (le";’:)l?i‘z —eXp (TlJ:Tj)zgazg
C 2
1 2T1T22'122
=S eXp 5
2 (Ty + Ts)" 02
o 2(Ty +Ty) 02129 o 2 (Th + Ty)? 0*2322 1
Ch/m h2/m2 (T} + T)" ot
22222 1
o — 0. (2.2.105)

CR2/m? (T +Th)?

Substituting above equations into P; in classical limit,

po 2T 1 exo | T222 N 1222
3 ﬁ 0'2(T1 +T2)2 0'2(T1 +T2)2 0'2(T1 +T2)2

% {1 ox 2T1T22122 }
2 P (T1 + T2)2 o?

o 1 ox [ < T?22 25 Toniz T2 )]
ﬁO(Tl +T2) b 0'2(T1 +T2)2 (Tl —|—T2)2 0'2 O'Q(Tl +T2)2
1 T1 i <T12,Z% — 2T1T22122 + TQQZ%):|
= exp |—
ﬁO' (T1 + TQ) L 02(T1 + TQ)Q
1 T T2 T2,
= — =20 — 215 . 2.2.106
Vo T+ T) P [ <02(T1 Ty ) (2:2.106)
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For PP
T, |o? o?

re =T o[- S @+ 1) - it eam]
T 1 [ 1

T (T, L Th) % g T, +T15) — (T T2
Vro(Ty + T3) exp 02Ty + T)? (2o (11 +T3) — (2115 + 9 1)]]

1 T, 1 ) Ty Ty 2
- R S ) 1+ 22) (022
Vo (11 +To) P o (Ty +1)? ! {xo < * T1> <x1T1 +I2)]

1 11 1 9 72 12 ?
= —_— T = 1+=2)+ =4
o, (T, + Ty P~ 2 T, +Tp)2 ! o T, ““Tl 2
1

_ ! 4 exp | — ! T? |zo + o I _ 1+ T2 2
_ﬁal (T1 + TQ) P 02(T1 + T2)2 ! 2 1T1 o T1
1
(2.2.107)
And similarly for P,, we get
Cc _ T2 2 2
o ==\ & o(L1 2) — (W1d2 211
P =7 exp 02[11 (Th + Ta) — (T + yoTh)]
! 5 L T { + <1 + Iz 2
\/—0_2 (T]_ +T2) (TQ"‘TQ) Y2 le Yo T1

(2.2.108)

Consider PC, PS | PE peak around the classical value,

LIZ‘QTl + ZClTQ — Zl?o(Tl + TQ) =0 (22109)



vy + i To — yo(Th +T2) = 0

2T — 211y =0,
For small 02, 0%, 02 ~ 0, we have the classical result as a delta function,

T T
PC~§ (:1:2 +x1772 —zo(1 + f)) :

T T
P¢~4 —= o1+ =
9 <y2 + lel Yo(1 + T1)> ;

Which

/ P (32, ya, 22)dzodyadzy = 1

—00

P¢ = PCPEPE.

as expected.
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(2.2.110)

(2.2.111)

(2.2.112)

(2.2.113)

(2.2.114)

(2.2.115)

(2.2.116)

2.3 Where Do the Reflections Actually Occur? : Law of Reflection

Now suppose that we have no information on where does the particle hit the

(x,y)-plane in the reflecting body and we only know that it reaches the (z,y)-plane

(location unknown) at time 7; within a Gaussian width of standard deviation a in the z-

direction as discussed in section 2.2 If (z1, y1, 21, 0) denotes the initial space-time point

of the particle, and the latter is found at xs, y5 at time T} + T after reflection, at 7' off
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the (z, y)-plane, then, given that this has occurred, the conditional probability of finding
the particle at a z-value 2, (at time 77 + T3) is simply P as given in (2.2.92). And in the
classical limit mo? /T, > h, with the macroscopic limit (2.2.100) satisfied, P3(= P§’)

will peak around the value

29Ty — 2115 =0, (2.3.1)
ZlTQ

= . 232

22 T ( )

becoming precise for arbitrary small o, not violating the classical limit mo? /Ty > .
Therefore, the theory predicts that after reflection the particle, in the classical limit, will
have a z- value 2, satisfying relation (2.3.1). Note that by a classical limit it is meant
applicable to a classical particle.

In this section we consider the converse to the problem treated in Section 2.2.
More precisely, we consider the following problem. Suppose we do an experiment E: A
particle at space-time point (211, 21, 0) reaches the reflecting body (location of impact
unknown in the (z,y)-plane) within a Gaussian width of standard deviation a, about
the surface of the reflecting body, in the z-direction, at time 77 and finally reaches the
space-time point (x9, Y2, 20, 71 + T3). Here zy is the most probable value satisfying
(2.3.1) becoming very precisely given by the latter equation in the classical limit for a
sufficiently small as predicted by the theory.

Consider an arbitrary point (Z, 7, 0) in the reflecting body in the (z, y)-plane.
We consider a Gaussian region encompassing this point with standard deviations oy, 09
in the z—, y—directions, respectively. Given that the experiment E has been realized, the
contribution to the corresponding conditional full amplitude coming from an integration

over this Gaussian region may be inferred from (2.2.22), so I; an I, and then the full
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amplitude as

= 2 o ey | - B DT e T
1 m Al 14201 214.1 :
(2.3.3)
I, = ﬂ 2—7TTT 09 €Xp _a%(yl—y2)2+%(y1—§)2+%(y2—§)2
2 m A2 14202 214.2 :
(2.3.4)
And then
ih 27 o (xy — x9)? + Lt (1 —2)* + ﬂ(«’172 —z)?
LI, =—\—T\T: — m m
142 m\ A, 12016XP[ 24,
(2.3.5)
T e | R v S — )+ B e — 9
m\ 4, 142 02 24,
- 2
= —ﬂ-TlTQO'lO'Q

’m,2 RV4 A1A2

1 1RT: 1hT:
X exp {—2—/41 {af(xl — 19)? + mQ(arl — )%+ #(iﬁ'g — 3?)2} }

1 ihT: ihT:
X exp {_E [Ug(yl —y2)? + mQ(y1 —y)° + 71(92 — ?3)2} }

R 2 1 inT, )
=3 —\/m 14201092 €XP _Q(ith (Tl _T2)% _ Tln%h’z) m (ZU1 *$2)

m




1 ihT: ihT
XGXP{—E |:0§(y1y2)2:F m2(y1?3)2¢71(y2?7)2}}
—h 27 m

= ——TT. - — 5)°
W\0551”Wﬁw{2mm}ua+nﬂ“ “)}

1 [ikT ., ilh .,
xexp{ 2A1{m(x1 )"+ m(:}:Q :1:)]}

X exp § — = (yl - y2)2
21h ((Tl + TQ) + TQ)

1 [ikD ., inTy .
><exp‘{ oA { p- (h —9)° + — (y2 y)} }-

where

— h?2 — h*2 [ikTy [ihT:
5 d I'Th0109 = D) d T, 2oL R
m m m m

— h%om ih
= Ty To—\/TT5.
RCRR RS . 112

2mm 2mm
N_l ) (1'1 - 1172)2:|

:maﬁqa“pkmmﬂ+n

2mm

mmﬂ+nﬂ“”ﬂ

X exp [—
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(2.3.6)

(2.3.7)

(2.3.8)
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1
N = ; ; 5 ; (2.3.9)
T+ 75) ©XP [_ (T +T) (P1 — 22) } eXp [_2111(77{717’2) (Y1 —v2) }

where N is a normalization factor, the partial amplitude (2.3.5) can be simplified to

ih T+ T, o? (. nl+ T\’
_ZY(roaT _ooir2 Tl
2mm /A Ay explia] exp C’l( 1) (7 T+ 15

2 2
ep o (- i+ T
——=(T) + T - 2.3.10
X exp 02(1+ 2) (y .11 ) : ( )
where (', C, are defined in (2.2.27) and
= _ 2
o :i (T1 4 TQ) TlT |:($ (Z]?lTQ + xQTl) /(T1 + TQ))
2m Cy
g — (y1 1 T)) /(T +T5))?
+(?J (11 2+y201)/( 1+ 2))] 23.11)
2

The partial amplitude (2.3.10) is properly normalized. This is readily checked by setting
o1 = 0,09 = 0, and by integrating over T(—oo < T < 00) and §(—o0 < § < 00) to get
unity (the full amplitude)! On the other hand, upon multiplying both sides of (??) by

2mo109 and taking the limits o0y — 00, 09 — 00 we again obtain unity as expected. For

oy + T
- 2.3.12
‘l’ T+ T 00, ( )
and/or
Ty +yTh
_ 7 v gl 2.3.13
‘ T+ 15 ( )

the partial amplitudes (2.3.10) give negligible contributions to the full amplitude re-
minding us that most of the contribution to the full amplitude comes from an integration

over a region not far from the classical point of impact defined by

Zf(Tl — TQ) — (Z]?lTQ + ZEQTl) = 0,
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y(Ty — To) — (T + yo1h) = 0. 2.3.14

and relation (2.3.1).

Now we study the classical limit (2.2.99), that is for a classical particle,

mTl + 15
1T,

min(o705) > h. (2.3.15)

In this limit the partial amplitude (2.3.10) becomes

| 1
207

1 (_ gyl +yTh 2
- — L 7= - ) 2.3.16
X eXp 20’% (y T1 + T2 ( )

And with 0; and o, arbitrarily small not violating (2.3.15) and (2.3.16) is appreciably

<[1_2 B .’17122 +$2T1>2:|

2m0109 T + 1T

nonzero for Z and ¥ close the classical point of impact and thus behaving like a delta-
function around the classical point of impact in the limit of (macro-scopically) small
o, and o5. That is, in the classical limit (classical particle!) the entire contribution to
the full amplitude comes from an integration over the classical point of impact (2.3.14)
over a < circular > region with a radius of the order ~ max (o1, 02) with o7 and o
arbitrarily small not violating (2.3.15). This, together with relation (2.3.1), establishes
the law of reflection (angle of incidence = angle of reflection) in the classical limit. The

situation with photons in quantum electrodynamics is developed in Chapter V.



CHAPTER III
MOMENTUM DESCRIPTION OF PHOTON
PROPAGATION IN HALF-SPACE

3.1 Introduction

Before investigating the far complex of the propagation of photons in spacetime
as a time evolution process in half-space, we first consider the simpler description in mo-
mentum space for orientation and as a preparation for the spacetime description, which
however provides no information on the photon coordinates in configuration space and
their relative localizations on a reflecting surface.

The actual demonstration of the reflection law of a quantum mechanical particle
off a reflecting surface, in reconciliation with the classical result, turned out to be more
complex than one would naively expect. In such investigations, the reflecting surface
is replaced by approximate boundary conditions, as done in classical physics, rather
than considering a quantum mechanical model for it as made up of atoms and so on.
In our work we were much inspired by the fascinating, but non-technical, treatment
of reflection given by Feynman and by the abundant literature dealing with the role of
quantum mechanical particle in a typical classical every day situation. We extend our
earlier analysis in Chapter II in non-relativistic quantum mechanics to the far more in-
teresting situation with light in a quantum field theory (QFT) treatment. We work in
half-space z > 0 and set up in this region, away from the reflecting surface at z = 0,
an emitter and a detector of photons. We solve for the Green function in half-space
with boundary conditions (Jackson, 1975; Manoukian, 1987) <E||> =0,(B.) =0, at
z = 0. From the vacuum-to-vacuum transition amplitude (Manoukian, 1984, 1985,

1986, 1988; Schwinger, 1951, 1953, 1954, 1970, 1976, 1977), the transition amplitude
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for scattering is extracted. In the process it is then explicitly shown that a photon re-
tains energy with the direction of its momentum change according to the classical law
of reflection. The important positivity condition of the theory is established. As men-
tioned above the analysis in this chapter is also restricted to the momentum description.
The more difficult problem with spacetime propagation of photons in half-space as an

evolution process in time will carried out in Chapter V.

3.2 Reflection of light in Quantum Field Theory:

Momentum Description

Maxwell’s equations in vacuum in the presence of external current

JY:(p, ), n,v =0,1,2,3 may be written as
Q" = —J". (3.2.1)

where

Fr = ot AY — 9" AF. (3.2.2)

F# and A* , stand for the Faraday tensor and the vector potential, respectively, and we

work in the temporal gauge A’ = 0 :
AF = (A% A) = (¢,A) = (0,A), (3.2.3)
and for the Lagrangian density of photons we have
L= —EF“”FW + AT, (3.2.4)
where ¢+ = 1, 2, 3. From the conservation of current,

) 1 .
0" =0, 8= 0 I =~ (8J7), (3.2.5)
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from (3.2.1) and A° = 0, we have,

0, F" = —J, (3.2.6)
and
Qo FM0 = —J°. (3.2.7)
From (3.2.6), we obtain
O F + 0, F" = —J, (3.2.8)

and multiplying (3.2.8) by ((’90)_1 0;, we obtain

O FH = —J'

B, (9" AT — I AF) = — ]I

0,00 AV — 9,00 A" = — ]I, (3.2.9)

(=067 +0'9Y) AT = J'. (3.2.10)

0 E'  FE* E?

, -E' 0 B> —-B?
Fr = ; (3.2.11)
-E? -B* 0 B!

—E* B* —-B' 0

where [J = 0,,0". In detail,

Fiv = grA” — 9 AP,
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0 A — LAY 9%A4% — 52A° 9043 — 53 A°
OrtAY — 90A! 0 OrA? — 9?AY A3 — 93 AL
= (3.2.12)
0?A° — Q°A? 5?AL — 9t A2 0 D?A3 — O3 A?
OBAY — VA3 PAL —9LA PPA? - 5?A3 0
From (3.2.10) and (3.2.11) we can write electric and magnetic components as
ElZF(H:aOAl—alAO:aOAl
F2— F92 — 9042 _ 9240 — §0 A2
EP=F% =04 - 9°A" = 5" 4°. (3.2.13)
We then have
B =F%=0"A". (3.2.14)
Similarly, for the magnetic components we have
B' = %gijk(ajAk — OFAY) = kI AR, (3.2.15)
The interesting component of E and B are,
El _ 8OA1
E2 — aOAQ
E*=03"A%  a=12. (3.2.16)

B3 =0'A% — 9?A'. (3.2.17)
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Due to current conservation,

8,J" =0,
9 = —8,J°,
J0 = (8°) 9l (3.2.18)

One cannot vary all the components of J# independently. We may, however, vary
the space components J independently since there are no restriction amongst them.
This point cannot be overemphasized (Manoukian, 1986). Upon taking the vacuum ex-
pectation value of (3.2.10) and using Schwinger’s action principle (Manoukian, 1986;

Schwinger, 1951, 1953, 1954, 1970, 1977), we obtain for the current-free Green func-

tion
i (gl = i (04| (A" () A7 (a')), |0-)
DY (z,2') 0, T00) . (3.2.19)
By using (3.2.10) we have
(—06% 4+ 8'9") (04| A7 () [0_) = J'(x) (04 | 0-) (3.2.20)
(04 A7 (2)[0-) = (—l)wj(x) (04 10-) (3.2.21)
ij P97 (s 0 s 0
(=067 + ') ( z)wk(x,)( l)éJj(:r) (0, 10)

= () (@) ) 04 102} T () s (041 0-), 6222

(1) 37205 (—1) gy (04 0
0. 10-) |

J=0

D¥(x,2') = (3.2.23)
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and from
) . .
Wx) = 6%6(x — ), 3.2.24
5Jk(x/)‘] (z) (x —2'), ( )
we get
(=067 + 0'0") Di* (z,2') = 6%6W (z,2"). (3.2.25)

From (3.2.19) we may write

D7 () x) = 1O, (A () X' (@), |0_>. (3.2.26)

(04 10-)

Since
(A" (z) A7 (:1:'))Jr = Oz — 2)A () A7 (/) + O(2' — 2) A7 (/) A" (z), (3.2.27)
and

(A7 (2") A" (z)), = O(a' — 2) A (2') A’ (z) + Oz — 2")A" (z) A7 (/) (3.2.28)

+

we then have

D (x,2") = D" (2, z) . (3.2.29)

To apply the appropriate boundary conditions, we can write (3.2.25) corresponding to

the problem of reflection at the 2 = 0 plane,
—06%D* (z,2") + 0'0 D* (2, 2) = 6*6W (z,2"), (3.2.30)
andfor 1 =a : j=1¢,3: k= bwe get

—[06% D™ (x,2") +0°0°D® (x,2") + 0°0* D3 (x, 2')

= 0% (2, 2) 6 (x),x)) 0 (2, 2") (3.2.31)
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—ODY (z,2") + 0°0°D® (x,2') + 0°0* D (x, 2)

=66 (2,2') 0% (x,x}) 0 (%,2) . (3.2.32)

—0OD* (z,2") F 8°0°D* (z,2") ¥ 8°0°D* (2,2") = 0. (3.2.33)

Fori=a : j=¢3: k=3 we get
—[069 D% (z,2') + 0°0°D (x,2') + 0°P* D (x,2") = 636W (z,2')  (3.2.34)

0D (5,2) + 00D (,2') + 00D (z,2') = 0 (3239

For:=3 :j=1¢3: k= 3weget

—068 D% (x,2") + 0°0°DS + 930°D® (z,2") = 6%36W (z, 2") (3.2.36)

—0OD* (z,2") +0°0°D? + 0°0°D* (x, 2')

=0 (2,26 (x —x)) 0 («° — ") (3.2.37)
where x| = (z!,2?) , and the reflecting surface is the z = 0 plane. To satisfy the
boundary conditions

(E*)y =0, (B*)=0 forz—0, (3.2.38)

we develop a Fourier-sine transform for §(z, 2’) in (3.2.32). That is, we write

2 [d
§(z,2) :/—dqsinqzsinqz' = / —qsinqz singz'; for 2,2/ >0. (3.2.39)
Vs Vs
0 —00
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We have to use a Delta function in (3.2.39) associating with the boundary conditions,

by using
d’k —ik- (x| —x/
0" () = xj)) = jwe G, (3.2.40)
0 /
5 (2° —a) = / ine‘Q”(x”—”), (3.2.41)
s
to get for DY (z, 2')

d’k dQ" dg kekb
ab N v _1 ab __
P (x’x)_./ (21)’ / o / ™ <5 QOQ)

sin ¢z sin gz’ eik’(x” ) oiQ0(x-2"0)

3.2.42
07 —ic ; ( )
A2k [ dQ° [ dq [ qik®
= | 8 ] 4 T (3
(z,2") ' (27r)2 ] 2r | ® \Qw
w&k'(x”_xfl)e_iQo(xo_xlo), (3.2.43)
Q? —ie
where
Q=(Q%k,q), z=(2°x,2). (3.2.44)
From D% (x,2") = D" (', ) we have
DY (2, 1) :/ 42k /L@ / dg —ikbq
’ (27r)2 2 s Q"2
: !
5in 42 €08 42" e (x _xil)e_iQo(Io_Ilo) (3.2.45)

Q? —ie ’
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and we use the Fourier-cosine transformation
(o0}
! dq ! !
§(z,2") = | —cosqzcosqz'; for 2,2/ >0, (3.2.46)

™

— 00

for z, 2z’ > 0. Equations (3.2.35), (3.2.37) and (3.2.45) then lead to
d%k dQ° d 2
)= [ [ [ 4 (1 )
!
weik' (x| —X ) e—iQO (960—96'0) _ (3.2.47)

QQ_

We now verify that (3.2.42), (3.2.43), (3.2.45) and (3.2.47) correspond to (3.2.32),
(3.2.33), (3.2.35) and (3.2.37). We verify that (3.2.42) is the solution of (3.2.32), by
substituting D® from (3.2.42) in (3.2.32). From the left-hand side of (3.2.32), we have

*(3i2—802 [ d’k /dQO/dQ< ab géj)

sin gz sin ¢z’ Sk (x| _xil)e_iQo(zo_Ilo)}

QQ_

o d?k OonO dg (., kK" singzsingz’ . (%)) —iQ° (a9—2")
+aa[ )2/ /7r <5 Q02> e, }

L e / d?k r dQO 7dq qik®\ cos gz sin qz’eik (1)) i@ (a9—2")
27r)2 r \ Q" Q? —ie

o0

2 . 0

=5 [ Yingosings [ L oeba) [ —ioo(er—am) (3.2.48)

e ,
] J (2n) J 2w

—0
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Let (a) denote the first term in (3.2.48), (b) denote the second term in (3.2.48) and (c)

denote the third term in (3.2.48)
Z. k[ dQ" [ dg kak?
(a):*(82*802 [ )2/ /7r ( @ Qo2)

. . ,
" sin ¢z SlI.l qz ok () -x)) _lQo( )
Q- |

w=oo] [k [ 2 (- G0)

. . ,
sin ¢z sin qz eik'(x” _xfl)e -iQ0(a0-a0) |
Q- |

(c) = 8a33[ d?k / d@° / dg <gl§2”> COSQQQZSir_lqzleik’(xll‘xh)e—iQO(IO—I’O)}_
—ie

Considering (a), (b) and (c) in turn
(12 32 02 d*k [ dQU [ dg sab koK
(a)z—((& + 0 >_8 / 2/ /7r Q02

sin gz sir'l qz' eik'(x” _xfl)e—iQO (0-2")
Q2 —

&2k [ dQ° [d kek
(b) = 8“36{ / Q /Wq< @ Qoz)
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. . ,
sin gz SlI'l qz ok (x1-x) _lQo( )
Q2 —

ool ]2 ]2

—0o0 —0o0

COS qZSIN @2 i1 (xi—x') —i00 (20 —g'
X%ek( 1=%)) @ =iQ° (2° 0)]. (3.2.49)

Consider (a) first

0= (o) ) [ 2 [ [0 ()

sin gz sir'l qz' eik'(x” _xfl)e—iQO (0-2")
Q2 —

s [ 25 ]2 ()

. . ,
sin gz SlI'l qz ok (x)—x]) _lQo( )
Q2 —

- Pk [dQ° [dg (., KK
=k Iy ) {/(%)2/?/7((51’— Q02>

. . ,
sin gz su‘l qz o (x1-x) _lQo( )
Q2 —

(a) =5ab/(;ljrl){ /dQU / — sin gz sin g2'e’ (xll‘xh)e‘iQo(”o—x'O)



(Bt g — Q%) /g[/;b/ d’k /dQO / dqsqusqu

< eik' (X” —Xil ) e—iQO (IO—I/O) .

Consider (b) through the equations

d2k d 0 % ckb
(b) aaac{ / de” /C;q< b 12202>

sin ¢z sin ¢z’ ik (=) e_iQo(xo_Ilo)]

QQ_

™

o d2k r dQO i dg 5 k°kb\ sin gz sin ¢z’
=00 ? o0 -
Q? —ie

, , d?k oonU OCdq k°k®\ sin gz sin g2’
= (ik® ke 2 1 ch
) |f o [ 5 [T ) T

= (—k"k) / " 7 = 7 dg (s kK" singzsingz’
B (27r)2 21 T Q02 Q2% — ic

57

(3.2.50)
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w oike(x1 7] ) o=iQ° (27~ ’)]

2 0 . o ,
(b) = (k") [ d’k / dQ°’ / dg sin qz sin qz ok () (-1Q0 (0 -a")

L@ Jeb foc2 d2k dQO y
+ QOQ ™
. . /
S smg;ﬂ eik.(x,,_xh)e_iQo(zo_xfo)]' (3.2.51)

Finally consider (c)

o

oo 42 [ ()

cos gz sin gz’ ik (1)) e_iQo(xo_Ilo):|

QQ_
Ak [ dQ° [ dq [ qik?
ool g [ [ ()

cos gz sin ¢z’ il (1%)) e_iQo(zo_zIO):|

QQ_

Q2_
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_(PRRY [ Pk T aQ? °°d_q<gk”>
U)o [ 5 [ 5 (&

sin gz sin gz’ eik'(xll ) i@ (=20

Q2 — (3.2.52)
In an obvious notation, L.H.S = (a)+(b)+(c)
[ee] 9 . O
(a) + (b) + (c) =6 / %sin gz sin qz'/ ((217:)(2 ok (%1 =) / d;fr ~iQ0(20—2"°)

kakb . kakbk02 q2/€akb
+Lwﬁ+f—@%Qm+(mk%+<cw >+CW}

/ d2k /dQO /dq squsqu ok (x-x] ) o i@ (20-2")

o0

2
=5 / @sinqzsinqz'/ d k2 ik (3 X)/dQ -iQ"(a0—2"0)
@ (2m) 27

— 00

JKORD kR ke )
[(kQ g T

. kakbkd q2kakb
+ (_k kb)"’( Qoz >+ QOQ }

Y

/ d2k /dQO / dq squsqu singzsin g2 e (x-x] ) o1 (20-2")
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oo

2 . [V ,
— 6ab / % sin qz sin QZ / d“k 1k (x” x| ) dQ 1Q0(a:0—a: 0)
J (277) ) o

—00

KRR OQkakbﬂ
* [( S I s I eT

al.b1.c2 21.a1.b
+(_kakb)+(kkk ) kak

QO? QOQ

2 0
></ d°k /dQ /dqsqusqu elk(x” x! ) _lQo( )

oo 2 . ‘
= / 99 G qzsin g2’ / dK e () / de* o iQ(2°-2")
J m (277) i 27T
]{:al{:b kakb kakbkd q2kakb
2 ar.b a1.b
[_k Q02 o Q02 +EORT — BOR A+ Q02 + Q02 }

2 0
></ d°k /dQ /dqsqusqu elk(x” x! ) o iQ(x-2"0)

x 2
(a) + (b) + (c) =6 / dg sin gz sin qz’/ d kQ o (x1=x))
: (o)

0
% / ge'iQ()(zo_xlo)

27
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= 096 (2,2) 6* (X”,Xh) 6 (2°,2").

(3.2.53)

The above showed that D% in (3.2.42) is the solution of (3.2.32), and similarly for
D3 D D33 in (3.2.43), (3.2.45) and (3.2.47) are solutions of (3.2.33), (3.2.35) and

(3.2.37) respectively. We prove that (3.2.43) corresponds to the solution of (3.2.33) , by
substituting (3.2.42) and (3.2.43) into (3.2.33).

From (3.2.33), we get

(o)) [ o [ 5 [ 5 (o)

cos gz sin ¢z’ ik (2 e_iQo(mo_zfo)]

Q? —ie

sin gz sin ¢z’ ok () _xh)e_iQo(xo_x,o)]

Q? —ie

15308 { / d2k2 / dQ’ / dg (qika> oS q2 SiI.l qz'eik'(xll—xh)e—iQO(zO—x’O)]
(27) 27 T\ Q02 Q% —ic




62

: !
cOS qz sin qz o (x)—2)) _lQo( )
Q2 —

@) [ [ /onfff( )

sin ¢z sin ¢z’ ok (%) _Iil)e_iQo(xo_x,o)]

QQ_

d2k dQO oodq qik®\ cos gz sin gz’ ik-(x—x| ) i@ (a0~
+(—q x \Q» Q® —ic € €

T &k [ dQ° [ dg [ qike
- |:(k +(12*Q02) '/ (27'(')2 '/ % '/ ? <Q02>

. !
coS ¢z sin gz ok (-2} ) _lQo( )
Q2 —

e o

cos qz sin ¢z’ ik (2 e_iQo(xo_zlo):|

QQ_

[ Pk [dQ' [ dg iqkakc2)
[ 277)2/ / ™ < Q"2

: !
cozq;: im G2 e () e_iQo(mo_xfo):|
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oo

I IETEIS

Cos qz SiI.l qz ok (3= o ~1Q° (a0 —a"0)
QQ —

= 0. (3.2.54)

That is to say equation (3.2.43) is the solution to equation (3.2.33). Next, we want to

prove that (3.2.45) is the solution to (3.2.35). From (3.2.35), we get
Pk [ dQ° [ dg [ qike
2
() o) [ [ 58 [ (5)

sin gz sin ¢z’ eik’(x“ () o Q0 (0-270)
Q-

o] 3 T4 T (-

sin gz cos q7' ik (=) e_iQO(zO_z/O):|

s !
COoS q2 SlI‘l qz ok () —x)) _lQo( )
Q2 —



: !
sin gz cqs qz ok () —x)) _lQo( )
Q2 —

o

o] £ 42 [ (1)

sin gz cos qz ok () _xh)e_iQo(zo_xlo)}

QQ

X ——————¢
Q? —ie

: /
8 81116(2];: cqs 02 ik (x—af) e_iQo(xo_zlo):|

eI IE S

—o0 —0o0

: !
sin gz cqs qz o (-} _lQo( )
Q2 —

64
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: /
sin gz cqs qz ok (x)—x) _lQo( )
Q2 —

—0. (3.2.55)

That is, (3.2.45) is the solution of equation (3.2.35). Next, we prove that (3.2.47) is the
solution to (3.2.37). By substituting D33, D into (3.2.37) we have

(o)) o) [ 55 [ [ 20 )

!
,, COsqzcosgz ok (x-x] ) o iQ0(0-270)
Q2 —

o0 o

ool 25 [ 2

sin gz cos q7' ok (x| _xil)e_iQo(zo_Ilo)}

QQ_

!
, Co8gzcosqz ok (x-x] ) o iQ0(0-270)
Q2 —
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oo

ol 12 [ ()

!
COS ¢z COS 2 ok (x-x] ) o iQ0(0-270)
QQ —

_ / d’k ik (x” x/ ) / dQ —1Q0 x —z'0 /
= —~ cosqzcos g2’
(271') 27

= 0(2,2')8 (x) — x]) 0 (2° — 2)

= 04z, 2').
(3.2.56)

The Green function corresponding to the B.C. of reflection at the plate at 2 = 0,
is given in terms of the electric and magnetic field components of interest. The latter

relevant are given by
(B (2)) = " / (dz’) D (z,2') J7 (2) (0, | )", (32.57)

(B (z)) = / (da') (8" D% (z,a') — 02DY (z,2')) J7 (2/) (04 | 0_),  (3.2.58)

where (0, | 0_)7 is the vacuum to vacuum transition amplitude in the presence of the

external current J* :

(04 ]0_) =exp [2 / (dz) (dz") J* (x) DY (z,2") J? (2")] , (3.2.59)

with D% now given in (3.2.42), (3.2.43), (3.2.45) and (3.2.47)

We now consider the aspect of fields at the boundary. Since the parameters of the
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reflected and transmitted waves in terms of those of the incident wave. The three waves,
incident, reflected and refracted waves will satisfy Maxwell’s equations in the uniform
material, and Maxwell’s equation must also satisfy at the boundary between the two
different materials. So we must now look at what happens right at the boundary. We
will find that Maxwell’s equations demand that the three waves fit together in a certain
way.

As an example we explain as to what we mean by stating that the y-component
of the electric field E must be the same on both sides, in general of a boundary. This is

required by Faraday’s law.
VXE=—— (3.2.60)

as we can see in the following way. Consider a little rectangular loop I' which straddles
the boundary, as shown in Fig.3.1. Equation (3.2.60) says that the line integral of E

around I" is equal to the rate of change of the flux of B through the loop:

yﬁE -ds = —Q/B -nda (3.2.61)
. ot

s 4

Figure 3.1 Boundary condition Ey, = E,; obtained from ¢ E - ds = 0.

Now imagine that the rectangle is very narrow, so that the loop enclosed an

infinitesimal area. If B remains the flux through the area is zero. So the line integral of
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E must be zero. If Ey; and E, are the components of the field on the two sides of the

boundary and if the length of the rectangle is [ , we have

Eyll - Eygl — 0

E

yl —

E,. (3.2.62)

We now show the method that can be used for any problem-a general way of finding
what happens at the boundary directly from the differential equations, begin with the

Maxwell’s equations for dielectric and write out explicitly all components

V.Ez—V'P (3.2.63)

€0

dE, 0E, OE, P, 0P, 0P,

- 3.2.64
60<8x+8y+8z> <8x+8y+8z)’ ( )

OB

| D 2.

V X o (3.2.65)

OE, OB, 0B,
5 "9 o (3.2.66)

dE, OB, 0B,
o2  oxr ot (3.2.67)

0E, OB, 0B,
T e (3.2.68)
V.-B=0, (3.2.69)

+ = 0. (3.2.70)
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2 _1oP OB
¢V xB = " + ET (3.2.71)
0B 0B 1 0P, oF
9 z Y5y _ L T T
¢ < 5 Z) St (3.2.72)
0B 0B 1 0P, OFE
2 z z _ Y Y (3 2 ’73)
C(Bz 8x> go Ot ot o
0B 0B 1 0P, OF
2 ([ ODy ) _ & 2 z
c <8$ 8y> =, ot + ET (3.2.74)

Now these equations must all hold in region 1 (to the left of the boundary) and region 2

Py

n ny
P| =O

Region 1 Reg

>
>

on 3 Region2 X

Figure 3.2 P, varies from zero to very large value.

(to the right of the boundary). For instance, suppose that we have a boundary between
vacuum (region 1) and glass (region 2). There is nothing to polarize in the vacuum, so
P, = 0, let’s say there is a smooth, but rapid, transition. If we look at any component of
P, say P,, it might vary from zero of P, to high of P,. Suppose now we take the first
of our equations, (3.2.64). It involves derivatives of the components of P with respect
to z,y, z. The y-and z-component are not interesting; nothing spectacular is happening
in those directions. But the x-derivative of P, will have some very large values in region
3 (between region 1 and 2), shown in Fig. 3.2 because of the tremendous slope of P,.
The derivative 0P, /Ox will have a sharp spike at the boundary as shown in Fig. 3.3. If
we imagine squashing the boundary to an even thinner layer, the spike would get much

higher. If the boundary is really sharp for the waves we are interested in, The magnitude
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of in region 3 will be much, much greater than any contributions we might have from
the variation of P in the wave away from the boundary so we ignore any variations

other than those due to the boundary. Now how can (3.2.64) be satisfied if there is a

n n;

-
>

Region 1 Reglond  Region2  x

Figure 3.3 Polarization change between two regions.

whopping big spike on the right-hand side? Only if there is an equally whopping big
spike on the other side. Something on the left-hand side must also be big. The only
candidate is 0F, /0x , because the variations with y and z are only those small effects
in the wave we just mentioned. So &, (0F,/0x) must be as drawn in Fig. 3.4 -just a

copy of OP,/dxz. We have that

4 OE,

ny

.
>

Region 1 Reglond  Region2  x

Figure 3.4 Electric field change rate.

OE, 0P,
= 2.
S0, pr (3.2.75)
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If we integrate this equation with respect to x across region 3 , we conclude that

€0 (Eza — Ey1) = — (P — Pry), (3.2.76)

In other word, the jump in ¢ E/, in going from region 1 to region 2 must be equal to the

jump in -P,. We can rewrite (3.2.76) as

colge — Ppo = €0y + Py, (3.2.77)

which says that the quantity g £, — P, has equal values in region 2 and region 1. One
says: the quantity €o /2, — P, in continuous across the boundary. We have, in this way,
one of our boundary conditions. . Although we took as an illustration the case m which
P, was zero because region 1 was a vacuum, it is clear that the same argument applies
for any two materials in the two regions, so (3.2.77) is true in general. Let’s now go
through the rest of Maxwell’s equations and see what each of them tells us. We take
next (3.2.66). There are no z-derivatives, so it doesn’t tell us anything. (Remember that
the fields themselves do not get especially large at the boundary; only the derivatives
with respect to x can become so large that they dominate the equation.) Next, we look
at (3.2.67). There is an z-derivative, we have OF,/0x on the left-hand side. Suppose
it has a huge derivative But there is nothing on the right-hand side to match it, with;
therefore E, cannot have any jump in going from region 1 to region 2 [If it did, there
would be a spike on the left of (3.2.66) but none on the right, and the equation would be

false.] So we have a new condition:

E..=FE,, (3.2.78)

By the same argument, (3.2.68) gives

E, = E,, (3.2.79)
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This last result is just what we got in (3.2.62) by a line integral argument.
We go on to (3.2.70) The only term that could have a spike is B, /Ox but there

is nothing on the right to match it, so we conclude that
B.s = By, (3.2.80)

On to the last of Maxwell’s equations. Equation (3.2.72) gives nothing, because
there are no z-derivatives. Equation (3.2.73) has one —c?0B, /Ox, but there is nothing

to match it with. We get

B., = B, (3.2.81)
The last equation is quite similar, and gives

By, = By, (3.2.82)

The last three equations gives us that By = B;. We want to emphasize, how-
ever, that we get this result only when the materials on both sides of the boundary are
nonmagnetic-or rather, when we can neglect any magnetic effects of the materials. This
can usually be done for most materials, except ferromagnetic

From the explicit expression for D% (and hence also of D) we verify from

(3.2.57) and (3.2.58)

(B*(2))],—yo =0, (B*2))|,_,,=0 (3.2.83)

We now prove that we can derive Maxwell’s equation from equations of the half-space

problem, since

(W (2)) = / (d2') D (o) J* (o), (3.2.84)



and
(E' (2)) = (0°A' (2)) = / (dz) °D* (2, 2) J* (o)
(-007 + V2&) D* (z,2") = 6™ (x,2')
((=V?+09%) & + V?¢) DI* (z,2") = 9*6W (z,2")
0" DI (z,2') = 0*6W (z,2)

k
DV D* (1,2") = %(5(4) (z,2').

0 (E' (@) = [ (d0) 20D 2,) J* ('
= [ (@) [ | 2 @)
= [ (an) [P e
= [ @5 (.0 34 @)
- [ (@0)8 (@,2) )

O (E" (z)) = J°(2),

73

(3.2.85)

(3.2.86)

(3.2.87)
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The latter is one of Maxwell’s equations which may be written in the differential form
as

V- -E =, (3.2.88)
and is the famous Gauss’s law. Now consider

VxB=J+ g_f]it} (3.2.89)

We can derive this law by considering

<Bi> — 8ijlc <Ak (x)>
= / (dz")e* I DM (x, 2") J' (2)

V x (B") =9 (9"B" (z)) = / (da')  (g™e9%) 8" DM (z,2) J* (2')

(5uj5vk_5uk5vj)
(V x B))* = / (da’) (5"6" P91 — "k 5vgr ) DH! (3, 27) J' (a)

= / (dz') (0¥0"D* (z,2") — VD™ (z,2")) J* (2'), (3.2.90)
(VxB)"—9E") = /(dx') (0F0“D* (x,2') — V*D" (2,2")) J' (2)

o / (dx’)aOQDul (x’x/) Jl (x/)

= [ (@) @0 D" (z.') (V4 8) D" (a7) J' (&)
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J

= / (dz') | 0F0“DF (x,2") — ODY (2,2") | J' (2)

5“154(:E,:E')
= 7 (da")o? (z, o) J* (2)

<(V x B) — %—?> =J(2). (3.2.91)

The latter is the 4'h law of Maxwell’s equation. And the other two Maxwell’s equations

are derived as follow. Consider
V-B=0. (3.2.92)
which may be derived from the expression

<Bz> — 8ijk <Ak (l’)>
= / (dz")e"*d7 DM (z, ") J' (")
5 (B) = / (da')e7*0 9 DM (o) I ()

=0. (3.2.93)

and

0B
VXE=—-——. 3.2.94
X T (3.2.94)



76
Consider

eVF (P EF) = 5“’“/ (dz") 8°¢ DM (x, 2 J! (2)
= / (dz") d° (e9%& DX (z,2")) J' ()

= —(0B'"). (3.2.95)

The positivity condition for the vacuum persistence probability from (3.2.59)
will be established in (3.3.3)-(3.3.5). Since, by definition, the current .J# is confined
to the region z > 0 (that is, it is strictly zero for z < (), we may, without loss of
generality, extend the integrals in (3.2.59) over all z, 2’. From (3.2.42), (3.2.43), (3.2.45)
and (3.2.47), we then obtain after lengthy integrations and by using the identity J°(Q) =

kl“gSQ) , the expression

(0, ] 0_)" = exp E / (da) (da') J* () DLy (2, 2") T* (') | (3.2.96)

for (3.2.39), where D), (x, z') defines the photon propagator of the theory:

/ [ (dQ) e B i (a0—)
DW ) = / (27T)4 Q? —ic

X |9 = g7 4 2g,000,67]  (32.97)
Q= (Q%k,q), e — +0,and
d .
JH(x) = / (—Qle‘Q‘”J“(Q). (3.2.98)
(2m)

The presence of a non-covariant form g,,393, in (3.2.97) should not be surprising which
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is as a result of breaking translational invariance (along the z-axis). To describe the
scattering process we write (Manoukian, 1984, 1985, 1986; Schwinger, 1951, 1953,
1954, 1970, 1976, 1977) J*(z) = Ji'(z) + J4(x), where J{'(z), J§'(x) are causally
arranged so that JJ'(x) is switched on after that .Ji'(x) is switched off (Manoukian,
1984, 1985, 1986; Schwinger, 1951, 1953, 1954, 1970, 1976, 1977). J{'(x) represents
the emitter and J} (z) the detector of photons.

For 20 # 2'°, (3.2.97) gives

D, ( ,) . / d3Q eik.(x”—xil)e_iQOL,Eo_x,O
s ) =1
p T (271_)3 2Q0

> [gwjeiq(z—z’) . glwe—iq(z—kz’) + 2g#3g3ye—iq(z+z/) 7 (3299)
where Q = (k, ¢), Q° = \/k? + ¢2. we can then have, let
Tt (2) = J (z) + J* (2) (3.2.100)

where J}' (z)is on after J!' (z) is off,

d3Q eik'(X“—Xil)e —iQO (:L“O—l‘lo)
D), (z,2") =i / > 5
J (2m) 2Q)
% |:gwjeiq(z—z’) o g/we—iq(z-l—z’) + 29ﬂ393ye—iq(z+z’) (32 101 )

1

(04 [0-)" =exp | 5 / (dz) (da') (J1' (z) + J5 (%)) D), (z, ") (Jy (') + J5 (')

(3.2.102)

[

=exp |5 / (dz) (dz) (Jé‘ (z) D, (x,2") J5 (2)
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+2J5 (x) Dy, (z,2") JY (@) + J{ (2) D, (2,2") JY (2'))]

(3.2.103)
i ! ! I\ D !
0210 = ex |5 [ (@) (@) (3 (2) Dl (24 T (o)
+2J4 () Dy, (z,2") Jy (')
+ Ji' (z) D, (z,2") J} (2')) (3.2.104)
let
U=i / (de) (da') ¥ (z) Dl (2, ') JY (') (3.2.105)
B30 eik~(x“ —x ) e iQ(x0—20)
U=i|[ (dz dx'J“xi/
[ @i | S
8 [gwei"(z‘z') — gue ) 4 20, 595,09 | Y (af)
eiQ-(x—x/)
d3Q ;ik~(x” —Xh ) eiq(z—z’; e iQo (xo—:c’o)
. ! 0 . v !/
=i f ) @) |20 [ 5 S T} (@)
iQ’-(x—x’Lz Q'=k-qa
dk—q)- ((x)+2) — (x| +2)) : ¢=¢2
d*Q ;ik'(xn X)) o- iq(z+2) i@ (a0 —2")
A :
(2m) 2Q)
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X (Guw — 29u3930) J7 (:r’)]7

i [y [y [ LT e
/ [ /(27r) 2Q

d3Q i@-(x—x)—iQ° (s"—2")
— J§ (2)1 / Qe °

(271_)3 2Q0 (g/w - 2gu3g3u) J{j (ZE,)]

- [ e | @ 6 en e g [ e ey @)

- / (An)if () 9 @e @) (g, — 2,505, 62 e 1) (17 (27))]

_ / ; :)33%@0 [i < / (dz) (J2 (x))e-iQxng <i / (da')e- 12,17 (:v’))

i < / (dz) J () e‘inJC)*(gW — 29,3050) / (da')e " (LY (:r’))}

PQ
= / W [(IJQ (Q akaQ) )g,“, (lJl (Q ,k’q))
S (@ =0) (g — 200005) (1(Q K. )] (3.2.106)

where
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JQ k. q) = / (da')e 9 77 (o) 32107)
using the conservation of current density .J° (Q) = %, (3.2.106) becomes
d*Q

| Grage G5@) o (91Q) + (@) g ()

— (i3* (Q") goo (IJ7(Q)) +1J5(Q')" g3 (lJf(Q)))

- (iJg (Q/)* 2903930 (iJ?(Q)) + ijé* (Q,) 20i393; (lJf(Q)))]

- [ e |- (45 (ingo(Q)) +(1Q)) 89 (1)

QUBQ)" [(QRQ)\ | i oy s (10
+<1 QO (1 QO )+1J2(Q) 0 (Jl(Q)))

+(13(Q)7) 26%6% (1(Q))]

= 'Q — (i3 *Qinij IOV 67 (i
N / (271-)3 QQO [ (J2 (Q) ) Q02 (Jl (Q)) + ( JQ(Q) )5 (Jl(Q))

i (GJ;J (@) ngfj (17 (Q)) +iJ3 (@) 6 (1] <@>>)

+ ((15(Q)7) 20%6% (1H(Q)))] ,



_ /(2:;—(’;@ [(iJ§ Q") (5“ - %) (iJ] (@)

QQ!
Q02

+ (13(Q)") <—5ij + + 25i353j> (iJ] (Q))} :

where

Q=(Q"k,q), Q' =(Q" k —q), Q"= \/k*+¢

Aij — <5zg o QZQJ) ’
QI

i ij QY i3 $37
BY = | =" + —— + 200 .
Q|

We note the transversality conditions:

QAT =0, ATQ =0,

Q"BY =0, BQ =0

The proof of above equations as shown in the following step:

o i‘@@>z Qi
A.] J — 6.]_ ) — 6] J .
< < MQQ “ QI
. QN(Q7?) . (Q%)
—Q - Q- —0
YT Ter Y T
Ald — s _ — Qi _
@ Q( qr) ¢ Qf
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(3.2.108)

(3.2.109)

(3.2.110)

(3.2.111)

(3.2.112)

(3.2.113)

(3.2.114)
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— Q- (Q|Z)|2Qj = Q- % = 0. (3.2.115)
Q"B — Q' <_5iﬂ' + % + 25"353j>
— Q5 4 @/Zg?_@ +2Q"16%35% (3.2.116)
where
Q"= (Q%k,—q): — Q"= (Q"k,q) = Q’, (3.2.117)
and

QQ = 1QF = 1QF = Q@'

Q) @’
QOQ

o —2Qi =0 (3.2.118)

For any two three-dimensional unit vectors n, n”, we introduce polarization (unit) vec-

tors as;

n"” x n
ei(n) = ocal ei(n”) (3.2.119)
es(n) nx (n”"xn) n"(n-n)—n(n-n")
n) = =
2 In X (n” x n)| In X (n” x n)|

_ nll _ (n . nll)n

= 3.2.120
0 X (0 X n)| (3.2.120)



n.nll n/l_n
(n - n")
B In” x (n” x n)|

satisfying the conditions:

ex(n) - ea(n) = dra = e\(n") - e,(n")

In particular forn = &, n" =n' = |Q—' we have

Upon using the completeness relations:

69 = n'n? + ¢} (n)el(n),

04 = p'nt 4 ef\(n')ei(n')
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(3.2.121)

(3.2.122)

(3.2.123)

(3.2.124)

(3.2.125)

(3.2.126)

(3.2.127)

with summations over A = 1,2, and using the transversality conditions (3.2.112) and

(3.2.113), we may rewrite (3.2.108) as

0= [ it @) (- S5 (2 @)
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QQ
Q|

+ (@) (-0 + L 2399 ) (1 @)

— [ o (@) (67 ) (@) * (@)

X (—5’7 Fn''nd F2 (n'in'3 F eg(n')ei’(n')) (n?’nj F e (n)el (n) )) (iJf (Q))} ,
(3.2.128)
using (3.2.126) and (3.2.127) , we have
4Q

V= / o 05 @7) (A m) (7 @) + (15 @))

X (=09 + ' n) 42 ("0 4 e\ ()} (n') ) (n*n/ + el (n)el(n))) (1] (Q))]

_ / (2;‘);_%@ [(73 (@) (A () (177 (@)

+ (13 (Q") eh(n')) (—ea(n') - ealn) +2e3(n))ed (n)) (17} (Q) €l (n))] ,(3.2.129)
From (3.2.119) - (3.2.125) we readily derive
—e\(n) - eq(n) + 23 (n)ed (n) = (=1)*0xra (3.2.130)

Aa=1,2
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or
43 , , : :
U= [ g [ @A) (6 @)
+ (L5 (@) () (=1 dra (1] (Q) €, (m) ]
d3Q”
— IJZ* ) 7 (’TL”))
/ \/ (2m)? 2Q70 / \/ (27) 2@0
X [6°(Q" = Q) ra + Bna (-1)' 0% (Q" = Q)] (1] (@) eh(m)
(3.2.131)
where
Q= (k). Q=(k —q (3.2.132)
To obtain the transition amplitude in question, we consider the term:
(04 1Q" 0™ (Q" | Qo) (Qua | 0-)™ (32.133)
(Qa [0-)" (3.2.134)

denotes the amplitude that a photon is emitted from .J; with momentum Q and polar-

ization « , and

0, 1Q",\N" (3.2.135)
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denotes the amplitude that a photon is detected by .J, with momentum Q" and polariza-

tion \ and

Q"N Q) (3.2.136)

denotes the amplitude in question where the emitted photon of momentum Q and po-

larization o ends up with a momentum Q" and polarization A . Since formally,

3Q

(Q.a | 0)" =i/ (Q)él. (n) EREn (3.2.137)
. . d3 "
04 1 Q", N\ =i (Q")el (n") (%)3% (3.2.138)

for J,, J, — 0, we obtain from (3.2.104) and (3.2.131),

(@A Qa) = [7(Q" ~ Q) by + 0r (-1 67 (Q" - Q)] d’Q  (3:2.139)

the first term of the right-hand side of (3.2.139) describes the non-scattering term. The
second term deals with a scattering process where a scattered photon necessarily retains
its energy and its polarization (|Q’| = |Q|) having the direction of its momentum charge

according to the classical law of reflection.

3.3 The Positivity Condition

Finally we establish the positivity condition for the vacuum persistence proba-

bility:

<1 (3.3.1)
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To this end we use

1 s
ImmZWfS(QQ)Zm[5(QO*|Q|)+5(QO+|Q|)]- (3.3.2)

in (3.2.59) to obtain from (3.2.101)
(0410-)[* = exp—B, (3.3.3)
where

. d3Q ik ij 7 ik N Rij 7i
3/7(%)32@0 [J*(Q)AY T (Q) + J™* (Q") BYT (Q)] . (3.3.4)

Q= <\/k2 + ¢, k, q) . Q = <\/k2 +¢2,k, —q) : A BY are defined in (3.2.110)
and (3.2.111), respectively. From the tranversality conditions (3.2.112) and (3.2.113)

and the completeness relations (3.2.126) and (3.2.127) and the equality (3.2.130) , we

may rewrite B as Q¥ = (x/k2 + q2> :

_ d’Q ix et (n) J e (n
B‘/—m)s’zcgo [77 (@) €k (n) 7 (Q) ] (n)

+ Q) e () (-1 () T Q)]

- [ o [ @ - r @ f

171 Q) e (n) = T (@) &5 ()] > 0. (3:35)

From this positivity restriction, the condition in (3.3.1) follows.



CHAPTER IV
PROPAGATION OF PHOTONS IN SPACETIME:
INFINITELY EXTENDED SPACE AND HALF-SPACE

4.1 Introduction

The purpose of this chapter is to investigate rigorously the amplitude that a given
current distribution J, () creates photon excitations, as well as investigate the ampli-
tude that a photon excitation propagates from a point (29, x;) to a point (29, x,) as a
time evolution process in infinitely extended space, and also derive various probabilities
for detection of photon excitations in space after their emissions from sources. In partic-
ular we learn that the amplitude of propagation as a time evolution process in spacetime
is not given by the so-called Feynman propagator.

There is by now an avalanche of experiments (Panarella, 1986; Sillitoe, 1972;
Taylor, 1909; Dempster and Batho, 1927; Dontsov and Baz’, 1967; Franson and
Potochi, 1988; Gans and Miguez, 1917; Janossy and Naray, 1957, 1958; Grangier,
Roger and Aspect,1986; Reynolds, Spartalian and Scarl, 1969; Griashaev, Naugol’nyi,
Reprintsev, Tarasenko and Shenderovich, 1971) giving a clear indication that photons
may be localized in space by detectors. Much theoretical effort (Ali, 1985; Amrein,
1969; Hegerfeldt, 1974; Kélnay, 1971; Kraus, 1970, 1971, 1977; Neumann, 1971, 1972;
Price, 1948; Vries, 1970; Ali and Emch, 1974; Newton and Wigner, 1949; Yauch and
Piron, 1967; de Azcérraga, Oliver and Pascual, 1973; Han, Kim and Noz, 1987 ) has
been made in recent years to formulate the problem of localization of photons, with no
success. Most of the attention in this effort has been given to defining a position oper-
ator and constructing wave functions, as done in non-relativistic quantum mechanics;

this gives no hope whatsoever of formulating interacting theories, or asking probabilis-
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tic questions in configuration space, such as what is the probability that photons and/or
other particles emerge spatially within cones after a collision or a decay process. The
latter effort is also remote from actual physical situation, where photons travel between
emitter and detectors in configuration space by the process of being created and de-
stroyed, respectively, which is best described in the language of quantum field theory.
And it has become urgent to extract the necessary information of the localization of pho-
tons directly from field theory. It is felt that any solution to this long-standing problem
should have come by relying on the actual physical situation, mentioned above, of the
propagation of photons from emitters to detectors, which is the starting point of mod-
ern formulations of field theory (Manoukian, 1984, 1985, 1986, 1988; Schwinger, 1951,
1953, 1954, 1970, 1972, 1973, 1977). We propose a solution to the problem by carrying
out a unitarity expansion in configuration space based on the physical situation and veri-
fying the associated completeness relation for a correct probabilistic interpretation. The
basic tool to do this is the vacuum-to-vacuum transition amplitude due to Schwinger
(Schwinger, 1951, 1953, 1954, 1970, 1972, 1973, 1977) in the presence of an exter-
nal current (Manoukian, 1984, 1985, 1986, 1988; Schwinger, 1951, 1953, 1954, 1970,
1972, 1973, 1977). In Sect. 4.2, we carry out a space-time analysis of the propagation of
photon excitations between emitters and detectors, based on the unitarity expansion in
configuration space and its associated completeness relation. In Sect. 4.3, an expression
is derived for the amplitude that a photon excitation travels from one time-space coordi-
nate point to another. An explicit expression is obtained for the amplitude for a photon
excitation detection at a given point in space after a given time when the latter is initially
localized at its creation site. Detailed numerical and very precise estimates are carried
out for the corresponding probabilities to interpret the problem of localization in terms
of the constancy of the speed of light when photon excitations travel sufficiently large
distances after their emission. Finally, an expression is obtained for the macroscopic

amplitude of photon excitation propagation when it travels over macroscopic distances.
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4.2 Space-time Analysis of the Propagation
of Photon Excitations Between Emitters and Detectors:

Unitary Expansion in Configuration Space

Our starting point is the vacuum-to-vacuum transition amplitude for photons in
the presence of an external current J#. In the Coulomb gauge, the latter is given by the

well-known expression

(04 [0_) =", (4.2.1)

W= % / (dz)(dz’) [Jﬂ(x)ia (z — o) ()

92
+ J'(z) (5“ — a(;a;) Dy (z—2)Ji ()], (4.2.2)
where
D,(x—2)= / %e]fﬂ;(m—__:;, e — 40, (4.2.3)
and

d’k . / dk° 1 20( 1010
D o ik(z—1") / v ik (:E —T )
+(@—a) / (27r)3e o K2 k02 e

(27)° o [K0 — (k] — i2)] [K° + (|&| + io)]

/ P g 2l
= e e —
(271')3 21 2k0
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[ Pk, e (@)
_ / o (z—a') T (4.2.4)

for z° > 2% k° = |k|. Note that by imposing the current conservation 9,J* = 0, the

exponent W in (4.2.2) may be written in the covariant form, from (4.2.2) we can write

W= [ @) )

0 1 ’ / i ij '’ , ,
X J(x)ﬁé(x—x)Jo(:c)—i-J(x) 0 — 5 Dy (z— ') Jj (2')
4.2.5)
with
N (dk) eik(a:—a:’)
D+($$)—/Wk2_ig (4.2.6)
and
G (o) — (dk) ik(o—a') L i @
Do = / (2m)" el G 4.2.7)
E(x;z’)
1 / : (dk) i a:—a:’\ 1 ’
-t oan |0 TEw (2 s




[ (@) @) <J0 @ [ ((;:;4 ) o (o)

DN | —

[0 () 99 )

= % / (dz) (dz') (JO (2) / @) e @)

(2m)* k% —ie

e [ BB (0 B )

92

(4.2.8)

W =5 [ (@) (@) (@) D (o= ') o () + T (@) D (5= ) Jy &),

W= / (dz) (da!) J* () Dy (2 — ') J,, ().

We set

and note that obviously

i Ji (1) = 0 <5iﬂ‘ -5 >Jj (2)

O Ji (2) = 690 J7 (1) —

(4.2.9)

(4.2.10)

(4.2.11)
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0,0 () - @%?ajﬂ (2)
0i Ji (z) = 0. (4.2.12)
We write
JH () = J (x) F T4 (), (4.2.13)

where the current J)' is switched on after that the current J!' is switched off . Let 2"

denote any time in the intermediate range of values between the time J!' is switched off
and J} is switched on. That is, at time z°, in particular, both currents J{', J}' are zero.

We note the relations

—iDy (z —2') = /d3yD (x—y)Dy—2), 2°<y® <2 (4.2.14)
where
d3k eikx
D(z) = /7 4.2.15
D= | G vam 4219

Let n be any (three-dimensional) unit vector. Then a straightforward analysis

shows that we may rewrite (4.2.1) as

(04 10) = (04 [ 0_)" exp V d*x ij, (2)* - ij; (x)] (04 |0)",  (4.2.16)

where

j(x)= / _ Ak {JT (k) — <%> n-Jr (k)] et (4.2.17)
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To prove (4.2.11), substituting (4.2.12) in to U

U - /d3x i3, (2)° - i, (@)

= [ (/ﬁﬁ {Jm (k) (%) n-m(k)} ’“) iy (2).

where n - j = 0, as will be shown later in (4.2.21). So the latter equation is equal to:

/ d*x i / (%)d;ik\/me‘“”fm (k) -ij, (x) — / ﬁﬁ

- / dPx i2 / ﬁme—ikm*ﬁ (k) -j, (2) — i / (%)d;—k\/m

0
——
k-j (#) +K'n-j (z)

J:0 +n-k n: J;Q (k) e_ikx:

x (1)

—ikx ik'x: (: d3k *
:/d3X (§] k ek 1(1)/(271—)3—2]€OJT2(I€)

X (/(%r;l;’—kﬂw [Jﬂ (') — (M—f?) n-Jr (k')D

_ /d3xe—ikmeik’r(i)/(27r()157k,2m(i)



e g )

k' + kn .
(im0 | )30,

3
= d3xe_i(k_k,)ze_i(ko_k/o)xoi LJ*TQ (k)
(27r)3 2k0

. s

(27r)35(rk—k’)

X (/(%)d;ikﬂ/ﬁ [JTl (K') — (%) n-J (k’)D

. ’ (1.0 10 0 d3k
o d3xe—1(k—k )x e—z(k —k )x 1/ e £
/ (27)? V/2k0 W

N J/

(27T)3;(rk—k')
(e (] oo )
(e Ym0 ) ) g
« ( / (%)d;—km {JTl (k) — (M—EOT{) n-Jp (k')])

I . ' d3k
. d3xe—1(k—k ) e—l(ko—k O)xoi/ N £
/ (27)° V/2k0 »

N i

(2m) 8k —K)

X{ 1 k</ 43K’
k4 n-k (27)3+/2k/0
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_ |:/d3xe—i(k—k’):c e—i(ko—k’o)xoi/ d’k .
g _ (27)% V20 )

. Ak
1 3 (i) ! k
2r)P V2K K +n-k

» ( / (%)f’l;m {Jﬂ (k) - (%) n I, <k>]) n- Ty (k)




-t [ v (-3

) (J*TQ(;C) k4 Iy (k) - kon) m- JTl(k)D

kK4+n-k

d3k 1 I
-2
- /(277)32k0<k0+n'k<_k'JTl(k)
k-k+k-k'n | .
< K +n-k )n'JTl(k) ))n‘JTQa

- ] {3

/*—-fo\‘ . 0
) <JT2 (k) - k+35y (k) - k ”)n.JTl(k)H

K+n-k

) d3k 1 /—fH
a 12/ (27)32k0 k0 + n - k{ ke (k)

kO (kO+nk)

——
k-k+k-k’n .
N ( +n-k )n'JTl(k)}n'JTQ (k)

_ i2/ d*k : [Ji}g (k) 3o (k) — <J}2 (k) - k°n (n - Ipy (K))

kK4+n-k

)
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_ 12/(2:)3731(2160 {J;Q (k) - Ty (k) — <J}2 (k) kforl(lﬂ 'kJ:m (@))]

o e ()

_ o / &’k
(27)? 240 7o (F) - I ()],

L[ Pk
=1 /W (I (B) - I ()]

From 7} (0) = (5 - 22°) 7 (0

i (k) Ty (k) = <Ji k) - ’fiJ]:O(k>>* ( 5 (k) — kileo(k))

S GICRICEE ATy

B (y k)’ ’ﬁ"leo(k) B "“Z 0 kiJ;fk))
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= i/ (dz) (dz') e*@==) gk (1) (i) / I’k Ju (")

J (2n) 2k0

d3keik(a:—a:’)
(2m) 2k0

y / (dz) (da')J* (z) (i) / T (2)

U= i/ (dz) (dz")J* (z) Dy (z — 2') Ju (2) (4.2.18)
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where for 20 > 20

) d3kelk(z T
D_,.(.ZE*J,‘I) ZI/W, ‘12]9'

= (2°,x), k° = |K|. Itis easily checked that j(z) satisfies the following two important

relations:

=1

A\

n-j(z) = /(&71( x [n-JT(k) —anﬁiﬁonk njn-JT (k)]e”“.

21)° /20
(4.2.20)
Hence
n-j(z) =0, (4.221)
and as shown below,
[exlior = [ St o 4222)
] 2n)2k0 T

To prove (4.2.22) consider

J i = [ (/ o [P0 = (o) ) eikx)*

-fos (| e [ - (k)i o] )
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x ( / (%;i;’ik'?m [JT (¥) - (%) n-Jy (k’)} eik’l’)

o ke (/ s [0 () e (’“)D

~ /
~

(2m)36(k—K')

9 (/mfjikzm [JTﬁ— (%%J}(m])

<Jarm - (FEEE )00 m)

:/ (27;1)3—31{2/& <J; (k) Ir (k) — I (k) (%) n- Jj (k)
— T (k) <%) n-Jp (k) + <%)
xn-J5 (k) (%) n-Jr (k)>
:/(2:)?’_31<2W|JT () > 0. (4.2.23)

The unit vector n is arbitrary, and one choice for this orientation vector arises

in the following. If, for example, the current .J; emits photons with a nonzero average
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direction of propagation, then we may choose n to be in the direction of the three-vector

[ 55 () o1 @229

defining an average direction of propagation of photon emitted by .J;. Let J= perpen-

dicular to n in the (J7, n) plane. We may write

k-Jr
n-Jp=-——-1=9L (4.2.25)
n-k
since k - J = 0. It is then easily checked that a value k = —k%n provides only an

apparent singularity in (4.2.13), since in this case k - J» = 0.

Upon writing in coordinate space a completeness relation
09 = nind + Z ef\ei, (4.2.26)
A
where A = 1, 2 and e, e, are two unit vectors such that
€e)-ey — 5)\)\/, n-e, — 0, (4227)

we may write

—
N
—~
8
~—
*
-
—
—
8
~—
I

D an (z) ans (), (4.2.28)
A
where
ax (z) = ey -j(z), (4.2.29)

defining only two degrees of freedom for the photon excitations. We introduce a con-
venient discrete space variable notation (a lattice) by introducing in the process the

notation (Manoukian, 1984, 1985; Schwinger, 1951, 1953, 1954, 1970, 1972, 1973,
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1977) 0 = (N, x) -
a, = Vd3xay (z), (4.2.30)

at a fixed time 2° For any nonnegative integer N , let N,;, N9, ..., denote the number
of photon excitations at lattice sites and degree of freedom respectively, where N =
Ny1 4 Nyo + .... The expression in the square brackets in (4.2.13) may be then simply

rewritten as

> iaj,ia,. (4.2.31)

g

To prove (4.2.30), consider

/ Py (2)" - ijy (@ / Pxif, (2)" - i, (2)
/ Z%,\ au

_ / VOXVEX Y i (2) i (2)

— Z ia;aialm (4.2.32)

where a, = V/d3zay (x). We carry out unitarity expression of (0, |0_)” in configura-

tion space:

ST Y 04N Noy Ny, ooy 2 5 (N3 Noy, Noy, oy 2°]02)7 L (4.2.33)

N Noy+Ngy+..=N
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(N; Ny, Ny, ooy 210 ) (4.2.34)

is the amplitude that the current .J; emits /V photon excitations, /V,;, of which are found
at a lattice site and of degree of freedom o, IV,;, of which are found at a lattice site and
of degree of freedom o , and so on, at a time 2° after the current .J; ceases to operate.
Similarly, (0,|N; N,,, N,,, ...,z°)”* denotes the amplitude that N' photon excitations
are absorbed by .J5, N,, of which were found at a lattice site and of degree of freedom
o1, and so on, at a time z" before .J, was switched on.

Upon using (4.2.29) and making a standard comparision (Manoukian, 1984,
1985; Schwinger, 1951, 1953, 1954, 1970, 1972, 1973, 1977) of the unitarity expansion

in (4.2.30) with the expression for (0, |0_)” in (4.2.12), we may infer that

N; Ny, Ny, ooy 2°]0_) = (04]0_)7 (4.2.35)
< 1 2 > + NO'I' N02!

5 (@)™ (iaz,) ™
04| N; Nyy, Noys ooy (0,]0_) ! 2 , (4.2.36)
< + 1 2 > + NO'I' NJQ!

for a given current .J. Because of the indispensable property (4.2.20), one verifies from

(4.2.32) the completeness relation in configuration space (valid for all n):

D ‘(N:N(,1,N(,2,...,a:0|0_>‘]‘2:1, (4.2.37)

N=0 Noy+Ngy+...=N

verifying  the  consistency of the analysis (A  similar  treatment
for (0, |N; Ny, , Ny oo, 3;0)‘]2 can be given.). It is precisely this point that has led us
to the configuration-space analysis of photons.

The probability that a current .J emits /N photon excitations, which at a time 2°

after the current ceases to operate are found to be localized in a region /A (such as with

in a cone), N, with degrees of freedom A = 1, and N, with degrees of freedom A = 2,
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may be then directly inferred from our earlier analysis (see Manoukian, 1984) to be

(J@xlos @) : ({xlas @) N

Ny! Ny!

X exp [— / d*x|j (x)ﬂ . (42.38)

and is obviously time z° dependent, where N = N; + Nj. In particular, for unpolarized

photon excitations, the probability to find the NV excitations in A at time 7Y is

({ d3x]|i!(37)|2> exp [—/d3x i (:1:)|2} _ (4.2.39)

Only when A do we obtain a Poisson distribution:

Jd*b@F) {_ | / d*x|j (“”””1 | (4.2.40)

N!

and the latter is time-independent.
The probability density that a current .J emits one photon excitation and the latter
is found at time-space coordinate z = (2°,x) with a degree of freedom after ceases to

operate is

lax ()] exp {— | / d*x|j (x)|2] | 4.2.41)

Hence, given that a current has emitted one photon excitation the (condition) probability
it is found at time-space coordinate x = (2°, x) with a degree of freedom A is |¢y ()%,

where

ay (z)

o (T) = ;
[ dxj (z)]]

, (4.2.42)

1
2

denotes the corresponding amplitude.

How we translate ¢, () forward in time, consistent with the completeness rela-
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tion (4.2.35) and hence with the fundamental probabilistic interpretation and in partic-
ular find the amplitude that a photon excitation travels from one time-space coordinate

to another, is the subject of the next section.

4.3 Amplitude of Propagation From One Time-Space Coordinate

to Another and Associated Probabilities of Detection

Upon using the relation
(=) Dy (x —2a') = /d3x1d3x2d3yD(a: — x9)D (23 — y)

=
X i=—D(y — x1)D(x; — 2'), 4.3.1)

9y
> - -

where 2% > 25 > 4% > 2% > 2% and 9 /9y° = 9 /9y® — O /0y°, we may write in

reference to (4.2.12)

i [ (dz)(d2")I2(2)Dy(x — 2') - Z d’x;d’x0ia3, (2)*
/ /

A1,A2

X Oy (22 — 11)iay, (71), (4.3.2)
where
Kl
5/\2/\1 (xQ - ) - 5)\2)\1 /d y [ $2 - y) a 0 (y — 1‘1) . (4.3.3)

From Egs. (4.2.11), (4.2.25) and (4.3.2) we infer the rule for translating ¢y, (x) forward

in time to 29, consistent with the completeness relation (4.2.29), to be given by

/d?’Xlgxm (w2 — 21) 0, (1), (4.3.4)
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coinciding with ¢,,(x;) as expected. In particular this also shows that the amplitude
that a photon excitation travels from time-space coordinate x; = (29, x1) to time-space

coordinate x5 = (29, x2) is given by (4.3.3). The latter is explicitly worked out to be

N '521 9 — af
Saon, (g — 17) = 222 (KxQ 1 ), 4.3.5)

2 Ty — 71)2]2

which may be rigorously rewritten using the Schwinger representation (see
(5.2.52), (6.0.4)), and does not coincide with the so-called Feynman propagator as one
might guess.

Consider a fixed value for the degree of freedom A of a photon excitation, say,
A = 1. Suppose that at time 2"® = 0, the photon excitation is initially created in a region

of space described by the initial configuration(r’ = |x'|)

. 1 1 3/4 2
01(2') = —p5 (;) exp ( 5,2 ) : (4.3.6)

where o is a scale parameter and may be taken for example to denote the Bohr radius

(see below) if the photon excitation is emitted from a hydrogen-atom site. We note that

¢1(2') is properly normalized:

!/&fwmwﬁzl. (4.3.7)
The amplitude to find the photon excitation at time-space coordinate z = (2°, x) is then
given from Egs. (4.3.4) and (4.3.5) as (' = 0)
i .
%uyzﬁ/w@m@_fmmw 43.8)

The evaluation of (4.3.8) is tedious and the details are given in the appendix. It is
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explicitly given by
1 1) /4 .
60 =5 (1) 1A +iBG), @39)
where
2 2
A(x) = zexp (—%) — (24 \) exp (—(Z z)\) > : (4.3.10)

1
2 2
X /duexp [—@(1 . uQ)] , 4.3.11)
0
PO (4.3.12)
g
o 2 (4.3.13)
g

Fort = 0, A\ = 0, we have B(x) = 0, and we check that ¢ (x) reduces to the expression

in (4.3.6). Also ¢;(z) is properly normalized, that is,

/d3x|¢1(x)|2 =1. (4.3.14)

for all 2°. The probability density of finding the photon excitation at a radial distance r

at time 2° is then

F(r) = —= [[A@)* + |B()P] (4315)
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where

o

/drf(r) =1. (4.3.16)

0

We also introduce the general probability expression

22
Prob[z; < z < 2] = a/ dzf(r), (4.3.17)
where
A
—3 < 21 < 29 < 00, (4.3.18)

where z and A\ are defined in Egs. (4.3.12) and (4.3.13), respectively.

4.4 The Half-Space Description of photon propagation in space-

time

Consider the expression

¢ (z') = / d*x) / dzD, (2, 7) ¢ (z), 4.4.1)
Jo
FQ dg s v o » |
D> (@ 2) = / (27r)!%e@“(x > [elq(z ) el oI (440

where

T = (2" -2 =2"%2"=0 (4.4.3)
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3/4 o—a)2
¢@0=-1—<1> et (4.4.4)

2
¢ (a') = / d2:c|/dz / d QQ dq_ el Q') [eiq(zl‘z) — e'iq(zl+z)] e QT
/ (27)? (2m)

1 /1 My
(=) e . 445
X 0_3/2 (7.‘.) € 2 ( )

Or

¢ (z') = ¢1 (2') — 2 (2)

00 00 © 3
— /d2X|/dZ/ d Q”ﬂeiQ”'(x'—x)eiq(z'—z)e—iQOT L 1 e-(z;—‘;)Q
(271')2 (277') 0'3/2 s
—00 0 —00
00 00 ©
/ (2m)* (27)
3
1 1 (z=a)?
X |- =) e 44.6
[03/2 (W> ‘ ] ’ ( )

with

o) o 3
1 PQ iR x i 1 (1" o
b1 (x/) — 3 / dBx / ﬁe@ (Ry—x) o —iQ°T [UT/Q (;) e 27 | (4.4.7)

where

Ry = (x),2), x= (x),2).
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Similarly for ¢, (z') we will get,

2 ok \ T ’
where
R,2 = (Xh, —Z/) , X = (XH”Z) .
Considering only the integral over x in equation (4.4.7)

/ d3xelQ(R1—x)

m2+2x~a—a2)

/ d3xelQ Rl le Y E—

— / — a: 2 _2x-a+20%iQ- x)e Py 2e]Q R}

o

N /d3xe 57 (27 2x:(0%iQ )e 22e‘QR/

— 00

00
/d3xe #(:c +2x%-(02iQ—a) + (0%2iQ— a)) (o iQ— a)hP oy 291QR’
—00

o

N / d3xe" %7 (“”’L("ziQ_a))zeif(UQiQ_a)ze_ %eiQ'Rll . 4.4.9)

—00

o0
32
[ axeamine i

— 0
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1
* 1 2. 2 9. 5
= / 2ra*dz / d cos e~ m7 (+(0*1Q-0)" (525 (+*i0—a)

-1

a.2 : !
X e 207 el QR (4.4.10)
By using the formula
2 5 1 "
/x%e—de — %\E; p>0, n=0T12.. 4.4.11)
0
(4.4.10) becomes
— A 11 4 #(aziQ—a)ze—%eiQ.R’l’
2(2ﬁ) 202
: 2 a.2 s !
= 203V 27reﬁ(”2‘Q_“)he_ﬁelQ'Rl, (4.4.12)

and from (4.4.7) we get

1 (") i <l>3/4 (27ra3\/§)

QUT/QW

o0

3 2 ia 2 2, .
x/ dQe_%(Q2+2Q~g—§;)e—;j61Q~Rge—lQOT

(0.0
3 252 2 ia a2 2 .
X / 2 e~ T 0~ T 2B 0507 0 557 oI Q@RI —IQT



o

gt

SIONCREYE

@n)’

27Q%dQ '
(2m)°

27rQ2dQe_ =g’
(2m)’

— <1>3/4 (270" V2r)

1

iQ|R; — al

Q_02Q2 0. ‘O.R! _:NO
e 2 e lQaelQRle QT

d3Q _ s2Q? _iQ,(a_R'l)e_iQOT

[§] 2 e

_02Q2 i ! _:n0.,.70
dcosfle™ =5 i@l R~ cosf,—iQ0a"

|:eiQ|R’1—a‘ _ e—iQ|R’1_a| e—iQoa:’O

2Q* 1 [ei(Q|R’1—a|_Q0x/0) o i(QRy —a|+@a")
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)

(4.4.13)



by lettingo@Q = v — Q = v/o, dQ = dv/o, (4.4.13) becomes

1 <1>3/4 (27ra3\/§) !

1

o0

114

X /27ng_ve_§—‘r [ei(§|R'1_a|_Q%’0) - e (2 |RE—a+Q%")

7o TR

_1L <l>3/4 (zmgm) 1 :

27)

and by letting

_Inl @t
o Qo
re A 2t
o 2’ o

then (4.4.14) becomes

T ! _a 0,70 ' _a
x /27r3d_'”e—§—1 lei”(mlﬂ—LQTm) (B

QOm/O
v

) (4.4.14)

(4.4.15)
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[N

X /27wdv e_v?_i [eivwl . e—iv(w1+/\)]
171

X ri [(sin vw; + sinwv (w; + A)) — i (cosvw; — cosv (w1 + A))].
1

(4.4.16)
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so we can write ¢ (') as

T T

v

vdve™ 2 (sinwvw; + sinwv (wy + A))

S
£
I
0\8

Vi(wy) = /vdv e” 7 (cosvwy — cos v (wy + N)), (4.4.17)
0

To solve for U; (wq) and Vi (w ), consider the integrals

9 N [ . )
e | <w1,§) = /dysinywle'”z% = —— Ee“”f/Q,

0

0 1 __i To-wfe T ~w? /2
aw1[<”1’2>_ awl\/;e =g e

o=
N
€
+
R
©
~
N

I <w1—|—)\, %) = /clycosy(cul+)\)e"’2
0

0 1 0 T 2
v N9 T (witN? /2
a(w1+A)I<‘”1“’2> 8(w1+)\)\/;e
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= \/g (wl + )\) e’ (w1+)\)2/2’ (4.4.18)

Ul(cul) = — ((,(Jle_“JT + (Cdl + )\) e T) , (44]9)

2

Vi(wy) = /ucosywldue_%—/Vcosv(wl—l—/\) dve”
0

0

<
ofSe

= V/(w1) = V' (w1)

[

o
_r_
Vi(wy) = /Vcosuwldye 7,
0

o0

2

V' (wy) = /l/cos v(w + N drve T, (4.4.20)

0



Using the Gaussian integral,

and setting

Yy
u =
y?+1
2
'LLQ: Y
y*+1

e

(u? — 1) 2udu — v?2udu

2udy = —
yay (1 _ u2)2
_ (w*2udu — 2udu) — u*2udu
(1 —u?)?
2udu
2udy =
yay (1 _ u2)2
dy = udu

118

(4.4.21)
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udu

we have from (4.4.21)

2 S du
—v [e * 0 )m =1 (4.4.23)
n —u

From V/(w;) in (4.4.20) we may write

du

Vi(wy) = /Vcosuwldz/e__ \/iz// _UT — 35
— u?)

o0

5 d v
— \/j/—u/ﬂ cos vwidrve 20-47) (4.4.24)
T (1 _ u2)3/2
0 0

since

oo

[T
I (w1,b /dz/cosz/wle v _ @e /40
0
9 \2
(52)

-2 2
dv cosvwie™” dz/— cos vwye VP
8w1 0w,

:)"\8

o

a(zl/du( vsinvw ) e’



Consider the integral

oo
/dv (l/2 cos l/wl) e VP
0

so we have

Ty .
S
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_ -v2%b

(4.4.25)

ocC
/du (1/2 coS z/wl) e
0

- (ai)\/; 2/4b<_%>

0

- () Ve (5)
Vi (= ()« (5
5 (1-5),

Wi

_)>

) eret/o (-

2b

™ —w2/4b
- 1
¢

(4.4.26)

2

3/2 V2 cosvwidre 20-47)
_ (i) Ve
3/2 8(.01 4m

2
) g(l_u2)e—wl(1U)/2, (4.4.27)
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By using
w}/ab _ \/7 —w1/4b ( W_%)
(a) Vi W) e
we get
2t
<[5 @ = w2t (1) (1= (1 w?) o)
/due wf (1-u?) /2 (1 - wi + v’w?)
1 1
——wl/due (1“)/2+/due (1“)/2(1+u )
0 0
1
= w%/due (1=?)/2 4 /due_“’%(l_uz)/2 (1+u’wf) (4429
0 0
thus
L 2 L 2
Vi(wy) = —wf/e_%l(l_“Z) du + /e_w‘Tl(l_“?) du [1 + v’wi] . (4.4.30)
0 0

The second integral of (4.4.30) may be written as

1 1

[eF st - [ au [1 + aﬂ] U @asn

0 0
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where
0 _«i w2 _9T (g2
useem 7 07 = e300 ().
1 1 ) 1
/du l4+u—|e 2 (1-u?) — /due %1(1_“2)4— /duu— 6_71(1_“2)
ou ] ou
0 0 0
2 1
Wi 2
= _ (1 -
e
—1 (4.4.32)
1
w% 2
Vi(wy) = —w? /e_T(l_“ ) du +1
0
1
(w1 +0)? 1—u?
V' (w) = — (w; + A) / e T () dy 1 1, (4.4.33)
0
Since
Vi(wi) = Vi(wi) — V{"(w1)
(0.0 V2 (0.0 V2
= /Z/COS vwidve” = —/Vcosu(wl +A)dve 7, (4.4.34)

0 0

1

_ 2 d _(.U_% 2

= —wj U exp 5 (1 u) +1
0



1
wi (w1402
Vifw) = —w? / due™ 7 07%) + (w; + \)? / due™ 5 (1-42),
0
For ¢, (') we can then write as,

3, ©©
n_ 11 1 (1\" 21 »
620) = 3= (5] [ odoe L U)Wl

0

where

o0

Us(wy) = /vdv (sinvws + sinv (wy + A))

0

o0

Va(wy) = /vdv (cosvwy — cos v (wy + N))

0

b

and finally we have Us(w-) and V5 (ws)

w2 w 2
UQ(CUQ) = g ((,02(3_+2 + (QJQ + )\) e_( TQM) ) s

123

(4.4.35)

(4.4.36)

(4.4.37)

(4.4.38)

(4.4.39)

(4.4.40)
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Va(we) = —w%/due_%(l_“Q) + (wy +/\)2/due T(1_“2), (4.4.41)

- : (4.4.42)

1 ]

% |:U1 (wl) — iV (wl) U, (wl) —1iV; (wl)

Ulwr)  Usfwo) ) f Vilw) — Va(w)
0(w1+%) 0(w2+%) a(w1+%) a(m-!—%) ’

(Ulw Ve (w) ) +i( Vi(w) %(w))
(wr+3)  (t3) (t3) (+2))]

% ( Al (wl) - A2 ((,UQ) ) +i ( B1 (wl) - B2 (MQ) )
(@i+3)  (e2+3) (@+3)  (e2+3)

_ A (4.4.43)



125

where

B] (wl) = —\/g‘/] (wl) s BQ (CUQ) = —\/g‘/g (CUQ) s (4444)

Since

Al(wl) = \/gUl(wl) = wle_%l + (w1 + )\) ez (4445)

2
a=(Yreze - 3) e )
w (X e g) ) wase

2
2 ’ /L 2H)2 A
e (e Gy 2) )
o 2

2 _1 X124 Z’—l—% 2+A>2
" (\/X,2+<Z,+g> +%)e ()i SNCRRY
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2
By(w) = —\/;‘/1(001)
2, [ 2 / :
= \/iwf/due_%l(l_“z) — \/i(wl F /\)Q/due_@(l_w)
s T
0 0

1

2 1 12 12 2 2
s =L (Vez ) [ WG

0

1

2 1 12 124 A 2 —u?
W@(V‘Xﬁ?*z“%) /due_i('x” ) 00) (4448

0

1 2

2
2 -5 /XA (7 22 2—%) 1-u?
Bg—\/§<\/X’2+<Z'+E> ﬁ) /due ( i+ ( ) (1-u?)
™ o 2

0

1 2

2
2 _% X12+ Z’+% 2+%) 1_u2
_\/2 X2 4 Z’—i—ﬁ _|_é /due ( ! ( ) ( ),
T l o 2

0

(4.4.49)

where

rr=R|-a

R; = (x|,7') and a= (a),H)
r = (x| —a),2' — H)
r,=R,—a

R, = (x|, <)



let

From
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ro = (Xf‘ — a||, —Z’ — H) s (4450)
. I .
—2 — H 2H
_i__:_<3+_d_ (4.4.51)
a o

2
re A (Z]Ih a) + (2 — H)? A\
YTy 2T o2 2
A
— X/2 712 _
(s 5
~r-3. (4.452)
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H H?
= \/R2 +4—Ra+4— — é o = cos 1. (4.4.53)
o o 2
Let
H
GNEW =G <R, a, )\, —> (4454)
o
H\ 1/1\"] |4, Ay
G<R,Og,)\,—>:—<_> —
g 2\ R \/R2+45Ra+H—§
By By

—1

, (4.4.55)

B\ /R +42Ra+ 1

Probability of finding photon excitation in half-space must be equal to one. So, in the

old variables, we have

/ d’x| / dz' ¢ (z)]> = 1. (4.4.56)
—00 0
Also in new variable,
/ d*X] / dZ' |Gye|* = 1. (4.4.57)
—00 _H
and
2 2
(2 5O {8 et
o 27 B\ /R +48Ra + 412
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+

2
B B
7 2 ; (4.4.58)

2
]—‘G< X|I|2—|-Z'2,Z"£>
o

W
N
oo
+
e
+
N

1
X+ 22+ ) W)

X12 + YA

X[t + 27

2

VAP + (24 22)°

() )
I o

V(- fo T 0

Xjf+ 27

_|_
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\/g( X2+ 27+ %)Qfldue‘%(\/m%)z(l‘“)
0
/X|I|2 +Z12

1 (e ) o
\/g <\/X|’|2 F (20 F ) %) bfdue Py —2) (=)

VAP (24 2

\/g <\/X|’|2 + (242 %)2

VAP + (2 + )

2 1 2)

; L) e
x 2 - (4.4.59)
VXP+ (2 + 2

4.5 Graphs of Probabilities of Photon Detection

Figure 4.1 Position of source relative to reflecting plane, for H/o larger than R.



+ M2 b
S * H
‘;:‘ e —_—
R : -0 +0)

Figure 4.2 Relation of distances from a source.

4 7

Figure 4.3 Position of source relative to reflecting plane, for H /o less than R.

Table 4.1 Comparison of probabilities at different angles arccos @ specifying
the location of the detector.
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A H o Rin Rz Qmin Qmaz Prob.
100 10 0.01 0.1 0.9 —0.3 1 0.649999
100 10 0.01 0.1 0.9 —0.6 1 0.799999
100 10 0.01 0.1 0.9 -1 1 0.999998

Table 4.2 Comparison of probabilities of detection at different separation dis-
tances H of the emitter from the reflecting surface.

A H o Roin R min oz Prob.
100 10 0.01 0.4 0.6 -1 1 0.999766
60 10 0.01 0.4 0.6 -1 1 0.999766

10 10 0.01 0.4 0.6 -1 1 0.999766




Table 4.3 Comparison of probabilities of detection at different distances, 12 of

the emitter from the detector.

132

A H o Rin Roox min oz Prob.
100 10 0.01 0.45 0.55 -1 1 0.997769
100 10 0.01 0.44 0.56 -1 1 0.998788
100 10 0.01 0.43 0.57 -1 1 0.999266
100 10 0.01 0.40 0.60 -1 1 0.999766
100 10 0.01 0.35 0.65 -1 1 0.999937
100 10 0.01 0.30 0.70 -1 1 0.999976
100 10 0.01 0.25 0.75 -1 1 0.999989
100 10 0.01 0.20 0.80 -1 1 0.999995
100 10 0.01 0.15 0.85 -1 1 0.999997
100 10 0.01 0.10 0.90 -1 1 0.999999
100 10 0.01 0.05 0.95 -1 1 0.999999

50

55

&0

Figure 4.4 Plot of Probability of detection with A = 100, H = 10,0 = 0.01,a =

0, R = 0.4) to 0.6\
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Figure 4.5 Plot of Probability of detection with A = 100, H = 10,0 = 0.0l,a =
1, R =0.4\t0 0.6\.

Figure 4.6 Plot of Probability of detection with A = 100, H = 100,0 = 0.01,a =
—1, R =0.4Xto 0.6\,

Figure 4.7 Plot of Probability of detection with A = 100, H = 10,0 = 0.01,a =
0.3, R =0.4)\to 0.6.
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50

55

60

Figure 4.8 Plot of Probability of detection with A = 100, H = 10,0 = 0.0l,a =

0.4, R = 0.4X to 0.6\

50

55

&0

Figure 4.9 Plot of Probability of detection with A = 100, H = 10,0 = 0.01,a =

0.5, R = 0.4X to 0.6\

20

22

Figure 4.10 Plot of Probability of detection with A = 40, H = 10,0 = 0.01,a =

1,R = 0.4\ to 0.6A.
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R x0.1
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0.99%

0.99¢k

0.598

Figure 4.11 Plot of probability of detection at all points from the detector.

1 e 0 & 0 0o 0
L]
0.9995
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0.999

]
0.9985
0.998

L]
5 ) p 10 R x0.1

Figure 4.12 Plot of probability of detection at all points from the detector.



CHAPTER V
PROPAGATION OF PHOTONS IN SPACETIME AS

A TIME EVOLUTION PROCESS IN HALF-SPACE:
QUANTUM ELECTRODYNAMICS DERIVATION OF

THE LAW OF REFLECTION

5.1 Introduction

Much progress has been done over the years (Bialynicki-Birula, 1998; Allard,
Pike and Sakar, 1997) to describe, especially quantum theoretically, the localization of
photons in space (Hong and Mandel, 1986). It is fair to say, however, that there was
still no explicit dynamical, non-heuristic, actual quantum (field) theory QED formalism
worked out, as dictated by the latter, to describe the propagation of photons in spacetime
in explaining even a simplest experiment as the reflection of photons off a reflecting sur-
face as a time evolution process. This is certainly remarkable in the progress of physics,
knowing that QED has been around for sometime and, as Feynman (Feynman, 1985)
puts it, it has been thoroughly analyzed, in his legendary Alix G. Mautner Memorial
Lectures. The latter fascinating, though heuristic treatment (Feynman, 1985) in words
is, of course, far from a definite theoretical description but, in spite being addressed to
non-specialists, the discussion clearly indicates, and as our present analysis shows, that
a theoretical formalism, as stated above, to explain a simplest experiment in spacetime
in a quantum (field) theory QED setting is lacking. For one thing, the amplitude of

propagation of photons in spacetime, as a time evolution process, in infinitely extended
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space, for example, from a point z to a point 2 turns out to be given by

i (o —a2y)?

(m)? [(w2 — 21)?*

(5.1.1)

as shown in Chapter IV rather than by the familiar Feynman propagator

i

S EEE—— 5.1.2
(@2 = 7)) (5.1.2)

with the former satisfying a key completeness relation for the internal consis-
tency of the theory as formulated in spacetime. The purpose of this chapter
is to develop such a formalism in detail based on the actual physical process of
the propagation of photons from emitters to detectors as obtained from the so-called
vacuum-to-vacuum transition amplitude (Schwinger, 1951, 1954, 1969, 1971, 1973;
Manoukia, 1986, 1991, 1992) for the underlying theory. This method has been quite
successful over the years in the easiness of momentum space computations of physical
processes, avoiding of introducing so-called wave functions, not to mention of the ele-
gance of the formalism as opposed to more standard techniques, and at the same time
gaining much physical insight as particles propagate from emitters, interact, and finally
particles reach the detectors as occurring in practice. The present analysis rests on three

general key points:

(i.) By working directly in spacetime for the vacuum-to-vacuum transition amplitude,
for given boundary conditions (B.C.), and from the expressions of the amplitudes
for the emission and detection of photon excitations by the external sources, an
amplitude of propagation between different spacetime points from emitters to de-
tectors, causally arranged, is extracted and, as mentioned above, it does not coin-
cide with the Feynman propagator for the corresponding B.C.. This step already
shows the power of determining amplitudes of propagation by introducing exter-

nal sources.
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(i1.) The amplitude of propagation is shown to satisfy a completeness relation as pho-
tons propagate between different points critical for the internal consistency of the

theory in spacetime.

(iii.) Application of these amplitudes to describe in detail the experiment being sought
by showing, in the process, very rapid exponential damping beyond the classical
point of impact for the corresponding amplitude of occurrence. One soon real-
izes that our theoretical quantum (field) theory QED formalism is reduced to a
non-operator approach and opens a way to describe, as a time evolution process,
photon dynamics in spacetime and other field theory interactions in different ex-

perimental situations as well.

5.2 The Time Evolution Process in Half-Space

Let |0+) denote the vacuum states before/after the external current J#(z), cou-
pled to the vector potential A, (z) in Maxwell’s Lagrangian, is switched on/off. The

boundary conditions, as discuses in Chapter IV, are taken to be

(04 |Ej|0-) =0, (5.2.1)

(0, [B.1]0_) = 0. (5.2.2)

For z — +0, where the reflecting surface is taken to consist the x! — 22 plane, with
z® = z > 0, and E;/B, denote the components of the electric/magnetic fields par-
allel/perpendicular to the ' — 22 plane. The vacuum-to-vacuum transition amplitude
(04 |0_)" is then given by (4.2.12).

(04 10_) = e%f(dfl?l)(dm)J“($2)DLV($2—11)J”(11)’ (5.2.3)
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where invoking the conservation law d,.J# = 0, the photon propagator in half-space

was derived in (3.2.97) in chapter 3 and is given by

. d ik (ry - 1p) - 1Q° (29 - 20)
Dy, (w2, 21) = / ((27?)16 Qf % (5.2.4)

% [guyeiQ(zz-Zl) + (_glw + 29H39V3) e ia(z +Z1)] ’

e — 40,2 = (2%71,2),Q = (Q° Xk, q) with r lying in the z! — z? plane. Since J*(z),
by definition, vanishes for z < 0, we may integrate over all spacetime points in (5.2.3).
Gauge invariance of the theory as well as the positivity condition | (0, [0_)7 |2 < 1 are
readily established in (3.3.1) in Chapter III. We consider a causal arrangement, J*(z) =
Ji'(x) + J§(x), of two currents with J§ (x), the detector, switched on after J}'(x), the

emitter, is switched off. By invoking the condition 9, J* = 0, we may then write

(04 10 = (04 [0_)" e (0, [ 0_). (5.2.5)

Q- / (der) () iy (22) [—iA s (22,21) 67

— 1A, (ah,@1) (=07 +26863) ] id]y (21). (5.2.6)
For 2 > 29,
d3 .
—1 A (22,31) = / W%@e@@rm, Q" = |qQ|, (5.2.7)
A d . )
Tp(z) = / %e@%(@ (5.2.8)
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and for Q° = |QJ,Q'J% = 0. The second term within the square brackets in (5.2.6)
corresponds to a non-trivial transition.

Here we have used the identities:

L [527' - Q(;?} = 0. (5.2.9)
Proof:
Qi |:6z] o QCZ;;?]:| — Qz(sz] o ng;QJ:|
_ 2
= QQ?]
fo-o
= 0. (5.2.10)
II. [5“ — %} [53"“ — Qg? = [5* — QQQ;} (5.2.11)
Proof:

Q2

[5“ - QZQJ} {51"“ - _ngk} _ [y’jajk B Qin;Sjk i ngk n Q’gj ng?k}
Q Q Q Q" Q

- [‘w ) QQ%) - QQC?2 i QQQ2 }
_ [5% . Q(;%’“].

(5.2.12)
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@

. J*(Q) [5’7’ Y

]J"(Q) = J7 Q)69 J3(Q). (5.2.13)
where

. » ©()J
JH(Q) = (5“ - QQ?

)Jj(Q), ie. Q;iJH(Q) = 0. (5.2.14)

Proof: from the right-hand side of (5.2.13)

T Q)67 I3(Q) = <5““ - %?) TH Q)57 <5ﬂ - Q(;_?l> J(Q)
G Q'Q* kx > 1( i Q! 1 >
= — J o J — J
<J Qg "@ @ - %@
i)l
‘Qr . iOk il
g+ 28 @2 o
Ml
— @@ - L)
Q2 Q J+ Q2 Q
i)l
= J*(Q)](Q) — (@) QQC;Q J(Q)
— J(Q) (Ji(Q) - Jﬂ‘(@))
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_) F(Q). (5.2.15)

) y . 1i()J
IV. Q" [ — 09 F 25887 F QQC;? } =0, (5.2.16)
where
Q= (k,q), Q =(k,—q). (5.2.17)
Proof:
. y Y 1i()J , . 12 ()j
Q"| — 07 + 26767 + —QQ? = —Q" +2Q"5 + QQSB
= Q" — 25" + @’
=—(k'+k —q) —2¢+ (k' +k* —q)
= 0. (5.2.18)
y L 1()J ‘
V. [ — 0% 4 261573 + QQ—Cf Q' =0. (5.2.19)
Proof:
- ) ) 15 J ] ] ) 1%0)2]
— 09 4 2618573 4 —QQ? ]QJ = —Q'+ 208Q° + QQCg

=—Q" +2§%q+
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= —(k'"+ Kk +q) +2¢+ (k' + k¥ — q)

= (. (5.2.20)
N Y i3 53 Q" QY j _oqisin | sid i3 ¢33 74
VI J*(Q") 07 42607 + —— | J'(Q) = J7(Q") 07 426877 | J1(Q).
(5.2.21)
Proof: using the identities in (5.2.19) and (5.2.20) we can rewrite (5.2.21) as
. i - o ey . J
(- Gao)] s G - )
) B noo B o 15 )]
— <J]*(QI)5Z] o &Q‘]J]*(QI)> |: &t + 2613533 =+ %}
«(017@ - Har@)
. g noo g L ey
= J*(Q") (5” — @QP) [ — 6 4 268573 + —QQ?
g g\
« (07~ S0) @
= JHQ") [ — 0V + 25i35j3] JLQ), (5.2.22)

where
IQ) = @) (57 - @),

Qj

Q) - (6“‘ - @Ql) Q).



Q' Jr(Q) = 0.

Now we use the identity

! ! !
—1 AL (24, 21) = / d’x, / d’x; / d3XD>(«T4a«'L’3)

% [D(x3,2)i 9 D(z, 72)| D~ (25, 73).
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(5.2.23)

g - 00
in (5.2.6), where dy = 9y — gg, 2y > a8 > a8 > af, ['P*x = [, dr [[° dz, and

d? :
D (24, x3) :/ = el elan sin gz,

4734/2Q°

d3 ) , _ .
D (z2,11) = / —Qelk'(rz_rl)e_‘Q(xg—m?) sin gzoe 1L,

473/20Q)°

43 . . . .
D(xo,21) = / 7Qe‘k'(r2_“)e_‘Q(z3_$?) sin gz, sin gz .

2734/20Q)°

To demonstrate the correction of (5.2.23), we note that

— 1A, (x4, m1) = /d X /dzg/d2x3||/d23/d2x||/dz
0 0 0

=

X D (x4, x3) [D (xg,x)ia—yo

D (x,xg)] D (x5, 1)

=

/d2x| ]Odz [D (a:;;,x)i%D (x,xz)]

(5.2.24)

(5.2.25)

(5.2.26)
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/3 SN 425 SIN G2 it ey —x)) o - 110l (a§—2?)
u V21Q]

i

S s . .
xi{ b _ 0 }/ K’ /gdqlsmql'zSmq’ZQCik“(x“—m“)e—ilQl’(xO—xS)
0z° 020 ) !
(277 J V212

1

/27r m/@k’ V21Q7

o0 o0

% /qu/%dq’ /d2x||elk (=) 1K (g =5 ) o - 11Q (2§ -20) - 11Q'[(2%—29)
J T ) T .

0 0

o0

X sin gz sin ¢' 2o /dzsinqzsinq’z MO [-11Q—i]Q]]-

0

From

o0

/dzsinqzsinq’z = g [0(g—q)—d(g+¢)].

0

the above equation integral becomes

o
2
™ v2(Q|

9 o
:/ Ik /%dqsinqz;», sin g’ zye (s —xel) g ~11QI(E —23)
) T
0
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we then have

o0 00
d’k [ 2 , ,
/d2X2||/dZQ /(271_)2 /;dqsinqz?) Sinq122€1k-(X3||—xz||)e—1|Q|(a:§—a:g) D(.IQ,.Il)
. / /
[ Pk [ 2 | |
= /d2X2||/d22/ 2/—dqsinqz?, sinqzze‘k'(x3ll—x2||)e-llQI(xg—xS)
(2m) s
0 0
d2kll, 002 sin ///z sin /”Z
X / > /_dqll/ q 2 q 1 eik””(x2ll_xlll)e'i|Qm|(ng—fU?).
(27) / T 9 |Q|"'
Since
) . T
/dZQ sin qzy sin ¢"' 2o = 5 0 (q—q") —6(q+q"),
0

so the above integral simplifies to

0

r &’k [2 , ‘
/d2x2ll/d2’2 /W /—dqsinqz3e’k'(xsn—><2u)e-IIQI(rg—xS)
’ . ™ ™

0

0

21, ® :
% / d’k /%dq”’ sing"z1 ek (e =x1) g - 11Q"|(2§—2})
2m* ) 7 \V2[Q”

o0

) .
:/ : k2 /gd(JSinqa PIAZL ) gik-(eoy—x1)) g - 11QI(xE—a9)
(2m)? ) = Vv2[Q

0
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%k [2 singz; \ e o
D($4,«’L’3)/ /—dqsinqz3 eik-(xz) =21y o - 1| Q| (25 —27)
S @m)t ) V2IQ]

0

dq" sin ¢" 23

>1|l\)

27.m 3
% elk (%1 =%3)) @ - i|Q|(2§—28) /d i /
0

: n
y (M) RTS————

/2 |QIII|

But

o0
: : n
/ dzzsinqzzsing z3 =

0

0(q—¢") = d(a+4d")]

|

therefore, for the above integral we obtain

0

Pk [2 1 , o
d2X3||/—/—dqsinqz4 ik (xa=%3)) o - i[Q(z]—23)
/ (27)? /7 V21Q]

oum ;
v / d’k /%dq/// M eik”’~(x2“—x1”)e-i|Q'”|(xg—x?)
(2)? /o 2|1Q"|

We finally get for 2% > 2/

o

2k 2 . .
(—i) Ay (z,2") :/ (g 7 / dg I IZ S ey 2 -iQI")  (5.9.27)
s
0

qi
™ 21Q|




Given two real unit 3-vectors

n = (a,b,c) =ny,

n' = (a,b,—c)=n_.
We introduce two sets of unit 3-vectors (eq, €3), (€1, €2) by

e, =nxn'/lnxn'|=e¢,

€ =1 X €1, € =n' x €1,
satisfying

n+-e)\:0,

n_-e, =0,
for A = 1, 2. We use the completeness relations
0% = nlynd, + Eyese] = nnl + Xyelel,

and also set

d3 . .
S, = / R g, (Qu)etre @ sin(4g2),

4734/20Q)°
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(5.2.28)

(5.2.30)

(5.2.31)

(5.2.32)

(5.2.33)

(5.2.34)

(5.2.35)
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with Q+ = Q,Q— — Q/ - (Q07k7 _Q)aQU = |Q|’

0
4(Q1) = Ir(Qs) ~ e Tn,  31(@2), (5236

from which we have
SE(Q4)87 Y (Q) = Ji(Qx)6Y I (Q), (5.2.37)

SE(Q)[-07 + 267671 (Qx) = I3 (Q)[=07 + 2667 (Qs).  (5.2.38)

Here we note that n, - Q, = n - Q, and that for the points Q, = n|Q]|, not
only the numerators in the second term in (5.2.35) vanish but also ny - J7(Q+) = 0.
Hence these points are apparent singularities in (5.2.34) belonging to sets of measure
zero. Note, in particular, that n. - Sy (z) = 0.

From (5.2.37) and (5.2.34)-(5.2.38), the following explicitly expression for €2

emerges

(x ,x .
/ d3X1/ d3X2 21 Z |:ISQ+ 1‘2 e)\)(ISH_(ZL'l) ) eA)

A

+ (iS5 (72) - €)(iS1-(21) - 1) + [(—1)*(183_(;@) - €)(iS14(71) - €))

(1) (S5, (22) - e2) (S (1) - eA)H (5.2.39)

>
with V. (29, 1) = [ d*xD(x3,)idy D(x, ;). Clearly, the last two terms in (5.2.39)
correspond to non-trivial transitions.
Let |ex,n,,x) = |\ +,2),|lex,n_,z) = |\ — z) denote photon exci-

tation states emitted at spacetime point © = (zo,r,2) with associated vectors
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(ex,ny), (ex,n_), respectively. The physical significance of these associated vectors
will be discussed in the light of the experiment being sought. A unitarity expansion of
(04 10_)7 will include, in particular, the following four terms describing the emission,

propagation and detection of photon excitations:

(04 [N+, 22)72 O, +, 2], 4+, 21) (@, 4, 21| 0-)"
<0+ |)\a B x2>J2 <)\7 —,l'2|0l, +7$1> <Of, +, 71 |O—>J1 ’
<0+ |)\a B x2>J2 <)\7 _71‘2|O‘7 _7I1> <OZ, — 1 |O—>J1 )

<0+ |)‘7 +7 :172>J2 </\7 +7 x2|a, B $1> <C¥, — T |O—>J1 . (5240)

Here, for example, (o, -+, z;|0_)"" denotes the amplitude for the emis-
sion of a photon excitation in state |c, 4, 1), with associated vectors e,,n,, and
(04 |\, —, 22)" denotes the amplitude for the detection of a photon excitation in state
|\, —, x2) with associated vectors €y, n_. Most importantly (\, —, zs|c, 4+, 1), for ex-
ample, denotes the amplitude of propagation of a photon excitation from spacetime
point x; and associated vectors e,,n,, to a spacetime point zo and ending up with
associated vectors €y, n_. Upon comparing the four terms in (5.2.39) with the corre-

sponding ones in €2 given in (5.2.38), and using the completeness relation
!
Z/ A*x(N, 6, 22|\, 6, ) (N, 6, | X, 0y, 1) = (N, 82, o] N, 0y, ). (5.2.41)
o=+
with 0,1, 6 = =4, we obtain

(04 |, +,2)2 = (iS5, (x) - ex) (04 0_)"2, (5.2.42)
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(04 [A, = 2)™ = (i85_(z) - €) (0 ]0-)", (5.2.43)

N+, 2]0.)" = (iS1,(x) - ey) (04 ]0_)", (5.2.44)

(A, —, x| 0_)" = (iSy_(z) - €,) (04]0_)". (5.2.45)

O£, mla, &, 31) = %5,\QV+(x2,x1)7 (5.2.46)
(=D*

(A, £, 20|, F,21) = e V(T2 21). (5.2.47)

2

where a)(z) = €y j(z) and a, = Vd3x a,(x) as shown in (4.2.30). Note the factor 1/2
in (5.2.46) and (5.2.47) which is essential to satisfy the completeness relation (5.2.41).

V. (x2, x1) works out to be

K
5.2.48
Vi x2,$1 7r2 Z ry — 1‘1 (22 - /‘621)2 - («'Bg - x?)Q]Q’ ( )

not coinciding with the Feynman propagator for the corresponding B.C.. To simplify

the expression in (5.2.48), we use the Schwinger representation
-—:—/ s dse1s(A—ie) o (5.2.49)
0

for any given A.

To prove the Schwinger representation, we explicitly integrate over s on the

right-hand side of (5.2.49)

() 1 oc . .
. d s(A—ig) _ —i(A —i —is(A—ie)
/0 sdse” —i(A—is)/O s[—i( ic)]e ds
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= —; e — 0. (5.2.50)
Accordingly, (5.2.48) may be written as
(.’178 — .’17(1)) > —is[(r2—r1)2+(22—k2z1)2 — (29 —29)2 —ie]
Vi(xe, 1) = — Z/{ sds e 271 27R2 277 (5.2.51)
im
k=1 0

In the sequel we suppress the ie factor to simplify the notation.

The expression in (5.2.51) follows from (5.2.49), by setting first A =

[(r2 —11)% + (22 — k21)? — (25 — 29)?]? to get, in the process,
1

[(rg —11)2+ (29 — k21)2 — (2§ — 20

T / " dseillrarn (o ket (af-a i)
0

(5.2.52)

Upon substituting (5.2.52) in (5.2.49) we obtain (5.2.51) as expected.

5.3 Transition Probabilities: Rigorous Analysis of The Reflection

Process

The transition amplitude that a photon excitation in a state|\(, d;,z1) prop-
agates from z; = (29,11, 21), reaches the reflecting surface within a skin depth,
specified by a scale parameter o and described by a Gaussian density distribution
e #*17/9\/m0,0 < 7z, and ends up in a state |\, —0;, x3) at x5 = (29,14, 25) is given

from (5.2.39) and (5.2.41) to be (2 < 2° < 29)
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00 —22/0?
_ 2 e
Alwyn) = [ [z 5o

X Z(S/\l/\2<)\2’ _5171‘2|)\1757 ZE><)\1,5,1‘|)\1,51,[E1>, (53])
o==%

suppressing, for the moment, the indices A, d; in A(z2, x1) to which we will return
later. We note from (5.2.45), (5.2.46) and (5.2.50), that the z-integrand in (5.3.1) is

even in z. We may also introduce a surface density amplitude f(R) by
A(xy,71) = | @°Rf(R). (5.3.2)

By multiplying the r-integrand in (5.3.1) by the identity

2
T,

2
/ IR —®-n2/od _ 1, (53.3)

valid for any 0(2, > 0, and any r, giving from (5.2.45), (5.2.46), (5.3.1) and (5.2.50)

F(R) = (D™ / dQ‘;e—m_r)?/aé

8 Tog

> dz 2 /52
x/_oo ﬁae_Z/ Vi(xe,2)Vi(x,x1). (5.3.4)

Given that a photon excitation was emitted in state |\, 01, 1), reaching the reflecting
surface within a skin depth, and ending up in state | Ay, —d1, x2), Ao = Ay, the condi-

tional amplitude density for the process is then given by

F(R) = f(R)/A(xz, 11),



with

/ ERF(R) = 1,
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as a summation over impact centers on the reflecting surface whose nature will be now

investigated. Let T} = 2° — 29, Ty, = 29 — 2. The r—, z— integrals in (5.3.4) may be

explicitly carried out yielding

1 r T U1 U
FR)=— K1K du du
(R) NZ ! 20/ 10/ 20\/1+i(u1+u2)

K1,Kk2

S 2 2 !
27 (U1 + KikoUoza [ 21) {70
X exp | —— - A
P72 +1 (uy + up) ! o2 e
X exXp -—0_3 [u1(r; — R) + ug(ry — R)J? e G RIe® (53 5
ot 1+iof (w1 + ug) /o |
o0 o
U1U
N = Z H1/€2/dul/du2 ;
K1,K2 0 0 0\/1 +1 (ul + UQ)
2
X exp 2 (un + Kikaugze/21) dPre (G2l (5.3.6)
o 1+i(uy+up) | h

with

G(ur, uz, 1) = ui[(rs — v)° + 2{ — TF] + us[(r2 — 1) + 25 — T3].

(5.3.7)
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For the practical case 0 < z;, with a given initially chosen macroscopic value 2y, i.e.,
for 27 /0% > 1, we may use the distributional limit
2
21 /o 22 (uy + KikoUg2a/21)

exp | ——= -
\/1+i(u1+u2) P 02 1+1(u1+u2)

= /70 (uy + K1kouoze/21)

(5.3.8)

in (5.3.5) as obtained, for example, by Fourier transform techniques and shown below,
to obtain u; = —KiKoUg22/21, With the necessary restrictions k; = +1,ky = F1,

giving for 0 < 2y,

oo 9 .
F(R) = 12 / w d@ exp {_110(;1 (ZQ,ZLR()):|
noC | op +iw op (21 + 22)
0

2
< exp |~ (B~ Ro) (5.3.9)
0§ (00 + iw)
where
r iwG R
C = /wdw exp [_m; 3 (22, 21, 0)} (5.3.10)
/ o8 (21 + 29)
R,() = (221'1 + 211'2) / (Zl + ZQ) . (53] ])

Here we note in reference to (5.3.8), that the Fourier transform of a Gaussian in

one dimension:

exp — —, 5.3.12
or P53 ( )
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is given by the integral

i 2
dz exp—x—exp ikx = f(k), (5.3.13)

2ro 202

—0oQ
which explicitly integrates out to

o0

dz e 2’ exp ikx
Xp ——— €X
) 2ro P 202 P

— 00

dx 1 2 . 9 . 2782 . 9 2}
= exp ——— |x° — 2ic“kx + (ic°k)* — (ic°k
e 202[ (i02k)? — (i0°k)

—e "2 = f(k) (5.3.14)

For a function g(x) in the scalar product:

o o0

/ e {_ 332]9(50): /f(k)é(k)%, (5.3.15)

\V2ro 202

—oC
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g(k) is the Fourier transform of g(x), and

2 .
e 27k = g7 (5.3.16)

—0oC

as shown in (5.3.14)

Therefore, for 0 — 0, the right-hand side of (5.3.15) is equal to

dk _
/gg(z) = ¢(0). (5.3.17)
Since
dkeikx ~
g(x) = / o g(x), (5.3.18)
) T dx 2
lim == eXp [ - @} g9(z) = 9(0), (5.3.19)

and the Gaussian behaves as a delta function for ¢ — 0:

1
lim e 22 — 0(x) (5.3.20)
o—0 27‘(’0‘

For an effective area of impact wag about a point R for oy — 0, we obtain

in(zz,zl‘Rn)}

o5 (21+22)

wdw exp [—

102F (R) = exp | — (R — Ry)? /03] , (5.3.21)

_iwG(22,21,Ry)
0’3 (2’1 +22)

wdw exp [

with the second factor thus being independent of oy, giving the remarkably simple ex-
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pression
702F (R) — e (R-R0)*/a3 (5.3.22)

For 02 — 0. Accordingly, for an arbitrary small o, giving a point-like area of impact,
about the point R, the partial amplitude 7o F(R) vanishes exponentially for R # Ry,

i.e., for the non-classical point of impact. On the other hand for R = Ry, we have

rosF(R) — 1, (5.3.23)

for o2 — 0.

The condition R = Ry, translates from (5.3.11) to (r;y — Ry)/2; = —(ro —
Ry) /22 which is nothing but the law of reflection with Ry denoting the classical point
of impact. For given (ry, 1), (2, 22), leading from (5.3.11) to a fixed value of Ry,
we may choose the unit vectors n,,n_ in (5.2.34), to be directed along the vectors
(Ro — 11, —21), (rs — Ro, 20) = 20(Rg — ry, 21)/21, respectively, corresponding to
classical rays, with the vectors (ey, es), (€1, €2) having the well know interpretations of
polarization vectors perpendicular, respectively, to n,,n_, with transformations e, <
€1, €9 <> € UpON scattering.

Our formalism clearly opens the way for practical spacetime analyses of pho-
ton dynamics and other interacting field theories by using, in the process, functional
differential techniques (Manoukian, 1986, 1991) in different experimental situations. It
shows, in particular, how amplitudes of propagation are determined from the knowledge
of amplitudes of emissions and absorption of particle excitations by emitters and detec-
tors, respectively, signaling the power of the present method of analysis. These further
developments in general field theories emphasize the practicality and generality of the

problem treated here not just being restricted to it.



CHAPTER VI
CONCLUSION

This thesis was involved with a careful analysis of the propagation of photons
in spacetime as a time evolution process dealing with amplitudes of transitions of pho-
ton excitations between different points (29, x;), (x3,x3) in the spacetime continuum.
These amplitudes describe, as time evolution process, in spacetime, as photon excita-
tions are emitted and absorbed (detected) by various sources. the quantum physics treat-
ment of a non-relativistic particle provided a guide for the far more complex problem
dealing with photons, as ultra-relativistic particles, in the quantum field theory analy-
sis. For a non-relativistic particle of mass m, the amplitude of propagation from a point
(29, x;) to (29, %), for 23 > 29, is well known and is given by the expression

3/2 . 2

. . m im|xg — xq|
(. m Zo2 A 6.0.1
(w3, x2| 2, 31) (27ri7i($g — f?)) P [ 2h(x3 — 1) } ( )

The amplitude satisfies a very important completeness relation
(29, %0 |2Y,%x1) = / d*x (23, %5 |2°, %) (2°, x| 20, x1) . (6.0.2)
R3

for any x5 > 2% > z9. This completeness relation allows a systematic analysis of the
propagation of non-relativistic particles in configuration space as a time evolution pro-
cess in quantum physics. In the functional differential treatment of quantum field theory
dealing with relativistic particles one is dealing with the so-called vacuum-to-vacuum
transition amplitude (0, |0_) in the presence of external sources. From the expression
of the amplitude that a given some .J ;(:vl) in spacetime emits a photon excitation and
is then absorbed by a source J?(x,), representing a detector, the amplitude of a pho-

ton excitation from a point z; = (2%,x;) to a point o = (29, x3), as a time evolution



160

process, is obtained from a unitarity expansion of (0 |0_) to be

ié)\l)@ (568 - x(l))Q

o]

when )\ A\, are associated with polarization vectors ey,, €),, which using the Schwinger

(6.0.3)

<«Tg7 X9 ‘ZB?, X1> -

representation may be written as

0

0 __ 2 oo . 9 .
(23 2931) Sxin, / sseisl00—x1)P— (2§ —a)?—ic], (6.0.4)
17T 0

for ¢ = 4-0. This expression is different from the so-called Feynman propagator

i

(w2 — 21)%

(6.0.5)

The amplitude in (6.0.3) satisfies a completeness relation as in (6.0.2) while (6.0.5)
does not, showing the internal consistency of the analysis as a time evolution process
in spacetime. The major problem of this project was to develop in detail this formal-
ism for the propagation of photons in spacetime as a time evolution process based on
the actual physical process of the propagation of photons excitations from emitters to
detectors as obtained from the so-called vacuum-to-vacuum transition amplitude for the
underlying theory when photon excitations encounter an obstacle - a reflecting surface.
This method has been quite successful over the years in the easiness of momentum
space computations, of physical processes, avoiding of introducing so-called wavefunc-
tions, not to mention of the elegance of the formalism as opposed to more standard
techniques, and at the same time gaining much physical insight as particles propagate
from emitters, interact, and finally particles reach the detectors as occurring in prac-
tice. The analysis is applied not only to infinitely extended space but also in half-space
dealing, rigorously, with the reflection process where photon excitations may encounter

an obstacle. The present analysis rests on three general key points: (i) By working
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directly in spacetime for the vacuum-to-vacuum transition amplitude, for given bound-
ary conditions (B.C.), and from the expressions of the amplitudes for the emission and
detection of photon excitations by the external sources, an amplitude of propagation
between different spacetime points from emitters to detectors, causally arranged, is ex-
tracted and, as mentioned above, it does not coincide with the Feynman propagator for
the corresponding B.C. This step already shows the power of determining amplitudes
of propagation by introducing external sources. (ii) The amplitude of propagation is
shown to satisfy a completeness relation as photons propagate between different points
critical for the internal consistency of the theory in spacetime. (iii) Application of these
amplitudes to describe in detail the experiment being sought dealing with reflections off
a surface by showing, in the process, very rapid exponential damping beyond the clas-
sical point of impact for the corresponding amplitude of occurrence. The reader will
soon realize that our theoretical quantum (field ) theory QED formalism is reduced to a
non-operator approach and opens a way to describe, as a time evolution process, pho-
ton dynamics in spacetime and other field theory interactions in different experimental
situations as well. The amplitude of photon propagation from an emitter to a detector,
without reaching the reflecting surface, as well as the amplitude of propagation from
as emitter to a detector while reaching the reflecting surface are derived in Chapter V
by a unitarity expansion of the vacuum-to-vacuum transition amplitude (0, |0_) sup-
plemented by the expressions for the amplitudes of emissions and detections of photon
excitations. By a very detailed analysis it is shown, by explicit derivations, that photon
excitations may reflect off the reflecting surface at any point. All such points are shown
to be exponentially damped relative to the classical point of impact. The derivation rests
entirely on a quantum field theory derivation and involves intricate details described in
Chapter V. In quantum field theory, (derived) amplitudes are associated with the local-
ization of photon excitations in configuration space, that lead, in quantum probabilistic
sense, probabilities as to where these excitations were in space within given time spans.

In reference to the reflecting surface, at some time, a photon excitation, is found to
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reach the surface with an amplitude to go through the classical point of impact with an
amplitude which exponentially dominates other possible points of impact with corre-
sponding amplitudes. As a further analysis, we have carried out in an Appendix, the
exact-h-quantum correction for the average number of photons emitted in synchrotron
radiation per revolution with our original contribution in obtaining and evaluating the

corresponding integral for this number in closed form.
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APPENDIX A

COUNTING NUMBER OF PHOTONS IN
SYNCHROTRON RADIATION:
EXACT h-QUANTUM CORRECTION

The purpose of this appendix is to obtain the explicit closed A-quantum cor-
rection for the number of photons in synchrotron radiation as they become localized in
detectors. The historical development of the theory of synchrotron radiation and the fas-
cinating story behind it are well documented in the literature (see, e.g., Pollock, 1983)
and relatively recent theoretical progress in the field as well as extensive references may
be found in Bordovitsyn (1999). Although many features of synchrotron radiation have
been well known for a long time, there is room for further developments and certainly
for improvements. For example, in a recent investigation (Manoukian and Jearnkul-
prasert, 2000), an explicit expression for the mean number (V) . of photons emitted per
revolution was derived, based on the classical analysis, involving a remarkably simple

one-dimensional integral, with C, here, standing for classical. The latter is given by

x® sinz\2
dzx [(T) cos(2x)] AD)

(N)e = 20452/F 1 —BQ(SM)Q

0

where 5 = v/c, v is the speed of the charged particle, ¢ is the speed of light and a is the
fine-structure constant. For high energetic charged particles, (A.1) gives (Manoukian

and Jearnkulprasert, 2000):

5%i¢e"
(N)o ~ W—Faoa—kO(\/lfB?) (A.2)
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where the constant a is overwhelmingly large in magnitude and is given by

7 sing)? _ _
ao = 2 / dr 6(52) —cosC) =5) g saz7 (A3)
v L= (%)

0

and the second term on the right hand of (A.2) gives an important contribution for high
energetic particles and was unfortunately missing in the earlier investigations (see e.g.,
Particle Data Group, 2004).

For example, the relative errors in (A.2) are quite satisfactory with 4.11%,

1.34%, 0.063% for 5 = 0.8, 0.9, 0.99, respectively, to be compared with the relative

errors of 160%, 82%, 17% of the well known expression tabulated earlier (Particle Data
Group, 2004) involving only the first term on the right-hand side of (A.2). A system-
atic asymptotic analysis for high energetic relativistic particles has been also carried
out more recently by Manoukian et al. (2004), based on (A.1), providing additional
corrections to the ones on the right-hand side of (A.2) as functions of m .

The purpose of this communication is to derive the quantum correction (V) , in
closed form to the mean number (N') of photons emitted per revolution, to the order £, to
supplement our explicit expression in (A.1), which was based on the classical analysis,
giving the final result (N) = (N) + (), where (V) , is given in (A.26).

The Quantum Correction

The explicit integral expression for the quantum correction, to the order £, to the
mean number (N') may be obtained from that of the formula of the power of (Schwinger,

1949, Egs. (III), (6), (7); 1954, (24)) and Schwinger and Tsai (1978, (C.11)) given by

(N), = ah <%F(h)> (A4)

h—0
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where
r r ' 2 —1 W hw WoT
F(h) = d d —1w(1+hw/E)—rﬂ COS WoT . 23 (1 Hw 0
(h) 0/ wO/ Te " Bener 7 sin ng + T sin - )
(A.5)
and, in our notation,
E 1 Be  cqBy/1 — [3? (A6)
oy . WO = —— —— .
me? /1 -2 R mc?

with ¢, R and B denoting, respectively, the magnitude of the charge of the particle, the

radius of the classical circular motion, and the magnetic field in question (A.5) gives
o0 o«

2
—/dcu/dTe_i‘”ﬁ cos woT — 1
- woT

10 J fsin =5

0

)
ﬁF(h)

2
X [—1%7 sin <2ﬁ— sin %) + cos <2ﬁ— sin %) (2[3—E sin %)} i

(A.7)

Let

Y z, WoT = , 23 sin woT _ a(x) (A.8)
Wy 2

in (A.7) to rewrite the latter in the more convenient form:

o] [ee]
_ o

=7 dx (52cosx—1) /dz 22

—00 0
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This seemingly complicated double integral may be computed in closed form. To this

end, let
r+a(z) =&, (A.10)

and note that

dr 1
d¢  (1+Bcosi)

Also for x — +o00, £ — Foo,foré =0, 2 =0

Accordingly, (V) in (A.4) may be obtained by taking the real part of (A.9)

giving
(¥ = o (%) [ actite.o0+ 166, -5)] (A12)
where

B d? B?cosx — 1Y\ [z +2Fsin2
16.0)= (309 ( 25 sin & ><1+6COS%2>' (A1)

and we have used the integral

o0

Re / dze ¢ = 714(&). (A.14)

0

To evaluate the integral in (A.12), we use the relations

2 2 Bginz
& ! ¢ gy d : (A.15)
d&2 (14 fcos$)? |da? 1+ Bcos?de
2
1
i( l"m) _0, d_<‘”m> - (A.16)
dr \sing / |,_, dv? \sing ) |,_, 6
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d Becosx — 1 _ 0
dz \14 Bcos? o

=0

2 _ _
d* (Beosx —1 _ ﬁ(1+3ﬁ)' (A17)
dz?2 \1+ fBcos5 ) |,_, 41+ p)
We first evaluate the integral
r d? [(B%cosz —1\ [x+28sinZ
der = — 2 A.18
/ ¢1&B) d§2( 2(3sin % ><1+ﬁCOS%> 0 ( )

where we have used the property of the delta function 6(&) and the fact that £ = 0
implies that x = 0. In order to carry out the differentiation d?/d¢?, we use (A.15). In

detail, from (A.13) we have

0 0

B d? B?cosx — 1Y\ [x+28sin2
[ aeren = [ ae(~i10) (55527) (Trrems)
—— [ ae(500) o) (A19)
where
_ (BPcosx—1\ [z +20Bsin}
Fle) = ( 2[sin ) < 1+ Bcos §2> ' (8.20)
Integrating by parts (A.19) becomes
r _ r d?> (B%cosx —1\ [z +20sin%
[aeren = [0 (3 (Srr) (Trrms))

(@ (BPeosz—1 x4 2fsin2
<d—§2( 2f3sin 5 ><1+Bcos§>> (A21)

=0
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Using (A.15), (A.21) become

1 d? Zsing  d

/d§I(f,5) o ((1%—6005%)2 [dx2 + 1+BCOS§£
y B2cosz — 1Y\ [z +2Bsin§

2/3sin 1+ fBcos3 =0

o 1 d? [(B?cosxz —1 T+ 2Fsin g
N (1+Bcos)? [da?\ 2f3sini 1+ Bcosk

2

N Bsing i(ﬁ%osx—l) <x+2[3$in’2—”>]>
1+ fBcos 5 dx 23 sin 3 1+ Bcos 3

considering the first term in the brackets, we have
d* (B?cosx — 1\ (v +2f3sin3
dx? 23sin § 1+ Bcos3
~d d (pPcosz—1 z_
~dzdr \ 1+ Bcos 23 sin £
:i B?cosx — 1 d :1: 1) 4 x 1 d B?cosx — 1
dz [\ 1+ Bcos5 / doz \23sin3 2/3sin dz \ 1+ Bcos 3
_d [(BPcosz—1Y d Ty
Cdz 1+ Bcosy ) do \28sin
+i x 41 d Bzcosx—xl
do | \28sin § dz \ 1+ Bcos 3

B?cosx — 1Y\ d? x d (B%cosz—1\ d x
= —+ 1)+ — | — | — — +1
14 Bcossy ) do? \28sin g dz \ 1+ fcos5 / dz \28sin§

(A.22)

=0
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x d? [B%cosz —1 d T d [(B%cosz —1
e+ 1 Nt (s 1) ([
2f3sin 5 dz? \ 1+ Bcos 3 dz \ 2f3sin § dx \ 1+ Bcos 3
_ BQCosx—xl d? x 1) 4 x 41 d? 6200833—901
1+ fBcos§ ) da? \ 2f3sin 3 2(3sin 3 da? \ 1+ Bcos 5

_(BPcosz—1Y\ 1 x —B(1+38)
_( 1+BCOS§> 124 - <2631n% +1> 4(1+ 5)

([32—1> 1 +—6(1+35)
1+5) 128 4(1+ pB)

_B-1 n —B(1+3p)
1283 4(1+ B)

_ (1=p  B(1+3P)
- (12/3 * 4(1+B)>’ (A23)

where we have used the condition at x = 0, by using (A.16), (A.17). For the second

term in the bracket of (A.21), we similarly have

SsinZ d <[32cosx—1> (x+26sin§>

1+ Bcos 5 dx 2f3sin 5 14+ Bcoss ) |-
B Bsing <62(:osa:—1) d < x +1>
1+ Bcos5 \ 1+ fcoss ) dz \2[sin 5 0

N gsin% Ty d (B%cosz —1
1+ Bcos g \28sin 5 dz \ 1+ Bcos 3

=0

—0. (A.24)
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From the above we obtain

T 1 [(1-p)  1+38
/dél(i,ﬁ)—(Hﬁ)Q[ 25t 2 } (A.25)

The quantum correction (V') 0 then emerges from (A.12) and (A.18) to be (Manoukian

and Viriyasrisuwattana, 2006):

8t [ hw E E\°
<N>Q - ?04 mc? <m02> B (ch) (A-26)
For 8 — 1, this gives the truly asymptotic formula
8t [ hwo E\?

The expression in (A.19) supplements the explicit form (V) in (A.1) in a quan-
tum mechanical setting.

For the synchrotron in our institution, R = 2.78 mand E = 1.2 GeV. This gives
the estimates (N), ~ a2.14 x 10" and (N), ~ a1.51 x 1072, in magnitudes, as based
on (A.1)/(A.2) and (A.19)/(A.20), respectively. The latter is indeed relatively small but
may be, however, significant for several revolutions in the magnetic field. This small
quantum correction is not necessarily to be dismissed on practical grounds and may
be reminiscent of small radiative corrections such as the Lamb shift contribution to the
spectrum of the hydrogen atom which has been measured with very high accuracy and
has led to much new physics. The quantum correction given in this work may be equally
challenging to detect experimentally. It is interesting to note that a singularity in  for
B — 1in (N), arises as in the classical treatment. Our quantum correction is based
on a leading h-contribution. At present it is not clear what would be the expression
for (N) ¢ in an exact fi-all order treatment. Would such an expression compete with its
classical counterpart and would it be practically relevant? Would it be singular in /3 for

B — 1?7 The exact h-all order treatment of (IV), as well as its experimental detection
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remain formidable problems and will be hopefully confronted with in the near future.
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Abstract

The quantum correction to the mean number (N) of photons emitted per revolution, to the order h, is derived in
closed form in synchrotron radiation which supplements our explicit expression obtained earlier for (N) which was

based on the classical analysis.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

The historical development of the theory of synchro-
tron radiation and the fascinating story behind it are
well documented in the literature (see, e.g., Pollock,
1983) and relatively recent theoretical progress in the
field as well as extensive references may be found in
Bordovitsyn (1999). Although many features of syn-
chrotron radiation have been well known for a long
time, there is room for further developments and
certainly for improvements. For example, in a recent
investigation (Manoukian and Jearnkulprasert, 2000),

an explicit expression for the mean number (N)c of

photons emitted per revolution was derived, based on
the classical analysis, involving a remarkably simple
one-dimensional integral, with C, here, standing for
classical. The latter is given by

Coap? "'“'_.\' (sin_\-/_\-f—cos(z_\-)
Wi =25 .ﬁ x? [ 1 — fsinx/x)* |’ (.h

*Corresponding author, Tel.: + 6644 224755,
E-mail address: manoukian_eb@ hotmail.com
(E.B. Manoukian).

where ff = v/ec, v is the speed of the charged particle, ¢ is
the speed of light and « is the fine-structure constant.
For high energetic charged particles, Eq. (1.1) gives
(Manoukian and Jearnkulprasert, 2000)

Sna ¢
L+m;:ﬁ+(“(\”—ﬁ"), (1.2)
where the constant «; is overwhelmingly large in

magnitude and is given by

ay = 2 /mﬂ_‘v G(sin x/x)* — cos(2x) — 5
2 TJo x? 1 — (sin .\'/.\']2

{(N)e =

j| = —9.55797

(1.3)

and the second term on the right hand of (1.2) gives an
important contribution for high energetic particles and
was unfortunately missing in the earlier investigations
(see, e.g., Particle Data Group, 2004).

For example, the relative errors in (1.2) are quite
satisfactory with 4.11%, 1.34%, 0.063% for f = 0.8, 0.9,
0.99, respectively, to be compared with the relative
errors of 160%, 82%, 17% of the well known expression
tabulated earlier (Particle Data Group, 2004) involving
only the first term on the right-hand side of (1.2).
A systematic asymptotic analysis for high energetic

0969-806X/$ - see front matter @© 2006 Elsevier Lid. All rights reserved.

doi:10.1016/j.radphyschem.2006.08.012
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relativistic particles has been also carried out more
recently by Manoukian et al. (2004), based on (1.1),
providing additional corrections to the ones on the

right-hand side of (1.2) as functions of /1 — .

The purpose of this communication is to derive the
quantum correction (N)q in closed form to the mean
number (N) of photons emitted per revolution, to the
order h, to supplement our explicit expression in (1.1),
which was based on the classical analysis, giving the final
result (N) = (N)¢ + (N)q, where (N)q is given in (2.16).

2. Quantum correction

The explicit integral expression for the quantum
correction, to the order h, to the mean number (N)
may be obtained from that of the formula of the
power of (Schwinger, 1949, Eqs. (III), (6). (7); 1954,
Eq. (24)) and Schwinger and Tsai (1978, Eq. (C.11))
given by

(N)g= If?( F(h)) s 2.1
h=0
where

50 )
F(h)= d d —|fJ(I+hr},.’P}rM
(h) ﬁ w/ e S

. ® ho\ . @yt
X sin (Zﬁw—n (] +f) sin T) (2.2)

and, in our notation,

E I . eqBy/1 -
—_— s g = & = u (23)
5 R me?

1-p

with ¢, R and B denoting, respectively, the magnitude of
the charge of the particle, the radius of the classical
circular motion, and the magnetic field in question.
Eq. (2.2) gives

_ it ﬁ cosmyt — 1)
B f d(u/ dee ~ Psin(wet/2)

T
[ ]ET sin (2,‘)’—51 T)

T

+cos (2,8— sin T)

W, gt
(o253

2 sin% = a(x) 2.5)

—=1zI, mT=1x,

n (2.4) to rewrite the latter in the more convenient
form:

F(:‘l)lh_.0 wn [ d\‘(ﬁ cosx—1) [ dz 22
—iz(x+a(x)) Lﬁ‘(\)
) {e a(x)

—al(x)
—a(x) } 26)

This seemingly complicated double integral may be
computed in closed form. To this end, let

+ eizle- atxpy ¥

x+alx)=¢ 2.7)
and note that

dx 1

42 (T foose/) Y

Also for x = 400, ¢ = o0, and for ¢ =0, x = 0.

Accordingly, (N)q in (2.1) may be obtained by taking
the real part of (2.6) giving

e x
(N)g = an (T‘”") f dIEH+IE-PL 9

where
e [ f?cosx — 1\ [x +2fsin(x/2)
16h= ( aé o }) (wsm (x/2) )(l+ﬁcos(x/2))
(2.10)
and we have used the integral
Re [ dzei = 1d(¢). (.11
0

To evaluate the integral in (2.9), we use the relations

(B/2)sin(x/2) d

1 + feos(x/2)dx)’
(2.12)

i1 e
d& ™ (14 Peos(x/2))* dx?
o] ()
dx \sin(x/2)/|,_, ~ dx? \sin(x/2)/|,_,

(2.13)

i( Feosx— [ )[ i i( Feosx— I )
de \I+ feos(x/2) /|y~ dx2 \ 1+ feos(x/2)/| _,

1
=

=1 +3p)
——4“ T (2.14)
from which we obtain
© I [(1-p) 1+3f
I = . 2.1
/_.x “ICH (14 By [ 128 4 ] 2.15)
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The quantum correction (N)q then emerges from (2.9)

and (2.15) to be
3
(£)-(.E) ] .16
me= me=

g =35a(12)
For fi — 1, this gives the truly asymptotic formula

me?
8t [haog\ [ E N’
_Tl(mc?) (ﬁ) ’ @17

The expression in (2.16) supplements our explicit form
{N)¢ in (1.1) in a quantum mechanical setting.

For the synchrotron in our institution, R = 2.78m
and E=12GeV. This gives the estimates (N)q~
#2.14 x 10* and (N)g~al.51 x 1072, in magnitudes, as
based on (1.1)/(1.2) and (2.16)/(2.17). respectively. The
latter is indeed relatively small but may be, however,
significant for several revolutions in the magnetic field.
This small quantum correction is not necessarily to be
dismissed on practical grounds and may be reminiscent
of small radiative corrections such as the Lamb shift
contribution to the spectrum of the hydrogen atom
which has been measured with very high accuracy and
has led to much new physics. The quantum correction
given in this work may be equally challenging to detect
experimentally. It is interesting to note that a singularity
in f for f—1 in (N)g arises as in the classical
treatment. Our quantum correction is based on a
leading h-contribution. At present it is not clear what
would be the expression for (N)q in an exact h-
treatment. Would such an expression compete with its
classical counterpart and would it be practically
relevant? Would it be singular in f for ff — 1?7 The
exact h-treatment of (N)qg as well as its experimental

(Ng —

detection remain formidable problems and will be
hopefully confronted with in the near future.
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Abstract A quantum field theory QED formalism is systematically developed to describe
photon propagation in spacetinme as a time evolution process based on the actual physical
process of propagation between emitters and detectors as applied to the reflection of pho-
tons. This development, as well as early studies by Feynman, clearly show that a practical,
computational and predictive dynamical formalism in spacetime was lacking. The present
one generalizes to different experimental situations and other interacting field theories as
well emphasizing the practicality of the problem treated here.

Keywords Photon dynamics in spacetime and time evolution - QED and field theories in
spacetime

Much progress has been done over the years [1, 2] to describe, especially quantum theoret-
ically, the localization of photons in space [3]. It is fair to say, however, that there is still
no explicit dynamical, non-heuristic, actual quantum (field) theory QED formalism worked
out, as dictated by the latter, to describe the propagation of photons in spacetime in ex-
plaining even a simplest experiment as the reflection of photons off a reflecting surface as
a time evolution process. This is certainly remarkable in the progress of physics, knowing
that QED has been around for sometime and, as Feynman ([4], p. 3) puts it, it has been
thoroughly analyzed, in his legendary Alix G. Mautner Memorial Lectures. The latter fasci-
nating, though heuristic treatment [4] in words is, of course, far from a definite theoretical
description but, in spite being addressed to non-specialists, the discussion clearly indicates,
and as the present analysis shows, that a theoretical formalism, as stated above, to explain
a simplest experiment in spacetime in a quantum (field) theory QED setting is lacking.
For one thing, the amplitude of propagation of photons in spacetime, as a time evolution
process, in infinitely extended space, for example, from a point x!' to a point x4 turns out to
be given by (i/(7)?)(x? — x9)/[(x> — x1)?]? rather than by the familiar Feynman propagator

E.B. Manoukian (&) - P. Viriyasrisuwattana
School of Physics, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
e-mail: manoukian eb@®@ hotmail.com
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i/(x> — x1)?, with the former satisfying a key completeness relation for the internal consis-
tency of the theory as formulated in spacetime. The purpose of this work is to develop such
a formalism in detail based on the actual physical process of the propagation of photons from
emitters to detectors as obtained from the so-called vacuum-to-vacuum transition ampli-
tude [5-12] for the underlying theory. This method has been quite successful over the years
in the easiness of momentum space computations of physical processes, avoiding of intro-
ducing so-called wavefunctions, not to mention of the elegance of the formalism as opposed
to more standard techniques, and at the same time gaining much physical insight as parti-
cles propagate from emitters, interact, and finally particles reach the detectors as occurring
in practice. The present analysis rests on three general key points: (i) By working directly
in spacetime for the vacuum-to-vacuum transition amplitude, for given boundary conditions
(B.C.), and from the expressions of the amplitudes for the emission and detection of photon
excitations by the external sources, an amplitude of propagation between different spacetime
points from emitters to detectors, causally arranged, is extracted and, as mentioned above,
it does not coincide with the Feynman propagator for the corresponding B.C. This step al-
ready shows the power of determining amplitudes of propagation by introducing external
sources. (ii) The amplitude of propagation is shown to satisfy a completeness relation as
photons propagate between different points critical for the internal consistency of the theory
in spacetime. (iii) Application of these amplitudes to describe in detail the experiment be-
ing sought by showing, in the process, very rapid exponential damping beyond the classical
point of impact for the corresponding amplitude of occurrence. The reader will soon real-
ize that our theoretical quantum (field) theory QED formalism is reduced to a non-operator
approach and opens a way to describe, as a time evolution process, photon dynamics in
spacetime and other field theory interactions in different experimental situations as well.
Let |0+) denote the vacuum states before/after the external current J#(x), coupled to
the vector potential A, (x) in Maxwell’s Lagrangian, is switched on/off. The boundary con-
ditions taken are (04 |E;(x)|0-) =0, (04 |B.(x)|0_) = 0 for z — +0, where the reflect-
ing surface is taken to consist the x! — x? plane, with x}=z>0, and E,/B, denote the
components of the electric/magnetic fields parallel/perpendicular to the x! — x? plane. The
vacuum-to-vacuum transition amplitude (0, |0_)" is then given by [11]

i N ! N v
(0+|0_)J — o3 JxDA)I* () Dy, (2. X1 (x1) (1)

where invoking the conservation law 9, J# = 0, the photon propagator in half-space may be
written as

, (dQ) eik-(rg—r|)e—iQ0(xg—.r?)
D, (x2,x1) = y >
(27) Q- —ie
% [8uv€ 427 4 (—g,0 + 28,38v3)e 12TV 2)

e — 40, x = (x°r,z), O =(0°%Kk, g) with r lying in the x! — x? plane. Since J*(x),
by definition, vanishes for z < 0, we may integrate over all spacetime points in (1). Gauge
invariance of the theory as well as the positivity condition | (0, [0_)” |2 < 1 are readily es-
tablished [11]. We consider a causal arrangement, J"(x) = J{” (x)+ Jz" (x), of two currents
with J3'(x), the detector, switched on after J/* (x), the emitter, is switched off. By invoking
the condition 3, J* = 0, we may then write

(0410_)" =(0,10_)"2 ¥ (0, 10_)" (3)
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where, withi, j =1,2,3, x =(x% r,2),x' = x° r, —2),
2= f(dxl)(dxz)iJéT(xz)[—iA+(x2,x1)5'j
— 1A (x5, 21 (=8 + 2878 )]id ] (x) )
and for xg > x?,

3
a'Q el@2—x1)

—1 — _— 0 —
1AL (x2, Xx1) 37200 o [Ql, (5)
i [ WD) ion i
Jr(x) = Gy eI (Q) (6)

and for Q° = |Q|, Q' JL(Q) = 0. The second term within the square brackets in (4) corre-
sponds to a non-trivial transition.
Now we use the identity

—iA+(x4,x|):f d3x2f d3x3f d*xD- (x4, x3)
X [D(xa,x)i(%)D(x,xz)JDsz,m) (7)

] «— = A )
in (4), where 9y = 9y — Bo,xg > x_g > xg > x?, / d*x = j:_ég dzrfnoo dz, and

3
D_ (x4,x3) = [ %eik.(n—m)e—iQO(,rf—.rg)eiqu singzs, (8)
73,/
d? . . .
D_(x>,x1) = [ ﬁeﬂ(-(rz—r.)e_|QU(_rg—_r?) SiI’lQde_lqzl, 9)
77
d*Q ; 100,00
D(x2,x1) =f76'k‘"2_'”e_'g 2 singz, singz;. (10)
2m3,/2Q°

Given two real unit 3-vectors n = (a, b,¢) =n,,n’ = (a, b, —c) = n_, we introduce two
sets of unit 3-vectors (e;,e2), (€1, €2)bye; =nxn'/Inxn'|=€,,ea=nxe;,e;=n" x €,
satisfyingn, -e;, =0, n_ - €; =0 for A = 1, 2. We use the completeness relations

7 N e | TR R B | i_J
8V =nin, + Zyee; =n_n_ + X,€,¢€; (11)
and also set

S+ (Q2)e™*e 9 gin(dq2) (12)

#Q
Si(x)= | —=——
=0 f4n3\/2_Q0
with 0y = Q0,0 = Q' = (0% k., —¢), 0°=1Ql|,

Q. + 0n,

S+(Q4) =J1(Qx) — 00+n. 0

n, - Jr(Q4) (13)

from which we have
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ST (0487 SL(Qx) = I (Q£)87 J{(01). (14)
S:*Ff(Qx)l—Sff + 28;35‘”]Si(Q:{:) = JH(O[—87 + 23£33f3JJff(Qi)- (15)
Here we note that ny. - Q. = n - Q, and that for the points Q. = —n.|Q|, not only the

numerators in the second term in (13) vanish but also ny - Jr(Q+) = 0. Hence these points
are apparent singularities in (12) belonging to sets of measure zero. Note, in particular, that
ny - Si (X) =0.

From (4), (11-15), the following explicit expression for £2 emerges

2= [ ax [ a2 s ) e S -e)
A

+ (iS* (x2) - €)GS_(x1) - €,) + (— D (iS* (x2) - €) (iS4 (x1) - €;)
+ (=D (ST (x2) - €)(S_(x)) - €;)] (16)

with Vo (x3,x;) = f’ d3xD(x3,x)i{3_0)D(x.x|). Clearly, the last two terms in (16) corre-
spond to non-trivial transitions.

Let |le;,n_ ,x)=|A,+.,x),|€;,.,n_, x) = |A, —, x) denote photon excitation states emit-
ted at spacetime point x = (x°, r, z) with associated vectors (e;, n. ), (€;. n_), respectively.
The physical significance of these associated vectors will be discussed in the light of the
experiment being sought. A unitarity expansion of (0, |0_)7 will include, in particular, the
following four terms describing the emission, propagation and detection of photon excita-
tions:

(O4 [ A, 4, x2) 72 (A, 4+, xa |, 4., x1) (e, 4+, x, ]0_) 71
(04| A, — x2) 2 (A, —, x2 |, 4+, x1) (@, +, %1 [0_) )
(O+|ly T XZ)JZ (A'! _vleas T xl) <0€', —, X1 |0—)J]

O A+, )2 0, +, 20 la, —, x1) (@, —, x, |01

(r7)

Here, for example, (o, +, x; |0_)71 denotes the amplitude for the emission of a photon ex-
citation in state |a, +, x;), with associated vectors e,, n,, and (0. |1, —, x2)”2 denotes the
amplitude for the detection of a photon excitation in state |A, —, x») with associated vec-
tors €;,n_. Most importantly (A, —, x> |«, +, x;), for example, denotes the amplitude of
propagation of a photon excitation from spacetime point x; and associated vectors e,, n,
to a spacetime point x, and ending up with associated vectors €;, n_.

Upon comparing the four terms in (17) with the corresponding ones in £2 given in (16),
and using the completeness relation

Zf d*x (A, 82, x| A, 8, x) (A, 8, x| A, 81, x1) = (A, 82, X2 A, 81, x1) (18)
Py

with §,, 82 = &, we obtain

(04 |2, 4+, x)2 = (iIS%.(x) - €,) (04 ]0-)", (19)
(04 |2, — x)” = (S (x) - €2) (0410-) "2, (20)
(ko 4, x102)7 = (1S4 (x) - €,) (04 ]0-)7", 2D
(hy =, x10)7" = (S_(x) - €,) (04 ]0_) ", (22)
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1
(A'! ivlea!:t‘xl) = ESJ\L\'V-F('IQ!xI)! (23)

{1\~

(h, £, xla, Fox)) = - 2')

8ra Vi (X2, X1). (24)

See also Egs. (95), (96) in [12] for definitions of absorption and emission amplitudes of
photon excitations corresponding to the ones in (19-22). Note the factor 1/2 in (23), (24)
which is essential to satisfy the completeness relation (18). V. (x>, x;) works out to be

K

(r2 — )2+ (22 — kz1)? — (x) — x0)2)2

Vi(xa, x) = % @9 —xD) > l (25)

k==+1

not coinciding with the Feynman propagator for the corresponding B.C., which upon using
the Schwinger representation

1 oe o

== sdse @A e 5 40 (26)
0

is conveniently expressed as
x2 —x9 o TR SRPS SEPRY S Y S
Vil x) = 2—1 > "« sdse BlE2 =t Hz—ez) (g —x) —iel | 27)

17T 0

+1

In the sequel we suppress the ie factor to simplify the notation.
The transition amplitude that a photon excitation in a state |\, §;, x;} propagates from
x| = (x?, ri, z1), reaches the reflecting surface within a skin depth, specified by a scale pa-

rameter o and described by a Gaussian density distribution 6_52/°2/2ﬁ0, 0 <z, and ends
up in a state |Ay, —8;, X2) at xo = (x2, 12, z5) is given from (16), (18) to be (x? < x% < x?)

o0 ﬁ—:z,’rr2
A = d? d
(x2,x1) j};z I‘j; ZZ\/EG

X Y 81 (hay =81, X2 |41, 8, X) (A1, 8, x| A1, 81, x1) (28)
d==+

suppressing, for the moment, the indices A, §; in AA(x>, x;) to which we will return later. We
note from (23), (24), (27), that the z-integrand in (28) is even in z. We may also introduce a
surface density amplitude f(R) by

A(x2, x1) =fd2Rf(R) (29)
by multiplying the r-integrand in (28) by the identity
2
f IR e ®errrel (30)
To?

valid for any o > 0, and any r, giving from (23), (24), (28), (27)

3)&1)&2(_[)&' f d’r Q:—(r—R)z,afc2

a
B
8 o,

f(R) =

@ Springer



194

Int J Theor Phys

®°  dz

oo A/TTO

Given that a photon excitation was emitted in state |Ay, 8y, x1), reaching the reflecting sur-
face within a skin depth, and ending up in state |A,, —8,, x2) , A» = A, the conditional ampli-
tude density for the process is then given by F(R) = f(R)/A(x2, x1), with f d’RF(R) =1,
as a “summation” over impact centers whose nature will be now investigated.

Let T} = x° — x¥, 75 = x0 — x°. The r—, z— integrals in (31) may be explicitly carried
out yielding

IIaN %)
F(R _— KK d du
(R Z 19/ ul/ o NAESTEED)

e 177V, (20, X) Vi (X, 11). 31)

K| K2
2 2 2 —1
z7 () +Kkk2u222/21)
X exp|—— 1 1
p[ o2 1+iGu; + ) HiZz G+ u)
2 —R —R)J? .
X exp _d: [u|(r1 . 2) + ug(l'g : )J c—lG(m.u;.R)/(rz, (32)
le} Il +ios(uy +uz)/o

AN %)
N = K1K du du
2 ”f 'f 2o T+ 10, + 1)

K1.K2

2 K)K2U2Z2 2 Py
 exp _Z_|2(u| + 162 222/21) fdzre—I(:(li|.Jfg,r}/02 (33)
o 1 +1i(uy + u2)

with
Gy, uy, 1) =u [(ry —=1)* + 27 = TV ]+ us[(ry = 1)° + 25 — T5]. (34)

For the practical case o <« z;, with a given initially chosen macroscopic value z;, i.e., for
z2/o? > 1, we may use the distributional limit

2242
z1 /o 22y +Kiua )

exp ——r
ST i T P02 1+ iur +un)

in (32) as obtained, for example, by Fourier transform techniques, to obtain u; =
—K\K2U2Z2 /21, with the necessary restrictions k) = %1, k2 = F1, giving for o0 <« z,,

—)J}?S(tn —}—Kﬂ(guzg) (35)
21

FR) i f”"’ w2dt.v exp —iwG(22.21. R,)
no2C Jy o,+iw ol(z1 +22)
. w (R R(J)2
w (R—R,)” 3
X exp 1 2 (o, +iw) (36)
where
o0 —in(Zg, Z]aRo)

C = d > ? 37
-/c: wdw pr[ 03(z1 + 22) ] 7
R, = (zor) + 2112) /(21 + 22). (38)
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For an effective area of impact 70,2 about a point R for o, — 0, we obtain

00 o —iwG(z2.21.Ry)
,,fu wdw exp[ —FE2ElTe) |

w62 F(R) — exp—(R — R,)?/c2 _].:g‘é';‘"__"’f’no)] (39)

o5 (z14z22)

Jo wdw exp|
with the second factor independent of o,, giving the remarkably simple expression
no2 F(R) — e ®R-Ro’*/o7 (40)

for o} — 0.

Accordingly, for an arbitrary small o,, giving a point-like area of impact, about the
point R, the partial amplitude 7o F(R) vanishes exponentially for R # R, i.e., for the
non-classical point of impact. On the other hand for R = R,,, we have 7o F(R) — 1 for
o2 — 0.

The condition R = R,,, translates from (38) to (r; — R,)/z; = —(r» — R,) /2> which is
nothing but the law of reflection with R, denoting the classical point of impact. For given
(ry, z1), (ra, z2), leading from (38) to a fixed value of R,, we may choose the unit vectors
n., n_ in (11), to be directed along the vectors (R, — ry, —z1), (rr — R,.22) = z2(R, —
ri, 21)/z1, respectively, corresponding to classical rays, with the vectors (e, e>), (€1, €2)
having the well know interpretations of polarization vectors perpendicular, respectively,
to n., n_, with transformations e, <> €|, e, <> €, upon scattering.

Our formalism clearly opens the way for practical spacetime analyses of photon dynam-
ics and other interacting field theories by using, in the process, functional differential tech-
niques [10, 12] in different experimental situations. It shows, in particular, how amplitudes
of propagation are determined from the knowledge of amplitudes of emissions and absorp-
tion of particle excitations by emitters and detectors, respectively, signaling the power of
the present method of analysis. The time slicing procedure will also allow to derive path
integrals for such amplitudes of propagation in spacetime. These further developments in
general field theories emphasize the practicality and generality of the problem treated here
not just being restricted to it. Such a program will be taken up in subsequent reports.
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