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QUANTUM DYNAMICAL PRINCIPLE/ CLOSED-TIME PATH FORMALISM/
EXPECTATION VALUE FORMALISM/ FUNCTIONAL DIFFERENTIAL TREAT-
MENT OF QUANTUM FIELD THEORY/ COUPLING OF QUANTUM SYS-
TEMS TO THE ENVIRONMENT/ EXTERNAL SOURCE TECHNIQUES/ QUAN-
TUM GRAVITY/ GRAVITON PROPAGATOR/ NON-CONSERVED EXTERNAL
ENERGY-MOMENTUM TENSOR/ EXPECTATION VALUE FORMALISM AT FI-
NITE TEMPERATURE/ SCHWINGER TERMS.

After an explicit derivation is given for the quantum dynamical principle (QDP)
for the closed-time path formulation, involved in computing directly expectation val-
ues and probabilities, paying special attention to the sudden change of the dynamics
from the positive sense to the negative one, a systematic analysis is carried out of the
expectation formalism in quantum physics and quantum field theory in the functional
differential treatment pioneered by Schwinger. In quantum physics, a functional dif-
ferential treatment is developed, via the QDP, for the coupling of quantum systems to
the environment. As one is involved in taking the trace over the dynamical variables
of environment, the analysis necessarily deals with transition probabilities rather than
with amplitudes. It is shown that the functional differential treatment is quite suitable
for such a study as it involves in carrying out functional differentiations, with respect
to classical sources, on functionals describing decoupled physical systems from the en-
vironment. In quantum field theory, with particular emphasis on the quantum aspect of
gravitation, that is, on quantum gravity, a general novel expression is derived for the
graviton propagator from Lagrangian field theory, which includes 30 terms, by taking

into account the necessary fact that in the functional differential approach of quantum



v

filed theory, in order to generate non-linearities in gravitation and interactions with mat-

ter, the external source 7,

w»> coupled to the gravitational field, should a priori not be

conserved 0"T),,, # 0, so variations with respect to its ten components may be varied
independently. The resulting propagator is the one which arises in the functional differ-
ential approach and does not coincide with the corresponding time-ordered product of
two fields and it includes so-called Schwinger terms. The quantization is carried out in a
gauge corresponding to physical states with two polarization states to ensure positivity
in quantum applications. After establishing the positivity constraint and spin content
of the theory for gravitons interacting with a necessarily, and a priori, non-conserved
external energy-momentum tensor, the expectation value formalism of the theory is de-
veloped at finite temperature in the functional differential treatment of quantum field
theory. The necessity of having, a priori, a non-conserved external energy-momentum
tensor is an obvious technical requirement. The covariance of the induced Riemann cur-
vature tensor, in the initial vacuum, is established even for the quantization in a gauge
corresponding only to two physical states of the gravitons as established above. As an
application, the induced correction to the metric and the resulting underlying geome-
try is investigated due to a closed string arising from the Nambu action as a solution
of a circularly oscillating string as, perhaps, the simplest generalization of a limiting
point-like object. Finally it is discussed on why the geometry of spacetime may, in gen-
eral, depend on temperature due to radiative corrections and its physical significance is

emphasized.
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CHAPTER I
INTRODUCTION

The quantum dynamical principle (QDP), pioneered by Julian Schwinger
(Schwinger, 1951a, 1951b, 1953a, 1953b, 1954; see also Lam, 1965; Manoukian, 1985,
2006a; Manoukian et al., 2007), is indisputably recognized as a very powerful indis-
pensable tool for all sorts of investigations in quantum field theory, in describing the
underlying dynamics of the fundamental interactions of elementary particles, in carry-
ing out explicit computations as well as testing these interactions in the high-energy
regime via the application of renormalization theory (see Manoukian, 1983). The un-
derlying formalism developed via the QDP is properly referred to as the functional
differential treatment of quantum field theory, as all the propagators, Green functions
or correlation functions of the basic quantum fields are obtained simply by functional
differentiations of the so-called vacuum-to-vacuum transition amplitude as the generat-
ing functional of such correlation functions, with the functional differentiations carried
out with respect to external sources coupled to the underlying fields in a theory. A
rigorous derivation of the QDP is now available (Manoukian et al., 2007). The theory
that emerges by unifying quantum physics and relativity is, of course, referred to as
quantum field theory and is necessarily a many-particle theory in which particles are
created or destroyed in fundamental interactions as purely relativistic phenomenae. It
provides the non-phenomenological theory of present elementary particle physics. The
QDP has also proved to be equally useful in the formulation of quantum physics for
which endless computations and investigations have been carried out (see, Manoukian,
2006a, Ch. 11). The functional differential formalism, via the application of the QDP,
has been extremely useful, in particular, in the quantization problem of the celebrated
non-abelian gauge theories as was shown in : Manoukian (1986a), where the so-called

Faddeev - Popov factor (Faddeev and Popov, 1967; Faddeev, 1969) emerges naturally



from the QDP, without using symmetry arguments, without making appeal to path inte-
grals, without using commutation relations and without even going to the complicated
(Fradkin and Tyutin, 1970) structure of Hamiltonians.

It is worth recalling that the QDP involves functional differentiations with re-
spect to classical functions, while in path integrals one is involved with continual in-
tegrals, defined as the infinite product of integrals over spacetime which are often ill
defined and quite involved for theories with interactions. It is also far easier to differen-
tiate than to integrate, especially in this context. All of the present theories describing
the fundamental interactions in physics are gauge theories, that is theories in which the
interactions are mediated by gauge fields. These include: QED (Dirac, 1927; Fermi,
1930; Schwinger, 1984, 1949a, 1949b, 1951c; Feynman, 1949a, 1949b, 1950; Tomon-
aga, 1948; Dyson, 1949a, 1949b), the Unified Weak-Electromagnetic Theory (Salam,
1948, 1980; Salam and Strathdee, 1972; Weinberg, 1967, 1974, 1980; Glashow, 1959,
1961, 1980); QCD and unified theories involving strong interactions (Bjorken, 1972;
Pati and Salam, 1973; George and Glashow, 1974; Gross, 1999; loffe, 2001; Gross,
Wilczek, Politzer, 2004) and theories attempting to include Einstein’s theory of gravita-
tion and modifications thereof (Zumino, 1975; Deser, 1986; 't Hooft, 1986). Unfortu-
nately theories involving gravitation turn out be to non-renormalrizable and no quantum
field theory is of practical value if it is not renormalizable (see Manoukian, 1983). This
was best demonstrated by the years it took to develop the weak-electromagnetic theory
due to its non-renormalizability if the underlying vector bosons mediating the interac-
tions are initially massive. The Quantum Dynamical approach has also the advantages,
mentioned above, in comparison to the canonical approach to gauge theories (Utiyama
and Sakamoto, 1977; Mohapatra, 1971, 1972). The Quantum Dynamical Principle al-
lows one to obtain directly the vacuum-to-vacuum transition amplitudes in field theory
or the transformation functions in quantum physics.

In a classic paper, Schwinger (1961) has generalized the Quantum Dynamical

Principle to a new method, referred to as the Closed-Time Path formalism, which by-



passes the tedious steps in computing probabilities and expectation values and these
physical quantities are directly obtained from this formalism. Schwinger’s original for-
mulation (1961) was developed in quantum physics with a very detailed application
given to the quantum Brownian motion. It was successfully applied in studying the
infrared behavior of QED (Mahanthappa, 1962) and in particle productions by strong
external sources (Bakshi and Mahanthappa, 1963a, 1963b; Manoukian, 1988a) and in
non-relativistic quantum scattering (Manoukian, 1988b). A derivation of the Closed-
Time Formalism in the fully relativistic quantum field theory, including for non-abelian
gauge theories, was given in (Manoukian, 1987) and was also extended to finite temper-
atures (Manoukian, 1991a; Xu, 1995). Multiparticle states and multiparticle collisions
were particularly studied in Cooper (1995) and Manoukian (1988a, 1991b). Interesting
studies were also carried out in Jordan (1986a, 1986b), Calzetta and Hu (1987), in non-
equilibrium phenomena (Keldysh, 1965; Craig, 1968; Korenman, 1969; Hall, 1975;
Schmutz, 1978; de Boer and van Weert, 1979) and specific applications were made as
well to superconductivity (Volkov and Kogan, 1974), plasma physics (Bezzerides and
DuBois, 1972) and to transport properties (Sandstrom, 1972) emphasizing path inte-
gral techniques. The purpose of this thesis is of a systematic analysis of the closed-time
path formulation of quantum field theory emphasizing its role in quantum gravity where
very little is known due to the complicated structure of the gravitational field as a sec-
ond rank symmetric tensor field. For reasons that will become apparent the closed-time
path formulation is also referred to as the expectation value formalism. As in carrying
out expectation values one is involved, in the process of the investigation, in taking the
product of amplitudes and their complex conjugates in a time evolution process. The
complex conjugate of an amplitude, while the latter describes time evolution in the for-
ward direction, the former describes time evolution in reversed direction thus ending at
the initial time of the process when taking products of the amplitudes and their complex
conjugates as described above. The present thesis also applies the formalism to quantum

physics as well. In Chapter II, we provide a careful derivation of the QDP for closed-



time path as an extension of our previous work (Manoukian et al., 2007) given for open
time-path, that is dealing with amplitudes. To this end, we use our earlier approach
of having two unitary time-dependent operators which in turn allow an otherwise non-
trivial interchange of the orders of parameters variations of transformation functions,
or general amplitudes in various descriptions, with specific time-dependent ones . This
procedure answers the rather otherwise mysterious question as to why the variation of a
transformation function, with respect to given parameters, is given by matrix elements,
with respect to the given states defining the transformation function, of the integral of
the variation of the Lagrangian with the states in question, which may depend on these
parameters, kept non-varied. Particular attention is given to the sudden change of the
dynamics from the positive (i.e., forward) to the negative (i.e., reversed) sense encoun-
tered in the closed-time path and its relation to a unitarity expansion by extending the
paths of the two dynamical processes t1 — to and to — t1t0t] — to +6,t0+€ — 1
for arbitrarily small € and imposing continuity at time ¢t = t; 4+ ¢ and then taking the
limit e — 0. Most importantly, we provide one single time-dependent Hamiltonian for
the entire closed-time process : t; — to + €, to + ¢ — t; with continuity achieved at
the return point and having, a priori, two different dynamics in the two branches. The
key point is to introduce a smooth “step function” generalizing the well known step
function. The rules for the application of the QDP for closed-time path are then devel-
oped. The closed-time path as a formalism for carrying out expectation values of, say,
fields, is then applied to derive the theory for interacting spin 0 particles in the presence
of external sources representing emitters and detectors of these particles in Sect. 2.3.
The far more complicated problem for gravitons will be investigated in Chapter VI. As
the thesis is full of applications of functional differentiation techniques, these methods
are first applied to quantum scattering problems in Chapter VII, as a preparation for
the more difficult problems encountered in the remaining part of the thesis. It is an
adaptation of field theory methods in quantum physics. Chapter V, deals with the im-

portant role that the environment surrounding a quantum system has on the latter. Here



the closed-time path formalism becomes quite evident as one is dealing with probabil-
ities with time-evolution processes in the forward and reversed senses for amplitudes
and their complex conjugates, respectively. Here we use functional calculus methods,
via functional differentiations and application of the QDP to investigate the coupling
of quantum mechanical systems to the environment, understood to be surrounding a
physical system, as the former systems, in the real world, are never in isolation from
the latter. The incorporation of the environment in quantum mechanical systems has
led to much physical insights into such fundamental problems as quantum decoher-
ence, Schrodinger’s cat and in measurement theory, in general (see, Manoukian, 2006a,
§8.7,88.9,§12.7; Brune, 1992; Munroe, 1996; Walls, 1985; Zurek, 1991). We will see,
that the functional differential approach is quite suitable for studying the coupling of
quantum mechanical systems to the environment. It involves in carrying out functional
differentiations, with respect to classical sources, of a functional describing “decou-
pled" systems from the environment. As one is involved in taking the trace over the
dynamical variables of the environment in studying the response of physical systems
to it, the analysis necessarily involves in dealing directly with transition probabilities
rather than amplitudes. This is a basic departure from the far simpler case of studying
quantum mechanical systems in isolation. In dealing with probabilities and in taking
traces, it turns out that two different sets of classical sources, coupled to the dynam-
ical variables of the theory, should, a priori, be introduced. The physically relevant
probabilities are then recovered in the limit as the two sets of sources coincide and are
eventually set equal to zero. The general expression for transition probabilities of quan-
tum mechanical systems, coupled to the environment, is given in Eq. (4.2.8) involving
functional differentiations with respect to these two sets of classical sources. Chapter V,
deals with the derivation of a novel expression of the graviton propagator. In obtaining
the expression for the propagator, we were rather surprised that it contains 30 terms
and not just 3 terms as it has been used for years. The graviton propagator is the basic

ingredient in quantum gravity computations. It provides and mediates the gravitational



interaction between all particles and all matter to the leading order in the gravitational
coupling constant. In the so-called functional differential treatment (Manoukian, 1986,
1985, 2006; Limboonsong and Manoukian, 2006; Schwinger, 1951) of quantum field
theory, referred as the quantum dynamical principle approach, based on functional dif-
ferentiation techniques with respect to external sources coupled to the underlying fields
in a theory, functional derivatives are taken of the so-called vacuum-to-vacuum tran-
sition amplitude. The latter generates n-point functions by functional differentiations
leading finally to transition amplitudes for various physical processes. For higher spin
fields such as the electromagnetic vector potential A*, the gluon field A#, and certainly

the gravitational field 2/, the respective external sources .J,,, J;, 1T,

w»> coupled to these

fields, cannot a priori taken to be conserved so that their respective components may be
varied independently. The consequences of relaxing the conservation of these external
sources are highly non-trivial. For one thing the corresponding field propagators be-
come modified. Also they have led to the rediscovery (Manoukian, 1986; Limboonsong
and Manoukian, 2006) of Faddeev—Popov (Faddeev, 1967) factors in non-abelian gauge
theories and the discovery (Limboonsong and Manoukian, 2006) of even more general-
ized such factors, directly from the functional differential treatment, via the application
of the quantum dynamical principle, in the presence of external sources, without using
commutation rules, and without even going to the well known complicated structures of
the underlying Hamiltonians.

We provide, in passing, examples which show a contradictory result is obtained
if a conservation law is imposed on 7},,,. The Lagrangian density is the one of a massless
spin-2 particle coupled to, a priori, not conserved 7,,,. Only after functional differentia-
tions of the vacuum-to-vacuum transition amplitude are taken, with respect to 7},,,, that a
conservation law on 7}, may be imposed. Our novel expression for the graviton propa-
gator is given in Eqgs. (5.2.149), (5.2.151) and (5.2.152). It is different from the so-called
time-ordered product due to the appearance of so-called Schwinger terms. Chapter V

and Chapter VI are of central importance in the entire thesis. In Chapter VI, we first



establish the positivity constraint of the vacuum-to-vacuum persistence probability as
well as the non-trivial spin content of the graviton with only two polarization states
which is necessary for all massless particles (see Manoukian, 2006a) even for a priori
non-conserved energy-momentum tensor 7}, In order to study gravitational effects such
as the induced geometry due to external sources and even due to fluctuating quantum
fields, the expectation value formalism turns out to be of practical value. In Sect. 6.4,
we develop the expectation value formalism for gravitons interacting with an external
energy-momentum tensor 7, at finite temperature with a priori not conserved 7,,,, so
that variations with respect to its ten components may be varied independently in order
to generate expectation values. After all the relevant functional differentiations with
respect to 7}, are carried out, the conservation law on 7),, may be then imposed. We
establish the covariance of the induced Riemann curvature tensor, in the initial vacuum,
due to the external source, in spite of the quantization carried out in a gauge which en-
sures only two polarization states for the graviton. As an application, we investigate the
induced correction to the metric and the underlying geometry due a closed string arising
from the Nambu action (e.g., Kibble, 1989; Sakellariadou, 1990; Goddard, 1995) as a
solution of a circularly oscillating string (Manoukian, 1991b, 1992, 1995, 1998) as, per-
haps, the simplest generalization of a limiting point-like object. Finally, it is discussed
on why the geometry of spacetime may, in general, depend on temperature due to radia-
tive corrections and its physical significance is emphasized. All of our results derived
have been published. With the exception of the quantum physics treatments, we use
units 4 = 1, ¢ = 1 in the quantum field theory analyses as is conventionally done. For
the Minkowski metric, we choose [1,,] = diag[—1,1, 1, 1]. In the concluding chapter

(Chapter VII), we summarize our main results and discuss further important points

related to our analyses in the thesis.



CHAPTER 11
THE CLOSED-TIME PATH
(EXPECTATION VALUE FORMALISM)
AND THE QUANTUM DYNAMICAL PRINCIPLE

2.1 Introduction

The power of the closed-time path formalism, also known as the expectation
value formalism, pioneered by Julian Schwinger (1961) with extensions, additional
technical details and applications over the years in the functional differential formal-
ism (Manoukian, 1987, 1988a, 1988b, 1991, 2008) in abelian as well as non-abelian
gauge theories, and in Chapters IV, V and VI of the present thesis, should be noted.
In this formalism one is able to obtain probabilities and expectation values of fields
and other objects without first deriving expressions for transition amplitudes. This is an
important and a powerful shortcut to deal more directly with the physics of a quantum
system or a quantum field theory involving many relativistic particles in the quantum
domain. The closed-time path derivations rests on considering a priori two different dy-
namics, i.e., via two different Hamiltonians and external sources, one given from times
t; — t9 and another one from ¢, — ¢; for the time reversed process ending up again at
time ¢, - hence the nomenclature a “closed-time path” for a complex process. Only after
all the relevant functional differentiations with respect to external sources are carried,
the corresponding two sets of Hamiltonians with the external sources may be set to be
equal.

At time ¢, of the closed-time process a discontinuity arises in time as the Hamil-
tonians in the forward and reversed time paths are different at time t,. This point is

handled rigorously by extending the time paths from ¢; — ?5 + ¢ and ¢, + ¢ — ¢4, by



taking the limit ¢ — +0, with continuity ensured at the point ¢t = ¢, + ¢ for the forward
and reversed time path. The present Chapter deals with the derivation of the quantum
dynamical principle for Closed-Time Path (CTP).

The very elegant quantum (action) dynamical principle (QDP) (Schwinger,
1951a, 1951b, 1953a, 1953b, 1954, 1972; Lam, 1965; Manoukian, 1985, 1986a, 1987a;
Manoukian and Siranan, 2005) is indisputably recognized as a very powerful tool for
carrying out explicit computations in quantum field theory. The QDP has been used
to quantize gauge theories (Manoukian, 1986a, 1987a) in constructing the vacuum-to-
vacuum transition amplitude and the direct generation of the Faddeev-Popov (Faddeev
and Popov, 1967) (FP) factor, encountered in non-abelian gauge theories, with no much
effort and without making an appeal to path integrals or to commutation rules and with-
out even going into the well known complicated structure of the Hamiltonian (Fradkin
and Tyutin, 1970). In particular, it has been shown (Limboonsong and Manoukian,
2006) that the so-called FP factor needs to be modified in more general cases of gauge
theories and that a gauge invariant theory does not necessarily imply the familiar FP
factor for proper quantization as may be otherwise naively expected based on symme-
try arguments. On the other hand the QDP corresponding to the so-called closed-time
path (CTP) (expectation value formalism) (Schwinger, 1961; Manoukian, 1987a, 1988c,
1991b) has been also very useful as it provides a short cut for computing expectation
values of observables directly without first working out specific amplitudes. The CTP
had wide applications over the years see, e.g., Kao et al. (2002); Koide (2000); Cooper
(1995); Chou et al. (1985); Zhou et al. (1980); deBoer et al. (1979); Garrido et al.
(1977); Hall (1974) and Keldysh (1965). We recall that the QDP. provides the varia-
tions of amplitudes with respect to external parameters, such as coupling constants and
external sources coupled to the quantum fields, which upon integrations of the ampli-
tudes over these parameters yield the expression for the latter (see, e.g., Manoukian
(1986a); Limboonsong and Manoukian (2006). The purpose of this work is to provide

systematic explicit derivations of the QDP for CTP in quantum field theory. To this end,
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we introduce, in the process, two unitary time-dependent operators which in turn allow
an otherwise non-trivial interchange of the orders of parameters variations of so-called
transformation functions with specific time-dependent ones. This procedure answers
the rather otherwise mysterious question as to why the variation of a transformation
function, with respect to given parameters, is given by matrix elements, with respect to
the given states defining the transformation function, of the integral of the variation of
the Lagrangian with the states in question, which may depend on these parameters, kept

non-varied ! The answer is based, mostly on
(at] = {at|V(t, \), (2.1.1)

i.e., the states (at| of interest are related to the states 1(at| which are independent of the

parameter A\, and
V(t,\) = Ul @)U(t,N), (2.1.2)

where U(t, \) is the time evolution operator depends on A and ¢, while U] (¢) depends

only on time ¢, and a key identity derived given by

L [V (k2 VI WV (7 XV 11, )]

=V (ta, \) [UN (T, N (H(T, N) — H(T, \))U (7, X)] VI(t1, N), (2.1.3)

written in terms of the two unitary time-dependent operators mentioned above. On the
other hand, for CTP, the analysis pays special attention to the so-called sudden change
of the dynamics from the positive to the negative senses in defining the closed-path and
its relation to a unitarity expansion. The derivations are extensions of the corresponding
ones in quantum mechanics (Manoukian, 2006a; Manoukian et al., 2007) to the more
complicated case of quantum field theory. The QDP for the CTP is derived in Sect.
(2.2).
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2.2 The Closed-Time Path Formalism

The Quantum Dynamical Principle (QDP) for Closed—Time Path (CTP) is in-
volved in evaluating the expectation value of observables O(t), say in an initially pre-
pared state |bt;), with the dynamics evolving from time ¢; to ¢y, with t; < t < to, by
the QDP variational technique. Unfortunately, unitarity implies that (bt;|bt;) is one
and hence its variation is equal to zero and such a procedure seems a priori not use-
ful. Schwinger (1961) has solved this problem by assuming a different dynamics for
the time evolution from time ¢; to ¢, in the positive sense from the one in the opposite

negative sense from ¢, back to ¢, associating different Hamiltonians,

Ho(t ), Ho(tA2),

with the two segments (t; — t5) and (o — ¢ ), respectively, such that

HJr(ta )\+) = H*(t> A*): (221)

for

A=A, (2.2.2)

where )\ are coupling constants or external (classical) sources. An immediate obstacle
then seems to arise with the application of unitarity, in this case, as the Hamiltonian
makes a sudden (instantaneous) change at ¢ = t, upon changing the direction of time
evolution.

We remedy the above problem, by introducing a unified Hamiltonian varying

continuously during the entire time evolution process from ¢; — ¢, and then from
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to — t1 by a limiting procedure. To this end, we introduce the Hamiltonian:

1 1
(A A) = 5 [Helth) 4 Ho (000 4 5[ Hate ) = Ho (00|t
(2.2.3)
where 9.(t, €) is a continuous function of
t: tl — t2, and tg — tl, (224)

extended to t5 + ¢, for arbitrarily small €, and continuous at t = ¢ 4 €. Such a function

which together with its time derivative, are continuous, is rigorously given by

1 s t: tl — t2
L= goyeexpl—g] + tith—tate
Ve(t, e) = < (t—t2) | (t—t2)] (22.5)
1+ g5eexpl—gty] . titate—ty
_1 5 t : t2 — tl-

The plot of the smooth “step function”, ¥.(t, ) for ¢ = 0.1,0.05,0.01,0.001 as a func-

tion of ¢ are shown in the following figures.
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Figure 2.1 Plot of the smooth “step function”, ¥.(¢, ) for e = 0.1 as a function of t.
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Figure 2.2 Plot of the smooth “step function”, ¥.(t, ) for ¢ = 0.05 as a function of .
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Figure 2.3 Plot of the smooth “step function”, ¥..(¢, ) for ¢ = 0.01 as a function of .

0.5
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Figure 2.4 Plot of the smooth “step function”, 9.(¢, ¢) for ¢ = 0.001 as a function of ¢.

The continuity of the smooth “step function” is readily seen in Figs. (2.1) - (2.4)
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for various small €. We note that

1 . for condition :t =1ty
1 . forcondition :t=t,
l1—ee ! =0 . forcondition :t=1ty+¢
De(t, e) = (2.2.6)
—14ee =0 : forcondition :t=ty+¢
-1 : forcondition :t=1{y
—1 . for condition :t =t,,
\
establishing continuities at ¢t = ¢5, ¢t = 5 + ¢ and back again at ¢t = t,.
Hence
H(t, )\+7 >\7> = H+(t, >\+> for tl S t S t2, (227)
1
H(t, Ay, A) = §[H+(t,)\+) + H (t,\.)] for ty<t<ty+e, (2.2.8)
1
H(t, )\+,)\_) = §[H+<t,)\+)+H_(t, )\_)] fOI‘ t . t2+€_>t2, (2.2.9)
H(t, g, \o) =H_(t,\_) for t:ty— ty, (2.2.10)

as a consequence of the continuity of ).(¢, ) for all ¢ of interest, thus establishing the
continuity of the Hamiltonian at time 7, + 5, as well.

This allows us to carry out a unitarity expansion as follows:

CALANESS <bt1 ‘ cty+ %> <ct2 + % ‘ aty — g> <at2 - % ‘ bt1> 211

c,a

where

£ £ g €
]ctQ + §> <ct2 + 5) = ULt 2, A4) [€) (e U (ta & 5, \), 2.2.12)

are given by genuine unitary transformations.
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Fore — 0,

9
<Ct2 + 5

€
aty — §> — (¢, a),
and we obtain the completeness relation

<bt1 |bt1> = Z <bt1 | at2>_ <at2 |bt1>+

= (ata|bty)" (ata |bty) (2.2.13)

with different dynamics described in the different segments from ¢; — ¢5 and t5 — ¢
with corresponding Hamiltonians H (¢, A1), respectively.
The quantum dynamical principle or the Schwinger dynamical (action) principle

states (see Manoukian et al. 2007) that

. to
5 (aty | bty) = % <at2 / (dz) 6L (z, )\)‘bt1> , (2.2.14)
t1
written in terms of the Lagrangian, where
(dz) = dt d*x,

and the variation d£(x, \), with respect to A, is carried out with the independent fields
X and dependent ones 7, and their derivatives d,,x, Vn, all kept fixed.

From Egs. (2.2.13), (2.2.14), we then obtain (¢ — 0)

/ tz(dx)[5£+(:v, Ay) — 0L (z,A)] ’bt1> . (2.2.15)

t1

This may be also obtained from Eq. (2.2.11) giving

to—e/2 to+e/2
[ /t (d2)5 L (2, 1)) — / (d2)3L_(x, )\)]

t1

bt1>
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t2+€/2
/ dt SIH (£, Ay, A_)
t

2—e/2

i
——{ut
h< !

which reduces to Eq. (2.2.15) for ¢ — 0, where H(7,\) = U' (1, \) H(x, 7, 7, \)

bt1> , (2.2.16)

U(r, M), is the Heisenberg representation of H (7, \) at time 7.

The equation for the CTP, becomes

8 (bt | IB(, A )|btr) = —— <bt1

bt
h 1>
—+ i bt bt

FL 1 1

+ (bt [6IB (T, Ay ) |bt) 2.2.17)

/ * () 5L (2 A ) B(r Ay

t1

/ (A2)(B(r.Ay) 6L (2, 04))s

t1

where IB(7, \) is an arbitrary function of x(x) and 7(z), and in general, of A and ¢, i.e.,

B(x(x),m(x),\, t) = IB(t, \), (2.2.18)

of the variables indicated, with y(z), w(x) in the Heisenberg representation defined as

x(z) = UT(t, ) x(x)U(t, \), (2.2.19)
m(z) = Ul (t, ) m(x)U(t, ). (2.2.20)

We may write
IB(t,\) = Ut(t, \) B(x(x), 7(x),\, )U(t, \), (2.2.21)

and

5 (bt |IB(r A )|bt) — % <bt1 /tQ(dx)]B(T, A VOL (2, 0s)

t1

)



1
——{nt
h< !

+ <bt1 |5.ZB(T, )\_)|bt1> s

t1

/z(dx)(lB(T, ML) 8L (2, M)
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)

(2.2.22)

where (...)_, in the second term on the right-hand side of Eq. (2.2.22) stands for the

chronological time anti-ordering operation.

2.3 Application to Interacting Spin 0 Particles in the Presence of

External Sources

In this section we derive the exact solution for the closed-time path (0_|0_) of

spin—0 particles interacting with an external source K.

We consider the source term as real (K is reals), the vacuum to vacuum (vac —

vac) transition amplitude in the positive sense of time is

<o+|oV(::exp[§¥/kdxxdx®AXx»A+cr—-kaxxa ,

where

(dp) v
Ay(z—2a)= / o) 1 —o€ +0.

Then we can write, from p? = p? — p*°,

3 0 i 0 xo_xol
Ay (z— 1) :/ d’p eip(xx’)/ dp® e?( )
(2m)? (2m) p? +m? — ie

and from p? = p? — p”, we have
PP +m?—ie=p>—p” +m? —ie

= - { - ((p2 +m?)Y? — 16>] {po + ((p2 +m?)?

(2.3.1)

(2.3.2)

(2.3.3)

_ie)}.

(2.3.4)
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Insert the above equation into A, (z — z’), and then by complex integration, and by the

application of residue theorem we obtain

d3p ip(x—x' —27‘(‘1 @(xo _ x0/>e_ip0(-l’0—$ol)
+(27Ti) O(z” — xo)eipo(xo—wol)]
2m 2p0

Note that e4/p? + m? for e — +0 is the same as € since /p? + m? > 0.

!
For 2% > 2%, we have

(2m)? 2p°
Let
dwp = d'p L>
(2m)? 2p°
P =+ VT
then

(2.3.5)

(2.3.6)

(2.3.7)

(2.3.8)

(2.3.9)
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The function A ; (z — z’) is the propagator of spin-0 that propagate in the positive sense
of time.

The Fourier transform of the source, K (), is defined by

K(p) = / (dz)e P*K (). (2.3.10)

Let
K=K+ Ks, 2.3.11)

where K is switched on after K, is switched off. By inserting this expression of
source K into Eq. (2.3.1) and use Eq. (2.3.6), we obtain another form of the vacuum-

to-vacuum transition amplitude,

(04]0-) = (04]0_)*" exp [ / dwpi K7 (p)iKa(p)| (04 ]0_)72. (2.3.12)

By using of the discretization notation over momenta, we write for book-keeping

purposes (see, Schwinger, 1970)
K, = \/dwpK(p), (2.3.13)
to rewrite the integrals in the square bracket in Eq. (2.3.5) as
/ dwpik (p)iks(p) — Y iKT,iKy,, (2.3.14)
p
and

exp [Z inpiKgp] = Hexp 1K1Ky,

p p

B (1K) iKo,)™

P np
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_HZ \/_ ”\;2’;)” (2.3.15)

Let ng,, nq,, - .. denote number of particles with momenta q, qs, . . . such that

Ng, +Ng, +...=n, (2.3.16)

then

at (i[(ikqQ)nq2

P (iKop)"P (iK7q)
rp[%: \/n_l \/n_pl Xn:nq1+7§r —n \/nql! \/an!

(1K 2q1)"at (1K g)"a?

\/nqll \/nqg!

(2.3.17)

Then Eq. (2.3.12) can be written as

[ al (iKiqu)an ]

005 =% % {<o+|o_>“<i% e

n Nglt+ng2+...=n L

(1K oq1)"a (1K oq) a2

\/nq1! \/an!

{040y } (2.3.18)

We compare this with the unitarity expansion, given by

(0,410-) Z Z <0+\n;nq1,nq2,...>K1 (n;nql,nqg,...|0_>K2.

n  nglt+ng2+..=n

(2.3.19)

Thus in particular for any sources K, we have

(n:ng, nga, - .. |0)F = {04 ]0)E. (2.3.20)

The next step is to find out for the closed-time path expression for (0_|0_) in
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the presence of external sources. As in Eq. (2.3.19), we write (0_ |0_) as a unitarity

expansion

O-102y=>" Y {0-Ining,ng, .. )" (g, ng, ... [02)" . (2.321)

n ngrtng2+...=n

Using the identity of the complex conjugate, we also have
(O0_ |13 1g1, g, - - ) = <<n; Mgty gy - - |0,>K*> . (2.3.22)

Thus (0_|0_), according to Eqgs. (2.3.22) and (2.3.20), is given by

* Ki K+ 1 a1
0_10) = (0. 10)) {—ql q}
(0-0-) zﬂ:ﬂﬂ;ﬂ (04]0-) oo
K* K g™
[%ﬁﬂ {04 ]0) (2.3.23)
!

According to the mutinomial expression

Yoy @ @t (@tetadroo) (2.3.24)

2! ! n! ’
Z1,22,... (z1+T2+...=n)

as applied to the present case

s (R ey B0

= )
Ng1! Nga! n!
ng1t+nge+..=n a1 2

leads to
(0_]0_) = <<0+\0,>5>*exp <Z K*qmq) (0, ]0_)% (2.3.26)
q

Consider the sum in the exponent of the middle term in Eq. (2.3.26). It can be
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rewritten as an integral giving

> KK, — / dw, K (q) K+ ()

d’q .,
= /(271_)—32(1()K—(Q)K+(q) " =+ +m?

::/kdxxdqu’(xﬂy+xx——xUK;(xﬂ, (2.3.27)
where
AN (& — ') :/dwpeip(xw’) = /PRy, 2.328)
and

(As(z =)

d eip(x_x/)
/ (dp) R N

(2m)4 p? +m? +ie

=A_(z—2). (2.3.29)

We see that the complex conjugate of A, (z — 2’) leads to A_(x — 2’) for the time
reversed process.
Then the final expression of (0_ | 0_) of spin—0 particles interacting with external

sources may be written as
(o,m,>:exp—%K;A,A;exp%K;A+k;emyK,AH0K;, (2.3.30)
where

K;A+K;::/}d@«uqu@»A+@p—qu;@A, (2.331)

(dp) elp(z—2")
Ay(z—2)= / )i e =i € — +0, (2.3.32)
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dp) eip(l‘—l’/)
A_(z—2")= ( 2.3.
(x — ') /(27)4p2+m2+i6’ e — 40, (2.3.33)

&Ep
A (g — ') = / (_Pemcw )0 = P+, (2.3.34)

27)32p°

which A, (x — 2’) is the propagator and A_(x — 2’) is its complex conjugate corre-
sponding to the reversed time paths for A (x — z’).

For example for a theory with interaction Lagrangian density £; = A\¢*, the
vacuum-to-vacuum amplitude (0_ |0_), for the initial vacuum, for the closed-time path

is given by

(0_]0_) = expiA/(dx) K - iéKi(gj))4

- (i : Kf ® ) 4} (0_10_),_q (2.3.35)

where (0_|0_),_, is defined in Eq. (2.3.30) for spin 0 bosons interacting with external
sources only, that is, for A = 0.
With a system in the initial vacuum state |0_), the expectation value of the in-

duced field excitation at a given time 2 = ¢, is then given by

o
0_|0_ 2.3.36
SK () (0-10-) K,=K =K ( :

(0_lo(x)]0-) = —i

Detail applications of an induced field in the initial vacuum state, as defined in
Eq. (2.3.36), will be given to the far more complex situation involving the gravitational

field in Chapter VI.



CHAPTER III
APPLICATION OF THE FUNCTIONAL
DIFFERENTIAL TREATMENT TO QUANTUM
SCATTERING VIA THE DYNAMICAL PRINCIPLE

3.1 Introduction

The underlying technical language involved in the present thesis in dealing with
quantum physics and quantum field theory is the so-called functional differentiation
treatment. That is, it is involved by differentiations of functions of functions with re-
spect to the latter functions. This chapter deals with a rigorous treatment of the func-
tional differential treatment to scattering in quantum physics, and its extension to the
expectation value formalism, i.e., to the closed-time one, in quantum physics is carried
out in the next chapter. The power and elegance of the functional differential treatment
as simply taking derivatives to obtain physical results will be evident.

The purpose of this chapter is to use Schwinger’s (Schwinger, 1951, 1953, 1960,
1962; Manoukian, 1985) most elegant quantum dynamical principle to provide a careful
functional treatment of quantum scattering. We derive rigorously an expression for the
scattering amplitude involving a functional differentiation operation applied to a func-
tional, depending on the potential, written in closed form. The main result of this paper
is given in Eq.(3.2.45). In particular, it provides a systematic starting point for studies
of deviations from so-called straight-line “trajectories” of particles, with small devia-
tion angles, by mere functional differentiations. An investigation of a time limit of a
function related to this expression shows that the latter may be also used to obtain the
asymptotic “free” modified Green functions for theories with long range potentials such

as for the Coulomb potential with the latter defining the transitional potential between
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short and long range potentials. Functional methods have been also introduced earlier
in the literature (Brenner and Galimzyanov, 1982; Chuluunbaatar et al., 2001; Cambell,
1975; Gelman and Spruch, 1969; Gerry, 1980; Pazma, 1979; Singh, 1975; Zubarev,
1977, 1978; Sukumar, 1984) in quantum scattering dealing with path integrals or vari-
ational optimization methods which, however, are not in the spirit of the present paper
based on the dynamical principle. The present study is an adaptation of quantum field

theory methods (Manoukian, 1988a) to quantum potential scattering.

3.2 Functional Treatment of Scattering

Given a Hamiltonian
2

_ P
H =5 +V(x), (3.2.1)

for a particle of mass m interacting with a potential V'(x), we introduce a Hamiltonian

H'(), ) involving external sources F(7), S(7) coupled linearly to x and p as follows:

2
H'(\7) = zp—m FAV(X) —x-F(7) +p-S(r), (3.2.2)

where ) is an arbitrary parameter which will be eventually set equal to one. Schwinger’s
(Schwinger, 1951a, 1953a, 1960a, 1960b, 1962; Manoukian, 1985) dynamical princi-

ple states, that the variation of the transformation function
(xt|pt'), (3.2.3)

with respect to the parameter )\, for the theory governed by the Hamiltonian H'(\, 7)

is given by

5 (xt|pt') — (—%) /t Cdr s ()\V (—m 5F5(7))> (xt|pt') (3.2.4)
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Here

V(—ind /6F (7)), (3.2.5)

denotes V'(x) with x in it replaced by

—ind /0F (7). (3.2.6)

Eq. (3.2.4) may be readily integrated for

A =1, F(7),S(7) setequal to zero, (3.2.7)

that is for the theory governed by the Hamiltonian /1 in Eq. (3.2.1), to obtain

i ) ©)
(xt|pt') = exp [—— / dr v <—ih—>} (xt| pt') L (23
h Jy oF (7) F=0,5=0
The transformation function
(xt|pt")?, (3.2.9)
corresponds a theory developing in time via the Hamiltonian
p?
H'(0,7)=-— —x-F(r)+p-S(7), (3.2.10)

2m
to which we now pay special attention.
With p replaced by i3 /dS(7), the dynamical principle, exactly as in Eq. (3.2.8),

gives

/ I ! . J ? /
(xct | pt')©@ = exp [_ﬁ/t dr (1h58(7)> ] (xt|pt'),, (3.2.11)
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where the transformation function (xt|pt’), is governed by the “Hamiltonian"
H(t) = —x-F(r)+p-S(7), (3.2.12)

involving no kinetic energy term.

The Heisenberg equations corresponding to H (7) give the equations

t
x(t) — / dr' O(+ — 1)S(), (3.2.13)
t/

ol
—~
2

I

p(7) = p(t') + /t,t dr' o(r — 7F(7), (3.2.14)

where O(7) is the step function

1, for 7>0
O(r) = , (3.2.15)

0, for 7<0

Using the relations

o{xt| x(t) = x (xt|, (3.2.16)

p(t) |pt’), = Ipt’) P, (3.2.17)

and the dynamical principle, we obtain by taking the matrix elements of x(7), p(7) in

Egs. (3.2.13), (3.2.14) between the states
olxt|, [pt)y, (3.2.18)

the functional differential equations

5 t

_ih—(SF(T) <Xt|pt’>0 = |:X — /t/ d7-’7@(7—’ _ T)S(T’):| <Xt|pt/>0, (3.2.19)
) t

ih5s(7) (xt|pt'), = |:p +/tl dr’' O(r — T/)F(T,):| (xt|pt"), . (3.2.20)
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These equations may be integrated to yield

. t : t
(xt|pt'), = exp [%X <p +/ dr F(T)):| exp [—%p / dr S(T):|
t/ t/
i t t
X exp [_i_i/ dT/ dr’' S(r) - F(7)O(r — 7")1 , (3.2.21)
t/ t/
satisfying the familiar boundary condition

exp(ix-p/h) for F,S setequal to zero. (3.2.22)

Since we are interested in Eq. (3.2.8), in particular, for the case when S is set

equal to zero, the functional differentiation in Eq. (3.2.11) may easily carried out giving

(xt|pt')"”

X exp % /t/t arP(r) (x- Pt - 7))1

. t t
1h/ dT/ dT/F(T)-F(T/)(t—T>):|, (3.2.23)
t! t/

X exp —3
m

where 7, is the largest of 7 and 7' :
7 = max(7, 7). (3.2.24)

We recall from Eq. (3.2.8) that we eventually set F(7) equal to zero. This allows
us to interchange the exponential factor in Eq. (3.2.8) involving the V (—ihd/dF (7))
term and the last two exponential factors in Eq. (3.2.23). This gives for (xt|pt’) in Eq.
(3.2.8) the expression

(xt|pt') = exp {% (X p— %(t - t’))]



§ 'm/td /td,[t |0 5 ]
exp | — T T —T .
Plom [T, “LSF () oF (1)

X exp —% /t/t drv (x P-4+ F(T))}

m

F=0
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(3.2.25)

Since we finally set F = 0 in Eq. (3.2.25), the theory becomes translationally

invariant in time and (xt | pt’) is a function of
t—t'=T.
For t > t/, we have the definition of the Green function
(xt|x't") = G, (xt,x't'),
with
G, (xt,xt)=0 for t<t,
and

(xt|pt) = Gi(xt,pt)
= / Bx' PG (xt, xXt).
We may now introduce the Fourier transform defined by

1 1 o0 0 s
G 1,0\ _l—/ dT i(pY+ie)T/h
+(p7p7p ) h(27’(’h)3 . (§]

X /dgxe_ip'x (xT'|p'0),

for ¢ — +0, where (x7"|p0) is given in Eq. (3.2.25) witht — ¢/ = T.

(3.2.26)

(3.2.27)

(3.2.28)

(3.2.29)

(3.2.30)



From Egs. (3.2.30), (3.2.25), we may rewrite G, (p, p’; p°) as

i 1 o {10 N
G 10N doy ellP’ —E@)+ida/h
+(p,p,p ) h(Zﬂ'h)g/o ae

X / Px e *PPIAE(x p';a),

where
E(p) =p°/2m,
) in [ b ) §
K(x,p';a) =exp [%/ﬂ dT/t/ dr [t_T>]5F(7').5F(7'/)]
X e [ i/td V(x pl(t )+ F( ))}
xXp | —~— T —=—t-T T ,
h t m F=0
with

t—t =aq,

playing the role of time — a notation used for it quite often in field theory.

In the a-integrand in the exponential in Eq. (3.2.31), we recognize

[p° — E(p) + i€,

31

(3.2.31)

(3.2.32)

(3.2.33)

(3.2.34)

(3.2.35)

as the inverse of the free Green function in the energy-momentum representation.

The scattering amplitude f(p, p’) for scattering of the particle with initial and

final momenta p’, p, respectively, is defined by

f(p,p') =

m " 124 1 / /
~5 /d3p V(p—p")G.(p",p:1°) " — E(p')]

P=E(®')

(3.2.36)
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where
V(p) = / dPx e Py (%), (3.2.37)

This suggests to multiply Eq. (3.2.31) by [p° — E(p’)] giving

1 & a : (1] ’ 3
/0N 0 E(p)] = — / d ¥ la[p’—E(p')+ie/h
Gi(p,psp)p (p')] (2wh)3 J, “\9a’
X / Pxe PPV (x p':a). (3.2.38)

From the fact that
(x|p) = exp(ix - p/h), (3.2.39)
and the definition of K (x, p’; ) in Eq. (3.2.33), we have
K(x,p’;0) = 1. (3.2.40)
We now consider the cases for which

lim [ d*xe ™ >PPVAK(x p':a), (3.2.41)

a—00

exists. This, in particular, implies that (¢ > 0)
lim e_w‘/d3xe_ix'(p_p/)/hK(X7 p;a)=0. (3.2.42)

a—00

We may then integrate over « in Eq. (3.2.38) to obtain simply

Gy (p, s p")P° — E(p')]

pO=E(p’)
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p— 1'
al—{go (27rh)3

/ Pxe *PPIR K (x p'sa), (3.2.43)
on the energy shell
" = E(p), (3.2.44)

and for the scattering amplitude, in Eq. (3.2.36), after integrating over p”, the expres-

sion

~onrE m d*x e PP (x) K (x,p'; ), (3.2.45)

f(p,p) =

with K (x, p’; @) defined in Eq. (3.2.33). Here we recognize that the formal replacement
of K(x,p’; o) by one gives the celebrated Born approximation. On the other hand, part

of the argument
[x —p'(t —7)/m], (3.2.46)
of

1% (x —p/(t—7)/m+ F(T)) : (3.2.47)

in Eq. (3.2.33), represents a “straight line trajectory” of a particle, with the functional
differentiations with respect to F(7), as defined in Eq. (3.2.33), leading to deviations
of the dynamics from such a straight line trajectory. With a straight line approxima-
tion, ignoring all of the functional differentiations, with respect to F(7) and setting the

latter equal to zero, gives the following explicit expression for the scattering amplitude

f(p,p) in Eq. (3.2.45):

m ; ’
(b p) =~ [ dxe =0 ()
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X exp {—7—11 /OO daV (X — %a)} : (3.2.48)
0

This modifies the Born approximation by the presence of an additional phase
factor in the integrand in Eq. (3.2.48), depending on the potential, accumulated during
the scattering process. Here one recognizes the expression which leads to scattering
with small deflections at high energies (the so-called eikonal approximation) obtained
from the straight line trajectory approximation discussed above. Deviations from this
approximation may be then systematically obtained by carrying out a functional power

series expansion of
V(x —p(t—7)/m+ F(T)), (3.2.49)

in F(7) and performing the functional differential operation as dictated by the first ex-
ponential in Eq. (3.2.33) and finally setting F(7) equal to zero.

We note that formally that the 7-integral, involving the potential V', in Eq.
(3.2.33) increases with no bound for &« — oo for the Coulomb potential and for poten-
tials of longer range with the former potential defining the transitional potential between
long and short range potentials. And in case that the limit in Eq. (3.2.41) does not exist,
as encountered for the Coulomb potential, Eq. (3.2.38) cannot be integrated by parts.

This is discussed in the next section.

3.3 Asymptotic “free” Green Function

In case the @ — oo limit in Eq. (3.2.41) does not exist, one may study the

behaviour of G, (p, p’; p°) near the energy shell

p° ~ p?/2m, (3.3.1)



directly from Eq. (3.2.31). To this end, we introduce the integration variable

for ¢ — +0.

For

po - E(p/) /?J Oa

i.e., near the energy shell, we may substitute

i

h

35

(3.3.2)

(3.3.3)

(3.3.4)

1) (0"~ E(p')) D/
K (x,p'; 28/ (0° — E(p'))) ~ exp ——/ daV (x — Ea) ., (3.3.5)
0

in Eq. (3.3.3) to obtain for the following integral

/ d*p "G (p,p';p") ~

—jeixP'/h 00 L i 2/ (0°—E(p")
© - / dz e#(1+i€) exp 2 / daV [x— Ba
ie] /o h /o m

[P — E(p) +

For the Coulomb potential

V(x) = MIx],

(3.3.7)



zh/(p°—E(p’)) p’
/ daV (X — —a)
0 m

_Am o ( 2|p’|zh )
P \m(p® = E(p)[x[(1 —cos) )7

where
cost =p' - x/|p'|[x].

Hence

i [ (E°=E®) p’

exp——/ daV(x——a) ~
h Jo m
1 _ 20" 2h
——= X exp —iyln - p ,
[P° — E(p') +ie] " m(p'z —p' - x)
where
v = Am/hp'.

Finally using the integral
/ dz 20+ ()1 = 1™/2D (1 — iy),
0
for e — 40, where I' is the gamma function, we obtain from Eq. (3.3.6)

/ dP*p "G (p,p';p") ~

e—i'y In(2p'2 /m)

eix~p’/FL :
[p° — E(p') + i)'

/ _ /.
expiyln (%) ™21 (1 — iy),
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(3.3.8)

(3.3.9)

(3.3.10)

(3.3.11)

(3.3.12)

(3.3.13)
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to be compared with earlier results (e.g., Papanicolaou, 1976), and for the asymptotic

“free” Green function, in the energy-momentum representation, the expression.

e_i'y ln(2p2 /m)

0 _ /2 o
G = B Fgne | LA (3.3.14)

showing on obvious modification from the Fourier transform of the free Green function

(" — E(p) +1i¢]".



CHAPTER IV
COUPLING OF QUANTUM SYSTEMS TO
THE ENVIRONMENT: APPLICATION OF
THE EXPECTATION VALUE FORMALISM

4.1 Introduction

This chapter involves with a rigorous treatment of the expectation value formal-
ism as is applied to quantum mechanics and the role of the environment on a quantum
mechanical system and of quantum decoherence. As one is involved here directly with
propabilities, such as persistence of a system to remain in the same state after a time
evolution process, instead of dealing first with amplitudes, the closed-time path for-
malism appears quite naturally. This chapter deals with the interesting story of the
environment, surrounding a quantum mechanical system, and the resulting response of
the latter system to the environment.

The functional differential treatment (Limboonsong and Manoukian, 2006;
Manoukian, 1985, 1986a, 1987a, 1987¢c, 2006a, 2006b; Manoukian and Siranan, 2005;
Schwinger, 1951b, 1953a, 1972), via the quantum dynamical principle, has been a
very powerful tool for investigating properties of quantum systems and for carrying
out explicit computations. In this regard, it has been quite successful in gauge theories
and of the generation of essential modifications (Limboonsong and Manoukian, 2006;
Manoukian, 1985, 1986a, 1987a, 1987¢) needed for their proper quantization with no
much effort. For a pedagogical treatment of the theory and for several applications of
the functional differential method, via the quantum dynamical principle, in quantum
mechanics, the reader may wish to refer to Chapter. 11 in “Quantum theory: a wide

spectrum” in Manoukian (2006a). The purpose of this work is to carry out an analysis,
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using the functional differential approach, of the coupling of quantum mechanical sys-
tems to the environment, understood to be surrounding a physical system, as the former
systems, in the real world, are never in isolation from the latter. The incorporation of
the environment in quantum mechanical systems has led to much physical insights into
such fundamental problems as quantum decoherence, Schrodinger’s cat and in mea-
surement theory, in general (see e.g., §8.7,88.9,§12.7 in Manoukian, 2006a; Brune,
Haroche and Raimond, 1992; Munroe, Meekhof et al., 1996; Walls and Milburn, 1985;
Zurek, 1991). We will see, that the functional differential approach is quite suitable for
studying the coupling of quantum mechanical systems to the environment. It involves in
carrying out functional differentiations, with respect to classical sources, of a functional
describing “decoupled” systems from the environment. As one is involved in taking
the trace over the dynamical variables of the environment in studying the response of
physical systems to it, the analysis necessarily involves in dealing directly with transi-
tion probabilities rather than amplitudes. This is a basic departure from the far simpler
case of studying quantum mechanical systems in isolation. In dealing with probabilities
and in taking traces, it turns out that two different sets of classical sources, coupled to
the dynamical variables of the theory, should, a priori, be introduced. The physically
relevant probabilities are then recovered in the limit as the two sets of sources coincide
and are eventually set equal to zero. The general expression for transition probabilities
of quantum mechanical systems, coupled to the environment, is given in Eq. (4.2.11)
involving functional differentiations with respect to these two sets of classical sources.
The method used in this chapter generalizes to quantum field theory and will be studied

in a forthcoming chapter.

4.2 Transition Probabilities and the Role of the Environment

Typically a quantum mechanical system may be described by a Hamiltonian

Hi(t) = H(g,p, ) — qF'(t) + pS(t), (4.2.1)
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written in terms of dynamical variables in the (g, p) language, where F'(t) and S(t)
are classical source functions introduced to generate functions of ¢ and p, respectively.
For simplicity of the notation, we have in Eq. (4.2.1), suppressed indices in ¢ and p
reflecting the dimensionality of space and of the number of particles involved in the
theory. In most applications, the classical sources F'(t), S(t) are set equal to zero after
all relevant functional differentiations in the theory, with respect to them, are carried
out, with H(q, p; t) finally emerging as the Hamiltonian describing the actual physical
system into consideration.

The quantum dynamical principle states, see Manoukian (2006a), Ch. 11, that a
transition amplitude (ats |bt;) for the system governed by Eq. (4.2.1), from time ¢, to

time 5, 1s given by

i [P d &
(aty |bty) = exp (—% /tl drH [_ihéF(T) : ihéS(T) : 7':|) (aty|bt1),,  (42.2)

where H in Eq. (4.2.2) is obtained from H (¢, p, 7) by simply replacing ¢ and p in the lat-
ter by the operators of functional differentiations —i28 /8 F'(7), 1hd/6S(T), respectively,

and (at, | bt;), denotes the transition amplitude governed by the simple “Hamiltonian”
[—qF(t) +pS()], (4.2.3)

only.

To investigate the role of the environment on the quantum mechanical system,
governed initially by the Hamiltonian H (¢) in Eq. (4.2.1), one modifies the latter Hamil-
tonian by including, in the Hamiltonian, the contribution of the environment and of its
interaction with the physical system at hand. Of particular interest is in the response of
the physical system to the environment. Accordingly, one takes a trace over the dynami-

cal variables of the environment in the manner to be spelled out below. The Hamiltonian



41

of the combined system is taken to be of the form

H(t) = Hi(qi,p1,t) — @1 F1(t) + p1S1(t) + Ha(qo, pa, t)

— @ F5(t) + p2Sa(t) + Hi(qu, p1, g2, pa, t), 4.2.4)

where the indices 1, 2 correspond, respectively, to the physical system and the envi-
ronment, and H; specifies the interaction term between them.

The transition amplitude for the combined system to evolve from a state, say,

la, A;0), initially attime ¢ = 0, 4.2.5)

to a state, say,

b, B;t) ,attime ¢ > 0, (4.2.6)

is then given by

i [ 8 5
b,B;t|a, A;0) = —— | drH;(—ih ih
<7 ) ’G, ) > eXp( h/o T I( 1 5F1(T)’1 551(7_)7
; 5 : b . .0\ F1,51 . .\ F2,52
—ih .k ),t)> (b;t|a;0) (B;t] A; 0) . (427
T

dFy(1)” 85

as in Eq. (4.2.2), where

(bit]a; 0™ (Bst|A;0)™, (4.2.8)

are the transition amplitudes of the decoupled subsystems in the presence of their re-
spective classical sources.
To find the response of the physical system, described by the Hamiltonian

Hi(q1,p1,t) in Eq. (4.2.4), to the environment, it is necessary to work with transi-
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tion probabilities, corresponding to the process associated with the expression in Eq.
(4.2.7), rather than with amplitudes as done in the latter equation, and “trace out" over

the environment. To this end, let
{|Bn; 1)}, (4.2.9)

denote a complete set of states pertaining to the environment, then the probability for

the physical system to make a transition from an initial state
la; 0) to astate |b;t)in time ¢, (4.2.10)
responding in the process to the environment, emerges as

Prob[(a; 0) — (b;1)]p = O(O')* (b; t|a; 0) ™ ((bst] a; 0)" 1)

FIFy, 53 Fy, 53], (4.2.11)

where

O = exp (—% /OthHI( — ihéFf(T) : ihéslé(ﬂ : _ihst(T)’ihasj(T) : 7')) :
(4.2.12)
with (0’ defined similarly with
Fy, 51, F5, Ss, (4.2.13)
replaced by
FY, 81, Fy, S5, (4.2.14)

respectively, and the presence of the letter £ attached to the probability on the left-hand
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side of Eq. (4.2.11) is to emphasize the coupling of the environment to the physical
system as the latter evolves in time. The functional .7 is given by

FIFy, So: Fy Sy = 3 (Bust| A;0) 7 <<Bn;t|A;O>FQI’SQ> 4.2.15)

n

where the closed-time path concept is emphasized in the above expression, where for
time 0 to ¢ we have sources F3, Sy, which in the reversed path form ¢ to 0, we have a
priori different set of sources F} and S,. At the end of all manipulations F3 will be set
equal to Fy and S} will be set equal to Sy which will all taken to be zero.

We note that Eq. (4.2.15) reduces to the trace over the environment in the special

case for which
F; issetequalto F», and S, to S, (4.2.16)

One cannot, a priori, set such equalities until the functional differentiations, with re-
spect to these sources, as accomplished by the operators O, (O')*, are independently
carried out.

The vertical bar sign on the right-hand side of Eq. (4.2.11) refers to the fact that

finally one is to set
F=F =0 S§=5 =0, (4.2.17)

after all the operations of functional differentiations have been done.
Eq. (4.2.11) gives the general expression for the transition probability of a phys-

ical system, as it evolves in time, in response to the environment.
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4.3 Exponential Decay versus Vacuum Persistence Probabilities
and the Role of the Environment
Of significance importance is for systems written in terms of creation and anni-

hilation operators, which most conveniently describe processes of transitions between

their allowed states. Such a typical example is given by the Hamiltonian

H(t) = Hq(t) + Ha(t) + Hia(t), (4.3.1)
with
Hi(t) = hwa'a — a'F(t) — F*(t)a, (4.3.2)
Hy(t) =Y hugblby — Y (Kk(t)b; + ka;;(t)) , 4.3.3)
k k
Hyp(t) = a' > Meby +a Y Ajbl, (4.3.4)
k k

and (a, a'), (b, bz), pertaining to the physical system in consideration and the environ-

ment, respectively,
la,a"] =1, [bk, bl,] = O, 4.3.5)

for the corresponding commutators.
Suppose that the environment is initially in the ground-state |0;0),. Let Us(?)
denote the time evolution unitary operator describing the time evolution of the environ-

ment in the absence of the physical system. The so-called Heisenberg operator by (t)
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associated with by, is given by
bi(t) = U3 ()b Us (t), (4.3.6)
which works out to be
. i [t .
bi(t) = bre ! + - / dr Ky (r)e wxlt=m), (4.3.7)
0

The quantum dynamical principle (Limboonsong and Manoukian, 2006;
Manoukian, 1985, 1986a, 1987a, 1987c, 2006a; Manoukian and Siranan, 2005;
Schwinger; 1951c, 1953a, 1972) for the vacuum-to-vacuum transition amplitude
(0;]0; 05 gives

—ihL (O'lf]O'O)K = (0;t|bx(t)|0; 0>K, (4.3.8)
SKp(t) V2 2
for 0<t <t.
From the expression in Egs. (4.3.7), (4.3.8) simplifies to

i

5
—ih——— (0;1]0;0)5 = -

tl
0.0V [ dr K (r)e =) 439
BK;;(t/) <07 ‘ ) >QA T k(T)e ) ( )

which integrates out to

1 ! ! . /
(0;]0;0)5 = exp <_ﬁ Z/ dT/ dr’e (=) X (1)O (T — T/)Kk<7',)> :
— Jo

0

(4.3.10)

where O(7 —7') is the step function.
The functional .#|K, K'|, corresponding to the one in Eq. (4.2.15), may be

worked out in closed form. To this end, set

K(t) = Ki(t) + Ky(t), 4.3.11)
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with K (t), K5(t) localized in time between (0,t), such that K(¢) is “switched on”
after the source K (t) is “switched off”. That is, in particular, K(¢) and K (¢) do not
overlap in time.

From Eq. (4.3.10) we may then write

(0;£0; 0) 7 = (0;£]0; 0),” exp [Z ( / dr e“’“%K:(T))

k —00

X (/OO dr’ ei“’”%Kl(T))} (O;t]O;O)é(1 , (4.3.12)

[e.e]

where due to the fact that K;(7), K5(7’) are localized in time, we have extended the
time integrations in the middle exponential from —oo to oo.

Let
|n;nk1,nk2,...>2, 4.3.13)

denote a state of n excitations, ng, of which in the state k;, ny, of which in state ko,

and so on, i.e., such that
n=mng +Ng, +.... 4.3.14)

Then upon introducing the unitarity completeness property

<0;t|0;0>§1+K2:Z Z (070 2y My - - )02 (M5 My Ty | )R

(4.3.15)

where the intermediate states are evaluated at any time after the switching off of source
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K and before the switching on of source K5, and the Fourier transform

Ki(t) = / — Ki(w)e ™t (4.3.16)

oo 27T
we obtain by expanding the middle exponential in powers of the source functions

Kin(we), Koglwy), (4.3.17)

the expression

i Nk1 1 ng2
ﬁK/ﬂ(w/ﬂ)) (ﬁKkz(wb))

(N3 Ty, My - 58] 05005 = (0;¢]0; 0)2F (
nkll nkQ!

(4.3.18)
for a given source K (t).

The functional .#| K, K'|, corresponding to the one in Eq. (4.2.15), is then given
by

ﬁ[K,K’]:Z Z (15 My, Ty -5 ] 0; 0)5°

n=0 (nkl +nk2 +...:n)

x ((n;nkl,nk2,...;t|0;0);{/> . (4.3.19)

Here again we have a priori different sources K, and K7, for the initial and reversed time

paths, and may be summed exactly over n giving

0

FIK, K') = (0 £]0;05 exp [% ; </t & eiwkTKk<T)>

t *
X ( / dT’e—W’Kg(T'))] <<O;t|0; o>§’) : (4.3.20)
0

which cannot be expressed as the product of two functionals one depending on K and

the other on K’, as expected.
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Formally one checks the unitarity condition :
FIK, Kl = 1, (4.3.21)

directly from Eq. (4.3.20).

Suppose that the physical system is initially in the ground-state, i.e., the vacuum-
state |0; 0). The vacuum persistence amplitude of the physical system, in isolation from
the environment, but in the presence of the external sources F'(t), F*(t) in Eq. (4.3.2),

may be then inferred from Eq. (4.3.10) to be

1 t t ) ,
(0;t]0; 0){7 = exp (_ﬁ/ dT/ dr'e @ ()0 (T — T’)F(T’)) . (4.3.22)
0 0

From our general expression in Eq. (4.2.11), we then obtain for the vacuum

persistence probability of the physical system, in response to the environment,

Prob|(0; 0) — (0;8)]z = O (O')* (0;¢]0; 0)” ((0;t|0;0>f’>*ﬁ[}(, K|, (43.23)

where

0= eXp_ﬁzk:/o o {)\kTZSF(T) i 8K(T) +AkT5F*(7) TE’K'C(T)} |

(4.3.24)

and O’ similarly defined with
Fu F*u Kka KI:7
replaced, respectively, by

/ /% ! /%
F7 F ) Kka Kk7
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and Z#[K, K'] given by the explicit expression in Eq. (4.3.20).
To evaluate the expression on the right-hand side of (4.3.23), we use, in the

process, the identity
elef = exp (eABe_A) eA, (4.3.25)
for two operators A, B. We note that
d/0F (1), O/6F*(T),

in Eq. (4.3.24), give rise to translation operators, via O, to functionals of F' and F™* as

given, for example, in Eq. (4.3.22), and similarly for
/0K (1), &/0K*(T).

The functional differentiations operations in Eq. (4.3.23) are then readily carried for
a physical system weakly coupled to the environment, and after setting the classical

sources equal to zero, we obtain for the survival probability the expression

by 2 t T
Prob|[(0;0) — (0;¢)]p = exp (-22 | f;‘ / dr / dr’ cos|(w — wy) (1" — T)]> :
B 0 0
(4.3.26)
For the environment described by an infinite set of degrees of freedom, we re-

place the sum over k& by an integral over the frequency w;, — w, and in turn introduce a

frequency density n(w’) to rewrite Eq. (4.3.26) as

t
o0 sin?(w' — w)=
Prob[(0;0) — (0; )] = exp —%/0 dW’IA(w')Fn(w')W_—w)g/f

(4.3.27)
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Upon introducing the integration variable

r=(w —w)t/2, (4.3.28)

one may rewrite the integral in Eq. (4.3.27) as

21 /2/2 dz ’/\(w(l + %)) * w1+ %))Sizzx (4.3.29)
If one makes the Markov approximation by assuming that
IMw)[*n(w), (4.3.30)
is slowly varying around the point
W= w, (4.3.31)

and hence for wt > m, it may be taken outside the integral evaluated at w, one

gets for the integral in Eq. (4.3.29)

o)

2t A\ (W) [*n(w) / dz

2
—wt/2 z

: (4.3.32)

with increasing accuracy for wt > w. And for wt > 7, we obtain from Eqs. (4.3.28),

(4.3.32) the familiar exponential law

Prob[(0;0) — (0;t)]p = e, (4.3.33)

where 7 is the decay constant,

v = 2m|AW)Pn(w) /2 (4.334)
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This expression is strictly valid for

Tw <t < 1/, (4.3.35)

consistent with the property of the decay of quantum systems and the Paley-Wiener The-
orem (cf. Manoukian, 2006a in “Quantum Theory: A Wide Spectrum”, §3.5), that the
exponential law may be valid for intermediate values of ¢ and not in the truly asymptotic

limit ¢ — oo.



CHAPTER V
THE GRAVITON PROPAGATOR
WITH A PRIORI NON-CONSERVED
EXTERNAL GENERATING SOURCE

5.1 Introduction

In the functional differential treatment of quantum field theory, it has been em-
phasized for years (Manoukian, 1986a, 1986b, 1987a, 1987b, 1987c, 1988a, 1988b,
1991b, 1991c, 1998) that, a priori, no conservation law may be imposed on the exter-
nal sources coupled to higher spin fields so that one may vary the components of these
sources independently. Only after the relevant functional differentiations with respect
to these sources are carried out to generate Green functions, expectation values and so
on such conservation law may be imposed. The consequences of this will be discussed
below. For the time being note that a conservation law leads to a restriction between the
components of a source. That is, a variation of one component of one or more compo-
nents of the source leads automatically to the variations of other components, and these
various components may not be varied independently.

Two examples may be readily given for the contradictions that may arise other-
wise — one from elementary calculus and another one which is in the heart of the matter

for this thesis. These are

(1).

0
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(2). The functional derivative of an expression like

(@, (%) + b(2)0,0,|T* (x), (5.1.2)

with respect to T (') is

| —

[aw,(x) + b(m)aﬂ&,} (6{‘6{' + 5,\“50”> 5z, "), (5.1.3)

where a,, (x), b(z), may depend on x, and not

1
5%(9;) {60“6{ - 5A“50”} 5 (z, o), (5.1.4)
if we first impose a conservation law 0,7"" = 0, before functional differentiation.

Afterwards, if we impose the conservation law 0,7"(z) = 0, then we get Eq. (5.1.3)
and not Eq. (5.1.4).

By a priori relaxing the conservation law of the energy-momentum tensor 7"
coupled to the gravitational field, we have succeeded in deriving a novel expression
for the graviton propagator. It involves 30 terms as opposed to the one used for years
involving only 3 terms. This is no surprise as with careful mathematical we cannot go
wrong. The present chapter deals with the fascinating story of this development and our
contribution the graviton propagator as mediating the gravitational interaction between
all particles and everything else in our universe. It remains an intriguing problem as
to what consequence of this explicit structure of the graviton propagator has on the
problem of renormalizability of quantum gravity. Other consequences which follow by
a priori relaxing the conservation of external sources coupled to higher spin fields will
be discussed below.

A basic ingredient in quantum gravity computations is the graviton propagator
(Schwinger, 1976; Manoukian, 1990, 2005; Sivaram, 1999; Weinberg, 1965). The lat-

ter mediates the gravitational interaction between all particles to the leading order in
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the gravitational coupling constant. In the so-called functional differential treatment
(Manoukian, 1985, 1986; Limboonsong and Manoukian, 2006; Schwinger, 1951 and
Manoukian, 2006a) of quantum field theory, referred as the quantum dynamical princi-
ple approach, based on functional derivative techniques with respect to external sources
coupled to the underlying fields in a theory, functional derivatives are taken of the so-
called vacuum-to-vacuum transition amplitude. The latter generates n-point functions
by functional differentiations leading finally to transition amplitudes for various physi-
cal processes. For higher spin fields such as the electromagnetic vector potential A*, the
gluon field A#, and certainly the gravitational field h*”, the respective external sources

T I T,

w» coupled to these fields, cannot a priori taken to be conserved so that their

respective components may be varied independently. The consequences of relaxing the
conservation of these external sources are highly non-trivial. For one thing the cor-
responding field propagators become modified. Also they have led to the rediscovery
(Manoukian, 1986; Limboonsong and Manoukian, 2006) of Faddeev—Popov (Faddeev
and Popov, 1967) factors in non-abelian gauge theories and the discovery (Limboon-
song and Manoukian, 2006) of even more generalized such factors, directly from the
functional differential treatment, via the application of the quantum dynamical princi-
ple, in the presence of external sources, without using commutation rules, and without
even going to the well known complicated structures of the underlying Hamiltonians. A
brief account of this is given in the concluding section for the convenience of the reader.

For higher spin fields, the propagator and the time-ordered product of two fields
do not coincide as the former includes so-called Schwinger terms which, in general, lead
to a simplification of the expression for the propagator over the time-ordered one. This
is well known for spin 1, and, as shown below, is also true for the graviton propagator.
Let h* denote the gravitational field (see Sect. 5.2).

We work in a gauge

;R =0, (5.1.5)

where + = 1,2,3; v = 0,1, 2, 3, which guarantees that only two states of polarization



55

occur with the massless particle and ensures positivity in quantum applications avoiding
non-physical states. Let 7}, denote an external source coupled to the gravitational field
h* (see Sect. 5.2), and let (0 |O_>T denote the vacuum-to-vacuum transition ampli-
tude in the presence of the external source. The propagator of the gravitational field is

then defined by

nv;o AN . 0 . 0 T T
A A(W;)_1((—1)5%(%)(—1)5%(:8,) (0,]0_) >/<0+|0_) . (5.1.6)

in the limit of the vanishing of the external source 7,,,. In more detail we may rewrite

Eq. (5.1.6) as
Auzx;a/\(x ) = i<0+ ‘ (hw(x)ha/\(x/>)+’0—>T N <O+ 5T,j(x) ha)\(x/) O—>
o 0,]0)" 0,107 ’

(5.1.7)

in the limit of vanishing 7},,, where the first term on the right-hand side, up to the i
factor, denotes the time-ordered product. In the second term, the functional derivative
with respect to the external source 7, (z) is taken by keeping the independent field
components of h°*(z’) fixed. The dependent field components depend on the external
source and lead to extra terms on the right-hand side of Eq. (5.1.7) in addition to the
time-ordered product and may be referred to as Schwinger terms. For a detailed deriva-
tion of the general identity in Eq. (5.1.7) see Ref. Manoukian et al. (2007) (see also
Manoukian, 2006a). These additional terms lead to a simplification of the expression
for the propagator over the time-ordered product. Accordingly, the propagator and the
time-ordered product do not coincide and it is the propagator A#*”* that appears in the
functional approach and not the time-ordered product. The derivation of the explicit ex-
pression for Ai”“”\(x, ') follows by relaxing the conservation of 7, and it includes 30

terms in contrast to the well known case involving only 3 terms when a conservation law

of 7},, is imposed. It is important to emphasize that our interest here is in the propagator,
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the basic component which appears in the theory, and not the time-ordered product. At
the end of Section 5.2, some additional pertinent comments are made regarding our ex-
pression for the propagator. We also include a section on attempts to detect gravitational
waves. Our notation for the Minkowski meter is as always [7"*] = diag[—1, 1, 1, 1], also

quite generally we set i, j, k,l =1,2,3,a,b = 1,2, while y,v,0, A =0, 1,2, 3.

5.2 The Graviton Propagator

The Lagrangian density of the gravitational field A" coupled to an external

source T}, 1s

1 1
L= SO W Daly + SO W 05 = O N
1 av 90 1 o av v
501 O R, + SO D0 + W T,, (5.2.1)

where h# = h"¥, and as a result 7},,, is chosen to be symmetric. We consider the ten
components of 7, to be independent by, a priori, not imposing a conservation law for
T,.,. The action corresponding to the Lagrangian density in Eq. (5.2.1), in the absence
of the external source 7},,, is invariant under the gauge transformation (see Chapter VI

for a demonstration of this).

" — R 4 OMEY + 07EN + 01 0YE, (5.2.2)
with a gauge constraint is

b = 0. (52.3)
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Then the effective Lagrangian can be written as
2 2 L 1
ZLerp = — hoiOhoi + hooO”hi; + §h Ohi; — §hz’z’hjj
+ hooT® + 2ho T + hy; TY. (5.2.4)

From Eq. (5.2.3) the gauge constraint allows us to solve, hg,, in terms of other compo-

nents:
O h'? 4+ 0,h*0 + 05h*° = 0
8sh® = —9,h®
R = —(051)0,h ™, (5.2.5)
or
hso = —(951)0uhao, (5.2.6)
where a = 1, 2.
From
d;h7 =0, (5.2.7)
then

O hY 4+ 0h¥ + 95h% =0

O3h3 = —9,hY, (5.2.8)
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where b = 1, 2, and

O3h3® 4 93h® = —0yh%* — O,h%. (5.2.9)
Then we have
O3hsq = —Ophyg (5.2.10)
hsq = —(05) " Oyhia, (5.2.11)
and
O3hss = —04has, (5.2.12)
haz = —(03) " Oghas. (5.2.13)

Replacing h3¢ from Eq. (5.2.11) into Eq. (5.2.13), we get

has = —(03) 20,00 hap, (5.2.14)

where a, b = 1, 2. Substituting the expressions for hs, in Eq. (5.2.4) and varying the

Lagrangian with respect to h,;, we obtain

0Zess _ 92 (50 + %% by + Ohay + 205 20u010; o
ahab 83
+ 8528(18@8;28686[]16(1 — <6ab — %) Dhii
3

+ T + 05%0,0,T* — Q%T‘“, (5.2.15)
3
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we have

0520:04heq = hss, (5.2.16)

and then the fourth term in Eq. (5.2.15) becomes

a0

05 20,0,005 20:0ghcq = 7 ——~Ohas. (5.2.17)
Consider the third term in Eq. (5.2.15),
205 20,00 heq = 22 mg;" B
- 22;‘ 2333 (Ofhea + Ochipa)
ol o,
Yo B,
aif Ohes — 23 Ohys
= _8—?)Dha3 %Dhbg, (5.2.18)
and
22” Ty = g" To3 + gg Tys. (5.2.19)
Then insert Egs. (5.2.17) - (5.2.19) into Eq. (5.2.10), and rearrange all terms, to
obtain

Oa
—(Ohps + Ti3)

19,
2 (Ohas + Toz) —
05

ha Ta -
(Qhap + T 2,
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040
02

00

+ o2

(Dh33 + T33) + |:6 :| (82h00 — Dh“) = 0, (5220)

where a, b = 1, 2. Upon multiplying Eq. (5.2.20) by (845 — 0,0,/8?), where 8* =
9'0;, i =1, 2, 3, by considering of multiplication term by term, first by multiplying

the h-terms, then we may write

0.0, 0 O 040,
(5ab - 8_2b> ( h'ab - 8_z|:|ha3 a hb3 + agb h
0.0,
+[5ab + aQb](82hoo — Dh”)> . (5.2.21)

By expanding of Eq. (5.2.21) we get

3 Ay 8,0,
Ohge — a—SDhag a Dhbg + — 82 Dhgg
9,0, 00, 0 _ 0uh0a a0y 0ul
_ h, . Zab o,
g2 e T gz 5, Bt 57 5.0 97 op D
8,0 8,0
+<6ab——8;’>[6ab+ azb](32h00 Ohs). (5.2.22)

Consider [C], the third line of Eq. (5.2.22), where

[C] = (8ap — %)[%b 8a?b](32h00 Ohi;)
— (8,% + ag;a - agga - 8“2;228”)(6%00 — Ohy)
(5,40 aa(y - %) - aaggggab)(a%m — Oha)
— (5, 0,0°(8” — 6%)) _ aaaaabab(aghoo _ Ohy)

8202 8202

0a0a0s0y  DaOadyd
= (5,% + 82823 b 620; ©)(8%hgo — Thii). (5.2.23)




The second and third term are canceled, where 5,% = 2, then we get [C] as

[C] = 2(62]100 — Dh“)
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(5.2.24)

From Eq. (5.2.11), we have hy3 = —(93) ' 0,ha, replacing h,s and 3 into Eq.

(5.2.22) and consider

Oa _ 0 _
[A] = Ohgq — a—gm(—a3 YOyhpa — a—zm(—ag Y0uhas) +
0,0 0.0p O, _
— 8—2thab + 8—2ba—ZD(—a3 161,hba)
0,0y 0, N 0,0p 0,0
62b8—3|:\(—03 18ahab) — a—fa—gbmhgg.

We consider term by term in Eq. (5.2.25) defined as follows:

[1] = Ohga,
2] = _afam(_a?rlﬁbhba) = g_zmg_zhba = Dag_?bhab = Ohss,
3] = _a—?’m(—aglaahab) = g—ZDg—:th = Dag—?’hab = Ohsag,
[4] = ag—gaﬂh:ss’
5 —géab A L2

(5.2.25)

(5.2.26)

(5.2.27)

(5.2.28)

(5.2.29)

(5.2.30)



0aOp Oy _ —0p0y _ 040 —Op0y
[6] = ?a—gﬂ(—ﬁg labhab) = 7Da_§hab = 7Dh33,
aa 81; aa — _aa 8{1 aa ab 8(1 aa
[7] = 82 8—3D(—83 laahab) - 7 a_g ab — 82 Dhgg,
—0,0p 0a0 —0,,0,0,0p
[8] = 82 8_§D 33 — 0—2a§ Dh33.
Consider [4] + [6]
0404 Op0
[4] + [6] = 3 h3s — %Dhsg
1 1
aaaa (8% ?) Dh33
8% — 92
= 0,0, ( 8§823> Ohss
_2.0.00,
- ag 82 33
Then
[4] + [6] + [8] = 0,
and
[2] + [3] - 2Dh33.
Consider
—0? 004
= —35h33 — —-0Ohss
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(5.2.31)

(5.2.32)

(5.2.33)

(5.2.34)

(5.2.35)

(5.2.36)
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S (02 4 9,0, has

82
- 5—?3%33
= —DOhas. (5.2.37)
So
(2] + [3] + [5] + [7] = Ohss. (5.2.38)
Since

(] + [2] + [3] + [5] + [7] = Ohaa + Ohss

— Ohs, (5.2.39)

and

(5.2.39) + (5.2.24) = Ohy; + 28 hgy — 20hy;

= 20%hgy — Ohy;, (5.2.40)
or
8(1(31) ab (3 0, ab
(5ab - 7) ( hab - a_3|:|ha3 8 hb?) + — 82 h
0.0,
+[6ab + aQb](82h00 - Dh“))

= 28%hgy — Ohy;. (5.2.41)
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Next we will consider the multiplication of the 7T'-terms

(8ab — %)(Tab — g—zTa:s - %:Tb?’ + ag—ngs:a)
=Toa — g_ZTaS - g—ZTbs + ag—?lT:as
- %Tab + %%T(ﬁ + %%Tbi& - %ag—gbﬂa& (5.2.42)
Let
[D1] = Tha, (5.2.43)
[Do] + [Ds] = _a—(j“Tag - g_szB; (5.2.44)
= —_%2%;2 33 + %R&
= %Z%(%ng + %ng, (5.2.45)
then
[Dy] + [Dg] = 83—;2%7%3 - ag—?T33 - %T&%
= %T&% = %Tw =T33 — g—%T?,:s, (5.2.46)
and
[Ds] + [D7] = %%Tw + agz—gjaTbg,



Then Eq. (5.2.42) can be written as

Dq
- Taa - _T

B] =T - 5

000,00
9705

Consider

and is also true for

Ta3 +

Do V3 V2
- ?8_3 a3 828 Tb3~
0 02
ab Ty + T33 — az; T33 —
0p0,0,
2283 Tb3-
O, (32 —02)
“a T,
9> 0, s
9,0 0,03 S
%0, © 8%, “
Oa 0,05
= (9_3Ta3 7Ta37
Op (82 —07)
_— T
82 83 3b
0,0° Op03
= T: T:
8283 3b 8283 3b
O, OO
= a—Zsza %Tiib-

Then, replace Egs. (5.2.49) and (5.2.50) into [B] to get

&1 (91, 8§ 0 ab
B =T,,— =T, — =T, T. —=T:
[ ] aa 33 8 b3 T L33 — 32 33 — 8
O, 0,0 0, 00
+ 0_3Ta3 - 8_23Ta3 + a—:T% - %T%

Tab
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(5.2.47)
0,0
8 bTab
(5.2.48)
(5.2.49)
(5.2.50)
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(5.2.51)

0,0, 0,0 030 02
= aa+T33—( ’ 2 il 3T33)-

oty et g vt
We see that the first two terms combine to 7;;, and, the terms in the round brackets is

%sz- Then Eq. (5.2.51) can be rewritten as shown below

[B] =T, — %ﬂ
0;0;
- (@-j - B—;sz) . (5.2.52)

Combine Eqgs. (5.2.40) and (5.2.52) to obtain

28%hoo — Ohy; + (% - %le) =0, (5.2.53)
and
—8%hgy = —%Dhii + % (@-j - %sz) . (5.2.54)
Replacing hsg, hs, and hgs into Eq. (5.2.4) and variations with respect to hgy we
will get
&?hi; + Too = 0, (5.2.55)
or
—8%hy; = Tho. (5.2.56)

The variation Eq. (5.2.4) with respect to hg,, considering is obtained by the

terms in the effective Lagrangian containing hg,:
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_hOiazhOi = _hOaazhOa - h0382h03

= —h0a0%hoa — (—05 1) 0ah0a @ (—05 ) Ouhoa- (5.2.57)

Then varying Eq. (5.2.57) with respect to hg, we get

) Da
(—hgi®%hg;) = —20%hge + 2—=0hys, (5.2.58)
6h0a a3
and consider
2ho T = 2hoo T + 2hosT%
= 2hoa T + 2(—05 ") 0yhoa T*. (5.2.59)

Then a variation with respect to hg, gives

1) . .
e (2hoi T%) = 27 + 2(—05 )0, T™
=27 — Qa—a“TO?’. (5.2.60)
3
Combine Eqgs. (5.2.58) and (5.2.60) to get
2 all 2 Oa 80« 03
—8 hOa + —8 hog =-T + —T 5 (5261)
03 03
or the variation with respect to hg, gives finally
O, Oa
—8%hg, + a—aZhog = Toa — 5Tt (5.2.62)
3 3

We substitute the expressions for hg3, in Eq. (5.2.4), and vary h,;. First consider,



the expression
hii = haa + has,
where a = 1, 2. Replace hsz = (03) 20,0y into Eq. (5.2.21), to get
Rii = haa + (03) "2 0aOphap

Consider the term

hoo0hi; = hoo®? (8ap + (33) *0a0b) hap-

Then
0 00
hoo®%h; = 82 [ 8, 222 hoo.
Ohos 00 ( b+ o2 ) 00
From
1 .. 1 . 1 .
Sh"Ohi; = Sh*Dha; + §h3fmh3j
1 1 1 1
= §hathab + §ha3Dha3 + ihgaﬂhg,a + §h33|:|h33,
thus

1

i 1 1
QhWDhij = —habljhab + hasljhag + —h33|:|h33.

2 2

Replace hg,, h3z into Eq. (5.2.68), to obtain

1. .. 1
§hUDhij = éhabﬂhab + 8;18bhabD83‘18bhad
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(5.2.63)

(5.2.64)

(5.2.65)

(5.2.66)

(5.2.67)

(5.2.68)



1
+ 58528a8bhab58§28a8bhab.

Differentiate Eq. (5.2.69) with respect to Ay, to derive

0

1 .
§8h hUDhij = Ohg + 283‘26dD8fhed + 8;28(185D8§2808dh0d.
ab

Consider the term h;;7" which works out to be

hij T = haT™ + hs; T

= hayT® + hasT*™ + ho T** + hss T

= hayT% + 2h3 T + hysT32.

By differentiation of Eq. (5.2.71) with respect to h.4, we get

(hapT™ + 2R3 T + hs T

5, B,
=T 4+ (ah dh?,g) T3 +2 <_ah dhag) T3

ahcd

2
Oheg

0
— Tcd
* ahed

=T + 0;20.0,T% — 2051 0,T™.

Upon changing ¢ — a and d — b, we obtain

0

—— (hatT* + 2hasT™ + h3sT)
ahcd

=T + 05%0,0,T% — 20510,

(8?:26&817)7133 4 2_(_8glabhab)Ta3

69

(5.2.69)

(5.2.70)

(5.2.71)

(5.2.72)

(5.2.73)
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Consider the term %hiiDhjj. From Eq. (5.2.64) we have

%;hnmhﬁ
= 82;% <5ab — ag—gb) heyO <6a’b’ - 8%?) hary
—92. % (5ab - ag—?’> = (5.2.74)
Thus
3 ghaohs == (8- %t ) ot (5275)

Consider Eq. (5.2.62). If we replace a by 3 where a = 1, 2, we will get

15} 19,
—8%hg3 + 8_382h03 =Toz — 8_3T03
3 3

—82h03 + 82h03 = TOS - T03

0=0. (5.2.76)
Thus we can rewrite Eq. (5.2.62) as
—8%hy; + @8%3 =Ty — @Tog, (5.2.77)
03 03

where i = 1,2, 3. Upon taking the divergence 0° of Eq. (5.2.77), we get

—0'8%hg; + aa—fia?hog = 0'Ty; — aig—;Tog,. (5.2.78)



From the constraint in Eq. (5.2.3) we have

— 8% hyy + 70 8%hos = O'Ty; — 0, Tos.
03 03
Divide Eq. (5.2.79) by 8? to obtain
Oi o 9: 0
—L0%hoa = L — LT,
or
ai 2 07, 82
8_38 h()g - ? 8jT0j - 8_3T03 .

By inserting Eq. (5.2.81) into Eq. (5.2.77), we get

0; 0’ 0;
—8%ho; + 22 (ajTOj - 0_03T03) = To; — 8_3T03’
and
0,0, 0; 0;
—8%ho; + 8—2JT0]' - 8_3T03 =Toi — 8—3T03-
Then
0,0,

—8%ho; = To; — 8—QJT0j7

or

0;0;
—BQhOi — (613 - 8—2]) TOj-

Consider

1 1 0,0,
—0%hgy = —gﬂhu‘ + 5 (5z’j - a_gj> Ty,

71

(5.2.79)

(5.2.80)

(5.2.81)

(5.2.82)

(5.2.83)

(5.2.84)

(5.2.85)

(5.2.86)



and

—8%hii = Too-

72

(5.2.87)

Also upon substituting Eq. (5.2.87) into (5.2.86) and using the fact that O =

8% — 0,°, we obtain for Eq. (5.2.86)

1 1 0,0,

~0%hay = —5(8” = Th)hii + 5855 = —3) T
1 1 1 0;0;
= —53%1’@' + §8ghn' + 5(51‘3' - a_zj)Tij
1 1 1 1 0,0;
= T —0ghii + =Ty — =2 T4
g0ttt gta T o
Consider
0* 102
58282 i = —§§T00,
then Eq. (5.2.88) can be written as
1 102 1 1 0;0;
~8%ho = >Too — 55 Too + =Tis — = 2T},
00 = 5400 = 552 00+2 2y i
v in L oveon, + 00,1
=3 oo+§u‘—2—82( 00‘|‘ijij)‘
Consider
T=n"T,=T",
and

T, =T % + T = T + Ty = —Too + T,

(5.2.88)

(5.2.89)

(5.2.90)

(5.2.91)

(5.2.92)
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which leads to the useful relation

T Too | Ti
v, n 5.2.93
2 2 T e
and
1 1 1 1 T
§T00 + §Tii - §T00 + §T00 = Too + 3 (5.2.94)

Thus, for the expression of —8?hgo, we have

T 1
—8%hgo = Too + 5 2 (8°0°Too + 0:0,Ty;) (5.2.95)

where T = T, =1T",.

Equations (5.2.87), (5.2.85), (5.2.95) are not equations of motion as they involve
no time derivatives of the corresponding fields and they yield to constraints which to-
gether with the gauge condition in Eq. (5.2.3) give rise to two degrees of freedom
corresponding to two polarization states for the graviton as it should be. This is shown
in Sect. 6.4.

We now substitute the expression for —8?hgy, as given in Eq. (5.2.95), in Eq.
(5.2.20) and use Eq. (5.2.87) to obtain an equation involving h;;, i,7 = 1,2,3. Upon
multiplying the resulting equation from Eq. (5.2.20) by 0,0, and using the expressions
for h33 in Eq. (5.2.13) we derive Eq. (5.2.108) after some very tedious algebra which

follows.
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) Da
(Ohap + Top) — —2(Thaz + Tas) — —(Ohys + Ts)
Dy s
Du0y 9.0
+ P (Dh33 + Ts3) + {5@ + 8;} X
T 090
x | —Too — 32 (8°0°Too + 9,0,T;5) — Ohy ) = 0. (5.2.96)

Consider the expression in last round brackets. Use the fact that —8%h;; = Tj, and

insert this into the equation, to obtain

T 1
( — Tgo - =+ 3 (0080T00 + 8l8]7—’”) — Dh“>

2 20
T
( Too — E + — 28 (8080( 82h“> + dajT”) — Dh“> (5.2.97)
— (10— L Lot + (L0017, - oha (5.2.98)
00 2 2 (X 82 ij i1 |- L.

According to the definition 0 = 8% — 8%, Eq. (5.2.98) may be rewritten as

(— Too — 5 — 5 (°0°(ha) + ( ) T,]) @ - aOQ)hn-)

~Too — 5 + (282882@) + Too + 802 )

T 1, g2
= —Ty—-= T ) — 8%hy + =0° hy
( 0= 3 (28288 Z]) ahm+28 h“)

—~ g (2628 9; Tw) + %a‘)?hii). (5.2.99)
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Then we obtain the important field equation

0 O,
(Ohap + Tap) — —2(Thas + Tas) — 5 (s + Tis)
3

s

0a0p 00 T 102
82 (I:\h53 +T53) + |:6ab + 82 :| (— - ( 8286 le) 560 h”>

=0. (5.2.100)

Multiplying Eq. (5.2.100) by 9,0, we get

aaab[lhab + aaabTab — mmhag _ abaaab
83 83

0743

02040y 02040y (9.0)
- Ohys — 20Oy + et
83 b3 83 b3 (83)

a0 T L, \
[5 + o } (0, ab)< ( 828671]) 50 h,,) = 0. (5.2.101)

(Ohss + T53)

Consider the third and forth terms in Eq. (5.2.101), to get

Oy 0u0y Oy 0uly o) DuOp0Oy
- B Yy 2O g — 22
83 DhaS 83 O a3 ababD 83 ha3 03 a3
= 00y 0hs3 — a“gbab T, (5.2.102)
3

where we have used the identity that ks = —0,(03)  hys.

Then the fourth and sixth terms in Eq. (5.2.101), lead to

O 3 — aaaaabTb?, = 0,0,0h33 — 000

~0a00 a s s

Ths, (5.2.103)

where we have also used hzz = —0,(03) ™ ps.
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Then adding the expression in Egs. (5.2.102) and (5.2.103) gives

)

200,0,0hs33 — T3 Ths. (5.2.104)
03 05
Combining all the above equations together, gives
000p0, 0y0,0, 00,0,
aaabljha,b + aaabT'ab + 28a@aDh?ﬁ - ’ bTa3 ’ Tb3 - uDTGB
05 05 03
8a 8a 05, 8a aa ab (all ab) 2
_ 83 Dhbg — 83 DTbg + (63)2 (Dhgg + T33)

aaab T 1 02
+ [6@ + @} (aaab)<— 5 (28288 Tm) + 50 h) (5.2.105)

Consider the terms

(0a05)? (0a0y)?
28 6 Ohss + ———— (63) Ohss = (28 8 + (83)

Oy
(03)?

~—————)Ohs3
= 0,0,(2 +

)Dh33

- ¢ (12(2(83)2 + abab)Dhgg

= —2((05)* + (05)* + 9405) Oz

= ((85)* + 0%)Dhay

2

w)mhgg. (5.2.106)

= 8,0, (1 +

Then Eq. (5.2.105) becomes

9? 0a0,0p 0040, 0y0a0p

w)ﬂh:s:a 7o, Tas — Tz —

—0aT,
Bs s ’

OaOpThay + OaOpT o + &L@a(l +



7

0,0,0 0,0,0 0,0p)?
b b Jr( b)

7o, Ohps — 2, Ths W(T?)S)
Da0y T 1 1 g
+ [6ab + (83)2} (&@)(— 5 T (2828@%) + 28 h> (5.2.107)

This finally gives the field equation for A3

1 05)? 1 o
(Bhgs + Ts3)—= (1 — (9s) > T+ — (—3080%0 + 8283T,j)

2 ? 20?
2 . 03)2 (007 9°9°
—EazagTig + % (?Tw + FTOO) =0. (5.2.108)

Similarly, upon multiplying Eq. (5.2.20) by 9, and using the expression for A3
in Eq. (5.2.11), we obtain

(Ohps + Ti3)—

1 , , 0,03 (007 9°9°
? |:(93(91Tib + 00" T3 — % (?Tl] + ?TOO + T>:| =0. (5.2.109)
To obtain the equation for h,,, we substitute Eqgs. (5.2.108), (5.2.109) in Eq.

(5.2.20), to obtain after some lengthy algebra

1 0,0 1 A A
(Dhab + Tab) - 5 (5ab - 8_2b) T — ?(811017—‘% + abalj—;a>

5ab
20°

9,0,
2(8%)2

(=00 Too + D' Ty;) +

(00T + 0°0°Te) = 0. (5.2.110)

Equations (5.2.108) - (5.2.110) may be now combined in the form

1 0;0; 9°9°
—Ohy; =T — 3 (5z“ - 8_2]) (T + FT()O)

1
R

9,0,
82

{aia’kaj + 0;0" Ty — % (@j - > akalT,d} , (5.2.111)
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where 7, 7, k, [ = 1, 2, 3. For example, we check that Eq. (5.2.111) leads to Eq. (5.2.108)

by setting ¢ = 7 = 3. The analysis follows.

1 0505 0000

—0Ohgs =T33 — 5(533 - ?)(T 52 —=T0o)
1 1
-5 [agakag + 050" Ty — 5 (83 + a;§3)akalTkl : (5.2.112)

, then we get

Dhgg + T33 — 1 (1 — (83) ) T+ L (—<80)2T00 + 8]“81Tk1)

2 o’ 20°
(a )2 akal (80)2
-5 2 0,0 + 2;2 7 Tt ) =0. (5.2.113)

By setting © = b, 7 = 3, where b = 1, 2, into Eq. (5.2.111) we obtain

Op0s 2°0°

1
— Ohps = T3 — 5(5173 5 — ) (T + 57 —2Too)
1 1 19,%6,;
~ ﬁ[abakag + 030" Ty — 5 (B + 233)akalTk,] 0. (5.2.114)
Thus
19,%6, oo
Ohpg + T3 — 5(6b3 g 3)<T + 5° —3 Too)
05\ g o
-5 [aba Tis + 030" Ty — —(51,3 + 8—)8 O'T] = 0. (5.2.115)

Expanding the third term which is the product of 2 rounded brackets, Eq. (5.2.115)

leads to

abai% 1 8;, 83 80 80

5 —2 )T — 5 (03 — ?)(_QTOO)

Ohys + T3 — _(563 - 3
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— 01,8ka3 + 838kab — %OkGlTkl + 761,38]6&

=0, (5.2.116)

or

Op03 0RO 2°°

ah T 0:0F T, OO Ty — —=(——T, —T T
b3 T Lp3 — 8 30" Ly + Op0™ 1 3 5 (—5 5° K+ 5? o0+7T)
1 1. 9° 1
- §6b3T — 551;3 5 —Too + 257 —8130"0' Ty
=0. (5.2.117)

Let’s consider the second line in Eq. (5.2.117) to get

1 1. 9%
— §6b3T - 551;3 5 — 1o + 82

— 830" Ty
= —lébgT + Labg(akalm — 00" Tyo)
2 20?

1
— T+

> 28261’3[8 T]

1 1
= — 83T + =8p3T
5003 +2 b3
=0. (5.2.118)

We see from Eq. (5.2.118) and Eq. (5.2.117) lead to obtain the equation of Eq. (5.2.109)

By settingt = a, j = b, a,b = 1,2, in Eq. (5.2.111), we obtain

1 0,04 0°9°
—0Ohay = Top — §<6ab — ?)(T + 52 —Two)
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1 ) . 1 0,0 1
_ ? 0,0 Ty + 00" Ty — 5(6@ + 5° )8 ad Ty |, (5.2.119)
1 0,0 0°0°
Dhab + Tab - 5(6ab - 6_21))(T + ?TOO)
1 1 0,0°
- = {aaa’kab + 00T — 56+ o )GkaalTkl}
= 0. (5.2.120)

By expansion of all terms in Eq. (5.2.120) we obtain

1 0O 1 0,0, . 0°9°
(Ohap + Tap) — 3 (5ab 5 > T— 5(% - ?)7%0
—(0%0'T; ———0"0'"Tyy — — (0,0 Ty T; 0,0 Ty,
+232< kl)+282 5? Kl 82( skt + 0p0" Tha)
—0, (5.2.121)

then it leads to the equation in Eq. (5.2.110)

1 a0y 1, .
(Dhab + Tab) - 5 ((sab - 7) T — ?(aaa Eb + aba Ea)
dab 090 inj 90 i 9 090
Sz (00 Too +0FTy) + G (D' T; + 6°0 To)
= 0. (5.2.122)

Equations (5.2.111), (5.2.95), (5.2.85) give the equations for the various compo-

nents of /. To obtain the unifying equation for /,,,, we note that we may write

W — nmhijnjy + n,uihion[)u + nuohojnju + nuOhoonOV’ (52123)
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withs, 7 =1,2,3; 4, v =0, 1,2, 3, and use, in the process, the identity

n"'0; = (0" + N"dp), (5.2.124)
where N* is the unit time-like vector (N¥N, = —1)
(N*) = (n*0) = (1,0,0,0). (5.2.125)

This proof of Egs. (5.2.123) and (5.2.124) follows, we first use the identity
W = phoho
= 0" hoair™ + 0 haai™
= 0""hoon™ + 0" hoin™ + 11" haon™ + 0" hign’” (5.2.126)
which verifies Eq. (5.2.123). On the other hand
1"0; = "0 + 00 — n*°y
=n"0, + N 0,
= 0, + N"0y, (5.2.127)

which also verifies Eq. (5.2.124).
Finally, we use the identity relating a tensor A),, e.g., to the components A;; as

follows:

N A = |ty 4+ NEN Y + NYNpM + NENYNAN | Ay, (5.2.128)
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and the fact that ] = 8% — 9°°. To prove Eq. (5.2.128), we note that

N A’ = (" Agy + " Aoy )’ — 00 Aoy’
= n“”Agjnj” + N“Aojnj”
= 0" (Ai?’” + Aoon®™) — 7 Agon™ + N*(Ags?’” + Aoor™’) — N* Agon®™
=" A + 07 AgoN¥ + NP Apyn™ + N# AggN¥

— T],uo,r]u)\ _ nuaTIO)\NV o N,LLUOU??)\V 4 N,uTIO)\nOaNV AO—)\

= |nt A + N ANVt + NN + NENANONY | A,y (5.2.129)
A lengthy analysis from Eqgs. (5.2.85), (5.2.95), (5.2.111) follows which will
allows us to combine all the components £, and derive the resulting field equation.

In particular, we have

T 1
—8?%hgo = Ty + 3 ﬁ(aﬂaOToo + 0,0;T;;), (5.2.130)
thus

I T 1

1 [ oA 1 oA 1 0 50 oA
-] NooMoxT™" + 5770AT - 2_82(8 9" Nooney + 0i0jnioNin)T

17 1 1 0y2 oA
=5 NoNy + 3lex — 2—82((8 )"No Ny + 0;0;mi6mx) | T

1 1 1
= ——5 | NoNa + =0i0x — == ((8° — O)N, N,

9° 2 28
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+ (07 4+ N70y) (0™ + NA(?O))} 7o

1 1 1 O
=5 |:NUN)\ t50er 5 o N + WNO'N/\

1

262 (aoa/\ +NA8080 +NUaAaO 4 NGNA(80)2>1 To')\

1|1 1 O
= | SN Ny + Zts + —5 NN
82 {2 At 27] At 282 A

1 1
"N+ Ny )0y — —5070" — —5 N N 9°)?*| T
(0°N* + 0*N,)dy 2328 %) 557 (0%) }

1
28*

1 NJN)\D 1 8"8’\

7l o T2l )
1

- 2—62(3"NA + 8AN0)80} T, (5.2.131)

and finally we obtain

NENY | N,N\O 1( 970*
—82 82 2 Nox 82

)

7,’;40 hOOUOV —

1

T (0°N* + 0 N,)0y | T (5.2.132)

Next consider the term A,

T, (5.2.133)

then



NH

NH

) NH
nuohojnju — ? ,),II/O’N)\ + (auNa o NV@O’)

nyaTaO _ 77V()TvOO

0" + N"0,
- ((‘9—2())<8iT0i — oToo + 8oToo)}

(0" + N¥0p)
2

- 77V077/\0Ta,\ - 77'/0770077/\07},\ - (0°Tos + 50T00)1

o UVUN)\+NVNUN)\_

_ nuanAOTg)\ _ T]VOT]UOT])\OTU)\

v Nl/
_ w(_aaﬁmﬂn\ + aonaonAon\)}

o nl/anAO _ nuonoonAO

0" + NVO,
- —( +82 b) (=07 + 80770077/\0)} T

[ (0" 4+ N 0p)

82

(07 N* + 80N"NA)} T,

al/

NN £ NYNIND = =5 (97N? + QNN

NYN 9790 NVNJNA802
T T 9>

:|TO')\
UVJNA+NVNUNA_ %(6"N)‘+80N"N/\)

NYN 9790
n N”N"NA% _ NYNON> — —} .

32

Thus we finally obtain the expression for n*°hg;n’"

O°N*

82

811

84

(5.2.134)

L C NN N”N"NA% T... (5.2.135)

82
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Consider the /;; term

1 9,0, 900"
—Ohij = Tij = 58 = 62])(T+ 57 Loo)
1 1 .0
- ;0% T + 0;0" Ty — 5 (8 + 8582])8kalTkl : (5.2.136)

This allows us to find n*h;;n’" as follows. Let’s consider term by term,
1 wi, Jv
[Bn] = ==

1 .
=" |:77)\VTZ'>\ — nO”Tz-o}

= —é :nA”n“iTu - no”n‘”'Tz'o}

= —é :nk”(n’“’TaA — "2Ton) — 0™ ("7 Too — n“UToo)]

= —é :nk”n""Tgx — M Ton — ™ 0T + no”n“on”onAOTaA]

_ —é :nA”n‘“’ =t =+ no”n“on“onm} T,», (5.2.137)
#i= L[ La]

1 o
— ﬁU“ZUW‘SijUW\TM

1 o
= ﬁnmnwna/\Ta}\

JTre a2 ©0, Ov

= — "™ —n"'n :|770>\Ta>\

Qo v, oA n0, Ov, oA

== (7NN —nnn}Tax
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po ov, o pu0, 00, oA

=-—""N"n 0 Tox

= — "™ n"* — NFNYn" | Ty, (5.2.138)

1 (80)2
_ poov 10, 10 o0 /\OT
20 {77 n non ] —8 non Lo

1 (80)2 [ o, Qv Ol 1% loa
=55 g2 |1 OO — O oo O T,y

_L(éO)Q
20 82

LT 1/-00;
__opiggv| T iUj

1 i, JU o
= —2D3277“ 7" 0;0;m" Ty

’r]‘uanal/NUN/\ _ N,U«NVNUN)‘:| ’_To)\7 (5.2.139)

1 . .
= 50 N o 0;m Ty

1
T 208° (0" + N"0p)(0” 4+ N"8o)n T,

o
= 5057 |00" T N0 + N'0D” + NﬂN”(aoV} 17T

1 -
— _2D82 auauna)\ +auaonaANV

+ 0y " N + (GO)QnUAN“N”} Tox, (5.2.140)



1T 1) 89, (87
[E5]:—E77“ n’ {—5(— 8QJ>FT00]

1 i, JU
= s 0 T

1 . )
= 35" O 0, T

1
= —2D(82>2 (8“ + N“@o)((?” + Nyao)(aO)QT]UOT])\OTU)\

1
_ DO + Ny + N*0pd”
20(87)? [ * o+ AT

+ N“@ON”&)] (aO)QT]UOT]AOTU)\

TU 60 ? v, O o v
_ _2‘5\((82;2 |:a,ua n On)\O +ap80n 0,,7)\0N

4 aoaunaon)\ONu + (ao)ZnoOnz\ON,uNV:|

T (DN oo N 1 gy N NN
EEACE o

+ 9p0” N° N N* - (80)2N”NAN“N”} ,
and from Eq. (5.2.136), we let

N 1 0;0;
(B = — % 0:0F Ty; + 0,0% Ty — 58+ a?J )6’“8’Tkl},

and

TV
[Eg] = —%a,-amj

ak . .
= —ﬁn’”@m]”Tm

87

(5.2.141)

(5.2.142)
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= —— (0" + N"dp) [n”Tm — n”OTko}

82

82

82

82

(9" + N#dp)

(0" + N o) [

(0" 4+ N*0y)

(9" + N#dp)

" T — akﬁyoTko]

nuA(aoTo)\ o 80T0)\) o nuO(aaTao o aoTOO)

T]V)\aUTg)\ o nuAaOUUOTO_)\ . nananAOTg)\
+ nanOnaonAOTg)\

|:771/)\acr 4 nuAaONcr _ aUNVN)\ _ aONl/NUNA To)\

1
=5 [n’“&“a" + 009" N7 — 997 N” N>

o aOa,uNVNUN)\ 4 ny)\aoach,u - nVA<80)2N,LLNU

— 9g0° NFNYN* 4 (9°)2N* NV NN | T, (5.2.143)

Ui Jv
[E6.2} = %(@'akai)

vig. ,
= ?7_—82jak77mTki

(0" + NY0p)

= 0 (1" Tix — " Tho)

—9?

(0" + N"0p)

= (PO Thn — "0 o)

—9?

(0" + N¥0p)

=T 32 77/1)\<80Ta>\ - aOTO)\) - T]uo(ango - 80T00>

—H?
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— w i 1A 5 A
4 _ 0, o
o7 |1 T Ton — 0007 T + 008 n 0T, J
— w i pA 5o A0
g |1 N — NN aoN“N"NA}T \

_ !

5" o° BA 0qv, puA nro v Qo
5 ' + %" AN — 9¥9° N N* — 9°9" NN N*

+ 0h0° HANTV v \NO
WO ANV — (0" ANV N —806”N“N”NA+(80)2N“N”N"NA}
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The previous n(")h(,_)n(") could be written as following from Eq. (5.2.123)

by = [Er] + [Bo] + [Es] + [E4] + [Es] — é{[Em] + [Es.2] + [Eos) + [Eo.al}

(5.2.147)

The following explicit expression for /,,, is obtained, by simplifying the previous equa-

tion:
(0. 7o)
B 1 nu)\nl/a + nuanu)\ _ npuna)\
(-0 —ie) 2
1
+ 2_82 [nuyaaa)\ + nakauau o nuaaua)\ o nu)\auaa
oLV 97 O
RPN 17~ Z0~Y NN 19, WAt Zgates
PO — 0o+
L PON (NI LN L 0N (N N
2\ T o’ e\ T o ’
o %[77”0(]\7“3)‘ + N)‘(?“) —1—77”)‘(]\7“80 +N°8“)
17 (N0 + NA) + > (N7 07 + N”@”)} %
oAV o A
+ 0 (z NoN* + 0 (z N“N”}TaA (0,]0_)
o o
1 [oro” 970N
+ o {FN"N* + 7 N“N”} Ton (04]0.), (5.2.148)

¢ — +0, where we have taken the matrix element of the field %, between the vacuum
states [0..), [0_).

From Eq. (5.2.148) the explicit expression for the graviton propagator
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AR (L) = " N°NA
h (k) = +

NENY. (5.2.152)

The vacuum-to-vacuum transition amplitude for the gravitational field coupled
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to an external source is then given by
(04]0_)" = exp B / (da) (da") T, () AR (2, 2 ) Toa () | (5.2.153)

which follows upon using the action principle which states that

. d T v

The graviton propagator given by the explicit expression in Egs. (5.2.149) -
(5.2.152). Applications of the above results are given in the next chapter. We have
derived a novel expression for the graviton propagator, from Lagrangian field theory,
valid for the case when the external source 7}, coupled to the gravitational field is
not necessarily conserved, by working in a gauge where only two polarization physical
states of the graviton arise to ensure positivity in the quantum treatment thus avoid-
ing non-physical states. That such a conservation should a priori not to be imposed
is a necessary mathematical requirement so that all the ten components of the external
source 7}, may be varied independently in order to generate interactions of the gravita-
tional field with matter and produce non-linearity of the gravitational field itself in the
functional procedure. The latter requirement arises by noting that such interactions are
generated by the application (Manoukian, 1986a; Limboonsong and Manoukian, 2006)
of some functional F[—i5/6T},] to (0, |0_)", where (0, ]0_) corresponding to other
particles, as well as functional derivatives of their corresponding sources in F', have
been suppressed to simplify the notation. Accordingly, to vary the ten components of
T,., independently, no conservation may a priori be imposed. The 1/k? terms in Egs.
(5.2.149) - (5.2.152) are apparent singularities due to the sufficient powers in k in the
corresponding denominators and the three-dimensional character of space, in the same
way that this happens for the photon propagator in the Coulomb gauge in quantum elec-
trodynamics, and give rise to static 1/r type interactions complicated by the tensorial

character of a spin two object. It is important to note that for a conserved 7}, i.e., for

ns
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0"T,,, = 0, all the terms in the propagators in Eq. (5.2.149), with the exception of
the terms (n**n*? + n*on** — n*n°*)/2, do not contribute in Eq. (5.2.153) since all
the other terms in Eqgs. (5.2.151), (5.2.152) involve derivatives of 7, and the graviton
propagator A#7*(z, z') effectively goes over to the well documented expression

1 (T}u)\nua + n;w',rlu)\ _ ,r//u/no)\)

= : , (5.2.155)

which has been known for years (Schwinger, 1970, 1976; Manokian, 1990, 1997). This
is unlike the corresponding time-ordered product which does not go over to the result
in Eq. (5.2.155) for 0*T),,, = 0. This may be shown by solving for the time-ordered
product in Eq. (5.1.7) in terms of the propagator and carrying out explicitly, say, the
functional derivatives 1% /0T, 6h" /6T, as arising on the right-hand side of Eq.
(5.1.7), by using, in the process, Egs. (5.2.61), (5.2.62). In any case, it is the propagator
AM9X a5 given in Eq. (5.2.149), is the one that appears in the theory and not the
time-ordered product as is often naively assumed. After all the functional derivatives
with respect to 7}, are carried out in the theory, one may impose a conservation law on
T,, or even set T, equal to zero if required on physical grounds. Such methods have
led to the discovery (Manoukian, 1986a; Limboonsong and Manoukian, 2006), in the
functional quantum dynamical principle differential approach, of Faddeev—Popov (FP)
factors, and of their generalizations, in non-abelian gauge theories such as in QCD and
in other theories.

Re-iterating the discussion above, the relevance of the analysis and the ex-
plicit expression derived for the graviton propagator for, a priori, not conserved ex-
ternal source 7}, : 0"T,, # 0 is immediate. If, in contrast, a conservation law
is a priori, imposed then variations with respect to one of the components of 7,
would automatically imply, via such a conservation law, variations with respect some
of its other components as well. A problem that may arise otherwise, may be read-
ily seen from a simple example. The functional derivative of an expression like

(@ () + b(2)0,0,]T* (), with respect to a component 7°*(z') is (1/2)[a,.,(x) +
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b(2)0,0,](6,"65" + 0\18,")0%(x, 2'), where a,,,(z), b(x), for example, depend on z,
and not (1/2)a,, (z)(0,"0\" + 0\"8,")0*(x,2’) as one may naively assume by, a pri-
ori imposing a conservation law. Also, as mentioned above, the present method, based
on the functional differential treatment, as applied to non-abelian gauge theories such
as QCD (Manoukian, 1986a; Limboonsong and Manoukian, 2006) leads automatically
to the presence of the FP determinant modifying naive Feynman rules. The physical
relevance of such a factor is important as its omission would lead to a violation of uni-
tarity. For the convenience of the reader we briefly review, before closing the conclud-
ing section, on how the FP determinant arises in the functional differential treatment
(Manoukian, 1986a; Limboonsong and Manoukian, 2006).

Consider, for simplicity of the demonstration, the non-abelian gauge theory with
Lagrangian density

1
—2Ge,GE 4 JEAL (5.2.156)

.,%:4/“/

where J* is an external source taken, a priori, not to be conserved. Here
G, = 0uAS — 0,A% + go [ AL A (5.2.157)

We work in the Coulomb gauge. The gauge field propagator, in analogy to the graviton

one in Egs. (5.2.150), (5.2.151), is given by

(080" + NEOQ" Dy + NYO*0p), 1

DY = HY — 2.1
ab = Oalg 5 S (5.2.158)
withk =1,2,3.
The quantum dynamical principle states that
0 (04]10-) =i(0 /(dx) ai”(m)() (5.2.159)
dgo TN 9o - -
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where, with £k = 1,2, 3,

0
990

1
Aw) = — [T ALAGGE + S AGE) (5.2.160)

and G* may be expressed in terms of independent fields, that is, for which the canonical
conjugate momenta do not vanish. On the other hand, G*° depends on the dependent

field A%. By using the identity

)
5TE () m)‘o‘>
(5.2.161)

()57 (0+10102) = (04 |43 o) - (o

for an operator &(x), where (...), denotes the time-ordered product, and the functional
derivative 00(x)/6J#(x’) in the second term on the right-hand side of Eq. (5.2.161)
is taken by keeping the independent fields and their canonical conjugate kept fixed in
O(x), after the latter is expressed in terms of these fields, together, possibly, in terms
of the dependent fields and the external current (Limboonsong and Manoukian, 2006;
Manoukian et al., 2007).

From the Lagrangian density in Eq. (5.2.156), the following relation follows
GH =7k — 9"Dyy.JY (5.2.162)

as a matrix equation, where 7% denotes the canonical conjugate momentum of A¥, and

D, is the Green operator satisfying
§9€0% + g, AL O D 2, 2" g,) = 6 (x, )6 (5.2.163)
k

Accordingly, with, a priori, non-conserved J#(z'), we may vary each of its components

independently to obtain from Eq. (5.2.162)

)
6 J& (")

G (x) = =0,°0" Dye(x, 2'; go) (5.2.164)
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Hence from Egs. (5.2.160), (5.2.161), and (5.2.164), we may write

0 0

(04| 5 Ax)o-) =[( 39 D A ifrr Ao D (3, 25 9,)] (04 |02)  (5.2.165)

where the primes mean to replace A7, (x) in the corresponding expressions by the func-
tional differential operator (—i)d/6J*(z).

Clearly, upon an elementary integration over g, in Eq. (5.2.159) by using, in
the process, Eq. (5.2.165) and the equation for D in (5.2.163), we obtain the FP

determinant
1
exp Trin[1 — 19(,?/1;66’1 (5.2.166)

as a multiplicative modifying differential operating factor in (0 |0_). For additional
related details see Manoukian (1986a); Limboonsong and Manoukian (2006) and also
for further generalizations of the occurrence of such factors in field theory.

It is interesting to extend such analyses (Manoukian, 1986a; Limboonsong and
Manoukian, 2006), as well as of gauge transformations (Manoukian, 1986a), and covari-
ance (Manoukian, 1987b), to theories involving gravity. This would be exponentially
much harder to do and will be attempted in further investigations. In this regard, our
ultimate interest is in aspects of renormalizability (Manoukian, 1983) and rules for phys-
ical applications that would follow from our, a priori, systematic analysis carried out
at the outset, in a quantum setting with the newly modified propagator, by a functional
differential treatment, in the presence of external sources, to generate non-linearities in

gravitation and interactions with matter.

5.3 On the Detection of Gravitational Waves

Gravitations are the particles associated with the gravitational field in the same

way as photons are associated with the electromagnetic field. One of the most fasci-
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nating predictions of relativity theory is the emission of radiation of massive objects in
accelerating motion, known as gravitational radiation, describing a wave motion in the
curvature of space-time known as “gravitational waves”.

The detection of gravitational waves in a ground-base has not yet been suc-
ceeded, but Hulse and Taylor (Weisberge, Taylor and Fowler, 1981; Jeffries et al., 1987;
Hewish, 1968) have convinced us that this type of radiation actually exists. This is be-
cause the orbiting period of the pulsar (PSR1913 + 16) around its companion (binary
system) gradually diminished with time. For their work, Hulse and Taylor were awarded
the Nobel Prize in 1993. The general theory of relativity has predicted as a result of the
emission of gravitational waves. When a heavy star has used up all its nuclear fuel, it
is destroyed in the emergence of a supernova explosion. A small star may be left and
its gravity is so strong that causes electrons fall down into protons in the atomic nuclei
thus forming neutrons. A neutron star has a very high density even if it is only about
20 km in diameter, and it weighs at least as much as the Sun in our solar system. The
pulsar is a rapidly rotating neutron star with a strong magnetic field and the radio waves

are emitted at their magnetic poles.  Gravitational radiation is the last fundamental

N

gravitational waves

Figure 5.1 Hulse-Taylor binary pulsar (PSR1913+16).

prediction of Einstein’s general relativity that has not yet been directly verified.

The problem for the experimental physicist is that the predicted magnitudes of
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the strains in space caused by gravitational waves are of the order of 10~2! or lower.
Indeed, present theoretical models suggest that in order to detect a few events per year
from coalescing neutron star binary systems for example a sensitivity close to 10722 is
required.

The small signal levels mean that limiting noise sources resulting from the ther-
mal motion of molecules in the detector (thermal noise), from seismic or other mechani-
cal disturbances, and from noise associated with the detector readout, whether electronic
or optical, must be reduced to a very low level.

For signals above ~ 10H z ground-based experiments are possible, but for lower
frequencies where local fluctuating gravitational gradients and seismic noise on Earth
become a problem, it is best to consider developing detectors to be used in space.

Initial detectors and their development in the earliest experiments in the field
were ground based and were carried out by Joseph Weber of the University of Maryland
about 30 years ago. Having looked for evidence of excitation of the normal modes of
the Earth by very low-frequency gravitational waves, Weber then moved on to look for
tidal strains in aluminum bars which were at room temperature and were well isolated
from ground vibrations and acoustic noise in the laboratory. The bars were resonant at
1600 Hz, a frequency where the energy spectrum of the signals from collapsing stars
was predicted to peak. Despite the fact that Weber observed coincident excitations
of his detectors placed up to 1000 km apart, at a rate of approximately one event per
day, his results were not substantiated by similar experiments carried out in several
other laboratories in the USA, Germany, Britain and Russia. It seems unlikely that
Weber was observing gravitational wave signals because, although his detectors were
very sensitive, being able to detect strains of around 10~ over millisecond timescales,
their sensitivity was far away from what was predicted to be required theoretically.

Development of Weber bar type detectors has continued with the emphasis being
on cooling to reduce the noise levels, and currently systems at the Universities of Rome,

Padua, Louisiana and Perth (Western Australia) are achieving sensitivity levels better
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than 10~!® for millisecond pulses. Bar detectors have a disadvantage, however, of being
sensitive only to signals that have significant spectral energy in a narrow band around

their resonant frequency.

Pendulum
Suspension

Test Masses

N

Mirror

Photodiode
(Detector)

Figure 5.2 Schematic of gravitational wave detector using laser interferometry.

An alternative design of gravitational wave detector offers the possibility of very
high sensitivities over a wide range of frequency. This uses test masses placed a long
distance apart and freely suspended as pendulums to isolate against seismic noise and
reduce the effects of thermal noise; laser interferometry provides a means of sensing the
motion of the masses produced as they interact with a gravitational wave. This technique
is based on the Michelson interferometer and is particularly suited to the detection of
gravitational waves as they have a quadrupole nature. Waves propagating perpendicular
to the plane of the interferometer will result in one arm of the interferometer being
increased in length while the other arm is decreased and vice versa. Gravitational wave
strengths are characterized by the gravitational wave amplitude h, the measure of the

strain in space induced by a gravitational wave.
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The induced change in the length of the interferometer arms results in a small
change in the interference pattern of the light observed at the interferometer output.
A typical design specification to allow a reasonable probability for detecting sources
requires a noise floor in strain smaller than 2x 10723 H 2~/2 to be achieved. The distance
between test masses possible on Earth is limited to a few km by geographical and cost
factors. If we assume an arm length of 3 km the above specification sets the requirement
that the residual motion of each test mass is smaller than 3 x 10~2°mH 2~/ over the
operating range of the detector, which may be from 3 ~ 10 Hz to a few kHz. It requires
that the optical detection system at the output of the interferometer must be good enough

to detect such small changing of motions.



CHAPTER VI
GRAVITONS, INDUCED GEOMETRY AND
EXPECTATION VALUE FORMALISM
AT FINITE TEMPERATURE

6.1 Introduction

The present chapter is of central importance in the entire thesis. It deals with the
novel expression for the graviton propagator derived at length in the previous chapter
and its role in the expectation value formalism which is the subject matter of investiga-
tion of the present thesis. This analysis will set up a careful formalism to confront the
challenges of quantum gravity which has certainly been problematic over the years since
the successful treatments of the other interactions in physics involved with the electro-
magnetic (QED) interaction, the electro-weak (Salam-Weinberg) interaction, the strong
(QCD) and more general grand unified field theories embracing these interactions. The

most important points to note in this chapter are the following :

(1). As always, the external energy-momentum tensor 7, coupled to the gravitational
field is a priori taken to be not conserved so that variations with respect to its
ten components may be carried out independently. Only after all the functional
differentiations with respect to 7},,, are carried out a conservation law for 7', may

be imposed.

(i1). A careful treatment of the gauge problem is considered which ensures that the Rie-
mann curverture tensor of the underlying theory is gauge invariant and covariant
in spite of the fact that we work in a Coulomb-like gauge for the gravitational

field which in turn ensures only two degrees of polarization for the graviton.
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(i11). With the quantization of the gravitational field carried out in the Coulomb-like

gauge and a priori not conserved energy-momentum tensor, positivity of the un-

derlying theory via the vacuum persistence probability |(0.|0_)|* < 1 is proved.

(iv). The relationship between the nomenclatures “closed-time-path” and “expectation

value formalism” is emphasized as a process which begins with the vacuum state
|0_) and ends up in the initial vacuum state |0_) with a priori different sets of

external energy-momentum tensors 7'}

s Tﬁy. Only after all the relevant functional

differentiations with respect to the external source, say, le, are carried out to

generate expectation value, we set them to be equal.

(v). A detailed analysis is carried out to develop the formalism at non-zero temperatures

via the well known Boltzmann factor in thermodynamics.

(vi). Demonstration as to show that the Minkowski metric 7),,,, is modified to a general

(vii).

(viil).

metric in a Riemannian geometry with a new metric g,,, # 7, in the presence of

a source 7}, of the gravitational field.

Explicit evaluation of the energy-momentum tensor for a given closed string and
investigation of the modification of the underlying geometry from that of a flat

Minkowski space.

Investigations of the structure of the metric at observation points away from the
string and show, in particular, how time slows down due to the presence of the
source of gravitation as a deformation not only of configuation space but of time

itself with an explicit evaluation of such a time slowing factor.

(ix). The emphasis of the dependence of geometry on temperature due to radiative cor-

rections and the initial presence of a background of gravitons as extra sources
of gravitation due to the non-linearities of the structure of gravitation — as the

gravitons themselves carry energies and hence are sources of gravitational field.
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The graviton propagator (Manoukian, 1990, 1997, 2005, 2007; Schwinger, 1976
and Sivaram, 1999) plays a central role in the quantum field theory treatment of gravi-
tation. It mediates the gravitational interaction between all particles to the leading order
in the gravitational coupling constant. It is well known that in the functional differ-
ential formalism of quantum field theory, pioneered by Schwinger (1951), functional
derivatives (e.g., Schwinger, 1951; Manoukian, 1986b; Limboonsong and Manoukian,
2006; Manoukian, Sukkhasena and Siranan, 2007) are taken of the so-called vacuum-
to-vacuum transition amplitude (0, |0_) with respect to external sources, via the appli-
cation, in the process, of the quantum dynamical (action) principle (e.g., Manoukian,
1986b; Manoukian, 2006; Manoukian, Sukkhasena and Siranan, 2007) to generate non-
linearities (interactions) in the theory and n-point functions leading finally to transi-
tion amplitudes for various physical processes. [For a recent modern and a detailed
derivation of the quantum dynamical principle see Manoukian, Sukkhasena and Sir-
anan (2007)]. For higher spin fields such as the electromagnetic vector potential A",
the gluon field A¥, and, of course, the gravitational field ~h*”, the respective external
sources J,,, J, ;j T,.,, coupled to these fields, cannot a priori taken to be conserved so
that their respective components may be varied independently in the functional differ-
entiations process. A problem that may arise otherwise, may be readily seen from a
simple example given in Manoukian (2007): The functional derivative of an expression
like

[a,w(a:) + b(w)@uay] T (), 6.1.1)

with respect to T7* (') is
(1/2) [aw(x) + b(m)aﬂay} (50#5; + 5A~50”) 5z, 2", 6.1.2)
where a,, (x), b(z), for example, depend on x, and not

(1/2)a(2) (50.%” + 5AM50”) 5z, 2", (6.1.3)
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as one may naively assume by, a priori, imposing a conservation law on T (x) prior
to functional differentiation. The consequences of relaxing the conservation of the such
external sources are highly non-trivial. For one thing the corresponding field propa-
gators become modified. Also they have led to the rediscovery (Manoukian, 1986b;
Limboonsong and Manoukian, 2006) of Faddeev-Popov (FP), (Faddeev and Popov,
1967)-like factors in non-abelian gauge theories (Manoukian , 1986b; Limboonsong
and Manoukian, 2006) and the discovery of even further generalizations (Limboonsong
and Manoukian, 2006) of such factors, directly from the functional differential treat-
ment, via the application of the quantum dynamical principle (Manoukian, Sukkhasena
and Siranan 2007), in the presence of external sources, without making an appeal to
path integrals, without using symmetry arguments which may be broken, and without
even going into the well known complicated structures of the underlying Hamiltonians.
An account of this procedure, which is also pedagogical, was given in the concluding
section of Manoukian and Sukkhasena (2007b) for the convenience of the reader and
needs not to be repeated.

For higher spin fields, the propagator and time-ordered product of two fields do
not, in general, coincide as the former includes so-called Schwinger terms which, in
general, lead to a simplification for the propagator over the time-ordered one. This
is well known for spin 1 and is also true for the graviton propagator (Manoukian and

Sukkhasena, 2007b). Let h*” denote the gravitational field. We work in a gauge
AR =0, (6.1.4)

where 1 = 1,2,3; v =0, 1, 2, 3, which, as established in Sect. 6.3, guarantees that only
two states of polarization occur for the graviton even with a non-conserved external
source 7}, in the theory.

If we denote the vacuum-to-vacuum transition amplitude for the interaction of

gravitons with the external source 7}, by (0. | O_>T, then the propagator of the gravita-
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tional field is defined by

M) = () D 04107) [ 041007, 619)

in the limit of the vanishing of the external source 7,,. In more detail we may rewrite

)

(6.1.6)

Eq. (6.1.5) as

ha)‘(x/)

<O+‘(hw($>hok($/))+’0>ip + <0+ 615, ()

A“”;U/\(x, ) =i
" (0,]0-)" (0,]0-)"

Y

in the limit of vanishing 7;

> where the first term on the right-hand side, up to the i

factor, denotes the time-ordered product. In the second term, the functional derivative
with respect to 7}, () is taken by keeping the independent field components of h7* ()
fixed. The dependent field components depend on the external source and lead to ex-
tra terms on the right-hand side of Eq. (6.1.6) in addition to the time-ordered product
and may be referred to as Schwinger terms. A detailed derivation of the general iden-
tity in Eq. (6.1.6) is given in Manoukian, Sukkhasena and Siranan (2007) (see also
Manoukian, 2006a)). It is the propagator A‘fr";“ that appears in this formalism and not
the time-ordered product. The propagator A%***(z, z') has been derived in Manoukian
and Sukkhasena (2007b) and will be elaborated upon in Sect.6.2. It includes 30 terms

in contrast to the well known one involving only 3 terms when a conservation law of

T,,, is imposed. The positivity constraint of the vacuum persistence probability
[(04]0-) P <1, (6.1.7)

as well as the correct spin content of the theory is established in Sect.6.3 for, a priori,
non-conserved external energy-momentum tensor.
The expectation value formalism, pioneered by Schwinger (1961), also known

as the closed-time path formalism, in quantum field theory has been a useful tool in per-
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forming expectation values without first evaluating transition amplitudes. For a partial
list of studies of the expectation value formalism, the reader may refer to Manoukian
(1987¢c, 1988b, 1988d, 1991b) in the functional differential formalism. See also re-
lated work in Keldysh (1965); Craig (1968), Hall (1975); Kao, Nayak and Greiner
(2002), emphasizing on non-equilibrium phenomenae and Jordan (1986); Calzetta and
Hu (1988); Cooper (1998), emphasizing Feynman path integrals.

In order to study gravitational effects such as the induced geometry due to exter-
nal sources and even due to fluctuating quantum fields, the expectation value formalism
turns out to be of practical value. In Sect. 6.5, we develop the expectation value for-
malism for gravitons interacting with an external energy-momentum tensor 7}, at finite
temperature with a priori not conserved 7,,,, so that variations with respect to its ten
components may be varied independently in order to generate expectation values. After
all the relevant functional differentiations with respect to 7}, are carried out, the con-
servation law on 7,,, may be then imposed. We establish the covariance of the induced
Riemann curvature tensor, in the initial vacuum, due to the external source, in spite of
the quantization carried out in a gauge which ensures only two polarization states for
the graviton. As an application, we investigate the induced correction to the metric and
the underlying geometry due a closed string arising from the Nambu action (e.g., Kibble
and Turok, 1982; Albrecht and Turok, 1989; Sakellariadou, 1990; Goddard et al.,1995),
as a solution of a circularly oscillating string (Manoukian, 1991, 1992; Manoukian,
Ungkitchanukit and Eab, 1995; Manoukian and Sattayatham, 1998), as, perhaps, the
simplest generalization of a limiting point-like object. Finally, it is discussed on why
the geometry of spacetime may, in general, depend on temperature due to radiative cor-
rections and its physical significance is emphasized.

The Minkowski metric is denoted by

[77#1/] = dlag[_L 17 17 ]7 (618)

and we use units such that A = 1,¢ = 1.
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6.2 Graviton Propagator and Vacuum-to-Vacuum

Transition Amplitude

The action for the gravitational field h*” coupled to an external energy-

momentum tensor source 7}, is taken to be

1

A= -
G

(dz)Ax) + /(dx)h””(as)Tw(as), (6.2.1)
with
1 7 pr 1 o B fe% U1,0
L= SO W Dby, + 50RO 5 = Oy h

1 1
+§8ah@”aﬂhﬁy + 50ah" 0, (6.2.2)

and G is Newton’s gravitational constant. The action part [ (dz).#(x) is invariant under

gauge transformations
hH (x) — WY (z) + oHEY (z) + 07+ (x) + 0"V E (). (6.2.3)
Consider first the 0"9”¢ term. To the above end
1 1
1= / (A)(0°0"0" )l — / (de)0 1 0,0,0,¢
1 e BaYIRAYZ 1 ey N%
=3 (dz)£0%0" 0" Oahy + 5 (dz)[00,0,0%R* )€
1 . 1 o
=3 (dx)£0"0"0hy,, + 2 (dx)0,0,0hr*" ¢

_ / (de) (8,0, 000 )¢ (6.2.4)



9] = % / (dz)0°DEdL +% / (dz)0°h? 0,06
= —%/(dx)mfmh% — %/(dx)uh"gmf

— _% /(dx)gmmh% — %/(dx)mmh”af

=—/ﬂnﬁmme,

3] = — / (dz)08,E0"h7 — / (d2) 0o, 0" 0

:/(dx)g(mmh"g)+/(dx)(58“3“hau)5a

4] = % / (dz)00"€0%hg, +% / (d2)9.h*" 00, €

-5 [neooons,) + 5 [@noaae

5] = % / ()90, €0, h*" +% / (da) Dl 0,00 €
1 1
= §/(d:zc)ﬁamé?,,ho‘”f + 3 /(dw)Dh“Vﬁua”ﬁ
1 1
-1 / (A0)(00, 0,16 + | / (da) (0,0, ),
thus adding all terms together to obtain

1)+ (24 3+ (@) + 5] = [ (@0)@,0,00)¢ - [(dn)e(@on’y
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(6.2.5)

(6.2.6)

(6.2.7)

(6.2.8)
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+ / (dz)e(@ohe,) + / (de)(Q0° 9 )é
— % / (dx)g(mayaﬂhﬁywé / (dz)(00,0,h™ )&
- % / (dx)(mayaaha'f)u% / (da) (00,0 )€, (62.9)

All the terms depending on ¢ are cancel out. Next we consider another terms for, i.e.,

OHEY + 0VEF, thus from Egs. (6.2.2) and (6.2.3) we have
1 1
[B;] = —5 /(dx)f)a(f)“f” + 07E")Onhy — 3 /(dx)@”‘h”“@a(@&, +0,&,)
1 Q QL ¢V 1 Qv ¢
=3 (da)0*0"E" Oy, — 3 (dx)0*0"E" Oahyu
1 oA NI 1 eI
—3 (dz)0"hM 0,0, — 3 (dx)0"h" 0,0,€,
1 vV Qo g 1 waalpha qu
= _5 (d$)§ a a aah,uu - 5 (dl’)é 8 8 8ah;w
1 1
+ 3 /(dx)h”l’({)a@aauﬁy + 5/(dx)h’“’8aﬁa&,§u
1 vV QU Ho 1 0w av ao
=3 (da)&" 0" 0% Ol — 3 (da)&H0” 0%Oahyu
1 pv 1 pv
+ 5 (dCC)h D@,Lf,, + 5 (dl‘)h Da,,fu
1 VA 1 v
=3 (dx)&”0*Ohy, — 3 (dz)&H0"Ohy,
1 pv 1 pv
— 5 [ ) @anmE ~ 5 [ (dn)(@a g,
1 vV 1 vV QL
=-3 (dx)&”0"Ohy, — 5 (dz)"0"Ohy

-5 [ - 5 [@ncanm,
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— - [@g@ o) - [@oawe,
— - (@)@ ) - [ (@o)er(E0h)

_ —2/(dx)§u(D&,h’“’), (6.2.10)

B =+; / (A)0° (2076,)u5 + 5 / (de) 07 00 (20°€,)
— / ()0 (57€,)0uh" 5 + / (d2)0" 17 ,0,0°¢,
— / (dx)E,0%0° D h 5 — / (dz)h? ,0%0,0°¢s
_ / (dz)&, 07 0hf 4 — / (d2)h?,0°0¢,
_ / (d2)é, 07T’ 4 + / (dx)és0°0h7,

=2 / (dz)é3(0°0h7,), (6.2.11)

(Bl = = [ (d0)0" (06 + ,60)0°1 ~ [ (d2)0 by (207
_ / (d2) 90,077 + / (d2)B,Eadh" 5 — / ()0 hoy 0(20°€,)
_ / (de)€,00" k7, — / (d2)€a 0T — 2 / (d2) 00 D e,
_ / (d2)E,0"Th° , — / (de)6,0°Th", — / (d)26,(9°9"0° D)

_ / (d2)26,(9°0h,) — 2 / (da)&, (070" hay), 6.2.12)



[Bs]

=+

— -
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+% / (A2)0u(0°€ + D€°)0hg, + = / (dz)0"h* 9" (Dp8, + Du€s)

2

% / (dx)aaaagvaﬁhgﬁ% / (A2)9n8"€°0% s,
1 av a0 1 av 9f
5 [ (@@)0uh™ 7056, + 5 [ (dr)Duh™ 00,85

1 v 3 1 « v a0
5 [ ([@0)e"00%hs, + 5 [ (d2)§°0,0"0 s,

_ % / (d2)h* 9,06, — % / (d2)h™ 0, 0%,

43 [0 ©0hs) + 3 [0 @005

+% / (dz)&, (B.0h°) + % / (da)5 (02070, 1)

— [(ane, o) + [ @ @o.0:), (62.13)

=+

— -

=+

+ / ()00 (06, + D13 + 5 / (dz)Dah,0,(0°€" + 0°€°)

1 1
5 / (d2)0a0",0, 0™ + / (A7) 0,0, €0, h

1 o o -V 1 o 1 2paet
5 [ (d0)2ah,0,(0°¢") + 5 [ (de)oah,0,0"¢
1 1
5 / (de)&, 0,0 + 5 / (dx)€# 0,0, 0, h™

1 m Q -V 1 m Vo
5 [ ([o)h0,0,0°¢" + 5 [ (do)h*,0,0,0"¢

% / (dx)gyaamhau% / (d2)£"0,0,0,

1 1
+5 / (de)h, 0,08 + 5 / (dz)€°0,0,0" h",
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_ +% / (d2)&, D 0h™ +% / (da)e 0,8, 0, b
w3 [@ngoone, + 5 [aneooom,

= [ane o)+ [@oe @000, (62.14)

Then adding [By] to [Bs] together, gives
[B1] + [Bs] + [Bs] + [Bd] + [Bs] = [C1]

-2 / (dz)&,(Od, ™) + 2 / (dz)€5(0°0n7,)
9 / (d2)&.(0°Th",) — 2 / ()&, (%0 0 o)
+ / (de), (DOh*) + / (d) 6 (6°0,051™)
+ [ng oo+ [ @ @.0.0m)

_ o / (da)&u (0, 1) + 2 / (d2)&5(0P0h7,) — 2 / (d2)éa(0°OK7.)
+2 / (da)&, (00, — 2 / (da)&, (979,01
+ / (d2)€4(0%0,05h"") + / (d2)&4(0%0,0,h™™)

_ / (d)26, (970, ") + / (d)a (09,0, 1)

—0, (6.2.15)
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which together with Eq. (6.2.9) and establish the gauge invariance of [(dz).Az), i.e.,
5 / (dz)Ax) = 0, 6.2.16)

corresponding to the gauge transformations in Eq. (6.2.16) for arbitrary infinitesimal
change with the factors £(x) and £(x).

As mentioned above the external energy-momentum tensor 7, s, a priori, taken
to be not conserved so that variations of its respective ten components may be varied
independently - a necessary fechnical requirement. Details on dependent fields due to
the gauge constraints are spelled out in Manoukian, Sukkhasena and Siranan (2007)
as well as in Manoukian and Sukkhasena (2007b). The vacuum-to-vacuum transition

amplitude is then given by Manoukian and Sukkhasena (2007b),

(04]0_)" = exp [47@1 / () (da) T (2) AR @, 2 Ton () | (6.2.17)

(dz) = do’da'da?da®. (6.2.18)

Here we note that the exponent is scaled by the factor 87G' to satisfy the bound-

ary condition that the gravitational attraction of two widely separated static sources is

given by Newton’s law (Schwinger, 1976). The graviton propagator A***(z, 2') con-

tains 30 terms and not only just the first 3 terms as may be naively expected, and is
given by

A'L_:_V;UA(ZE,JJ/) :/ (dk) eik(m—xl)

A,tluj;a)\ (k‘) N Agu;a)\(k)
(2m)*

k? —ie k? ’

(6.2.19)

€ — +0, where

(dk) = dk°dk'dk*dk®, (6.2.20)



k2 =K2 — Kk,

and

np)\nua + nuonu)\ _ nplzna)\)

LVAC _ (
A (k) = .
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(6.2.21)

1
I [nuykak)\ + nUAkuku . nl/ak,,uk)\ o nu)\k,uka

2k?

krkY ko kA

_nuaklxk}\ . nu/\kuka + k2

W1V No)\ N)\o
() (e )
k k

1/ o KRN [ NVE 4+ NERY
_ g ]{?0
2(" e >< % )
1

5 [V 4 N (VR N

1
2

]{?0
+77ua(NukA —|—N)\ky) _'_n,u)\(NVka +N0ky):|P
ik ke
el N* + %

NENY,

ko k>

k2

MR

A (k) = =

NN + NENY.

Here

(NM) = (77“0) = (170’ 070)7

(6.2.22)

(6.2.23)

(6.2.24)

is a time-like vector. The ie factor in Eq. (6.2.19) corresponds to the Schwinger-

Feynman boundary condition.
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6.3 Positivity Constraint

It is far from obvious that with a non-conserved energy-momentum tensor, the

vacuum-to-vacuum amplitude (0 |0_) in Eq. (6.2.17) satisfies the positivity constraint

[(04]0-) * < 1. (6.3.1)

The proof of this follows. We rewrite the vacuum-to-vacuum transition amplitude

(0410_) in Eq. (6.2.17) as

(04]0_)" = exp {47@1 / ()T, (z) H™ (2) ] (6.3.2)
with
T, H" = TooH*™ + 210, H” + Ty HY | (6.3.3)

1,7 = 1,2, 3, and we may infer from Eq. (5.2.95) that

Hooz_i 7700 r 1

5 5T g (0°0"Too + 0'0’T5) | (6.3.4)

T =Ty — Too, (6.3.5)

and H" is real. Also from Eq. (5.2.85), we may infer that

. 1 O
HY = —— [6” — } T, (6.3.6)
which is again real. That is,

exp l47rGi / (dz) (Too(z)H™ (z) + 2T0i(x)H0i(x))} : (6.3.7)



is a phase factor.

On the other hand, we may infer from Eq. (5.2.111) that

H =
(—o-

Aiddmgy 2 (i
ie) : 28° (

and the second term above involving Ty is real, while A% is given by

Aij,lm —

(&'léjm + 6im5jl - 6ij61m)

1

9292

+ 97 — 59l —

where ¢, j, [, m = 1, 2, 3.

2

QO™ + IO + ™+ oS!

82

d'9i9to™

|

Accordingly, from Egs. (6.3.2), (6.3.6) - (6.3.7), we may rewrite

(04]0_)" = el exp {47rGi/(dx)Tij(x)

where expiG|T] is a phase factor, i.e.,

o
(—0O — ie)

exp iG[T]‘ = 1.

Aij’lmTlm<£E):| ’

By using the facts that the reality of 7};(x) implies that

where

and the identity

i
2

(

1 1

k2 —ie k2 tie

Ty (k)" = Ty (=k),

(k") = (K", k),

) = —m6(k?)
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(6.3.8)

(6.3.9)

(6.3.10)

(6.3.11)

(6.3.12)
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m 0 0
T 90K ) 3K + ). (63.13)

for e — 40, in the sense of distributions, which follows from the property :

1

1
— =P— Find(k? 6.3.14
Prie - Pp T imk), 6.3.14)

where as an integral over k° for a given function f(k) of k, the principal part P of an

integral is defined by:

% kO —|k|—e dkO
Pl o=/ wommg’®

[e.o] o0

k|—e dk°
_/mﬁW—WMW+MVW

i W k 6.3.15
_/|k+s G Ty 1 iy (6.3.15)

in the limit £ — +0. Thus we obtain

1 S S TS R o
<k2 e —i—ieS) = Pk2 sz +imd (k) — (—imd (k%))
= ird(k*) + imd(k?)

= 2im6(k?), (6.3.16)

and

i 1 1 i
Z — — Z9j 2
2 (k2+ia k2+ia> 2 imd(k)

= —7o(k?), (6.3.17)
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since k% = k% — k%, this gives
S(k?*) = o(k* — k)

= 0[(k — k%) (k + k°)]

_ O(RY — k) + 0(K" + |k|).

] (6.3.18)
Finally, this leads to
—ro(k?) = —%'[5(/{0 — |k|) + 6(K° + |K|)]. (6.3.19)
Accordingly we obtain the equality
‘<0+|0_>T’2 = exp [—87‘(’@ / dwn T3 (k) B (1) T () | (6.3.20)
where now
k' = +|k|, dwy, = d°k/(27)2|K|, (6.3.21)
and
Bty =2 (6"~ 0y g BT g B
— (89 — klil;j)(5lm — kifzm) , (6.3.22)

with ¢, 7, [, m = 1, 2, 3 as before.

The verification of the equivalence of the expressions in Egs. (6.3.22) and (6.3.9)
follows explicitly from
kK ki k™

(8" = T — =5

Bij,lm(k,) — k2

)

1
2



120

s - 6 - 5

— (8 — %)(5% B kif;zm)

+5mail — 5o kkkl - 5azk;’fm N kkkzm klil;l 5idgim
L klkm L gk R R .

'S k* Kk°
The fourth and the last term of Eq. (6.3.23) cancel each other, and we have

6il6jm + 6im6jl o 6ij6lm

Bij,lm(k) — 5

2k2 KE 4 KR 4 KES™ 4 KR!

Kk k™

_ k}ikjélm _ klkméij _ k2 7

(6.3.24)

which corresponds to Eq. (6.3.9).

6.4 Spin Content

For a given 3-vector k, we introduce two orthonormal complex 3-vectors

€y, €e_,

(6.4.1)



such that k/|k|, e, e_ constitute three mutually orthonormal vectors.

addition to the conditions in Eq. (6.4.1),
k-e, =0, k-e.=0.
Upon writing
k = |k (cos ¢sin f, sin ¢ sin 0, cos 9),
we may set

c0s<bcos@—isin¢,sin¢cos€+icos¢,—sin9),

1
R

e_ = —(cosgbcos@—i—isinqb,sinqbcos@—icos¢,—sin9>,

NE

and note that

ok
e_—e+

The above orthogonality relations is established below:

N | —

e -e, =

[(Cosgbcosﬁ —isingzﬁ,singzﬁcos@—I—icosgb,sin@) X
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That is, in

(6.4.2)

(6.4.3)

(6.4.4)

(6.4.5)

(6.4.6)

(Cosgbcos¢9+isin¢,sin¢0080 —iCOS¢,—Sin9>:|

DO | —

+ sin? ¢ + sin? ¢ cos? 6 — sin ¢ cos 6 cos ¢

[ cos? ¢ cos? 6 + cos ¢ cos fisin ¢ — cos ¢ cos i sin ¢



122
+ sin ¢ cos #i cos ¢ + cos? ¢ + sin® 9}
T
=3 cos? ¢ cos® O + sin’ ¢ cos® 0 + sin? ¢ + cos® ¢ + sin’ 9]

T
=5 cos? 0(cos® ¢ + sin® ¢) + 1 + sin® 9]

T
=3 c0529+sin29+1]

.y (6.4.7)

e, e =

{(cosqﬁcos@—isin¢,sin¢cos€+icos¢,sin0) X

N | —

<cosq§cos@—isin¢,sin¢cos€—l—icosqb,sin@)}

[ cos? ¢ cos? § — cos ¢ cos fisin ¢ — cos ¢ cos fisin ¢

N —

— sin? ¢ + sin? ¢ cos? § + sin ¢ cos bi cos ¢
+ sin ¢ cos #i cos ¢ — cos® ¢ + sin? 6
1
= 5[0052 0(cos? ¢ + sin® ¢) + sin? @ — (cos® ¢ + sin? ¢)]
1 2 .2 2 .2
= 5[((308 0 + sin“ ) — (cos” ¢ + sin® ¢)]

0, (6.4.8)

e_-e" =

1
5{(cos@:os@+isin¢,sin¢cos€ —icos¢,—sin9> X



123

(Cosgbcos¢9+isin¢,sin¢0089 —icosgb,—sin@)}

DO | —

[ cos? ¢ cos? § — cos ¢ cos Bisin ¢ + cos ¢ cos fisin ¢
+ sin? ¢ 4 cos® ¢ + sin? ¢ cos? § + sin ¢ cos bi cos ¢

— sin ¢ cos i cos ¢ + sin? 0]
T
=3 cos® ¢ cos? 0 + sin? ¢ + sin® ¢ cos® O + cos® ¢ + sin? 9]

O
=3 cos? 0(cos? ¢ + sin® ¢) + sin? ¢ + cos® ¢ + sin? 9}

= - 00829+sin29+1]

=1, (6.4.9)

k
k-e, = ’—\/§|[(cosgbsin@,singbsin@,cos@) X

(cos¢cos€—isin¢,sin¢cos@—i—icosgb,sinG)}

k
= u[0052(15811190059—COS¢SiH(9iSiH¢

V2

+ sin? ¢ sin @ cos 6 + sin ¢ sin i cos ¢ — cos @ sin 9}

k
= u [sin @ cos 6(cos? ¢ + sin? @) — cos 6 sin 0]

V2

_ K

ﬁ(o)
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(6.4.10)

k
k-e. = |—2|[(cosqbsin@,singzﬁsin&,cos@) X

(Cos¢0059+isin¢,sin¢c080 —icosgb,—sinQ)}

k|

= 5 [COSQgbsin@cosé’+cos¢sinﬁisin¢+sin2¢sin96089

— sin ¢ sin #i cos ¢ — cos # sin 9]

= % [sin 0 cos §(cos? ¢ + sin® ¢) — cos  sin 9]

(6.4.11)

The above allows us to introduce the completeness relation

6J - Ze/\exj + ’k|2
A==+

T % %}
= Z eyel + W (6.4.12)

A=+

In turn, we may define polarization 3 x 3 tensors by

[ef\eﬂ* + el — Sypetel|, (6.4.13)

N |

iy _
o =

with A\, 0, « = =, and a summation over the repeated index « is assumed, and note
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that after some algebra, B! in Eq. (6.3.22) may be rewritten as

B = " ey e, (6.4.14)
ANo=+

Using, in the process, Eq. (6.4.13), we note that

el =0, el =0, (6.4.15)
and

ef_ = eiei = efﬁ, (6.4.16)

e =l = 7 (6.4.17)

thus defining the two 3 x 3 tensors efﬁ, ¢, and rewrite Eq. (6.4.14) as

Bt = N e (6.4.18)
A=+
From Egs. (6.3.20), (6.3.22), (6.4.18), we conclude that, the probability is less
than one as needed,
‘2

(010"

_ eq{—8ﬂ?/¢%§2@§§)@@ﬁ%”
A==

IA
—

: (6.4.19)

with equality holding in the limit of vanishing 7),,, thus establishing the underlying
positivity constraint, as well as the correct spin content of the theory with the graviton
having only two polarization states described by efi, ¢’ for a theory with, in general, a

not necessarily conserved external energy-momentum tensor.
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The scalar product in Eq. (6.4.19) may be rewritten from Eq. (6.4.18) as follows
[ dn ST Tn) = [ AT B
A=+
= /(dx)(da:’)TW(x)C’“”"’p(w, )T, ,(x"),  (6.4.20)
where
Cror(z,al) = / dunce® =) ror (k) (6.4.21)
1
T (k) = o (8457 4 BT — BT) (64.22)
k*kY NFEY  NVEH

5 (k) — [nw - i T~ N (6.4.23)

Nk = N k* = —k° = —|K|. (6.4.24)

6.5 Gravitons and Expectation Value Formalism at

Finite Temperature

For book-keeping purposes, we use the notation

V81G ™ Tipn (k) = S(k, \), (6.5.1)

and conveniently introduce a discrete notation (Schwinger,1976; Manoukian, 1986b)

for the momentum variable k by writing, in the process,

(k,\) =, (6.5.2)
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for these pairs of variables and in turn use the notation .S, for S(k, \). A scalar product

as in Eq. (6.4.14) then becomes simply replaced as follows:

817G / dwkz T5ed) (X Tim) — Y SiS,. (6.5.3)

With the above notation, and for any two, a priori, independent, not necessarily

conserved, sources ij, Ti,j, we introduce the functional

2 1
FITT =) Y (0NN, Ny )T (NN Ny, | 00)T 0 (6.5.4)

N Ni+No+..=N

where /V denotes number of gravitons, /V; of which have momentum-polarization index
r1, and so on,

with
(N; Ny, N, ... [0 (6.5.5)
denoting the amplitude that these N gravitons are emitted by the source 7™,

and is given by

m (15,)™ (iS;,)"

N; Ny, Ny, ... |07 = (0, |0_
< 1 2 ’ > <+’ > Nl' \/E|

(6.5.6)

The expression for the functional .#[T", T?| may be summed exactly by using,

in the process, Eq. (6.5.6), to give
7% = ((0410)™) ({0 10)™)

X exp {&G / dwkz (T;7€7) (e gm*Tlin)], (6.5.7)

where we have restored the integration signs. From Eq. (6.5.4), we realize that for the
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special case that Tﬁy and Tiu are equal, we have by unitarity
FIT,T) = (0_]0_)" = 1, (6.5.8)

which also follows readily from Eq. (6.5.7) and the left-hand side equality in Eq.
(6.4.19).

In the expression for Z[T!, T?], we write

T =T+ 1T, (6.5.9)

T2 =Ty + Ty, (6.5.10)

where 77} is switched on after 7} is switched off, and 77 is switched on after 75 is

switched off, to obtain from Egs. (6.5.4) and (6.5.7), respectively,

FIT + T, Ty + T3] = > (0_|N; Ny, Noy . )2 (N Ny Ny, J02) 0
™)

— 3 (0-| NNy, Nay o ) (N: Ny Ny, | M My, My, )BT
(N),(M)

x (M: My, My, ...|0_)™ (6.5.11)
where

<N§ Ny, No, .. .|M; M, M, .. ‘>T2/,T1’

= NNy, No,o | Ly Ly, Lo, . )™ % (L Ly, Lo, . | M; My, My, . )™
(1)
(6.5.12)
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with ) denoting a sum over non-negative integers N, N1, Ny, ... such that
(™)

Ni+Ny+...=N, (6.5.13)

and similarly for " ,>", and
(M) (L)

FIT, + T, T + T3] = AT, T expls; 1] (104 10)™) (404 10)")
x exp[S3(S) — S5)] exp[—(Sy" — S5)S1],  (6.5.14)

where the scalar product 5557, for example, is defined as on the right-hand side of
Eq. (6.5.3) with a sum over r. Upon comparison of the two equivalent expressions
for Z[T7 + T],T, + T3] in Egs. (6.5.11) and (6.5.14), we obtain, in particular, for the

diagonal term
(N; Ny, Noy oo | N3Ny, Ny, . )T (6.5.15)

valid for any two, a priori, independent and not necessarily conserved sources TI}V, Tlfy,

the expression:

(N; Ny, Noy oo [ NNy Noy o )T = (NN ) 2T, T7)

Sl* 32*)(81 o SZ )]Ni*mi

XZ H (ATTE , (6.5.16)

where >_" stands for a summation over all non-negative integers my, ms, . . . such that

0<m; <N, 1=1,2,.... (6.5.17)
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We now perform a thermal average (Manoukian, 1991) of
(N; Ny, Noy oo | N3Ny, Ny, )T (6.5.18)
by multiplying, in the process, the latter by the Boltzmann factor

[ (exp —BIki). (6.5.19)

(2

and summing over (), where
B =1/Kr, (6.5.20)

and we have used the notation K for the Boltzmann constant and 7 for temperature in
order not to confuse it with the trace T of an energy-momentum tensor.

This gives the statistical thermal average:

FIT, T? 7]

Th — T2 el (T}, — T2,)
_ 1 2. ( %] i A A Im Im
= ZT*, T? 0] exp [— 87rG/dwk ;i @ 1) . (6.5.21)

As mentioned above, we have to average the expression on the left-hand side of
Eq. (6.5.16) by the Boltzmann factor. With a normalization constant C' introduced in
the product C' H(exp —f|k;|) determined from the identity (cf. Gradshteyn and Ryzhik,
1985) Z

YooY @M@ = ——, (6.5.22)

o
N=0 Nj+No+--=N [T(1— )
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gives C' = [] (1 — e 7). Therefore the thermal average of Eq. (6.5.16) is
=1

< PR (s + DI

y[Tl,Tz]Oi > H N (a;)™, (6.5.23)

N=0 Ni+Nz+--=N i=1

where a; = —|S}, — S2|°.

To carry out the sum in the expression in Eq. (6.5.23), we use the identity

e (2 dy [pe ™ (=i + DIV
N! / / - Q=0 (6.5.04)

to obtain
o0

FIT T =0 Y ([TE™)M) (N Ny, NNy, -

N=0 Ni+Nz+---=N i=1

X exp {Pje_ﬁk?(—i%’ +1) +iv;(p; — aj)}

= CHT, T H/ dp;o(p; — pje” L — ;) exp(pje —OK3)
Jj=1""
o'} —BK?
ZT TQ]Hexp [ 50 ]
j=1

Tl* TQ*)Ei\] 6l)\m* (Tl T2 )

— FT, T? exp [ /dwk Z R m ~ Lim) |

(6.5.25)

this verify Eq. (6.5.21).

In particular, we note from Egs. (6.5.7), (6.5.8), (6.5.21) that for the special case
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that Tﬁy, Til, are identical, we have the consistent normalization condition

FIT,T;7] = 1. (6.5.26)
We also verify directly from Eq. (6.5.21) that
FITY, T%,0] = Z[T, 17, (6.5.27)

as expected.

As we have not imposed conservation laws on T/},j, Ti,j, we may vary each of

their respective ten components independently to obtain from the quantum dynamical
principle (Schwinger, 1951, 1961; Manoukian, Sukkhasena and Siranan, 2007) as ap-

plied, respectively, and in the process to

(L Ly,...|M; My, )", (6.5.28)
and

(N;Ny,...|Li Ly, .. )" (6.5.29)

in Eq. (6.5.12) with T/, T} in it replaced by T"', T2, the thermal average (h*(x)). of

the gravitational field

T d

hNV = (—1 yleTQ,
(W (), = (=) 5T,}u(x) | 7 T'=12=T
P S (6.5.30)
ST, (0)” T ey

generalizing the expression for

(0| () [0_)T, (6.5.31)
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given by
(0 W (2)]0-)" = (i) o FTY, T
6T;w(x) Tl=T2=T
= (i) 0 FT, 17 (6.5.32)
5T3y(x) Tl=T2=T

from zero to finite temperature.
From Egs. (6.5.21), (6.5.7), (6.4.15), the generating functional #[T", T?; 7] may

be rewritten as

A0 7] = (010 ) (02100 )

< exp (876G [ (@0)(@) T2, (0)0 0, T3 o)

X exp — 871G / (dz)(da’) (T;V(x) - Ti,,(x))
x DM (x, 2'; ) (Tglp(x') — ij(x’))l : (6.5.33)

where C*7P(x,z') is defined in Eq. (6.4.21), and

oy Tk
Dron(a,tir) = [ e ZED (6.5.34)
Nk = Nok® = —k% = —[K|, (6.5.35)

where m77(k) is given in Eq. (6.4.22).
We note that the temperature dependence occurs only in the last exponential in

Eq. (6.5.33) through D*"??(z, x'; 7). We eventually set

T, =T? (6.5.36)

p
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after the relevant functional differentiations with respect to these sources are taken. For
7 — 0, the last exponential in Eq. (6.5.33) is equal to one, giving the relation in Eq.

(6.5.27).

6.6 Covariance of the Induced Riemann Curvature Tensor

The thermal average (hu,,(x)g may be obtained from Egs. (6.5.30), (6.5.33) to

give
(hyw (2))] = 87TGi/(dx’)T"p(x’)/dwkwwﬁp(k)eik(x_x')
e / (dz') T (') / Qe o ()~
— 167G / (d2') T (') / dwrsin k(z — 2') 70 (k)
= (0 [y (2)|0-)", (6.6.1)

for z° > 2’9, where after the functional differentiation was carried out with respect to,

say, T (z), we have set
T — Tl _ (6.6.2)

We learn that the above expectation value is independent of temperature in the
leading linearized theory as a consequence of the fact that the exponent in the last ex-
ponential in Eq. (6.5.33) does not contribute if a single functional differentiation with

respect to T is carried out and then by finally setting
2 1 _
r,-71,=0. (6.6.3)

Radiative corrections and explicit temperature dependence will be discussed in the con-



cluding chapter.

In more detail, we may rewrite Eq. (6.6.1) as:

(0 By (2)]0_)" = {87rGi / dwgeit® [TW(/{) - %T(k)} + C.c.}

+ a,ugu(x) + aufu@) + 8M8V€(x)’

for 2° > 2, where

oo N, T —2T,7N,
_ ikx - ' o o
Eulz) = {47rG/dwke E) c.c },

4rG T +2T" N, N,
£(x) = { i /dwkek (N +c.c.} :

and

0u&y + 0., + 0,08,
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(6.6.4)

(6.6.5)

(6.6.6)

(6.6.7)

are the so-called gauge terms (see Eq. (6.2.3)) and are non-covariant depending on the

vector V. The induced Riemann curvature tensor in the leading theory is given by

(0_ | Rpor(2)[0)" = (0_10,05hur + DyOrhpus — 0By — 0,0,h,u|0-)" . (6.6.8)

By substituting the expression Eq. (6.6.4) in Eq. (6.6.8), we obtain

(0_ | Ruvor (2)]0)" = 0,0,h0 + (0-0,0,[0,&, + OrE, + 0,05E](0-)
+ ayg)\hzg + <O— |aua>\ [a,uga + 805;1, + auaaﬁ |0—>

— 00, — (0-10,02[0,&s + 058y + 0,0,€][0-)
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— al,ao-hg)\ — <O— ‘az/ao [a,u,g)\ + a)\g,u + a/—’«a)\g]‘of>

= 0,0,h) + 0,05}, — 0,05hy, — 0,0, R, (6.6.9)

where hzy(x) corresponds to the first term on the right- hand side of Eq. (6.6.4) within
the curly brackets.
Therefore, all the terms depending on £+, £ cancel in the induced Riemann cur-

vature tensor
(0- | Ryor(2)]0-)7, (6.6.10)
thus establishing its covariance. This means that one may restrict
(0= [y (2)]0-)", (6.6.11)

to its covariant gauge-independent part defined by the first term on the left-hand side of

Eq. (6.6.4) within the curly brackets, i.e., consider
(0_ |hu(z)]0_)" = {sti / dwyce™™™ [Tw,(k:) — %T(ls)} + c.c.}

= 1 (), (6.6.12)

nuv

in applications. The expression for the latter may be further simplified to

ho,(x) = {87rGi/(dx’) /dwkeik(x_z/) [TW(:U’) — %T(z’)} + c.c.}. (6.6.13)

The k-integration as well as the 2° -one may be explicitly carried out leading to

d3x’ [

_ax _ N
X x| (

ho,(x) = 2G T (2% — |x — x|, x) 5 2’ — |x — x’\,x’)} :

(6.6.14)
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6.7 Induced Geometric, and Induced Correction to the Metric: Ap-
plication to a Nambu String

The metric of spacetime to the leading contribution in our notation here is defined

(Schwinger, 1976) by

G (®) = Ny + 205, (2), (6.7.1)

with the 2 factor, where hf, (z) is given in Eq. (6.6.14). The leading contribution to the

inverse g"” is then given by

g = — 2k, (6.7.2)

We investigate the contribution to the metric, the induced geometry and corre-
sponding spacetime measurements due to a string. The dynamics of the string is de-
scribed as follows. The trajectory of the string is described by a vector function R(o, t),
where o parametrizes the string. The equation of motion of the closed sting considered

is taken to be

0? 0?
with constraints
oR-0,R =0, (6.7.4)
(OR)* + (0,R)* =1, (6.7.5)

R(a n 2{ t> — R(o,1), (6.7.6)
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for a constant w. The general solution to Egs. (6.7.3), (6.7.4) - (6.7.6) is given by
R(0,t) = % (o~ 1)+ V(o +1)], 6.7.7)
where @, W, in particular, satisfy the normalization conditions
(0,®)* = (0,%)* = 1. (6.7.8)

To verify that any ¢(c — t) is a solution of Eq. (6.7.3) we define 0 — t = w.

Therefore

= &"(u), (6.7.9)

Similarly,

= &' (u). (6.7.10)



139

Therefore

0?92

(57— 52) %0 =) =0, (67.11)

for any vector function ®(o — ¢) which is twice differentiable with respect to ¢ and o
We can also verify that any (o + ¢) is also a solution of Eq. (6.7.3), we set
o+t=nw.

Therefore

= ¥ (v). (6.7.12)

Similarly,

Wl o]
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82
@‘I’(U)
\I’H(U>
= \I'”(a + t). (6.7.13)
Therefore
0? 0?

for any vector function W (o + t) of o + t which is twice differentiable with respect to ¢
and o is also a solution of Eq. (6.7.3).
For the system of Egs. (6.7.3) - (6.7.6), we consider a solution of the form

(Manoukian, 1991, 1992, 1995, 1998):

sin wt

R(o,t) = (coswa, sinwo, O> , (6.7.15)

w

describing a radially oscillating circular string in a plane.
We verify that R(o,t) in Eq. (6.7.15) is of the form in Eq. (6.7.7). To this end,

we use the elementary trigonometric identities

DN | —

sin Asin B = |:COS(A — B) — cos(A + B)} , (6.7.16)

cos Asin B =

N | —

{sin(A + B) —sin(A — B)] , (6.7.17)
Therefore,

1
R(o,t) = $<sinw(0+t) —sinw(o —t),cosw(oc —t) — cosw(o + t),O)
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Uiy (0 +1) (0 +1),0
=515 smw(o ,—cosw(o ,

+i(cosw(a—t),—sinw(cr—t),())], (6.7.18)

which is exactly of the form in Eq. (6.7.7).

The general expression for the energy-momentum tensor of the string is given

by

Mw / ™ (8tR“8tR” - 80}2#00}2”)53 (r ~R(o, t)), (6.7.19)
0

() = 2T

where
R’ =t r = 7(cos ¢,sin ¢,0), (6.7.20)

and M provides a mass scale.
The various components of the energy-momentum tensor are worked out to be

(Manoukian, 1991a,1992, 1995, 1998)

M .

qoo _ M s (r _ M) 5(2), 6.7.21)
27r w

. M in wt

T = S ——(cos ¢, sin ¢, 0)0 <7" _ [sinw ‘) d(2) cos wt sgn(sin wt), (6.7.22)
r
M t

T — ( |smw |> §(2)[cos® wt — sin? @], (6.7.23)
27r

T2 _ 5 ( |smwt|> 5(2 sm 2gz5 (6.7.24)
27r

72 _ M ( | sin wt') 5(2)[cos? wt — cos? ¢, (6.7.25)
27r

T =0, (6.7.26)
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where
sgn(a) = £ 1, (6.7.27)
for
a 2 0, (6.7.28)

is the sign function, ¢ = 1, 2, 3, in Eq. (6.7.22).

We note the normalization condition
/ dIP*xT(x) = M. (6.7.29)

Also for the trace 7", (x) of the energy-momentum tensor we have

| sin wt|

T = —%5<r—

wr

)5(z) sin? wt. (6.7.30)

w

For completeness a Fourier analysis of T#”(¢,r, z) follows. To this end we per-

form a multiple Fourier-transform

dp? d?p dg oy s 0
T;w t — ipr ig-z ip tT,uV 0 6731
)= [ G5 [ o [ e e T ), (6730

where we have used cylindrical coordinates with r lying in the plane of the string. Using

the periodicity of 7#” in time we can write

v —iNM ip-r .igz v
T (t,r, 2) E e t/ 2r)2 /_oodqep e ”B" (p, N), (6.7.32)
T (p",p,q) = T (p",p) =21 Y _ 6(p” — mN)B"(p, N), (6.7.33)

N=—o00
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where
B"(p,N) = 23 " givmt / d?r / dze PTeTETH (v, 2 1), (6.7.34)
)=z — oo
with
p = p(cos ¢, sin ¢, 0), (6.7.35)
p-r=precos(¢ —¢), d°r =rdrd¢, (6.7.36)

exhibiting the time translation invariance : ¢ — ¢ + %, and the g-independence of the

Fourier Transform. We use the following expansion (Gradshteyn and Ryzhik, 1985)

exp {ip cos(¢' — gb)} = Z e =9 1 (p), (6.7.37)

n=—oo

in terms of Bessel functions J,,(p) of integral order n, and the following basic integrals:

" N
/ N Jy(a| sin T|)dT = 27 COS(TW)J@(g), (6.7.38)

—T

T N
/ ethsgn(sinT)JM(a|sinT|)dT:QiWsin(Tﬂ)JQ(g)Jw(g), (6.7.39)

to obtain after a very lengthy process the following expression for B*” = B** :

B™ = 3,J3(x), (6.7.40)

0,.a
B — 5npp§ P(2), a=1,2, (6.7.41)




B(L

where

A, =

b= 6nAn6ab + 6nEn_27
p

a,\b
pp a, b=1,2,

B" =0

Jo (@) + T3 (2) = 20 (2) g (2) |

| =

E, = Jn+1 (x)‘]n*1<x)a

bl
om’
N
n=—
27

Bn = m(—1)" cos(nn),

and p is defined in Eq. (6.7.35).
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(6.7.42)

(6.7.43)

(6.7.44)

(6.7.45)

(6.7.46)

(6.7.47)

(6.7.48)

Now we verify the explicit equalities Eqgs. (6.7.21) - (6.7.26), (6.7.29), (6.7.30).

For example

790z = M /O%/w do(1 - ) (r - R(o, t))v

27
i — @
2m J,

27

T do <atRﬂath - &,R“&,R”) 5 (r ~ R(o, t)> ,

(6.7.49)

(6.7.50)
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1
R(o,t) = —(coswo, sinwa, 0) sinwo, r =r(cos ¢, sin¢’,0)
w
in wt
= [sinwt] (cos wo sgn(sinwt), sin wo sgn(sin wt), O> : (6.7.51)
w N ~ s\ ~ 7
cos ¢ sin ¢
. | sin wt|
5 (r —R(o, t)> =—Y __§(p—¢)o(z), ¢ = p(a’), (6.7.52)
r
2m .
=2 [ 4o (atR“(?tR” . a,R“&,R”) 5(7~ - M) (¢ — &)8(2),
2mr Jo w
(6.7.53)
cos ¢ = cos o’sgn(sin wt),
(6.7.54)
sin ¢ = sin o’sgn(sinwt),
sgn(sinwt) >0 ¢ =o',
(6.7.55)
sgn(sinwt) <0 ¢=0" +m,
1-— inwt
6= (o + LS ) (6.7.56)

2
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sgn(sinwt) = +1 — ¢ =0,

sgn(sinwt) = -1 — ¢p=0"+7 — cos¢ =—sing’ ,and sin¢ = —sino’,
(6.7.57)
thus
6= 5(0’ (= Sgnfm Dy ¢’), (6.7.58)
. w [T . . | sin wt|
™ = — do'( 0,R*"O,R” — O,R"O,R" |6 r — ———
2mr J, w
, , 1 —sgn(sinwt)
xolo' — ¢ —( 5 )|, (6.7.59)
70— Y5 (7" _ |Sm“t‘)5(z), (6.7.60)
27r w
0i w e ;. | sin wi|
T = — do’(coswt)(coso’,sina’,0)d | r — ———
2rr Jo m
X 5(0’ e - (A2 Sgn2(sm wt) )7r]>5(z), (6.7.61)

4 in wt
T% = Qi(cos wt)d (r - M) 5(z)(cos @', sin o’ 0)sgn(sin wt) sin(wt),
r w

(6.7.62)
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Finally
T = Tzz o TOO
M in wt
= —5(r — |sinw |>5(z) |:COS2wt —sin? ¢ + cos>wt —cos? o+ 0 — 11,
2mr w
(6.7.63)
or
v .
T = —5(7‘ - M) §(2)(cos® wt — 1), (6.7.64)
or w
M inwt
T = ——(5(7‘ - M) §(2) sin’ wt, (6.7.65)
r w

thus checking Eq. (6.7.30) as well.
The explicit demonstration of the conservation of the energy-momentum tensor

associated with the string is worked out through the following steps.

T :L(x, y,0) 6 (\/q;2 +y2— ro) d(z) cos wt sgn(sinwt), (6.7.66)

27?7’8
01" =55 b e 6.7.67
T 2mg (r=7o) T r—ro) T (), (6.7.67)
0 = d - ——y2
o, = 3r? 5(r — o) {1 e TO)T} (), (6.7.68)
i W _ o 3
81T —27”% 5(T 7‘0){1 r_ro}(
IR
=72 S(r — 7o) = 10) (), (6.7.69)
o0 — Y 5(7’—7“0)(_“)7 6770



w (r—ro)

27rg (r — 7o)

0,T" = —

cos wt sgn(sin wt),

g ¥ 5(r — o) (—) coswt ,  sgn(sinwt) >0
s Yo (r —ro) .
(+) cos wt , sng(sinwt) < 0,

w0 W O(r—ro)
AT 27y (1 — 1)

coswt sgn(sin wt),

9, T =0,
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(6.7.71)

(6.7.72)

(6.7.73)

(6.7.74)

A similar proof may be carried out for 9,7% = 0. It is most interesting to

Egs. (6.6.14), (6.7.21) - (6.7.26), (6.7.30) lead for

r>1/w,

consider spacetime measurements along the most symmetrical direction in the problem,
that is, along the z—(23-) axis perpendicular to the plane of oscillations. Before doing
so, we note that in the plane of oscillations of the string, g4, cannot be a function of ¢
by symmetry. Also no cross term g, can occur in this plane, i.e., g, = 0. The metric

contributions h,.., hgg, in the plane of oscillations, are readily obtained. To this end

(6.7.75)

(6.7.76)
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hia >~ 0, (6.7.77)

where 1/w is the maximum radial extension of the string, and where the factor 2 multi-
plying hy;(z) is due to the definition Eq. (6.7.2).

In detail, the result in Eq. (6.7.76) follows from the explicit integrations in

d3x/ 1
2h11 = 4G/ | |:T11 t — |X X | ) — iT(t — |X — X/|, X/):| s (6778)

where
Tia(t — =, x) =5 (w - el pes X/D')
x 0(2")(cos? w(t — |x — x|) —sin? @), (6.7.79)
it~ o) = 2L (- et D)
! w
x 0(2') sin® w(t — |x — x']), (6.7.80)
and
d3x' =" dr’ d¢’ d7'. (6.7.81)
Therefore
2y ( 2MG/ / dgb/ 4 ( , | sinw(t — ]X—x’\)\)
2mr’ w
X 5(z’)ﬁ |:C082w(t — |x — x'|) —sin® ¢’ +sin®w(t — |x — x’])}
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oo 27 : _ I
QMG/ dT’/ 405 (r’— |sinw(t — |x X|)]) 1 (1 —sin? ),
T Jo 0 |x — x|

w
(6.7.82)
r" = |x'| < 1/w, hence for points of observation r > 1/w, |x — x'| ~ r, i.e.,
2h11 () 22]7\37? /000 dr'é (r' _ Isinw(t =)l wff — T)‘) /02” d¢'[cos® ¢']
= QMG. (6.7.83)
r
Using the identity which relates polar coordinates to the Cartesian ones:
h,r = cos® ¢ hyy + sin® @ hoo + sin 2¢ hqo, (6.7.84)
we conclude that the above leads to the following expression for g,.,:
G (1 n 2iM ) (6.7.85)
On the other hand,
2hgo(x) ~ 4€M /dSX' [Too(xo —rx)+ M
— 4€M cos® w(t — 1), (6.7.86)
This finally leads to
goo() ~ — <1 - 4(iM cos® w(t — 7“)), (6.7.87)

where we recall that the Minkowski metric is taken to be [r,,| = diag[—1,1,1,1].
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For an observer at a fixed r satisfying

r> 1w, (6.7.88)

in the plane of oscillations of the string, then we infer that time slows down by a factor

1 g N
—_ —goodt
(TQ _ Tl) - goo
GM SiHu)(TQ — Tl)
=1-—11 W+ T, —2r)————= 6.7.89
" { +cosw(Ty + 15 — 2r) T | ( )
relative to a time lapsed of length (75 — 77) in empty space.
For spacetime measurements along the z-axis, we have explicitly
00 d / : t— 2 2
2hSy(z) = AGM / _ A (sl me (6790
o V2422 w
Again, since r’ does not exceed 1/w, we have for an observer at
|z| > 1/w, (6.7.91)
AGM
gs3(x) =~ 1+ sin®w(t — |z]), (6.7.92)

2|

showing an interesting oscillatory behaviour in the space metric with a relative expan-

sion of length. Here

x = (0,0, 2), (6.7.93)

x' = (r'cos¢', " sin ¢’ 0), (6.7.94)
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therefore

Ix — x| = Vx2 +x?2 —2x - X, (6.7.95)

But x - X’ = 0, hence

Ix — x| = V22 4 r2. (6.7.96)

Since the maximum radial extension of the string is 1/w, therefore for |z| > 1/w,

Ix — x'| ~|z|. (6.7.97)

Thus the integral expression for 2hg becomes:

2hoo 4(’;7]'\/[ /d3r’ [Too(xo —lz], ") + w ) (6.7.98)
Thus
goo = Moo + 2hoo, (6.7.99)
and from Eq. (6.7.98) leads to
d3r’ 0 oo 004, 0 "o
tho = <1446 [ = Tiale — x = x].1') = BTG e =)
=—1+ T—j d®r’ [Too(xo —|z], ') + M]
_ 14 %T &y {%5(# _ ’Si“”<i_ D15y
_ Qﬁla(r' - |Si“”(i_ 2Dy 52) sim ot - |z]))1
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AGM [ 1 i —
=1+ G r'dr'dg’dz | —d(r' — |sinw(t ’Zm)é(z)
1zl Jo 27r! w
Lo [sinw(t —|z])] e
— 27W/(5(7“ — - )(z) sin”(w(t — |z])
=—1+ 4|GZ]|W cos?w(t — |2]). (6.7.100)

Finally, we obtain

4GM
goo(x) >~ — (1 - Tcos2w(t - |z|)) : (6.7.101)
2
and time slows by a factor
1 2
—_ vV —goo dt
(To—T) Jy, ¥V
GM sinw(Ty — Ty)
=1-—1 Ty +15 = 22|) ———————= 6.7.102
2 [ +cosw(Th + T — 22|) o -T) |’ ( )

relative to a time lapsed of length (75 — 77) in the absence of the string.



CHAPTER VII
CONCLUSION

The present thesis was involved with a systematic analysis of the so-called
closed-time path, also known as the expectation value, formalism of quantum physics
and in more details of quantum field theory in the functional differential treatment via
the application of the celebrated and the powerful tool referred to as the quantum dy-
namical principle. The formalism allows one to obtain expectation values as well as
of probabilities directly by functional differentiations of a generating functional with
respect to external sources coupled to dynamical variables, such as fields, without the
necessity of deriving first transition amplitudes associated with a given theory. The em-
phasis of the application of the general underlying theory in quantum physics was on
the role of the environment and its coupling to quantum systems, while in quantum field
theory the emphasis was on the far more complex problem dealing with gravitons as the
particle excitations of the gravitational field and the graviton propagator which plays a
central role in mediating the gravitational interaction between all particles in nature in
quantum gravity, as well as of the induced geometry of an external agent (source) in
spacetime in a quantum setting. We summarize our most pertinent results and point out
additional technical details related to the work carried out here.

A general expression was obtained in Eqs. (4.2.11), (4.2.15) for the transition
probability, as a closed-time process, from a given state |a;0) to a state |b; ¢) in time ¢

responding, in the process to the environment, given by

Prob](a; 0) — (b: )]z = O(O')" (bit]a; 0)™* (st |a; 0)"1%1)"

ﬁ[FQaS%FQ,vS;] 9 (71)
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where

i [t . o . > _ o . 5
O =exp <_ﬁ/0dTHI(_lhéFl(T)’lhésl(T)7_1h6F2(T)’1h632(7')’T))’ (7.2)

with (0’ defined similarly with

Fy, 51, F5, S, (7.3)
replaced by

FY, 81, Fy, S5, (7.4)

respectively, and the presence of the letter £ attached to the probability on the left-hand
side of Eq. (7.1) is to emphasize the coupling of the environment to the physical system

as the latter evolves in time. The functional .7 is given by

FFy, S0, Fy, Sy = Y (Byit] A;0)™ (<Bn;t\A;0>Fﬁ’Sé)*, (7.5)

n

where the closed-time path concept is emphasized in the above expression, where for
time 0 to ¢ we have sources F5, Sy, which in the reversed path from ¢ to 0, we have a
priori different set of sources F} and S,. At the end of all manipulations F will be set
equal to F, and S}, will be set equal to Sy which will all taken to be zero. Eq. (7.2)
involves functional differentiations, with respect to classical sources, using functional
calculus techniques. It is important to note that as the functional .% in Eq. (7.5) cannot
be written as the product of two terms one involving the sources F, S, F5, So, and one
involving the sources F7, S, Fy, S5, one necessarily has to deal directly with transition
probabilities of the physical system as it evolves in time in response to the environment
rather than amplitudes. In case the amplitudes (b;|a; 0>Fi’si in Eq. (7.1) are not ex-
plicitly given for the decoupled physical system from the environment, one may use

the integral expression in Eq. (4.2.2) to carry out various approximations suitable for
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the system in consideration. The main analysis shows the power of the functional dif-
ferential treatment, involving functional differentiations with respect to classical, thus
commuting, functions.

We have subsequently derived a novel expression for the graviton propagator,
from Lagrangian field theory, valid for the case when the external source 7}, coupled
to the gravitational field is not a priori necessarily conserved, by working in a gauge
where only two polarization physical states of the graviton arise to ensure positivity
in the quantum treatment thus avoiding non-physical states. That such a conservation
should a priori not to be imposed is a necessary mathematical requirement so that all
the ten components of the external source 7}, may be varied independently in order to
generate interactions of the gravitational field with matter and produce non-linearities of
the gravitational field itself in the functional procedure. The latter requirement arises by
noting that such interactions are generated by the application (Manoukian, 1986a; Lim-
boonsong and Manoukian, 2006) of some functional F[—id/6T},] to (0, ]0_)", where
(04 ]0_) corresponding to other particles, as well as functional derivatives of their cor-
responding sources in ', have been suppressed to simplify the notation. Accordingly,
to vary the ten components of 7},, independently, no conservation may a priori be im-
posed. The 1/k? terms in Egs. (5.2.149) - (5.2.152) are apparent singularities due to
the sufficient powers in k in the corresponding denominators and the three-dimensional
character of space, in the same way that this happens for the photon propagator in the
Coulomb gauge in quantum electrodynamics, and give rise to static 1/r type interac-
tions complicated by the tensorial character of a spin two object. It is important to note

that for a conserved 7,

w» 1.e., for 0T, = 0, all the terms in the propagators in Eq.

(5.2.149), with the exception of the terms (n**n*° + n*on** — n**n°*) /2, do not con-
tribute in Eq. (5.2.153) since all the other terms in Egs. (5.2.151), (5.2.152) involve

derivatives of 7),, and the graviton propagator AR (., 1) effectively goes over to the
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well documented expression

1 (n,u)\nlzo + n,uanu)\ _ n,uuna)\)

(—O —ie) 2 ’ (7.6)

which has been known for years (Schwinger, 1970, 1976; Manoukian, 1990, 1997).
This is unlike the corresponding time-ordered product which does not go over to the
result in Eq. (7.6) for 0#T},, = 0. This may be shown by solving for the time-ordered
product in Eq. (5.1.6) in terms of the propagator and carrying out explicitly, say, the
functional derivatives 1% /6T, 6h" /6T, as arising on the right-hand side of Eq.
(5.1.6), by using, in the process, Egs. (5.2.85), (5.2.86). In any case, it is the propagator
A" as given in Eq. (5.2.149), is the one that appears in the theory and not the time-
ordered product as is often naively assumed. After all the functional derivatives with
respect to 7T}, are carried out in the theory, one may impose a conservation law on 7},
or even set 1), equal to zero if required on physical grounds.

It is unlike the expression in Eq. (7.6) involving only 3 terms as expected naively
by imposing, rather incorrectly, first a conservation law 9,7"" = 0 and then carrying out
functional differentiations of (0 |0_) with respect to 7%. In this respect see also, for
example, Eqgs. (6.1.1) - (6.1.3) where a contradictory result is obtained by the incorrect
procedure just described. That the additional terms obtained for our graviton propagator
contribute is easily seen by explicit functional differentiations of (0, |0_) given in Egq.

(5.2.153) in defining the correlation functions:

) ) .
S e R e Rl N o

Hiv1

where the conservation law 0, 7" = 0 is imposed after all the functional differenti-
ations (—1)6/07,,,,(z1),- -, (—1)8/8T},,., (z,) are carried out. Such methods have
led to the discovery (Manoukian, 1986; Limboonsong and Manoukian, 2006), in the
functional differential treatment via the quantum dynamical principle differential ap-

proach, of Faddeev—Popov (FP) factors, and of their generalizations, in non-abelian
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gauge theories such as in QCD and in other theories. Re-iterating the discussion above,
the relevance of the analysis and the explicit expression derived for the graviton propa-
gator for, a priori, not conserved external source T}, : 0"T),, # 0 is immediate. If, in
contrast, a conservation law is a priori, imposed then variations with respect to one of
the components of 7}, would automatically imply, via such a conservation law, varia-
tions with respect some of its other components as well. Also, as mentioned above, the
present method, based on the functional differential treatment, as applied to non-abelian
gauge theories such as QCD (Manoukian, 1986a; Limboonsong and Manoukian, 2006)
leads automatically to the presence of the FP determinant modifying naive Feynman
rules. The physical relevance of such a factor is important as its omission would lead
to a violation of unitarity. The novel expression for the graviton propagator derived
involved 30 terms as just mentioned and is given in detail in Eqgs. (5.2.149) - (5.2.152)
and is too complicated to be reproduced here. It is interesting to extend the analy-
ses in (Manoukian, 1986a; Limboonsong and Manoukian, 2006), as well as of gauge
transformations (Manoukian, 1986a), and covariance (Manoukian, 1987b), to theories
involving gravity. This would be exponentially much harder to do and will be attempted
in future investigations. In this regard, our ultimate interest in the future is in aspects
of renormalizability (Manoukian, 1983) and rules for additional physical applications
that would follow from our, a priori, systematic analysis carried out at the outset, in a
quantum setting with the newly modified propagator, by a functional differential treat-
ment, in the presence of external sources, to generate non-linearities in gravitation and
interactions with matter.

The positivity constraint as well as the spin content of the theory of gravitons
interacting with a priori non-conserved external energy-momentum tensor was estab-
lished. As emphasized throughout, relaxing this conservation law is necessary so that
variations of the ten components of the energy-momentum tensor may be varied inde-
pendently which goes to the heart of the functional differential formalism of quantum

field theory. The expectation value formalism of the theory within the above context



was derived at finite temperature for gravitons in chapter VI and is given by

FT, T% 7] = ((0410)7) (04 [0)™)

X exp 87TG/ (da)(da")T7,( )C“”"’”(af,x’)ij(x’)]

% exp | — 87G / (d) (da') (T2, () — T2, ()

< DM, )Ty o)~ T2
where C*?P(x,2') is defined by
CHoP(x,a') = /dwkei’“(””_”"')w“”"’p(k),
and

) ) wop ()
Qv,op /. _ ik(z—a') m (
D (ZL‘, x ,7‘) /dOJke —(efﬁ(Nk) — 1) )

Nk = Nok® = —k° = —|K|,
where m77(k) is given by
1
RO (k) = 5 (BT + BT — B

and

kHEY NeEY NYEF

N e L A T R 7

159

(7.8)

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

We note that the temperature dependence occurs only in the last exponential in
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Eq. (7.8) through D*"?*(x, z'; 7). We eventually set

T, =T, (7.14)
in applications.

Thermal averages of the generated gravitational field and their correlations may
be then obtained by functional differentiations of the resulting generating functional
at finite temperature which coincide with the corresponding expectation values (0_| -
|0_) at zero temperature. The covariance of the induced Riemann curvature tensor was
established in spite of the gauge constraint which ensures only two polarization states
of the graviton. An application was carried out to determine the induced correction to
the Minkowski metric resulting from a closed string arising from the Nambu action as
a solution of a circularly oscillating string.

In addition to several results derived in this context, we have explicitly obtained
an expression for the time slowing factor for an observer situated at a point z along the
vertical axis situated perpendicular to the plane of oscillations of the string above the
center origin for |z| > 1/w, where w is the frequency of oscillations of the string, and
in the present units 1/w denotes the maximum radial extension of the string. This time

slowing factor is given by

sinw(Tz — Tl)
CU(TQ — Tl) ’

(7.15)

1 E GM
m \/—goodtzl—W 1—|—COSW<T1+T2—2‘Z|)
T

relative to a time lapsed of length (75 — 77) in the absence of the string. Radiative
corrections play an important role as the induced geometry may, in general, depend on

temperature. Technically, this may be seen as follows. The multiplicative factor in the
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generating functional .Z[T", T?; 7] in Eq. (7.8) depending on temperature is given by

exp [—w; [ (@)@ (T @) = T2, D ') (T ) - Tfpw))} ,

(7.16)

where D*°P(x, x';7) is defined in Egs. (7.10), (7.11) - (7.13). Consider a familiar
correction to the leading order in the Lagrangian density given by h*(x) (TW + T,ST)> )

where 7,,,, T;ET)

are energy-momentum tensors of the gravitational field and matter,
respectively. For example, if T,E,T,n) corresponds to a real scalar field coupled in turn to
an external source K (z), then the multiplicative factor in the corresponding generating

functional of the scalar field depending on temperature is clearly given by

exp {— / (dz)(dz’) <K1(x) - K?(x))A<+>(x,x';T) (Kl(a:’) - K?(x'))] (717

where

d3keik@—a") — 1
AN (z, 2! 7) = / (2W)32m<eﬁ km® 1) , (7.18)
k® = +v/k* + m2, and m is the mass of the scalar field. Now both 7, and T,SL”) are
quadratic in their respective fields. To generate the term h#"7,,, we then need to func-
tionally differentiate Eq. (7.16), say, with the external source T,}u three times, also ad-
ditively with respect to Til, according to the quantum dynamical principle (Schwinger,
1961; Manoukian, 1987c, 1988b, 1988c, 1991b). On the other, hand to generate T,S’V") ,
we have to functionally differentiate Eq. (7.17) twice with respect to the external
sources K12 of the scalar field. Finally to generate the thermal average of h,,, we
have to functionally differentiate once more w.r.t. 7}, and then set T, = Ty, = T},
and K!' = K? = K. That is, all in all, we have an even number of functional dif-

ferentiations with respect to the corresponding external sources to generate the thermal

average (huyg before setting the equality of the sources just mentioned and thus gen-
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erate a temperature dependence in <hw>z- This is unlike the situation in the leading
order in which we have to differentiate only once w.r.t. T,}u to generate <hw>f before
setting 7’ il, — TEV = 0, resulting no temperature dependence in the former expression as
seen in Eq. (6.6.1). The study of higher orders, however, requires a detailed analysis of
Faddeev-Popov-like factors of the type discovered in (Limboonsong and Manoukian,
2006; Manoukian and Sukkhasena, 2007b), as generated in the functional differen-
tial treatment (see Sect.3 in Manoukian and Sukkhasena, 2007b; Manoukian, 1986a,
1987a; Limboonsong and Manoukian, 2006; Manoukian et al., 2007) which would in
turn lead to extra vertices coming from the second term on the right-hand side of Eq.
(6.1.6) and its generalizations and complicates matter quite a bit in gravitation. This
formidable problem as well as convergence aspects (Manoukian, 1983) will be hope-
fully investigated in the future. Physically, temperature dependence of the underlying
induced geometry is also clear. When we perform a thermal average, we introduce in
the process, a background of gravitons, and in general other particles depending on the
matter fields considered. These particles in turn would then act as additional sources
of gravitation contributing to the net induced gravitational field and this happens only
when non-linearities as field interactions are considered, and corresponding radiative
corrections are taken into account.

We hope that our contribution to the expectation value formalism at any temper-
ature for gravitons in the functional differential formalism of quantum field theory will
be important for further developments of the very challenging and long standing prob-
lems of quantum gravity as the progress of the underlying theory has been slow due to

the well known non-renormalizability of Einstein’s theory of gravitation.
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A careful functional treatment of quantum scattering is given using Schwinger’s dynam-
ical principle which involves a functional differentiation operation applied to a generating
functional written in closed form. For long range interactions, such as for the Coulomb
one, it is shown that this expression may be used to obtain explicitly the asymptotic “free”
modified Green function near the energy shell.

§1. Introduction

The purpose of this communication is to use Schwinger’s®:19-13) most elegant

quantum dynamical principle to provide a careful functional treatment of quantum
scattering. We derive rigorously an expression for the scattering amplitude involving
a functional differentiation operation applied to a functional, depending on the po-
tential, written in closed form. The main result of this paper is given in Eq. (2-28).
In particular, it provides a systematic starting point for studies of deviations from
so-called straight-line “trajectories” of particles, with small deviation angles, by mere
functional differentiations. An investigation of a time limit of a function related to
this expression shows that the latter may be also used to obtain the asymptotic
“free” modified Green functions for theories with long range potentials such as for
the Coulomb potential with the latter defining the transitional potential between
short and long range potentials. Functional methods have been also introduced ear-

lier in the literature

1)-5),9),14)-17) in quantum scattering dealing with path integrals

or variational optimization methods which, however, are not in the spirit of the
present paper based on the dynamical principle. The present study is an adaptation
of quantum field theory methods” to quantum potential scattering.

§2. Functional treatment of scattering

Given a Hamiltonian

H= p—m + V() (21)

for a particle of mass m interacting with a potential V(x), we introduce a Hamilto-
nian H'(\, 7) involving external sources F(7), S(7) coupled linearly to  and p as

*) Corresponding author. E-mail: manoukian_eb@hotmail.com
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follows: )
H'(\7) = 3=+ V(@) —2- F(r) +p- S(r), (2:2)
m

where A is an arbitrary parameter which will be eventually set equal to one.
Schwinger’s!?)~13):6) dynamical principle states, that the variation of the transfor-
mation function (zt|pt’) with respect to the parameter A for the theory governed
by the Hamiltonian H'(\, ) is given by

§ (at|pt') = <—%> /t,t dré <>\V (_mdFa(T)» (xt|pt") . (2:3)

Here V(—ihd/6F (7)) denotes V (x) with « in it replaced by —ihd /0 F (7). Equa-
tion (2-3) may be readily integrated for A =1, F(7), S(7) set equal to zero, that is
for the theory governed by the Hamiltonian H in (2-1), to obtain

1

(zt|pt') = exp [—ﬁ /t,t drV (—ih%mﬂ <mt|pt’>(0)

(0)

(2-4)

F=0,8=0

The transformation function (xt|pt’)
time via the Hamiltonian

corresponds to a theory developing in

0.7 = 2 2. F(r) +p-S(r), 25)

to which we now pay special attention.
With p replaced by ihd/6S(7), the dynamical principle, exactly as in (2-4), gives

i [ 5\’
<wt|pt/>(0) = exp l—m/ﬂ dr <Zﬁw> ] <mt|pt’>0’ (2-6)

where the transformation function (xt|pt’), is governed by the “Hamiltonian”
H(t)=—x-F(t)+p-S(1), (2:7)

involving no kinetic energy term.
The Heisenberg equations corresponding to H(7) give the equations

x(1) = x(t) — /t/ dr' o(r' — 1)S('), (2-8)

p(r) = p(t) + / dr' 6(r — 7')F(r'), (2.9)

where ©(7) is the step function ©(7) = 1 for 7 > 0 and = 0 for 7 < 0. Using the
relations
o{xt| z(t) = x (xt|, (2-10)

p(t") [pt"), = |pt') p, (2:11)
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and the dynamical principle, we obtain from taking the matrix elements of & (7), p(7)
in (2:8) and (2-9) between the states o(xt| , [pt’),, the functional differential equa-
tions

_ihéFé(T) (wt|pt"), = {:c —/t/ dr' o(r' — T)S(T')] (xt|pt"),, (2:12)

.0 N t / , /
sy etloth = [p+ [ 00— F@)| ailary. @1

These equations may be integrated to yield

(at|pt'), = exp [%az (p—l—/t/thF(T))} exp [—%p./ﬂtmsm]
X exp [—%/;dr/; dT’S(T>-F(T’)@(T—T')], (2-14)

satisfying the familiar boundary condition exp(ix - p/h) for F', S set equal to zero.
Since we are interested in (2-4), in particular, for the case when S is set equal
to zero, the functional differentiation in (2-6) may be easily carried out giving

e D]
X exp L’;/tdrF( ). (.’L’—B(t—TD}

xexp{ th/ﬂdr/ﬂ i F(r )(t—7->)], (2:15)

where - is the largest of 7 and 7/ : 7 = max(7, 7).

We recall from (2-4) that we eventually set F(7) equal to zero. This allows
us to interchange the exponential factor in (2-4) involving the V(—ihd/0F (7)) term
and the last two exponential factors in (2-15). This gives for (xt|pt’) in (2-4) the
expression

(zt|pt') =exp [; <a: p2p—2(tt)>}
xexp[ /tldT/t,dT (SF(S() 6Fi7’)]

dTV(a:— 2(1&—7’)—|—F( ))}

<:vt | pt'>(0)

(2:16)

X exp [——

t F=0

Since we finally set F' = 0 in (2-16), the theory becomes translational invariant
in time and (xt|pt’) is a function of t — ' = T
For t > t/, we have the definition of the Green function

(xt|x't) = Gy (mt, x't)), (2:17)
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with G4 (at, 2't")=0 for t < t/, and

(xt|pt") = Gy (at, pt')

:/dgw' PG, (xt, 2't)). (2:18)
We may now introduce the Fourier transform defined by
ooy v 1 > i( 0+ie)T/h/ 3., —ipx /
=——— dT e*\? d p T 2-1
Gi(p.p'ip") h(%ﬁ)g/o e e P (xT|p'0), (2:19)

for ¢ — +0, where (xT|p0) is given in (2-16) with ¢ — ¢ = T. From (2-19) and
(2:16), we may rewrite G (p,p’;p°) as

1 e o o
Gi(p.p'sp°) = 2 - / da eP"~E® )+16]°‘/h/d3;1; e~ (p—p )/hK(:L',p’; a),
0

h (2wh)3 220)
where E(p) = p*/2m,
K(x,p';a) = exp {% /t,t dr /t/t dr'(t — T>}5F5(T) ) 5F(27’)]
X exp [—%/ﬂthV(a}—%/(t—T)+F(T)):| o (2-21)

with t —t' = « playing the role of time — a notation used for it quite often in field
theory.

In the a-integrand in the exponential in (2-20), we recognize [p’ — E(p) + ie€] as
the inverse of the free Green function in the energy-momentum representation.

The scattering amplitude f(p,p’) for scattering of the particle with initial and
final momenta p’, p, respectively, is defined by

fp,p) = / &*p" V(p—p")Gi(p". 0 p°)p° — E(p)]

, (2-22)
pO=E(p’)

where V(p) = [ d®xe™™®P/"V (z). This suggests to multiply (2-20) by [p° — E(p')]
giving

m
2mh2

1 & 8 ; 0 / :
1 ONO — ()] — — / d iapd—E(p')+i€ /h
G+(pap Y )[p (p )] (27Tﬁ)3 0 Q 80&6
></d3we_im'(p_p/)/hK(a:,p’;a). (2-23)

From the fact that (z|p) = exp(ix - p/h) and the definition of K(z,p’;a) in
(2-21), we have
K(z,p;0) =1 (2:24)

We now consider the cases for which

lim | dze ™ PPVIK (2 pa), (2:25)

a—00
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exists. This, in particular, implies that (e > 0)

a—00

lim e™* / dPxe PPV (2, p'ia) = 0. (2-26)
We may then integrate over « in (2-23) to obtain simply

Gi(p.p'sp")p° — E(P)]

pO=E(p’)

1 : /
= A o / dx e PPV (2, p'; a), (2:27)

on the energy shell p° = E(p), and for the scattering amplitude, in (2-22), after
integrating over p”, the expression

F,p) = ——— lim [ dze =@ PV (2)K(z, psa), (2:28)
27h2 a—oo

with K (x,p’; @) defined in (2-21). Here we recognize that the formal replacement of
K(x,p’; @) by one gives the celebrated Born approximation. On the other hand, part
of the argument [x —p'(t —7)/m] of V(x—p'(t—7)/m~+ F (7)) in (2-21), represents
a “straight line trajectory” of a particle, with the functional differentiations with
respect to F(7), as defined in (2-21), leading to deviations of the dynamics from
such a straight line trajectory. With a straight line approximation, ignoring all of
the functional differentiations, with respect to F(7) and setting the latter equal to

zero, gives the following explicit expression for the scattering amplitude f(p,p’) in
(2-28):

m

/ m 3,.. ,—ix-(p—p')/k i [ p/
f(p,p):—%rh2 d’xe V(x)exp “n ), daV |x—=a||. (2:29)

This modifies the Born approximation by the presence of an additional phase
factor in the integrand in (2-29), depending on the potential, accumulated during the
scattering process. Here one recognizes the expression which leads to scattering with
small deflections at high energies (the so-called eikonal approximation) obtained from
the straight line trajectory approximation discussed above. Deviations from this
approximation may be then systematically obtained by carrying out a functional
power series expansion of V (x — p/(t — 7)/m + F (7)) in F(7) and performing the
functional differential operation as dictated by the first exponential in (2-21) and
finally setting F'(7) equal to zero.

We note that formally that the 7-integral, involving the potential V| in (2-21)
increases with no bound for &« — oo for the Coulomb potential and for potentials
of longer range with the former potential defining the transitional potential between
long and short range potentials. And in case that the limit in (2-25) does not exist,
as encountered for the Coulomb potential, (2-23) cannot be integrated by parts. This
is discussed in the next section.
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§3. Asymptotic “free” Green function

In case the & — oo limit in (2-25) does not exist, one may study the behaviour
of G4 (p,p';p°) near the energy shell p° ~ p'?/2m directly from (2-20). To this end,
we introduce the integration variable

e

= - B (31)
in (2-20), to obtain
!N — E(p)] = — i /OO iz(1+ie)
G+(p7p D )[p (p )] (27Th)3 0 dze
. , h
« [ @izt (w 2 4> , 3.2
/ P —E) 32)

for e — +0. For p® — E(p’) > 0, i.e., near the energy shell, we may substitute

o / ) »
K (e.pfsah/ 6~ E@)) = exp | - [ dav (e-2a)|. 3

in (3-2) to obtain for the following integral

[diper i ppip) ~ O [T g o
PP ) +id Jo

i [/ -E@)) P
X exp _ﬁ/ daV (:c - Ea) ) (3-4)
0

For the Coulomb potential V(x) = \/|z|,

zh/(p°—E(p')) ! A 9l
p m |p'|zh >
daV | x—=—a] ~—1In , (35
/0 < m ) P <m<p° “E@)leli—cos0) ) OP

where cos = p’' - x/|p'||x|. Hence

b/ (°—E®) / 1
expi/ daV(:z:p—a> ~ —
h Jo m [p° — E(p') +ie] ™"
2p"%zh
i~ )
X exp ZVH(m(p/m—p’-m))’ (3-6)
where v = Am/hp’. Finally using the integral
/ dz 0F€) ()™ = ™2 (1 — i), (3-7)
0

for € — 40, where I" is the gamma function, we obtain from (3-4)
e_z'y ln(2p/2/m)

" — E(p') + it =1
I ol
X exp iy In <]m7hpm> e™/20(1 — i), (3-8)

/ dPp PG (p,p;p°) ~ P/
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to be compared with earlier results (e.g., Ref. 8)), and for the asymptotic “free”
Green function, in the energy-momentum representation, the expression:

0 e~ In(2p2/m) /2 .
GY(p) = B ie]l—”e Il —ivy), (3-9)

showing on obvious modification from the Fourier transform of the free Green func-
tion [p° — E(p) + ie] L.

§4. Conclusion

The expression (2-28) provides a functional expression for the scattering ampli-
tude with K(x,p’; «) defined in (2-21) and the latter is obtained by the functional
differential operation carried out on the functional, involving the potential V', of ar-
gument x —p'(t—7)/m+F (), for all ' < 7 < t, represented by the first exponential
in (2:21). The “straight line trajectory” approximation of a particle consisting of
retaining « — p/(t — 7)/m only in the argument of V' and neglecting the functional
differentiations with respect to F(7), with the latter operation leading systemati-
cally to modifications from this linear “trajectory”, gives rise to the familiar eikonal
approximation. The existence of the time limit in (2-25) distinguishes between so-
called potentials of short and long ranges with the Coulomb potential providing the
transitional potential between these two general classes of potentials and belonging
to the latter class. In case the time limit in (2-25) does not exist, corresponding
to potentials of long ranges, (2-20) may be used to obtain the asymptotic “free”
modified Green function near the energy shell as seen in §3. In a subsequent report,
our functional expression in (2-28) for the scattering amplitude will be generalized
for long range potentials as well.
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Abstract

A systematic explicit derivation is given for variational derivatives of transformation functions
in field theory with respect to parameters variations, also known as the quantum dynamical
principle (QDP), by introducing, in the process, two unitary time-dependent operators which
in turn allow an otherwise non-trivial interchange of the orders of the parameters variations of

transformation functions with specific time-dependent ones. Special emphasis is put on
dependent fields, as appearing, particularly, in gauge theories, and on the Lagrangian
formalism. The importance of the QDP and its practicality as a powerful tool in field theory
are spelled out, which cannot be overemphasized, and a complete derivation of it is certainly
lacking in the literature. The derivation applies to gauge theories as well.

PACS numbers: 11.10.Ef, 11.10.Jj, 11.15.—q, 11.15.Bt, 11.10.+t

1. Introduction

The purpose of this study is to derive systematically vari-
ational derivatives of transformation functions, also referred
to as the quantum dynamical principle (QDP), with respect to
parameters occurring in the theory and with respect to exter-
nal sources, coupled to the underlying fields, in quantum field
theory. The very elegant QDP [1-14] is undisputably
recognized as a very powerful tool for carrying out explicit
computations in quantum field theory, and in the quantization
problem, in general. How these applications and constructions
are carried out using variational derivatives of transformation
functions, derived below, and will be spelled out for the
convenience of the reader in the concluding section. In
particular, the QDP has been used to quantize gauge theo-
ries [10—13] in constructing the vacuum-to-vacuum transition
amplitude and the direct generation and derivation [10—13] of
Faddeev—Popov (FP) [15] factors, encountered in non-abelian
gauge theories and their further generalizations [13] with not
much effort and without making an appeal to path integrals or
to commutation rules and without [10—13] even going into the
well known complicated structure of the Hamiltonian [16]. In
particular, it has been shown [13] that the so-called FP factor
needs to be modified in more general cases of gauge theories
and that a gauge invariant theory does not necessarily imply
the familiar FP factor for proper quantization as may be

0031-8949/07/060751+04$30.00 © 2007 The Royal Swedish Academy of Sciences

otherwise naively expected based on symmetry arguments.
As the QDP provides the variations of transformation func-
tions with respect to external parameters, such as coupling
constants and external sources coupled to the quantum fields,
upon integrations of the amplitudes over these parameters
yield the expression for the latter (see e.g. [8—14]). To derive
variational derivatives of transformation functions, we intro-
duce in the process, two unitary time-dependent operators
which in turn allow an otherwise non-trivial interchange of the
orders of parameters variations with specific time-dependent
ones. This procedure answers the otherwise rather mysterious
question as to why the variation of a transformation function,
with respect to given parameters, is restricted solely to the
variation of the Lagrangian in question with the states defin-
ing the transformation function, which may depend on these
parameters, kept non-varied! The answer is based, mostly
on equations (6) and (7) below and a key identity derived
in (9) written in terms of the two unitary time-dependent
operators mentioned above. The derivation is an extension of
the corresponding one in quantum mechanics [9] to the more
complicated case of quantum field theory, where now empha-
sis is also put on dependent fields, as occurring, particularly,
in gauge theories and on the Lagrangian formalism. There has
been renewed interest recently in Schwinger’s action principle
(see e.g. [17-20]) emphasizing generally operator aspects
of a theory, as deriving, for example, various commutation
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relations, rather than dealing with the computational aspects
directly related to transformation functions and transition
amplitudes through their variational derivatives as done here,
and most importantly, to be derived in this work. In the
concluding section, we spell out how variational derivatives
of transformation functions are used in various aspects of the
theory, emphasizing the underlying method as a powerful tool
in quantum field theory.

2. The QDP
Consider a Hamiltonian of the general form

H(t, )= H(¢)+ Hy(¢, ), )
where H,(¢), H,(¢, 1) may be time-dependent but H,(z, A)
may, in addition, depend on some parameters denoted by .
Typically, in quantum field theory, H;(¢) may stand for the
free Hamiltonian written in terms of the physically observed
masses referred to renormalized masses and H;(z) will be
time-independent. In this latter case, H,(¢,A) will denote
the remaining part of the Hamiltonian which, in particular,
depends on renormalization constants, coupling constants and
so-called external sources coupled to the quantum fields.
The coupling constants and the external sources will be then
collectively denoted by A. A derivative of a transformation
function with respect to A with the latter denoting an
external source will then represent a functional derivative
(see e.g. [10]).

The time evolution operator U (¢, 1), corresponding to the
Hamiltonian H (¢, A), satisfies the equation

iy%yg, ) = Ht, MU, 2. @

For the theory given in a specific description, we have

iﬁg(atl = (at|H(t, 1), 3)
dt

where the states (az| will depend on the parameters A.
Typically, the states (a|, assumed independent of A, may
represent multi-particle states of free particles associated
with a given self-adjoint operator such as the momentum
operator, with the single particle energies written in terms
of the observed masses, or may represent the vacuum-state.
One may also introduce the time evolution operator U, (¢),
corresponding to H, (¢), satisfying the equation

~d
ih—U(¢t) = H (1)U, (),

o “

and the states | (az| which are independent of the parameters
A, satisfy

~d
iha at| = 1{at|H (). ()

The states (at| of interest are related to the states (at|
by the equation
(at| = {at|V(t, 1), (6)

where

Ve, ) =U ()U@, M), %)
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with the latter satisfying

iE%V(r, A = Ul () Ho(t, Ut 1). ®)

The QDP is involved with the study of the variation
of a transformation function (at,|bt;), with respect to the
parameters A.

For t # 6, t#1 and A # 1/, we have the following
useful key identity in the entire analysis

%% [V, OV @ MV @ )V, a0

= V(W [UN @ DH @ ) =H@ )U @ )] V@0,
()
which will be subsequently used.

The independent quantum fields of the theory will be
denoted by x(x) and their canonical conjugate momenta by
7 (x), suppressing all obvious indices. The dependent fields
will be denoted by n(x) whose canonical conjugate momenta

vanish, by definition. Here x = (¢, x). The Hamiltonian
H (¢, ) may be then written as
H(t,A)=H(x,m, A, t), (10)

which, in particular, is a function of x (x), 77 (x) with the latter
defined in the so-called Schrodinger representation at ¢t = 0,
which are independent of A. In the Heisenberg representation
we have

x@) =UTE DxUE, A, (11

x(x) = UT(t, Ve x)U, 1) (12)

having non-trivial dependence on the parameters A.
Now we integrate the relation in (9) over T from ¢ to #,
to obtain

[V (2. )V (0, W) =Vt WV (1, 0)] = —% V(t2, 1)

x [/ Zdr U (t, \)(H(z, )= H(t, ) U(x, A’)} V(t, ).
t1
(13)

By setting A’ = A + 8, one obtains the variational form of
the above equation

8LV (6. MV (11, )]
. Y
= _}il V(ty, A) [/ dt U (z, ))8H (z, MUz, x)] Vi, ).
n
(14)

Upon defining the Heisenberg representation of H(z, A) at
time 7, by
H(w, ) =U' @ WH 7, )U@ R, (19)

we may rewrite (14), as

SV (2, WV (11, M)]= —hl V(ta, 1) U zdr SIH (, A)}V*(zl, x)
(16)
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provided the variations of I/H with respect to A in (16)
are carried out by keeping x(x), w(x), given in (11) and
(12), fixed.

We take the matrix elements of (16) with respect
to | (atz], |bt1); (see (5)), use (6), and note the A independence
of | (aty], |bt;),, to obtain

S (aty|bty) = —%<alz (17)

5]
/ dt §HH (z, A)‘ bt1>,
h

with the variation in /H, with respect to A, carried out with
the independent fields x(x) and their canonical conjugate
momenta 77 (x) kept fixed.

The Hamiltonian /H in the Heisenberg representation
in (15) may be rewritten as

H(t. ) = H(x(0), 7(0), b 1), (18)
as obtained from the Hamiltonian H (¢, A) in (10) at ¢, by
carrying out the explicit operation given in (15). Equation (18)
is, in particular, written in terms of the independent
(Heisenberg) fields at time ¢ and their canonical conjugate
momenta. The effective Lagrangian L, of the system is related
to /H by the equation

Lo(x @), x (@), 2, 1) =/d3x7f(X)X(X) —H(x @), 7(t), 2, 1),
(19)
with a summation over the fields understood.
The canonical conjugate momenta 77 (x) of the fields are
defined through the equation

L@, x@+8x @), & 1) = L (x (1), x (@), A, 1)

= / Ex ()83 (x). (20)
Equations (19) and (20) allow us to consider the variation
of H(x(t), (1), A, 7), with respect to A, by keeping x, 7
fixed as required in (17), in relationship to the variation of L.
From (19) and (20), we then obtain, with x, 7 kept fixed, that

8L (x (1), x (1), A, 1) = =8 H(x (1), m(x), A, 7),  (21)

upon cancellation of the term on the right-hand side of (20),
where, now the variation of L, in (21) is carried out with
respect to A by keeping x (7) and x (7) fixed.

The dependent fields will be denoted by 7(x) and their
canonical conjugate momenta vanish, by definition. The
Lagrangian of the underlying field theory may be written as
L(x(@), x(@®),n(), A, t), which upon the elimination of n(¢)
in favour of x(¢), x(¢) and A generating the Hamiltonian
under study as well as the effective Lagrangian L.. We
consider the variation of L, with respect to A, by keeping
x (8), x (¢) fixed. Now since n(¢) will, in general, depend on

A, we have
an
8L =E,—68A+3L R
A

Yo

(22)

where we note that the Lagrangian does not contain terms
depending on 7, by definition. The first term on the right-
hand side defined as an integral in abbreviated form, £, in
it corresponds to the Euler—Lagrange equation of 1, which
vanishes, and the second term on the right-hand denotes the

variation of L, with respect to A, by keeping x, x and n fixed.
The latter property was first noted in [7]. The Lagrangian
density .¥ = £ (x) = Z(x, A) of the system is related to the
Lagrangian L through

L(x(z>,X(z),n(z>,x,r>=/d3x$(x,x). 23)

From (21), (22) and (23), we obtain the celebrated QDP or the
Schwinger dynamical (action) principle

Slats|by) = hl<atz (24)

/ 2(d)c) 8L (x, k)' bt1>,

where (dx) = df d®x, and the variation 8. (x, 1), with respect
to A, is carried out with the fields, independent and dependent,
and their derivatives 9, x, Vn, all kept fixed. The interesting
thing to note is that although the states |at,), |bt;) depend on
A, in the variation of the transformation function (at,|bt,), the
same (non-varied) states appear on the right-hand side of (24)
with the entire variation being applied to the Lagrangian
density .Z(x, 1) with the fields and their canonical conjugate
momenta kept fixed. This is thanks to the U and V
operators elaborated upon in (2)—(8), the independence of the
states) (atp|,1 (bt;| of A, and the key identify given in (9).
In practice the limits £, — +oo, t{ — —oo are taken in (24)
in scattering processes.
Now consider an arbitrary function

B(x(x), m(x), A, t) = IB(t, 1), (25)

of the variables indicated, with x (x), 7 (x) in the Heisenberg

representation in (11) and (12). We may write

B, A)=UTt, VB(x(x), t1(x), A, HU(¢, L), (26)

with x(x), 7(x) on the right-hand side in the Schrodinger
representation at time ¢ = 0. We note the identity

V(tr, NIB(z, )V (1, 2
=V (ty, WV (@, WU () B(x (%), 7 (x), %, T)

xU(T)V (T, )V (1, ). 27)

Hence (14) and (27) give for the following variation with
respectto A () < T < 1)

8[V (t2, MY B(t, V)V (11, V)]
= —% V(ta, ) /t de' SH(T', W) B(t, WV (1, 0
+V (12, NS B(z, WV (11, 1)
—hlV(tz,)\)/:dr’ B(t, )SHE', W)V, 0, (28)

where according to (28), the variation in 8B(t,A) =
8B(x(x, 1), m(x, ), A, T), with respect to A, is carried out by
keeping the (Heisenberg) fields x (x, ), 7 (X, 7) fixed.

We may use the definition of the chronological time
ordering product to rewrite (28) in the more compact form

8[V (t2, N B(t, )V (t1, )]
= —% V(ta, ) / ’ dt'(B(z, MSH (™', M)+ V(11 1)
+V (t2, NSB(z, VT (t1, 1). (29)
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Upon taking the matrix element of (29) with respect
to (atz|, |bt1),, and using (6), (15) and (24) we have for
h<t<hth

8lat|B(z, 1)|bn)
:% / (@) atz |(B(x, ML, 1)+| b
n

+(aty |§B(z, A)| bty), (30)
where in the variation §.Z(x’, A), with respect to A, all the
fields and their derivatives 9, x, Vn are kept fixed, while in
81B(t, A), expressed in terms of x(x, 7), 7(X, 7), the latter
are kept fixed, and an extra A-dependence may arise from
the elimination of n in favour of x,7. To our knowledge
Equation (30) appears first in [7]. The second term in (30)
is responsible for the generation of the FP factor and its
generalizations in gauge theories (see [10, 12, 13]).

3. Conclusion

The importance of the QDP as a powerful tool in field
theory cannot be overemphasized and a detailed derivation
of it was given by introducing, in the process, two unitary
time-dependent operators. The latter in turn allowed the
interchange of variations of transformation functions with
respect to given parameters with specific time-dependent
operations so crucial for the validity of the QDP. A key
identity has been derived in (9) which was essential for the
entire derivation. For the convenience of the reader we spell
out how variational derivatives of transformation functions
are used in some aspects of an underlying theory. (i) The
integration of (24) for the QDP over A is carried out by
introducing, in the process, external sources coupled to the
fields, where the external sources (currents) are necessarily
taken initially to be non-conserved so that variations of
all of their components may be varied independently
(see [10, 13]). From the expression of the vacuum-to-vacuum
transition amplitude, for example, thus obtained, transition
amplitudes of all processes may be extracted by factoring
out amplitudes for the emission and absorption of the
underlying particles by the external sources. By functional
differentiation of the vacuum-to-vacuum transition amplitude
with respect to the external sources, integral equations,
such as Schwinger-Dyson equations, relating various Green’s
functions may be derived. We also recall that the path integral
expressions may be derived, for example, directly from the
application of the QDP principle (see e.g. [8, 9]). It is also
far simpler to carry out (functional) differentiations than to
deal with infinite dimensional continual integrals. (ii) In the
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presence of dependent fields, with no time derivatives of them
occurring in their respective field equations, these dependent
fields will, in general, be functions of independent fields
(and their conjugate momenta) and external sources. With the
rules set up in (24) and in (30), additional terms will then
occur coming from the second term on the right-hand side
of (30) by taking functional derivatives of matrix elements
of such dependent fields in (30) with respect to external
sources by keeping the independent fields (and their conjugate
momenta) fixed. Such terms lead precisely to FP factors and
their generalizations, for example, in gauge theories, from
the applications of (30), as just mentioned, in the present
formalism (see [8, 10—14]). For such intricate and additional
details, the reader may refer to the just given references
as well as to some of the earlier ones such as [21, 22].
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Abstract

A functional differential treatment, via the quantum dynamical prin-
ciple, is given for the coupling of quantum systems to the environment.
As one is involved in taking the trace over the dynamical variables of the
environment, the analysis necessarily deals with transition probabilities
rather than with amplitudes. It is shown that the functional differential
treatment is quite suitable for such a study as it involves in carrying
out functional differentiations, with respect to classical sources, on func-
tionals describing decoupled physical systems from the environment.

Mathematics Subject Classification: 35Q40, 49505, 81Q15, 58D25

Keywords: Functional differential equations and quantum mechanics,
variational methods in function spaces, coupling to the environment and quan-
tum decoherence

1 Introduction

The functional differential treatment [2-9,11-13], via the quantum dynamical
principle, has been a very powerful tool for investigating properties of quan-
tum systems and for carrying out explicit computations. In this regard, it has
been quite successful in gauge theories and of the generation of essential mod-
ifications [2-6] needed for their proper quantization with no much effort. For
a pedagogical treatment of the theory and for several applications of the func-
tional differential method, via the quantum dynamical principle, in quantum
mechanics, the reader may wish to refer to [7, Ch. 11]. The purpose of this
work is to carry out an analysis, using the functional differential approach, of
the coupling of quantum mechanical systems to the environment, understood

!Corresponding author. E-mail: manoukian_eb@hotmail.com
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to be surrounding a physical system, as the former systems, in the real world,
are never in isolation from the latter. The incorporation of the environment
in quantum mechanical systems has led to much physical insights into such
fundamental problems as quantum decoherence, Schrodinger’s cat and in mea-
surement theory, in general [7, §8.7,§8.9,§12.7], [1,10,14,15]. We will see, that
the functional differential approach is quite suitable for studying the coupling
of quantum mechanical systems to the environment. It involves in carrying
out functional differentiations, with respect to classical sources, of a functional
describing “decoupled” systems from the environment. As one is involved in
taking the trace over the dynamical variables of the environment in study-
ing the response of physical systems to it, the analysis necessarily involves in
dealing directly with transition probabilities rather than amplitudes. This is
a basic departure from the far simpler case of studying quantum mechanical
systems in isolation. In dealing with probabilities and in taking traces, it turns
out that two different sets of classical sources, coupled to the dynamical vari-
ables of the theory, should, a priori, be introduced. The physically relevant
probabilities are then recovered in the limit as the two sets of sources coincide
and are eventually set equal to zero. The general expression for transition
probabilities of quantum mechanical systems, coupled to the environment, is
given in Eq.(5) involving functional differentiations with respect to these two
sets of classical sources. The method used in this work generalizes to quantum
field theory and will be studied in a forthcoming report.

2 Transition Probabilities and the Role of the
Environment

Typically a quantum mechanical system may be described by a Hamiltonian
Hy(t) = H(q,p,t) — qF'(t) + pS(t) (1)

written in terms of dynamical variables in the (g, p) language, where F'(¢) and
S(t) are classical source functions introduced to generate functions of ¢ and
p, respectively. For simplicity of the notation, we have in Eq.(1), suppressed
indices in ¢ and p reflecting the dimensionality of space and of the number of
particles involved in the theory. In most applications, the classical sources F'(t),
S(t) are set equal to zero after all relevant functional differentiations in the
theory, with respect to them, are carried out, with H(q, p;t) finally emerging
as the Hamiltonian describing the actual physical system into consideration.
The quantum dynamical principle states [cf. 7, Ch. 11], that a transition
amplitude (aty|bt;) for the system governed by (1), from time ¢; to time ¢, is
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given by

ats|bty) = exp (_% /t CarH {—ih 5;(7)4;1 : sif) TD (ats bty (2)

where H in (2) is obtained from H(q,p,7) by simply replacing ¢ and p in the
latter by the operators of functional differentiations —ihd/dF(7), ihd/6S(T),
respectively, and (ats|bt1), denotes the transition amplitude governed by the
simple “Hamiltonian” [—g¢F'(t) + pS(¢)] only.

To investigate the role of the environment on the quantum mechanical sys-
tem, governed initially by the Hamiltonian H(¢) in (1), one modifies the latter
Hamiltonian by including, in the Hamiltonian, the contribution of the envi-
ronment and of its interaction with the physical system at hand. Of particular
interest is in the response of the physical system to the environment. Accord-
ingly, one takes a trace over the dynamical variables of the environment in the
manner to be spelled out below. The Hamiltonian of the combined system is
taken to be of the form

H(t) = Hi(q1,p1,t) — @ F1(t) + p1S1(t) + Ha(qz, p2, 1) — qFa(t) + paSa(t)
+HI<q1ap17QQ7p27t>7 (3)

where the indices 1, 2 correspond, respectively, to the physical system and the
environment, and H; specifies the interaction term between them.

The transition amplitude for the combined system to evolve from a state,
say, |a, A;0), initially at time ¢ = 0, to a state, say, |b, B;t), at time ¢ > 0, is
then given by

0 ” 0
1
(5F1(T)’ (581(7')7

tla: 0V (B .0\ F2,52
7 0) Bt 0 (B 4 ) ()

. t
(b, B;tla, A;0)= exp(—%/ dTH[(—ih
0

—ih 0 ,ih 0
(5 F 2(7’ ) (5 Sg
as in (2), where (b; t|a;0)"™*, (B;t] A; 0)"™* are the transition amplitudes of
the decoupled subsystems in the presence of their respective classical sources.
To find the response of the physical system, described by the Hamiltonian
Hi(q1,p1,t) in (3), to the environment, it is necessary to work with transition
probabilities, corresponding to the process associated with the expression in
(4), rather than with amplitudes as done in the latter equation, and “trace
out” over the environment. To this end, let {|B,;t)} denote a complete set
of states pertaining to the environment, then the probability for the physical
system to make a transition from an initial state |a;0) to a state |b;t) in time
t, responding in the process to the environment, emerges as

Prob[(a; 0) — (b;6)]s = O(O')" (b;t]a; 0)™" ({bst]a; 0)™)"

FlFy, S Fy, 5] ()
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where
i [t ) ) ) 1)
_ 1 o —i ) . .
@ exp( h/OdT 1( lhéFl(T)’lhéSl(T)’ 1h5F2(T)’1h552(T)’T)) (6)

with O’ defined similarly with Fy, Sy, Fy, Sy replaced by FY, S1, F3, S5, respec-
tively, and the presence of the letter £ attached to the probability on the
left-hand side of (6) is to emphasize the coupling of the environment to the
physical system as the latter evolves in time. The functional F is given by
FIFo, S Fyy S = 3 (Bust| 4:0)% ((Bse] 4,00%%) (1)

n

We note that (7) reduces to the trace over the environment in the special
case for which Fj is set equal to Fy, and S, to S;. One cannot, a priori,
set such equalities until the functional differentiations, with respect to these
sources, as accomplished by the operators O, (O')*, are independently carried
out. The bar sign on the right-hand side of (5) refers to the fact that finally
oneis toset F = F =0,5 =5 =0, after all the operations of functional
differentiations have been done.

Eq.(5) gives the general expression for the transition probability of a phys-
ical system, as it evolves in time, in response to the environment.

Of significance importance is for systems written in terms of creation and
annihilation operators, which most conveniently describe processes of transi-
tions between their allowed states. Such a typical example is given by the
Hamiltonian

with

Hi(t) = hwa'a — a'F(t) — F*(t)a (9)
Hao(t) =3 heogblby — (Kk(t)b,ﬂ + ka,j(t)) (10)

Hyp(t) = at» " Mbe +a > Al (11)
k k

and (a, al), (b, b;i), pertaining to the physical system in consideration and the
environment, respectively, [a,a’] = 1, [bk,bl,] = O for the corresponding
commutators.
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Suppose that the environment is initially in the ground-state |0;0),. Let
Us(t) denote the time evolution unitary operator describing the time evolu-
tion of the environment in the absence of the physical system. The so-called
Heisenberg operator by(t) associated with by, is given by

b(t) = U (£)bpUs(t) (12)
which works out to be
. et
be(t) = bpe Wkt %_L/ dr Kk(T)e*iwk(t*T) (13)
0

The quantum dynamical principle [2-9,11-13] for the vacuum-to-vacuum
transition amplitude (0;¢|0;0)% gives

. ) ) K . Nin. 0\ K
il (04105008 = (01 [0e(t)10;0); (14)

for 0 <t < t. From the expression in (13), Eq.(14) simplifies to

i

5
—ih——— (0;1]0;0)5 = -

t/
t . K d K —iwk(t’—T) 1
el ©:610:08 [ dr Ka(oye (15)

which integrates out to

t t
(0:£]0; 0)% = exp (-% 3 / dr / dr'e () [ (1)O (r — T')Kk(T/)>
k 0 0
(16)

where ©(7 — 7') is the step function.

The functional F[K, K'], corresponding to the one in (7), may be worked
out in closed form. To this end, set K(t) = Ki(t) + Ks(t), with K;(t), Ks(t)
localized in time between (0,t), such that Ks(t) is “switched on” after the
source K(t) is “switched off”. That is, in particular, K5(¢) and K;(t) do not
overlap in time.

From (16) we may then write

(0;£]0; 005 = (0;£]0;0),* exp [Z ( / dT@‘“’“%K&‘(ﬂ)

k o0

X (/Oo dT/eiwkTihKl(T))] (0;t]0;0)5 (17

—00

where due to the fact that K (1), K5(7') are localized in time, we have extended
the time integrations in the middle exponential from —oo to oc.
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Let |n;ng,, Nk, - . . ), denote a state of n excitations, ny, of which in the
state k1, ng, of which in state ko, and so on, i.e., such that n = ng, +ng, +. ...
Then upon introducing the unitarity completeness property

(0;1]0; 0) 21 +Ee Z Z (0|70 My, M - - )02 (10 Ty, Ty, - - | 0)

n=0 (ng, +ng,+...=n)

(18)

where the intermediate states are evaluated at any time after the switching
off of source K; and before the switching on of source K5, and the Fourier
transform

dwk

Kult) = / e (19)

we obtain by expanding the middle exponential in powers of the source func-
tions Kix(wg), Kog(wy) the expression

i Nk1 i N2
(ﬁKkl(wkl)) (ﬁKkQ(wkz))
£]0;0)5 = (0;¢]0;0)5

nkll nkQ!

(M3 Mgy Mgy« - 5
(20)

for a given source K (t). The functional F[K, K'], corresponding to the one in
(7), is then given by

=3 Y e, t]0;0)F

n=0 (nk1+nk2+...:n)
X ((n, Ty Mgy - - - 5 1] 0; 0)?) (21)

and may be summed exactly over n giving
K 1 t
F|K,K'] =(0;t|0;0); exp ﬁzk: (/0 dTe‘”’“TKk(T))
t *
X (/ dr’ e_i‘“’"TIK/:(T,))] <<0§t|050>§,> (22)
0

which cannot be expressed as the product of two functionals one depending
on K and the other on K’, as expected. Formally one checks the unitarity
condition : F[K, K] =1 directly from (22).

Suppose that the physical system is initially in the ground-state, i.e., the
vacuum-state |0;0). The vacuum persistence amplitude of the physical system,
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in isolation from the environment, but in the presence of the external sources
F(t), F*(t) in (9), may be then inferred from (16) to be

1 t t ) ,
(0:£]0;0) = exp (—ﬁ / ar / dT'e—W—T)F*(T)@(T—T')F(Tq) (23)
0 0

From our general expression in (5), we then obtain for the vacuum persis-
tence probability of the physical system, in response to the environment,

Prob[(0;0) — (0: )] = O (O)* (0:]0; 0)" ((O;t|0; o>f’)* FIK K| (24)

where

i ¢ h o0 h 9 h o6 h ¢
= — d A — - /\*_ o 2
oo hZ/ T[’“i&F(r)iéK;(rﬁ ’“iéF*(ﬂiéKk(T)] )

and O’ similarly defined with F, F*, K, K} replaced, respectively, by F’, F"*,
K}, K';, and F[K, K'] given by the explicit expression in (22).

To evaluate the expression on the right-hand side of (24), we use, in the
process, the identity

ete? = exp (e Be ) e” (26)

for two operators A, B. We note that §/6F (1), 0/0F*(7), in (25), give rise to
translation operators, via O, to functionals of F' and F* as given, for example,
in (23), and similarly for 6 /0K (1), 6 /6 K*(7). The functional differentiations
operations in (24) are then readily carried for a physical system weakly coupled
to the environment, and after setting the classical sources equal to zero, we
obtain for the survival probability the expression

Prob[(0;0) — (0;t)] = exp (_2 3 |Aff?| /0 © /0 a7’ cos{(w — wi) (7' — T)]>
(27)

For the environment described by an infinite set of degrees of freedom, we
replace the sum over k by an integral over the frequency w, — w, and in turn
introduce a frequency density n(w’) to rewrite (27) as

t
o0 sin?(w' — w) =
Prob[(0;0) — (0;1)] = exp —%/0 dwl|)\(w/>|2n(w/>(uﬂ——w)2/42

(28)
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Upon introducing the integration variable x = (w’'—w)t/2, one may rewrite
the integral in (28) as

2t /OO dzx ‘/\(w(1+ i)) i n(w(l + Ty

—wt/2 wt

il (29)

If one makes the Markov approximation by assuming that |A(w’)[*n(w’) is
slowly varying around the point w’ = w, and hence for wt > 7, it may be
taken outside the integral evaluated at w, one gets for the integral in (29)

9 o sin? x
2N (w)2n(w) / dp ST (30)

2
—wt/2 xz

with increasing accuracy for wt > 7. And for wt > 7, we obtain from (28),
(30) the familiar exponential law

Prob[(0;0) — (0;t)]g = e (31)

where 7 is the decay constant 27| A(w)[*n(w)/k%. This expression is strictly
valid for /w < t < 1/~ consistent with the property of the decay of quantum
systems and the Paley-Wiener Theorem [cf. 7, §3.5], that the exponential law
may be valid for intermediate values of ¢t and not in the truly asymptotic limit
t — o0.

3 Conclusion

A general expression was obtained in (5) for the transition probability of quan-
tum systems when coupled to the environment, and in response to it, involv-
ing functional differentiations, with respect to classical sources, using func-
tional calculus techniques. It is important to note that as the functional F in
(7) cannot be written as the product of two terms one involving the sources
Fi, 81, F3, S3, and one involving the sources FY, S}, F5, S5, one necessarily has
to deal directly with transition probabilities of the physical system as it evolves
in time in response to the environment rather than amplitudes. In case the
amplitudes (b; t|a; O)Fi’Si in (5) are not explicitly given for the decoupled phys-
ical system from the environment, one may use the integral expression in (2)
to carry out various approximations suitable for the system in consideration.
The main analysis shows the power of the functional differential treatment,
involving functional differentiations with respect to classical, thus commuting,
functions. The method developed in this work will be extended to quantum
field theories, including gauge theories, in a subsequent report.
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A novel general expression is obtained for the graviton propagato{ from Lagrangian field theory by taking
into account the necessary fact that in the functional differential approach of quantum field theory, in order
to generate non-linearities in gravitation and interactions with matter, the external source 7},,, coupled to
the gravitational field, should a priori not be conserved 0"T),,, = 0, so variations with respect to its ten
components may be varied independently. The resulting propagator is the one which arises in the functional
approach and does not coincide with the corresponding time-ordered product of two fields and it includes
so-called Schwinger terms. The quantization is carried out in a gauge corresponding to physical states with
two polarization states to ensure positivity in quantum applications.

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

A basic ingredient in quantum gravity computations is the graviton propagator (cf. [1-5]. The latter mediates
the gravitational interaction between all particles to the leading order in the gravitational coupling constant.
In the so-called functional differential treatment [6-9, 11] of quantum field theory, referred as the quantum
dynamical principle approach, based on functional derivative techniques with respect to external sources
coupled to the underlying fields in a theory, functional derivatives are taken of the so-called vacuum-to-
vacuum transition amplitude. The latter generates n-point functions by functional differentiations leading
finally to transition amplitudes for various physical processes. For higher spin fields such as the electromag-
netic vector potential A#, the gluon field A%, and certainly the gravitational field h*”, the respective external
sources J,,, Jf}, T,.., coupled to these fields, cannot a priori taken to be conserved so that their respective
components may be varied independently. The consequences of relaxing the conservation of these external
sources are highly non-trivial. For one thing the corresponding field propagators become modified. Also
they have led to the rediscovery [6,7] of Faddeev-Popov (FP) [12] factors in non-abelian gauge theories and
the discovery [7] of even more generalized such factors, directly from the functional differential treatment,
via the application of the quantum dynamical principle, in the presence of external sources, without making
an appeal to path integrals, without using commutation rules, and without even going to the well known
complicated structures of the underlying Hamiltonians. A brief account of this is given in the concluding
section for the convenience of the reader.

For higher spin fields, the propagator and the time-ordered product of two fields do not coincide as the
former includes so-called Schwinger terms which, in general, lead to a simplification of the expression for
the propagator over the time-ordered one. This is well known for spin 1, and, as shown below, is also true

* Corresponding author E-mail: manoukian_eb @hotmail.com

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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for the graviton propagator. Let h*" denote the gravitational field (see Sect.2). We work in a gauge
oY =0, (1)

where 1 = 1,2,3; v = 0,1, 2,3, which guarantees that only two states of polarization occur with the
massless particle and ensures positivity in quantum applications avoiding non-physical states. Let 1T},,,
denote an external source coupled to the gravitational field h* (see Sect.2), and let (0 | 0_>T denote
the vacuum-to-vacuum transition amplitude in the presence of the external source. The propagator of the
gravitational field is then defined by

VioA AN s 4 s g T T
A% <x,x>—1<< ) () 57— (010-) ) / (04 10-)7 @)

in the limit of the vanishing of the external source 7},,,. In more detail we may rewrite (2) as

T
T 0 hd)\(w/) 0_>
0 RV ha)\ / 0_ < + 5T¢uz
Ai";aA(x,x') _ 1< +‘( (1‘) (I ))Jr‘ > + pv(z) (3)

(040" (040"
in the limit of vanishing 7},,,, where the first term on the right-hand side, up to the i factor, denotes the time-
ordered product. In the second term, the functional derivative with respect to the external source T}, (x)
is taken by keeping the independent field components of h°*(z') fixed. The dependent field components
depend on the external source and lead to extra terms on the right-hand side of (3) in addition to the time-
ordered product and may be referred to as Schwinger terms. For a detailed derivation of the general identity
in (3) see [10] (see also [11]). These additional terms lead to a simplification of the expression for the
propagator over the time-ordered product. Accordingly, the propagator and the time-ordered product do not
coincide and it is the propagator A‘jf"” that appears in the functional approach and not the time-ordered

product. The derivation of the explicit expression for Af‘f:"” (z, ") follows by relaxing the conservation of
T,,, and it includes 30 terms in contrast to the well known case involving only 3 terms when a conservation
law of T},, is imposed. It is important to emphasize that our interest here is in the propagator, the basic
component which appears in the theory, and not the time-ordered product. In the concluding section, some
additional pertinent comments are made regarding our expression for the propagator. A brief account on
how FP factors arise directly in gauge theories in the functional differential formalism, in the presence of
external sources, is also given. Our notation for the Minkowski metric is g*¥ = diag[—1, 1, 1, 1], also quite
generally we set ¢, 7, k,l = 1,2,3,a,b = 1,2, while y,v,0, A = 0,1,2, 3.

2 The graviton propagator
For the Lagrangian density of the gravitational field 2*" coupled to an external source 7},,,, we take
L= =30 Oohy + 30N 0ah’ 5 — 0% hap0"h7
+ 20,0 0P hg, + L0ah* L0 AY + BT, (4)

where h*" = h"*, and as a result T}, is chosen to be symmetric. We consider the ten components of
T,,, to be independent by, a priori, not imposing a conservation law for T},,. The action corresponding
to the Lagrangian density in (4), in the absence of the external source 7T},,, is invariant under the gauge
transformation h*” — hHY + OFEY + OV EM + 0P O E. The gauge constraint in (1) allows us to solve, say,
hs,, in terms of other components:

h30 - _(63)718{1}7‘(10: h3a, = _(63)71617}7411(17

-1 P )
hss = —(03) ™ 0ghse = (03) " “0aOphay ,

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.fp-journal.org
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where a, b = 1, 2. Upon substituting the expressions for hs,, in (4), and varying hp, we obtain

9 Oa
(Ohap 4 Tap) — == (Ohas + Taz) — — (Thps + Tis)
83 83

040 [
+ == (Ohss + Ts3) + |6ap +
(83)2( 33 + T33) b

0,0
(03)?

] (8%hgo — Ohy;) =0, (6)

a,b = 1, 2. Upon multiplying (6) by (8,5 — 9,05/8?), where 8% = 97;, i = 1,2, 3, some tedious algebra
leads to

1 1 0;0;
—8%hoo = —50hi+ 5 (5ij - a—gj) Tij - )

On the other hand, with the expressions for k3, in (5) replaced in (4), variations with respect to hog, hoq,
a =1, 2, give, respectively,

~8%hy; = Too s (8

du D
—8%hoq + 3_332h°3 = (T()a - 8_3T03> : )

We note that (9) is valid if we formally replace a by 3 since this simply gives 0 = 0. Accordingly, we
may rewrite (9) as

—~8hoi + 8_382h03 = Tpi — 8_3T03 ; (10)

where i = 1, 2, 3. Upon taking the divergence 9° of (10) and using (1), we obtain

0; ; 8?
Z28%hos = — | 0:Ty; — —T, 11
B, 03 = 53 ( itoj = 5. 03>, (11)

which upon substitution in (10) gives
0;0;
—8%hg; = (Jij — —7) To,- (12)
Also upon substitution (8) in (7), and using the fact that O = 8% — 92, we obtain for (7)

T 1
—8%hoo =Too + = — —

B 282 (6060T00 + Q;GJTU) 5 (13)

where " = g T, =T",.

Eqgs. (8), (12), (13) are not equations of motion as they involve no time derivatives of the corresponding
fields and they yield to constraints which together the gauge condition in (1) give rise to two degrees of
freedom corresponding to two polarization states for the graviton as it should be.

We now substitute the expression for —82h00, as given in (13), in (6) and use (8) to obtain an equation
involving h;j, i, = 1,2,3. Upon multiplying the resulting equation from (6) by 0,0, and using the
expressions for h3s in (5) we obtain after some very tedious algebra

www.fp-journal.org © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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1 03)? 1 o
(Ohss + T33) — 5 (1 &) > T+ —5 (=0°9°Tyo + 0'0°Ty;)

2 2 28°
2 (83)2 (09 999°
— ?a 83Ti3 + 282 82 Tij + 82 T()o =0. (14)

Similarly, upon multiplying (6) by J, and using the expression for f3 in (5), we obtain

1 , , Op03 (007 9%9°
(Ohis + Ts) — 3 {8381Tib + 0y0"T3 — b2 - < 5 Ti; + e Too + T)] =0. (15

To obtain the equation for h,p, we substitute (14), (15) in (6), to obtain after some lengthy algebra

(Ohay + Tp) — - (m - %> T — 2 (0u0 Ty + O Tia)

2 8 8
dab (50507 0 + GO, 9D gigiT, 4 9099Tyy) = 16
+282<7 00+ ij)wLW( ij T 00) = 0. (16)

Egs. (14)—(16) may be now combined in the form

1 0;0; 9°9°
—0h;; =T — 3 (51']‘ - 82]) (T + PE T00>

1 1 0;0;
— ? [aiakaj + 8jakai 3 (5ij + (;2]) 8’“8lTkl] , (17)
where ¢, 5, k,l = 1,2, 3.
Egs. (17), (13), (12) give the equations for the various components of /2,,,.. To obtain the unifying equation
for h,,,, we note that we may write
W = g"hijg” + 9" hiog™ + g"°hojg"” + " hoog®™” (18)

withi,j =1,2,3; 4, v =0, 1,2, 3, and use in the process the identity

9" 0; = (9" + N"dy), (19)
where N* is the unit time-like vector (N# N, = —1)
(N*) = (g"0) = (1,0,0,0). (20)

Finally, we use the identity relating a tensor A, e.g., to the components A;; as follows:
gHiAijng _ |:gu>\gua + NuNx\gUV + NVNUg)\u + NHNVN)\NO':| A)\aa (21)

and the fact that 0 = 8 — 8°°. A lengthy analysis from (12), (13), (17) then gives the following explicit
expression for A*":

B —

1 gp.)\gua' +g,uagl/)\ _ gul/go)\
(—O0 —ie) 2

9”97 O

82

* 357 [Q”Vaf’aA gD — 0O — DD — 70O — gD +

©2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.fp-journal.org
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1 w oro” N + NX9° 1 oA 079> NYOH + NHOY
+ 5 g + 5° 5 Oy + 5 g "+ 5 5 0o
1

o § [gua(Nua)\ +N)\a;t) +gu)\(N;Laa +Ncra;t)

+g"T(NYON 4 NA9") + g (N0 + N79)] %

O 0T
+ g NN+ NN }TM

1 | orov 979
+ 5 {FN”NA 52 N“N”} Tox, (22)

e — +0.
From (22) the explicit expression for the graviton propagator Ai”;”’\ (z,x') emerges as:

A'iV;JA(.%',.T/) :/ (dk) eik(l‘—x')

AP () AL (R)
(2m)?

k2 —ie k2

) (23)

¢ — +0, where (dk) = dk°dk!dk2dk3, k? = k? — k°, and

(gp.)\gucr +g,uagll/\ _ g,ul/ga)\)

A;u/;)\a k) =
) 5
1
+ W |:gMV]{;Gk/\ +ga)\kuk.u _ guakuk)\ _ gu/\kuko _ g;wkyk)\ - gu)\kyka
EFEY RO EA
e
1 kH kY NOEN - N ko 1 ko kA NVEE 4 NV
B Gl +2 K= S 97+ — +2 %0
1
*3 [QW(N“’“A + N kM) + g"M(N#k° + N7kH)
A A A K0
+g”0(N”k + N k‘”)+g“ (NVkU+NO-kV):|?
kMY R
+ —5N°N*+ —5-N\N", (24)
k k
. kHEY R
Agu,ko(k) — k2 NUN)\ + k2 NHENY . 05)

The vacuum-to-vacuum transition amplitude for the gravitational field coupled to an external source is
then given by

(0, 10)7 = exp [% / (da)(d2’) T (2) A7 (2, ') Ty () (26)

with the graviton propagator given by the explicit expression in (23)—(25). Now we are ready to make
pertinent comments concerning the graviton propagator thus obtained.

www.fp-journal.org ©2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



202

1286 E.B. Manoukian and S. Sukkhasena: The graviton propagator

3 Conclusion

We have derived a novel expression for the graviton propagator, from Lagrangian field theory, valid for
the case when the external source T}, coupled to the gravitational field is not necessarily conserved, by
working in a gauge where only two polarization physical states of the graviton arise to ensure positivity in the
quantum treatment thus avoiding non-physical states. That a conservation should a priori not to be imposed
is a necessary mathematical requirement so that all the ten components of the external source T}, may be
varied independently in order to generate interactions of the gravitational field with matter and produce
non-linearity of the gravitational field itself in the functional procedure. The latter requirement arises by
noting that such interactions are generated by the application (cf. [6,7]) of some functional F'[—i§ /6T,
to (04 |0_>T, where (01 |0_) corresponding to other particles, as well as functional derivatives of their
corresponding sources in F', have been suppressed to simplify the notation. Accordingly, to vary the ten
components of T}, independently, no conservation may a priori be imposed. The 1/ k? terms in (23)-(25)
are apparent singularities due to the sufficient powers in k in the corresponding denominators and the three-
dimensional character of space, in the same way that this happens for the photon propagator in the Coulomb
gauge in quantum electrodynamics, and give rise to static 1/r type interactions complicated by the tensorial
character of a spin two object. It is important to note that for a conserved 7},,,, i.e., for ONTW = 0, all the
terms in the propagator in (23), with the exception of the terms (g"*g" + gH? g"* — g"*g*)/2 in (24),
do not contribute in (26) since all the other terms in (24), (25) involve derivatives of 1},,, and the graviton
propagator Ai”;“’\ (z,2") effectively goes over to the well documented expression

L (99" +9g"g" — g"g"")

(—0 —ie) 2 ’
which has been known for years (cf. [1,2]). This is unlike the corresponding time-ordered product which does
not go over to the result in (27) for 0*1),, = 0. This may be shown by solving for the time-ordered product
in (3) in terms of the propagator and carrying out explicitly, say, the functional derivatives §h% /6T,
6h%9 /8T, as arising on the right-hand side of (3), by using, in the process, Egs. (12), (13). In any case,
it is the propagator A’f;")‘, as given in (23), is the one that appears in the theory and not the time-ordered
product as is often naively assumed. After all the functional derivatives with respect to T}, are carried
out in the theory, one may impose a conservation law on 7}, or even set 1}, equal to zero if required
on physical grounds. Such methods have led to the discovery [6,7], in the functional quantum dynamical
principle differential approach, of Faddeev-Popov (FP) factors, and of their generalizations, in non-abelian
gauge theories such as in QCD and in other theories.

Re-iterating the discussion above, the relevance of the analysis and the explicit expression derived for
the graviton propagator for, a priori, not conserved external source 7}, : 0*T),,, # 0 is immediate. If, in
contrast, a conservation law is, a priori, imposed then variations with respect to one of the components
of T}, would automatically imply, via such a conservation law, variations with respect some of its other
components as well. A problem that may arise otherwise, may be readily seen from a simple example. The
functional derivative of an expression like [a,,,(x)+b(2)9,8,|T*" (x), with respect to a component 77 (z”)
is (1/2)[au (@) + b(2)0,0,](65 65 ¥ + 6x "85 ¥)6*(z,2"), where a,,(z), b(z), for example, depend
z, and not (1/2)a,, (z) (86, #6x ¥ + 0\ "6, )% (x, 2) as one may naively assume by, a priori, imposing
a conservation law. Also, as mentioned above, the present method, based on the functional differential
treatment, as applied to non-abelian gauge theories such as QCD [6,7] leads automatically to the presence
of the FP determinant modifying naive Feynman rules. The physical relevance of such a factor is important
as its omission would lead to a violation of unitarity. For the convenience of the reader we briefly review,
before closing the concluding section, on how the FP determinant arises in the functional differential
treatment [6,7].

Consider, for simplicity of the demonstration, the non-abelian gauge theory with Lagrangian density

27

pv oo

1
L= =G G + LA, (28)

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.fp-journal.org
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where J! is an external source taken, a priori, not to be conserved. Here

G, = 0, AL — 9, A% + go f*"° AL A (29)

pv

We work in the Coulomb gauge. The gauge field propagator, in analogy to the graviton one in (24), (25), is
given by

(#9” + N19¥ 9y + NYO#3), 1

DM = §uplg™” —
ab 5 b[g 82 } (7D IR 15) (30)
with k = 1,2, 3.
The quantum dynamical principle states that
o (04]0-) =104 [ (do) - () l0-) G
ago + -/ + ago =/
where, with k = 1,2, 3,
a abc Ab c kO 1 c vkl

and G*' may be expressed in terms of independent fields, that is, for which the canonical conjugate momenta
do not vanish. On the other hand, G¥° depends on the dependent field AY. By using the identity

() 577 (0+] 0@ 10-) = 04 (L) @)1 10) =1 04] 0@ 0) G

for an operator ¢ (z), where (...);+ denotes the time-ordered product, and the functional derivative
00 (x)/dJk (") in the second term on the right-hand side of (33) is taken by keeping the independent
fields and their canonical conjugate kept fixed in &'(x), after the latter is expressed in terms of these fields,
together, possibly, in terms of the dependent fields and the external current [7, 10].

From the Lagrangian density in (28), the following relation follows

GFO = 7F — 9% Dy Jp (34)

as a matrix equation, where ¥ denotes the canonical conjugate momentum of A*, and D,y is the Green
operator satisfying

|:5ac82 +gofa.bcA}];aki| D“d(x,x';go) _ 54(1}71}/)(50'(1 ) (35)

Accordingly, with, a priori, non-conserved J# (z’), we may vary each of its components independently to
obtain from (34)

g kO _ 5 09k .
5J5(ZEI) Ga (‘T) - 6# a DaC(x7x 7.90)' (36)

Hence from (32), (33), and (36), we may write

9 9 " ,
0] - 2()[0-) = [( e ) AL D (a1, | 0102) 37)

where the primes mean to replace Aj, () in the corresponding expressions by the functional differential
operator (—i)d/0Jt (z).
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Clearly, upon an elementary integration over g, in (31) by using, in the process, (37) and the equation
for D¢ in (35), we obtain the FP determinant

exp Trln [1 —1ig, % A;a’@} (38)

as a multiplicative modifying differential operating factor in (0. | 0_). For additional related details see [6,7]
and also for further generalizations of the occurrence of such factors in field theory.

Itis interesting to extend such analyses [6,7], as well as of gauge transformations [6], and covariance [13],
to theories involving gravity. This would be exponentially much harder to do and will be attempted in further
investigations. In this regard, our ultimate interest is in aspects of renormalizability [ 14] and rules for physical
applications that would follow from our, a priori, systematic analysis carried out at the outset, in a quantum
setting with the newly modified propagator, by a functional differential treatment, in the presence of external
sources, to generate non-linearities in gravitation and interactions with matter.
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After establishing the positivity constraint and spin content of the theory for gravitons interacting with a
necessarily, and a priori, non-conserved external energy-momentum tensor, the expectation value formal-
ism of the theory is developed at finite temperature in the functional differential treatment of quantum field
theory. The necessity of having, a priori, a non-conserved external energy-momentum tensor is an obvious
technical requirement so that its respective ten components may be varied independently in order to gener-
ate expectation values and non-linearities in the theory. The covariance of the induced Riemann curvature
tensor, in the initial vacuum, is established even for the quantization in a gauge corresponding only to two
physical states of the gravitons as established above. As an application, the induced correction to the metric
and the underlying geometry is investigated due to a closed string arising from the Nambu action as a solu-
tion of a circularly oscillating string as, perhaps, the simplest generalization of a limiting point-like object.
Finally it is discussed on why the geometry of spacetime may, in general, depend on temperature due to
radiative corrections and its physical significance is emphasized.

(© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The graviton propagator [1-6] plays a central role in the quantum field theory treatment of gravitation. It
mediates the gravitational interaction between all particles to the leading order in the gravitational cou-
pling constant. It is well known that in the functional differential formalism of quantum field theory,
pioneered by Schwinger [7], functional derivatives (e.g., [7-12]) are taken of the so-called vacuum-to-
vacuum transition amplitude (0 |0_) with respect to external sources, via the application, in the process,
of the quantum dynamical (action) principle (e.g., [8, 11, 12]) to generate non-linearities (interactions) in
the theory and n-point functions leading finally to transition amplitudes for various physical processes.
[For a recent modern and a detailed derivation of the quantum dynamical principle see [12].] For higher
spin fields such as the electromagnetic vector potential A*, the gluon field A%, and, of course, the grav-
itational field h*”, the respective external sources .J,,, Ji, T},., coupled to these fields, cannot a priori
taken to be conserved so that their respective components may be varied independently in the functional
differentiations process. A problem that may arise otherwise, may be readily seen from a simple example
given in [1]: The functional derivative of an expression like [a,,,, (x) + b(2)9,,0,]T*¥ (x), with respect to
ToMNa') is (1/2)[auw(z) + b(2)0,0,](85 HO\ ¥ + 65 *65 V)0%(x, 2"), where a,,, (z), b(z), for example,
depend on x, and not (1/2)a,, (z)(0s 05 ¥ + 6x "6, V)04 (x, 2') as one may naively assume by, a priori,
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imposing a conservation law on T"¥(x) prior to functional differentiation. The consequences of relaxing
the conservation of the such external sources are highly non-trivial. For one thing the corresponding field
propagators become modified. Also they have led to the rediscovery [8,9] of Faddeev-Popov (FP) [13]-like
factors in non-abelian gauge theories [8, 9] and the discovery of even further generalizations [9] of such
factors, directly from the functional differential treatment, via the application of the quantum dynamical
principle [12], in the presence of external sources, without making an appeal to path integrals, without us-
ing symmetry arguments which may be broken, and without even going into the well known complicated
structures of the underlying Hamiltonians. An account of this procedure, which is also pedagogical, was
given in the concluding section of [1] for the convenience of the reader and needs not to be repeated.

For higher spin fields, the propagator and time-ordered product of two fields do not, in general, co-
incide as the former includes so-called Schwinger terms which, in general, lead to a simplification for
the propagator over the time-ordered one. This is well known for spin 1 and is also true for the graviton
propagator [1]. Let A*¥ denote the gravitational field. We work in a gauge

9;h" =0, (1.1

where i = 1,2,3; v = 0,1, 2, 3, which, as established in Sect.3, guarantees that only two states of polar-
ization occur for the graviton even with a non-conserved external source 7),,, in the theory.

If we denote the vacuum-to-vacuum transition amplitude for the interaction of gravitons with the exter-
nal source 7T}, by (04| O,)T, then the propagator of the gravitational field is defined by

2w =1 () 7y D gy 04107) /041017 0

in the limit of the vanishing of the external source T,,,. In more detail we may rewrite (1.2) as
T
)

in the limit of vanishing 7},,,, where the first term on the right-hand side, up to the i factor, denotes the
time-ordered product. In the second term, the functional derivative with respect to T}, (x) is taken by
keeping the independent field components of h“* (') fixed. The dependent field components depend on
the external source and lead to extra terms on the right-hand side of (1.3) in addition to the time-ordered
product and may be referred to as Schwinger terms. For a detailed derivation of the general identity in
(1.3) is given in [12] (see also [11]). It is the propagator Ai”“”\ that appears in this formalism and not the

(oo Jo) (0[5

(00" (04]0)"

(1.3)

AN g, a') = 1

time-ordered product. The propagator Aiw”\ (x, 2") has been derived in [1] and will be elaborated upon in
Sect. 2. It includes 30 terms in contrast to the well known one involving only 3 terms when a conservation
law of T}, is imposed. The positivity constraint of the vacuum persistence probability | (04 [0_) |? < 1, as
well as the correct spin content of the theory is established in Sect.3 for, a priori, non-conserved external
energy-momentum tensor.

The expectation value formalism, pioneered by Schwinger [14], also known as the closed-time path
formalism, in quantum field theory has been a useful tool in performing expectation values without first
evaluating transition amplitudes. For a partial list of studies of the expectation value formalism, the reader
may refer to [15,16] in the functional differential formalism. See also related work in [17-20] emphasizing
on non-equilibrium phenomenae and [21-23] emphasizing Feynman path integrals.

In order to study gravitational effects such as the induced geometry due to external sources and even due
to fluctuating quantum fields, the expectation value formalism turns out to be of practical value. In Sect. 4,
we develop the expectation value formalism for gravitons interacting with an external energy-momentum
tensor 7}, at finite temperature with a priori not conserved T},,,, so that variations with respect to its ten

© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.fp-journal.org
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components may be varied independently in order to generate expectation values. After all the relevant
functional differentiations with respect to T}, are carried out, the conservation law on 7}, may be then
imposed. We establish the covariance of the induced Riemann curvature tensor, in the initial vacuum, due to
the external source, in spite of the quantization carried out in a gauge which ensures only two polarization
states for the graviton. As an application, we investigate the induced correction to the metric and the
underlying geometry due a closed string arising from the Nambu action (e.g., [24-26]) as a solution of a
circularly oscillating string [27-30] as, perhaps, the simplest generalization of a limiting point-like object.
Finally, it is discussed on why the geometry of spacetime may, in general, depend on temperature due
to radiative corrections and its physical significance is emphasized. The Minkowski metric is denoted by
[Mwv]=diag[-1,1,1,1], and we use units such that h = 1,¢ = 1.

2 Graviton propagator and vacuum-to-vacuum transition amplitude

The action for the gravitational field h** coupled to an external energy-momentum tensor source 7}, is
taken to be

_ 1
T 81G

(d) 2 () + / (da)h (2) Ty (2), @.1)
with
1 RN 1 o B fe% X
.,2”:—58 h 8ahm,+§8 h? s0ah” g — 0%ha, 0" h° &
L ouher oo h L ot 0, m
+§a [ﬂu+§a vpu ) (22)
and G is Newton’s gravitational constant. The action part [ (dz).# is invariant under gauge transformations
M (x) — b (x) + &Y (x) + 0VEH (x) + 910" E(x), (2.3)
As mentioned above the external energy-momentum tensor 7}, is, a priori, taken to be not conserved
so that variations of its respective ten components may be varied independently - a necessary technical
requirement. Details on dependent fields due to the gauge constraints are spelled out in [12] as well as

in [1].
The vacuum-to-vacuum transition amplitude is then given by [1]

(0410_)" = exp {47@1 / (da) (2 ) Ty () AKX (2, 2" Ty a () | (2.4)

(dz) = dz®dztdz?das. (2.5)

Here we note that the exponent is scaled by the factor 87G to satisfy the boundary condition that the
gravitational attraction of two widely separated static sources is given by Newton’s law [2]. The graviton
propagator Ai";” (z,2") contains 30 terms and not only just the first 3 terms as may be naively expected,
and is given by

174 (dk) ik(z—x' A‘“/;O-A(k) AHV;OA(k)
A/*A(“ﬁc"z’l):/(27r)4ek( N T | 2o
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€ — +0, where (dk) = dk0dk!dk2dk3, k2 = k? — k°°, and

np)\nua 4 ’T]MO’UV)\ _ ,qp,l/no’)\)

%9 o (
AP (k) = .

1
4+ [7}“”%"1& + naAk,uku o nuakukk o T]V)\k,uk,a'

2k

W1V .0 LA
7nuokyk>\*17HAkuka+ krEV Kk ]

k2

1 kHEY NokX + N e
— =+ = +2 K0
2 k k

1 . kK NYEF + NFEVN
E(n +k2)( 2 )k

1
+2 [n"”(N”M £ NARR) 4 (NPRS + Nk

k
+ T (NRY + NYRY) 4 ) (NVR + NR)|

kHkY ko kA
NN +

* K2 k2

NENY |

AL (k) = S5

0
K2

2.7)

(2.8)

Here (N*) = (n*o) = (1,0,0,0). The ie factor in (2.6) corresponds to the Schwinger-Feynman boundary

condition.

It is far from obvious that with a non-conserved energy-momentum tensor, the vacuum-to-vacuum am-
plitude (04 |0_) in (2.4) satisfies the positivity constraint | (04 |0_) |> < 1. This together with the correct

spin content of the theory is established in the next section.

3 Positivity constraint and spin content

We rewrite the vacuum-to-vacuum transition amplitude (04 |0_) in (2.4) as
01017 =exp 156 [ (@) ()17 (0)]

with
T H" = TooH™ + 2T, HY + T;; HY

i,7 = 1,2, 3, and we may infer from Eq.(13) in [1] that

HO — _ — |poo L

1 T -
& { 5~ 357 (00T + 9P Ty)|

T = Ty; — Too, and H is real. Also from Eq.(12) in [1], we may infer that

) 1 - i HI
H()l:i? |:6” — La :|T0j7

(© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

(3.1

(3.2)

(3.3)

(3.4)
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which is again real. That is,

exp {47@1 / (dz) (Too(z)H" (z) + 2T0i(x)H0i(z))} (3.5)

is a phase factor.
On the other hand, we may infer from Eq.(17) in [1] that

g 1 iy 11 (o 00
HY = 7(_[] — 16) AZ]’lmﬂm - 5 6_ (6 7 — > T00> (36)

and the second term above involving Ty is real, while A'™ is given by

(SiZSjm + Simsjl _ BijSZ'm,)

Avibm — — 9™ + 0l + 079'8™ + 7!
2 20
o - i 97 Hlom
+ aza]&lm o szjalam _ %} , (37)
where i, j,l,m =1,2,3.

Accordingly, from (3.1), (3.5)-(3.7), we may rewrite

(04 10.)7 = ¢ exp [47TG1 / (dz) Ty, (;L')(Tl,)A”’lmﬂm(x) , (3.8)
-0 —ie

where expiG[T] is a phase factor.
By using the facts that the reality of T}, (x) implies that T;; (k)* = T;;(—k), where (k*) = (k°, k), and
the identity

if 1 R N S i
(k2 ie k2—|—i€) =—mo(k7) = K| [6(° — [k[) + 8(k” + [k)] (3.9

for e — 40, in the sense of distributions, we obtain that
((o+ [0_) ‘ = exp { 871G / dwi T (k B"j’lm(k)Tlm(k)} , (3.10)

where now k° = +|k|, dwy, = d3k/(27)32|k|, and

y 1 ; k'Lt ki k™ ; Ek™ o KR
ij,lm _ = il jm. im gl Mo
mim ) = 3 |67 - e - B e - Bt - B
i KR e KE™
— (87— )" - =5 )]7 (3.11)

with i, j,[,m = 1,2, 3 as before.
For a given 3-vector k, we introduce two orthonormal complex 3-vectors e, e_,

e -ef=1l=e_-€e", e;-e” =0 (3.12)

such that k/|k|, e, e_ constitute three mutually orthonormal vectors. That is, in addition to the conditions
in (3.12),

k-ey =0, k-e.=0 (3.13)
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Upon writing

= |k|(cos ¢sin 6, sin ¢ sin 6, cos 0)

we may set
1 . . . .
e, = E(cosgbcos@ —isin ¢, sin ¢ cos@ +icos @, —sinb),
1 . . . .
e = E(cosqﬁcos@—|—1s1n<;5,s1n<;5c0s9 —icos ¢, —sind),

The above allows us to introduce the completeness relation
P
] T %)
- Z exey + |k\2
A=+

. kikI
Z ey ef\ E
In turn, we may define polarization 3x3 tensors by

1
egja =3 [ e 4 el e/\—S)\Je e]*}

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

with )\, o, @ = &£, and a summation over the repeated index « is assumed, and note that after some algebra,

B! in (3.11) may be rewritten as

ij.,lm _ *lm
B E 6’/\06’)\0 -
Ao==+

Using, in the process, (3.19), we note that

ij _ iy _

ey, =0, e’ =0,
and

ijo_ i) — i)

ell_=celel = €],

i i o ij

e, =elel = €
thus defining the two 3x3 tensors €Y, € 7 and rewrite (3.20) as

ij,lm iy Im

B = g €x e/\

A==

From (3.10), (3.11), (3.24), we conclude that

‘<0+‘07>T‘2 — exp —87rG/dwk/\2:i (2560) (&1 | <1

(© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

(3.20)

(3.21)

(3.22)
(3.23)

(3.24)

(3.25)
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with equality holding in the limit of vanishing 7},,,, thus establishing the underlying positivity constraint, as

well as the correct spin content of the theory with the graviton having only two polarization states described

by €, € for a theory with, in general, a not necessarily conserved external energy-momentum tensor.
The scalar product in (3.25) may be rewritten from (3.24) as follows

/dwk Z lm*ﬂm) — /dwkT;;BijA,lmTlm

= /(dx)(dx')Tw,(x)C‘“’*"p(z, ) Typ(2'), (3.26)
where
CW/’JP(,CE,Z‘/) _ /dwkeik(zfxl)ﬂ_;w,ap(k), (3.27)
TR (R) = L (BT Y + BT — B7P) (3.28)
kHEY NHEY  NVEH
nz _ Y _ _
Nk = Nok® = —k° = —|K|. (3.30)

4 Gravitons and expectation value formalism at finite temperature

For book-keeping purposes, we use the notation
VBrG e Tim (k) = S(k, ), 4.1

and conveniently introduce a discrete notation [2, 31] for the momentum variable k by writing, in the
process, (k, ) = r for these pairs of variables and in turn use the notation S, for S(k, \). A scalar product
as in (3.25) then becomes simply replaced as follows:

817G / dwkg (Ti*jegf) ( lm*:nm) - ET:S:ST. “2)

With the above notation, and for any two, a priori, independent, not necessarily conserved, sources 7'

v
T7,, we introduce the functional

FINT1=3" S (0_|N;Ny,Nayoo)™ (N Ni, Nay e[0T (4.3)
N Ni4+Naot..=N

where NV denotes number of gravitons, N; of which have momentum-polarization index r;, and so on,

1
with (N; Ny, Na, .. .| 0,>T denoting the amplitude that these N gravitons are emitted by the source 7',
and is given by

m (iS))M (15}2)N2
VN VN T

The expression for the functional . [T, T?] may be summed exactly by using, in the precess, (4.4), to
give

FIT, T2 = (<o+|0,>T2)* (<o+|o,>T1) exp {Sﬂ'G/dwk 3 T;f ;) ( ’m*Tlm)], 4.5)
A==+

(N; N1, Na, ... | 0T = (04]0_) (4.4)
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where we have restored the integration signs. From (4.3), we realize that for the special case that T;V and
T?  are equal, we have by unitarity

nv
ZT,T)=(0-10)" =1, (4.6)

which also follows readily from (4.5) and the left-hand side equality in (3.25).

In the expression for Z [T, T?], we write T' = Ty + T, T? = Ty + T}, where T} is switched on
after T is switched off, and T3 is switched on after T5 is switched off, to obtain from (4.3) and (4.5),
respectively,

T+ T{, Ty +Tg) = 3 (0| N: Ny, Na, ... ) (NG Ny, Ny, J0o) T
(N)

= 3 (0-|N;Ny,Noy.. ) (N3 Ny, Noy oo | M3 My, M, )57

(N), (M)
X (M; My, My,...|0_)" (4.7)
where
(N; Ny, Noy .. | M; My, M, )™ = 37 (N; N Na, . | Ly Ly, Lo, )
(L)
X (L; Ly, Lo, ...|M; My, Ma, .. )™, (4.8)
with Z(N) denoting a sum over non-negative integers IV, N1, No, ... such that Ny + No + ... = N, and

similarly for Z(M), E(L), and
FTy +T], Ty + T3) = FIT, Ty exp[S5 1] (<o+|o_>T2) (0410)™)

x explS5 (S — S3)] exp[—(S)" = 557) 1], 4.9)

where the scalar product S5.51, for example, is defined as on the right-hand side of (4.2) with a sum

over r. Upon comparison of the two equivalent expressions for # [Ty + T, T> + T3] in (4.7) and (4.9),
2 1

we obtain, in particular, for the diagonal term (N; Ny, Na,...|N; Ny, Na, .. .)T T

L. . 1 g2 fan-
priori, independent and not necessarily conserved sources T,,,, T};,,, the expression:

, valid for any two, a

(N5 N1, No,. --\N§N1,N27--~>T2’T1 = (N1!INo!- ")y[TlaTg]
Sl* 82*)(51 _ SZ )]Ni*mi

XZ H T[N P .(4.10)

where Z* stands for a summation over all non-negative integers my, mo, ... such that 0 < m; < N,
1=1,2,...

We now perform a thermal average [16] of (N; N1, Na,...| N; N1, No, .. .)TZ’T1 by multiplying, in the
process, the latter by the Boltzmann factor [ ], (exp —|k;|) and summing over (N), where § = 1/Kr,
and we have used the notation K for the Boltzmann constant and 7 for temperature in order not to confuse
it with the trace 7" of an energy-momentum tensor. This gives the statistical thermal average:

(T = TE)eX 8™ (T — i)
(emk‘ — ]_)

FITY, T% 7] = Z[T*, T% 0] exp —877G/dwk Z . (4.11)
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In particular, we note from (4.5), (4.6), (4.11) that for the special case that Tl}w Tlfy are identical, we
have the consistent normalization condition

F|T,T;7) = 1. (4.12)
We also verify directly from (4.11) that
FT',T%0) = Z[T, 17, (4.13)

as expected.

As we have not imposed conservation laws on T,}u Tﬁy we may vary each of their respective ten com-
ponents independently to obtain from the quantum dynamical principle [7, 12, 14] as applied, respectively,
and in the process to (L; L1,...|M; My,...)" and (N;Ny,...|L; Ly,..)" in (4.8) with T/, T3 in it

replaced by T, T2, the thermal average (h*” (x))f of the gravitational field

é
(N = (=i FITY, T% 1
(¥ ()7 = ( )ST,}U(SC) [ ]TI:T2:T
)
=(i FIT', T% 1 , (4.14)
ez,
generalizing the expression for (0_| h# () |0_)" given by
(O 11 (2)]0)" = (—i) s — F(1,72)
STW(z) T1=T2=T
= (i) =——ZF[T', 17 , (4.15)
()ST,?V(I) [ ] e

from zero to finite temperature.
From (4.11), (4.5), (3.26), the generating functional .Z [T, T'?; 7] may be rewritten as

FIT T2 7] = ((0410)7 ) ((0+10-)")

X xp {sﬂc / (d) (da')T2, () CP70 (2, o )T (x/)}

op
X exp |:87TG /(dx)(d;r’)(ij(x) _ Til/(x))Duu,op(I’x/; T)(T;p(:n’) B Tfp(:r’)) (4.16)

where CH"7°(x, ') is defined in (3.27), and

P ()

(e—BNK) _ 1) @17

D'LW’UP(.T,xl;T) _ /dwkeik(xfx/)

Nk = N,k = —k¥ = —|k|, where 7#":?P (k) is given in (3.28).
We note that the temperature dependence occurs only in the last exponential in (4.16) through
DHoP(x, 2'; 7). We eventually set T, = T2, after the relevant functional differentiations with respect

to these sources are taken. For 7 — 0, the last exponential in (4.16) is equal to one, giving the relation in
(4.13).
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5 Covariance of the induced Riemann curvature tensor
The thermal average <hW (x)i may be obtained from (4.14), (4.16) to give

{hyu(2))] = 87Gi / (da")ToP (") / AwiT .0 (K)elF@=2")

—87rGi/(dx')T"p(x’)/dwkwgp,w(k)eik(m,*m)

—167rG/(d3:')T"p(x')/dwk sink(z — ") mp,0p (k)

(0 | By ()| 0-)" (5.1)

for 0 > 2/°, where after the functional differentiation was carried out with respect to, say, 71", we have
set T2W = Tl — TH” We learn that the above expectation value is independent of temperature in the
leading linearized theory as a consequence of the fact that the exponent in the last exponential in (4.16)
does not contribute if a single functional differentiation w.r.t. T*#" is carried out and then by finally setting
Tﬁy — TI}V = 0. Radiative corrections and explicit temperature dependence will be discussed in Sect. 7.

In more detail, we may rewrite (5.1) as:

(0_ [y (2)]0_)" = {87rGi / dwpeiks {T,W(k) - ";”T(k)} n c.c.}

+ 0,6 (2) + 0u€u(x) + 0,0,8(x) (5.2)

Eu(z) = {471'G / dwkeikxw c.c } (5.3)
4rG T + 2777 N, N,

E(x) = {T /dwke k —RE + c.c.} (5.4)

and 0,&, + 0,&, + 0,,0,¢ are the so-called gauge terms (see (2.3)) and are non-covariant depending on
the vector N#. Also in this section, since we are not carrying out further functional differentiations with
respect to the sources we have finally imposed the conservation law 9, 7" = 0 in (5.2).

The induced Riemann curvature tensor in the leading theory is given by

(0_ | Rywor ()]0 = (0_|8,05hr + BuOnhs — 8uOrhe — DuDaliyn] 0-)" (5.5)

By substituting the expression (5.2) in (5.5), we see that all the terms depending on &#, & cancel in the
induced Riemann curvature tensor <0, ’RWU Ax) | 0_ >T thus establishing its covariance. This means that

. T, . . .
one may restrict <O_ |hW () | 0_> to its covariant gauge-independent part

T : ikx Nuv . N)
(0 |hyw(z)|0-)" = {87rG1/dwkek [T} (k) — %T(k)} + c.c.} = hy,(x) (5.6)
in applications. The expression for the latter may be further simplified to
by () = {SWGi/(dx')/dwkei’“(w_m/)[TW(x’) - n;“’ T(2")] + c.c.} (5.7)
The k-integration as well as the 2% -one may be explicitly carried out leading to
he (x) =2G ﬂ[T,,,(:L'O —|x=x|,x") - 77LVT(@CO — |x=x',x")]. (5.8)
py Ix —x/|" ’ 2 ’
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6 The induced correction to the metric: Application to a Nambu string

The metric of spacetime to the leading contribution in our notation here is defined [2] by

g,uu(l') = Nuv + 2hz,,(33)7 (6.1)

with the 2 factor, where hf,,, () is given in (5.8). The leading contribution to the inverse g# is then given
by g}LV — T)Ml/ _ 2h0}).1/.

We investigate the contribution to the metric, the induced geometry and corresponding spacetime mea-
surements due to a string. The dynamics of the string is described as follows. The trajectory of the string
is described by a vector function R.(o, t), where o parametrizes the string. The equation of motion of the
closed sting considered is taken to be

0? 0?

@:R,(O'7 t) - @R(U, t) = 07 (62)

with constraints
2
OR-0,R=0, (OR)?2+(0,R?2=1, R(oc+ —,t)=R(0,1), (6.3)
w
for a constant w. The general solution to (6.2), (6.3) is given by

R(o,t) = =[®(c —t) + (o + 1)], (6.4)

1
2
where @, ¥, in particular, satisfy the normalization conditions (9, ®)? = (9, ¥)? = 1. For the system
(6.2)-(6.4), we consider a solution of the form [27-30]

sin wt

R(o,t) = (coswo, sinwa, 0) (6.5)
describing a radially oscillating circular string in a plane. The general expression for the energy-momentum
tensor of the string is given by

_ Mw

27w
() = /0 do (8, RMO,R” — 8, R'9, R")5%(r — R(0, 1)), 6.6)

where R = t, r = r(cos ¢,sin ¢,0), and M provides a mass scale. The various components of the
energy-momentum tensor are worked out to be [27-30]

T — 2‘]\%5 <7“ — WHT“”) 5(2), (6.7)
T% = %(cos ¢,sin ¢, 0)d <r - |s1(11)7wt|> 0(z) coswt sgn(sinwt), (6.3)
T = %6 <r — m%‘”) §(2)[cos? wt — sin? ¢, (6.9)
T'? = %5 (7”— Ismth> 5(2)%, (6.10)
T%? = %5 <7“ |smth> 5(2)[cos? wt — cos? ¢], (6.11)
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T =0, (6.12)

where sgn(a) = £1 for o 2 0 is the sign function, i = 1,2, 3.
We note the normalization condition

/ d3xT%(x) = M. (6.13)
Also for the trace T# () of the energy-momentum tensor we have

7o M <r _ 'SmT“’t> 5(2) sin? wt. (6.14)

r

It is most interesting to consider spacetime measurements along the most symmetrical direction in the
problem, that is, along the z — (2°—) axis perpendicular to the plane of oscillations. Before doing so, we
note that in the plane of oscillations of the string, g4 cannot be a function of ¢ by symmetry. Also no
cross term gre can occur in this plane, i.e., gr4 = 0. The metric contributions h,.., koo, in the plane of
oscillations, are readily obtained. To this end (5.8), (6.7)-(6.12), (6.14) lead for r > 1/w

4 T (20 — / 2GM
2h11(I)270/d3X’ [Tll(l‘or,x/) ($ 27”7X) _ GT

~ Zhgg(l'), hlg ~ 07 (6]5)

where 1 /w is the maximum radial extension of the string. Using the identity h,., = cos? ¢ h11+sin” ¢ hao+
sin 2¢ hqo, it leads to

o= (1 " QCj“M) ' 6.16)
On the other hand,
2hoo(z) =~ 4iM /d3x’ |:TOO($O —rx)+ M
B 4C:“M cos” w(t =) (6.17)
or
ool == (1 - S et r)> ’ (6.18)

where we recall that the Minkowski metric is taken to be [1),,, |=diag[-1,1,1,1].
For an observer at a fixed 7 >> 1/w in the plane of oscillations of the string, then time slows down by a
factor

1 T GM
To —T)) / Vgoodi =1 -

inw(ly — T
T{l—kcosw(Tl—i—Tg—Qr)w} (6.19)
T

U.)(TQ — Tl)

relative to a time lapsed of length (7% — 77%) in empty space.
For spacetime measurements along the z-axis, we have explicitly

(7"/ sinw(t — V2 + 22)|>

2hS5(x 2w (6.20)

oo dT’
=4GM —
) /(; /7,./2 +22
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Again, since 7’ does not exceed 1/w, we have for an observer at |z| > 1/w

AGM
g3s(z) ~ 1+ 4G sin? w(t — |z]), (6.21)

E

showing an interesting oscillatory behaviour in the space metric with a relative expansion of length.

Similarly, we obtain

goo(x) ~ — (1 - 4?71” cos® w(t — |z|)> . (6.22)

7 Conclusion

The positivity constraint as well as the spin content of the theory of gravitons interacting with a priori
non-conserved external energy-momentum tensor was established. As emphasized throughout, relaxing
this conservation law is necessary so that variations of the ten components of the energy-momentum tensor
may be varied independently which goes to the heart of the functional differential formalism of quantum
field theory. The expectation value formalism of the theory within the above context was derived at finite
temperature for gravitons. Thermal averages of the generated gravitational field and their correlations may
be then obtained by functional differentiations of the resulting generating functional at finite temperature
which coincide with the corresponding expectation values (0_|-|0_) at zero temperature. The covariance of
the induced Riemann curvature tensor was established in spite of the gauge constraint which ensures only
two polarization states of the graviton. An application was carried out to determine the induced correction
to the Minkowski metric resulting from a closed string arising from the Nambu action as a solution of a
circularly oscillating string. Radiative corrections play an important role as the induced geometry may, in
general, depend on temperature. Technically, this may be seen as follows. The multiplicative factor in the
generating functional . [T, T?; 7] in (4.16) depending on temperature is given by

exp {87rG/(dx)(dx’)(Tﬁy(;v) — 72 (x))D"”’””(z,m/;T)(Tglp(wl) - Tfp(ac’)) , (7.1)

uv

where D*"?P(x, a’; 7) is defined in (4.17), (3.28)-(3.30). Consider a familiar correction to the leading

order in the Lagrangian density given by h*"(z) (7’,”, + Tﬁﬁl)), where 7, Tlsf,”) are energy-momentum

tensors of the gravitational field and matter, respectively. For example, if T,E,’,n) corresponds to a real scalar
field coupled in turn to an external source K (), then the multiplicative factor in the corresponding gener-
ating functional of the scalar field depending on temperature is clearly given by

exp {— /(dx)(dx’)(Kl(x) — K2 (x))AT (2,2 7)(K (2) — K2(2))] , (7.2)
where
d3keik(w7m') .
AT (x, 2 71) = PV Em2 _ 1)-1 .
7= | e v 7

KO = +v/k? +m2, and m is the mass of the scalar field. Now both T and Tﬁf,”) are quadratic in
their respective fields. To generate the term h*”7,,,, we then need to functionally differentiate (7.1), say,
with the external source Tl}l, three times, also additively w.r.t. Tiu according to the quantum dynamical

principle [14—16]. On the other, hand to generate T,ST), we have to functionally differentiate (7.2) twice
with respect to the external sources K12 of the scalar field. Finally to generate the thermal average of

www.fp-journal.org © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



218

14 E. B. Manoukian and S. Sukkhasena: Gravitons, induced geometry and expectation value formalism

By, we have to functionally differentiate once more w.r.t. T};, and then set T, = T, = T, and

K!' = K? = K. That is, all in all, we have an even number of functional differentiations w.r.t. the
. T . .

corresponding external sources to generate the thermal average <hm,>7 before setting the equality of the

sources just mentioned and thus generate a temperature dependence in <h W>r . This is unlike the situation

in the leading order in which we have to differentiate only once w.r.t. T;}V to generate <h,w>f before
setting Tl}l, — Tﬁl, = 0, resulting no temperature dependence in the former expression as seen in (5.1).
The study of higher orders, however, requires a detailed analysis of Faddeev-Popov-like factors of the
type discovered in [1, 9], as generated in the functional differential treatment (see Sect.3 in [1,8,9], [12])
which would in turn lead to extra vertices coming from the second term on the right-hand side of (1.3)
and its generalizations and complicates matter quite a bit in gravitation. This formidable problem as well
as convergence aspects [32] will be investigated in a future report. Physically, temperature dependence of
the underlying induced geometry is also clear. When we perform a thermal average, we introduce in the
process, a background of gravitons, and in general other particles depending on the matter fields considered.
These particles in turn would then act as additional sources of gravitation contributing to the net induced
gravitational field and this happens only when non-linearities as field interactions are considered, and
corresponding radiative corrections are taken into account.
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