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CHAPTER 1

INTRODUCTION

The most fundamental unit, atom, expressing the individual chemical prop-
erties is at first thought to be the smallest particle. Until the discovery of protons,
neutrons, and electrons which are the composition of atoms, only electrons are
classified as a type of elementary particles in lepton family. Fortunately, protons
and neutrons are indeed consisted of another type of elementary particles called
quarks. A bound state of three quarks and a pair of quark-antiquark are respec-
tively baryon such as protons (uud), neutron (ddu), A (uds) etc. and meson such
as m* (ud, du), w (%d‘z) and so on. To reveal details of the tiny structure, the
collisions at high energy level of ee™ and pp, for example, have been studied.

The investigation of eTe™ annihilations has revealed many important and
fascinating phenomena in particle physics in a large energy region ranging from
a few hundred MeV (77 threshold) to several hundred GeV (W~W ™ threshold).
The over-decade research on e~ et annihilation reaction in both experimental and
theoretical sectors has played a crucial role in confirming the successes of the stan-
dard model at high energies and in originating theoretical models at low energies.

The decay modes pm and wm are among the most important for the pro-
cesses of eTe™ annihilation into hadrons at low energies, giving mainly the 37 and
47 final states, respectively (Akhmetshin et al., 1999; Akhmetshin et al., 2004).
These reactions might be used to study the dynamics of light vector mesons, for
example, p and w’, which may be formed as the intermediate states and decay

then into wm and pm. The information of mesons except the lightest ones is still



rather rare because of the lack of high-quality experimental data and also effective
theoretical models. In addition, that p’ may decay into w (p) — wm) and W’ to
pr (W — pr) (Yao et al., 2006) adds more uncertainties to the understanding of
the properties of the intermediate states. The analysis of (Achasov et al, 1999)
confirms that the uncertainties between the w-like resonance and p-like resonance
result to calculations with low accuracy.

Recently, experiments have been set up to study the processes of etTe~™
annihilation at low energies (below 2 GeV). The ete™ — 797y process in the
SND experiment studied in the energy region 0.6 — 0.97 GeV gives information
of p and w intermediate state mesons (Achasov et al., 2002; Akhmetshin 2005).
The reaction of wr — 7%7% measured in the center mass energies 0.92 — 1.38
GeV at CMD-2 shows the interference of p(770) meson and p(1450) meson, which
decays into wn® (Akhmetshin et al., 2003). However, the SND experiment with
the energy up to 1.4 GeV from the threshold (Achasov et al., 2000) revealed that
the experimental cross section can be satisfactorily understood with two excited
states included with the masses m, = 1400 MeV and m,» = 1600 MeV in which
a contribution of the higher state dominates. However, this result contradicts the
theoretical expectation, where p’ and p” are considered as 2S and 1D ¢q states
respectively and the larger contribution of the lower 25 excitation was predicted.

At the energy range up to 1.8 GeV, the cross section measured with
BABAR detector is well described by a sum of contributions of four isoscalar
resonances (w, ¢,w’ = w(1350) and w” = w(1660)) (Aubert et al., 2004). The sim-
ilar resonances were also reported by the VEPP-2M collider in the energy region
0.98 — 1.38 GeV (Achasov, Aulchenko et al., 2002).

The intermediate vector mesons in e™e™ annihilation reactions at low en-

ergies could be simple ggq states, mixtures of p-like and w-like mesons, or even



hybrid states (gg plus one or more gluons). The idea of exotic meson (vector hy-
brid) (Donnachie and Kalashnikova, 1999) has been proposed, but the theoretical
results are not in line with the the experimental data. On the other hand, ¢ struc-
tured mesons with different radial and orbital excitations have been extensively
studied. An earlier work in quark model (Godfrey and Isgur, 1985) predicted a
series of excited vector mesons, with p(1450) and w(1460) being the lowest p-type
state with the 23S; excitation which has a large probability to decay into wm®

and the w-type state with the 12D, excitation, in respective. The predictions are

consistent with some experimental data but in strong contrast with the observa-

tions of CMD-2 (Akhmetshin et al., 1999) and CLEO (Edwards et al., 2000) which

Te™ — w.

support the a;(1260) dominance in the reaction e

The prediction in the work (Godfrey and Isgur, 1985) that the meson
p(1450) has a bigger probability to decay into wm than the p-type mesons with
higher masses is not consistent with the results of the SND experiment (Achasov
et al., 2000) that the p(1600) meson dominates over the p(1400) in the reaction
ete” — wm. However, the results of the recent work (Achasov and Kozhevnikov,
1998) do not contradict the assignment of the p(1450) and w(1420) to the state
235.

The properties of the intermediate states in the processes of eTe™ annihi-
lation into pm and wm are still open questions.

In this thesis, we will work in the non-relativistic quark model and the 3P,
model will be employed to study the creation of a light meson pair. The data used
to analyze the calculation are mainly form Novosibirsk.

The main objective is to reveal the dominant dynamics of the reactions

ete™ — wm, pr at low energies. The study is also expected to lead us to better

understandings of the vector mesons, p(1450) and w(1420).



This thesis is arranged as follows: In Chapter II, hadrons in non-relativistic
quark model is demonstrated. The P, model, the size parameter, and the effective
coupling constant are discussed in Chapter III. The transition amplitude and the
cross section are shown in Chapter IV and Chapter V consists of discussion and
conclusion. The particle data of p,w, and 7 is displayed in Appendix A. Appendix
B is the derivation of spatial wave function in three dimensional harmonic oscillator
potential by Shrodinger equation. ~-matrix, trace technology, and reaction of
ete™ — putp~ are discussed in Appendix C and D. In Appendix E is the Wigner

9j symbols used in the calculation of decay process.



CHAPTER 11
HADRONS IN NON-RELATIVISTIC QUARK

MODEL

Hadrons, the bound state of quarks, can be classified into two groups, a
bound state of three quarks called baryon and a bound state of quark-antiquark
called mesons. Hadrons have been studied by both non-relativistic and relativistic
quark models depending on energy range and mass we are interested. Since we
study the collision events in energy level between 1-2 GeV or around the thresholds
of p and w resonances, the non-relativistic quark model is totally employed. The
important ideas in this model is to construct color, flavor, and spin wave functions
by language of group theory. For the spatial wave function, we work out the
Schrodinger equation with three dimensional harmonic oscillator potential. Even
though in thesis we study only mesons, we will demonstrate the wave functions

for both mesons and baryons.

2.1 Meson Wave Function

The states of mesons can be identified by wave functions in four spaces

which are color, flavor, spin, and spatial spaces.

2.1.1 Color and Spin-Flavor Wave Function

The color wave function of all particles is observed in only a singlet state

1) @) (2.1)

\/ng



transformed under SU(3) transformation
1 _
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For flavor wave function, method from group theory has been used. The funda-
mental representation D(1,0), quark flavor, of SU(3) is denoted by the Young

tableaux

L],

while the conjugation representation D(0, 1), referred to antiquark flavor, is de-

picted by

ul

A meson flavor state is represented by the direct product of quark and antiquarks

states by which the Young Tableaux for mesons are formed as following:

D@H@@

that is,

D(1,0) ® D(0,1) = D(1,1) & D(0,0) (2.3)

with the corresponding dimensions begin:



Table 2.1 Meson nonet

Content Charge Strangeness Pseudoscalar Vector

ud +1 0 Tt pt
du -1 0 T p-
uil 0 0 0 o’
dd 0 0 n° w?
S8 0 0 7' ¢°
us +1 +1 K+ K**
ds 0 +1 K° K*0
s -1 -1 k= K~
sd 0 -1 K° K
33=8@1. (2.4)

For spin wave function, each quark and antiquark has two possible spin states,
spin up and spin down, namely S, = j:%, transformed under SU(2) group. The

representations of mesons in spin space are
202=3d1, (2.5)

where the total spin wave function takes the form of triplet (S = 1) and singlet

(S = 0). The spin-flavor conjugation for mesons are

(1f718)’(1f735)7(8f718)’(8f735) (26)

where subscript f and s represent flavor and spin, in respective.



Table 2.2 Flavor wave functions of the pseudoscalar and vector meson nonets

Pseudoscalar Vector Flavor
Tt pt ud
T P —du
0 o° \/Li(dcz — ui)
M wq \/Lg(uﬁ + dd + s3)
78 ws \/Lg(uﬂ + dd — 2s5)
KT K*t us
K° K*0 ds
k™ K*~ —su
E° K*0 sd

2.1.2 Spatial Wave Function in 1S, 2S, and 1D State

The spatial wave function of mesons can be derived from the radial

Schrodinger equation in spherical polar coordinates

d  2u
W*‘ﬁ(E—V(T))—

I(1+1)

r2

u(r) = 0. (2.7)

The potential V(r) should be an interaction which can provide confinement of
quarks. In common practice, the three dimensional harmonic oscillator potential

is usually employed, taking the form

Vi) = %,M?r?. (2.8)

The solution or the normalized wave function* is

2a3n!

r) = |——— | (ar)le 2 L2 (%2 .
Rulr) = | gy (e L ), 29)

*see Appendix B.



where L5 ™/?(a?r?) are the associated Laguerre polynomials

1 " (=1)F  Tn+l+3)
L1 = a2p2) = LIH1/2(4212) — 2 2k
(1,5,0°p7) = L") 2 o (- k)(k+1+3)

k=0

(2.10)

n,l and a are a principle quantum number, an orbital quantum number, and size
parameter, in respective. n and [ run from n,l = 0,1,2... Therefore, the wave
function of mesons in momentum space is

2a3n!

1 2,2
TEaian Hmg thapin@.0)  211)

Vap(F) = €737 (ap) 2
where p'is the relative momentum p = %(ﬁZ — p;) in which ¢ and j are a quark and

an antiquark. The wave function for ground-state or 1S-state mesons (n = [ = 0)

is

= m@ 24P (212)

For resonance mesons, the spatial wave functions are considered as excited states,

2S and 1D, for instance. The wave function for 2S-state mesons (n = 1,1 = 0) is

1 2&3 3 _142p2
— m ? (5 — a2p2) e 2 p . (213)

For 1D-state mesons (n = 0,1 = 2), the spatial wave function is

1.2 2 2 3
Yy = €727 (ap)? r(aZ) L(0, 5 +2,a%p*) Yo (0, 6)
2
4 3 1.2 2
= — CL_ (ap)2€7§a P }/Qm(ea (b) (214)

The root-mean-square radii for mesons are defined in terms of the size

parameters, as follow: For a 15-wave meson

1
(= gV (@nl?(en)
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~ 0.5 fm. (2.15)
For a 25-wave meson

1
(r7)36 = 5V/(@a]r?[®a)

1 /3 4
—5\/;01 ~ 3.83 GeV

~ (.76 fm. (2.16)
For a 1D-wave meson

1
1/2
(i = 5 V/(@ar?[ )

1 /3 )

~ 1.5 fm. (2.17)

where a = 4.1 GeV~! and practically fitted to the meson sizes.

2.2 Baryon Wave Function

Since baryons are the bound states of three quarks or three identical
fermions in which each quark is %—Spin particle, the total wave function of baryons
must be antisymmetric. In the nature, the color wave function of all known and ob-
served particles is singlet, that is, wave function is automatically antisymmetric.
Furthermore, Particles are generally considered to occupy a ground-state or S-
state giving the spatial wave function to be symmetric. Therefore, the spin-flavor
coupling wave function must be symmetric.

The detail of each wave function are discussed in the following sections,
starting from color wave function, then spin-flavor wave function, and finally spa-

tial wave function.
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2.2.1 Color and Spin-Flavor Wave Function

The color singlet wave function is

o = % S exselan) a5} ae) (2.18)

ijk
where ¢;;;, is Levi-Civita symbol giving +1 for even permutation, —1 for odd per-

mutation and 0 for ¢ = j,7 = k, or kK = ¢. Here is some of its properties

3
€ijk€iljk = 20

€ijk€ijk = 0 (2.19)

€ijk€pgk = OipOjq — 0ig0j )
where 9;; is Kronecker Delta. The flavor wave function of baryon is constructed by
first introducing Young tableaux to be the fundamental representation of SU(3)
where three refers to s,u, and d quarks. The product of three quarks system

formed by the direct product of three fundamental representations is displayed by

direct sum of irreducible representations,

n
W e @ e [ = LBl e [P e 2 o [g
(2

with corresponding dimension,
33®3=100808d 1. (2.21)

The wave functions corresponding to the irreducible representation from the left-
hand side are symmetric, mixed symmetric (A-type, symmetric for the first two
particles), mixed antisymmetric (p-type, antisymmetric for the first two particles),
and antisymmetric, respectively.

The product of fundamental representations of spin states (spin up 1 and

spin down |) transformed under SU(2) is similarly shown in the direct sum of
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irreducible representations

W o ) e [ = [ld o (Y e 2 @

with corresponding dimension

2R202=4®22. (2.23)

The antisymmetric representation is vanished because we are dealing with SU(2)
group, not SU(3). We now come to the combination between SU(3) fiqper and
SU(2)spin to be SU(6) multiplet. The table below shows the easily understandable

concept of the combination read by

Symmetric Mixed Symmetric  Antisymmetric

! ! !
Symmetric — S M A
Mixed Symmetric — M S, M, A M

Denote symmetric, mixed symmetric, and antisymmetric representations by S,
M, and A. The explanation is that the product of symmetric representation with
symmetric, mixed symmetric, and antisymmetric representation yields symmetric,
mixed symmetric, and antisymmetric representation, respectively. For the mixed
symmetric representation, the products with symmetric and antisymmetric are
still mixed symmetric but with mixed symmetric the possible products can be
all symmetric depending on types of mixed symmetric representation. In case of
dimensional picture, we have 10g,8,; and 14 in SU(3) and 4¢ and 2,; in SU(2).
The results can read; flavor 105 with %—spin 4¢ is totally symmetric, flavor 10g
with %—Spin 2 is absolutely mixed symmetric, and so on.

Of the total 3% x 23 = 216 states, 56 symmetric, 70 A-type, 70 p-type, and
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20 antisymmetric are listed as follow

S (10,4) + (8,2) = 56
M (10,2) + (8,4) + (8,2) + (1,2) = 70 (2.24)
A (8,2) + (1,4) = 20.

/

The spin-flavor wave functions of various permutation symmetries, where
& (x%), d(x?), M (x?), and ¢*(x?) are respectively the flavor(spin) symmetric,

antisymmetric, A-type, and p-type symmetric are listed in Table 2.3

Table 2.3 Spin-flavor wave functions of baryons classified by permutation sym-

metry
Represetation type Spin and flavor
and number of state wave function
Symmetric, 536 (10,4): ¢S\ (8.2): (%" + ¢™xN)/V2
Antisymmetric, 20 (1,4): ¢“x° (8,2): (¢*x? — "X /V2
(10,2): ¢°x* (8,4): o*'x°
A-type, 70
(8,2): (¢°x* —o™N/V2  (1,2): o™
(10,2): ¢°x” (8,4): ¢°x°
p-type, 70
(82): (O™ +¢xN)/V2  (1,2): ¢*x

The explicit form of the baryon spin-flavor wave function can be derived
in the framework of Yamanouchi basis developed in permutation group. What we
need is to get the projection operators for Young tableaux of multiplet states, act
operators onto general states, then automatically obtain the states with symmetry
under permutation group represented by Young tableau. Since we have worked

out the representation matrices of permutation group S3, the projection operators
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are directly written as

P =14 (12) + (13) + (23) + (123) + (132)

P =14 (12) - S(13) — 2(28) — 2(128) — (152) (2.25)

Pr—1-(12) + %(13) + %(23) - %(123) - %(132)

PA=1—(12) — (13) — (23) + (123) + (132)

Ve

where P° P* PP, and P4 are the projection operators for symmetric, A-type
symmetric, p-type symmetric, and antisymmetric state, respectively. Here is the
example of applications. Acting the projection of operators P* and P” onto the

state udu (with u = ¢, and d = ¢4), we have

1 1 1 1
P udu = udu + duu — —udu — ~uud — ~—duu — —uud
2 2 2 2
1 1
= §udu + §duu — uud (2.26)
PPudu = udu — duu + 1udu + 1uual — lduu — 1uud
N 2 2 2 2
3 3
= §udu - §duu. (2.27)

The normalized forms of P udu and PPudu are respectively the flavor wave func-
tion for the proton, seen in any text book.

In case of the spin wave function, the spin wave functions with [3]g, [21]\
and [21], symmetries can be derived by acting the projection operators in Eq.(2.25)

on an arbitrary spin state of quarks, for instance, 7|7 for spin s, = % We gain

1 3\
Sf_
X —ﬁmwmwm
Y= 211 = 111 = 111 (2.28)

=

6

1
s
X7 =—=[l1T = T11].
V2 J
To determine the normalization coefficients in the spin wave functions, we treat

the spin up (down) state similar to the u(d)-quark in the construction of flavor

wave functions.
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2.2.2 Spatial Wave Function

The baryon spatial wave function worked out by solving the Schrodinger

equation with harmonic oscillator interaction

V(r)= %Kﬂ (2.29)

takes in momentum space the form,

7vbszo = Ny 6_2a2( vz

(2.30)

3/4,3 . .
where Ny = &34 with o® = W where m is the mass of quark.



CHAPTER III
MESON SIZE PARAMETER AND

STRENGTH OF Py QUARK MODEL

3.1 3P, Quark Model

In this work we study the reactions in a nonperturbative quark model with
the *Py quark dynamics which describes the quark-antiquark annihilation and
creation. The 3Py model, first introduced by Micu (Micu, 1969), has made consid-
erable successes in understanding low-energies hadron physics (Le Yaouanc et al.,
1973, 1974, 1975; Maruyama et al., 1987; Maruyama, Furui et al., 1987; Gutsche
et al., 1989; Dover et al., 1992; Muhn et al., 1996; Yan et al., 1997). The 3P, decay
model defines the quantum states of a pair of quark and antiquark destroyed or

created from vacuum quantum numbers
I19(JP%) =07 (0") (3.1)

tobe J=0,L=1,5=1and T = 0. The derivation of these quantum numbers
is that because of the parity of vacuum, P = +1, the quark-antiquark pair (with
intrinsic negative parity) must be in an odd relative orbital angular momentum.
To obtain the zero total angular momentum, the pair has to be coupled to spin
S = 1 together with orbital angular momentum L = 1 which finally couples to
J =0, hence *P,.

In analogous to a scalar interaction, the vertex in a relativistic approach

for Dirac spinors of the annihilating quark and antiquark or fermion-antifermion
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vacuum interaction can be written in momentum space as

1
VVij:—X

)

with

Vij = (03 - pi — G5 - p;)6(Di + D)

= 0y - (0i — 1;)0(pi + ;) (3.3)
where 0, defined as
Gy = 2% (3.4)
2
and having the property
[XZUZ'XJ} o V20516, - (1) (3.5)
where
L.y )
O'?j =0} (3.6)
1
-1 __ T .
o = E(Uij — wfj). )

The interpretation of each Pauli-spinors is as shown; for fermion,

1 0
X(spin up) = X(spin down) = : (3.7)
0 1
for antifermion,
0 1
X (spin up) = X(spin down) = : (3.8)
-1 0

The operation of 7;; can be understood as the operation of a quark to an antiquark
or the projection of a quark-antiquark pair onto a spin-1 state and it is found that

the latter is more convenient.
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Introducing a one-rank tensor operator Ol, we have, according to the

Wigner Eckart theorem,

(0,0]01,|J, M) = (J1, M0, 0)(0]|Oy]|J)
(—1)'-M

= ———071611,-(0|O1]J).

V3

Let
(0|04]7) = —V/6,
then
(0,0[01,,]J, M) = (=1)M\/26 51601,

For the flavor, we may introduce a unit operator

~

of =1*
with the property
(0,0|0F|T, T.) = V257,007 0.
Consequently, the 3P, operator is read in the form
Vi = 7 Z 1)1#(0,0/5(0,0[50%, ,,OF

Y (Pi = P5)0 (i + Pj)-

In case of the decay of a spin-1 state to the quark-antiquark pair, Y7 (“

used in place of Y7, (p; — pj) by the relation
Vi = (1"

Here, we have used the formula

3= (1" A _.By,

I

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.15)
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= ()Y (A (B). (3.16)

Mixed up with other ideas, 3Py quark model has recently successfully given
creditable results to the two-step process calculation of ete™ annihilation to 77~
and intermediate 77 scattering (Suebka, 2005; Yan et al., 2005 ).

The reaction p) — 7w and W' — 7p are similarly investigated, so the
following calculation in the 3P, quark model displays only the former one. The

transition amplitude then takes the form
T, = (rolVigls!) (3.17)

where V,; is the effective vertex for the creation and destruction of a quark-
antiquark pair in quark model, as shown in the form of spin part, flavor part,
color part and a constant of effective strength parameter \ referred to how large of

frequency of the reaction occurs. The effective vertex is alternatively in the form

~

Vij = Ai; - (05 — 05) F3Cigd (5 + ). (3.18)

Sandwiched (3.18) by the state of mw and p’ and applied the >P, model, the

effective parameter turns to, as shown in three compositions,

(0,01 F|T,T.) = V267,007, 9 (3.19)
(0,01C351qL@h) = das (3.20)
(0,000 [xi @ X1 500) = (=1)MV20,1001, - (3.21)

where the first, the second, the last represent the flavor, the color and the spin
state in vacuum, respectively. Since the isospin of the vacuum state is zero,
(3.19) is given in this form. For the color state, o and ¢ are color indices and &
is the Pauli matrix. For simplicity, we consider only S-wave mesons that means

mesons involved have the orbital angular momentum equal to zero or ground state.
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P3 T
-
D1 i
,0/
Ds
-
D2
D6 w

Figure 3.1 p/ — wr in the 3Py non relativistic quark model.

To compute the transition amplitude, we have ¥; and ¥; to be the final

and initial state wave functions, in respective. For p, the state of one meson is

1M 1@ 1M 1@
[Wi) = Yspatiar {— ® = } {— ® = } (3.22)
' 2 2 Jgm 12 2 lrm

where a spatial wave function (Wpatia) is different in each radial and orbital ex-
citation. From the particle data book, we know that, for p meson, spin 5; = 1,
isospin 7; = 1, and isospin projection 7, = 0. The final state |¥f) formed by

coupling of two final S-wave mesons is, as shown,

2 2

13 1@ 16 106
X [[5 & 5 :| ® {5 ® 5 :| (3.23)
Ty T,

where a is the size parameter related to the size of meson.

(3) (4) (5) (6)
|\Ilf> = N1N26_éa2(53_ﬁ4)26_%a2(ﬁ5_176)2 [[1 ®l ] ® {1 ®1 ] ]
5 521 57,0

3.2 Size Parameter Determination

The size parameter a in the meson wave function in Eq. (2.11) can be

determined by studying the process p® — e*e~. The transition amplitude of the
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reaction is derived as

Tpetre- = (€€ |T|qq) (qqlp)
11

1 11

a mgmg tqtg

dpy
/ (@2r)*2E, Up(p1) Toggete- (3.24)
where Ty e+~ = (e'e”|T|qq), the transition amplitude® of a quark-antiquark

pair to an electron-positron pair, can be evaluated by the standard method in

Quantum Field Theory taking the form

_ ~ €.l
<6+6 |T|QQ> = _%ue(pe_’me—>'yuve<pe+ame+)

X 0q(pg» mti)'Yuuq(pqamq) (3.25)

where s = (p, +p;)?, €, is the charge of quarks, and the Dirac spinors are normal-

ized according to uu = vv = 2m. The decay width is generally in the form

L py
F - WE—f/dQ|Tp_>e+e|2. (326)

In the small quark momentum approximation, the decay width for the transition

of a vector meson to an electron-positron pair can be easily calculated,

16ma’Q?
Dpre = 0L (o) P (3.27)
1%

where () is the squared sum of the charges of the quarks in the meson, with Q% =
1/2 for p, 1/18 for w, and 1/9 for ¢; and ¢(0) = 1/(7a?)3/* is the coordinate space
wave function of the vector meson at the origin. Using as an input M, = 0.7758
GeV, a = 1/137, and the experimental value of I'jo_,.+.- = 7.02 + 0.11 keV, we
obtain a = 3.847 GeV ™! for the size parameter of p meson. The size parameter

may slightly be different from meson to meson.

*See Appendix C
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3.3 Effective Coupling Constant Determination

We use the reaction p — 777~ to determine the effective coupling constant

A in the quark-antiquark 2Py vertex,

A ~

Vij = Adij - ( p;) Fij Cijo (Pi + )
= )‘Z \/ Ho-l]ylﬂ pj)ﬁ C'J5(]3; + 7)) (3.28)

where y1,(7) = |q] Y1,(4), 7i; = (6; + J;)/2. p; and p; are the momenta of quark
and antiquark created form vacuum. Fij and éij are the flavor and color operators
projecting a quark-antiquark pair to the respective vacuum quantum number. The

decay width of the reaction is

402
T omin = ~ M2, [1—

40F M2 | —>7r+7r*|2 (329)

where Tjo_, .+, is the transition amplitude in the center of mass system. We
can consequently determine the effective coupling constant by substituting the
previously calculated transition amplitude to the decay width and comparing then
to the experimental data. The transition amplitude in Eq. (3.29) is demonstrated

as followed,

Thomtn- = (mT [Vl ")
1
= \y/ % S TRTS TR T (3.30)
m

where

3\ 3/2 .
1= 40 () R YLD - 205,(Q)

2a* 3/2 _ 1,22 _seqerdhiy L, s

8\/§ a3/2€_ﬁa2k2kj

o5 (3.31)
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11 11 11 11

T3 = —V2((53)L (55)1,01(53)0. (53)0.) € (182 1, —p: 0)

= —\/g C(15.;1, =15 0) (3.32)
T = ==l C—z o) 2)

_ % (3.33)
Ty = \/§<(%%)1, (%%)0, 1|(%%)1, (%%)1, 1)C (1722,00; 17T,

— 1. (3.34)

The general detailed calculation is shown in the next chapter. Finally, the transi-

tion amplitude of p® — 7t 7~ is

16\ a3/2e~ 129"k
Tpomtnm = =3 20(15;, i1, —u;0)
7

B 16>\ a32e~129°K° |, 335
B 27+/3 wl/4 (3:35)

where A = 0.92 in the non-relativistic approximation and A = 2.5 in the min-
imum relativity approximation (Machleidt, Holinde, and Elster, 1987) by which

the transition amplitude takes the form

Ma+ [Ny

Tminimum = T st 3.36
B\ B, 7 (3.36)




CHAPTER IV

STUDY OF REACTIONS ete™ — pm,wmw

The reactions ete™ — pm,wm may stem from two possible processes,
namely, the one-step process where the ete™ pair annihilates into a virtual time-
like photon, the virtual photon decays into a gq pair, and finally the gq pair is
dressed directly by an additional quark-antiquark pair pumped out of the vacuum
to form the mw final state, and the two-step process where the ete™ pair annihi-
lates into a virtual time-like photon, the virtual photon decays into a gq pair, the
qq pair first form a vector meson, and finally the vector meson decay into the 7w
final state.

At very high energies the reactions ete™ — pr,wrm are likely dominated
by the one-step process while in the low-energy region, especially close to the
threshold, the reactions are expected to be dominated by the two-step process. It
is found that the reactions ete~ — 7w, NN at low energies are dominated by the
two-step process (Suebka, 2005; Yan et al., 2005).

For one-step process shown in Fig. 4.1, the transition amplitude of the

reactions ete” — pm, wm might be expressed formally as
Ty = (7w|Vgelqa)(@a|Tle"e™) (4.1)

where (gq|T|e*e™) is simply the transition amplitude of e*e™ to a primary quark
pair while (mw|V4,|gq) denotes the amplitude of the process of a gq pair to the
mw final state. Vg, is the effective vertex for creation and destruction of a quark-
antiquark pair in quark models. In this work we will employ the 3P, quark-

antiquark dynamics which has been proven the most successful non-relativistic
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quark model.

Figure 4.1 Reaction ete™ — w(p)m in one-step process.

For two-step process shown in Fig. 4.2, the transition amplitude of the

reactions ee” — pm,wn for the two step process takes the form

Ty = (nw|Vgg|")(P'|G10) {p'[aq) (@a|Te™e™) (4.2)

where (p'[gq) is simply the wave function of the intermediate meson o, (p'|G|p’)
the Green function describing the propagation of the intermediate meson, and
(mw|Vg,|p') the transition amplitude of p’ annihilation into the 7w pair in non-

relativistic quark models.

Figure 4.2 Reaction ete™ — w(p)7 in two-step process.

The difficult part in working out the transition amplitude Eq. (4.2) is to
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calculate the decay of an intermediate particle by means of P, model. Here, we
demonstrate the general detailed calculation of an intermediate meson decaying

into two mesons. The wave function of a meson and two mesons are, respectively,

1M 1@ 1M 1@
m=l3 o3 ] |5 ©3 ] &Y
2 2 TTZ 2 2 51125212

— 0(3/12‘5«;127 l12m12; 8125212) |:1(1) ® 1(2):|
2 2 T12Tz12

Ri2y;12 (4.3)

nl

12
Rnl
512512

{1 R (2)}
5
2 2 51125212

and

| > {1 C (4)} {1 G 1 (6)}
mime) = - ® = X | = & =
2 2 7! 2 2 g -

10 1@} [1@ 16
- ® - ® Y’m/
H s's,

® - ® - :| ® Y//m//
2 2 S”S;’

Jl

2 2

J”] JJ.

Rn’l’ Rn”l”

{1 G (4)] [1 G 1 (6)]
T ®z Rl ®3
2 2 2 2 zape.

Z<<SIS”>57 (l/l//)l, Jl(Sll/)Jl, (S”l/l)J//, J)

sl

{1 @ 1 (4)] {1 G 1 (6)}
5 ®z |z ®3
2 2 S,S; 2 2 S//Sg

Rn’l’ Rn”l”

[1w> 1@1 [1w> 1@?
- ®=- ®|z ®=
2 2 Jon 12072 o],

<(S/S”)S, (l,l//>l, J‘(S/l/>J/’ (S//l//)J//, J)

{1 T (4)} {1 G 1 (6)]
T ®z Rl ®3
2 2 g st 2 2 g s7] gs.

[l'm’ ® l”m”]lm Rn'l’Rn”l”

{1 C (4)} [1 G 1 (6)]
=\l ®3 Dl 3
2 2 7! 2 2 12 |

® [l/m/ ® ll/m//]lm]

S8 JJ:

C(SS,,lm; JJ,)
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<(S/SH)S, (l,l”)l, J|(S/l/)J/, (S//l//)JH, J)

{1 G 1 (4)] {1 G 1 (6)]
T ®z Qs ®3
2 2 g st 2 2 g s7] gs.

C(l'm', l"m"; lm) Rn’l’Y’m’Rn”l”Y”m”- (4.4)

C(SS.,lm; JJ.)

The transition amplitude of the decay of any intermediate meson is
T = (myms|O|m) (4.5)

where |myms),|m) and O are a final state wave function, an initial state wave
function and an interaction operator, respectively. We use the interaction operator

from 3Py model,

A

Vig = Ay - (05 — 7)) F3y Ciyd (5 + 1)
47 roA S -
= A D\ 5 DT = 5 FCid (5 + ). (4.6)
o
Then, the transition amplitude is

T = (my1msg|O|m)

=Y ATFTIT Ty (4.7)

I

where

A=\ OS2, %, S R)C(SS., I JT)C(Um ' )
<(S/S”)S,(l/l//)l,JKS,l/) , (S”l”>JN J>

e By ) - 20v5,Q))

TS = / dQL\LoL e 27°R .

— —

k k 2k
l +l2+lY/ / (2@ - 3) l/ / ( Q - —)Y12m12 (2@ + 3 )
11

)52, (S SI(55)S (55)S".8)C (57821, —1;55.)

K <(22
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11 11 11,
22)0 T|( ) (§§)T T)C (T"T)?,00;TT.)  (4.8)

11

Tr= V233

)T, (

and Ly, Lo, and £ which are functions of nf, [}, nj, l5, n, and [ take the form,

2a3n)! 1 ~ 2k

E(n, l, m) = m (n, 5 + l, CL2(2Q + ?)2> (49)

Next, the detailed calculation of color, flavor, spin and spatial space is displayed.

4.1 Color, Flavor, Spin, and Spatial Transition Amplitude

The transition amplitude of color part is

Te = (myma|Oc|m)

1 (3>‘<—<4>|L 5 L

2\/§<qa o \/§<CJ§5)!<§§6)|Cij%\qﬁ>|qﬂ>

1
——00,800-0.
3\/3 BYayP~p3

1

= _5ao¢
3v3

1
V3

(4.10)

where
(0,01CylgAa%) = dap (4.11)

and « and 3 are color indices. The transition amplitude of spin part is

13 1@ 160 100 10 1@
T = <— ® = ®<— ® = Os|; ®3 >
2 2 S/Sl 2 2 S//S;l SSZ 2 2 5125;2
11
= ((53)5%. (55)5%.51(3)8", (53)5".5)

(3) (6) 1(4) 16) 10 1@

®<— ® = (—1)'**al; ® = >

536 536 2 2 5455215 39 2 2 512522

11
45 -
“D)s Sl55

1@ 106
— ® —
536,536 < 2 2

11

13 10
<§ “3

g L0 1)
712 2 s12512

§45 5;15] ss.
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11
36 45 Ly am 36 @36 @45 45,
5536 312(5536 512(_1)14_“(_]—)535\/56545,165;1577;1,
11 11,
=—V2 <<22>S” (53)15153)8", (5)8", S)C (S8 1, ~15:55.) (4.12)

where
(0,010 [x: ® xjlune) = (=1)M V26510, (4.13)

The transition amplitude of the flavor part is

13 1@ 16 106 1M 13
Tr = <— ® = ®<— ® = Or|z ®3 >
2 2 T/T/ 2 2 T"Té' T 2 2 T12T212
11 11 11
— - - T45 T T// T
()T ()T TIG )T ()T T)
13 10 1 (4) 1) 1M 1@
- ® ®(s ®= iils ®5
2 2 736736 <2 2 T45745 ! 2 2 >T12T12
z z TT. z
11 11 11 11
= (55)T%. (53) T, TI(53) T (53T T)C (1T, 71, 7T,

OF

<1<3>®1<6> <1<4>®1(5>
2 2 T36TZ36 2 2 T45T§5 T,

1M 1(2)>

— ® —

2 2 T12T212
11 11 11 11

= <(§§)T367 (2§)T457T|(22)T, (§§)T" T)C (T*T, T*T,TT,)

(5T367T12 5T§6,T212 \/§5T45,05T45

= VA )T, ()0, TG )T, (55T T)C (TPT2,00,TT)  (4.14)

where
(0,01 F4|T, T.) = /267,007, 0. (4.15)

The normalized spatial wave function is

1.2 2 2a3n! 1
oy = e 24P Ll 22" I(n.=
= @) [y L

SHLERYin0.6)  (416)

where p'is the relative momentum p'= %3, Let

2a3n)! 1
— = 41, a?p? 4.17
LS +1+n) ) (4.17)

L(n,l,m) = >

L(n
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where, L(n, 1 + [, a*p?) is the generalized Laguerre polynomial. The special tran-

sition amplitude is

T = / dp:dpadpsdpidpsdps(Cie s PP ah Yy (5 — Fy))
(Lye™ s gy (55 — )Yy (Ba — 55)0 (s + )0 (5 — )
(L e s PP Y, (5 — 52))0(s — Ps)0(Br + 52)8(Ps + pa — k) (4.18)
where
Y o (05 — P1) = (P3 — D)"Y, (B3a)

Vi, (D5 — D) = (05 — 16)2 Yy (Ps6) (4.19)

Yin (D1 — P2) = (P1 — ﬁQ)lYEm(ﬁm)
and p;; = Pi;/|pij|. The transition amplitude then turns to

(2271 N E)>(£267§a2(2ﬁ*k) a2y

e a2 = )

limg

Y5, (2p4) (L e 50°(2)? jh Yim (25))

= /dﬁ1£1£2£ 67% [(71 7% 18]}/“'< (2k 2 ) ll+lz+l}/2>lkm1 (225;1 . ]g)

Vi (200 — ) Yim (257). (4.20)

Let Cj =p; — g, the transition amplitude becomes

_34202 L 22 4k % /7 * (A
TS — / dQLILoL e 2P (Y () — 20Y7,(Q))
L 00 - Y, 00 - Dvied + 2 aa

However,the spatial transition amplitude seems more complicated than other types
of amplitude because it depends on which state we are interested, that is, 2S and

1D states.
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4.2 Spatial Transition Amplitude in 2S Wave

The general form of spatial transition amplitude in previous section is

Top /dQ£1£2£ 6_2“2Q2_a2k2(43k (K k) — 2QY; (Q)) hrtla!

—;

k k
l1m1 (QQ ) lamo (QQ - ) lm(zQ + 2

3 —) (4.22)

In case of eTe™ annihilation into 2 mesons with nf = nf), = I} = I, = 0 and

n = 1,1 = 0, the amplitude then turns to

2

- 2a? 2a3 322 1224k A
Tspz/dczﬁ P®e @b Sy () - 20¥,(@Q)

1

e Mg @+ > ) (4.23)
Consider a term
L, L (G + g)“‘) g (@ + ﬁ)
:g_a2<Q2+%2+§ (1) Quki)
2 g S v @i B (20)

v

—

where @ -k = 32, (=1)"Quk1 -, Q1 = Yiu(
kYi_, (k). Substitute (4.24) into (4.23),

&

= QY1 (Q) and ky_, = Yi_,(k) =

— 2&3 2&3 3.2H2 1 2792 4]{7 A~ A
T, — / G e 3@ Ly (1) 20v;,(0))
g L)\ re) t

\/_a9/2 71 a2k? 77a2 2 « /7 4(12]{5 « /7 4&2]{?3 % /7
= it k/dQ @ {QkY (k) — ——Q*Yy" (k) — —=—Y7. (k)

8@2]€2 v 7 * (7, * () 23V * (O
QZ ) Y QY1 (k)Y (k) = 3QY7,(Q) +2¢°Q%Y7,(Q)

2a2k2

Qi@ + L D YQY- BT, <©>} (4.25)
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We have found that some terms in (4.25) vanished because

/ A Vi, Yy = 8O (4.26)
/ 40 Vi — / AV =0 (4.27)
then (4.25) turns to
V2a°/? L~ ha ~ s, Lo Aa?k oo 4d?k3 -
T = oo ke [ 4G 3 avi () - SR QYD) - SV
4a? . A
+TQ2 Z V}/iu Yi V(k>}/1u(Q))
\/_a9/2 b 4\273/2; A 8/ 273/2; .7 8/ 2m3/2 3 “
52 ¢ (e Y (k) = ——= Y (k) - ————Y(k)
\/_7T/ 3v/3a 9v3a 81v/3a
4a? R
+g [dQ e k:z 1)"Y1,(Q)Y1- (k)Y7,(Q))
\/_ag/ -k 4\/_k7r3/2 8v/2k373/2 -
=R - )Y7,(k)
~ VBt 9v/3a3 81v3a M
4@ ,,a I/ 7
dQ e 2%%2 ) Y1 (k)]0
f a¥? 1 o 4V2 k;7r3/2 8V2k373/2 2k/2m »
= i + =Yy (R)
V379 9v3a 81v/3a 9v/3a
= BY;, (k) (4.28)
where
_ V2P e (4\/§k7r3/2 8V2kR N 2/m/27r>
\/_7T9/4 9v/3a3 81v/3a 9v/3a3
= ak(1 — Bk?) (4.29)
and

8(am)®/2(1 + - o )e‘ﬁazk2
27m9/4

drra

T 9@2r+ 1) (4:30)
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4.3 Spatial Transition Amplitude in 1D Wave

For 1D wave calculation, we similarly start from the general form of spatial

transition amplitude which is

Ty /dQE Lof e 27°@ 1 2’“2(4k (A) 2QY; (Q)) b +lo+
Sk -k .ok
Vi (2Q = 2)Y50m, (2Q = 3)Yim (2Q + =) (4.31)

In case of eTe™ annihilation into 2 mesons with nj = ny = I} = I, = 0 and

n = 0,[ = 2, the amplitude then turns to

Sp / Q 2&73 3a2Q2—$a2k2
@)
A 2k
( 5 Viu(k ) — 2QY7,(Q))a’ —Yam(2Q +3) (4.32)
where L(0, 2,a*(Q + ) ) = 1. Consider a term
Vo (23 + 2F) = Vo) (1.33)
From

Yim(7) = 7Yoo () = (@X + 80)' Vi ()

(21 + 1)! Y
B \/_Z D iy { 20, +1)! (2lp+1)!} (@)™ ()

Ixlp mamyp
{Im|Ixmalm) Yigm, (N Yi,m, (5), (4.34)
we have
Vo2 + SF) = Vi S > * 0y 2y
e QHik,2 (2lg + )2l + 1)! 3
Qlk MQMk
<2m|lQlekmk> lQmQ<Q> lkmk(A)
5' 1 2 A 5' 1 2 2 ~
— (5117 200 Yong (Q) + () G m, Yo, (B)
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+Zx/_

mqQmy

251 2—Qk<2m|1mQ1mk>an<Qmmk< )

= Z 43\/\/—_()Qk\/_<2m‘1mQ1mk>}/1mQ<Q)}/imk( )

+4Q°Y2 (Q) + = kQYQm(k) (4.35)

mqQmy

Insert (4.35) into (4.32),
~ 2a 2a? 3 a2Q?— 1 a2k? 4]{7 ~ A
/d@() fm ¢ (5 Y5 () — 20Y5,(0))

10 (@) + 2K Y (h)

+ Y 43\/\/__()Qk:\/_ (2m|1mg1mi) Yimg (Q)Yim, (k)

mQmy
4 13/2

_122 32216k A 7
T k/dQ PO am( Q)Y ()

16’7“33/2m(k)y* (i) —8Q3Y2m(Q) " (Q) - —Qk:QYQm< )Y7,(Q)

Z 16\/m;c2

mqQmy

Q(2m|1mqLlmy) Yimg (Q)Yim, (k)Y (k)

= Mok@? VIR 2m 1 Ui Vi ()i, (IV(Q)). (4.36)

mqQmy

We have found that some terms in (4.36) are vanished because
/dQ Yin Yy = 0w Omm (4.37)

/ dQ Vi, = / aQ Yy, = 0. (4.38)

(4.36) turns to

4(113/2 1 a2k2 3 202 16]{33 ~ ~
T, T © / Qe 57 Yam (k) Y1, ()

_ Z 8\/_O]§Q2 <2m]1mQ1mk>Y1mQ (Q)Yim, (@Yfl(é)

mqQmy

A 2k2[32\/_k:3 /2

= Yo (k)Y (k
N 81v/3a3 (F)Yiu(h)
= 202 16\/107T
— [ dg e 2@ EQ*(2m|1mg, Im — m
/Qe > 73 Q7 (2m|1mgq Q)

mq
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Vimg(QYr, momq (0)Y7,(Q)]

4q13/2 32/ 2k373/2 . ~ 16110
B 22 Yo (K)Y7 (k) — VT dQ Qe i@
V1577/4 81v/3a3 3V3
S @mltmg, 1m — mg)bmg Vi, m_mQ(/%)]
mqQ
4q13/2 32/ 2k373/2 . ~ 165k
- me [—f i Yo (k)Y7, (k) — fsw
V1577/4 81+/3a3 27a
@m|lp; 1, m — p)Yi, m,u(/%)]
= A Yor (k)7 (K) + AoV, (k) (4.39)
where
128\/5&7/2/{73 _T12a2k2
= —¢
L 043 /Brl/A
64a3/%k L 20
Ay = ————2m|lp; 1, m — phe 129°% 4.40
2 27\/%3/4( 1p ) (4.40)

We can write the transition amplitude in the form of summation of orbital angular
momentum,

T =" TpmYiip (k) (4.41)

Um!
where the complex conjugate stands for the outgoing wave. Factors Ty, are

worked out from

Ty = / dQ T Yy (k). (4.42)
For I’ =1, we have
Ty = / 492 (ALY} (5) Yo () + AYi () Vi (). (4.43)
By means of
[ 490.6)Yir(0.6) = G (4.44)
Vi (k) = (=1)"Y7,_ (k) (4.45)
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and

/ sin 0dfde Y% .. (0, 0)Yim, (0, ) Yigm, (0, )

20, + 1)(2l, + 1
— \/( 147T(223(+21) ) C(l1l5l3,000)C(lhlsl3, mymams), (4.46)

the first term of Eq. (4.43) becomes

/dQ AVYT (k) Yo (k) Y1 (k) = AM/E C(121,000)C(121; m', m, 1)

a7
5 /2

T
1

= —Ay/ o C(121; p —m,m, p) (4.47)
T

and the latter turns to

[ AYi (B Yi ) = [ 2 A=) Vi (YD

/

= A2(_1>m 5m—u,—m’

az(—1)* "2, m|1p; 1, m — p). (4.48)

where

64(13/2]{? _ 1 ,2p2
Qg = ——F————¢€ 12 .
27/3m3/4

Then, (4.43) is as shown
Ty = —Al\/; C(121; u — mym, p) + ao(—1)*"™(2,m|1p; 1,m — p).  (4.49)
For I’ = 2, we have
Ty = / dQ (AT (k) Yo (k) + Aoy ey (k) Yo (K). (4.50)
By Eqgs. (4.44), (4.45), and (4.46), we obtain

Ty = 0 (4.51)
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where C'(221,000) = 0. For I’ = 3, we have
Ty — / 42 (A7, (B)Yam (k) + AYs (k) Vi ()

= [ 49 A7 ()Y (Vi ()

5.7
=A 21 21;m’
WL crno0 e mp)
3
= A yy C(321; p —m,m, ). (4.52)

Hence, the spatial transition amplitude is

spatlal E T‘l’ ’Y/

= Tlm’Y* ( ) + T3m/Y;;n'(l%)
1

= (=An /5 C(12L 0 —m,m, p) + ap(=1)"" (2, mllp; 1,m — )
. / 3 .

where

128V2a"PK? 4 oy
=—¢
243+/5m1/4
64a3/2k _ 1422
Qg = —————¢€ 12 .
27+/373/4

4.4 Total Cross Section

The total transition amplitude form Eq. (4.2) is

Tete—myms = (1w|Vaql ") ('|G10") (0'[dq) (qq| T]eTe™)
= Tomima (P |G ) Tt e —m (4.54)
where T}, _.;m,m, 1s the transition amplitude of the intermediate meson decay into

two mesons as shown in the previous section, T,+.-_,,, is the transition amplitude

of the annihilation of an electron and a positron into the intermediate meson,
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and (p'|G|p’) is the Green function describing the propagation of the intermediate

meson and taking the form

(KGlp') = (4.55)

Ecm - Mm -2
where M, is the mass of an intermediate meson, and I' is the decay width of the

intermediate meson. The cross section can be obtained form

. 27TE1E2q

SR 1240 4.56
o= P [T (450

where F1FEs, p,+/s,q are the product of the energy of each meson, the energy of
electron, the center of mass energy, and the momentum of each outgoing meson,
respectively.

In case of two intermediate p mesons, the total transition amplitude used
to calculate the cross section is in the form of the summation of each transition

amplitude

Te*e*—»rmmz = Tp, + 17 (457)

ete~—mimso ete~—mima"



CHAPTER V

RESULTS AND DISCUSSIONS

Shown in Fig. 5.1 are the theoretical predictions and experimental data for
the cross section of the reaction ete™ — wn’. Note that for comparing with the

0 — 7%7%, we have multiplied our

experimental data of the reaction ete™ — wm
theoretical predictions by the decay branch ratio (0.087) of the w(780) to 7%y. In
the theoretical calculation we have included both p(1450) and p(770) mesons as the
intermediate meson states. There is no free parameter in the study. The relevant
masses and widths of mesons are taken from the particle table*, and the effective
coupling constant of the 3Py quark vertex is fixed to be 2.5 by the reaction p — 77
and the meson length parameter is fixed to be 3.847 by the reaction p — ete™.

It is found in Fig. 5.1 that the theoretical prediction, with the p(1450)
meson being in the 2S-state, is well close to the experimental data while the result
from a 1D-state p(1450) is too small. Therefore, one may comfortably concluded
that the p(1450) meson is in the 2S-state.

Although both p(1450) and p(770) mesons, as the intermediate states, con-
tribute to the reaction e*e™ — wn?, the theoretical result reveals that the p(1450)
meson dominate over the p(770). The broad peak in Fig. 5.1 stem mainly from
the occurrence of p(1450) meson.

That the prediction for the cross section of the reaction ete™ — wn® in

the two-step process with the p(1450) as the intermediate state reproduces well

the experimental data at energies below 1.4 GeV leaves no room for the one-step

*See Appendix A
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process to contribute to the reaction at a sizable scale at this energy region. For
higher energies one may have to include more mesons into the intermediate states
and /or to consider the contribution of the one-step process.

The reaction ete™ — pr® is also studied in the work though data are
very scarce. p is a broad meson with a width of I' = 150 MeV, and hence can
not be observed directly in experiments. It is usually detected via the coincident
measurement of its 27 decay products. Since there are a large number of particles
with masses around 1 GeV decaying into 2, it is very difficult to distinguish p
from other mesons in the reaction ete™ — 77 ~7". In our knowledge, there exists
only one set of experimental data from the work (Antonelli et al., 1992). There
are apparently two resonances in the experimental data, with the first probably
from the decay of w(1420) meson while the second from the w(1650).

Presented in Fig. 5.2 are the theoretical predictions for the cross section of
the reaction ete™ — pr¥ in the two-step process where the w(1420) and w(780)
mesons are included into the intermediate meson states. Again, there is no free
parameter in the study. The relevant masses and widths of mesons are taken from
the particle table, and the effective coupling constant of the 3Py quark vertex and
the meson length parameter are the same as for the reaction ete™ — wn®.

It is found in Fig. 5.2 that the theoretical prediction, with the w(1420)
meson being a 2S5-state, is much larger than the experimental data. Therefore,
one may rule out that the w(1420) is a 2S5 meson. With the w(1420) meson as a
1D meson, the calculated cross section is more or less consistent with the data,
hence one may suggest that the w(1420) meson is likely to be dominated by the

1D-wave.
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Figure 5.1 Theoretical prediction for the cross section of reaction ete™ — wr® —

7070 in two-step process with p’ in both 2S (solid line)and 1D (dotted line) waves.
Experimental data taken from the SND (Achasov et al., 2000), DM2 (Bisello et

al., 1991), CMD2 (Akhmetshin et al., 1999).
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o (nb)

Figure 5.2 Theoretical prediction for the cross section of reaction ete™ — pr®
in two-step process with w’ in both 2S5 (solid line) and 1D (dotted line) waves.
Experimental data taken from the DM2 (Antonelli et al., 1992). The cross section

simulated from w in 2S-wave is multiplied by a factor 1/4.
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In conclusion, the reaction ete™ — wn® and eTe™ — pr¥ are investigated in
the 3 Py non-relativistic quark model without any free parameter. The experimental
data of both reactions are fairly reproduced in the work. The study suggests that at
the energy region from the threshold to 1.4 GeV the two-step process is dominant
over the one-step one. The experimental data of the reaction ee~ — wn strongly
dictate a 2S-wave p(1450) while the data of the reaction ete™ — pr® prefer

w(1420) being a 1D-wave meson.
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APPENDIX A

PARTICLE DATA

Data are from J. Phys. G 33, (2006).

Table A.1 Pseudoscalar meson ( spin = 0 )

Principal
Meson Quark content Charge Mass (MeV) Lifetime (s)  decays

t ud, da +1, -1 139.570 2.60 x 10~8 [V,

™ (ut —dd)/v?2 0 134.977 8.4 x 107V vy

Table A.2 Vector meson ( spin = 1)

Mass Full width ~ Principal
Meson Quark content Charge (MeV) [' (MeV) decays

p ud,du, (uti—dd)/v/2 +1,0 775.5+04 1494+ 1.0 T

w (uii + dd) /2 0 7826 +0.1 849 +0.08 mtr




APPENDIX B
THREE DIMENSIONAL HARMONIC

OSCILLATOR

The potential of harmonic oscillator is widely employed to study the inter-
action in quark-antiquark system of mesons and three quarks system of baryon.

The main character of potential considered to be harmonic is
V(r) ocr? (B.1)

In the spherical coordinate, the radial schrodinger equation is

d? 2 1 I(l+1
H w27“2)—(+>

W + ﬁ(E - §u 2 U(T) =0 (BQ)
where
u(r) = rR(r) (B.3)
Eq. (B.2) can be contracted to
> l(l+1) )
d_p2 - p2 + A — P u(p) =0 (B4)
by introducing the dimensionless variable
p=ar
N op (B.5)
 hw
where
MW>1/2
=(— . B.6
a=( h (B.6)
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The study of an asymptotic behavior of u(p) leads to, when p — 0,

u(p) ~ p* (B.7)

and, when p — oo,

{dd_; - 2} u(p) = 0. (B-8)

The solution of asymptotic equation is

u(p) ~ e 712, (B.9)
According to the asymptotic behaviors in Eqs. (B.7) and (B.9), the solution of
u(p) in (B.4) is assumed as

u(p) = e "o g(p). (B.10)

Introduced y = p? and inserted (B.10) into (B.4), equation of g(p) becomes

djy(zy) N [(l . ;) _ y} dz(yy) F(Z + g) _ 2] gly) = 0. (B.11)

2
This is the Kummer-Laplace differential equation whose solution, regular at the

Y

origin, is

[ 3 A 3
—CF -+ -2 7142 B.12
gly) =C (2+4 T +2,y) (B.12)

where C' is a constant and F' is the confluent hypergeometric function,

ap ala+1)p’

Fla,y,p) =1+ 22 4 20720

(@70) v 1 7(7+1)2'
i )

k=0

/\

(B.13)

?T‘lb

\_/‘

The spherical wave function or the simultaneous eigenfunction of the observables

(H,L? L) reads

Unim (1,0, 0) = R (r)Yim (0, @) (B.14)
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where R, (r) is the radial wave functions and Y},,,(6, ¢) is the spherical harmonics.

From (B.12), the radial wave function behaves
(B.15)

Ry(r) ~ (ar)le_%QQTQF(—n, [+ 3 a’r?)

The normalized wave function reads
2l+2-n (9] 4 9 Hn
(20+2n+1) } (ar)le_%o‘grzF(—n, [+ 27 a’r?).  (B.16)

Janl[(20+ D2

Rnl(r) = a3/2 |:
It is more often and convenient to write the above equation in terms of Lagurre

a’r?) (B.17)

polynomials,
203n)!

Rulr) = | J et iz
T(n+1+32)

where L5 ™/?(a?r?) are the associated Laguerre polynomials
" (=1)F T(n+l+32)
L£L+1/2(a2r2) _ ( 2 2k (B18)
; ' (n—k)ID(k+1+3)
(B.19)

The radial wave functions have the orthogonal property

/ TszRnl(T)Rn/l(T) = O
0

By the Fourier transformation, the analytical wave function of a harmonic oscil-

(B.20)

lator in momentum space is shown
| 967 = (R0

1
where
_ 26°n! 1,—1822 14172 52, 2
Ry (r) = {F(n yn %)] (Br)e L2 5%2) (B.21)
and
1
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In our calculation, the spatial wave functions in momentum space are always used
and 3 is interpreted as a size parameter in unit of GeV~!. For mesons (quark-

antiquark boundstates), p’is the momentum of the center of mass

P — P2
2

7= (B.23)

where p; and p, are momentums of quark and antiquark, respectively.



APPENDIX C

v~-MATRICES AND TRACE TECHNOLOGY

Four dimensional y-matrices are defined by the anticommutation relation

(A =AM A = 29" 4 Lo (C.1)

*

Definitions base on “An Introduction to Quantum Field Theory”* with priority.

Specific Weyl or chiral representations are

70 = ; v = (C.2)

ol = ; o? = ; o = . (C.3)

To easily attack QED problems, the trace techniques produced by R. P.
Feynman has been a very important tools. Here are some proves and properties.

The prove of trace of one v matrix is

tr(y") = tr(y°7"y") since (7°)” = 1
= —tr(y°7"7°) since {7",7°} =0
(C4)
= —tr(7°7°y*) using cyclic properties of trace
= —tr(y") )
-1 0
where 7° = . Any parameter equal to minus itself must be vanished.
0 1

The result is also applied to trace of odd number of v matrix. For the trace of two

*Michael E. Peskin and Daniel V. Schroeder, 1995
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~ matrices, we use the anticommutation property and the cyclic property of trace,
tr(y#y") = tr(2¢"" - 1 — #4") (anticommutation)

= 8¢g" — tr(y"~") (cyclicity). (C.5)

Hence try#~" = 4g*”. The trace of any even number of v matrices are evaluated

in the same way by anticommuting the first v matrix all the way to right, then

cycle it back to the left. For the trace of four v matrices, we have
tr(y9"*7) = tr(29"7"7 ="
= tr(2g"77 77 — 729" +"7°29" — Py, (C.6)
Using the cyclic property on the last term and moving it to the left hand side, we

obtain
tr(y*y" 7)) = g"tr(v*97) — g’ tr(v"7) + gt (")
=4(g"9" — 99" + g"79""). (C.7)
3

For v° = iy%y'y293, the trace of 4° and any odd number of other matrices is

vanish. The trace of 7° itself, however, is also zero,

tr(7°) = tr(7"%°) = —tr(7""°) = ~tr(1"**) = ~tr(y’) = 0. (C.8)
These are summary of trace theorems;
tr(l) =4
tr(any odd number of 4*) =0
tr(y"y") = 4g"

tr(1#9"977) = 4(¢" 9" — 9"°9"" + 9"7g"") (C.9)
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The last formula can be simplified by

(—:am‘;eamg =24

eMe,y, = —65" (C.10)

€0 10e = —2(816% — §167).

The order of all v matrices can be reversed,

tr(YHyY Py L) = tr(L L TP AR, (C.11)
Two v matrices with similar indices dotted together can be reduced by

v 1 v v
ﬁ%ﬁwWW7=§%dWﬁ}=%M“=' (C.12)

In addition, several v matrices dotted together and having the following form can
be reduced by contraction identities, easily proved by using the anticommutation

relations,

v

Y =2y

PN Ay = —2g"" ' (C.13)

YA AP Y = =297,

V

All these properties are important in the QED calculation of differential cross

section.



APPENDIX D

REACTION OF ete™ — u™pu~

The ete™ — puTp~ reaction has been the primary process to study a pair
of quark-antiquark bound state. In this case, the calculation corresponding to
charges is only treated by quantum electrodynamics. However, the final state
of muon reaction is crucially different from the quark-antiquark final state in
which there are not free quark observed so far. The transition amplitude is
modified to avoid free a quark problem by coupling both quark and antiquark to
its bound state, mesons. We want to show the whole calculation by starting form

ete”™ — pTp~. A Feynman diagram of the reaction is

The transition amplitude is, from the feynman diagram,

T = o(y/)(—ier* u(p) (‘qg) a(k) (—ien” (k'
= (5w (o)), (D.1)

e
The factor e? will be modified later to Q? where @ is charges of quark. To find
the differential cross section, we need to find a complex conjugate of T' leading to
|T'|?. The complex conjugate of T is

ie?

T = = () o)) (30 (k) (D2)

q
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and
T = Z—i(v(p’)v“U(p) (R () ) () o)oK k) ) (D3)
where
(o7"w)* = u' (7)1 (%) 1w = ul (1) 0 = w90 = ayo. (D.4)

Since the beam of electron and position is unpolarized and the detector cannot
distinguish the polarization, |T'|* is averaged over spins of electron and positron

and summed over muon spins, that is,

DM WAEAGS L2

By trace technology, (D.3) becomes

- Z T p’“p + " —g" (p-p +m?))

splns

. (k K + k:Vk:I; — g (k- kK + mi))
86

o R ) 0 KW R e )] (D)
where m, = 0 because of high energy approximation or electron mass much fewer
than muon mass. Let the reaction occur in the center of mass frame and all

momenta, energies and mass be

p=(E, E?); P = (B, —E%)
k= (B, k) K= (B, —k)
k| = m k-2 = |k|cosf
¢ = (p+p)* =4F% p-p =2E°
p-k=p -k =E®— Elk|cos¥, p-k =9 - k=E*+ E|k|cosf.

Eq. (D.6) turns to

‘Z| 16E4[ 2(E — |k| cos0) + E*(E + |k| cos 0)* + 2m”, E*

spins
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= {(1 + %E) + (1 - Z—‘z‘) cos? 9} : (D.7)

The differential cross section of two final states is

do 1 |p1| 2
il I T (pa, D.8
(dQ)CM B 2By 0, — ] @m)PAE,, L ParPo = P1P2)] (D-8)

where E||v, — vp|, p are the energy of each initial particle, the relative velocity
of the beams as viewed from the laboratory frame, and the momentum of final
particle, respectively. In the case of ete™ — u*p~, E, = Ej, = ECT"L and |v, —vp| =

2c =2,¢ =1, and p; = k. The cross section of the reaction is

do 1 k| 1 9
- _ . T
Q)  2E.m?1672E,, 4 Z 7l

spins
a2 m? mi mi 5
=1 _ﬁ{(l+ﬁ)+( _ﬁ) Ccos 9] (D.9)
where a0 = %. Integrated over angular part, the cross section is

Ao mi mz
Ototal = @ - 2 (1 T 5 |- (D.10)



APPENDIX E

WIGNER’S 9J SYMBOLS

In the calculation of four quarks system or two mesons, the selection of
coupled pair of quarks corresponding to initial state has played a role. To help
couple independently, Wigner’s 9j symbols mainly used in the coupling of four
angular momenta is employed. Suppose there are four angular momenta J_; with
i =1,2,3,4in different spaces, the eigenstates of the operators (J2, J.;) are |l;, m;).

The direct product states

|J1J2J3J4; Mamamama) = |jima)|jama)|isms)|jama) (E.1)

are the eigenstates of operators (JZ, J,;) and form a complete basis in the direct
product space of dimension (2j; + 1)(2j2 + 1)(2j5 + 1)(2j4 + 1) with the transfor-

mation according to the direct production representation
D(X) = D' (X) ® D=(X) @ D(X) @ D*(X). (E.2)
The operator operating on the eigenstates is
J=Ji+ o+ Js+ Ju. (E.3)

The eigenstate of the total angular momentum can be formed by different ways.
We can couple the first and the second momenta to j;» and the third and the
fourth momenta to js4, then couple both together to the total angular momentum
J

[(J1 ® J2)j1n @ (3 @ Ja)jsas JM). (E.4)
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Another ways is to couple the first and the third momenta to j;3 and the second
and the fourth momenta to jos, and then combine together to the total angular

momentum j,
|(J1 ® J3)j15 @ (J2 @ Ja)jaus JM). (E.5)
The relation between above bases is
|(J1 ® J2)j1o @ (J3 ® Ja)jaas JM)
= Z <<j1j3>j13 (j2j4)j24;jm’(j1j2)j12 (j3j4)j34;jm>
J13J24
(1 ® 73) 15 © (J2 @ Ja)jous I (E.6)

with

<(j1j3)j13 <j2j4)j24 ) jm‘ <j1j2>j12 (j3j4)j34 ; ]m>

1 J2 Ji2
= /(2512 + 1) (234 + 1)(213 + 1) (2j2a + 1) - Js  ja Jaa (E.7)
J13 Joa
where
J1J2 Jr2
J3 Ja J3a (E.8)
J13 Jaa ]

is called Wigner’s 97 symbols. Here are some properties of the Wigner’s 97 symbols

( 3\

Ji J2 12 J3  Ja J3a J2 J1 J12

. . : R ) ) . R . . )

J3  J4a 34 =(-1) J1 J2 Ji2 = (-1) Ja  J3 J34 (E.9)
\j13 Joa J J J13 Joa J Joa J13J
( . . . \

J1 o J2 J12
N J3 Ja Ju :Z(_l)%(%‘irl)

k
Ji13 Joa J )
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J1 J3 Ji3 J2 J4 Jo4 Ji2 Jaa J
(E.10)
Joa J kK js k  Jau k1 o
Ji J2 Ji2
Sivoia i _1)j2+j3+j12+j13
J3 Ja ] = 07127340 J13]24 , ‘
. V22 + 1) (215 + 1)
J1z Jaa O
J1 J2 Ji2
(E.11)
Ja J3 J13

where R = ji1 + jo + J3 + Ja + J12 + Jaa + J13 + Joa + J.
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