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Abstract

Until recently the two most commonly used empirical methods for choosing feedback controller tuning
constants were the Cohen - Coon (CC) method (based on the open loap 'process reaction curve'), and
the Ziegler - Nichols (ZN) method (based on ultimate response of the closed loop process). Both of these
methods have substantial limitations: the CC method is unsuitable for processes which are open loop
unstable, and the ZN method generally produces closed - loop responses which are not sufficiently
damped, particularly for chemical engineering processes. Recently a new empirical method was
developed by Tyreus and Luyben (1992). The method is also based on the ultimate response of the
closed - loop system, however instead of being optirnized in terms of simple performance criteria it aims
to produce a closed - loop response which has a maximum log modulus of 12 dB. The objective of the
current research was to compare these three empirical tuning methods on third order inverse response
processes obtained as a result of competing first and second order processes in parallel. It was
determined that the ZN method gave consistently better tuning constants than the other methods, based
on both simple and integral performance criteria. The CC method suffered from the obvious inability
for inverse response processes (particularly third order processes which may be oscillatory) to be
approximated by a first order plus dead time response. The Tyreus - Luyben (TL) method did not
achieve the stated objective of having a maximum closed - loop log modulus of 12 dB in any case
studied: in fact the ZN method appeared to follow this criteria more closely for these processes. It
appears a major drawback of the TL method is that the tuning equations meet the 12 dB criteria
mainly for the processes the method was initially tested for, rather than in general. An improvement of
the method would be to set equations for the integral and derivative time constants, and vary the con-
troller gain in order to achieve the12 dB criteria for each process: however this method would greatly
increase the difficulty of tuning, especially in the process plant.

Introduction

L
Despite the advances in research on advanced  c(t)= K. e+ —IS—“—J'a(t)dt +K 1, de +c
control systemns, most processes in the chemical T dt

industry are still controlled using feedback In this equation c is the control action, gis the
controllers. The PID controller equation is “error” (the difference between the set-point and
given by: the controlled variable), and c_is the controller
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bias, or the initial value of the control action.
The control parameters K, 1, and 1 aresetin
order to provide suitable controlled response.
The transfer function for the PID controller is:

Gc(s) = Kc[l +%+ ‘tDs]
I

Note that these feedback control equations do
not depend on a model of the system being
controlled, although obviously the choice of the
control constants will depend on the system. The
integral control action may be taken out of the
controller by making the integral time constant
(1)) infinite (which gives PD control), and the
derivative control action may be removed by
making the derivation time constant (1 ) equal
to zero (which gives PI control).

In order to choose suitable tuning
constants it is important to have some criteria
for what "good" control is. Obviously we need
the process to be bounded-input bounded-output
(BIBO) stable, however a range of control
constants can achieve this, and not all stable
controllers give suitable responses. Another
obvious choice is zero offset, where the final
value of the controlled variable is equal to the
set-point, and any controller with integral action
will achieve this. In general the control
performance is determined through the use of
either simple performance criteria, which use
only one or two points of the response in order
to evaluate performance, or integral performance
criteria, which use the entire response (from 7 =
0 to infinity) to determine the performance.
Simple performance criteria are easier to use
(especially on real processes), however the
integral criteria are a more analytical evaluation
of the control performance since they relate to
the whole performance. This study will use both
types of performance criteria. The definitions of
the commeon performance criteria are given in
Table 1, which refers to the control shown in
Figure 1.

Empirical controller tuning

Controller tuning is the task of choosing suitable
tuning constants. Empirical controller tuning
methods for feedback controllers are important

for choosing initial values of the PID tuning
constants. In most cases these constants need
further improvement using on - line tuning. The
Cohen - Coon method (Cohen and Coon, 1953)
requires the process to be approximated by a
first-order-plus-dead time (FOPDT) process.
Usually this is achieved by introducing a step
change input to the process and finding best fits
for the FOPDT parameters (the process gain K,
the time constant 1 _, and the dead time t ) from
the response. The Cohen-Coon (CC) tuning
constants ( for P, PI, and PID controllers) may
then be calculated from the following equations:
For proportional controllers:

t
K L PR
¢ Kptd 3t

For proportional - integral controllers:

T t 30+3t, /1
K =——0.9+—L andT, =t | et —
¢ Kt 121 ! d 9+20t /1
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For proportional - integral - derivative controllers:
t 32+6t /7
K =—~ LS VT =T, =}
©OK 3 4 13+8t, /1

4
andt, =t,| ————
P d[n+2td/r]

It is noticeable that the controller gain for PI
control is made less than that for P control due
to the destabilizing effect of the integral term,
while the gain for the PID control is slightly
higher than that for P control. Many chemical
engineering processes have responses similar to
FOPDT systems; they are in general higher order
from series of first order processes (thus
imitating FOPDT) and rarely display
underdamped or inverse open loop responses.
This shows that the CC method is suitable for
most processes found in chemical engineering,
however some processes do show inverse
response (for instance boilers), and some
elements do display inherently second order
dynamics, and can thus be underdamped (for
instance valves and transducers).

The Ziegler-Nichols (Ziegler and Nichols,
1942) and Tyreus-Luyben (Tyreus and Luyben,
1992; Luyben and Luyben, 1997; Luyben, 1998)
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Table 1 : Definitions of performance criteria used in this study.

Criteria Definition (see Figure 1 for details).
Overshot (maximum value of response-steady state value)/steady state value X 100%.
(B/A X100%).
Rise time Time required to reach the steady state value for the first time.

Decay ratio  Ratio of height of neighboring peaks in the response (C/B).
Settling time Time required for the response to maintain new steady state within £5%

IAE The integral of the absolute value of the error, evaluated from t=0to <.
ISE The integral of the error squared, evaluated fromt =0 to oo,
ITAE

The integral of (the absolute value of the error X t), evaluated from t =0 to oo,

Figure 1 : A typical closed loop response showing details of simple performance criteria

methods both use the process controlled with a
proportional only feedback controller to
characterize the system in terms of its frequency
response. The system undergoes a step change
in its input (in this case the set-point), and the
gain of the closed loop response is varied (by
varying K ) until the system reaches the crossover
frequency (). This point is characterized by a
response which oscillates at constant amplitude.
Once this point is known the control constants
are calculated from the ultimate period (P ) and
ultimate gain (K ), which are defined by:

P, =2n/0 andK,6 =M"

where M is the amplitude ratio of the response
at the ultimate frequency. (Note that the ultimate
gain is the value of the controller gain needed to
achieve the ultimate response). Once these two
parameters are known the controller tuning
constants for the Ziegler -Nichols (ZN) method
may be calculated using the equations in Table 2,
and those for the Tyreus-Luyben (TL) method
may be calculated using the equations in Table 3.
The TL method does not predict tuning constants
for proportional only controllers.

Table 2: Ziegler-Nichols tuning constants from the ultimate period (P,) and ultimate gain X,

Controller type K, T, T
Proportional K /2.0 - -
Proportional-Integral K /2.2 P/1.2 -
Proportional-Integral-Derivative K /1.7 P /2.0 P /8.0

Table 3: Tyreus-Luyben tuning constants from the ultimate period (P ) and ultimate gain (K ).

Controller type

K T, Tp

C

Proportional-Integral
Proportional-Integral-Derivative

K/3.2
K /2.2

2.2P, -
2.2P, P /6.3
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Note that open loop unstable processes
controlled by proportional controllers may have
two values where the system oscillates at constant
amplitude. At low controller gain the system may
pass through a transition from being unstable to
being stable, while at a higher value of the
controller gain the system will move back to
being unstable. The higher value of the controller
gain is used for the ultimate gain (and therefore
the related ultimate period) to select tuning
constants: if the lower value is used the chosen
tuning constants will probably result in an
unstable closed loop system. In cases where the
gain required to produce a stable process is more
than half the ultimate gain, neither gain may
result in a stable controller when used to predict
tuning constants. It is likely these cases are
very rare.

It should be noted that the criteria that
Ziegler and Nichols used to determine their
equations were largely simple performance
criteria such as the decay ratio, and rise time,
The more recent method of Tyreus and Luyben
has the stated aim of obtaining a closed loop
response which has maximum log modulus of
+2 dB. This was claimed to be an improvement
on the ZN method, which often produces closed
loop response which are too underdamped for
most chemical engineering processes.

Inverse response processes

Inverse response is where the initial response of
the process occurs in the opposite direction to
the final value of the response. This occurs when
the slope of the initial response is opposite in
sign to the slope of the response as the process
reaches equilibrium. Inverse response may occur
when two competing processes (which have
gains of opposite signs) occur in parallel.
Although this is not necessarily the reason for
inverse response in all cases, it certainly helps
to visualize what occurs in inverse response. The
easiest way to recognize processes which will
have inverse response is to examine their transfer
functions: processes displaying inverse response
will have a positive root in the numerator of their
transfer function, or in other words, a positive
zero. Note that this is different to unstable

processes, which have a root with a positive real
part in the denominator of their transfer function,
or a positive pole. When processes have multiple
zeros, inverse response will occur when there is
an odd number of zeros (Rosenbrock, 1970).
Inverse response processes are difficult to control
because the controller initially obtains signals
showing the process moving in the direction
opposite to the final steady state. This problem
led to the development of controller designs
particularly for this type of process, such as
inverse response compensators. However Scali
and Rachid (1998) have shown that the
commercial PID controller equation will be able
to give control equivalent to compensators for
typical values of plant/model mismatch.

Most research in the chemical
engineering field on inverse response has
investigated the control of second-order
processes with inverse response (SOPIR) or their
transfer functions. These are characterized by
being equivalent to two competing first order
systems in parallel. It has often been stated that
these processes are typical of inverse response
in general (see for example Scali and Rachid,
1988), however it should be noted that these
processes will never be oscillatory (as they can
never have complex roots in their transfer
functions) whereas higher order inverse response
processes certainly may be oscillatory.

This study will focus on third order
processes with inverse response (TOPIR) and
particularly those which result from competing
first and second order processes. This distinction
is important: all TOPIR will have a third order
polynomial in the denominator of their transfer
function, however the criteria of having one (or
more) positive zeros means that TOPIR transfer
functions must have numerators of order one or
higher. (Usually processes in chemical
engineering will have strictly proper transfer
functions, and hence the numerator for TOPIR
will normally be either first or second order).
TOPIR resulting from competing first and second
order processes have a second order polynomial
in the numerator of their transfer function. The
block diagram of the processes considered is
shown in Figure 2, and a typical response is
shown in Figure 3. The transfer function is:
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Figure 2: Block diagram of a third order inv

erse response process (TOPIR) as described by

parallel first and second order process.
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" Figure 3: Typical response of an uncontrolled third order inverse response process (TOPIR),
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This transfer function will display inverse
response if K, > K .

Methods

Controller tuning constants were chosen based
on the Cohen-Coon (CC), Ziegler-Nichols (ZN),
or Tyreus-Luyben (TL) methods. The stability
limit required for the ZN and TL methods were
calculated analytically from the Routh-Hurwitz
matrix of the closed-loop feedback transfer
function. The first-order-plus-dead time fit for
the CC method was found from the process
response (in the time domain) using the curve
fitting feature of SigmaPlot 5.0 (SPSS Inc.,
1999). Once the controller constants had been
determined the controlled process was studied
using the Matlab Simulink 1.2¢ program (The
MathWorks, Inc., 1993) using 4"/5" order
Runge-Kutta integration method. A tolerance of
10 was used for all simulations, and the stop

time for the simulation was chosen based on the
speed of the process response. Both open-loop
and closed-loop Bode plots were prepared
analytically from the transfer functions (G (i®))
of the systems.

A performance criteria which has not (to
this authors knowledge) been noted in the
literature, but is of obvious suitability for control
of inverse responses is the percent inverse
response, which is defined as the magnitude of
the inverse response divided by the magnitude
of the final response X 100 %. Obviously a good
controller should minimize this criteria. The
inverse response, and the other performance
criteria,were calculated numerically from the
results of the Matlab simulation.

Results and Discussion

Characteristics of the response of third order
inverse response systems.

Initially a study was made of the uncontrolled
response of third order processes with inverse
response. This showed some interesting
characteristics of these processes, and hence wiil
be discussed here. The processes considered
consist of competing first and second order
systems, which allow for variation in several
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parameters. The second order system is modeled
in terms of the process gain (K,), natural period

of oscillation ( 1), and damping coefficient ( £,
In the current work the time constant (t,) for
the first order system is set at one minute for all
simulations, as the relative speeds of the first
and second order systems are more informative
than actual values. The gain of the first order
system (K,) is set at negative one, which when
combined with a gain of two on the second order
system, will result in an ultimate value of (plus)
one for the open loop response. The damping
coefficient for the second order system was
varied between 0.5 and 2.0, and the natural
period of oscillation was varied between 0.5 and
2.0 minutes. The damping coefficients were
chosen so that the response of the inverse
response process with underdamped, critically
damped, and overdamped second order systems
was studied. The natural period of oscillation
values were chosen so that the second order
system would have speeds different to, but of
the same order of magnitude, as the first order
part of the system. The input to the process was

a step change with a magnitude of one.

The results of the open loop simulation
with the second order system having a natural
period of oscillation of 1.0, and damping
coefficients of 0.5, 1.0, and 2.0 are shown in
Figure 4. The response of the TOPIR process is
not oscillatory for damping coefficients of 1.0
and 2.0, but it is oscillatory when the damping
coefficient is 0.5. This result is not unexpected:
when the damping coefficient is less than one
the second order system is underdamped, and
this will be seen in the response of the TOPIR
process.

The results of the open loop simulations
with the second order system having a damping
coefficient of 1.0, and natural period of
oscillation of 0.5, 1.0, and 2.0 are shown in
Figure 5. The responses should not be oscillatory,
as the transfer function for the proce ss will have
real poles for all of these cases, while oscillatory
response is characteristic of processes which
have complex conjugate poles. For example the
transfer function of the case with a natural period
of oscillation of 0.5, and a damping coefficient
of 1.0is:

]

s [] 7 s s 10
Time

Figure 4: Uncontrolled response of TOPIR with 1, =1,K =1,7=1and {=0.5,1.0,and 2.0

15

L=

Figure 5: Uncontrolled response of TOPIR with 1 =1,K =1,{=1,and 1=0.5,1.0,and 2.0.
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=sit4s+d
(s+2)*(s+1)
which has poles at -2 (repeated twice), and -1.
However the response of this process has a
maximum at ¢t = 3.2617 minutes, where y =
1.0162. When the natural period of oscillation
is less than 0.5 this maximum value is larger.
The steady state value of the response is one, so
the maxima before the steady state may suggest
oscillatory behavior to those unaware of the
poles. To find the truth we may look at the time
domain response of the transfer function above
with a unit step change input. This is:
y(t)=1+e™ —2e(1+2t)
Clearly this is not a sine function. The maxima
and minima of the function may be found by
setting the time derivative of the function to zero:

Yo eiget=0

dt
This shows a minima at 0.1444 minutes (having
y =-0.066) due to the inverse response, and the
maxima at 3.2617 minutes. Clearly this maxima
is due to the differing speeds of the first and
second order response at different times: initially

the second order response is slower than the first

G(s) =

response of the inverse response process. The
speeds of the two competing processes are
compared in Figure 6. In this case the gain of
the first order process has been changed to +2.0
to make visual comparison easier.

Control of third order inverse response
processes using Ziegler-Nichols and Tyreus-
Luyben tuning.

The TL and ZN methods are discussed together
since they both use the ultimate response as a
means of determining tuning constants. The
experiments performed investigate the tuning
constants chosen, and controlled response, as the
damping of the second order response and the
relative speeds of the first and second order
responses are varied. For this reason the gains
of the first and second order processes are not
varied (they are set at - 1.0 and +2.0 respectively),
and the time constant of the first order process
is also not varied (it is set at 1.0 minute). The
natural period of oscillation ( t) of the second
order process is varied, having values of 0.5, 1.0,
and 2.0 minute. These values are chose so that
the second order process is faster than the first
order process for some simulations, and slower
for others. The damping coefficient of the second

—— Fst order responss
/ -~ — Swecond order response

-8 .
00 5 10 15 20 25 Ao 3% 40
Tima (min)

Figure 6: A comparison of the speed of a first order response (TI = l)and a second order

response {T1=0.5,{=1)

order response, since second order responses are
initially sluggish, which gives the inverse
response. A fter a certain period of time however,
the second order response becomes quicker than
the first order response due to the natural period
of oscillation being much less than the time
constant of the first order process. The second
order system approaching its ultimate value of
2.0 before the first order system reaches its
ultimate value of -1.0 causes a maximum in the

order process is also varied, (having values of
0.5, 1.0, and 2.0 also). These values were chosen
so that the second order process is underdamped
for some simulations, and overdamped for
others.

For each process, values for the ultimate
gain and ultimate period were calculated from
the Routh stability criteria, and then confirmed
with the frequency response, G(i  ): the ZN and
TL controller constants were then evaluated from
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Table 4: Controller tuning constants for the Ziegler-Nichols and Tyreus-Luyben methods.

Ziegler-Nichols Tyreus-Luyben
Candt(min) K, P K 7,(min) T (min) Ke T,(min) T _(min)
1.{=1.0,1t=10 200 370 118 185 0.462 0.909 8.14 0.587
2.{=10,1t=05 416 127 245 0635 0.159 1.89 2.79 0.202
3.{=10,1=2.0 1.18 7.72 0.692 3.86 0.965 0.535 17.0 1.22
4, {=05,1=10 130 182 0766 1.73 0.432 0.592 7.61 0.549
5.({=20,71=10 200 628 118 3.14 0.785 0.909 13.8 0.997
- ) l -;_\
i | J - i
. ) 3 =t !

Figure 7: Bode plot of the open loop TOPIR process with t=1,{ = Ishowing the critical

frequency ( ®,, =1.7min™ )and the magnitude at the critical frequency (M = —6.1dB).

the results. The values of the ultimate gain,
ultimate period, and control tuning constants for
each process studied are given in Table 4. Figure
7 shows a Bode plot of system 1 in Table 4, and
is shown as an example of the open loop
frequency response. This shows the value of the
crossover frequency is 1.7 (which gives an
ultimate period of 3.7 minutes), and the value of
the magnitude at the crossover frequency is M =
- 6.0 dB, which results in an ultimate gain of
2.0. Figure 8 shows a simulation of the closed
loop response of system 1 controlled with a
proportional controller with a controller gain of
2.0. This confirms the values of the ultimate gain
(since the peaks are constant amplitude) and
ultimate period, which is labeled T on the graph.

Figure 9 shows an example closed loop
response using controller constants predicted by
the ZN and TL methods (along with the Cohen-
Coon method which will be discussed later). The
TL method displays very slow response, while
the ZN method produces an acceptable closed
loop response. The open loop Bode plots for the
system plus controller (Figure 10} show why the
ZN controlled process is faster: it displays higher
amplitude ratios for all frequencies, as would be

expected since the ZN method results in higher
controller gains and lower integral time constants
than the TL method. This is further shown by
the Bode plot of the closed loop response of the
controlled process (Figure 11): the ZN method
displays a maximum magnitude of almost 2.5 dB
(at a frequency of 1.3), where the maximum for
the TL method is the low frequency asymptote
of 0 dB. The response of the ZN controlled
process almost meets the stated aim of the TL
tuning (having a maximum in the closed loop
log modulus of +2 dB), while the TL tuning does
not come close to achieving this aim.

Analysis of the performance criteria
reinforce the discussion above. The ZN
responses are sometimes too damped, but the TL
responses are always far too damped, and in fact
always have zero overshoot. It must be noted
that the definitions of overshoot and decay ratio
(as used in this study) are slightly deceptive. The
response may still be slightly underdamped and
yet have no decay ratio or overshoot because
the initial peak occurs before the system has
reached the ultimate response, or in other words
before the rise time. The ZN method also gives
closed loop response with much shorter rise
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Figure 8: Closed loop response of a Topir process with 1=1,{=1 controlled with a
proportional controller of gain 2.0. The system critically stable with an ultimate
period of 3.7 minutes, and an amplitude ratio of 2.0.
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Figure 9: Closed loop response of a Topir process with 7 =1 »{=0.5 controlled with PID control
using Cohen-Coon, Ziegler-Nichols, and Tyreus-Luyben control constants.
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Pigure 10: Open loop Bode plot of the TOPIR process with 1 =[,{ =1 controlled with PID
control using Cohen-Coon, Ziegler-Nichols, and Tyreus-Luyben control constants.
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Figure 11: Closed loop Bode plot of the TOPIR process with 1 =[,{ =1 controlled with PID
control using Cohen-Coon, Ziegler-Nichols, and Tyreus-Luyben control constants.

times and settling times. It can be seen the enough away from the ultimate response that
integral performance criteria also suggestthe ZN  they are unlikely to become unstable at
constants are an improvement over the TL  reasonable values of plant/model errors, and the
constants; in essentially all cases the IAE, ISE, TL method gives responses which are far too
and ITAE are all much higher for the TL tuning. damped. However a few examples of response

There is not much to be gained from a  where the plant (or model of the plant) used to
complete analysis of plant/model mismatch since  determine the ultimate gain and ultimate period
the ZN method gives closed loop response far  is significantly different from the actuai plant,
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Figure 12 shows the response of the process in
system 1 (Table 4) controlled with both the ZN
and TL methods, when the values of both the
natural period of oscillation and damping
coefficient are modeled as 25 % less than the
actual value. (In this case the actual values for
the system are = 1.25 minute and &= 1.25,

however values for the ultimate gain and ultimate
period were based on a model where 1 = 1.0
minute and & = 1.0). The reason for attempting
this is that chemical processes are potentially
highly time dependent: the tuning constants may
be chosen based on a model of the system at
startup, however the actual process may change
significantly as equipment becomes clogged or
scaled. The response of the controlled process
(for both TL and ZN constants) is not much

different than the process which uses accurate
values of the ultimate period and ultimate gain.
If both the natural period of oscillation and the
damping coefficient were overestimated by 25%
in the process model, the controlled response
(based on either ZN or TL tuning) becomes
significantly more damped, in fact the closed
loop processes become overdamped for both TL
and ZN control in many cases. The results are
shown in Figure 13. The larger values of the
damping coefficient and the natural period of
oscillation used in the calculation of the ultimate
gain and ultimate period has resulted in values
of the controller gain which are much lower than
necessary for the process, and values of the
integral time constant being chosen much higher
than necessary.

w xn » 0

Time ming

Figure 12: Response of TOPIR processes controlied with PID controllers. For response with
plant model mismatch: model constants are 7=1,{ =1, plant constants are
1=1.25,{ =1.25.For response without mismatch both plant and model
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Figure 13: Response of TOPIR processes controlled with PID controllers. For response with
plant model mismatch: model constants are 1=} ,{ =1, plant constants are
1=1.25,{ =1.25.For response without mismatch both plant and model
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Figure 14: First order plus dead time (FOPDT) fit to a TOPIR with 1 =1,{ =1
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Table 5: Performance criteria for Ziegler-Nichols controller tuning.

Criteria (=10,7=10 {=1.0,7=05 (=10,7=2.0 (=05,7=1.0 {=2.0,7=1L0
Overshoot (%) 17.0 453 5.4 89 322
Rise time (min) 241 0.64 6.70 2.14 461
Decay ratio 0 0.022 0 0 0.007
Setting time (min) 571 1.67 9.00 6.62 128
Inverse response (%) 47.8 25.0 65.9 22.2 70.6
1AE 2.43 0.867 594 2.38 6.16
ISE 2.31 0.630 7.18 1.64 5.84
ITAE 3.43 0.573 142 6.32 24.1

Table 6: Performance criteria for Tyreus-Luyben controller tuning.

Criteria {=10,7=10 ({=10,"=05 [=10,7=20 {=05,1=10 {=20,T=1.0
Overshoot (%) 0 0 0 0 0

Rise time (min) N oo 0o oo oo
Decay ratio 0 0 0 0 0
Setting time (min) 35.5 1.80 114.0 50.0 57.6
Inverse response (%)  29.5 16.5 412 14.6 433

IAE 8.93 1.48 314 12.8 152

ISE 3.63 0.639 13.7 4.67 697
ITAE 120.6 4.26 1230 2459 318

Table 7: Controller tuning constants for the Cohen-Coon method.

FOPDT approximation Cohen-Coon

¢andt(min) K, t(min)  t@mn) K T,(mn) 1 (min)
1.{=101t=10 1.00 1518 1.369 1.73 2.53 0.428
2.{=10, t=05 1.00 0.601 0.457 200 0876 0.146
3.£=10,1t=20 1.00 2.870 3.325 1.40 5.82 0.999
4. £=05,t=10 1.00 0.368 1.237 0.647 1.62 0.279
5.{=20 t=10 1.00 3.948 2.671 222 5.23 0.865

Table 8: Performance criteria for Cohen-Coon controller tuning.

Criteria {=190, 1=10 =10, =05 {=10, =20 £=05,1=10
£=20,1=10 Overshoot (%) 123 545 UNSTABLE 125 UNSTABLE

Rise time (min) 1.52 0.89 - 2.31

Decay ratio 0 0 - 0.058 -
Setting time (min)  2.70 5.28 - 10.6 -
Inverse response (%) 91.8 16.2 - 17.7 -
IAE 1.77 1.17 - 2.71 -
ISE 2.38 0.605 - 1.80 -
ITAE 1.30 2.63 - 8.00
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Control of third order inverse response
processes using Cohen-Coon tuning.

The ability of the first order plus dead time
(FOPDT) model to fit the inverse response
process is (as expected) not very good. The
FOPDT model cannot model the inverse
response except to give it as pure dead time. In
fact the model prediction of the dead time is in
all cases very close to the time period of the
negative response. The positive part of the
response is fitted acceptably well by the FOPDT
model if the second order part of the process is
overdamped, but the fit is significantly worse if
the second order part is underdamped. An
example of the FOPDT fitis given in Figure 14.
Once the results of the fit are known then it is
possible to use the CC equations to determine
the tuning constants. Both the FOPDT fitting
parameters and the CC tuning constants are
shown in Table 7. Examples of the open and
closed loop Bode plots of the CC controlled
system are shown in Figures 10 and 11 while an
example response is shown in Figure 9. From
the response of the controlled process we may
calculate the performance criteria and these are
shown in Table 8. It is obvious that the CC
method cannot give adequate estimates for
tuning constants for TOPIR processes. In two
of the five cases studied the controlled response
becomes unstable. In the other three cases the
CC method gives performance criteria which
compare well to the ZN method and are much
better than the TL method, however this is little
compensation for the possibility that in other
cases the response is unstable, and therefore
totally unsuitable.

It is noticeable that the closed loop
performance of the CC method occurs when the
second order process is slow, either when the
natural period of oscillation is large, or when
the damping coefficient is large. This may result
because the period of the inverse response is
longer, and possibly the magnitude of the inverse
response is larger. Because the FOPDT model
cannot model the inverse part of the response, it

is probable that when the inverse tesponse is very

large, the tuning constants chosen will be poor.
A slightly more surprising result is that the CC

method did reasonably well for the process
which was underdamped! It appears that the
method has more trouble to choose constants for
inverse response processes than for underdamped
ones.

The performance criteria for the CC
method are not very informative since two of
the five cases studied have unstable closed loop
responses. The other three cases show reasonable
performance criteria, but obviously in the case
of TOPIR processes the CC method produces
closed loop responses which are too oscillatory.
No attempt was made to study plant/model
mismatch for the CC tuning since the method
produces unsuitable results for no plant/model
mismatch.

Conclusions

The Ziegler-Nichols method clearly gives the
best settings of the three controller tuning
methods for the third order inverse response
processes studied here. The Cohen-Coon method
suffered from the inability of the first order plus
dead time model in approximating the inverse
response process, particularly those which are
very slow and thus have long periods of inverse
response. The Cohen-Coon method produced
closed loop responses which were very
underdamped, and in some cases the response
was unstable. This is clearly unacceptable even
for choosing initial tuning constants for on-line
improvement. The Tyreus-Luyben method
produced closed loop response which were too
damped, and in some cases overdamped.
Although this is better than producing an
unstable response, it is clearly not optimal. The
Tyreus-Luyben method was never close to
achieving its stated aim of producing closed loop
systems with a maximum log modulus of +2 dB:
the Ziegler-Nichols method, although not
designed for this criteria, achieved the aim far
better. It must be noted that the conclusions of
this paper only relate to control of third order
inverse response processes: no conclusions
should be made relating to the suitability (or
unsuitability) of the tuning methods on other
types of process.
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