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An exact, to order « (the fine-structure constant), study of Cerenkov radiation
emission in Quantum Electrodynamics is carried out at finite temperature (I # 0) in
isotropic homogeneous media for the first time. The method of complex integration is
used to avoid the method of combining denominators of Feyman propagators in

parametric form; which has led to approximations in the past due to the complexity of

the resulting integrals. The h’e”/E" -quantum contribution to the power spectrum is
automatically evaluated by our method and settles the ambiguity associated with this
term known to exist at 7 = 0. In this work we also show that complex integration, by
careful analysis of the singularities involved, actually simplifies the problem
tremendously over the usual method of combining the denominators of the
propagators. In particular, the imaginary part of the electron self-energy satisfies the
correct underlying boundary condition and no contact term is needed in its evaluation.
One of the most pleasing aspects of Quantum Electrodynamics, unlike its classical
counterpart, is that it introduces automatically a cut-off for higher frequencies of

radiation emission emphasizing the importance of the quantum treatment.
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List of Symbols and some Physical Constants

The following symbols are used throughout this thesis unless otherwise stated.
The numerical value of the physical constants given are based on the Review of

Particle Physics by the Particle Data Group (1998).

¢ = Speed of light in vacuum, which is 299792458 m 5™
h = Planck constant. which is 6.6260755 = 107 J s
h=h2rx - Reduced Planck constant, which is 1.054537267 = 1015

or 6.582122 x 107 MeV s
¢ = Electron charged magnitude, which is 1.60217733 x 101 ¢

or 48032068 = 107" esu

m = Electron mass, which is 0.31099906 MeV/c”

or 9.1093898 x 107 kg ‘
a=¢[dzhe = Fine-structure constant, which is 1/137.0353896
k = Boltzmann constant, which is 1.380658 x 107 T K

or 8.617386 x 107 eV K™

T = Absolute temperature

I = The decay rate

u = Dirac’s spinor

X - Electron’s self-energy

1 = Photon’s energy (frequency)

L § Space-time four-vector

p=1E.p) = Electron’s energy-momentum four-vector
£ = Electron’s energy

q=1g "q) = Photon’s energyv-momentum four-vector
Gix) = Dirac delta function

P(w) = The power spectrum
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Dyfg) = Photon propagator

Sip) = Electron propagator

o = Metric tensor

3 - Dirac matrices

D = Electric displacement vector
E = Electric field intensity

B = Magnetic induction vector
H = Magnete field intensity
AY =(@.A) = Potential four-vector

& = Permittivity

I = Permeability

n = Medium’s refractive index
Y= 5= Current density four vector
nt = (1.0) - Time-like unit vector

The three-vector notation is denoted by a bold-arrowhead character.
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Chapter |

I ntroduction

In this chapter the basic ideas about Eerenkov radiation are introduced. This
includes its history, earlier explanation of the classical and quantum theory. Finally
the purpose of the thesis investigation followed by a detailed description of the

contents of the coming chapters are spelled out.

1.1 TheVery Basics of Eerenkov Radiation

Eerenkov radiation is the radiation emitted by a uniformly moving charged
particle in a medium when its speed exceeds the speed of light in the same medium.
That is when

v>S, (1.1)

n
wherev isthe velocity of a charged particle, ¢ is the speed of light in vacuum and n is
the refractive index of the medium.

According to the Huygen principle, each point on the path of a moving
charged particle is a source of a spherical wave (Fig. 1.1). Every spherica wave
along the path has a common envelope, which is a cone, the Eerenkov cone (similar
to Mach’s cone in acoustics), whose apex coincides with the instantaneous position of

the charged particle. From this figure one readily obtains the Eerenkov relation
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cosq = i, (1.2
nb

Medium with
refractive index n.

Charge q

v

Figure 1.1 Formation of the Eerenkov cone

where b =v/c . Due to the constraint on the possible values of cosg one obtains the

threshold condition for the radiation emission:

nb>1. (1.3)

1.2 Brief Historical Overview

Eerenkov radiation has been observed as a bluish-white light from
transparency substances near strong radioactive sources by many physicists. These
observations were not at first interpreted as a new phenomenon. In 1934, the Russian
physicist, S| Vavilov and his post-graduate student, P A Eerenkov discovered that
this was a new phenomenon by investigating the bluish-white light from uranyl salts
under the influence of gamma rays from radium. Thus, in the Russian literature this
radiation is also known as Vavilov-Eerenkov radiation. This discovery was first
published in Russian in 1934 (Eerenkov, 1934, 1936, quoted in Ginzburg, 1996) and

the first English version was published in 1937 (Eerenkov, 1937, quoted in Smith,
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1993). A series of experiments carried out by Eerenkov have been recently
summarized by Mukhin (1987).

In 1937, | M Frank and | E Tamm (Frank, and Tamm, 1937, quoted in Smith,
1993) introduced the theory of an electron moving uniformly (constant velocities) in a
dielectric medium, which was based on classical electrodynamics. They have
provided atheoretical description of Eerenkov’s experimental observations. This new
phenomenon, in its simplest terms, was described by stating that a charged particle in
a medium may emit radiation even if it is not accelerating as long as its speed exceeds
the speed of light in the medium.

In 1958, Eerenkov, Frank and Tamm won the Nobel Prize in physics for their
important work.

There has been much interest in recent years in Eerenkov radiation
emphasizing several aspects by different investigators (e.g., Schwinger, Tsai, and
Erber, 1976; Bazylev, V., et a., 1981; Fulop, 1993; Manoukian 1993; Manoukian,
and Bantitadawit, 1999) and most recently in Eerenkov radiation by neutrinos
(loannisian, and Raffelt, Lanl. preprints, 1999) and in string theory (Manoukian
1991). An outstanding application of the theory of Eerenkov radiation is in the so-
called Eerenkov detector, which is widely used in accelerators in high-energy physics.
This detector is used to detect and count high-energy charged particles and determine

indirectly their velocities.

1.3 Classical and Quantum Theory of Eerenkov Radiation

Eerenkov radiation has been treated both classically and by the quantum

theory. Early work on Eerenkov radiation is reported in the book by Jelly (1958).
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For classical theory, Tamm and Frank (1937) obtained the expression for
radiation intensity per unit time by calculating the flux associated with the Poynting
vector across a cylindrical surface surrounding the path of an electron and the former

isgiven by (eg., Ginzburg, 1996)

dw Voo
- = eV dWV\(l-
dt ¢y

. 14
57 (1.4)

The quantum theory of Eerenkov radiation has been investigated by Ginzburg
(1940 quoted in Ginzburg,1996), Sokolov (1940, quoted in Jelly, 1958), Neamtan
(1953), Schwinger, Tsai, and Erber (1976), Fulop (1993) and others. However, the
clearest and most detailed quantum treatment of the problem which we have found in
the literature for investigators done over the years is that of Schwinger, et al. (1976).
This work deals with the full Quantum Electrodynamics, to first order in the fine-
structure constant a, in an isotropic homogeneous medium at absolute zero
temperature T=0). Unfortunately, due to the familiar method of combining the
denominators of the Feynman propagators in parametric form, the resulting integrals
turned out to be exceedingly complicated and approximations were necessarily made.
This left, in particular, the O°wf/E*-contribution to the quantum correction
undetermined and ambiguous, where E is the total energy of the electron and [w is
the energy of a photon. In this thesis, we use units such that [0 =1, ¢ = 1 (see

Appendix A). The expression for the power spectrum found in their work is

: ? 1 & w, Ou
P(w) =awni €l - Gl+—(n°- DU, (1.5
8 nzbzg E %

where mis permeability of a medium and w is the frequency of an emitted photon,

with the threshold condition
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nb>1+ - (n?- 1. (1.6)
2E

to be satisfied.

The classical expression of the power spectrum was also evaluated in their
work in the language of source theory, and is given by
1 9

x
P(W) =awnip%1- iy

(1.7

with the threshold condition as in (1.3). It is seen that in classical limit, E>>u, the
expression for the power spectrum in (1.5) and the threshold condition in (1.6) are
equivalent to the classical expression in (1.7) and (1.3), respectively.

For the full quantum treatment it is illuminating to describe the kinematics
involved in Eerenkov radiation using the photon concept. This description follows.

Suppose an electron of rest mass m is moving through a medium of refractive index n,

with constant velocity v. At some point along the track, a photon of energy w is
emitted at an angle g with respect to the original direction of the electron as shown in
figure 1.2.

The energy-momentum four-vector for the electron before the emission can be

written as

K -
P, ,/q
> O
o

Figure 1.2 A photon emission by an electron at an angle g where K is

the momentum carried by the photon.
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o< - 0

b = C m mv = (18)
Gb7 b7
After emission, the corresponding four-vector is given by
) . (1.9)

m mv —
pf:( -W, 'k
J1- b2 4[1- b?

where b =Y and k =nw. The scaar product of four-vectors is an invariant, This
c

leads, in particular, to the mass-shell condition on energy and momentum:

pf = pf =-m? (1.10)
or
2.,2 2 =
mv:  m — ( mv -IZ)Z-( m w2 (1.12)
1- b? 1- b? 4/1- b? \1- b?
This leads to
2 -
cosq =i[1+ M] (1.12)
nb 2E

where E= dmand & = (1-82)Y2. Theclassica limitsfor cosé in (1.2) is obtained

by taking the limit 7 ® 0 of the expression in (1.12).

1.4 Purposeof the Thesislnvestigation

The purpose of this thesisisto carry out exactly, to order a (the fine-structure
constant), a study of the power for Eerenkov radiation emission in Quantum

Electrodynamics at finite temperature (T 2 0) (e.g., Manoukian, 1990; Kang, Kye, and

Kim, 1993) for the first time, and investigate, in the process, the nature of the full
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quantum correction to the spectrum, including the CJ2W#/E? correction, in an isotropic
homogeneous medium, where E is the total energy of the electron and Cw is the
energy of a photon. As far as the accuracy of Quantum Electrodynamics is
concerned, the legendary R. P. Feynman states that: “ If you were to measure the
distance from Los Angeles to New York, this accuracy would be exact to the
thickness of a human hair. ” (Feynman, 1985).

The underlying theory used in this work is that of Quantum Electrodynamics.
It is the most precise theory ever devised by man. The theoretical predictions of
Quantum Electrodynamics with experiments are embarrassingly accurate. The
analysis is done exactly, to the order a, in an isotropic homogeneous medium
described by a given index of refraction n at finite temperature.

The basic departure from earlier work is that the denominators of the
underlying Feynman propagators are not combined in parametric form, which had
necessarily led to approximations for T = 0 in the past. Complex integration in the
complex energy plane is used instead. This alows us for an exact evaluation of the
power spectrum of Eerenkov emission (at any temperature). The nature of the
singularities is studied rigorously by deriving lower bounds to them and check which
singularities would contribute and which would not contribute to the imaginary part of
the self-energy of the electron. The boundary condition of no radiation emission
when the index of refraction goes to oneis aso investigated. Finally, the inclusion of
temperature into the theory involving the Boltzmann factor will be incorporated

rigorougly.
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15 Plan of theWork

In Chapter 11, we establish rigorously, using the machinery of Quantum
Electrodynamics, that the electron in vacuum is stable and does not radiate. In
Chapter 111, the photon propagator in a medium is evauated through Maxwell’s
equations. In Chapter IV, the investigation in Chapter Il is extended to a medium by
using the result in Chapter I1l. This leads to a closed expression for the power
spectrum of Eerenkov radiation. The analyses in Chapter |1 to Chapter |V are treated
at the absolute zero temperature. In Chapter V, the earlier investigation is extended to
finite temperatures and the expression of the power spectrum of Eerenkov radiation
emission at any finite temperature is evaluated. In Appendix A, we spell out the units
used in this work. We use units such that [0 =1, c = 1. Appendix B, deals with the
four-vector notation, the Dirac equation and some pertinent properties involving
gamma matrices. Some properties of the Dirac delta function are spell out in
Appendix C. In the final Appendix (D), some properties of the so-called residue

theorem in complex integration, which is so important in our work, are given.
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Chapter |1
Stability of the Electron in Quantum Electr odynamics

in Vacuum

In this chapter, we investigate the stability of the electron in vacuum. That is,
we rigoroudy establish by using the machinery of Quantum Electrodynamics that an
electron moving with uniform velocity does not radiate and continues to move with
the same velocity. That is, our method of investigation, with complex analysis,
provides automatically the physically expected result that the power of radiation is
identically equal to zero when the index of refraction n = 1 (the vacuum). This is
quite important as it shows that no contact term is needed in our analysis to satisfy the

correct boundary condition of zero power for n=1.

2.1 Expression for the Power Spectrum

The stability of an electron in vacuum may be expressed in terns of the power
of radiation In Classical Electrodynamics, the power can be calculated from the
Poynting vector, but in Quantum Electrodynamics one uses a different approach. The
latter may be obtained from the well-known relation of the decay rate of an electron
(Schwinger, 1973; Schwinger, et. a., 1974, 1976, 1978; Tsai, 1973; Tsai, and Yildiz,

1973), which is given through the imaginary part of the electron self-energy by
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G=- Z?mlm(u_Su), 2.1)

where S is the electron self-energy and u is a Dirac spinor. That the decay rate is
given by the electron self-energy is self-evident. Taking its imaginary part leads
essentially to putting the particles in the intermediate states on their mass-shells. The

decay rate is connected to the power spectrum by
‘P W)
G=gpw———. 2.2
w (22)

The power spectrum for photon emission each with energy w can be obtained by

inserting the identity operation

1 :EﬁWé(W- |:;| ,
into (2.1), leading to
2m o 191y = aq POA)
= v da) | (p, ) &w n) v W (2.3)
where we have set
Im(TSu)° ¢fda) ! (p.q). (2.4)

This finally leads to the expression for the power spectrum

P(W) =- Z%W &da) 1 (p, ) &w- %). (25)

By using the property (C. 5) of the delta function in Appendix C, (2.5) becomes

2mnw
E

PW) =- gda) I(p.a)a(d)- nw) . (2.6)

In vacuum n = 1 and we may write

2mw

PW) = - ?ddOI) I(p, o) &(fd]- W). (27)
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2.2 TheElectron Self-Energy
The electron self-energy corresponds to the diagram in Fig. 2.1. An electron
with energy-momentum p = (E,p) emits a photon of energy-momentum q =(q°,q)

and then reabsorbs it back again. The expression of the electron self energy is well

known (e.g., Jauch, and Rohrlich, 1980; Peskin, and Schoeder, 1995) to be given by

2\(dq)

S(p) =i o(zwﬂ[gms(p- q)9"1D,, (@), e® +0, (2.8)
h
p pP-q p

Figure 2.1 The electron self-energy diagram

where S(p - q) isthe electron propagator and D, (q) is the photon propagator. The

latter are given by

S(p- qy=—AP-A*m 2.9)
(p- Q% +m*-ie

with the mass-shell condition p? +m? =0,

and in the Feynman gauge

9m
> -

q’-ie’

D_(q) = (2.10)

Substitute (2.10) and (2.9) into (2.8) to obtain for the expression of the electron self-

energy:
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_.2.(dg) g"[-g(p- q)+mld"  YIm
S(p) =ie? : (2.11)
Oop)* [(p- g2 +1P - id] (- i®)

or

S(p) =ie? ¢ (dg) 9"[-9(p- @)+ mg, 1
(2p)* [(p- q)>+m*-ie] (q°-ie)

(2.12)

by using therelation g,, =g ,,d" as discussed in Appendix B.

2.3 Evaluation of the Power Spectrum in Vacuum

In Schwinger's work (Schwinger, et a., 1976), the denominators of the
propagators were combined together by using the techniques of Schwinger-Feynman
parameters. However, in this thesis, the power spectrum will be evaluated without
combining the denominators of the propagators in parametric form. This simplifies
the work tremendously and allows us later to obtain an exact result. After we

substitute (2.12) into (2.7), one obtains

e? eluNuu

I(pq)—( ) 8D il

then expression for the power spectrum becomes

P = - 2 9D 5. ) imel I 213)
E (2p)4 épd
where
N =g"-g(p- 9)+mgn, (2.14)
and
p=(-ig)|(p-q)+m?-ig. (2.15)
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The integra over (dg) is done in 4-dimensional space, that is

3=

¥ 1 2p ¥
Qda) = agia * = ¢t |l Of (cosa) I Byta °fa]” -
0 -1 0 -¥
Thus

2mne’

U
Oj|q|01(COSCI) cfif 01q0|q| Al - w)lme—u (2.16)
E(2p)*o 2 ép @

P(W) =-

Carrying out the |a | integration by using the property (C. 4) of a delta function in

Appendix C gives

2 1 |uNu

(¥ (cosq) Ojf quo\l\lz Imé—— (2.17)
E(2p)* -1 éD u

2mae

PW) =-

with N =N(|g| =w) . Then evaluate the angular f integration in (2.17). This gives

2mwWe ? elu_Nu u
- 2.18
E2P)’ (2IO)01(COSQ) dq 8 5 (2.18)

P(W) =-

Next, we evaluate T Nu , from (2.14)

uNu=ug"[-o(p- o) +mlg,u. (2.19)
The algebra in Appendix B over the gamma matrices will be repeatedly used here.

From (B. 16) and (B. 17) in Appendix B, (2.19) becomes

UNu =u[-29™(p- ) m- 4m]u

(2.20)
=-2ug™p,, + 209™q,, - 4mau.
By using (B. 8) in Appendix B, then
UNu =-20g"p, +2ug"q,, - 4m . (2.21)
From the Dirac equation
ur@"p,+m)=0, (B. 6)
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this gives
ug"p,=-mu.
Hence,
ONu=2mau +20g"qu - 4m
=2m+2ug™gu- 4m (2.22)
=-2m+20g"q,u.

From (B. 18) in Appendix B, then

m
0" = GGGy =
m
Thus (2.22) becomes
TNu=-2m +20 2™ (2.23)
m

Expand the product of four-vectors (see Appendix B) in (2.23). This gives

oNu =-2m+2(p- §- p°°)
m
(2.24)

= 2m+£(|5||a| cosq - qOE),
m

14

with p° = E denoting the electron’s energy. Factor out 2m from (2.24) and replace

|d| by wfrom the delta function to obtain,

UNu = 2m§- 1+$(|ﬁ|wcosq - qOE)ﬂd' (2.25)
From b :M :1, then
E ¢
TNu =2m ¢ 1+i2(bEWcosq -q° E)E (2.26)
m
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Rewrite (2.26) as

(2.27)

(e ey ]

¢ 1'E
m & b’E?’ DbE  DbDE’
-1

Consider the first term. By using E2 = (gm)? and the Lorentz factor g° = (1- bz)

then we may rewrite (2.27) as

2 Zé 2 0 l:'
_ 2b°E“ m +Wcosq+un

uNu= € .

m & b’gm’ bE  b2?E’j
22 é 0 l]
:2bE§_ 1 +Wcosq+qE@
m & b’g® bE Db2E’Y

ob?E? € (1- b?) wecosqg Q°E u

= ?— + + l:'

m & b’ bE  b?E%{
2b’E*€ 1w E U

UNu = a- —+ cosd q2 ~(- (2.28)

m & b bE b E*

Now, the possible singularities arising in (2.18) will be investigated. Expand the
product of four-vectors in (2.15) and replace |a | by w from the delta function to
obtain
D =’ - (a°) - ie]lp* +q* - 2p™q,, + m” - ie]
=W - (0°)% - ie]W? - (g°)% - 2(bEwcosq- q°E)- i€]
=[@°)? - w2 +i€][(q°)? - 29°E - W? + 2bEwcosq +ie] (2.29)

From this expression, the singularities occur at points (poles) which make D=0.

Consider the first term,

(@)% - w +ie= (qo +w- ie)(qO - w+ie):0.
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Thus the poles from the first term are
q., =twFie. (2.30)
The second term is more complicated and leads to
(q°)? - 29°E - W + 2bEwcosq +ie=0. (2.32)

Upon using the roots of the quadratic equation

- 2_
ax? +bx+c=0, X= bix/b 4ac,
2a
with
a=1, b= -2E and ¢ =-w? +2bEwcos q +ie,

the poles from the second term are obtained to be

P +J4E2 - 4l2bEwcosq- W +ie)
2+ —

2
(2.32)
_E+g 14V 2owoosq
E? E
Let
A(Q) :1+§- m"’%‘gq. (2.33)

We prove that A%(q) is always positive. A%(q) is minimum a the maximum value of
cosg, which is cosg = 1 at q = 0. If A%q) is positive a g = 0, then it is aways
positive. That is

w  2bw

A 3 A =0)=1+ - 2.34
(@) Q=0 ra (2.34)

Let VEV: x , then the right-hand side of (2.34) is
f(x)=1+x*- 2bx. (2.35)
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The extremum of f(x) occurs at the point which gives ZL =0. Thatis
X

f
d—=2X- 2b=0.
dx

Therefore f(x) is extremum at x = b. Then differentiate SL with respect to x again.
X

That is

The second derivative of f(x) with respect to X is postive a x =b, thus f(x) is
minimum at this point. Hence,
f(x)31+b*-2b* =1- b?.

This means

A'(Q)® 1- b? or AQ) 3 41- b* . (2.36)

Thusfor 0£ b<1

AQ)? 41- b* >0 (2.37)

for al gin [0,p].

The expression for A(q ) aso leads to the inequaity E(1+ A(Q)) - w>0 for
al 0Eg£p. Thisreation can be proven by contradiction. Suppose the converse of
thisrelationistrue. That is, asan initial hypothesis suppose that

E1+ AQ))-w£O
or

w3 E(1+AQ)) (2.38)
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for some qin [0,p]. Let x :va again. Then (2.38) implies that

x3 1+ AQQ) (2.39)
Due to the strict positivity of AQ),

x3 1+ A@Q) >1 (2.40)
This means

x-13 A(Q) >0 (2.42)
Squaring (2.41) gives

x2 - 2x+13 1+x° + 2bxcosq,
which leads to

2bxcosq 3 2x (2.42)

or
1
cosQ 3 ™ >1. (2.43)

The contradictory statement in (2.43) for a cosine function implies that the initia
hypothesis (2.38) is fdse for all gin [O,p]. That is E@+ A(Q)) being some redl

number must satisfy

E(1+ A@Q) >wW (2.44)

Since

), =E*EJA’ - ie

and A’(q)is dtrictly positive for 0 £ b<1 as indicated, thus it can be factored out

from the square root leading to
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€ & jel
=Ed+ AY- S .
B & 2A°d

Since e® +0 and (1+€)" » 1+ ne, this can be applied to the expression above to

obtain
a5, =[E+(EA- ig)]. (2.45)
Rewrite D as
D=@°- a.) (9’ - a.)(a°- gz.)(a” - a3.)
or
D=(q°- w+ie)(q°+w- ie)(q° - E- EA+ig)(q° - E+EA-ig) (2.46)

Next, we evaluate the integra q° over by using the residue theorem. Close the contour
in the complex g’-plane as in Fig. 2.2, by noting that D has enough powers in ¢° to

make sure that the infinite semi-circle gives no contribution to the resulting integral.

The enclosed polesin the lower complex planeare ¢, and g, .

t g7

¢ @
0 0
Q1+ C|z+

Figure 2.2 Closing the contour in alower semi-circle of the complex q°-plane.
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From the residue theorem (see appendix D), the q° integration can be carried

out by using the following integral,

¥ &anyl
@,dqogu_“‘“g: 2p|Residue at g, + Residue a g9, |. (2.47)
-¥ D ¢

First, compute theresidue at q/, :

0 0 ) uNu |q°=q‘1’+
Res(a2) = (0" - weie)

(q° +w- ie)(q° - w+ie)(q°- E- EA+ig)(q° - E+EA- ig)

_ uNu |q°:q{’+

(w- ie+w- i€)(w- ie- E- EA+ie)(w- ie- E+EA-ig)

uNu|,_,
= il : (2.48)
2(w- ie)(w- E- EA)(w- E+EA- 2ig)

The denominator of (2.48) is
d, = 2(w- ie)(w- E- EA)(w- E+EA- 2ie). (2.49)

Combine the second and the third parenthesis together by using the relation
(a- b)a+b)=a?- b?. Thatis
(W- E - EA)Jw- E +EA- 2ig)=(w- E) - (EA) +2ie(E+EA-W). (250)
Due to (2.44) the imaginary part of (2.50) is positive. Hencefor e® +0,

(w- E - EA)w- E+EA- 2ie)=(w- E) - (EA) +ie. (2.51)
Expand the terms sgquared and combine them together to obtain

(w- E)* - (EA)? +ie

=W’ +E*- 2nE - E? +£2- —ZbEWZCOngHe
E E &
= 2bEwcosq- 20nE +ie=- 2bEw(% - cosg tie). (2.52)
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Substitute this into (2.50), then
d, =- 4bEWw- ie)(%- cosq +ie) (2.53)
Therefore

0 JNU |q0=Qf+
RS(qh) =

- (2.54)
- 4bEw(w- ie)(= - cosq +ie)
b

Now we use the well known relation (D. 5) given in Appendix D which leads to

€ 1 0

Imé——u=-p&x) (2.55)
Bx+iell

When e® +0, the contribution of the imaginary part, which is related to the power

spectrum, can be obtained from the denominator of (2.54). That is

UNu| ,_
Im[R&s(qf+ )] =——"p aa - €0sq . (2.56)

Sinceb<1, %> 1,aso0 13 cosq ® -1 (Fig. 2.3), thus the delta function in (2.56) is

zero. Therefore, the integral from the first pole is zero, and gives no contribution to

the power spectrum.

1
=
o
H

Figure 2.3 The range of values of cosqis represented by the bold-line and the range of the 1/bvalues

isrepresented by the dashed-line. The corresponding regions never overlap.
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Next, compute the residue at g, :

Res(q2,)

UNU | o_ 0
=(q°- E- EA+ie) =z

(q0 - W+ie)(qo +W- ie)(q0 - E- EA+ie)(q0 - E+EA- ie)

UNu |q°=q§’+

~ (E+EA-ie-w+ie)(E+EA- ie+w- ie)(E+EA- ie- E+EA- ie)

uNu |q°=q2+

= . 25
2(E + EA- W) (E + EA+w- 2ie) (EA- ig) (257
The denominator of (2.57) is
d, =2(E+EA- w) (E + EA+w- 2ie) (EA- ie). (2.58)
Combine the first and the second parentheses together, thus
¢, =2(EA- i@[(E+EA)? - W - 2ig(E +EA-W)]. (2.59)
Due to the inequality in (2.44), (2.60) becomes
d, = 2(EA- i9)|(E+ EA? - w2 - ig]. (2.60)
Therefore
uNu | 0_0
Res(q3,) = i (2.61)
2(EA- ie)[(E+ EA)?- w2 - ie
and
UNU' 0_
lim Res(g2,) = aTEEA (2.62)

which isreal and gives no contribution to the power spectrum.
The integral in (2.47) gives no contribution to the power spectrum, thus

P(W) =0. (2.63)
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This means an electron does not radiate. That is, it is stable in vacuum. This analysis
provides a rigorous justification that no contact term is needed in our method of

investigation to properly normalize P(u) =0forn=1.
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Chapter 111

The Photon Propagator in a Medium

The electron sdlf-energy, which was discussed in the previous chapter,
required the photon propagator in vacuum. In order to extend the problem to a
medium of refractive index n, this photon propagator must be modified, while the
electron propagator is still the same. The method shown in this chapter will follow
the Schwinger, et a. (1976) paper.

The photon propagator in the medium can be derived from Maxwell’s

equation through the following relation

Am(x):(‘jdx(b D™(x-x9J,(x¢, (3.1
where A"(x)is the potentia four-vector, D™ (x- x4 is the photon propagator and
J, (X9 isan arbitrary current-density four-vectors.

The medium is assumed to be homogeneous and isotropic and the interaction

with the electromagnetic field can be described by the permittivity x and the

permeability m The refractive index isgiven by n = (xn)%, which is supposed to be

a real quantity. Absorptive effects, anisotropy and spatial dispersion will be
neglected.

We start from Maxwell’ s equations.

N-D=r , (3.2)
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N-B =0, (3.3
N A=5+ (34)
[
R E=-T1B (3.5)
it
For an isotropic, permeable medium,
D=XE, B=nH, n’=xm (3.6)
From (3.3),
B=N A, (3.7

where A isavector potential. Substitute (3.7) and (3.6) into (3.5), this gives

= T & =
N"E = -—(N" A
‘Ht( )
= -N'ﬂi
i
R (€ +32 =, (3.8)
i
which implies that
£ +JA - Rif
Tt
and leads to
e=-TA R, 3.9)
1t

wherej isascaar potentia. (3.7) and (3.9) can be combined in tensor form as
F™=q"A" - I"A", (3.10)
with

Fo =g, Fi=Tikg, A" =(f ,A) (3.11)
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Subgtitute (3.6) into (3.2), this leads to

N-E=L_.
X
Replace E by (3.9), this gives
N - (-ﬂ—A- Rify="L.
1t X

By using the following vector formula
N (NF )= Ref
(3.13) becomes

)

- N3F -1
Tt

N-ay=L.
X

Substitute (3.6) and (3.7) into (3.4), this gives

LR By=T+xIE
m qit
thus
e U P
R A)= 2 (- =-Rf).
(N"A) m+mﬂt( i )

By using the vector identity

b

N (R A)=R(N-A)- )2

(3.16) becomes

CRPA R A)=md - oA xREQ
it eft g
In the Lorentz gauge
N-A- nxﬂzo,
[
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(3.17)

(3.18)

(3.19)
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or in relativistic notation form
T1.A" - (nx - 1)hf)(hA) =0, (3.20)
where h™ = (1,0,0,0) is atime-like unit vector.

Therefore, (3.15) becomes

- sz - 1(_ nxﬂ) :L
1t Tt
or
Rizf - nxﬂ]: = (3.21)
t X
and (3.18) becomes
ReA - i T2 = R A - IO
fit € It o
or
A - A =g (3.22)
It*
Equations (3.21) and (3.22) can be combined together as
Rz Am- nxﬂAm:-nggm+§-i9th“an, (3.23)
M2 e e n‘g u

where J ™= (r,J) isthe current-density four-vector,
x™ = (t,r) isthe space-time four-vector
and k™ =(k° k) isthe energy-momentum four-vector of an electron.

This can aso be expressed in momentum representation by using the

following Fourier transforms:

hY dk ikx m
Am(x):o((zT))Ae A™(K) (3.24)
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e (k). (3.25)

< (dk

Substitute (3.24) and (3.25) into (3.23), then

\ (dk)

KIZ N . |kxAm(k) nx_ |kxAm(k)
(2p) (2p)*
= ngg™ +&. 3’1”}1“30& e 3 (K). (3.26)
e e n’g u (2p)*
From RNZe™ =-k?™ and 1}122 g™ =-(k°)%e ™, (3.25) becomes
N\ (dk) eikxAm(k)(_RZ)_'_ ( k) elkxAm(k)nx(kO)Z
(2p)° (2p)°
(k) € m, & 210 U
=0——¢7J,(k(-mé&™ +%- —"h""a. (3.27)
(2p)* B ng H

The integrands in (3.27) can be combined together as

L(dk) € -, - é 1g . .0 U
ep)* " & g " e g, g

(3.28)
Thisimplies from the inverse of the Fourier transform that
- k*A(K) + nx(k°)* A"(k) = - ngg " +g' izg“”hn H‘]n(k)1
e e n g u
or
(lZZ - nz(kO)Z)Am(k) = n-gg ™+ - izgq”h” HJn(k), (3.29)
e e n g u

which is the Fourier transform of (3.1). That is
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A™(k) =D™ (k) J, (K). (3.30)

From (3.29)

3 1 1
Am(k):nggm g[ n_%, § o 1 (k). (3.31)

Thus the photon propagator in a medium is

D™ (K) = g ™ +3?- L Gy \— (3.32)

D,y (K) = 118y +§- R S S— (3.39)

where h,, =(- 1,0,0,0).

In vacuum, n = 1 and e 1 (3.33) becomes

D, (k) :ng—”", (3.34)
k| - (ko)z

which is the photon propagator in vacuum as used in Chapter I1.
There are some useful remarks that are worth emphasizing and which will be
used later. When the vacuum is replaced by a medium, the photon propagator can be

obtained by the following replacements

é 1q u
9 m ® rrég m +§- T%nhnu (335)
e e n g u

% =|E|2 S (K°) ® |E|2 (ko). (3.36)
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Chapter 1V
Quantum Electrodynamics of Eerenkov Radiation

for T=0

The corresponding problem in vacuum was studied in detailed in Chapter I1.
In this chapter the electron is considered to move in a medium of refractive index n.
The photon propagator, which has been derived in chapter 111, will be used here. A
closed form expression for the power spectrum will be derived by using complex
analysis without combining denominators of the Feynman propagators in parametric

form.

4.1 Expresson for the Power Spectrum

The expression for the power spectrum is similar to (2.6). However, the
photon propagator in a medium will be changed, as discussed in Chapter I1l. The
photon propagator in (3.33) will be used in the self-energy expression. From Chapter
[11, the photon propagator in medium is

D,,(q) = m—°

4.1
az_nz(qO)Z_ie ( )

where h_ =(-10,0,0)is a timelike unit vector, with mand n =.,/xm denoting,

respectively, the permeability and the index of refraction of the medium. Substitute
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(4.2) into the self-energy expression (2.8), using, in the process the same expression

for the electron propagator, to obtain

e e u
égrm +gl- _-_hmhn p
-
ey’ [(p 6 +m? -.e] a’ - n*(@°)° - ie
and
1(p.q) = im IS
" (p) & D H
where now
N =g"[- g(p- q)+m]9feg G —ﬁ hnu (4.3)
& ng
ad
=|(p- q)?+m?-igl[g - n?(q%)?- i€]. (4.4)
The expression for the power spectrum is then
2mn W’ | (dq) - éiuUNu U
P(W) =- - W) Imge——, 45
W) = O ald|- nw) me o H (4.5)

Asin Chapter |1
1 ¥ 2p ¥
t0) = ¢ (cosa) o * ' @ fl -
-0 -¥ 0 0
Carrying out the |a | integration by using the property (C. 4) of a delta function in

Appendix C, then

, UN
P = ZIT eose) g G ol (- ) g

-1
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_ 2mnwie’ 0 éuNuy
= Ep) Oj(cosq) gjq gif nw’ Im 8 5 g (4.6)

with N = N(|d| =nw), and the angular f integration in (4.6) gives

2mn3 W’ ne? GUNuQ
PW=-"""""_ cos Im 4.
W) E(2p)° (2p)01( q)qu D 6 (4.7)
Next, we evaluate a'Nu in (4.4) to obtain
u
UNu = ag"[- o(p- m+nk38%n+%=——ﬁﬂhuu
g & n2z
=un,u+un,u, (4.8)
where
inu=ug"[- o(p- q)+m|g,
222 € 0 u
2b E §1i q +nwcosqq’ (4.9)
m & b? b bE {
as done in Chapter 11, and
1
mn,u =rg"[- g(p-q>+m]g‘§ 2% (4.10)

From h,, =(- 1,0,0,0) , thus only the time-component contributes, and (4.10) becomes

0 0 16
un,u :ug[— g(p-q)+m]g uﬁ-—zg. (4.11)
e n g
Expand the expressions in the first parenthesis as
-g(p- @)+m=-g"(p- ), +m

=&-(p- 9)+g°(p- 9), +m (4.12)

For the electron,
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p°=E,b=E=:—, (4.13)

33

where E is the electron’s energy. Apply (4.13) to (4.12) and substitute it into (4.11),

to obtain

1
n2

Un2u=Ugo[-§'(ﬁ'Q)"'QO(D'Q)O*m]QU? g

:Ugo[-é-p+§-a+gE a’q +m]g uél-i (4.19)

0
2
By using the Dirac gamma matrices in (B. 11)-(B. 12) in an appendix B one obtain
9’99’ =-9g,
g'g'd =g,

(4.14) becomes

an,u = Cr[a Pp-a g+g°E- g°q°+m] gi (4.15)

&

From the Dirac equation (B. 6) and (B. 18), one obtains

u@"p,+m=0

Upon replacing these relations in (4.15), give

el
o))

un,u =[Ug°Eu - mUu- +Ug°Eu- ug’q’u+ mUu]gi izg. (4.16)
e 2

3|
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Apply (4.13) to (4.16) to obtain

5
in,u = [20g°Eu- 2EM™WO%SA  gooqe & - ij 4.17)
m n’g
From (B. 7) in Appendix B, (4.17) becomes
bE 10
tn,u=[2u*g’g"Eu - DEWEOR 1900 Pyl 91 —I. (4.18)
m & n?g

From the anti-commutation relation (B. 10) in the appendix B and using the property

g°g’ =1 weobtain

on,u =[2Eu‘u - bEnweosq q°u” g iQ (4.19)
¢ n'g
By using the relation (B. 9) in Appendix B, the latter becomes
u_n2u=[2E _ bEnwcosq g E]ﬁ' 190 (4.20)

2 2

Finally, factoring out 2b°E

from (4.20) gives

2b*’E* €1  nwecos ‘E U 14
un,u = &— - q. qz Zgg[- —29 (4.21)
m &b 2bE 2b’E°peé n'g

Combine (4.9) and (4.21) together, to get

UNu =0unu +un,u
_2b°E’é 1 g¢° anosqu 2b’E* €1 nwcosq ¢’ U _io
m 81 b*> b’E bE H m ebz 2bE 2b2Eu§ n’g
22 A 0 0
_2b°E gl_i q , nweosq | 1 nwcosq ¢

m & b’ b’E bE b> 2bE  2b’E
1  nwecosg g° u

+ + U
n’b? 2n’bE  2n°b’Ejy
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2b2E2 g 1 ° nwco 1.0
Qo (141 ) (241 1)+ o 10
m & b? 2b’E 2bE n°g
Therefore,
2 Zé 0 u
mu=2PE gt (3- )+ WA 1yt @)
m & n’b® 2b°E 2bE n“ g

Rewrite (4.4) by factoring out n* from the second term as

D =[p?+q?- 2p"q, + "’ - ie][g2 - n*(q°)? - i¢]

iel
—n[p +q°- 2p"q,, +m’ -Ie]e— (9°)* - —a. (4.23)
€n? n’d
Then replace |G| = nw from the delta function, this gives
D=n’[p®+q*- 2p"q, +m’ - ie|lw’ - (a°) - ig] . (4.24)
Le D =n’D,,where
D, =[p*+q”- 2p"q, +m* - ie] W’ - (@°)° - ie]. (4.25)

Therefore, the expression for the power spectrum in (4.6) becomes

PW) =-Mm(cosq) o img (4.26)
E(Z ) -1 é De u

4.2 RigorousEstimatesof the Singularities
The singularities occur at pointsin g ° -plane, which make D, =0 will be now
investigated. Expand the expressions in (4.25) and use the mass-shell relation

p?+m?=0,then
D, =[d%- (q°)%- 2(p- G- q°E) - ie] W2 - (q°)? - ie]. (4.27)

Apply (4.13) and substitute |q| = nw from the delta function, then
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D, = [ (9°)? +29°E + n*W* - 2bEnwcosq - ie][- (q°)* +wW* - ie]. (4.28)
Factor out the minus sign from each term of (4.28), then (4.28) becomes
D, =[(a°)? - 29°E - n°W? + 2bEnwcosq +i€l[(q°)? - w? +ig]. (4.29)
The singularities from the first term in (4.29) can be obtained by using the quadratic
formulae as done in Chapter |1 below (2.31), with

a=1 b=-2E,
and ¢ =-nW’ + 2bEnwcosq +ie.

This gives two poles at

o = 2Ew_L\/4E2 - 4(- n"W* + 2bEnwecosq + i€e)
0 =
2

= Ew_L\/E2 +n°wW - 2bEnwcosq- ie

® 2 0
- Egli \/1+ ”2";’ _ Zbnweosq e’ . (4.30)
e E E 9
Let
A () =1+ WZ ; ZD“"E’COSQ. (4.31)
Thus

Q. = E(li«/Az Q- ie). (4.32
Suppose for the moment that A*(q) >0 for 0 £ b <1, which will be proved later.

Therefore, A’(q) can be factored out from the sgquare root sign as

1% =EG@+ AQ) [1- <
él‘ A’ (g

Asewill be taken to go to zero, we may use the expansion

5
I (4.33)
(4]
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(1+e)" » 1+ ne, (4.34)

which when applied to (4.34) gives

0 =egs A S %
= - - 2, ~U
é gl 2A° Qg
or
q° = E[1+ AQ) Fie]. (4.35)

Consider the other singularities arising from the second term of (4.29). That is
(9°)? - W +ie=0. (4.36)
By also using the quadratic formulae with a =1, b =0 and ¢ =-wW +ie, the

solution of (4.36) is

q, —t————— =+W Fie. (4.37)

Then
D, =(@°- &)(a°- a® )(a°- o) (e - a2 )
=|q° - (E+EA- ig)|[e° - (E- EA+ig)||q° - w- ig)|[e® - (-w+ie)|(4.39)

The proof that A’ (q) >0 for 0 £ b <1, which was needed in (4.33) now follows.

Lemmal: For 0£b<1,

A*(@) 2% 41- b* >0, (4.39)

for all gqin[O,p].

Asin Chapter I, A*(q) isminimum at cosg=1, then
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A Q) _q] W' 2lnweosq , L W 2b1W'
E? E E* E

Let x = %V , then the right-hand side of the above inequality is

f (x)=1+x*- 2xb.

38

(4.40)

(4.41)

As done in Chapter 11, it is easily verified that the minimum of f(x) occursfor x = b,

thus
A’(Q)2 f(x=Db)=1- b°.
Then (4.39) is true.

The following result is also needed later.

Lemma?2:Forn>1,0£ b<1,

ElL+ A@] >w,

forall 0 £q £ p asadrict inequality.

The proof of Lemma 2 is done in the same way as in Chapter II.

converse of (4.43) istrue. That is, as an initia hypothesis suppose that

w? E[1+A@Q)],

for some qin [0,p]. Let x :va' Then (4.44) implies that

x3 L+ AQ)].

FromLemmal, A(Q) ispositive, thus

x3 [1+ A@)] >1
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Suppose the

(4.44)

(4.45)

(4.46)



or x-13% A(Q)>0.
Squaring (4.47)

n‘w  2kmweosq

- 1) 3
(x- 1) 31+ = -

This leads to the inequality

- 2x+13 1+ nx? - 2nbx cosq

or
2nbxcosg 3 x?(n? - 1) + 2x
€ (n?- u
or cosq 3 iéx(n D +

nbé 2 g

For n> 1 and from (4.46) x > 1 then

2 é u
(n l)+1u> 1 (n 1)+lu
nb@ 2 8 nbé 2 g

cosq 3

Consider the last expression in (4.51), that is

é(n2 - u 2
1 %(n J)+m: !n +1!_

nbé 2 g 2nb

Fromn>1,

n-1>0

(n-1°=n%- 2n+1>0
thus n®+1>2n.

Apply (4.53) to (4.52), this gives

2
(n?+1 1
2nb b
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=1+nx* - 2bnx cosq.

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)
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(4.54) is dways greater than 1 for 0 £ b<1. Therefore we run into the false result
that

cosq >1, (4.55)
which is, of course, not true. The contradictory statement in (4.55)) for a cosine
function implies that the initial hypothesis in (4.44) is fase for al gin [O,p]. That is

E[1+ A(g)] being some real number must satisfy (4.43).

4.3 Closed Expresson for the Power Spectrum and Complex
Analysis
The residue theorem will be used again in the integration of the power
spectrum. Close the g°-contour in the complex q°--plane from below (clockwise), as
in Fig. 4.1, by noting that D, has enough powers in g’ to make sure that the infinite
semi-circle gives no contribution to the resulting integral. The enclosed poles in the

lower complex planeare ¢/, and g, .

iq,

v

@ &
0 0
Qo+ O+

Figure 4.1 The q°-contour in the complex q°-plane.
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From the residue theorem, the g°-integral in (4.26) becomes

/

uu
u: 2p|Resdue at g/, + Resdue at q2+] (4.56)
D. U

'K

First, compute theresidue at q/, :

Re 5(q..)

o)

0 UNu |q°=q§’+
= (q - q1+[

(o°- a2)@°- a2 )(@°- a2 )(a® - a2.)

uNu|0 .

[q - (E- EA+|e)][q - (w- |e)][q - W+|e)]

UNU |q0:(1f+

[E+EA-ie- (E- EA+ig)[E+EA- ie- (w- ig)][E+EA-ie- (-w+ie)]
(4.57)

When e® +0, the imaginary part only comes from the denominator. The

denominator of (4.57) is
d, = 2(EA- ie) (E + EA- w) (E + EA+w- 2ie)
= 2(EA- i€)|(E+EA)? - W2 - 2ie(E + EA- w)). (4.58)
By using Lemma 2, (4.58) becomes
d; = 2(EA- i€)|(E + EA)Z - wA- g, (4.59)
In the limit e® +0,

lim d, = 2EA|/(E + EA)? - w?]. (4.60)

e®+0

By usng Lemmal,

lim d, = 2EA@)E(L+ A@)* - W]>0 ( 0). (4.61)
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Therefore, the integral from the ¢/, poles is real and gives no contribution to the

power spectrum in (4.26).

Next, compute the residue at g, :

Res(q,) .y
:(qo - 2 ) q9°=a.
i (@°- @) - o )(a°- 03 )(a°- o3 )
UNU go=go,

] [qo - (E + EA- ie)][qO - (E- EA+ie)][q°- (-w+ie)]

UNU qo-gp,

i [w- ie- (E+EA-ig)[w- ie- (E- EA+ig)|lw- ie- (-w+ie)

(4.62)

The imaginary part of (4.62) also comes from the denominator. The denominator of

(4.62) is
d, =2(w- ie)lw- E- EA[(w- E+EA) - 2i€|
= 2(w- ig)[(w- E)? - EA® - 2ie(w- E- EA)]. (4.63)
From Lemma 2, the imaginary part of the second term has a plus sign. Substitute

A’(Q)in (4.31), then

R 2 nw? 2bnwcosgqd U
d, = 2w- ie)an’ +E? - 2Ew- ES1+——- s LY

E? E o #8
= 2(wW- ie)[vv2 - 2Ew- n*wW +2bnwcosq+ie]
= 2w- ig)W?(1- n?)+2Ew(bncosq- 1) +ig]. (4.64)
As e® +0, the second factor can be equal to zero at some vaue of n, thus the g,

can give a contribution to the imaginary part or the power spectrum. The imaginary

part of thisintegra can be obtained from the relation (2.55), which is

Copyright 2000 Suranaree University of Technology



Imeiu =-p&X). (2.55)

Apply thisto (4.64) with x =w*(1- n*) +2EwmIn cosq- 1), that is
L0
|m9 “Pafwr@- n?) + 2Ew(bncosq - 1)), e® +0. (4.65)
gdzﬂ 2w

Consider the delta function

&2 (1- n?)+ 2Ew(Incosq - 1))

WA (n?-1)  2Ew 99

- (4.66)

® &
= a%2b erGcosq - N
ag é 2bnvnE  2bnwE gy %

By using the property (C. 5) in Appendix C, (4.66) becomes

éi(w2 (1- n*) + 2Ew(bncosq - 1))

53] 2 _ 9
:#"gcosq_ M- i;
2bnvan§ 2bnE  bny

oo
-1 cosq - 91 +—_ W(n"- < : (4.67)
2bnwE ag bn 2E ,@g

Substitute (4.67) into (4.65), this gives

0 . ® & 2 _ 1169
Imé— 12 il & agcosq - i(}1+ Mi, e® +0

gdzg 2w2bnvxE§ bn&  2E g

x

S 2_1)69
i(}1+MZ_ (4.68)
MPbrE § bn&  2E o

Therefore the imaginary part of (4.56) is
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€y 2Ol
Im@c‘pqog?—UNuT@
e e @A
0 & & 2_ 9 &0
—2puNu|o_ 9 _Qcosq-i91+M;
g4vv2bnEE; bné  2E oy
pruNul,, 2 2 Wit
ZvvzbnEag b 2E %y
where
_ 2b*E*® € 1 w 1 nwcosq 1.
Nul|, = - - 3-—) + 1+—) (. 4.70
UNu | o, " g‘_l b ZbZE( 7) ( nz)H (4.70)
Thus (4.26) becomes
2mnw’ne? Ganu
p(w) = - 2T o o) ia® ImE==u
E@2p)° ¥ &D, 0
2 1 & p?uNu |, - 0OO
. 2mnwne® (‘jj(cosq)g- agcosq <}1+W(n ok
E@2p)’ - & owone & & 2 g
nmwa & 122 wh?-1)00
P (W) = NU |, s R 4.71
W = e ?i(COSQ)(U ul, )agcosq mgl 2E o (4.71)

2

where a = z— is the fine-structure constant.
p

The delta function in (4.71) gives a contribution only at

& 2_10
cosq - i(}l+M::0

nb 2E @

(4.72)

or

P2 S 2_1n6
i‘:.71+—W(n 1)j.
nb 2E o

cosq = 4.73)
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Since for the values of cosg we must have -1 £ cosq£ 1, for al q, thisimplies that

i§+M3<1, (4.74)
nb 2E g

which gives the following constraint for the non-vanishing of the power spectrum in

(4.71),

W(n -1 9

This threshold condition coincides with the one obtained by Schwinger et al. in (1.6).
The integration in (4.71) can be evaluated by using the property (C. 4) of the
delta function in Appendix C. Using the expression for cose in (4.73) in (4.72), the

integrand becomes

2b%’E? € 1 W nw 1 e \N(n -1)0

TNu = - - Sy W 2 H WM T 1+—
m g nb* 2b’E (8- n) 2bEb1g _( n )ﬂ
(4.76)
Consider the last term of (4.76)
w G w0t 0%, 1,
Ob2EE  2E &
é 2 _ 2 _q\U
_w éL_I_ier(n ])+vv(n 1)0
2b’EE n? 2E 2En* H
2 u
- W gl W W (4.77)
2b’EE n? 2E 2En?H
Substitute this into (4.76), thus
22 € ®e 2 d,J
UNu:2b E €- 1w (3- i)+ w 91+i+nw- U
m & n’? 20°E n® 20°E& n® 2E 2En’d
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2 € ®e 2 d;l
ZbEg 1 W (3_i)+ w 91+i+nw_ =
m & n’b®> 2b%E n? 2b’E& n? 2E 2En’ &
2 € > e a
EE 1 w1 1w B 1
m & n’b? 2b°E  n? n?  Ab?E? & 2%
2§ e C“
_EG 1w, 2w B, G
m & n’b? 2b%E N’ 4b’E’ & n’ %
22 € u
:2b E g_ 1 ) \"\Y (n -:D"' W2 n4-1)l9
m & n’b?> n’b’E 4n°b’E H
_2b*E’? w o u
UNu = - +—M*-1D)=+——n* - 1)y 4,78
UNU m e 2b2$ E( )ﬂ 4n2b2E2( )H ( )

Thus, the expression for the power spectrum of Eerenkov radiation in medium of the

refractive index n at absolute zero temperature is

o) = nmwa 2b’E? é 1 §+W(n2 1oy W (n4 l)@
2bE* m & n’b*’é E g 4n’b’E? H
or
é W, 5. W .\
P(w =a - +—(n" - Drt—e—ln" - 1y 4.79
(W MUTEI' nzbzg E( )ﬂ 4n2b2E2( )H ( )

This expression is vaid with the threshold condition given through (4.75) for the
emission of radiation. Compare this with the result obtained by Schwinger et a. in
(1.5). This expression differs from the one given by the Schwinger group in the last
term only. Hence this last term is the CJ*wW/E?-contribution to the quantum correction.

Finally we note that no contact term is necessary in our investigation since for n = 1,
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(4.73) and (4.75) do not hold and P(u) © O — a result which we have already

established rigorously in Chapter 11.

It is interesting to dwell further on the fact as to why the pole at q,, =w- ie
contributes and the pole at q, = E(1+ A(q))- ie dose not? We note that the
condition E(l- A(q)) =w isin the domain of integration over cosg. Accordingly, at
this point, the upper pole g/ is just above the lower pole ¢;,. For e® +0 they
pinch the g°-contour and no deformation of the latter is possible at this point to avoid
the q,, polein the lower complex plane. The poles g’ and ¢, , however, never

coincidewith g/, for e® +0 according to Lemmas 1 and 2.

4.4  Podtivity of the Power Spectrum

Although the expression for the power spectrum has been obtained, the task is
not complete. It remains to verify that the power spectrum is indeed strictly positive
under the constraint in (4.75) and that no further restrictions are necessary.

Combine the second and the third term in the square brackets of (4.79) by

factoring out Eez—bzg that is
D g
é Lo
P (W) =awbmgl- — 2§+V—V(n2 - Y g (4.80)
& n°b E 4E P

An extraterm, :\f?(n ?-1)?*, will be now added and then subtracted to complete the

sguare. Thus
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P(W) =awbm
6 ] )
= 1 & "a w2 .
e =G+ (- ) (07 )P ——(n* - D
§ nb’& E 4E? 4E? 4E? :
or
1 5 W QU
P (W) =awbriL- —= +ﬂ(n2 92 - (-7 + 0t - p)30 @481)
8 b 2E I} A&
Simplifying the last term, this gives
e e 2 2 al
~ 1 =
P(W) = awbnfl- 1+ Y (n2- 1)— W_(n*- 2n?+1+n*- 1)U
§ n’b?g 2E o 4E? a
¢ e ol au
—abnfl- —— G+ W (n? 07 - W (ont - o) 0
S & 2 o A4E? Py

Therefore, the expression for the power spectrum becomes

a?+— SN vl s
AU e URE T

é
P (W) :av\bngL
e

For w> 0, by using the constraint in (4.75), the second term is less than 1. The last

term is always positive for n >1, thus the power spectrum is strictly positive with the

congtraint in (4.75).

45 Quantum Mechanical Induced High Energy Cut-Off

For given 0 <b<1and n>1, (4.75) provides a cut-off for higher frequencies

W< 2E En?i)) o W<W, (4.83)
n -
with w, © op(b- 1 (4.84)
(n*-1)
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Beyond this limit, the power of radiation emission is zero. This cut-off upper limit
w isstill bounded above by the electron energy E. That is, w< E - aresult which is
expected on physical grounds. The proof of the latter bound follows from the
following inequalities:

W, _oplb-1) e (n-9) (4.85)

-1 -

forO<b<1landn>1. Consider the right-hand side of the above inequalities,

pln-l) _ 26 o (4.86)
(n2 - 1) (n+1)

since (n+1) > 2. That is, necessarily, W< E .

It is one of the most pleasing aspects of the quantum treatment that Quantum
Electrodynamics, unlike its classica counterpart, produces automatically a high-
energy cut-off beyond which the power of radiation is zero. This point cannot be

overemphasi zed.
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Chapter V
Quantum Electrodynamics of Eerenkov Radiation

Emission at Finite Temperature

In this chapter, we extend our earlier investigation for radiation emission to

finite temperature T* 0. At finite temperature the photon and electron propagators will

be modified. This causes the power spectrum to change accordingly.

5.1 Electron and Photon Propagatorsfor Tt 0

At finite temperature, the denominators of the Feynman propagators become
replaced by the well-known expressions (Dolan, and Jackiw, 1974; Bechler, 1981,
Niemi, and Semenoff, 1984; Donoghue, Holstein, and Robinett, 1985, Manoukian,

1990; Kang, Kye, and Kim, 1993)

1 ® 1 ~ 2pid(p-92+m?) 5.)
[(p- @ +mi-id]  [(p- @) +m-ie] 1+eplrl- @) +m)
in the denominator of the electron propagator and
= 2
1 o_1 __2ida?) (5.2)

q-ie qg*-ie 1- exp(r|q°|)

in the denominator of the photon propagator, where r = %T and k is the Boltzmann

constant. However, the photon propagator is also modified in a medium as we have

already shownin Chapter 1ll. That is
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é 1§ u
0 ® My +3- —hh g (3.35)
e e n" @ u

=la]" - @) ® fd]" - n*(q")’ (3.36)

Accordingly the photon propagator is obtained by making the following replacement

1 o 1 i aljg)? - nz(qo)z)
?-ie [G7-n’@)?-ie  1-ep(r|s?

(5.3)

52 TheElectron Self-Energy for Tt 0

By using the above modifications, the electron self-energy becomes

(dq) €' 10 U
S(p) =ie? rTo—g "[-g(p- g +mlg" &g, +§1- —7h h

(2p)* e § no B
g 1 - 2pi é((p Q)Z"‘mz) 3
dp- g% +m’ - ig] 1+9<p(rm)3
e =12 - w2 /n0v2 |U
e 1 - 2pi alal” - n* (@) )g 54
fa - n*(a°) -ie 1-exp(r H
or
S(p) =S, (p) +S,(p)+S,(p) +S,(p), (55)
where
_in2 (d0) N
So(p) =ie’ngy
(2p)* |(p- @) +m?- ie][|q|2- n2(q)? - iel * (5.6)

Copyright 2000 Suranaree University of Technology



52

, . (dg) N ag - n?(a®)?)

S.(p) =2pe’np
(20)* [(p- @)+ - ie] (- exp(r|q°|)) , (5.7)
S,(p) = 2pey N d(p- @ +m?)

(2p)* fd|° - n*(a°) - ie (t+exp(rd(f>- q)°+ m)) (58)

and

S.(p)=- i4p2e2rr[\)(dq) Né((p- q)z + mz) a(lq| _ nz(qo)z)

(2p)* (1+ exp(r \JP-§)?+m? )) (1- exp(r|q°|)) ., (59

with

N =g"-g(p - ) +mid' @ +2- —hh i (5.10)
e e N g u

5.3 Expression for the Power Spectrum for Tt 0

Upon inserting (5.4)-(5.10) into the expression for the power spectrum in

(2.6), one obtains

PW) =- 2rT1Em"'c‘idq)é(|€1|- W[l (p.a) + 1,(P.a) + 1,(p.a)+ 1:(p.a)]. (5.12)
where

Im(TS,u) = §da)l,(p,q) fors=0,123.
Or

P(W =P, (W) +P, (W) +P,(W) +P, (W), (5.12)
where
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2mnw

P,o) = - 2™ Ny ) - mw)lo(p.g). (5.13)
E

W) = - 2T xag) () - w14 (p.a), (5.14)
E

P, o) = - 2™ N gy ad|- nw)l, (p.g)., (5.15)
E

and

P, = - 2™ s - w4 (p.g) (5.16)

E

Each term will be evaluated separately by using the same method as in the previous
chapter.

For the first term, we have

2mnwim’®  (dq) Imé_ TNu U

P, (W) =- - &la]- nw (5.17)
e Jep) €D, ! il
where
D, =[(p- )%+ - ie]|d” - n*(q")? - ie]. (5.18)
As shown in chapter IV
=P E g L (3- )+ )8 (519

m & n’b® 2b’E 2bE n* g
Equation (5.17) is identical to the expression of the temperature independent power

spectrum studied in chapter 1V, hence

Po(w):av\bn%.- L §+ﬂ(n2-1)92+ w (nz-l)l%l. (5.20)
e

u
n‘b*e 2E g 2E*b? g

The other three terms are just the temperature correction terms.
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54 Temperature Correction for Radiation Emission

In the previous section, we have shown that the expression for the power

spectrum for T2 0 gives three correction terms.  These terms will be evauated in this

section.
The first correction term is given by
apmwma® | (dg) . ETNu U (|a|z-n2((1°)2)
P.(W) =- Im A [a = (5.21)
S o R )
where
=|(p- )2 +m?- iq]. (5.22)
Carrying out the |q| and the angular f integration in (5.22), this gives
2mn’w’ne? anuY
PW) =- —Zcﬂ(COSOI) cﬂq Im e—h‘
E(Z2p) 1 ¥ é D1 u
5 27402
, a(ﬂz\/v2 n (q ) ), |(_j|:nW. (523)
(- exp(r|a))
Replace [g| in (5.22) by nu, to obtain
= [n2w2 - (9°)? - 2bEnwcosq + 2q°E - ie]. (5.24)
As done in Chapter |1 and Chapter 1V, we also have
IngiH:pa(nzv\/2 -(@°)°- 2bEanosq+2q°E). (5.25)
el u
Hence,
mnw’ne? *
P(W) =- ———— (yl(cosq) (qu UNu’
E(Zp) -

Copyright 2000 Suranaree University of Technology



. él(n2vv2 - nz(qo)z)él(nZ\/v2 - (9°)? - 2bEnwcosq +2q°E)
(1- exp(ra?)))

,[a] = nw.

(5.26)

The second correction term is given by

P, (W) = - 4pmnwne’ \ (dg) a(|q| nw)ImP Nug é'l((p- Q)2+m2)

E (2p) &D, “(1+e><prJ(r3-a)2+m2)

(5.27)
where
D, =la] - n?(a°)? - ie. (5.28)
Upon integration over |q| and f we obtain
3 21
P, (W) =- 2mn’*w’ne &l (cosq) qu |mEUNuu
(2p)°E + &p, 4
a0 n_ )2 2
-t m) - 529

b+ epr/G- a7 +m)

55

Replace |a | in (5.28) by nu and pick up only its imaginary part, as done before to

obtain
®e, 0 ® 0
Imgi:= Im$ ! N
60,5  Enw - n’(q) - ieg
:péi(nzw2 - nz(qo)z). (5.30)
Hence,
mn*w’ne’
P, (W) = - ———— cyl(cosq) Odq UNu
(P)E 2
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, él(n2vv2 - nz(qo)z)a((p- q)? +m2)

. [d|=nw. (5.31)
L+eprf(- a7 +m)
The second delta function is given in detail to be
é((p -q)° +m2)=a(n Wo- (q°)° - 2bEanosq+2q°E). (5.32)
Therefore,
3 21 ¥
P,w) =- mn'w'ne® (¥ (cosq) ¢plg°aNu
(P)E -+
. a(nW - n2(q°)2) <'3'1(n2vv2 - (9°)? - 2bEnwcosq +2¢° E) 6] = nw
trepriG- a7 +m)
(5.33)
The third correction term is given by
2 2
P,(W) = 8p“mnwne
E
. (dg) &(p- @ +m?)afd - wyald’ - n*@)?)
o, m(idNu).
(20)* {1+explr - )7 +m? [L- ea(r|oc))
(5.34)

Upon carrying out the || and f integrations, one obtains

mnwW’ne? *

P,(W) = ————— ¢¥l(cosq) ¢¥la° Im(itNu)
Ep -t

c’;‘t(l‘]z\/\l2 - nz(qo)z)?i((p- g +m2) ’ |q| = nw. (5.35)

(1+ exp(r AP - G)? +m? )Xl exp(r|q°|))
From (5.19), uNu isreal. Thus

Im(iTNu) =T Nu .
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Replace the second delta function by (5.32), that is

mnw’ne? *

P,(w) = ———— (¥l(cosa) ¢ylq°TNu
Ep ¢

, ét(nzw2 - nz(qO)z)a(nzva - (9°)? - 2bEnwcosq + 2q°E)

b+ explr - @) +me - eqir|a?))

. =

(5.36)
Adding up the three correction terms as given, respectively, in (5.26), (5.33) and
(5.36) we obtain for the temperature correction for the power spectrum the general
result

D, P(W) = B,() + P, (W) +P, (W)

3 2 1
= . mrwne’ (¥ (cosq) ¢flg°aNu
pE

’ é(nzw2 - nz(qo)z) él(nzw2 - (9°)? - 2bEnwcosq + 2q° E)

- eX|o(r|q°|))+ (1+exp(r V- @) +m? ))
y
2

u
- G [d| = nw. (5.37)

&+ oot /5- 02 +m* Y- eqir]o”))

The last factor in the square brackets is a function of q°, which suggests to define the

u
a

function

> (D> (D~

1 1
+

8- exp(r|ah) (1+exp(r V(-6 +m’ ))

Fr(q) =
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N
2 U

1+ explr G- @7 + 7 - ep(rla?))

(5.38)

Hence,

D, Pw) = - mw e’ (¥(cosa) ¢¥lg® TNu z'a'(nzvv2 - nz(qo)z)
2XE 1
’ é(nzw2 - (9°)? - 2bEnwcosq + 2q°E) F-@°), |d]=nw. (5.39)

Factor out (—n?) from the first delta function to write
<";'1(n2vv2 - n2(q°)2): a( nz[(qo)2 - \/\/2] )
1.
=—2a((q°)2 W), (5.40)
n

Using the property (C. 6) of the delta function in the appendix. Then (5.40) becomes

1
2Wn 2

ahow -1t @) )= ——[aa" - w+aq° +w) (5.4)

However, for radiation emission of frequency w >0, then only the positive of g° will

contribute. Upon inserting thisinto (5.39) gives

D, Pw) = - mr'Wz—mn(‘;j(cosq)(‘jdq° TNu é(q° - W)

E -

’ é\(nzw2 - (9°)? - 2kEnwcosq + 2q°E) F (@%), [d]=nw (5.42)
Doing the ¢° integration by using, in the process, the property (C. 4) of the delta
function in Appendix C, we obtain

D,;P(w) =- M (¥l (cosq) UNu

E

’ én(nzw2 - W? - 2bEnwcosq +2v\E) F(a°), [d/=nw,q° =w (5.43)
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Consider the delta function in (5.43) rewritten as

7

e é 2 uo
ai(nzw2 - W - 2bEnwcosq +2\/\E): 4%- 2bEnwleosq - wn®-9_ il};
& 2bEn  bnig

& 2 &0
-1 4%cosq - i(?1+ﬂ(n2 -1
2bEnw bné 2E 2

(5.44)

This delta function is non-zero only for

1 31 W[, O
= ¢l+— -1)=. 5.45
cosq b1(é 2E(n )ﬂ (5.45)

Due to the possible values of cosg the right-hand side of this equation must be less
than 1. This gives the threshold condition, which is

nb>1+§%®2-ﬂ. (5.46)

This threshold condition coincides with the one obtained for the temperature

independent case. Substitute the expression of the delta function into (5.43) to obtain

1 € e 60
Dy P(W) = - ¢yl (cosq) TNu adcosq - i91+ﬂ(rl2 - DILFr @),
2bE? -1 g bné 2E 25

6] = nw,q® =w.
(5.47)
Doing the cosq -integration by using, in the process, the property (C. 4) of the delta

function in Appendix C, this gives

D,P (W) =- n;\?\gu_Nu F.(q°), |cT|=nW,q0 =W, cosq =%§+%(n2 - 1)2
(5.48)
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As shown in (4.78) in Chapter IV,

=22 B g B g% W[, a9
since [q| =nw,q° =w and cosq =é(§[+%(n2 - 1)2.
Consider the exponential factor in the second term in F.(q°) as given in (5.38)
depending on:
(B-G2+m?=p2+G°- 2p-G+m?
=p% + n°wW’ - 2bEnwcosq + m”°. (5.50)

From the mass-shell condition p* +m? =0, we may write

pz —-m? = pz E2
(5.51)
p2 = EZ _ m2
Thus (5.50) becomes
(P-q)*+m’ =E?- n? +n°wW - 2bEnwcosq+ m?
= E® + n®wW? - 2bEnwcosq. (5.52)
Replace cosq by i§+ﬂ(n2 -1 9 to finally rewrite (5.53) as
bhe 2E 17}
o 128 w 0
(P-q)°+m’ = E* +n*W - 2bEnw—&1+—(n*- 1)~
& 2 5
=E® +nW - 2Ew- n°'W +W’
=E?- 2Ew+wW = (E- w)’. (5.53)

Then (5.38) becomes
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(1-ep(rw) (+ep(r[E-w)) ([1+ep(r[E- w)i- eq(rw)

(5.54)
By using the definition i © 1/KT, we rewrite the latter as
1 1 2
Fr(w) = -t
w, 0 00 - w, 0
g[' exp(—) = gﬂexp?E 2o §{+9<96an \M——ggi exp(—) +
e KT o o0 KT @aee KT
(5.55)

61

Therefore, the temperature correction for radiation emission of Eerenkov radiation at

finite temperature is

2 2}\ - 2) O l;l
D Pw)=- BB g 1 G Wie O W (qe g
oJbE? m § n’b?& E o 4n’b’E’ v
é u
é a
, € 1 1 2 U
e -t ol ~U
& 0 & ~w @ - Ocee 0
~C1- exp(ﬂ): G1+ ang—T;‘ G1+ ang—':’:‘?l- exp(—) U
& KTo & & KT a & & KT o KT o0
(5.56)
or
¢ 2@ 6 u
D, P(W) = - awbnél - ¢1+ ¥ (nz.- D:+L(n“ - 1)d
& b2 & E @ 4n°b’E? H
é u
é u
, € 1 1 2 U
é + -0
& 0 @ 00 od
ggiaL- exp(ﬂ)j i +e><p8(1’E W . 91+ exngE "91- exp(ﬂ)jg
&& kTr’aS E KT o & & KT o8 KT &0
(5.57)
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55 Closed Expresson for the Power Spectrum of Radiation
Emission at Finite Temperature and High Energy Cut-Off

We now combine the temperature correction term in (5.57) with the
temperature independent one in (5.20). This gives

.2

e e ) u
P.(W) = i A+ X (n2-n7T + w (n? - 1)0
€ nb2& 2E 5 2E’D? i
é u
& G
, e 1 1 2 a
(:31_ x o- oo+ae O0ee O'@'
& Gl exp(-)? &+ ang M:’ 1+ apgmffﬁl- exp(ﬂ)jg
8 KTo & & kT o & & kT o8 KT 20
(5.58)
Let
é u
e u
e 1 1 2 u
AW =g- - -+ ” a-
= W 0 & - 00 e - 0 o Te
g ﬁ' exp(E)— §1+ exp§ V\*g: §1+ exp?ﬂg%- exp(ﬂ)gL,J
& e [} KT o5 KT oef kT gld
(5.59)

Rewrite A:(U) as

é u

é a

é 1 1 2 a
AW =g+ ~- - . a

€ W WP

s ST & +exp$‘jﬁ“{g ?eng MR 1

g KT ¢ KT° o

(5.60)

Factor out ; from (5.60) to obtain

x w 0]
exp(—) - 1+
gp(kT) .
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é ) u
é B (V10 U
S ¢exp(—) - 1= -
1 KT 2 u
AW = ..%exp(—)-lg’fl' £ ﬂ.. i U
B )-8 KT e @ GE-WE & - W %
geXP(F)'laé §1+exp§—1: él"‘eXpé; A
& kT o5 kT 2090
(5.61)
Factor out exp(—) from (5.61), this gives
€ 8 U
exp( %) g ? exp( - —); 2 exp( - —) 3
AW = él- - (562
wW A -
g:exp(—) ]_Og §_+6Xpd£ \,\4_— §l+expE¢E N—-—H
25 é KT oy 200
Evaluate the second term separately as
& WA w
G-ep(- )T 2ep(- )
1- & KT o KT
60 o0
91+9<ng W 91+9<ng WE
& KT 26 & & kT oo
e 0 u
1+ enfe e 1rap ) 2ep- W)
& kT g KT Al
~ w0 p
oM
6 & kT & i
e 0 u
o e g
é (
=6 - « 0. (563)
g pa} N +1 3
é § kT o g

Thus
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w
exp( k_)
A W) = T
aee><|o( ﬂ) -1
T

(5.64)

Q:

D:D> D> D D D> D

%]

e & ) u
P, (w) =awbngl- —= G+ W 7%+ W (37 1)
€ n’b?& 2E 5 2E%b? y
é ~wWo U
w A hd W. -
exp() ge«png—M - et )
S s o B i ] (5.65)
® og & -wo 0
(}exp(ﬂ) - 176 99<ngE \M T+1T
KT 26 & & kT o & 0

which is strictly positive and holds only with the threshold condition in (5.46)
w
b>1+—(n*-1 5.46
o1 2 =

satisfied, otherwise Pr(U) is zero.

For given 0 < & <1, n > 1 (with necessarily na > 1), (5.46) automatically

provides a cut-off for higher frequencies, that is

w< 2E(nb-1) o w<w, (5.66)
(n*-1
with
w, © op(b- 1 (5.67)

(n*)-1
Beyond this limit, the power of radiation emission is zero. This cut-off upper limit

w isstill bounded above by the electron energy E. That is, w< E - aresult which is
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expected on physical grounds. The proof of the latter bound follows from the
following inequalities:

w =2elP-Y o (-1 (5.68)

SRR R

forO<b<1landn> 1 Consder theright-hand side of the above inequdlities,

e ln-t) - 26 o (5.69)
(n ? - l) (n +1)

since (n+1) > 2. That is, necessarily, w< E. This means that the absolute value sign

in [E-U| appearing in (5.66) may be removed.

56 Low and High TemperatureLimit of the Power Spectrum

Consider the asymptotic behavior of Ar(u) at low and high temperatures,

respectively.

At low temperatures, KT<<U. exp( %) is very large, then

w
exp(—) W
KL 51, exp(- —)»0. (5.70)
e><|0(ﬂ)-l9 o
g kT ]
and
_wo
ang—j
& KT AN (5.71)
x - 0O O
Qe(ng V\*_+1'
& KT 0 o
Thus

AW ~1, KT <<w. (5.72)
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This means at low temperature, the power spectrum tends to be the temperature

independent one as expected.

At high temperatures, KT >> E. Eand ? are very small, then
exp(—)
V\I:T - » 1 = kWT ’ (5.73)
0
exp(—) -1+ 1+—-1
gen( kT) Kk
and
-wWO
exdeEkTV\*i-exp(-%) 1+ EEW W E
g » k-ll-E - KT - lg e E . (5.74)
52 -wWo 0 - - 2KT
é“pﬁW'iﬂ: Mt e
KT & &
Thus
Af(vw~k—T><£:£, KT >>E. (5.75)
w 2kT 2w

Therefore, at high temperature, the power spectrum becomes

abnEé 1 W, \U
_ 2b2§+E( D+ [ 1)5 (5.76)

@)

Accordingly, the power of emission of radiation of energies U < E/2 is enhanced, and

of radiation of energies E/2 < 0 <E is suppressed in the high temperature limit.
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Chapter VI

Conclusion

In this thesis, we have carried out, to order &, an exact evaluation of the power

spectrum P (1)) of Eerenkov radiation emission in Quantum Electrodynamicsat finite

temperature (T * 0) in isotropic homogeneous media of index of refraction n for the
first time. Our strategy of attack was to use complex integration analysis instead of
combining the denominators of Feynman propagators in parametric form, which has
necessarily led to approximations in the past. We have first established that for n = 1,
P(u)° 0 (asit should be), thus showing that our method of study does not necessitate
the introduction of a contact term in the definition of P(u).

The expression for P(u) a T = O derived in thiswork is given by

W’
2E’b?

P(W):av\bngl- L & W24
8 E (%]

v
it e (n -1)5, (4.82)

with the threshold condition as

o 2 .10
nb >g+wi (4.75)
2E 4

and the upper limit for the frequency of emitted photonsis:

(nb-1)

w<w =2E
n®-1

(4.83)

Beyond uc, P(u) = 0. With the congtraint in (4.75), there is no question of the

positivity of P(U) in (4.82).
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One of the most pleasing aspects of the quantum treatment, over its classical
counter-part, that it provides naturally a cut-off for the frequency of photons emitted
(asgivenin (4.83)).

Our derived expression for the power spectrum of Eerenkov radiation

emission at arbitrary temperature T is given by

2

¢ a@ ¢ u
R, (W) =awbnfl- L g Wi, )T+ w (n? - 1)3
€ n’b?& 2E & 2E%b? y

é -w 0 a

w Py hd >

exp(—) gexng W o-exp(- —)3

® 0g e w0 0

Qexp(ﬂ) - 176 QexngE T+1T 3

KT 28 & & KT o g 0

with the same threshold condition and upper limit as in (4.75) and (4.83),
respectively. This expression tends to (4.82) at low temperatures as expected and in

the high temperature limit it tends to

abnE€ 1 w o, .86 wW [, .\
P (W) - 8- ——F+ -2 +—2 12 -1)g. (576)
e 2 g n’b’e 2E g 2E’b g

Upon comparison of (5.76) with (4.82), we infer that in the high temperature limit, the
power of radiation emission is enhanced for energies u < E/2 and suppressed for u in
E/2 < 0 < E The latter opens the intriguing possibility of Eerenkov radiation
absorption, which may occur at finite temperatures. No attempt, however, will be

made in this thesis to develop the underlying respective theory.
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Appendix A

Units

Our units are such that
h=c¢=1.
Thus the following have the same dimensions
[length] = [time] = [energy] * = [mass] ™.

The equations of electrodynamics are taken in rationalized c.g.s. units.
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Appendix B

Four-Vectors, TheDirac Equation and Gamma Matrices

B.1 Four-Vectors

A four-vector (four-dimensional vector) is a set of four quantities A°, A, A?,
A3, which transform under the Lorentz transformations. The component A° is called

the time component. The A, A2, A3 components are called the space components and

can be combined as a three-dimensional vector A. Two types of four-vectors,
contravaraint and covariant, are introduced. Each type can be transformed into the

other by using the metric tensor. Our metric tensor is defined by

|-O:

(grm):(grm):

(B. 1)

m@@@&;
O O O
o O - O
S O O
= O O O

Q-

This convention is also used by Schwinger (1998) and Jauch and Rohrlich (1980). In

contravariant form, the four-vector is denoted by
A" = (A’ ,A). (B.2)
The covariant form can be obtained by using the metric tensor through the operation
A, =g A =(- A°A). (B.3)

The contravariant form can also be obtained from the covariant through the operation
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A"=g™A . (B. 4)
The scalar product of 2 four-vectorsisinvariant under Lorentz transformations, that is
AxB =A"B_=AB"=A-B- A'B". (B.5)

is invariant

B.2 TheDirac Equation and Gamma Matrices

The Dirac spinors u is the solution of the Dirac equation,

(g”‘pm+ m)u =0

, (B. 6)
u (gmpm + m) =0
where 0 is the adjoint of u defined as
0=u"a’ (B.7)
Our normalization condition are
uu =1 (B. 8)
and
u'u=p’/m. (B.9)
The Dirac matrices &' satisfy the anticommutation relations
{g"g'}=-2¢™. (B. 10)
A typica representation of the gamma matrices is given by
g’ =§) ) Iog (B. 11)
and
g =§e£ ig (B. 12)
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where s' are the Pauli matrices defined by

s
s =2 19 (B.13)
1 0y
s: =2 19 (B. 14)
& o5
and
0--
s-3:§°é‘ 2 (B. 15)
0 -1g

The following important properties of the gamma matrices should be noted:

g"g, =-4, (B. 16)
g"d'g,=29", (B.17)
and
Ty =P (B. 18)
m
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Appendix C

TheDirac Delta Function

The Dirac delta function is defined by
a(x- x,) = L ¥(‘plk gkt (C.1)
2

It takes formally the following values

( )_‘|,0, if x?1 x, C.2)
A% _}¥, if x=x, '
and satisfies
¥
(X - x,)dx =1. (C.3

In a mathematical sense, it defines a “distribution” or a “generalized function” rather

than a function.
The following properties of the delta function were used in this thesis:

1. If x lies between aand b, then

Of (N &(x- x)dx = (X,). (C. 9
2. & ax) =ﬂ (C.5)

é(X- X0)+a(X+X0)
2l

(C. 6)
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Appendix D

Residue Theorem

In the complex z-plane, if f(z) is analytic in any closed (clockwise) contour

except at some poles z= a;, then

¢z f(2) =- 2pi (summation of the residues at each pole). (D. 1)
A |y
> > %
<]
B

Fig D.1 Clockwise direction of the contour of integration in the residue theorem

If we close the contour as a lower semi-circle in clockwise direction, the residue
theorem alows us to evaluate a real integral under the condition that if for some k

greater than 1 the following is true

lim 2| f(2)|* ¥, (D.2)
|4® ¥
that is the limit exists, then

Oix F(x) =¢yz f (2). (D.3)

Theresidue at z= a may be found by the following formula
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.n-1
L 29 - 2) f(2)lea, (D. )
(n- D'edzo

Reddue =

wheren is order of the pole.
However, if the poles lie on the real axis, the Cauchy principal value of

integrals (e.g., Brown, and Churchill, 1996) leads to the well-known relation

Ii®moi:E- ipa(x, (D.5)
Xx+ie X

where P denotes the principal value.
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