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CHAPTER I  

INTRODUCTION 

 

1.1 Overview of the Study 

1.1.1 Introductory Remark 

 Since 1980, the study of magnetic layered films is one of the most 

popular topics in the research of magnetism. The progress of growth and deposition 

technologies allows scientists to be able to prepare a nearly ideal thin film and 

multilayer film without contamination. The new phenomena, which can be found only 

in films but not in bulk materials, are ones such as interlayer magnetic coupling 

(IMC) (Salamon et al., 1986), giant magnetoresistance (GMR) (Baibich et al., 1988), 

tunneling magnetoresistance (TMR), exchange bias (EB)(Meiklejohn and Bean, 1956, 

1957) and interface anisotropy (Gradmann and Muller, 1968). These phenomena are 

completely changing the aspect of research of magnetism because of their vast 

applications. They have given scientists and engineers new tools for constructing 

remarkable new devices. 

 The products made by applications of magnetic layered films have 

been widely used in daily life. Those applications are very important commercially as 

found in magnetic storage media and magnetic sensors. Although, magnetic recording 

devices like tape and video recorders have been replaced by optical disks with much 

more capacity for computer memory disks, magnetic materials are still used in various 



 

 

2

devices. For instance they are used for the data bit storage in hard disks. The 

semiconductor based dynamic random-access memories (DRAMs), the standard 

DRAMs now, will be replaced by magnetic random-access memories (MRAMs) in 

near the future, because MRAM is nonvolatile memory: the information is retained 

even the computer is switched off this leads to the higher storage density and the 

lower energy consumption. Another noticeable application is found in a magnetic 

optical disc, in which reading and writing can be achieved by the change of the 

magnetic state of a bit cell by laser heating. Moreover, the sophisticated magnetic 

sensors are widely used in industries as well as in our daily life. The noteworthy 

applications will be discussed in detail later. 

 The phenomenon chosen to study in this thesis is the interlayer 

magnetic coupling, which many authors call the interlayer exchange coupling. This 

coupling, in general, is an indirect exchange interaction between two magnetic layers 

through a non-magnetic metallic layer between them. In this thesis we call this layer 

the spacer layer. The majority of experimental achievements have been obtained using 

the systems that consist of the same magnetic layered materials separated by a non-

magnetic metal. On the other hand, the system consisting of different magnetic 

materials is not many as the object materials. In the present study, experiments have 

been carried out on the interlayer magnetic coupling in the Fe/Al/Gd/Al multilayer 

film. 

 The thicknesses of Fe and Gd layers are fixed to be 20 Å and 40 Å 

respectively, while the Al thickness varies from zero to 100 Å. The interlayer 

coupling strength dependent on the Al thickness will be determined. The macroscopic 

properties of the samples are clarified by magnetization measurements. X-ray 
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magnetic circular dichroism (XMCD) measurements are performed on beamline 

BX39U at SPring-8. The results of the hysteresis of XMCD signals indicate the spin 

orientation of Gd. Moreover, magnetic Compton profile (MCP) technique is used to 

measure the ratio of the Fe magnetic moment versus to the Gd magnetic moment.  

 In this Chapter, the basic concept of magnetism will be overviewed, 

particularly for magnetism in metal. The definition and background of magnetic 

multilayers will be given including notable applications. In addition, the physics 

behind the experimental techniques used in this work, MCP, and XMCD will be 

briefly described.  

 In Chapter II, purposes of the study will be presented.  

 In Chapter III, the literature review on the interlayer magnetic coupling 

will be presented. The experimental achievements and theoretical models on 

interlayer exchange coupling will also be surveyed there. The key phenomena led by 

the interlayer exchange coupling between magnetic layers across the non-magnetic 

spacer such as the long-range or short-range oscillation of the bilinear coupling 

strength and biquadratic coupling will be reviewed. The twin model based on the 

mean field theory, the Ruderman-Kittel-Kasuya-Yoshida (RKKY) model and the 

quantum well model will be discussed in this chapter. Finally, some magnetic 

multilayer systems which are useful and related with the system of Fe/Al/Gd/Al will 

be mentioned.  

 In Chapter IV, experimental apparatus and experimental procedures 

used in the present work will be described. The experimental results will be presented 

in the Chapter V. Finally the discussion and conclusion will be described in the 

Chapter VI. 
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Table 1.1 Chart showing the sequence of work to be carried out in the investigation of 

magnetic layered materials. 

 

 

Sample Design 

Sample Preparation 

Sample Characterization 

Magnetic Characterization 

Discuss and Conclusion  

Substances 
• Magnetic materials: Fe, Ni, Co, 

Gd, etc. 
• Spacers: V, Cr, Cu, Ag, Al, etc. 
Substrates 
• Si, W, Glass, Polyimide film etc. 

Thickness and periods 
• Thickness of magnetic materials 
• Thickness of nonmagnetic 

spacers 
• Number of periods 

Techniques 
• Molecular Beam Epitaxy (MBE) 
• Sputtering, Dc-diode, RF-diode, 

Magnetron, etc. 

Growth conditions 
• Pressure, Power, Deposited rate  
• Deposition control, etc. 
• Substrate temperature 

• Real thickness 
• Flatness, Intermixing at interface 
• Structures, single crystalline, 

polycrystalline, amorphous, etc.

Techniques 
• Low- and high angle x-ray 

diffraction (XRD) 
• Etc. 

Phenomena 
• GMR(giant magnetoresistance) 
• IMC(Interlayer magnetic 

coupling) 
• EB(exchange bias) 
• Etc.

Techniques 
• Magnetometry:MOKE, VSM, 

SQUID, AGM. 
• Neutron diffraction, XMCD, 

MCP, etc. 
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1.1.2 Magnetic Multilayer 

 Artificially structured materials composed of layers of different phases 

are known generally as heterostructures materials. Heterostructure materials can be 

composed of only a few layers or of many layers. Multilayered materials have the 

heterostructure composed of many alternating layers that are generally stacked in a 

periodic manner. The multilayer structure is referred to the superlattices, if the layers 

are composed of single crystals that posses the same crystal structure and the 

interfaces are in the perfect atomic arrangement. Also, single crystals or large grained 

metallic multilayers whose component layers have different crystal structures but a 

well-defined epitaxial relationship at the interfaces are often referred to as 

superlattices. 

 Magnetic multilayers are usually composed of alternating layers of 

magnetic and non-magnetic metal spacers. Experimental researches on the magnetic 

multilayer may be summarized in Table 1.1. Substances and substrates are designed 

together with their thickness. The preparation technique and growth conditions affect 

to the quality of the sample considerably. The sample would be characterized 

basically by measuring thickness, flatness, the crystal structure, etc. Then, magnetic 

property of the sample can be studied by one or more techniques to observe for 

phenomena. Finally, discussion and conclusion of the research would be published, 

and new experiments can be designed systemically. 

 The magnetic materials, in general, are ferromagnetic transition metals 

(Fe, Co, Ni) and a rare-earth metal (Gd). The spacers may be 3d -metals (V, noble 

metals Cu, Au, Ag), an sp -metal (Al), or a semi-conductor (Si). Currently, because of 

the applicable progress of sample preparation techniques, not only metal substrates (V, 
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Cr, Cu, etc.) are used, but also non-metals (Glass, Polyimide film), crystalline 

multilayers, the single-crystal substrates like Si, W, etc. have been used. Since 

magnetic property of magnetic multilayer films is significantly dependent not only on 

the kind of metals but also the thickness of layers. Thickness dependence of magnetic 

behavior has been widely studied.  

 Magnetic multilayer can be prepared by either chemical vapor 

deposition or just ordinary vacuum evaporation and deposition. It is known currently 

that there are two methods well suitable for preparing magnetic multilayers. They are 

molecular beam epitaxy (MBE) and sputtering. In both techniques, multilayer 

structures are fabricated by the sequential deposition onto a substrate by the alternate 

exposure to beams from elemental sources. In MBE, the sources may be either 

thermal by evaporated or evaporated by using an electron-gun. The constituent 

elements, the molecular beam, are deposited on to a heated crystalline substrate to 

form thin epitaxial layers. Specific growth axes, therefore, can be selected to form the 

crystalline multilayer (Farrow et al., 1990). On the other hand, the multilayer 

materials deposited by sputtering are usually polycrystalline but grown toward the 

direction normal to a crystallographic direction of the substrate which is usually the 

[111] direction in cubic metals.  

 There are many sputtering techniques in use today. They can be 

classified as the DC diode method, the RF diode method, the magnetron method, or 

ion beam sputtering method. All of these techniques have the same basic principle: a 

target is bombarded by energetic ions (usually inert gases), the atoms ejected from the 

target are deposited on substrates. However, the fluxes and energy of sputtered ions 

impacting the substrates are not the same among different sputtering methods. In 
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addition, the status of glow discharge causing sputter deposition is different according 

to the physical condition as gas pressure and the resulting growth condition is 

different. The magnetron sputtering is discussed in the Chapter V.  

 As the gas pressure is increased, the applied voltage falls, the number 

of working gas ions increases, but their energy decreases. Since the sputter yield 

increases with the number of ions and the ion energy, the total number of atoms 

ejected from the target depends on the gas pressure. Moreover, if the background 

pressure of the chamber is increased enough, the sputtered atoms can be prevented 

from reaching the substrate. However, even if the chamber is initially pumped down 

to a low pressure and the gas is of high purity, contamination may be occur from 

outgassing, for example, of the chamber walls. Another factor is the power which is 

the key parameter controlling the process. The sputtering rate is proportional to the 

ion current incident on the target. For a constant voltage, it is therefore proportional to 

the input power. In the same way, the design of sputtering chamber, the distance 

between targets (in multi target system), the distance between the target and the 

cathode or the substrate, etc. can also affect the quality of the sample. 

 The magnetic properties of the sample, particularly the interlayer 

magnetic coupling, can be studied by measuring the field and temperature 

dependences of the direction and value of the magnetic moment of the sample. There 

are various techniques which provide this information. The macroscopic aspect of the 

magnetic moment can be measured by, such as magneto-optical Kerr effect (MOKE) 

magnetometry, vibrating sample magnetometry (VSM), superconducting quantum 

interference device (SQUID) etc. 
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 The magnetic-optical Kerr effect (MOKE) is the change in the 

polarization plane and the ellipticity of light upon the reflection at the surface of 

magnetic materials. The difference is present only for a non-zero magnetization, and 

its magnitude is determined by the different magnetization components. There are 

three high-symmetry configurations used in MOKE measurements, which are called 

the polar, the longitudinal, and the transverse MOKE. For example, the polar MOKE 

is sensitive to the out-plane magnetization component, whereas the longitudinal one is 

sensitive to the in-plane magnetization component. Using all three configurations, it 

can in principle measure all three magnetization components.  

 The vibrating sample magnetometry (VSM) uses the Faraday induction 

effect for detecting the magnetic moment of the sample. During the measurements, 

the magnetic sample vibrates with a frequency ω  between two pick-up coils. The 

coils are connected in such way that the induced voltages, which are proportional to 

the total magnetic moment of the sample, are added. The total voltage oscillating with 

the same frequency ω  is measured by means of the lock-in technique, which is 

known to be very sensitive. As an option, one can use three pairs of pick-up coils, so 

that all three components of the magnetic moment can be measured simultaneously. 

 For the superconducting quantum interference device (SQUID), the 

description is made in the Chapter V. Magnetic structure in the sample can be 

determined by using x-rays. For example, the concomitant methods are resonant X-

ray magnetic scattering (RXMS), magnetic Compton scattering (MCP), magnetic 

circular dichroism (XMCD). The MCP and the XMCD are discussed below. 
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1.1.3 Magnetic Compton Scattering 

1.1.3.1 Compton Scattering in General 

 In this thesis, we are concerned with the magnetic Compton effects. 

Therefore it is useful for us to review the magnetic Compton scattering. We start with 

handling the simple Compton effect showing up in an elementary physics book. 

Suppose an X-ray photon collides with a free electron at rest. Incident X-ray photon is 

assumed to have energy  1ε . By the collision, the electron is scattered toward the 

direction making the angle of φ  from the incident direction. The photon loses energy 

and has energy 2ε  after the scattering. At the same time the electron is recoiled toward 

the direction making the angle ψ  from the direction of the incidence of the photon. 

The electron is assumed to gain to Ε . The relation described above is presented in 

Figure 1.1. From the conservation of energy and momenta we have, energy 

conservation: 

  

  Figure 1.1 Concept of the Compton scattering 

 

  2
1 2 mcε ε= + Ε−  (1.1) 
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momentum conservation in x -direction:  

  1 2 cos cosp p pλ λ φ ψΕ= +  (1.2) 

momentum conservation in y -direction:  

  20 sin sinp pλ φ ψΕ= −  (1.3) 

Here 2pλ  and Ep  are the momentum of the photon and the electron, respectively. 1pλ  

is the momentum of the incident photon. We use the relativistic relations, 

  

2 2
2

1 1
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λ

λ
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λ
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β

β

γ

γ
β

β

⎫⎪⎪= = ⎪⎪⎪⎪⎪⎪= = ⎪⎪⎪⎪⎪⎪⎪= ⎪⎪− ⎬⎪⎪⎪Ε = ⎪⎪⎪⎪⎪= ⎪⎪− ⎪⎪⎪⎪⎪= ⎪⎪⎭

 (1.4) 

Here m  is the rest mass of the electron, v  is the velocity of the electron, and 2λ  and 

1λ  are X-ray wavelengths. Using relation (1.1) through (1.4), we obtain 

  ( )2 1 1 cos
h
mc

λ λ φ− = −  (1.5) 

This is the famous basic relation describing the wavelength shift by the Compton 

scattering.   

  C

h
mc

λ =  (1.6) 

is called the Compton wavelength. 

 Inelastic X-ray scattering occurs as a result of the exchange of both 

energy and momentum. The spectrum of the scattered X-rays includes information on 
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the electronic structure that cannot be obtained by other methods. The applications of 

this method have been prevented by the weak intensity. The use of synchrotron 

radiation changed the situation very much. We will see the outline of the inelastic 

scattering, particularly the Compton scattering spectroscopy in what follows. 

 In the X-ray inelastic scattering spectroscopy, the scattering cross 

section is measured. Suppose incident X-rays have the intensity, 1N , 

   

and X-rays scattered toward the direction making an angle of φ  from the direction of 

the incidence having the intensity, 2N . Then the cross section is defined as  

  2

1

N
N

σ =  (1.7) 

The intensities are dependent on the wave vector of the X-rays, 1k and 2k , the 

polarization vectors, 1e  and 2e , and the wavelengths, 1λ  and 2λ . The importance 

parameters are the energy loss and momentum transfer defined as  

  1 2h hε ν νΔ = −     (energy loss) (1.8) 

             1 2= −q k k= = =    (momentum transfer) (1.9) 

The scattering cross section is measured as a function of εΔ  and q= . In many cases, 

the momenta are described in the atomic unit; 1 a.u. is equivalent to  1.9928 × 10-19 

cm·g/s. Since the wavelength is given as 

  2 / 2 / /k p h pλ π π= = ⋅ == , 

We obtain  
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  1  a.u.  is equivalent to  3.325   Å   (wavelength)  

or           1  a.u.  is equivalent to  18.968  nm-1 (wave number, 2 /π λ )  

In consideration of the basic Compton scattering phenomenon described above, we 

take the scattering electron to be a free electron. However, electrons in matter are 

bound in it. Therefore, in the Compton scattering, an X-ray photon gives a large 

amount of energy and momentum to the bound electron. Then the electron is excited 

to the state with energy high enough compare with that of the bound state. Thus, the 

excited electron is not affected by the potential to bound electron. Thus the excited 

electron, the recoiled electron in the example described above, behaves as a free 

electron. Therefore, the scattering spectrum, referred to as the Compton profile, 

reflects the momentum distribution of the ground state, the state of the electron before 

being ejected up to the high energy state.  

 The Compton profile is defined as a plot of the scattering cross section 

versus the momentum transfer defined in (1.9). The relation between the momentum 

transfer and the electron momentum in the initial state is shown in Figure 1.2. We 

define the electron momentum as p . For simplicity, we assume that the distribution 

of p  is spherical and is given by a sphere with a radius of Fk=  (the Fermi sphere). 

 Let us consider the case where the electron is at rest ( )0p = , we 

obtain the result given in (1.5). The Compton wavelength given in (1.6) is 0.0243 Å. 

Then, we consider the case, where p  is not zero, ( )max Fp k= = . We take z  axis along 

the direction of the momentum transfer q . Suppose that an X-ray photon collides with 

an electron moving with p  declined by θ  from z . Then the momenta of the scattered 

X-rays, 2k= , has a width of the momentum transfer 
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Figure 1.2 Schematic illustration of the concept of the Compton scattering. Fk= : 

the momentum distribution on the Fermi level. p : momentum of the 

electron to be scattered. 
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20

sin cosCdq p
λ

φ θ
λ

==  (1.10) 

around 202 /π λ= , where 20λ  is equal to the value of 2λ  at 1 0k = . Equation (1.10) is 

interpreted in the following way: First,  

  coszp p θ=  (1.11) 

Then we assume the case where 1 0=k . Then the distribution of q  is given by 2δk . 

Then we have 

  

2 22
2

2

2 2

2
2

2

1
2

sinC

q k

k

π
δ δ δλ

λ
δλ

π
λ λ
λ

φ δφ
λ

= =

=

= ⋅

 

Then we have 

     2
2

sinCq k
λ

δ φ δφ
λ

= ⋅= =  

   2
2

sinC p
λ

φ δφ
λ

= ⋅     (1.12) 

 Figure 1.3 shows that we observed ′p  instead of the q  because of the 

ambiguity caused by 2p δφ . The ambiguity of φ , δφ , is caused by the direction of ′p  

and the sized of ′p  due to p . The contribution of p  to the magnitude of q  is zp . 

Thus we take 2δφp  for zp . Then we have (1.10) from (1.11) and (1.12).  

 From (1.10) we understand that the Compton profile is proportional to 

the density of states expressed in term of p . This is simply understood as fallows: 

The Compton profile is given as the normalized intensity of scattered electron as a 

function of the momentum transfer in practice.  
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 Equation (1.10) indicates that the momentum transfer is proportional to 

the electron momentum. The number of scattered electrons with a given momentum 

transfer is proportional to the production of the numbers of electrons, ( )N p , with the 

pertinent momentum and the excitation cross section, σ , as 

   

  ( ) ( )N q N pσ=  (1.13) 

The rigorous definition is given later. The momentum distribution, ( )N p , for the 

nearly-free electron is described in Appendix D. 

 From the consideration given above, the Compton profile is 

proportional to the momentum density for given zp . It is proportional to the volume 

of the slice of the Fermi sphere to the surface of the slice. Thus the Compton profile is 

proportional to the cross section of the Fermi sphere normal to the z  axis. The cross 

section is    

  2 2 2 2ˆ( tan ) sinz F F Fp kπ θ π θ= ⋅=  (1.14) 

The Compton profile is proportional to 2
zp . Thus the Compton profile has a shape of a 

parabola directing downward. If we consider the Compton effect as a process that an 

X-ray photon is first observed and subsequently it is emitted. However the emitter 
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electron is moving and the emitted wave has the broadening caused by the Doppler 

effect. Thus the Compton profile can also be understood as the Doppler broadening.  

 As will be shown later, the simple model described above works very 

well in a simple metal like alkali metals. However, the effect of the electron binding 

and correction cannot be ignored completely. The Compton profile of a simple metal 

deviated from the parabolic shape slightly. In transition metal, semiconductor and 

insulators, the deviation is considerable. By investigation we find the details of the 

Fermi sphere.  

 If the energy loss and the momentum transfer is not large, aspect of the 

inelastic scattering is different from that of the Compton scattering. In a case like this, 

the electronic states of the electrons are those of the whole crystal and the momentum 

transfer, q= , is shared with all electrons in the crystal. The crystal potential affects 

the excited electrons and cannot be taken to be free. This situation is similar to the 

case of photoabsorption. The inelastic scattering like this is called the X-ray Raman 

scattering and reflects both ground state and excited state. If the ground state is one 

like that of 1s  electron, the Raman spectrum reflects only the excited state.  

 It is decided by the relative magnitude of the electronic potential and 

the amount of scattering the Compton scattering. Or we can say that it is the Raman 

scattering or Compton scattering. Or we can say that it is decided by the relative size 

of the average radius of the electron orbit in the ground state versus the wavelength of 

the electron wave after gaining the energy from X-rays. In the limit of small q , the 

scattering by any electrons in matter, the inelastic X-ray scattering must be the X-ray 

Raman scattering. In the limit of small q , even the intermediate region, the 

intermediate inelastic scattering is observed. In this region, If the momentum transfer 
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is small, the scattering is Raman-scattering-like, and if the momentum transfer is large 

the scattering is Compton-scattering-like. 

 The distinctive aspect of the X-ray inelastic spectroscopy is that the 

interaction between X-rays and matter is weak. This results in the weakness of the 

signal to be detected. On the other hand, the contribution of multiple scattering is 

small and the data analysis can be carried out easily. The surface effect can be 

ignored; experiments can be carried out in air and this is impressible to be 

implemented in case of soft X-ray measurements or experiments with electron beams; 

these are advantages of the X-ray inelastic scattering spectroscopy. Until recently, the 

Compton scattering experiments have been the main stream of the X-ray inelastic 

scattering research. However, the inelastic X-ray scattering is invested recently from 

the view point that it provides us with information in the wider ranges of the 

excitation energy and the momentum transfer. For instance, the valence shell 

electronic structure can be analyzed using the dynamical structure factor, ( , )εΔS q  or 

dielectric function. The energy ravage of the absorption spectra to be estimated from 

the X-ray Raman scattering extends from the far infrared (about 1 MeV) to the soft X-

ray (several 100 eV) region. In absorption measurements, the momentum distribution 

cannot be obtained. In order to investigate how the energy of X-ray photons or of 

charged particles propagates in matter, we should know the energy loss function as a 

function of the excitation energy, εΔ , and the momentum q . In the Compton 

scattering experiments in SPring-8, X-rays with energy at 115 keV from a multipole 

wiggler is used for primary radiation which is monochromatized with a double curved 

crystal monochromator. Since photon energy is high the available momentum transfer 

can be made large. Not only the absolute value of q  but also the scattering angle is 
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taken to be large. In NSLS, X-rays from a multipole wiggler are monochromatized 

with a four-crystal monochromator and the monochromatized light is focused with a 

torroidal mirror and used for the irradiation. In APS, eight crystals are sued for 

monochromatization and focusing. In ESRF and SPring-8, a Bragg angle near 90º is 

employed and resolved band width of several mili electron volts is obtained  

1.1.3.2 Cross Section 

 The cross section of the inelastic scattering is given by the formula 

called the Kramers-Heisenberg formula as 

( )
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 (1.15) 

In (1.15), the differential cross section is given. σ  is the cross section, Ω  is the solid 

angle into which light is scattered, 2ε  the energy of scattered light, 2 2hε ν= , 1ν  the 

frequency of incident light, fΕ  the final state energy of the electron system, gΕ  the 

ground state energy of the electron system, jΕ  the intermediate state energy of the 

electron system, 1e  the polarization vector of incident light , 2e  the polarization 

vector of scattered light, 0r  the classical electron radius, f  the state of electron 

system, g  the ground state of the electron system. 
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 Equation (1.15) shows that there are three terms. The first term is zero 

if ⋅q r  is small and f  is not equal to g , since exp( ) 1i ⋅ =q r  in this case. Then 

the delta function requires 2 1h hν ν= . In this case the scattering is elastic. If q  is 

large and we have to take a higher order terms in the expansion of exp( )i ⋅q r . The 

first order term of the expansion of exp( )i ⋅q r  is i ⋅q r . The corresponding matrix 

element is  

  i f g⋅q r  

  

and this is equal to the transition matrix element is equal to that of optical absorption. 

The first term of (1.15) arises from ⋅A A  term in the hamiltonian and is ignored in 

case of visible light, ultraviolet light, and soft X-rays, regarding inelastic scattering. 

The second and the third terms in (1.15) give rise to the Raman scattering. The terms 

arise from the perturbation ⋅ ∇A  but in the second order.  
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 In (1.15), the summation as to individual electron is omitted for 

simplicity, but we take ∇ and r for expressing  

  , ,n n
n n

∇ → ∇ →∑ ∑r r  

respectively. 

 In practice, the first term in (1.15) is the leading one in the inelastic X-

ray scattering. The second and the third terms are important in the resonance 

phenomena, but we disregard these terms here. Then the differential cross section for 

the inelastic scattering is given 

( ) ( )
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here 2 1ν ν νΔ = − , and ( ),νΔS q  is referred to as the dynamical structure factor. 

 If q  is so large that the wavelength of the scattered electron wave is 

much smaller than the size of the valence electron location area, we have 

  1
q

r
�  

and we can neglect the correlation among the valence electron positions. Then 

exp( )i γ⋅q r  can be replaced with their average exp( )i ⋅q r . Then  
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  ( )
2

exp
f

f i g Nγ
γ

⋅ =∑ ∑ p r  (1.18) 

summation as shown in (1.18) cannot be applied to (1.16), because  the δ -function 

restricts the selection of the state f . In spite of this we remove this restriction and 

make the matrix part to be unity and take summation as to f  for the function that 

satisfy the δ -function condition. In stead of total number N , we introduce the 

electron density that satisfy the δ -function condition. As we mentioned before, the 

final state of the excitation is the free electron state. By the transition the momentum 

of the electron changes from =p k=  to +p q= , then the energy of electron gained 

in the final state is 

  
2( )

2f m
+

Ε =
p q=  

Letting the electron density ρp for electrons with momentum p , we have  

  ( ) ( )2
1

, ( )
2 gh h d
m

ν ρ δ ν
⎛ ⎞⎟⎜Δ = Δ − + + Ε ⎟⎜ ⎟⎜⎝ ⎠∫ pS q p q p p=  (1.19) 

Let z axis be on the direction q . Then we have 
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  ( , ) x y

m
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q
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 (1.21) 

Here ρ⎡ ⎤
⎣ ⎦p  represent ρp  that satisfy the δ -function condition. If the condition,  
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is satisfied, the δ -function condition gives us 
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  z

m
p h hq

q
ν= Δ −

=
 (1.22) 

Then q  can be converted to zp . If we express ρ⎡ ⎤
⎣ ⎦p  in terms of the wave function 

( )χ p , we have 

  ( )
( , ) zJ p
S h q

q
νΔ ∝  (1.23) 

  2
( ) ( )z x yJ p dp dpχ= ∫∫ p  (1.24) 

 
This is the Compton profile we measure.  

 In the data analyses  ( )χ p  is theoretically calculated as (1.24) and 

obtained ( )zJ p  is compared with experimentally observed ( )zJ p .  

1.1.3.3 Example 

 As already pointed out, the Compton profile reflects the electronic 

states of the ground state. In Figure 1.3, the Compton profile measured on a Li single 

crystal is shown. In the figure, the abscissa represents the momentum of the excited 

electron in the bound state as defined in (1.22). As mentioned already, z  is the 

direction of the incident X-ray beam. In the measurements, the momentum transfer q  

defined in (1.9) and the energy loss hε νΔ = Δ  defined in (1.8) are obtained. The 

ordinate represents the dynamic structure factor, ( , ),S h qνΔ  multiplied by q  as 

defined in (1.23).  The dynamic structure is given as the differential cross section 

defined in (1.17) and originally measured as (1.7).  

 We need a high technique to prepare a single crystal of Li. Since alkali 

metals are highly hygroscopic and cannot be exposed to air, the sample holder and its 
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container is specially designed. In the experiments, the crystal orientation is carefully 

determined. 

 Li metal has the electronic configuration, 21 2s s . Two 1s  electrons are 

core electrons and the valence electron has the 2s  symmetry. The 2s  electron is 

nearly-free electron. Thus, the Compton profile is formed by the two contributions, 

one from valence electrons and the other from the core electrons. In Figure 1.3, three 

( )zJ p  curves measured on three different crystallographic directions. In the figure, 

the experimental curves are compared with the curves theoretically calculated. The 

calculations were carried out by the local density functional method. The 

contributions of valence electrons appear in the range up to 0.5 atomic units, where 

the Compton profile has the upward parabolic shape. The edge of this parabola 

corresponds to the radius of the Fermi surface.  

 Careful inspection reveals the magnitude of the Fermi radius that is 

different slightly among the values for different crystal axes. The difference comes up 

to 4.6%. This indicates that even a metal like Li the energy band is not completely 

uniform. On the other hand, the 1s  electron is localized. Then, it is much more 

delocalized in the reciprocal lattice and thus in the momentum space than the valence 

electrons. Thus zp  has a longer tail up to 3 atomic units. 

 Disagreement of the calculated data with the measured data is 

conspicuous in the area near 0zp = . This is due to the situation that the electron 

correlation is not taken into account in the valence band calculation. In the Compton 

scattering phenomenon, the measured Compton profile is the quantity obtained by 

integrating non-symmetric 2
( )χ p  over xp  and yp , and considerable information on 



 

 

24

the three dimensions  nature is lost. If we observe the Compton profile along various 

crystallographic axes, we obtain more three dimensional information. The coincident 

measurements of X-rays and recoiled electrons provide more direct information on 

2
( )χ p . 

 

 

Figure 1.3  Compton profile of Li metal. [After Sakuri, 1995] 
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  An example of the magnetic Compton scattering is shown in Figure 

1.4. The figure shows the magnetic Compton profile of Ni2MnSn. If we place a 

magnetic material in magnetic field and the Compton profile is measured with 

circularly polarized light, the difference of the Compton profiles measured with right 

and left polarized light gives us the Compton profile of the contribution of the orbitals 

only of magnetic electrons. The Compton effect in a case like this is called magnetic 

Compton scattering.  

 There are materials which are not magnetic but become magnetic if 

some other atoms are added to the materials. Alloys called the Heusler alloys are 

typical materials like this . The Heusler alloy has the composition of Cu2MnAl. Cu 

can be replaced with Ni and Al can be replaced with one of Gd, In, Sn, and As. In this 

case, the enhancement of the magnetic moment is in 3d  level on Mn atoms.  

 The sample used for the measurements illustrated in Figure 1.4, 

Ni2MnSn, is a Heusler alloy. The magnetic Compton profile in Figure 1.4 is compared 

with the calculated data. One shown with a full line is by the energy band model. The 

profile calculated with localized Mn 3d  moments and that calculated with delocalized 

free electrons are shown. The calculate results well reproduce the experimental data.  

 From the data shown in Figure 1.4, it is understood that the majority of 

the contribution of the spin moments to the magnetic moment of the Heusler alloy is 

from Mn 3d  electrons that is widely spread in the momentum space. A small amount 

of the contribution from delocalized free electrons occurs near 0zp = , but it gives 

the contribution of the negative sign. These show that the contribution of Mn 3d  

electrons localized in the real space to ferromagnetism is large but the non-vanishing 
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antiferromagnetic contribution from delocalized electrons also occurs. The 

contribution from Ni is almost zero.  

 

 

Figure 1.4  Compton profile of Heusler alloy, Ni2MnSn. iiiii : Calculated 

spectrum of the contribution of the Mn 3d  moment (A).  −−−− : 

Calculated spectrum of the contribution of the delocalized moment (B). 

−⋅−⋅−⋅− : Spectrum obtained by sum of A and B. : Spectrum 

calculated by using the energy band. [After Deb, 2001] 
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1.1.4 Magnetic Circular Dichroism 

1.1.4.1 General Remark 

 In this thesis, experiments on magnetic circular dichroism are 

described. In this section, the related background knowledge is presented. There are 

two kinds of dichroism, linear dichroism and circular dichroism. The linear dichroism 

is the phenomena that physical quantities observed with two beams of light polarized 

linearly in two directions perpendicular to each other have different magnitudes. If 

physical quantities are measured with light polarized circularly in the left and right 

directions and resulting magnitudes are different, the phenomena are called the 

circular dichroism. The physical quantities to be measured are usually absorption 

coefficients, absorption rates, scattering cross section and fluorescent emission rates. 

In the present thesis, we restrict the quantities to ones associated with photoabsorption.  

 Magnetic circular X-ray dichroism (XMCD) is the different between 

the absorption cross section of a ferromagnetic or ferrimagnetic compound measured 

with X-rays circularly polarized in the left and right directions. In this case, the 

dichroism is induced by a magnetic field. Thus a sample to be observed is placed in a 

magnetic field. Needless to say, X-rays are light with high photon energy of the short 

wavelength. Experimentally, this is equivalent to measuring the absorption cross 

section with light of fixed helicity and reversing the direction of the applied magnetic 

field along the direction of propagation of X-rays. Helicity is a quantity equal to the 

degree of polarization. We will discuss it later.  

 The advantage of the use of circularly polarized light arises from the 

fact that the absorption cross sections of magnetic materials in magnetic fields are 

directly proportional to the mean values of the macroscopic magnetic moments.  
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1.1.4.2 Polarization of Light 

 The polarization of light is the concept regarding the directions of the 

electric and magnetic vectors of the electromagnetic radiation. For example, if the 

electric vector is directed to the x  direction. Since dichroism is the concept defined 

by the polarization of light, the polarization of light is dealt with in this subsection.  

 The wave field of light obeys Maxell’s electromagnetic equations. The 

solutions are given by the sum of many plane waves expressed as  

  
0

0

exp[ ( )]

exp[ ( )]

i t

i t

ω

ω

⎫= ⋅ − ⎪⎪⎪⎬⎪= ⋅ − ⎪⎪⎭

E E r

H H r

κ

κ
 (1.25) 

Here 2 /π λ≡ aκ  is the wave vector and a  is the unit vector in the direction of light 

propagation. Maxwell’s equations and their solutions are summarized in Appendix A. 

In many cases, it is sufficient for us to consider a single plane wave. It is the electric 

field of light that interacts with electrons, we consider only the electric vector in the 

single plane form in what follows.   

 In some cases, the vector potential, A , of the electromagnetic field is 

considered. It is known that the following relations hold.  

  
rot

i
c
ωμ

⎫= ⎪⎪⎪⎬⎪= ⎪⎪⎭

H A

E A
 (1.26) 

Here μ  is the magnetic permeability. Thus, if we find some rules concerning the 

polarization of E , the same rules hold for A . It is shown that  

  0× =Eκ  (1.27) 

Thus we have  

  , ,⊥ E H Aκ  (1.28) 
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This indicates that the light wave is a transversal wave. Without generality, we can 

choose the direction of light propagation as the z  axis. Then the x  and y  component 

of the electric vector can be written as 

  
0

0

exp[ ( )]

exp[ ( )]

x x x

y y y

E E i z t

E E i z t

κ ω δ

κ ω δ

⎫= − + ⎪⎪⎪⎬⎪= − + ⎪⎪⎭
 (1.29) 

Here, we assume that xE  and yE  have phase difference. We put  

  z tτ κ ω≡ −  (1.30) 

 Then (1.29) is written as 

  
0

0

exp[ ( )]

exp[ ( )]

x x x

y y y

E E i

E E i

τ δ

τ δ

⎫= + ⎪⎪⎪⎬⎪= + ⎪⎪⎭
 (1.31) 

In the argument of the polarization of light, we take (1.31) as expressing the light 

wave in general. In the consideration of the polarization of light, it is more convenient 

to express the light wave with the trigonometric functions as  

  
0

0

cos( )

cos( )

x x x

y y y

E E

E E

τ δ

τ δ

⎫= + ⎪⎪⎪⎬⎪= + ⎪⎪⎭
 (1.32) 

If we eliminate τ  in (1.32), we have  
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2

0 0 0 0

2 cos siny yx x

x y x y

y x

E EE E
E E E E

δ δ

δ δ δ

⎫⎪⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎪⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜ ⎪⎟ ⎟⎟ ⎟⎜ ⎜+ − =⎜ ⎜⎟ ⎟ ⎪⎟ ⎟⎜ ⎜ ⎪⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎬⎝ ⎠ ⎝ ⎠ ⎪⎪⎪= − ⎪⎪⎭

 (1.33) 

Equation (1.33) show that the components, xE and yE , of the vector E  change with 

time in the way that the terminal of E  is on an ellipse. In Figure 1.5, the ellipse is 

depicted. The light polarized in this manner is referred to as elliptically polarized light.  

 In case 0δ = , (1.33) give us 
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0 0

0yx

x y

EE
E E

⎛ ⎞⎟⎜ ⎟⎜ − =⎟⎜ ⎟⎟⎜⎝ ⎠
 (1.34) 

This indicates that E  is on a straight line. 

  0y
y x

ox

E
E E

E
= ⋅  (1.35) 

The polarization like this is referred to the linear polarization. We can choose the 

direction of the polarization either in the x  or y  direction. In case δ π= , (1.33) 

gives us 

  0

0

y
y x

x

E
E E

E
= −  (1.36) 

This is also the linearly polarized electric vector. Here we confined δ  in the region  

  0 2δ π≤ ≤  

From the periodicity, it is not necessary to consider the situation outside this region. 

 In case or/2 3 /2δ π π= , cos 0δ =  and 2sin 1δ = . If 

0 0 0x yE E E= =  is satisfied in addition to this condition for δ , (1.33) gives us 

  2 2 2
0x yE E E+ =  (1.37) 

Thus, the end of electric vector is on a circle with a radius of 0E  when τ  changes the 

end of E  moves on this circle. This is circularly polarized light. The electric vector of 

circularly polarized light is also shown in Figure 1.5.  

 Here we consider the propagation of light. The propagation of light is 

determined by the movement of the same phase as time passes on. Let the phase be 

0τ . Then we have from (1.30)  

  
0 0 0

0 0( ) ( )

z t

z z t t

τ κ ω δ

κ ω δ

= − +

= +Δ − +Δ +
 (1.38) 



 

 

31

Thus we have 

  0z tκ ωΔ − Δ =  

Then, 

  z t c t
ω
κ

Δ = Δ = Δ  (1.39) 

Since 0tΔ > , 0zΔ > . This means that light propagates from along the z  axis from 

the minus to the plus direction. In other words, the definition of τ  given by (1.30) is 

made as this propagation manner.  

  Consider the circularly polarized light. We take 0xδ =  for simplicity. 

We put 3 /2yδ π=  which is equivalent to /2π− . Then we have 

  
cos( )

sin( )

x

y

E z t

E z t

κ ω

κ ω

⎫= − ⎪⎪⎪⎬⎪= − ⎪⎪⎭
 (1.40) 

We observe how ,x yE E  and E  move with time on the 0z =  plane. From (1.40) with 

0z = , we have  

  
cos

sin

x

y

E t

E t

ω

ω

⎫= ⎪⎪⎬⎪= − ⎪⎭
 (1.41) 

The changes of  and x yE E  with time are shown in the left panel of Figure 1.6. The 

corresponding change of E  is shown in the right panel. If we observe E  from the 

0z >  side, E  rotates toward the right direction, namely the clockwise direction. If 

we observe E  from the 0z <  side, it rotates toward the left direction, the 

anticlockwise direction. Thus, the direction of the rotation of E  is opposite according 

to the direction of the observation. As the definition, we observe E  on the fixed plane 

from the direction from 0z >  to 0z < .  
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Figure 1.5 Electric field vectors of (a) elliptically polarized light and (b) circularly 

polarized light. 
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 If we put /2δ π= , we have 

  
cos

sin

x

y

E t

E t

ω

ω

⎫= ⎪⎪⎬⎪= ⎪⎭
 (1.42) 

Then the rotation of E  is toward the left direction, i.e. the anticlockwise direction.  

We put 0 0 0x yE E E= ≡  as we did so far. Then we have from (1.33)  

  2 2 2 2
02 cos sinx x y yE E E E Eδ δ− + =  (1.43) 

In Figure 1.7, the mode of the rotation of the electric vector of light is shown along 

with the phase difference of component oscillation. In the figure, the circle and the 

ellipse are obtained from (1.43). 

 Next we see the spatial distribution of the electric vector at a fixed time. 

For simplicity, we put 0t = . Then we have from (1.40)  

  
cos

sin

x

y

E z

E z

κ

κ

⎫= ⎪⎪⎬⎪= ⎪⎭
 (1.44) 

This is depicted in Figure 1.8 along with E . In the lower panel the trace of the 

terminal of E  is illustrated. It is spiral shaped. It should be emphasized that the spiral 

does not rotate with time but proceed to the 0z >  direction as it is.  

 We come back to the expression, (1.31). We put 0 0 0x yE E E= ≡ . 

Then we have 

  
0

0

x

y

i i
x

ii
y

E E e e

E E e e

τ δ

δτ

⎫= ⋅ ⎪⎪⎪⎬⎪= ⋅ ⎪⎪⎭
 (1.45) 

Then we have 
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Figure 1.6  Rotation of the electric vector circularly polarized light. (a) Changes of 

 and x yE E  in the 0z =  plane with time. (b) Change of E  with time in 

the 0z =  plane. This is the right rotation (clockwise) if it is viewed 

from the 0z >  side. It is the left rotation if viewed from the 0z >  

side.  
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Figure 1.7  The rotation mode of the electric vector, E , and the difference of 

phases, δ , between oscillation of the components, , and x yE E . 
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  ( )y xiy i

x

E
e e

E
δ δ δ−= ≡  (1.46) 

As shown in Figure 1.7, the circularly polarized light is said to be right polarization if 

/2δ π= . The circularly polarized light is said to be left polarization if 3 /2δ π=  or 

/2π− .  

For the right polarization, 

  2
iy

x

E
e i

E

π

= = −  (1.47) 

For the left polarization, 

  2
iy

x

E
e i

E

π
−

= =  (1.48) 

 If light consists of left-and right-polarized light and the corresponding 

intensities are lI  and rI , respectively. We define the degree of polarization which is 

equal to helicity in case of 100% polarization, as  

  l r

l r

I I
h
I I

−
=

+
 (1.49) 

Obviously, the helicity is equivalent to the degree of polarization.  

 Let us consider a wave propagating toward the z  direction. According 

to (1.45) and (1.46), this wave can be written as  

  exp exp ( )x x y yE i iτ τ δ= + +E e e E  (1.50) 

Here xe  and ye  are unit vectors in the x  and y  axis, respectively. Now we take the 

regime in which xE  and yE  are given as 
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0

0
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x

y

E E t

E E t

z

ω

ω
τ κ

⎫= ⎪⎪⎪⎪= ⎬⎪⎪= ⎪⎪⎭

 (1.51) 

Then (1.50) is written as 

  0 exp [ cos sin (cos sin )]x yE i t t iτ ω ω δ δ= + +E e e  (1.52) 

Now, we consider the circular polarization, then /2δ π± . Then, (1.52) becomes 

  
0 exp [ cos sin ]

exp [ ]

x y

x y

E i t i t

i i

τ ω ω

τ

= +

= ±

E e e

E E
 (1.53) 

Here we see that 

  :x yi+E E  left polarized light (anticlockwise) 

  :x yi−E E  right polarized light (clockwise) 

Consider linearly polarized light proceeding toward the z  direction. For simplicity, 

we take the direction of the polarization vector in the in the x  axis. Then, we have 

  

exp( )

exp( ) exp( ) exp( )

( )exp( ) ( )exp( )
y

y

y

y x

i

i i i i i

i i i i

τ

τ τ τ

τ τ

=

= + −

= + + −

x

x

x

E E

E E E

E E E E

 (1.54) 

This shows that the linearly polarized light consists of the left polarized light and the 

right polarized light. This is a very important fact. This fact is used in the explanation 

of the cause of the Faraday effect that the direction of the polarization vector of the 

linearly polarized light proceeding in a material in a magnetic field toward the 

direction of the magnetic field rotates in the material. 

 In the argument made above, we have implicitly assumed that phase 

xδ  generating the x  component of the light vector and phase yδ  generating the y  

component of the light vector are constant and do not change in time. We have 
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assumed that, at least, difference of phases, δ , is constant. Apart from the special case 

of synchrotron radiation, electromagnetic radiation is emitted by atoms when they 

relax from the excited state to the ground state. Since this relaxation time spent to the 

transition is finite and short, the duration that δ  is kept constant is short. The 

processes of the emission of photons by individual atoms are independent of each 

other. Thus, δ  is random in ordinary light. Such light is called natural light and not 

polarized. We can use devices to collect only light of a given constant δ . The devices 

are referred to polarizers. Lasers are coherent light and polarized. The emission of 

light is not spontaneous but induced. Synchrotron radiation is polarized as mentioned 

later.  

 The wave field of light is quantized and form particles being referred 

to photons. The quantized vector potential is given by  

  [ ]
,

exp( ) exp( )
( )

s s s
s s

c
a i a i

Vν
+= ⋅ + − ⋅∑A e r r

κ

κ κ
κ

 (1.55) 

Here se  is a unit vector in the s  direction and , ,s x y z= . More detailed explanations 

are given in Appendix B. In circularly polarized light traveling toward the z  direction 

the electric vector rotates in the xy  plane. Then the vector made by xe  and ye  rotates 

in the xy  plane. We consider this rotational motion as the angular motion of light 

generating the angular momentum. Then we consider the vector ±σ , and define as the 

angular momentum of light. The circular motion occurs in the plane perpendicular to 

the direction of light propagation. Therefore zσ &  in this case. In general σ κ& . 

There are two kinds of the circular motion, right and left, and so the value of σ  takes 

1± . We define this value 1h = ±  as helicity. We do not consider helicity for linearly 

polarized light. In this case h  may be zero. 
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Figure 1.8  Rotation of the electric vector as seen at different points of z . 



 

 

40

 

1.1.4.3 Magnetic Dichroism 

 We have already mentioned what dichroism is. Here in this subsection, 

we see the origin of the effect of the polarization of light on the optical transition. 

Obviously, this is inherent in the transition cross section. There are two cases of the 

origin of dichroism. One is that the dipole transition matrix elements or transition 

moments as expressed in the vector form are oriented along special crystallographic 

directions. Most of the causes of the linear dichroism are in this case. The other is the 

case that the transition moment is caused by the local orbital angular moment. This is 

the case for magnetic circular dichroism (MCD).  

 Thus, we have to start with inspecting the transition matrix element. 

For doing this, we should know the form of the perturbation to give rise to the optical 

transition. This is described in a more detailed manner in Appendix C.  

 As mentioned above, the origin of the magnetic circular dichroism 

(MCD) has to be found in the photon-matter interaction. In the X-ray regime, MCD is 

not directly due to the interaction between the transverse field, B , of the photon in 

matter and the electron spin but rather to the interaction between the orbital angular 

moment of the electron of and photons. The electron spin comes in the problem 

through the spin-orbit coupling.  

 The quantum field theory describes the electron-photon interaction 

quite well form the unified particle point of view. There, the electron waves and the 

electromagnetic wave are quantized and treated as corresponding particles. By this 

treatment, the photoabsorption and the photon-emission processes are explained 

naturally and smoothly. Before this method was found, the somewhat inconsistent 

method that leads to the same results as those of the quantum field theory had been 
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used. The method is called semi-classical treatment of radiation and still quite 

conveniently used. A semi-classical model where the atom is quantized and the 

electromagnetic field is described by Maxwell’s equations may be used. The 

perturbation hamiltonian is simply written as  

 
2

2( ) ( ) ( )
2i i i i i i

i i i i

e e e
g

m m m
ΔΗ = − ⋅ + − ⋅∑ ∑ ∑A r p A r S B r  (1.56) 

where the electrons are characterized by their mass m , their charge e , their 

momentum p  and their spin S . Mathematically p  is given as an operator, ( / )i∇= . 

The perturbation source is described by an electromagnetic field (E  and )B  where 

both E  and B  are replaced with vector potential , A . The number, i , distinguish 

electrons. The perturbation hamiltonian consists of three terms apart from the 

equivalent terms brought about by number i . The first is the one-photon term which 

gives rise to the absorption of photons. The second one is a two-photons term which 

does not take part in the absorption process and can thus be neglected in the present 

model. However this term is essential in the scattering and diffraction processes. The 

third term does not operate on the spatial part of the wave function. It cannot couple 

the ground and the excited states leading to absorption in the X-ray range. Finally 

only the first term: 

   ( )i i
i

e
m

ΔΗ = − ⋅∑A r p   (1.57) 

is relevant perturbation causing X-ray absorption.  

 In the X-ray range of several ten kiro electron volts in which we are 

interested, the wavelength is not large compared with the spatial extension of the 

probed core level. However, we make the approximation exp( ) 1i ⋅ =k r  for the 
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vector potential A  given by 0 exp( )i tω⋅ −A k r . This is the well-known dipolar 

electric approximation: 0 0A= =A A a  where a  is the unit vector directing toward 

the electric field. We should remember that E A&  as described in Appendix A. In 

practice, higher order terms causing the derivation from the dipolar approximation do 

not affect the MCD. This point will be explained later in the next section. Thus, the 

transition matrix element is given by 

  fg i i
i i

e
f g f g

m
αΜ = − ⋅ = ⋅∑ ∑A p E r  (1.58) 

Here, α  is a constant factor including the X-ray frequency equal to the difference of 

energy between the ground and excited states. The equality of the second term to the 

third term is held only in the case where both f  and g  are the complete eigen 

functions of the hamiltonian.  

 The first order term of the exponential factor gives the electric 

quadrupolar contribution (15% of the total signal at the Ag K-edge: 25 keV). This 

quandrupolar effect may be neglected for the K-edge of 3d  transition metals but 

starts to be important for 4d  metals.  

 The dipolar magnetic contribution to X-ray MCD (XMCD) is 

negligible in the first approximation because the principal quantum number of the 

ground state is different from the final state. The wave functions of the ground state 

and final state remain orthogonal during the absorption process and the S  matrix 

element is zero. 

 The transition probability from the ground state g  to a final state f  

is given by 
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  2
( )f g

f

A f g hδ νΤ = ⋅ Ε −Ε −∑ E r  (1.59) 

Here, fΕ  and gΕ  are the many electron energy of the final state and the ground state, 

respectively. f  and g  are the many electron final and ground states, respectively. 

A  is a constant. It may be simplified by using the one-electron approximation. Only 

one electron is excited changing its quantum number during the absorption process, 

while the other electrons remain spectators. Thus, we have 

  2ˆ ( )fg f gA c hχ δ νΤ = ⋅ Ε −Ε −E r  (1.60) 

where χ  is the excited state and c  the core electron state electron state. The wave 

function associated to χ  and c  are thus single electron eigen functions. Â  is a 

constant. 

 The transition probability given by the equation (1.60) does not depend 

directly on the spin. This show that the spin is conserved in the absorption process: 

0Δ =S . Spin-dependent absorption will be induced in our case by the spin-orbit 

coupling. The spin-orbit coupling of the core hold produced by the optical excitation 

is larger than that of the valence electrons because the spin-orbit coupling amplitude 

is proportional to the potential gradient seen by the electron (or by hole).  

 If the transition moment is approximated as 

   

cos

fg

fg

f g

f g

E r θ

= ⋅

= ⋅

= ⋅

= ⋅

M E r

E r

E r
 (1.61) 

Here, θ  is the angle between E  and fgr . Then the absorption coefficient is given by  

  2 2ˆ cosAMμ θ=  (1.62) 
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Here, Â  is a constant. The relation (1.62) presents the linear dichroism. Equation 

(1.62) shows that absorption coefficient varies as θ  changes. This aspect is shown in 

Figure 1.9. If μ  is measured for two different values of θ  and the resulting μ ’s are 

compared to each other, the orientation of the moment fgr  in the crystal is found.  

   

Figure 1.9  Linear dichroism. Upper panel: vs ( )μ θ θ , Lower panel: Direction of 

E . fgr  is directed toward the y  axis. 

 

When the moment is that for an isolated atom, the orientation relative to the external 

field direction is obtained. If the 0θ =  direction is selected as that parallel to fgr  and 

μ  is measured for 0θ =  and 90θ = D , (90 )μ D  must be zero and we can inspect that 
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experimentally selected 0θ =  is correct. In case (0 ) (90 )fg fg=r rD D , we select 0θ =  

and 45θ = D . The MCD is described in the following sections. 

1.1.4.4 Zeeman Effect  

 When we discuss MCD, we consider how the optical absorption 

coefficient changes in a magnetic field and how the change is related with circularly 

polarized light. It is well known that the spectral lines of light emitted by atoms are 

split when the atoms are brought into a magnetic field. This phenomenon is referred 

to the Zeeman effect. The emitted light is circularly polarized light. The transition 

moment for absorption or induced emission is different from that for spontaneous 

emission by a factor of 2 2
fghπ ν . Therefore it is useful to look into the Zeeman effect.  

 To understand the MCD transition, it is of great help to consider the 

classical model of a harmonic oscillator atom. The equation of motion is given by 

  
2

2

d
n k
dt

+ = ×
r

r v H  (1.63) 

Suppose the magnetic field is directed toward the z  direction as 

  (0,0, )=H H  (1.64) 

Setting parameter 0ω  as 

  2
0

k
m

ω =  (1.65) 

we have 

  

2
2
02

2
2
02

2
2
02 0

d x e dy
x

dt mc dt
d y e dx

y
dt mc dt
d z

z
dt

ω

ω

ω

⎫⎪⎪+ = ⎪⎪⎪⎪⎪⎪+ = ⎬⎪⎪⎪⎪⎪+ = ⎪⎪⎪⎭

H

H  (1.66) 
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Equation (1.66) can be reformed by setting the variables as 

  
x iy

x iy

ζ

ζ
+

−

⎫= + ⎪⎪⎬⎪= − ⎪⎭
 (1.67) 

we have 

  

2
2
02

2
2
02

2

2

L

L

d d
i

dt dt
d d

i
dt dt

ζ ζ
ω ζ ω

ζ ζ
ω ζ ω

+ +
+

− −
−

⎫⎪⎪+ = − ⎪⎪⎪⎬⎪⎪+ = ⎪⎪⎪⎭

 (1.68) 

Here 

  
2L

e
mc

ω =
H  (1.69) 

General solution of (1.68) can be written as 

 
exp( ( ) ) exp( ( ) )

exp( ( ) ) exp( ( ) )

L L

L L

A i F t B i F t

C i F t D i F t

ζ ω ω

ζ ω ω

+

−

⎫⎪= − + + − − ⎪⎪⎬⎪= + + − ⎪⎪⎭

 (1.70) 

Here parameter F  is defined as 

  2 2
0 LF ω ω= +  (1.71) 

From (1.65) and (1.69), we see 

  0 Lω ω�  (1.72) 

There we ignore Lω  in (1.71) and write (1.70) as 

 
0 0

0 0

exp( ( ) ) exp( ( ) )

exp( ( ) ) exp( ( ) )

L L

L L

A i t B i t

C i t D i t

ζ ω ω ω ω

ζ ω ω ω ω
+

−

⎫= − + + − − ⎪⎪⎪⎬⎪= + + − ⎪⎪⎭
 (1.73) 

Both ζ+  and ζ−  can be the solutions of the original equations, (1.66). The constants 

A  through D  are decided by the initial conditions. The solutions express the 

rotational motions and, therefore, we can select the conditions so that 0B D= = . 

Putting ,A A C A+ −= = , we have 
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0

0

exp( ).exp( )

exp( ).exp( )

L

L

A i t i t

A i t i t

ζ ω ω

ζ ω ω
+ +

− −

⎫= − ⎪⎪⎪⎬⎪= ⎪⎪⎭
 (1.74) 

From (1.66) we have  

  0 0exp( )z z i tω=  (1.75) 

This indicates that the particle motion toward the z  direction is not affected by the 

magnetic field directed toward the z  direction. (1.74) indicates that both ζ+  and ζ−  

express circular motion. If we impose a magnetic field on the atomic system, the 

electron motion in the xy  plane is such that extra rotational motions with frequencies, 

are added to the circular motion of frequency 0ω .  

 We make the motion is circular by putting 

  0A A A+ −= ≡  (1.76) 

We have set 

  0 Lω ω ω± ≡ ∓  (1.77) 

From (1.74), we have 

  x iyζ± = ±  (1.78) 

                                0

0

exp( )

[cos( ) sin( )]

A i t

A t i t

ζ ω

ω ω
± ±

± ±

=

= +
 (1.79) 

Therefore we have 

  
0

0

cos( )

sin( )

x A t

y A t

ω

ω
±

±

⎫= ⎪⎪⎪⎬⎪= ± ⎪⎪⎭
 (1.80) 

Therefore the solutions are as depicted below. 
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In this way, the simple classical motions of an electron in a magnetic field are two 

circular motions directed opposite to each other. Classically, the circular motion of a 

dipole, er , reacts with circularly polarized light. The proof of this is lengthy and we 

understand the electron motion and the polarization of light intuitively. The 

corresponding splitting of the spectral line is shown in Figure 1.10 schematically. 

 Figure 1.10 shows that two a bound electron according to the direction 

of observation relative to the direction of the magnetic field. In the figure, σ  

represents that the direction is perpendicular to the magnetic field direction and π  

parallel to the magnetic field direction. As shown later, this is found in the spectral of 

divalent atoms. The Zeeman effect that can be explained by the classical theory is 

called the normal Zeeman effect. 
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Figure 1.10  Classical electron motion in magnetic fields and the splitting of the 

spectral line. 0ω  is the angular frequency corresponding to the spectral 

line without the magnetic field. Light proceeds to the y  direction in 

the case shown in the upper panel and to the z  direction in the lower 

panel. zH & . lE : electric field of light. : , :l lσ π⊥E H E H& . 
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 The relation between the state of the circular polarization of excitation 

light and the transition probability can be found in the calculation of the transition 

matrix element of an isolated atom. The operator of the transition matrix element is 

  
sin cos sin sin cos

x y z

x y z

E x E y E z

E r E r E rθ φ θ φ θ

⋅ = + +

= + +

E r
 (1.81) 

Here, we use the spherical coordinate. Since 

  1
cos ( )

2
i ie eφ φφ −= +  (1.82) 

  1
sin ( )

2
i ie eφ φφ −= −  (1.83) 

, we have 

1 1
( ) sin ( ) sin cos

2 2
i i

x y x y zE iE r e E iE r e E rφ φθ θ θ−⋅ = + ⋅ + − ⋅ +E r  (1.84) 

Under the central field approximation, the eigen function of an electron of an electron 

is given by 

  ( , , ) ( ) ( , )nlm nl lmr R r Yψ θ φ θ φ=  (1.85) 

Thus, we have 

  
* * 2

3 *

sin

( , , , ) ( ) ( )

nl lm n l l m

nl n l

f g N R Y R Y r drd d

NG l l m m r R r R r dr

θ θ φ′ ′ ′ ′

′ ′

⋅ = ⋅

′ ′=

∫∫∫
∫

E r E r
 (1.86) 
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1
exp ( 1)
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2
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m m
l l
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x y

m m
z l l

G l l m m d P P

E iE d i m m

E iE d i m m

E d P P d i m m

θ θ θ θ

φ φ

φ φ

θ θ θ θ θ φ φ
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⎡ ⎤⎡ ⎤′− − − −⎢ ⎥⎣ ⎦⎢ ⎥×⎢ ⎥
⎢ ⎥⎡ ⎤′+ + − +⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤′+ −⎣ ⎦

∫

∫

∫

∫ ∫

 (1.87) 
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In (1.87), the integral on r  does not impose any restriction on n  and n ′ . This means 

that no selection rule exists for the principal quantum number. On the other hand, 

( , , , )G l l m m′ ′  is not zero for special combinations of , , ,l l m′  and m ′ . By practical 

calculations of (1.87), it is non-vanishing only for 

  
 or 

1

1

l l

m m m m

⎫′= ± ⎪⎪⎪⎬⎪′ ′= = + ⎪⎪⎭
 (1.88) 

These are the selection rules. They are also written as  

  
1

0, 1

l

m

⎫Δ = ± ⎪⎪⎪⎬⎪Δ = ± ⎪⎪⎭
 (1.89) 

From (1.87) we find that the selection rule on l  does not relate with the polarization 

condition of light. The selection rule on m  is affected by the polarization condition.  

 From (1.87), we know that the transition moment satisfying the 

selection rule 0mΔ =  vanishes if 0zE = . This means that transition satisfying 

0mΔ =  is excited with linearly polarized light whose polarization direction is in the 

x  axis. 

 The transition moment that satisfy the selection rule 1mΔ = +  

varnishes for light having the electric vector components satisfying 0x yE iE+ = . 

Namely it vanishes for left polarized light. ( )x yE E i≠ = . In the same way, the 

transition satisfying 1mΔ =−  does not occur for right polarized light. As described 

before, arbitrary linearly polarized light consists of right and left polarized light. 

Therefore we can summarize relation between the selection rules and the polarization 

of light as  

  0mΔ = : Linearly polarized light 
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     1mΔ = + : Right circularly polarized light 

  1mΔ =− : Left circularly polarized light 

Here, we assume that light proceeds toward the z  direction for the 1mΔ = ±  

transition case and in the xy  plane for 0mΔ =  transition case. 

 In the practical application of the above mentioned issue of the 

interaction of polarized light and an electron in an atom, we have to define the 

coordinate system. This is equivalent to the assigning of the direction of the z  axis. 

Since the selection of the z  axis is arbitrary, in order to understand this problem, we 

have to define the angular momentum of the many electron system. We will discuss 

this problem later. However, we can understand the selection rule intuitively as 

follows: Unless the states specified by m  are not separated, we cannot detect the 

states according to different values of m . In other word, the states are degenerate. If 

we intend to distinguish the direction of E  according to the difference in m , it is 

equivalent to assign the coordinate system according to the difference in m . The 

states are degenerate regarding m . This means that the coordinate system, namely the 

direction in space, is degenerate.  

 If we apply a magnetic field to the atomic system, the degeneracy 

regarding m  is lifted. This means the directional degeneracy is lifted. If the 

directional degeneracy is lifted, the direction is quantized. This is the famous concept 

of the directional quantization. Obviously the directional quantization is brought 

about by the external field. In the present case, it is convenient to select the z  axis 

along the direction of the magnetic field. Even if we select the direction of the z  axis 

other than that of the magnetic we rotate the coordinate mathematically so that the 

direction of the new z  axis coincides with the direction of the magnetic field. This is 
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simply the problem of mathematical convenience. The directional quantization is 

experimentally proved by the Stern-Gerlach experiment, which shows that a beam of 

Ag is split into two in a non-uniform magnetic field. 

 Before we treat the normal Zeeman effect quantum mechanically, it is 

better for us to introduce two important parameters, gyro-magnetic ratio and the Bohr 

magneton. Let the angular momentum of an electron in an atom be l . Then 

   

 

  mvr= × =l r p  (1.90) 

Define F  as 
2
v t r

F
δ

δ
⋅

=  

Then, we have 

  2 2
dF F

vr
dt τ

= =  (1.91) 

Here τ  is the period of the rotation. Form (1.90) and (1.91) we have 

  2
F

m
τ

=l  (1.92) 

The electric current generated by the electron is 

  e
j

τ
=  
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Therefore the magnetic moment is given by  

  1j e
F F
c c τ

= = ⋅ ⋅μ  (1.93) 

From (1.92) and (1.93), we define the gyro-magnetic ratio, γ , as 

  
2
e
mc

γ = =
l
μ  (1.94) 

If we use the general angular momentum, ,γJ  is defined by 

  γ= − Jμ  (1.95) 

Then averaging μ , we have 

  Mγ γ= − = −Jμ =  (1.96) 

Here, M=J =  will be discussed later. From (1.94) and (1.96) we have 

   
2 B

e
M

mc
μ= − ≡ −Jμ =  (1.97) 

The constant 
2B

e
mc

μ =
=  is called the Bohr magneton. The general angular 

momentum will be explained in Appendix E .  

 The quantum theory of the normal Zeeman effect will be described 

below. First, the aspects of the Zeeman splitting of atomic spectra are shown in Figure 

1.11. Examples of three elements , Cd, Na, and Zn, are illustrated. The spectra of Cd 

in panel (a) those for the normal Zeeman effect. The spectra of Na in panel (b) are 

those of the famous D  lines and the abnormal Zeeman splitting. The upper panel 

illustrates the Zeeman split line and the lower panel the 1D  and 2D  lines without the 

magnetic field. The polarization analysis is not made. The Zeeman split lines of the 

triplet system of the Zn 3 3
1 1P S−  is shown in panel (c). This is the abnormal Zeeman 
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effect. The polarization analysis is not made. In this way, the spectra illustrated in 

Figure 1.11 show the splitting of lines under the magnetic field. The schematic energy 

diagram consideration is made later in Figure 1.12 through Figure 1.14. In magnetic 

field, the following extra term, W , is added to the hamiltonian without magnetic field.  

  
W

γ

⎫= − ⋅ ⎪⎪⎬⎪= ⋅ ⎪⎭

H

J H

μ
 (1.98) 

Here we used (1.95). We select the z  axis in the direction of the magnetic field. Then, 

as before, (0, 0, ).H=H  Then, (1.98) is 

  zW HJγ=  (1.99) 

In general angular momentum state JM , where M  is the quantum number 

distinguishing different zJ . In the JM  system, zJ  is diagonal. When 0H = , the 

energy of the angular momentum part of the hamiltonian is determined by J . The 

situation is explained in Appendix E .  

 The diagonal matrix elements of (1.99) with JM  which diagonalize 

the hamiltonian are given by 

  JM W JM H Mγ= = ,  ( ), 1,.....M J J J= − −    (1.100) 

This shows that the energy level assigned by the J  without the magnetic field is split 

into equally spaced (2 1)J +  lines under the magnetic field. The mathematical proof 

of (1.100) is equivalent to the proof of  

  zJ JM M JM= =  (1.101) 

The proof of (1.101) is given in Appendix E . In the case where the central field 

approximation is held and electron spins can be ignored, we have 

  =J L  (1.102) 
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Figure 1.11  Zeeman splitting of atomic spectra in magnetic field. (a) The normal 

Zeeman triplet of Cd at 6438.47 Å ( 1 1P D−  transition). Upper panel: 

The location of the line without the magnetic field measured as light 

emitted with polarization in the directional parallel to the magnetic 

field. Lower panel: Components with the electric vector oscillating 

normal to the magnetic field. (b) The abnormal Zeeman splitting of the 

Na D  lines at 5895.93 Å ( 1D  line) and 5889.96 Å ( 2D  line). The 

transition is 2 2P P− . Upper panel: With magnetic field. Lower panel: 

Without a magnetic field. Both are not polarization resolved. (c) The 

abnormal Zeeman splitting of Zn 3 3
1 1P S−  lines at 4722.16 Å. The 

spectrum are not polarization analyzed. 
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Figure 1.12 The normal Zeeman effect of the 3 2J J= → =  transition. The lines 

indicating transitions are the same for the 1MΔ =  group, 0MΔ =  

group, and 1MΔ =−  group.  
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Figure 1.13 The abnormal Zeeman effect of Na D  lines. ( 2 2
1/2 1/2S P−  and 

2 2
1/2 3/2S P−  transitions). Components σ  correspond to transitions 

0MΔ = . The amounts of splitting are not the same between 2P  lines 

and 2S  lines. This gives rise to many observed lines.  
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Figure 1.14 The abnormal Zeeman splitting of 3 3
1 1P S−  lines. The transition, 

0 0M M= → =  with 0JΔ =  is forbidden. In the figure it is shown 

with a broken line. This is applicable for Zn, shown in Figure 1.11. 
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And L  is obtained by simply summing up the angular momentum, jl , of individual 

electrons. Then, the selection rule applicable for the state of each electron can be 

applied for the total electronic state. Thus, we have from (1.89) 

  
1

0, 1

L

M

⎫Δ = ± ⎪⎪⎪⎬⎪Δ = ± ⎪⎪⎭
 (1.103) 

The relation of the transition probability with the polarization of light is the same as 

those given already for an electron in an atom. For light proceeding toward the z  

direction, we have 

  

: Linearly polarized light

 : Right circularly polarized light 

: Left circularly polarized light

0

1

1

M

M

M

⎫⎪Δ = ⎪⎪⎪⎪Δ = + ⎬⎪⎪⎪Δ = − ⎪⎪⎭

 (1.104) 

 If the size of the level splitting for different J  is equal, only the three 

kinds of the spectral lines can be observed. They are determined by (1.103), namely 

0, 1MΔ = ± . The situation is shown in Figure 1.12. This is the normal Zeeman 

effect. The spectrum is brought bought in the singlet system, where 0=S .  

 We have assumed that 0=S  for the normal Zeeman effect to be 

observed. However, the selection rules in (1.103) and (1.104) are valid even in case of 

0=S . These rules are for the orbital part of the eigen functions and proved generally 

by the use of the group theory. This is out of scope in the present thesis and we use 

only it results. 

 If 0≠S , the spectra are complicated. The spectral splitting observed 

in this case under the existence of the magnetic field is referred to as the abnormal 

Zeeman effect. The experimental facts are summarized as follows: 
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 (1) The magnitude of splitting is a multiple of that of the normal 

Zeeman splitting by a factor of a rational number.  

 (2) The number of the component lines is larger than 3. 

 (3) The magnitude of the term splitting is different from term to term. 

In other words, the size of the splitting is different if J  and L  are different.  

 Mathematically, the additional level energy is given by 

  
L

B
L

W Mg

H
H

ω

μ
ω γ

⎫= ⎪⎪⎪⎪⎬⎪= = ⎪⎪⎪⎭

=

=

 (1.105) 

Here, Lω  is called the Larmor frequency. g  is called Lande’s g  factor and given by  

  2 ( 1) ( 1) ( 1)
1

2 ( 1)
J J S S L L

g
J J

+ + + − +
= +

+
 (1.106) 

The proof of this is given in Appendix E. The splitting of the multiplet lines in the 

magnetic field and the possible transitions are shown in Figure 1.13 for the Na D  

lines. The selection rules are those shown in (1.103) and (1.104). That the magnitudes 

line splitting are different between the 1D  and the 2D  line indicates that the values of 

J  are different between the 1D   and the 2D  lines. This can be explained by the 

following assumptions: 

 1) = Jμ  

 2) B zW g H Jμ=  

 3) ( , )g g J L=  

These lead to the conclusion that the multiplet is made by J .  
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 In Figure 1.14, the level splitting corresponding to abnormal Zeeman 

effect in the triplet system is illustrated. The corresponding energy levels are 3
1P  and 

3
1S . The element is Zn. 

1.1.4.5 The use of synchrotron radiation 

 The Zeeman effect described so far is for emission of light in the 

visible region. From experimental restrictions, the absorption measurement using 

polarized light is not easy, particularly for X-rays. From the lack of an appropriate 

polarizer, the dichroism experiments have been almost impossible by use of ordinary 

X-rays from an X-ray tube. This situation is greatly changed by the use of synchrotron 

radiation. 

 The experimental setup is schematically illustrated in Figure 1.15. 

More detailed explanation of the experimental arrangement will be given later.  

Circularly polarized synchrotron radiation is generated with a helical wiggler installed 

in the storage ring. Polarized light is monochromatized by a double crystal 

monochromator and irradiates a sample placed in the magnetic field. The field 

direction is reversible.  

 With this arrangement, we can irradiate the sample with intense 

circularly polarized light and measure the absorbance. In Figure 1.15, we show a 

drawing of a magnet to emphasize that light proceeds toward the direction of the 

magnetic field. In the practical measurements a superconducting magnet was used. 

Then the magnet arrangement is much simpler. Synchrotron radiation from a helical 

wiggler is circularly polarized from the beginning. This is also simply the 

experimental procedure. The helical wiggler can produce both right and left polarized 

light by changing the relative locations of the vertical and horizontal magnet arrays. 
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When we use a superconducting magnet to give the magnetic field to the sample, the 

field direction is fixed and light helicity can be changed. The detail of the 

experimental arrangement will be described later. More detailed explanation on 

synchrotron radiation will be present later.  

 

 

 

Figure 1.15 Schematic illustration of XMCD experiments SR: synchrotron 

radiation. lE : Electric field vector of synchrotron radiation. 
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1.1.4.6 Magnetic circular dichroism 

 Even if we have all necessary experimental equipment and carry out 

the measurements the obtained data of magnetic circular dichroism cannot be 

interpreted easily. In the preceding subsection, we have learnt the Zeeman effect. 

There we learnt that we can see the interaction of matter with circularly polarized 

light as long as J  and M  are good quantum number to describe the system. In the 

visible to ultraviolet region the condition is fulfilled in many cases. However, this 

condition is not fulfilled for light in the X-ray region.  

 In spite of this situation, the experimental results came out first. In 

stead of illustrating the MCD data measured in the X-ray region, we show the MCD 

spectrum of metallic Ni measured in the 2L , and 3L  spectral region. The region 

correspond the soft X-ray range and the 2 3p d→  transition observed there exhibits 

the angular momenta as describing the quantum state more definitely.  

 Since we can observe XMCD in some materials, we have to define 

what we observe in experiments. In the argument of XMCD, we use the helicity, σ , 

of measuring light which is defined in relation to (1.49) and (1.55). As we mentioned 

already, the helicity vector is considered to the angular momentum of light.  

 Another important difference of MCD from the Zeeman effect is that 

samples in MCD measurements are ferromagnetic or antiferromagnetic materials. 

Therefore we must use B  instead of H  as the magnetic field to cause the Zeeman 

splitting. The restricts the orientation of the sample in the magnetic field, the direction 

of the axis of the magnetization, the direction of the external field, and the direction of 

the light propagation cannot be selected independently.  
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Figure 1.16 The 2L  and 3L  absorption spectra of metallic Ni (upper panel) and the 

spectrum of magnetic circular dichroism (lower panel). In the upper 

panel, the full line is observed with right polarized light and the broken 

line with left polarized light. In the lower panel the difference spectrum 

is plotted.[After Chen, 1990] 
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In the ideal case M κ&  so that 0θ =  and B κ& . In the explanation of the Zeeman 

effect, we considered the transition probability for light with 

  x yE iE± = ±E  

However, if we consider σ  instead of ±E , the derivation of the transition moment is 

easier.  

 In magnetic circular dichroism measurements, the normalized value of 

the difference of absorption coefficients for light with opposite helicity are measured 

and analyzed. 
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≡ = =

+ Δ +Δ
 (1.107) 

Here we assumed that  

  0μ μ μ± ±= ±Δ  (1.108) 

Here, ±  corresponds to 1±  helicity (left and right polarization). The large size of 

typical X-ray wavelengths in comparison with the dimensions of the orbitals of deep 

inner-shell electrons effectively ensures that electric dipole interactions dominate 

most photon-induced excitations in atoms. We consider exp( )i ⋅rκ  being unity. This 

means that the transition rates are calculated by dipole matrix elements involving the 
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spatial wave functions of the initial and final states. However, the extension of the 

final state orbits and the intermediate state orbits are not small enough to satisfy  

  1
2

e
x

r
λ
π
⋅⋅ =rκ �  (1.109) 

Here xλ  is the X-ray wavelength and er  is the average orbit radius. Therefore, the 

higher order correction as the quadrupole transition is necessary in same cases. In 

spite of this, we use only the dipole transition matrix elements even in the calculation 

of the second order perturbation calculation. This is understandable if we compare the 

dipole transition matrix element with the quadrupole transition matrix element. There 

is no explicit spin dependence and so the electronic spins remain unaltered by the 

transition unless they are coupled to the orbital angular momenta by a strong spin-

orbit interaction. 

 In considering the relation of the polarization of light with the 

transition matrix element in case of the Zeeman effect, we have inspected the role of 

the electric field directly. However, we can treat this issue using a somewhat different 

formalism. It is conservation of angular momentum. Within the dipole approximation, 

one can consider the total angular momentum of the system before a photon is 

observed is +J σ . After the absorption it changes to ′J . The conservation of the 

angular momentum tells us 

  ′ = +J J σ  (1.110) 

 Suppose that an atom is initially in a pure quantum state JM , where 

M  is the z  component of J . We take the z  components and have  

  
or     1

M M

M

σ

σ

′ = +

Δ = = ±
 (1.111) 
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This is the selection rule for the transition with circularly polarized light. In case the 

core level is filled up in the ground state as is usually the case, 0=J . Thus, the 

conservation of the angular momentum is written as  

  f= Jσ   (1.112) 

Where fJ  is the total angular momentum in the final state. In the final state, we have 

a hole in the core level and an excited electron above the Fermi level. If we write their 

angular momentum as −J  and ′J , (1.112) is written as 

  ′ − =J J σ  (1.113) 

This is the same as (1.110).  

 For the selection rule, (1.111), to be valid, we should have the system 

in which JM  and J M′ ′  are the good quantum states of the same hamiltonian. 

Theoretically, it appears to be difficult to establish such states. However, in 

formulating the selection rule, (1.103), in the Zeeman effect, we based on the 

selection rule, (1.89), for a single electron. We can postulate that a similar concept 

works in case of the inner-shell excitation. We treat the core-hole state in the final 

state as if the particle state exists in the initial state. Regarding the final state, we 

assume that the corresponding excited electron occupies the state for which the 

angular momentum has the well-defined quantum number. The validity of these basic 

assumptions arises from the experimental fact that the MCD is found in the spectra of 

core electron excitation. In this way, we treat the electron states involved in the inner-

shell excitation by the one-electron approximation. 
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 We have to remark the fact that a large lifetime broadening occurs in 

the inner shell excitation. This is caused by the cascade Auger transitions following 

the generation of a core hole. Thus the broadening function  

  
2 2

0( )
Ah B

W
h h

ν
ν ν

+
=

− + Γ
 (1.114) 

Here 0hν  is the resonance energy near to the energy difference between the excited 

electron level and the core level. Γ  is the interaction energy causing the lifetime 

broadening. A  and B  are constants arriving from the renormalization of various 

terms in the description of the interaction. In the case where A  is small, (1.114) 

represents the well-known the Lorentzian line shape function indicating the lifetime 

broadening. All constants occurring in (1.114) are renormalized ones and have weak 

energy dependence.   

 As mentioned already, the selection rule on the electron spin is  

  0SΔ =  (1.115) 

The apparent spin state change is brought about by the spin-orbit coupling. This 

indicates that the circular dichroism is the phenomenon caused by the orbital angular 

momentum. In spite of the fact we mention already, the possibility that the orbital 

angular momentum state in the energy band state. The schematic illustration of the 

electronic excitation in the energy band picture is presented in Figure 1.17. Electrons 

jump into the energy band. Since the electron orbits extend over the crystal, the 

localized angular momentum disappears. For X-rays, the dipole transition probability 

is low. Then, we have to take the second order effect like one we find in the scattering 

process into account. In this case, the absorption is the same as the resonant scattering.  
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 The transition probability given in (1.59) must be decomposed for light 

of different helicity. As pointed out above, the single electron excitation picture is 

more convenient to understand the decomposed transition probability. In addition to 

this, there are sublevels in the ground state. Thus the decomposed transition 

probability is given by summing over the sublevels in the ground state. Then we have  

  2

( ), ( )

( ) ( )f g
f M g M

A f g M hδ δ ν ε ε± ±
′

Τ = ⋅ Δ − −∑ E r  (1.116) 

( )Mδ± Δ  select the sub states satisfying the selection rule 1MΔ = ± . A  is a 

proportionally constant. We assume that f ⋅E r g  is a slow varying function and 

can be replaced with its average value M± . Then we have 

  
2

( ), ( )

2

( ) ( )

( )

f g
f M g M

M M h

M D h

δ δ ν

ν

± ±
′

± ±

Τ = Δ Ε −Ε −

=

∑
 (1.117) 

Here ( )D hν±  represent partial joint density of states (DOS) that collect the levels of 

electron responding to circularly polarized light with 1±  helicity. From (1.117) we 

have the MCD spectrum ( )P hν  as 

  2 2

2 2

( )

( ) ( )

( ) ( )

T T
P h

T T

M D h M D h

M D h M D h

ν

ν ν
ν ν

+ −

+ −

+ + − −

+ + − −

−
=

+

−
=

+

 (1.118) 

If 2 2M M+ −� , we have 

  
( ) ( )

( )
( ) ( )

D h D h
P h

D h D h

ν ν
ν

ν ν
+ −

+ −

−
=

+
 (1.119) 
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In the discussion made above, we have assumed perfect polarization of excitation 

light. In practice, this is not the case. Therefore, the dichroism observed in reduced by 

a factor cp . Then we have 

  
( ) ( )

( )
( ) ( )

D h D h
P h

D h D h

ν ν
ν

ν ν
+ −

+ −

−
=

+
 (1.120) 

 In Figure 1.18 and Figure 1.19, two additional explanations are 

presented. We have assumed that the concepts depicted there are obvious.   

 

Figure 1.17  Photo-excitation of a core electron into the empty conduction band. 
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Figure 1.18  Concept of the dipole allowed transition from the hole levels with a 

value of the principal quantum number of 2. 
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Figure 1.19  Transition from 1/22p  level to the d  level with various values of m . 

JM  are indicated. 

 

1.2 Basic Concept of Magnetism in Solid 

 Before going to understanding the concept of magnetism in solids, It is better 

for us to see some of the fundamentals relevant to it. In this thesis we will do it. These 

fundamental theories are summarized in the standard books, e.g. Kittel (1996), 

Introduction to Solid State Physics, and Martin (1967), Magnetism in Solids. 
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1.2.1 Atomic Magnetism 

 Discovery of the quantum mechanics in beginning of 20th century 

made it possible to understand the fundamental properties of magnetism in matter. In 

quantum mechanics, an electron in an isolated atom occupies a state which is 

described by a set of quantum numbers: the principal quantum number, n , the 

azimuthal quantum number, l , the magnetic quantum number, m , and the spin, s . In 

many electrons system, electrons interact with each other to form the whole electron 

state. If the one electron approximation is valid, the individual electron state forms the 

whole electron state by filling up the single electron levels in accordance with the 

Pauli exclusion principle. If the electronic state is localized at lattice site, the atomic 

state can be that to describing magnetic moment. For the system in which the spin-

orbit coupling is dominant the good quantum numbers describing the system are that 

of the total angular momentum, j , and its z  component jm  as already mentioned. 

Each electron gives rise to the magnetic moment with which both the orbital angular 

momentum and the spin angular momentum are associated. In the following, the 

essences of the explanation of the magnetic moment presented in Appendix E are 

described. 

 The magnetic moment associated with the orbital momentum L  is 

expressed as  

  
2l

e
mc

=− Lμ  (1.121) 

, and also that associated with the spin angular momentum S  is expressed as  

  2
2s

e
mc

= − Sμ  (1.122) 
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Figure 1.20  The vector expression of the magnetic moments ,l sμ μ  and jμ , and the 

angular momentums ,L S  and J  in atoms.  
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The spin magnetic moment, sμ , is a permanent magnetic moment; it occurs 

regardless of the existence of an external magnetic filed. On the other hand, the orbital 

magnetic moment, lμ , is proportional to the applied magnetic field and is called 

induced moment. The angular momentum of an electron in an atom is quantized in 

unit of the Bohr magneton Bμ . 

  219.27410 10 /
2B

e
erg gauss

mc
μ −= = ×

=  (1.123) 

In general, the magnetic moment of free electrons is expressed as 

  ( 2 ) ( )
2

B
l s

e
mc

μ
= + = − + = − +L S J Sμ μ μ

=
 (1.124) 

Here the total angular momentum, J , is given by 

   = +J L S  (1.125) 

The relation among the angular momenta and magnetic moments are in Figure 1.20. 

The magnetic moment, μ, is in the direction along J . Thus, we obtain 

  j Bgγ μ= = −J Jμ =  (1.126) 

where γ  is the ratio of the magnetic moment to the angular momentum, called the 

gyromagnetic ration or the magnetogyric ratio. The factor g is referred to as Lendé’s 

g -factor as already described in other section and in Appendix E  in detail. It is given 

by  

  ( 1) ( 1) ( 1)
1

2 ( 1)
J J S S L L

g
J J

+ + + − +
= +

+
 (1.106) 

 Figure 1.20 shows that both L  and S  are processing around J . This 

is considered as follows: The equation of motion of μ  in a magnetic field is written 

as 
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  [ ]
d
dt

γ= ×H
μ

μ  (1.127) 

Here γ  is the gyromagnetic ratio. Since γ= − Jμ =  from (1.95), we can convert 

(1.127) to the equation of motion of the corresponding angular momentum J .  

  [ ]
d
dt

γ= ×
J

J H  (1.128) 

If we take the direction of H  as being along the z  axis, (1.127) and (1.128) can be 

solved easily to give the solution that J  and μ  is precessing around the direction of 

H . This motion is called the Larmor precession. 

 An electron making an orbit motion is considered to be in the magnetic 

field arising from the electron spin. The magnetic field is given by /λ μBS . λ  is the 

spin-orbit coupling constant. If we replace H  in (1.128) with /λ μBS  and J  with 

L , we have 

  [ ]
B

d
dt

γλ
μ

= ×
L

L S  (1.129) 

Note that 

  ( )× = + × = ×J L L S L S L  (1.130) 

Since /Bμ γ = −= , we have from (1.129) and (1.130) 

  [ ]
d
dt

γ= ×
L

J L=  (1.131) 

If J  is constant, (1.131) shows that L  makes precession around J . 

 Similarly the magnetic field caused by L  and acting on S  is given by 

/γ μBL . Then we have the relation to (1.131) as 

  [ ]
d
dt

λ= ×
S

J S=  (1.132) 
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This shows that S  also makes precession around J . 

 In the discussion described above, we postulate the spin orbit coupling 

given by (1.126). This leads ultimately to the spin-orbit coupling energy, λLS . This 

is the hamiltonian for many electrons given by 

  SL i i iςΗ = ⋅∑ l s  

    λ= ⋅L S  (1.133) 

This is inherent in the intrinsic nature of electron and derived in quantum 

electrodynamics by solving Dirac’s relativistic hamiltonian as already mentioned. 

However, it is understandable qualitatively as follows: If we observe the orbital 

motion of an electron from the electron, the nucleus appears to be rotating around the 

electron. This causes a closed current I . According to the Biot-Savart law, the 

magnetic field generated by this current is given by  

  [ ]3

1
r

×r I  

Here, [ ]×r I  is proportional to the orbital angular momentum, l , of the electron. 

Then, the magnetic field acting on the electron spin is proportional to l . Then from 

(1.133). the energy regarding to this is  

  lsh ς= ⋅l s  (1.134) 

Here, ς  is given by  

  
2

3
.

1 1
2 av

e
Z
mc r

ς
⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠
=  (1.135) 

Z  is the atomic number. In practice, (1.135) must be changed to  

  
2

0

.

1 1
2 av

e V
Z
mc r r

ς
⎛ ⎞ ∂⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠ ∂
=   (1.136) 
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0V  is the potential acting on the electron. From (1.134), (1.133) is obtained. Then we 

have the spin-orbit interaction hamiltonian as 

  λΗ = ⋅L S  (1.133) 

This is the source to make the precession of L  and S  around J . For obtaining 

(1.133) from the theory, we have to use the relativistic theory. However, the 

agreement with experimental results is not always good. So, we use (1.133) as 

empirical formula and λ  is obtained experimentally.  

1.2.2 Magnetizations 

 The magnetic properties of solids are described quantitatively in terms 

of the magnetization, M , which is defined as the magnetic moment per unit volume. 

When the external field, H , is applied to a solid, the amount of M  is related to the 

magnitude of  H  through a factor called the magnetic susceptibility, χ , it is de fined 

by 

  χ= ⋅M H  (1.137) 

In a crystalline solid the susceptibility χ  is generally a tensor. In Gaussian units (cgs), 

χ  is dimensionless because the units of M usually indicated with gauss (G) and the 

unit of H  indicated with Oersted (Oe) are equivalent to each other. Materials with 

negative susceptibilities are called diamagnetic materials. Materials with positive 

susceptibilities less than one are called paramagnetic materials. Materials with large 

positive susceptibilities are called either ferromagnetic, antiferromagnetic, or 

ferrimagnetic materials. Without the external applied field, materials in these three 

kinds exhibit the magnetization sponM which is called spontaneous magnetization. M  

and H , are related to the magnetic induction, B , through the permeability rμ   
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4

4

(1 4 )

rμ

π

πχ

πχ

=

= +

= + ⋅

= + ⋅

B H

B H M

H H

H

 (1.138) 

where, the permeability, rμ , is a tensor in a crystalline solid, and 1  is a unit tensor 

having elements of unity along the main diagonal and zero elsewhere. This is given in 

Appendix A, [(A.8) and (A.9)]. B  is also referred to as the magnetic flux density.  

1.2.3 Diamagnetism and Paramagnetism in Solids 

 As mentioned in the preceding section that the magnetization can be 

developed when atoms are in an applied field. In this section, the effect of the 

magnetic filed on free atoms or ions is discussed. The hamiltonian, Η̂ , of ions in a 

solid under an applied uniform magnetic field, H , is given by 

2 2 2
2

2
ˆ ( 2 ) ( )

2 8
i B

i i
i ij iij

e e
e

m r mc
μ

φ λ
⎡ ⎤⎛ ⎞⎟⎢ ⎥⎜Η = − + + ⋅ + + ⋅ + ×⎟⎜ ⎟⎢ ⎥⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
∑ ∑ ∑p

L S L S H H r
=

  

   (1.139) 

where the summations are made over several bound electrons in the ion.  The terms 

enclosed in the square brackets are the hamiltonians for the ion in the absence of the 

magnetic field. The scalar potential iφ , for instance, includes the electric field due to 

the nucleus and the neighboring ions (crystal field). The coulomb interactions 

between electrons, 2
ije r , and the spin-orbit coupling term λ ⋅L S  are also included in 

this part, where λ  is spin-orbit coefficient. The remaining two terms in (1.139) are the 

perturbations due toH . The first interaction term gives rise to a paramagnetic 

contribution to the susceptibility, while the second term causes a diamagnetic 

contribution.  
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 We consider only the magnetic perturb terms. The perturbation energy 

generated by the magnetic field which is postulated to be directed to the z - direction 

is considered. 

  
2

2 2 2
2

( 2 ) ( )
8

B
z z i i

i

e
H L S H x y

mc
μ′Ε = + + +∑=

 (1.140) 

The magnetic moment of the ion can be derived directly by differentiating the 

hamiltonian Η  with respect to H .  
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2
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ˆ
( 2 ) [ ( ) ]

4
B

i i i
i

e
r

mc
μ∂Η

= − = − + − − ⋅
∂ ∑L S H r H r
H

μ
=

 (1.141) 

If the magnetic field H  is in z - direction we obtain 

 
2

2 2 2
2

( 2 ) [( ) ]
4

B
i i i i

i

e
x y z z

mc
μ

= − + − + + −∑L S H Hrμ
=

 (1.142) 

and the z  component magnetic moment is  

  
2

2 2
2( 2 ) ( )

4
B

z z z i i
i

e
L S x y H

mc
μ

μ = − + − +∑=
 (1.143) 

  para dia
z z zμ μ μ≡ +  (1.144) 

where para
zμ and dia

zμ  denote the magnetic moments of the paramagnetic contribution 

and the diamagnetic contribution, respectively. 

 The diamagnetic term may be interpreted in the form of  

  
2

2
24z idia

i

e
H

mc
μ ρ= − ∑  (1.145) 

where 2 2 2
i i ix yρ = +  interprets the square of perpendicular distance of the electron 

the from the field axis. This equation can also be derived in classical electrodynamics 

by assuming that the electrons have spherically symmetric orbits of motion without 

magnetic field. In magnetic field, it is only the motion perpendicular to the field that 
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is relevant to the magnetic properties of an atom. In this plane the motion of electrons 

is characterized the well known Larmor precession. It is described in Appendix F and 

here in Figure 1.20. However, 2
i

i

ρ< >∑  can be obtained only by quantum 

mechanics, where the expectation value is calculated. If ir  is the distance of electrons 

from the nucleus, 2 2 2 2
i i i ir x y z< >=< > + < > + < > , and if the system is 

spherically symmetric, 2 2 2
i i ix y z< >=< >=< > , so that 

2 22
3i i

i i

rρ< >= < >∑ ∑ . From (1.137) χ  is given by χ = ∂ ∂M H and 

dia
zM N μ= < >  whereN  is number of atoms per unit volume. Eq. (1.145) indicates 

that the diamagnetic susceptibility per unit volume is  

  
2

2
26

dia
i

i

Ne
r

mc
χ = − ∑  (1.146) 

The result in equation (1.146) is identical to the Langevin diamagnetic susceptibility 

which can also be obtained in the classical electrodynamics. In quantum mechanics, 

2
i

i

r< >∑  means that the mean square distance of the thi  electron from the nucleus 

averaged. The diamagnetism is, therefore, a universal property of materials though 

many of materials are generally dominated by paramagnetism. It is independent of 

temperature and induced by an external field. The Langevin diamagnetic 

susceptibility is applicable for monatomic gas (inert gas). However, it is not in good 

agreement for the heavy atoms. Since the diamagnetic susceptibility has the negative 

sign, the induced magnetization is directed opposite to the external field.  
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 The paramagnetic contribution is not universal property which is found 

in all materials. For the local electrons in atoms, the paramagnetic moment operator is 

written as.  

  ( 2 )para Bμ= − +L Sμ
=

 (1.147) 

Since both L  and S  vanish in a closed shell, the paramagnetic moment of the atom 

without unpaired electrons vanishes. On the other hand, the unpaired electrons in 

transition metals ( )3 ,4 ,5d d d  and rare-earth metals ( )4f  contribute to paramagnetism. 

For those localized electrons, each state of atoms or ions (neglecting the interaction 

between atoms or ions) is characterized by quantum number J . Therefore, the 

magnetic moment operator is follow equation (1.126), and the expectation value of 

the magnetic moment is obtained as 

  para
B Jg mμ μ< > = −  (1.148) 

Where Jm  is magnetic quantum number and has the values , 1,......,J J J− − . The 

Lendé g -factor is given by (1.106). Thus, the perturbation energy due to the magnetic 

field H , in - direction, is obtained as  

  para
B JW g m Hμ=−< ⋅ >= −Hμ  (1.149) 

This is equivalent to (1.105). Now magnetic energy of a single atom or ion is 

identified. Next problem is the statistical calculation for whole atoms in solids. 

Suppose the case where the atoms are free from each other and localized. Their states 

at temperature T  obey the Maxwell-Boltzman distribution. The paramagnetic 

magnitude of the magnetization, M , can be obtained as 
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 (1.150) 

where Bk  is the Boltzman’s constant (1.38062×10-16 erg·K-1). By substituting the 

magnetic energy, (1.149), we obtain  

  

/

/

B J B

J

B J B

J

J
g m H k T

B J
m J
J

g m H k T

m J

Ng m e

M
e

μ

μ

μ
=−

=−

=
∑

∑
 (1.151) 

Here, N  is number of atoms per unit volume. Let   be  /B Bx g JH k Tμ , where J  is 

maximum value which Jm . Physically, x  is the ratio between the magnetic energy 

and thermal energy. The magnetization can be derived as follows: 
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  ( )s JM M B x=  (1.152) 
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g JH
x

k T
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μ

μ
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 (1.153) 

where s BM Ng Jμ=  is a saturate magnetization, and 

  2 1 2 1 1
( ) coth coth

2 2 2 2J

J J x
B x x

J J J J
+ +

= −  (1.154) 

is known  as Brillouin function. Equation (1.152) is known as Langevin paramagnetic 

formula.  In the limit case of small x , B BH k Tμ << , 

  1
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J
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J
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The magnetization becomes 
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where   

  
2

2 ( 1)
3

B

B

N
C g J J

k
μ

= +  (1.156) 

and 1
2( ( 1))p g J J= +  is the  paramagnetic effective number of Bohr magnetic 

moment. Equation (1.155) is called Curie’s law. Comparison between experimental 

results and the magnetization calculated by equation (1.152) is shown in Figure 1.21. 

At a normal field is and room temperature, magnetic energy ( )Hμ  is much smaller 
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than the thermal energy, ( )1x << , the magnetization is proportional to /H T , 

giving the constant susceptibility involved in the Curie’s law. Only when the energy 

due to the magnetic field is larger or comparable to the thermal energy as BH k Tμ ≥ , 

the magnetization can be saturated by the applied field.  

   

 

Figure 1.21  Plot of magnetic moment versus /H T (gauss/deg) for the samples of 

(I) potassium chromium alum, (II) ferric ammonium alum, and (III) 

gadolinium sulfate octahydrate. Over 99.5% magnetic saturation is 

achieved at a low temperature of 1.3 K and about 50,000 gauss. [After 

W.E. Henry 1952, Physical Review 88, 559]  
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 In the Langevin paramagnetic formula and the Curie’s law, the total 

angular momentum J  is assumed to be maximum value of Jm . According to the 

Hund’s rule, this assumption is that every atom is assumed to be in the ground state. 

In fact, the atomic wave function is distorted by the external field. In the perturbation 

theory, the wave function is written in the form of admixtures of wave functions of 

other states of the system. In the case that an energy separation between the excited 

state and the ground state is much larger than the thermal energy as s g Bk TΕ −Ε >> , 

the susceptibility due to the perturbation is known as Van Vleck paramagnetic 

susceptibility. It is expressed by 

  

2
2 | |para

s g
VanVleck s

s g

N ψ μ ψ
χ

< >
=

Ε −Ε

∑
 (1.157) 

where the subscripts s  and g  denote the excited state and the ground state, 

respectively. The summation is over all excited states s . Note that the Van Vleck 

susceptibility is temperature independent and positive because s gΕ > Ε . In other cases, 

in which s g Bk TΕ −Ε �  or s g Bk TΕ −Ε << , the susceptibility is not independent 

of temperature.  

 Up to now we have discussed only the response of bound electrons to 

external magnetic field. In metals, another type of paramagnetism is caused by the 

contribution from conduction electrons. These itinerant electrons lose their strong 

affinity for a particular nucleus and become more or less free to move throughout 

metals. The number of states in which electrons have energy Ε  is expressed by the 

concept of “Density of States”, ( )D Ε . The density of states in three dimensions is 

expressed as 
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  3 1
2 2

2
( ) (2 )

2
dN V

D m
d π

Ε = = Ε
Ε =

 (1.158) 

The maximum value of the energy of the level that electrons can occupy, at the 

absolute zero of temperature 0T = K, is defined as Fermi energy FΕ . In the absence 

of the external field, the electrons with up and down spin fill the levels below the FΕ  

in balance generating zero net magnetic moment, as shown in Figure 1.22 (a). Under 

the field H , the magnetic energy , Bμ H , causes a downward shift of the energy 

levels for the electrons with spin up and upward shift for spin down electrons, as 

shown in the Figure 1.22 (b).  

 The associated susceptibility can be computed by subtracting the 

number of states of the conduction electrons in the spin down state from that in the 

spin up states.   

  ( )
2
F

B

n D
n μ

Δ Ε
Δ = ΔΕ =

ΔΕ
H  (1.159) 

The induced magnetization per unit volume (from both spin up and spin down) is, 

therefore, 

  
22 ( )B F Bn D H

M
V V
μ μΔ Ε

= =  

  
2( )Pauli F BD

V
μ

χ
Ε

=  (1.160) 

It is easy to evaluate that the density of states ( ) (3/2) /F FD NΕ = Ε  where N  is a 

number of electrons per volume [C. Kittel, Introduction to Solid state physics, 7th Ed. 

1996. page 151]. Then the susceptibility /M Hχ =  can be obtained as 

  
23

2
Pauli B

F

Nμ
χ =

Ε
 (1.161) 
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This is known as Pauli paramagnetic susceptibility. In addition, since the electrons 

are moving in a periodic potential, the applied field couples to the motion of the 

conduction electrons, causing a Landau diamagnetic susceptibility that is 1
3

−  of the 

Pauli paramagnetic susceptibility. The magnetic energy level associated with this 

diamagnetism is called Landau level. The mathematical derivation of the Landau 

diamagnetism is very long and is not presented in this thesis.  

 

  

 

Figure 1.22   Density of states of the conduction electrons at absolute zero 

temperature ( 0),T =  (a) without magnetic field then there is no 

magnetic moment, (b) with applied fieldH , splitting of the band by 

magnetic energy 2 BHμ  occurs between the band for spins parallel 

(spin up) and that for spins opposite (spin down) to the field direction. 
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1.2.4 Magnetic Ordering in Solids I: Ferromagnetism 

 The magnetism in diamagnetic and paramagnetic materials can be 

explained without considering the affect from weak magnetic interactions between 

atoms. On the other hand, if the magnetic interactions between neighboring atoms are 

strong, the orientation of their elementary magnetic moments is spontaneously 

ordered.  The cause that the magnetic moments align parallel to each other is not 

obvious.  

 The interacting on potential between two magnetic moments 1μ , and 

2μ , separated by a distance of 12r  is given by  

  
( ) ( )( )1 2 1 12 2 12

12 5
12 12

3
V

r r

⋅ ⋅ ⋅
= −

r rμ μ μ μ
 (1.162) 

Suppose that 1μ  and 2μ  take values of a few Bohr magneton and are separated by 2 

Å, then energy given by (1.162) is less than 8.6 × 10-5 eV. The Curie temperature or 

the Neel temperature of a ferromagnetic material or antiferromagnetic material, 

respectively, gives the rough size of the energy difference between the ordered state 

and the disordered state. In some materials they take values larger than 0.1 eV. This 

indicates that the magnetic dipole-dipole interaction cannot cause the ferromagnetic or 

antiferromagnetic state.  

 There are either showing magnetic ordering materials ferromagnets, 

antiferromagnets, or ferrimagnets, depending on the aspect of the alignment of their 

magnetic moments, as shown in Figure 1.23. All of the magnetically ordered 

materials become paramagnets above the Curie temperature, CT . The entropy of the 

system, S , is large if magnetic moments are distributed randomly. At height 
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temperature, the amount of the lowering of the free energy, F , of the system defined 

as 

  F = STΕ−  (1.163) 

is larger than the increase of the internal energy caused by the random distribution. 

Then gives rise to the random distribution of the moments at high temperature. At the 

Curie temperature, both pieces energy are equal. 

 For convenience, we study the simplest case of the magnetic ordering, 

the ferromagnetism. In ferromagnetic materials, electrostatic interaction (called 

exchange interaction) of electrons in atoms with those in their neighbors makes the 

spin align parallel.  In order to describe the electrostatic interaction, we need to 

consider localized electrons and itinerant electrons separately. For the localized 

electrons the Weiss model works well, while the Stoner model takes explains the 

magnetism of the itinerant electrons.  

 Here, we see a few important issues that give rise to the magnetic 

ordered state. First, we know that the electrons on adjacent atoms interact 

electrostatically. The overlap of the electron obits between adjacent atoms is assumed 

to be negligibly small. Let each atom have one electron. If we calculate the total 

energy of the system base on the Heitler-London approximation, we find two 

electron-electron interaction terms in addition to the single electron energy. One is 

that brought about by the electrostatic interaction between electrons in the orbitals 

belonging to each atom. The energy integral is called the coulomb energy and the 

supposed interaction leading to this energy is called coulomb interaction. The other is 

the energy integral in which the orbitals of the coulomb integral is interchanged. This 

energy integral is called the exchange energy and the supposed interaction is called 
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the exchange interaction. The more detailed explanation of the coulomb and exchange 

energy will be given later.  

 The theoretical treatments of the spin dependent electrostatic 

interactions are very complicated and out of scope in the present thesis. The rough 

conclusion is that the coulomb interaction shifts the total energy but does not change 

the total energy according to the relative orientation of the spin of each electron. In 

the system, there are two relative orientation of each electron spin. One is the parallel 

orientation and the other is antiparallel orientation. The contribution of exchange 

energy to the total energy changes its sign according to the relative spin orientation, 

parallel or antiparallel. Hereafter we refer to the exchange energy as ijJ . i  and j  

distinguish atoms. If  0ijJ > , the contribution is negative for parallel spins and the 

total energy is lower. If 0ijJ < , the total energy is lower for antiparallel spins. This 

indicates that the ordered state is more stable and the source of the ferromagnetism 

and antiferromagnetism is the exchange interaction.  

 As mentioned already, the situation is not so simple. However, we can 

postulate that the interaction has the following form: 

  ˆ 2 ij i j
i j

J
>

Η = ⋅∑ S S  (1.164) 

This is the energy corresponding to that of the spin state in the hamiltonian. (1.164) is 

determined by the selection of the quantization axis. The method to deal the magnetic 

ordering according to (1.164) is referred to as the Heisenberg model. It must be 

emphasized that the improvement of the approximation method does not necessarily 

lead to the better agreement of the theoretical results with the experimental results. 
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 We have discussed the formation of J from L  and S . There, we 

considered the magnetic field generated by one of the angular momenta acts on the 

magnetic moment formed by the other angular momentum. Here we consider a 

similar effect. The thi  electron spin is in the magnetic field formed by other electrons. 

The field is 

  1
( ) 2eff ij ij

jB

i J
gμ

=− ∑H S  (1.165) 

This effective field is not constant in time but fluctuating owing to the thermal 

agitation. If we average this fluctuation caused by the temperature effect, we have 

  
.

1
( ) 2m ij ij av

jB

i J
gμ

=− ∑H S  (1.166) 

We regard that the thi  electron is in this average field. This field is referred to as the 

molecular field. For various calculations related with the magnetic order and disorder 

using the molecular field are employed in the system in which relevant electrons are 

localized.  

 On the other hand, electrons in metals form the energy bands as is the 

case of the 3d  electrons in the transition metals. In a case like this, it is not practical 

to consider the system as the assembly of electrons localized on atoms. Therefore, we 

assume that the total magnetization, M , does existence that the energy bands are 

given by 

  ( ) ( ) Mε ε α± = ±k k  (1.167) 

±  corresponds to up and down spins. Namely, we assume there are up-spin band and 

down-spin band separated by the magnetization. α  is a constant. The magnetization, 

M , is calculated as  
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( )

( )

( )
exp / 1

( )
exp / 1

F B

B

F B

D
d

M k T
M

D
d

M k T

ε
ε

ε α ε
μ

ε
ε

ε α ε

∞

−∞

∞

−∞

⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥− − +⎣ ⎦⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎢ ⎥⎡ ⎤+ − +⎢ ⎥⎣ ⎦⎣ ⎦

∫

∫
 (1.168) 

This calculation is made self-consistently. First, M  is calculated appropriately. Using 

calculated M , we calculated new M . ( )D ε  is the density of states and Fε  is the 

Fermi energy. This model of calculation of the magnetization is called  the Stoner 

model. 

 In Weiss Model, each atom of ferromagnetic materials form a 

magnetic dipole due to the exchange interaction of the localized electrons (3d  or 4 )f  

within the atom. The exchange field ( )exH  is represented as the internal field called 

molecular field which is proportional to the magnetization of the material. So that, the 

total magnetic field (called  the mean field) acting on atoms is assumed to be  

  total ex

mλ

= +

= +

H H H

H M
 (1.169) 

where mλ  is called molecular field constant. 

 If we apply total mλ= +H H M  to the Langevin paramagnetic 

magnetization in equation (1.152), we obtain 

  ( )spon B m spon
J

s B

M g J M
B

M k T

μ λ
=  (1.170) 
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Figure 1.23  The alignments of magnetic moments at absolute zero temperature. (a) 

No alignment of adjacent magnetic moments is observed for 

paramagnets. (b) Ferromagnets exhibit parallel alignment of adjacent 

magnetic moments. (c) Antiferromagnets exhibit antiparallel alignment 

of adjacent magnetic moments. (d) Ferrimagnets are composed of two 

magnetic spins of different strength and exhibit antiparallel alignment. 
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where sM is the saturation magnetization, and sponM  is called the spontaneous 

magnetization. sponM  is the magnetization of materials in the absence of an external 

field, ( )0H = . This equation can be solved graphically as shown in Figure 1.24. We 

plot the following function for various temperatures. 

  
[ ]( )

( )

s J

B B

B

y M B a T

g J
a T

k T

ξ

μ λ

⎫= ⎪⎪⎪⎪⎬⎪= ⎪⎪⎪⎭

 (1.171) 

The intersection of the curve (1.171) and 

  y ξ=  

give the spontaneous magnetization, sponM . If the slope of the function (1.171) is 

lower than 45º, the only solution is 0ξ = . This means 0sponM = . So, at 

corresponding temperatures, the spontaneous magnetization does not exist. If the 

slope is larger than 45º, the intersection occurs at 0ξ ≠ . At these temperatures the 

magnetization is spontaneous magnetization.  The temperature at which the slope is 

45º is the Curie temperature.  

 When the spontaneous magnetization, sponM , falls to zero the 

ferromagnetic materials turn to paramagnetic ones. We make the derivative of (1.171) 

regarding ξ , /dy dξ , using (1.154). Let the value of /dy dξ  at 0ξ =  equal to 1 . 

From this we obtain the Curie temperature as  

  

2 2

( 1)
3

B
C m

B

m

Ng
T J J

k

C

μ
λ

λ

= +

=
 (1.172) 
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Figure 1.24  Graphical determination of the spontaneous magnetization, sponM . The 

intersection point leads to the value of sponM  which falls to zero at the 

Curie temperature CT . 

   

Figure 1.25  Temperature dependence of sponM  of Ni for 1/2J =  in (1.173) (solid 

line) is compared with that of experimental data (open circles) [The 

experimental data by P. Weiss and R. Forrer]. 
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where N  is a number of atoms per unit volume. This equation indicates that the Curie 

temperature is proportional to the mean field constant mλ .By substituting the 

/m CT Cλ =  into (1.170), we obtain that 

  3
( )

1
spon sponC

J
s s

M MJ T
B

M J T M
=

+
 (1.173) 

 This equation indicates that how the spontaneous magnetization 

depends on temperature. The experimental result on Ni, for example, is compared 

with the plot of the equation (1.173) for 1/2J = . In Figure 1.25, the theoretical 

curve is the best fit.  

 The Weiss model may be applied for paramagnetic materials. By 

substituting the molecular field total mλ= +H H M  to the Curie law in (1.155), we 

obtain the magnetization as 

  ( )m

C
T

λ= +M H M  

  
m C

C C
T C T T

χ
λ

= =
− −

 (1.174) 

where C  is Curies constant, and C mT Cλ≡  is defined as Curie temperature. This 

equation is known as Curie-Weiss law. It is not valid for CT T=  and is valid only 

for CT T>> .  

 According to the Weiss model, at the absolute zero temperature, the 

magnetization becomes saturated. Then we have  

  s B B BM Ng J n Nμ μ= =  (1.175) 

where Bn gJ=  is a number of Bohr magneton per atom (formula unit), called 

effective magneton number, N  is number of atoms per unit volume. The effective 
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magneton number, Bn , of some ferromagnetic substances are shown in Table 1.2, 

together with others basic parameters. 

 As shown in the Table 1.2, values of the effective magneton numbers 

are not integer. These observed values cannot be explained by of the Weiss model. 

For example, in transition metals, the magnetic moment due to orbital angular 

momenta are largely quenched ( )0,L J S= = . The z  component of the orbital 

motion of an electron in a transition metal cannot be a good quantum number. Thus 

their effective magneton numbers should be integral values ( )2Bn S= . This 

discrepancy would be the result of the itinerant electrons existing in transition metals. 

It is need another model to give a description of those electrons which are moving 

through the metals. 

 Stoner model is successful to explain the ferromagnetic in transition 

metals (Fe, Co, Ni). The Pauli paramagnetism described above has already shown that 

how collective electrons magnetic moments are induced by an external applied field. 

In the same sense, ferromagnetic magnetic moment can be generated by the molecular 

field ( )mMλ . Stoner applied the Weiss’s molecular field idea to the nearly free 

electron model as follow. The Pauli susceptibility, therefore, is modified to  

  Pauli

m

M
M

χ
λ

=
Η+

 (1.176) 

 ∴  
1

Pauli
Stoner

Pauli
m

χ
χ

λ χ
=

−
 (1.177) 
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Table 1.2 Magnetic parameters of ferromagnetic substances [From C. Kittel., 

Introduction to Solid State Physics, John Wiley and Sons, Inc. 6th ed., 

1996]. 

 

Saturation magnetization sM , 

in gauss (G) Substances 

300 K 0 K 

Bn (0 K) 

Per formula unit 

Curie 

temperature 

(K) 

Fe 1707 1740 2.22 1043 

Co 1400 1446 1.72 1388 

Ni 485 510 0.606 627 

Gd - 2060 7.63 292 

Dy - 2920 10.2 88 
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and from (1.160), the Stoner susceptibility is written as 

  1
1 ( )

Stoner Pauli

S FI D
χ χ=

− Ε
 (1.178) 

where   
2

m B
SI V

λ μ
=  (1.179) 

Here ( )FD Ε  is the density of states at Fermi level, and mλ  is the molecular field 

constant.  Hence the susceptibility diverges when  

  ( ) 1s FI D Ε =  

Thus, 

  ( ) 1S FI D Ε >  (1.180) 

This is known as the Stoner criterion. Only metals with large ( )FD Ε  can order 

ferromagnetically. This is why the late 3d  elements, Fe, Co, Ni, are ferromagnetic, 

but the early 3d  or 4d  elements, Ti, V, Cr, are not. Elements in the middle of the 

series, Cr, V, are antiferromagnetic because the 3d band is approximately half-filled. 

1.2.5 Exchange Interactions 

 The molecular field theory in the preceding section gives a good 

qualitative explanation for the magnetic ordering. However, it does not reveal the 

origin of the magnetic interactions. As mentioned above, the interaction is of the 

electrostatic origin. To understand the origin of the interaction, the interaction 

between two electrons in a hydrogen molecule is considered. 

 To evaluate total energy of the system, Schrödinger equation 

  Η̂Ψ = ΕΨ  

must be solved. We consider electrons 1e  and 2e  in the coulomb field of nuclei a  and 

b . hamiltonian of the system can be expressed as 
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2 2 2

2 21 2

1 2 1 2 1 2

1 1 1 1ˆ
2 2 a a b b

p p e
e e

m m r r r r

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟Η = + − + − + +⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜ −⎝ ⎠ ⎝ ⎠ r r
 (1.181) 

where, the coulomb force between nuclei is neglected. According to atomic-orbital 

approximation, the repulsive force between electrons is assumed to be perturbation 

term. The hamiltonian, therefore, is separated to be unperturbed terms, 1 2
ˆ ˆ( , )Η Η , and 

perturbation term, 12Η̂ . Then we have 

  

2
21

1
1 1

2
22

2
2 2

2

12
1 2

1 1ˆ
2

1 1ˆ
2

ˆ

a b

a b

p
e

m r r

p
e

m r r

e

⎫⎛ ⎞ ⎪⎟ ⎪⎜ ⎟Η = − +⎜ ⎪⎟⎜ ⎪⎟⎜⎝ ⎠ ⎪⎪⎪⎪⎛ ⎞ ⎪⎟ ⎪⎜ ⎟Η = − +⎜ ⎬⎟⎜ ⎟⎜ ⎪⎝ ⎠ ⎪⎪⎪⎪⎪Η = ⎪⎪− ⎪⎪⎭r r

 (1.182) 

These hamiltonians indicate that, for unperturbed terms, the wave functions of the 

system cannot be separated to that for nucleus a , 1 1( , )aψ r σ , and for that nucleus b , 

1 1( , )bψ r σ . This implies that the electrons are moving around both nuclei equally. 

However, the wave function of each electron retains 1 1( , )iψ r σ  and 2 2( , )jψ r σ  for the 
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electrons 1e  and 2e , respectively. Electron 1e  is in a state i  and electron 2e  is in a 

state j . When the spin-orbit coupling is not large, reversal of spin does not change the 

orbital. The wave functions can be separated to the spatial and spin parts.   

  
1 1 1 1

2 2 2 2

( , ) ( ) ( )

( , ) ( ) ( )

i i

j j

ψ σ φ χ σ

ψ σ φ χ σ

⎫= ⎪⎪⎪⎬⎪= ⎪⎪⎭

r r

r r
 (1.183) 

Then we write the one-electron wave function of the unperturbed state that satisfies 

the Schrödinger equation 1 2
ˆ ˆ( ) ( )i jΗ +Η Ψ = Ε + Ε Ψ  as 

  
1 1 2 2

1 2 1 2

1 2 1 2

( , ) ( , )

( ) ( ) ( ) ( )

( , ) ( , )

i j

i j

ψ σ ψ σ

φ φ χ σ χ σ

χ σ σ

⎫⎪Ψ = ⎪⎪⎪⎪= ⎬⎪⎪⎪= Φ ⎪⎪⎭

r r

r r

r r

 (1.184) 

For simplicity, consider only the spatial part. We have to construct the wave functions 

in terms of the linear combination of the function of the type of (1.183). This is 

necessary because 1 2( ) ( )j iφ φr r  can also be the solution. Thus the energy state is 

degenerate. The perturbation removes the degeneracy. It is well known in quantum 

mechanics that the new wave functions are well approximated by the linear 

combination of the degenerate component functions. The method to obtain the 

coefficients is simple. From the normalization and the symmetry consideration, we 

obtain the coefficients as 1/ 2± . As a conclusion, there are two ways to construct 

the two- electrons wave functions, i.e. 

  
1 2 1 2 1 2

1 2 1 2 1 2

1
( , ) ( ) ( ) ( ) ( )

2
1

( , ) ( ) ( ) ( ) ( )
2

S i j j i

A i j j i

φ φ φ φ

φ φ φ φ

⎡ ⎤Φ = +⎣ ⎦

⎡ ⎤Φ = −⎣ ⎦

r r r r r r

r r r r r r
 (1.185) 



 

 

104

Here the subscripts S  and A  denote the symmetric and the anti-symmetric functions, 

respectively. Now the total energy Ε  can be evaluated from 

  *
1 2

ˆ d dτ τΕ = Φ ΗΦ∫∫  (1.186) 

where the integration is carried out over volume elements 1 2d dτ τ . By using (1.185), 

we obtain  

  i j ij ijQ JΕ = Ε + Ε + ±  (1.187) 

where 

  

*
1 1 1 1

*
2 1 2 2

* *
1 2 12 1 2 1 2

* *
1 2 12 2 1 1 2

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( ) ( ) ( )

ˆ( ) ( ) ( ) ( )

i i i

j j j

ij i j i j

ij i j i j

r r d

r r d

Q r r r r d d

J r r r r d d

φ φ τ

φ φ τ

φ φ φ φ τ τ

φ φ φ φ τ τ

⎫⎪Ε = Η ⎪⎪⎪⎪⎪Ε = Η ⎪⎪⎪⎬⎪= Η ⎪⎪⎪⎪⎪⎪= Η ⎪⎪⎭

∫
∫
∫
∫

G G

G G

G G G G

G G G G

 (1.188) 

The ijJ  term of positive sign in (1.187) arises from the symmetric function of (1.186) 

and that of negative sign from the antisymmetric function. The iΕ  and jΕ  are the 

unperturbed energies of the electrons in states i  and j , respectively. The perturbed 

terms ijQ  is coulomb energy, and the ijJ  is known as exchange energy. We see that 

the symmetric wave function gives the total energy different from that the anti-

symmetric wave function gives. Since the Pauli exclusion principle states that the 

total wave function of the two electrons, 1 2 1 2( , ) ( , )χΨ = Φ r r σ σ , must be anti-

symmetric, the symmetry and anti-symmetry of the spatial wave function is related to 

the spin wave functions. 

 Now, we consider the spin part of the total wave function. Each 

electron can take either the up-spin state or the down-spin state, denoted by ( )αχ σ  , 
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and ( )βχ σ  , respectively. σ  is the spin coordinate taking values of 1/2± . It 

corresponds to the z  component of the spin vector, s . ( )αχ σ  is defined as 

  1
2( ) 1αχ =  and 1

2( ) 0αχ − =  

 ( )βχ σ  is defined as 

  1
2( ) 0βχ =  and 1

2( ) 1αχ − =  

Then, the spin wave functions of two electrons system can be constructed from one-

electron spin wave functions 1( )αχ σ , 1( )βχ σ , and 2( )αχ σ , 2( )βχ σ . If the spin-orbital 

interaction is not taken into account, the spin part of the wave function is independent 

of the spatial part of the wave function. In other words, the spin wave functions are 

separable from the orbital part. 

 The addition of two angular momenta is explained in Appendix E. 

According to Appendix E, there are four z  components of the total angular 

momentum composed of 1 1/2j =  and 2 1/2j = . They are  

  
1, 1,0, 1

0, 0

J M

J M

⎫= = − ⎪⎪⎬⎪= = ⎪⎭
 (1.189) 

If we put 1 1j s=  and 2 2j s= , there are four z  components of composed total spin. 

The corresponding wave function are given by 

  

1 2 1 2

1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

( , ) ( ) ( )

( , ) ( ) ( )

1
( , ) ( ) ( ) ( ) ( )

2
1

( , ) ( ) ( ) ( ) ( )
2

I
S

II
S

III
S

A

α α

β β

α β β α

α β β α

χ σ σ χ σ χ σ

χ σ σ χ σ χ σ

χ σ σ χ σ χ σ χ σ χ σ

χ σ σ χ σ χ σ χ σ χ σ

⎫= ⎪⎪⎪⎪⎪= ⎪⎪⎪⎪⎬⎡ ⎤= + ⎪⎣ ⎦ ⎪⎪⎪⎪⎪⎡ ⎤= − ⎪⎣ ⎦ ⎪⎪⎭

 (1.190) 
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where the 1/ 2  is a normalization factor. The subscripts, S  and A , denote the 

symmetric and the anti-symmetric states, respectively. The symmetric states are called 

the triplet state, for which the total spin moment is unity ( )1S = . The antisymmetric 

state is called the singlet state. The total spin moment is zero ( )0S = . The way to 

make the total spin function is summarized below.  

( )S J=  M  1m  2m  direction function 

1  1  1/2  1/2  ↑↑  χ χ↑ ↑  

1  0  
1/2  

1/2−  

1/2−  

1/2  

⎫↑↓⎪⎪⎬⎪↓↑⎪⎭
 χ χ χ χ↑ ↓ ↓ ↑+  

1  1−  1/2−  1/2−  ↓↓  χ χ↓ ↓  

0  0  
1/2  

1/2−  

1/2−  

1/2  

⎫↑↓⎪⎪⎬⎪↓↑⎪⎭
 χ χ χ χ↑ ↓ ↓ ↑−  

The way to make the linear combination for the tow degenerate states of 0M =  is 

the same as for the case of the orbital wave functions. 

 The energy of unperturbed state is just the sum of two pieces of the 

unperturbed energy of electrons in two atoms. Thus we do not consider this part, but 

we consider only the perturbed part of the total energy, ΔΕ .  For the symmetric 

spatial wave functions, we have 

   ij ijQ JΔΕ = +  (1.191) 

Because the total wave function of the system must be anti-symmetric, the spin part 

must be antisymmetric. Then the spin state is singlet. For the anti-symmetric spatial 

wave function, we have 

   ij ijE Q JΔ = −  (1.192) 
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Then the spin part must be symmetric and it produces the triplet state. If the exchange 

energy is positive, ( )0ijJ > , the energy of the triplet sate is lower than that of the 

singlet state. In the ground state spins are parallel. If the exchange energy is negative, 

( )0ijJ < , the lower energy state is singlet where the spins are anti-parallel.  

  Now we have found that the spin states affect to the total energy of the 

two-electron system indirectly through the exchange interaction. As we mentioned 

already, the situation that the exchange interaction align spins is treated the 

Heisenberg model and the resulting molecular field. In what follows, we handle this 

problem mathematically, although treatment is very much simplified. We start with 

the vector model.  

 Consider the total spin angular momentum operator of the system of 

two electrons which are in the states i  and j .  

  
2 2

2 2

( )

2

i j

i j i j

S

s s

= +

= + + ⋅

s s

s s
 (1.193) 

We may assume 

∴   

2 2 2

2

2

2

2

2 ( 1) ( 1) ( 1)

1 1 1 1
( 1) ( 1) ( 1)

2 2 2 2
3

( 1)
2

i j i j

i j i i j j

S s s

S S s s s s

S S

S S

⎫⎪⋅ = − − ⎪⎪⎪⎪⎡ ⎤⋅ = + − + − + ⎪⎣ ⎦⎪⎪⎪⎡ ⎤ ⎬= + − + − +⎢ ⎥ ⎪⎪⎢ ⎥⎣ ⎦ ⎪⎪⎪⎡ ⎤ ⎪⎪= + −⎢ ⎥ ⎪⎢ ⎥ ⎪⎣ ⎦ ⎭

s s

s s =

=

=

 (1.194) 

For the triplet state ( )1S =  

  
2

2
2i j⋅ =s s
=  (1.195) 

For this state we have 
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2

1 2
1

2 i j+ ⋅ =s s
=

 (1.196) 

For the singlet state ( )0S = , we have from (1.194) 

  23
2

2i j⋅ = −s s =  (1.197) 

For this state we have 

  
2

1 2
1

2 i j+ ⋅ = −s s
=

 (1.198) 

By using the equations (1.196) and (1.198), the exchange energy can be written in the 

form of  

  2

1 2
2ij ij i jJ J
⎡ ⎤

± = − + ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

s s
=

 

Eventually, the full energy of the two electrons system becomes 

  
2

2

2
ij ij

i j i j

J J
QΕ = Ε + Ε + − − ⋅s s

=
 (1.199) 

The term, 2

2 ij
i j

J
− ⋅s s
=

, which depends on the spin states is known as the 

Heisenberg exchange energy, and the Heisenberg hamiltonian is written as 

  
2

2ˆ ij
ex i j

J
Η = − ⋅s s

=
 (1.200) 

Here, i j⋅s s  is the operator form by the scalar product of spin vectors of the electrons.  

 For N  electrons system, the anti-symmetric wave function is given by 

the Slater determinant. 

1 1 2 2

1 1 2 2

1 2

1 1 2 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )
( , ,..., , , ,..., )

( , ) ( , ) ( , )

i i i N N

j j j N N

i j N N

N N N N N

ψ ψ ψ

ψ ψ ψ

ψ ψ ψ

Ψ =

r r r

r r s r
r r r

r r r

σ σ σ

σ σ
σ σ σ

σ σ σ

"

"

# # # #

"

 (1.201) 
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This form guarantees that two electrons are not in the same quantum state, because 

two electrons in the same state result in two identical rows in the determinant and the 

determinant is zero. The Heisenberg hamiltonian for the N -electrons system may be 

approximated by 

  
2

2ˆ
ex i j i j

i j

J ′ ′ ′ ′
′ ′

Η = − ⋅∑ s s
=

 (1.202) 

where the summation is over pairs of electrons in which the states i ′  and j ′ . We 

postulate  

  ij i ji j i j
i j ij

J J′ ′ ′ ′
′ ′

⋅ = ⋅∑ ∑s s S S  (1.203) 

where i ′  and j ′  represent electrons and i  and j  atoms. As mentioned before, the 

analytical proof of the relation, (1.203), base on the wave function, (1.201), is too 

complicated to be made rigorously. Instead, we take (1.203) as the assumption at the 

start point. Then, we can write (1.202) as 

  ˆ
ex ij i j

ij

JΗ = ⋅∑ S S   (1.204) 

 The Heisenberg hamiltonian can be applied for the Weiss model in the 

mean field theory in which each atom has a magnetic moment. Suppose that the thj  

atom has the total spin operator /jS = . Then the magnetic moment operator is given 

by 

  B
j j

gμ
=− Sμ

=
   (1.205) 

This equation is equivalent to (1.122) except that it expresses the state of an atom 

instead of an electron. The second assumption is that, the Heisenberg hamiltonian in 

(1.200) can be written as 
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2ˆ
ex ij i j

ijB

exj j
j

J
gμ

Η =− ⋅

= − ⋅

∑

∑

S

H

μ

μ

=  (1.206) 

where  

  2
ex j ij i

iB

J
gμ

= ∑H S
=

 (1.207) 

Here, If the assumptions made above are good approximations, the magnetic moment 

of the thj atom sees the exchange field operator ex jH . Suppose that only nearest 

neighbors are considered and the entire nearest are identical. Then, at absolute zero 

temperature ( )0T = , the exchange field can be written as 

  

2 2

2

2

ex j ij i
B

ij spon
ex j

B

J
g

J

Ng

μ

μ

⎫Ζ ⎪⎪= ⎪⎪⎪⎬Ζ ⎪⎪= ⎪⎪⎪⎭

H S

M
H

=
 (1.208) 

where the spontaneous magnetization spon B jNgμ=M S , N  is a number of atom per 

unit volume and Z  is the number of nearest neighbor atoms. From the assumption of 

the Weiss model, ( )ex mλ=H M , the mean field constant is obtained as 

  
2 2

2 ij
m

B

J

Ng
λ

μ
Ζ

=  (1.209) 

, and from Curie law (1.155) and (1.156)  we obtain 

  

2 2

( 1)
3

B
C m

B

m

Ng
T J J

k

C

μ
λ

λ

= +

=
 (1.172) 

Thus, we have 

  3
2 ( 1)

B C
ij

k T
J

J J
=

Ζ +
 (1.210) 
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This shows that the exchange energy, ijJ , can be estimated from Curie temperature 

CT .  

1.2.6 Magnetic Ordering in Solids II: Ferrimagnetism & Anti 

Ferromagnetism  

 Because the samples used in this thesis are artificial ferrimagnetic 

materials, it is better to discuss the physical concept of ferrimagnetic materials. In 

ferromagnetic materials, the exchange energy is positive, 0ijJ > . Spins align parallel 

to each other. On the other hand, in antiferromagnetic and ferrimagnetic materials, the 

exchange energy is negative, 0ijJ < . Spins align antiparallel to each other in ground 

state. To discuss this antiparallel alignment, it is convenient to introduce the simplest 

structure of ferrite. Ferrite is compounds having the atomic composition of the form 

of MFe2O4  in which M is a divalent metal of Cu, Pb, Mg, Mn, Co, Ni, and Fe. Ferrite 

is known to have the spinel structure shown in Figure 1.26. Spinel is MgAl2O3 and 

the crystal structure of ferrite is almost the same as that of spinel. The crystal structure 

is cubic. In a unit cell there are 8 molecules, namely, 16Fe3+, 8M2+ and 32O2-. O2- ions 

approximately form the face centered cubic structure. In the interstitial position of this 

oxygen sublattice, M2+ ions and Fe3+ ions are located.  

 There are two kinds of interstice for the metals ions in the spinal 

structure. One is tetrahedral site, called A site, and the other is octahedral site, called B 

site. An A  site is surrounded by O2- ions in the tetrahedral arrangement. An B  is 

surrounded by O2- ions in the octahedral arrangement.  In ferrite of normal spinel, all 

the Fe3+ ions occupy site B, and the M2+ ions occupy site A. There is another type of 

spinel called reverse spinel. In ferrite of reverse spinel, Fe3+ ions occupy A  sites and 
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the half B  sites. M2+ ions occupy the remaining B  sites. A magnetic ion in an A  site 

makes strong exchange interaction with 12 magnetic ions in the B  sites through 12 

O2- ions. The exchange energy is negative and the interaction is antiferromagnetic. On 

the other hand, a magnetic ion in a B  site interacts with 6 ions in A  sites. 

 We represent the interactions between the ions in the same site the 

exchange integrals AAJ  for site A and BBJ  for site B. The pertinent interactions are 

called AA and BB interactions. The interaction between ions in different site is 

designated by the ABJ and the AB interactions, which are usually stronger than those 

AAJ  and BBJ . The different pieces of exchange energy are estimated in the molecular 

field theory as follows:  

 The physical situation of the spinel magnetic structure in Figure 1.26 

can be analyzed in terms of the molecular fields AH  and BH . They depend on the 

magnetizations, AM , of sites A  and BM  of sites B.  

  A AA A AB B

B AB A BB B

λ λ

λ λ

= −

= − +

H M M

H M M
 (1.211) 

Here, AH and BH  are the molecular fields that act on the ions in sites A and B, 

respectively. The interpretation of the relations, (1.211), is that molecular field AH  is 

determined both by the nearest neighbor interaction with sublattice B and by the 

nearest neighbor interaction with sublattice A. Usually ABλ  is much larger than AAλ  

though the distance between atoms in different sites is longer. The minus signs 

indicate that the molecular fields are antiparallel to the applied field. The molecular 

field constant for the AB interaction, ABλ , must be positive since this interaction 

favors an antiparallel alignment of the moments of A and B ions.  
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Figure 1.26  Two sublattices in the spinel structure. Each of these sublattices is 

repeated in diagonally opposite corners of the full cubic elementary 

cell. The two oxygen ions form a close-packed cubic lattice and the 

metal ions Fe3+ and M2+ are located in the interstices between the O2-. 

The arrows indicate the up-spins and down-spin. [From D. H. Matin, 

Magnetism in Solids, London Iliffe Book LTD., 1967] 
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 Similarly to that we proceeded for ferromagnetic materials, by 

applying the mean fields AH  and BH  ,(1.211), to the Langevin formula, (1.152), we 

obtain  

  
( )

( )

A B
J AA A AB B

sA B

B B
J AB A BB B

sB B

M g J
B M M

M k T

M g J
B M M

M k T

μ
λ λ

μ
λ λ

⎛ ⎞⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜⎝ ⎠
⎛ ⎞⎟⎜ ⎟= − +⎜ ⎟⎜ ⎟⎜⎝ ⎠

 (1.212) 

where sAM  and sBM are the saturation magnetizations for the A and B sublattices, and 

the Brillouin function is given by (1.154)  

  2 1 2 1 1
( ) coth coth

2 2 2 2J

J J x
B x x

J J J J
+ +

= −  (1.154) 

To solve for the magnetizations AM  and BM , graphical methods must be used, as 

shown in Figure 1.24. L. Néel first made calculation of this kind for ferrimagnetic 

crystals and found that magnetizations AM  and BM  are antiparallel if 

,AB AA BBλ λ λ>>  and decreases monotonically with increasing temperature, from 

sAM  and sBM at 0T =  to zero at a critical temperature, the Curie temperature, CT . 

Below CT , the total spontaneous magnetization is  

  spon A B= +M M M  (1.213) 

Because of the antiferromagnetic situation, we have 

   spon A BM M M= −  (1.214) 

The form of the sponM  versus T  curve can vary widely with the relative magnitudes 

of the parameters in the theory because sponM  is a difference between two varying 

terms. Some possibilities are shown in Figure 1.27. 
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 Above CT  the molecular field calculation can also be applied. By 

substituting the molecular fields AH  and BH  , (1.211), into the Curie’s law 

( )/M CH T= , we obtain the magnetization in the individual sublattice as 

  
( )

( )

A
A AA A AB B

B
B AB A BB B

C
T
C
T

λ λ

λ λ

= + −

= − +

M H M M

M H M M
 (1.215) 

where 

  
2 2 ( 1)

3
A B

A
B

N g J J
C

k
μ +

=  (1.216) 

The similar relation is held for BC . Here H  is external applied field; AC  and BC  are 

the Curie constants for sublattices A and B, respectively. For simplicity, the 

interactions between ions in the same site are neglected, , 0AB AA BBλ λ λ>> � . The 

ferrimagnetic susceptibility in zero applied fields can be obtained from (1.215).  

  
2 2

( ) 2A B A B AB A B

AB A B

M M C C T C C
H T C C

λ
χ

λ
+ + −

= =
−

 (1.217) 

The Curie temperature in this model is given as the temperature at which the 

susceptibility becomes infinity, i.e. 1/ 0χ = . Thus, from (1.217) 

  C AB A BT C Cλ=   (1.218) 

Thus, the susceptibility at CT T>  is obtained as 

  2 2

( ) 2A B AB A B

C

C C T C C
T T

λ
χ

+ −
=

−
 (1.219) 

The result is more complicated than the Curie-Weiss law in (1.174). 

 For the antiferromagnetic materials, however, the result is simpler. In 

the antiferromagnetic case, the nearest neighbors of an A ion are all on the B sublattice, 
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and vise versa. Therefore, the molecular field acting on ions, say, A and B, can be 

given by 

  A A AB B

B AB A B

λ

λ

= −Λ −

= − −Λ

H M M

H M M
 (1.220) 

where the mean field constants ABλ  and Λ  measure the interactions between the 

nearest neighbor ions and next nearest neighbor ions, respectively. ABλ  must be 

positive because it favors antiparallel coupling. Since A and B ions are equivalent, 

A B=−M M , and 0sA sB= ≡M M M . Thus, similar to that we have proceeded for 

(1.212), the temperature dependence of antiferromagnetic magnetizations are obtained 

as 

  0

0

( )

( )

A B
J AB A

B

B B
J AB B

B

M g J
B M

M k T

M g J
B M

M k T

μ
λ

μ
λ

⎛ ⎞⎟⎜ ⎟= −Λ⎜ ⎟⎜ ⎟⎜⎝ ⎠
⎛ ⎞⎟⎜ ⎟= −Λ⎜ ⎟⎜ ⎟⎜⎝ ⎠

 (1.221) 

where 0M  is saturation magnetization. It is equal for site A and site B. This equation 

is identical to (1.173) with ( )ABλ −Λ serving as the resultant molecular field constant 

in place of mλ . At absolute zero, AM  and BM  are equal to 0M , that is 1
2 BNg Jμ  if 

N  is the total number of magnetic ions per unit volume. With increasing temperature 

the spontaneous magnetization falls, reaching zero at the temperature known as the 

Néel temperature, NT . From (1.172),  

  

2 21
2 ( 1)( )

3

( )
2

B
N AB

B

AB

Ng
T J J

k

C

μ
λ

λ

= + −Λ

= −Λ

 (1.222) 
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Figure 1.27  The total spontaneous magnetization, sponM , (broken lines) has various 

shapes depending on the combination of the sublattice magnetizations 

(full lines). If the saturation magnetization of sublattice A, sAM , differs 

markedly from that of sublattice B, sBM , sponM  show a gradual 

decrease falling more or less sharply to zero at CT , and simplest 

ferrites show this behavior, as shown in fig (a). If sAM  and sBM  are 

comparable, anomalous variations occur. For example, sponM  may 

decrease to zero at an intermediate temperature, called the 

compensation temperature, compT , as shown in Fig. (b). If  AA BBλ λ<<  

the sponM  can rise to a maximum as shown in (c). 
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 Above Néel temperature, NT T> , it is assumed that AM  and BM  are 

both parallel to the applied field. Thus, the mean field constant, ABλ −Λ , is replaced 

by ABλ + Λ . The antiferromagnetic susceptibility can be derived easily to be 

  
1
2 ( )

A B

AB

M M C C
H T C T

χ
λ θ

+
= = =

+ + Λ +
 (1.223) 

where   
2 2 ( 1)

3
B

B

Ng J J
C

k
μ +

=  

and  1
( )

2 AB Cθ λ= + Λ  (1.224) 

Equation (1.223) is in the form of Curie-Weiss law. However, the Curie-Weiss 

constant is not equal to the Néel temperature, NT , at which the long-range order 

disappears. From (1.222), 

  ( )
( )
AB

N ABT
θ λ

λ
+ Λ

=
−Λ

 (1.2.67) 

Now, we compare the temperature dependence of magnetic susceptibility among 

paramagnets, ferromagnets, and antiferromagnets at temperatures above the Curie 

temperature, as shown in Figure 1.28. In the figure, below the Néel temperature of an 

antiferromagnets the spins have antiparallel orientations; the susceptibility attains its 

maximum value at NT  where there is a well-defined kink in the curve of χ  versus T . 

The transition is also marked by peaks in the heat capacity and the thermal expansion 

coefficient. 
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Figure 1.28 Temperature dependence of the magnetic susceptibility in paramagnets, 

ferromagnets, and antiferromagnets. [From C. Kittel, Introduction to 

Solid State Physics, John Wiley and Sons, Inc. 6th ed., 1996]. 
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1.2.7 Magnetic Domain and Hysteresis of Magnetization 

 In a lump of ferromagnets, iron for example, all the spins do not align 

in the same direction as shown in Figure 1.29 (a). In order to produce a single 

magnetized domain trough a crystal the single direction of spontaneous a very strong 

external magnetic field is necessary. For the domain alignment a lot of energy is need. 

This energy can be reduced by arranging one side of the crystal block to be 

magnetized up and the other side to be magnetized down, which are divided by a wall, 

as illustrated in Figure 1.29 (b), If the number of such blocks is increased as shown in 

(c), the energy is further reduced. However, the energy can be enhanced at the wall 

because of antiparallel alignment of spins. This energy is sometimes called the wall 

energy. A region having only one direction of magnetization is called the domain, and 

the wall is called the domain wall.   

 Actually nature has discovered the ways to arrange domains so as for 

the fields do not go outside the materials, as shown in Figure 1.29 (d)-(e). When a 

magnetic field is applied, the domain walls begin to move into regions which are 

magnetized opposite to the field. The magnetization of the sample increases according 

to the increase of the domain area. If the applied field is increased, all of the magnetic 

spins are eventually aligned along the direction of applied field, giving the saturate 

magnetization. The relation curve between magnetization and applied field, therefore, 

can tell something about the spin structure. The curve of magnetization versus applied 

field is known as magnetization curve.  The irreversible aspect of the magnetization 

curve, as shown in Figure 1.30, is known as hysteresis.  
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Figure 1.29  The formation of domains in a single crystal of Fe. [From C. Kittel, 

Introduction to Solid State Physics, John Wiley and Sons, Inc. 6th ed., 

1996] 

  

Figure 1.30 Typical hysteresis of the magnetization curve versus the applied field. 
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 In sputtered materials, usually they have a polycrystalline structure. 

Inside such materials there are many different little crystals with axes at different 

orientations. When a magnetic field is applied the domain walls in each crystal begin 

to move, and the domains which have a favorable direction of easy magnetization 

grow larger. This growth is reversible. If the magnetic field is turned off the 

magnetization will return to zero. This part of the magnetization curve is marked “a” 

in Figure 1.30. As the applied field is increased, the domain walls can be stuck at 

various defects as grain boundaries and dislocations. When the applied field is large 

enough, the wall suddenly snap the past cause of the rapid increase of magnetization, 

as shown in part “b” in Figure 1.30.  Since there is an energy loss in the interaction 

between the domain walls and the grain boundaries, this part of magnetization is 

irreversible. Even though all the spin moments align parallel to each other, they may 

not be aligned with the applied field but along some preferred crystallographic 

direction. This is due to magnetic anisotropy. 

 As the applied filed is further increased, the magnetization gradually 

reaches a maximum value, it is the saturation magnetization ( )sM . The saturation 

magnetization is an intrinsic property of materials. It has the same value no matter 

what the proceeding history has been. If the field is decreased back to zero, the 

magnetization follows a different curve on the way down and the magnetization does 

not go to zero. The magnetization at zero applied field is called remanent 

magnetization ( )rM . Materials with large remanent magnetization are called hard 

ferromagnets, and those with small remanent magnetization are called soft 

ferromagnets. The magnetization is brought to zero by applying the external field in 

the opposite direction. The field required to return the magnetization to zero is called 
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coercive field denoted by cH as shown in Figure 1.30. The remanent magnetization 

and coercive field are not intrinsic properties of materials.  

1.3 Characteristic of Synchrotron Light 

 Synchrotron light has a number of unique properties:  

 (1)  Wide energy range and continuous spectrum: Synchrotron radiation is 

emitted with a wide range of energy from the far infrared to X-ray region. This 

tunable light is useful to study electronic structure of materials. Incident photon 

energy is sufficient to excite core electrons in atoms. Moreover, the continuous 

spectrum allows one to study atomic construction in materials using EXAFS 

(Extended X-ray Absorption Fine Structure: EXAFS), for which the continuous 

incident x-rays are required.  

 (2) High flux: Synchrotron radiation has much higher photon flux than those 

of radiation from a conventional source. It has very high intensity. This reduces 

measurement time and increases resolution and accuracy in experiments. 

 (3) High brilliance: Synchrotron radiation is extremely intense (hundreds of 

thousands of times higher than conventional X-ray sources) and highly collimated. 

The size of the source point is small. These increases the brilliance of radiation and 

the radiation intensity available at the sample site is quite high. 

 (4) Synchrotron radiation is highly polarized light: Synchrotron radiation 

emitted from a bending magnet is linearly polarized and elliptically polarized in the 

directions in-plane and off-plane of the electrons orbit, respectively. A more high 

circularly polarized can be generated by insertion devises such as an helical multipole 

wiggler and a specially designed undulator. The polarization of incident photon is 
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utilized to investigate magnetic properties of materials. It is used to study spin 

orientation of an electron in a magnetic sample. 

 (5) Synchrotron light is emitted in very short pulses: Typically, the pulse 

length is less than a billionth of a second. Because of the fact that the electron beam in 

a storage ring consists of a series of electron bunches, synchrotron light is generated 

as very short repeating pulses. Pulsed light makes it possible to study time-dependent 

phenomena.



 

 

CHAPTER II  

PURPOSE OF THE STUDY 

 

 The present study aims at investigating the interlayer magnetic coupling 

(IMC) in Al/Fe/Al/Gd magnetic multilayer films. The following manners will be 

described and discussed: 

1) A series of Al/Fe/Al/Gd multilayer films are deposited by means of 

magnetron sputtering. The detail of the sample preparation is described. 

2) The hysteresis and the temperature dependence of the magnetization are 

measured by SQUID. The selective element studies by means of X-ray 

magnetic dichroism (XMCD) is used to measure the hysteresis of the 

XMCD effect at Gd 3L -edge. The magnetic Compton profile (MCP) 

measurements are used to study the ratio of spin-moments in Fe and Gd 

layers.  

3) Comparison of IMC between Fe/Gd and Fe/Al/Gd/Al multilayer films is 

made. 

4) The Al thickness dependence of IMC in Al/Fe/Al/Gd multilayer film is 

studied. 

 
 



 

 

CHAPTER III 

INTERLAYER MAGNETIC COUPLING 

 

3.1 Basic Concept of Interlayer Magnetic Coupling 

 Interlayer magnetic coupling (IMC) typically means the exchange interaction 

between magnetic layers through a non-magnetic spacer. The possible lowest energy 

states of the system led by the IMC are shown in Figure 3.1. In the figure, the 

magnetic moments of a layer couples to those of nearby layers through the non-

magnetic-metal spacer. In many cases the spacer is made of metal. This is because it 

is believed that the conduction electrons in the spacer are the key of IMC between the 

magnetic layers. The IMC is significantly affected by the thickness of the spacer, 

denoted by R, which is the main subject of the present thesis and will be discussed 

later. IMC is either antiferromagnetic coupling or ferromagnetic coupling. The phase 

difference, φ , between two magnetic layers is 0º for the ferromagnetic coupling and 

180º for the antiferromagnetic coupling as seen in Figure 3.1(a) and (b), respectively.  

 The antiferromagnetic and ferromagnetic interlayer couplings are referred to 

as bilinear coupling. Another case is that the magnetization of each layer couples at 

an angle of 90º to an adjacent layer as shown in Figure 3.1 (c). This is often called 

biquadratic coupling. In other case, for films with the helical magnetic structure like a 

Dy film (see Figure 3.1 (d)) the interlayer coupling leads to an angle φ between the 

magnetic moments on both sides of the spacer (Majkrzak, 1986 June).  
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 Discussion on the multilayer consisted of helical magnetic layers is out of the 

scope of this thesis and will not be included in this thesis. The good review of the 

interlayer coupling for rare-earth magnetic multilayers was written by Majkrzak 

(1991).  

 

 

Figure 3.1 Interlayer magnetic coupling (IMC) between magnetic films across the 

interlayer metallic spacer (dark shaded). The arrow in each circle 

indicates the magnetic moment of each monolayer sheet. These 

magnetic moments indicate (a) ferromagnetic coupling, (b) 

antiferromagnetic coupling, (c) biquadratic coupling where the 

magnetic moments in adjacent layers make an angle 90º to each other, 

and (d) the coupling between helical magnetic layers with different 

phase φ . 
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3.2 Survey of Experimental Achievements  

 The interlayer magnetic coupling (IMC) was first observed in Dy/Y by 

Salamon, et al. (January 1986 ), Gd/Y by Majkrzak, et al. (June 1986), and in Fe/Cr 

by Grünberg, Schreiber, Pang, Brodsky, and Sowers (November 1986). Shortly after 

those, Baibich et al. (1988) and Binasch, Grünberg, Saurenbach, and Zinn (1989) 

discovered a huge magnetoresistance led by the antiferromagnetic IMC in Fe/Cr 

multilayer known as a giant magnetoresistance (GMR). A year later, Parkin, More, 

and Roche (1990 May) reported the discovery of the oscillatory coupling strength as a 

function of the spacer thickness, in Co/Ru, Co/Cr and Fe/Cr. After that a number of 

investigations of IMC in various films have been reported. Particularly studies on 

multilayers consisting of magnetic transition materials (Fe, Ni, Co) separated by non-

magnetic transition or noble metals are remarked; they are either paramagnetic (Cu, 

Ag, Au, Al, Ru, Pd, V, etc.) or antiferromagnetic (Cr, Mn). In case the spacer layer is 

a transition metal, the oscillation of IMC is found to be a general phenomenon (Parkin, 

December 1991). The oscillatory coupling behavior has been described with several 

models. For example, with The RKKY-like model, the quantum well model, etc. 

These models will be mentioned below. In the same year that Parkin et al. discovered 

the oscillatory IMC, Grünberg, Demokritov, Fuss, Vohl, and Wolf (1991) have 

observed the biquadratic exchange in a Fe/Cr/Fe trilayer. This coupling is believed to 

be due to the imperfection of the interface between layers which will be discussed 

later. 

 Since 1990, a great number of work on IMC in various materials has been 

reported. Only the key phenomena are reviewed here.  They are led by IMC between 

magnetic layers through a non-magnetic spacer. Experimental achievements 
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concerning the bilinear coupling, oscillatory IMC, and the biquadratic coupling are 

surveyed in this section. 

 The review articles about IMC have been reported by a number of authors. 

Fert et al. (1995) gave a critical review of the research on the interlayer coupling. 

Slonczewski (1995) overviewed theories of the interlayer exchange. In particularly, he 

described the fluctuations of spacer thickness and loose spin theory which is to 

explain the biquadratic coupling phenomena. Moreover, for the biquadratic coupling, 

both the observations of phenomena and theoretical explanations were reviewed by 

Demokritov (1998). Jones (1998) gave an excellent review of the developments of 

theoretical models on IMC. He classified the theoretical models according to groups 

of authors. Himpsel, Jung, and Seidler (1998) provided a survey of the quantum well 

states model and the experimental confirmation of the model. Stiles (1999) 

emphasized the bilinear coupling, particularly on oscillatory IMC and compared the 

theory and the experimental results. A more general theoretical model, the quantum 

interference model, is given by Bruno (1999).  

3.2.1 Bilinear Coupling 

 The discovery of antiferromagnetic IMC by Grünberg et al. (1986) in 

Fe/Cr/Fe layers, demonstrated that the antiferromagnetic interlayer interaction, 

decaying regularly with increasing Cr spacer thickness. Phenomenologically, the 

exchange coupling energy per area can be expressed as 

  1 22excE J=− ⋅M M  (3.1) 

where J  is called the coupling constant. 1M  and 2M  are the magnetizations of two 

ferromagnetic layers. Since equation (3.1) bilinear with respect to 1M  and  2M , it is 

so called the bilinear coupling. This exchange energy is, in fact, in the form of the 



 

 

130

Hiesenberg exchange energy, (1.202), in which the coupling constant J  includes the 

exchange integral. Thus, the interlayer coupling constant is positive for ferromagnetic 

coupling and is negative for antiferromagnetic coupling.  

3.2.2 Oscillatory Interlayer Exchange Coupling  

 The discovery, by Parkin (1990), that the magnitude of the interlayer 

coupling constant in (3.1) oscillates with as the thickness of the spacer layer is varied. 

He found that IMC oscillates with a long period ranging in 12 Å in Co/Ru to 18-21 Å 

in Fr/Cr and Co/Cr. After that, systematic studies of the multilayer grown by 

sputtering with Co as ferromagnetic layer (Parkin , December 1991) revealed that the 

oscillatory behavior is observed in spacer layers consisting of almost any transition or 

noble metals. He reported that the oscillation periods were in the range of 9 Å to 12 Å 

for V, Cu, Mo, Ru, Th, Re, and Ir spacer layers and 18 Å for Cr spacer layer. These 

results were confirmed later by several reported e.g. Grünberg et al. (1991, April), 

Petroff et al. (1991), Ounadjela et al. (1992), Huai and Cochrane (1992). Oscillatory 

IMC is expressed as the spacer thickness dependence of the saturation filed as shown 

in Figure 3.2. The generic behavior of oscillatory IMC is understood as an interaction 

which varies periodically in the sign and the magnitude decaying as 21/R , where R  

is the spacer thickness. The strength of IMC depends both on the characteristics of the 

spacer and of the magnetic layers. The oscillation period, on the other hand, depends 

on the nature and the crystalline orientation of the spacer metal, but not on the nature 

or the thickness of the magnetic layers.  
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Figure 3.2  Dependence of the saturation field on the spacer-layer thickness for 

families of (a) Co/V, (b) Co/Mo, and (c) Co/Rh multilayers. [After 

Parkin, December 1991]. 
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 In multilayer films grown by means of sputtering, and having the 

polycrystalline structure, only long periods (10-18 Å) have been observed. The 

calculation of the oscillatory IMC periods by using several models revealed also a 

short period (2-3 Å) which will be discussed below. On the other hand, for the 

multilayer grown epitaxailly, it has been found experimentally that multi-periodic 

(both short period and long period) oscillatory IMC exists. Usually, this epitaxailly 

grown film consists of two magnetic layers separated by a layer of spacer, three layers 

in total. It is so called trilayer film. Examples, the short periods oscillatory IMC has 

been observed in the trilayer systems of Fe/Cr/Fe (Demokritov et al., 1991), 

Fe/Au(001)/Fe and Fe/Al/Fe (Fuß, 1992), Fe/Ag/Fe(100) (Unguris, 1993), 

Fe/Au/Fe(100) (Unguris, 1994), etc. The excellent review on the oscillatory magnetic 

properties is given by Allenspach and Weber (1998). 

3.2.3 Biquadratic Coupling  

 The biquadratic coupling phenomenon was first observed in 

Fe/Cr/Fe(001) trilayer (Grünberg et al., April 1991 ). The magnetization curves of the 

Fe/Cr/Fe(001) layered system, measured for relatively thick Cr spacers, demonstrate a 

well-defined phase, existing in a finite interval of the applied field. In this phase, the 

total of magnetization of the trilayer equals to one-half of the saturation magnetization, 

found, for example, in Figure 3.3. Detailed investigation of the Fe/Cr/Fe with a wedge 

shaped Cr interlayer was reported by Rührig et al. (1991). They measured the domain 

pattern by MOKE magnetometry and the magnetization curves of the Fe(100Å)/Cr(5 

Å)/Fe(100 Å) trilayer. Their results successfully evidence that the two layers of Fe 

exhibit the biquadratic coupling to each other.  
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Figure 3.3  Magnetization curves of the Fe(30Å)/Cr(38 Å)/Fe(30 Å) trilayer, 

demonstrate the biquadratic coupling between the magnetizations of Fe 

layers.[After Demokritov, 1998]. 

  

 The phenomenological description of the exchange energy per surface 

area is, therefore, obtained as an expression of the form: 

  E 2
1 1 2 2 1 22 ( )exch J J= − ⋅ − ⋅M M M M  (3.2) 

 The first term represents the bilinear coupling and the second term 

represents the biquadratic coupling. 1J  and 2J are the bilinear and biquadratic 

exchange coupling constants, respectively.  

 The experimental evidences for the biquadratic coupling have also 

been found in a number of trilayer films. They are reviewed by Demokritov (1998), 
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i.e. Fe/Al/Fe, Fe/Cu/Fe, Fe/Ag/Fe, Fe/Au/Fe, NiFe/Ag/NiFe, Co/Ru/Co, NiFe/Cu/Co, 

NiFe/Cu/NiFe, Fe/FeSi/Fe, and Fe/AuSn/FeNiB.  

 

3.3 Survey of Theoretical Models 

3.3.1 Total energy calculation 

 In a bilinear coupling system, the strength of IMC for a certain spacer 

thickness (R) is calculated from  

  E E
2

total totalJ
↑↓ ↑↑−

=  (3.3) 

where Etotal
↑↓  is the total energy of the system in the case of antiferromagnetic coupling 

between the magnetic layers and Etotal
↑↑  is the total energy in the case of ferromagnetic 

coupling. If J  takes a positive value, the system has antiferromagnetic coupling, if J  

is negative ferromagnetic system occurs.    

 Advance in the computer performance made it possible to calculate the 

total energy although the value is extremely larger than that of the difference. The 

first-principle calculations have been performed by numerous authors to calculate the 

total energy for the realistic systems. Herman and his group calculated the IMC in 

Fe/X, where X = Cr and Cu  (1991) and later V, Mn (1995), by means of self-

consistent spin-polarized linearized muffin-tin orbital/atomic sphere approximation 

(LMTO/ASA) and linearized augmented spherical wave methods/atomic sphere 

approximation (LASW/ASA). Krompiewski and coworkers (1993) calculated IMC in 

Fe/Cu by tight-binding LMTO/ASA method. The results of the total energy 

calculations present both the coupling strength and periods of oscillation of IMC. 

Unfortunately, no such calculation has been reported on Fe/Al or Gd/Al multilayers.  
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3.3.2 Mean Field Theory 

 We consider the simplest case of a exchange energy in a multilayer 

consisting of two different magnetic layers separated by a non-magnetic layer having 

thickness R. We assume that the magnetic layers have magnetic moments 1M  and 

2M  making angle α  and β  to the direction of external field H  which is aligned to 

the z - direction. The magnetic anisotropy energy of the magnetic layers is assumed to 

be unixial. The magnetic anisotropy constants of the layers 1 and 2 are given by 1K  

and 2K , respectively.   

  

The hamiltonian can be written as 

H 2 2
1 2 12 1 2 1 2( ) 2 ( ) cos cosJ K Kα β= − + ⋅ − ⋅ − −M M H M M  (3.4) 

The first term expresses the energy due to the external field H , the Zeeman energy. 

The second term represents the interlayer coupling between the magnetic layers 1 and 

2 through the spacer layer. 12J  is known as the coupling constant. The coupling 

constant is positive or negative for the ferromagnetic or antiferromagnetic coupling 

modes, respectively. Then, the total energy of the system is given by 

2 2
1 2 12 1 2 1 2cos cos 2 cos( ) cos cosM H M H J M M K Kα β α β α βΕ = − − − − − −  

   (3.5) 
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 For simplicity, we consider the case where either the magnetization of 

layer 1 or that of layer 2 rotates independently. Then, the equilibrium angles can be 

determined from the energy minimum conditions, namely, 

 
1 12 1 2 1

2 12 1 2 2

sin 2 sin( ) sin2 0

sin 2 sin( ) sin2 0

M H J M M K

M H J M M K

α α β α
α

β α β β
β

∂Ε
= + − + =

∂
∂Ε

= − − + =
∂

 (3.6) 

and 

 

2

1 12 1 2 12

2

2 12 1 2 22

cos 2 cos( ) 2 cos2 0

cos 2 cos( ) 2 cos2 0

M H J M M K

M H J M M K

α α β α
α

β α β β
β

∂ Ε
= + − + >

∂
∂ Ε

= + − + >
∂

 (3.7) 

Obviously (3.6) and (3.7) are satisfied if α  and β  take the following pairs of values: 

  

(1) 0, 0

(2) 0,

(3) , 0

(4) ,

α β

α β π

α π β

α π β π

= =

= =

= =

= =

 (3.8) 

The magnetization configurations of the system are stable if α  and β  takes one of the 

pairs in (3.8). It depends on the quantities 1 2, ,H K K  and the interlayer coupling term, 

12 1 2J M M . The possible states in (3.7) are shown in Figure 3.4. In the figure, the four 

possible states in (3.8) are shown. There are several possible switching among these 

states, e.g. (1) (2)→ , (2) (4)→ , (4) (3)→ , etc. The switching field required for 

changing states is dependent on the factors 1 2 1 2, , ,M M K K  and 12 1 2J M M , as 

mentioned above.  
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 For simplicity, we consider only the case of antiferromagnetic coupling 

system. This is the case 12 0J < . Thus, if we change the external field from −∞  to 

∞ , the state changes as follows: 

  (1) (2) (3) (4)→ → →  

Now, a problem arises. What is the magnitude of the applied field that is required for 

changing between the states? We first consider the state switching from state (1)  to 

state (2) . In switching from the state (1)  to state (2) , only the layer 2 flops. Then, the 

switching field can be obtained from 

  
2

2
0, 0α β

β
∂ Ε

= = =
∂

 (3.9) 

Using (3.9) and (3.7), we obtain 

  12 2
12 1

2

2
2

K
H J M

M
= − −  (3.10) 

Calculating in the similar way, we have 

  34 2
12 1

2

2
2

K
H J M

M
= −  (3.11) 

  43 2
12 1

2

2
2

K
H J M

M
= +  (3.12) 

  21 2
12 1

2

2
2

K
H J M

M
= − +  (3.13) 

 The calculation of the switching field 23H  is slightly different, because 

the magnetizations in both layers rotate simultaneously. We assume that 

θ α β π= = + . Then, from (3.5) we obtain 

             2 2
1 2 12 1 2 1 2cos cos 2 cos cosM H M H J M M K Kθ θ θ θΕ = − + + − −  (3.14) 

The equilibrium angles is determined from 
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1 2 1 2

2

1 2 1 22

sin sin sin2 sin2 0

cos cos 2 cos2 2 cos2 0

M H M H K K

M H M H K K

θ θ θ θ
θ

θ θ θ θ
θ

⎫∂Ε ⎪⎪= − + + = ⎪⎪∂ ⎪⎬⎪∂ Ε ⎪= − + + > ⎪⎪∂ ⎪⎭

(3.15) 

The switching field required to change the states between the states (2) and (3)  can be 

determined from 

  
2

2 0
θ

∂ Ε
=

∂
 (3.16) 

Therefore,  

  0,θ π=  (3.17) 

 We are considering the changing of the magnetization states from state (2)  to state 

(3) . So that we use 0θ = . Therefore the switching field is 

  23 2 1

1 2

2( )K K
H

M M
+

= −
−

 (3.18) 

Similarly,  32 232 1

1 2

2( )K K
H H

M M
+

= = −
−

 (3.19) 

 From (3.4) through (3.19) we have considered the magnetic anisotropy 

in the total energy of the system. In order to calculate the coercive field, cH , we 

consider in total energy of the system with the coercivity energy. We assume that the 

switching filed, mnH , is given by the field at which the free energy difference, 

m nΕ −Ε , exceeds the coercivity energy. The coercivity energy is the energy required 

for the irreversible magnetization reversal. In a single layer film with the 

magnetization M , the coercivity energy is equal to 2 cMH .  Then, we have  

  2m n cMHΕ −Ε =  (3.20) 

 When the system transition from state (1)  to state (2) , we have 
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1 1 2 12 1 2

2 1 2 12 1 2

2

2

M H M H J M M

M H M H J M M

⎫Ε = − − − ⎪⎪⎬⎪Ε = − + + ⎪⎭
 (3.21) 

Here, the magnetization reversal takes place only in the layer 2. From (3.10) and 

(3.21) we obtain 

  1 2 2 12 12 1 2 2 22 4 2 cM H J M M M HΕ −Ε = − − =  (3.22) 

∴   12
12 1 22 cH J M H= − −  (3.23) 

Similarly,   34
12 1 22 cH J M H= −  (3.24) 

  43
12 1 22 cH J M H= +  (3.25) 

  21
12 1 22 cH J M H= − +  (3.26) 

Here, 2cH  denotes the field at which the reversal of 2M  occur. Comparing (3.23) with 

(3.11), we obtain the physical meaning of 2cH  as 

  2
2

2

2
c

K
H

M
=  (3.27) 

Thus, equation (3.23) means that the field required for changing the state (1)  to the 

state (2)  depends on the interlayer coupling strength, 12J , the magnitude of the 

magnetizations, 1 2,M M , and the magnetic anisotropy constant, 2K .  

 In the similar way, we can calculate switching field 23H . By carrying 

this, we obtain 

  ( )23 23
2 3 1 2 1 1 2 22 2 2 c cM H M H M H M HΕ −Ε = − + = +  (3.28) 

  
( )1 1 2 223

2 1

2 c cM H M H
H

M M

+
=

−
 (3.29) 
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Figure 3.4 Magnetization configurations in the system of two magnetic layers 

separated by a non-magnetic layer.  
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Comparing (3.29) with (3.18), we obtain 

  1
1

1

2
c

K
H

M
=  (3.30) 

 Now, we can inspect the switching of the states (1) (2) (3) (4)R R R . 

For doing this we show the example of hysteresis of magnetizations, as seen Figure 

3.5. In the figure, the magnitude of magnetization 1M  is assumed to be larger than 

that of 2M .  

 If the external field is applied from −∞  to ∞  the magnetization 

configurations change from states (1) (2) (3) (4)→ → → . When the field is 

sufficiently high, the state (1)  is the most stable state. In this state, the magnetizations 

in both layers are aligned parallel to the direction of the external field. Then, the total 

magnetizations are  

   12
1 2;     M M M H H= + >  (3.31) 

 When the external field is decreased to 12H , the most stable state is 

changed to be state (2).  In this state, 1M directs to the direction of H  while 2M  

opposes the direction of H . When the reverse field is applied, the magnetizations, in 

state (2) , cannot easily rotate due to the presence of a magnetic anisotropy. However, 

when the field increases to 23H  the states (2) changes to (3).  Finally, the state 

(4)becomes the most stable state when the reverse field is sufficiently high. If we 

applied the external field from −∞  to ∞  we obtain the hysteresis of magnetization, 

as shown in Figure 3.5. 
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Figure 3.5 Calculated magnetizations of the two magnetic layer system. The 

calculations are based on the mean-field theory. The magnetizations of 

both layers are assumed to be rotated independently with each other.  

 

 In conclusion of this section, we have applied the mean-field theory to 

calculate the possible magnetization configurations of the two magnetic layers system. 

We have assumed that the magnetic anisotropy in both layers is unixial type, and the 

magnetization in one layer is larger than that in the other. The significant assumption 

of the consideration is that the magnetizations in both layers rotate independently with 

each other. This means calculation results may not be able to explain the complicate 

system of magnetic multilayers such as the Al/Fe/Al/Gd films. This is the sample used 

in experiments for this thesis.  
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 In the system of Al/Fe/Al/Gd multilayer films, the magnitude of the 

magnetization of the Fe layer is larger than that of Gd layer. So that, we give the 

magnetization of Fe and Gd layers in equation (3.19) as 1M  and 2M , respectively. 

Let us consider the magnetizations are in state (2) . Then, the total magnetization is 

0 1 2M M M= − . Since, the magnetic anisotropy of the Fe layers is very small 

compared with that of the Gd layer, we give 1 0K �  for Fe layer and 2K K=  for the 

Gd layer. From equation (3.18), we have 

  23

0

2
c

K
H H

M
= =  (3.32) 

This is the coercive filed of the system. This equation will be adopted in Chapter VI. 
 

3.3.3 RKKY Model  

 The RKKY was named according to Ruderman and Kittel (1954), 

Kasuya (1956), and Yosida (1957). Ruderman and Kittel proposed the indirect 

exchange coupling between nuclear spins by the hyperfine contact interaction with 

conduction electrons. Kasuya and Yoshida proposed the similar indirect coupling 

between localized (d or )f  electrons through their exchange interactions with the 

conduction electrons. They considered that a magnetic impurity embedded in a non-

magnetic spacer produces the polarization of the conduction electrons in its near 

environment. The spin of the conduction electrons oscillates up and down as a 

function of the distance away from the magnetic impurity with the characteristic 

wavelength /F Fkλ π= , where Fk  is the wave vector on the Fermi surface. When 

two impurities are close enough to each other, interactions between the through the 

polarizations of conduction electrons occur. If a second impurity is within the positive 

polarization region of the conduction electron polarization due to the first impurity, 
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the second impurity couples ferromagnetically to the first impurity. On the other hand, 

if the second impurity is within the negative polarization, it makes the 

antiferromagnetic coupling to the first impurity. The RKKY interaction takes the form 

of the exchange coupling, 

  2 ( )RKKY i jE J r= − ⋅S S  (3.33) 

where iS  and jS  are spins of the two magnetic impurities and r  is the distance 

between them. For bulk materials (3 dimensions), the exchange coupling ( )J r  

oscillates and decays as 3r− , as shown in Figure 3.6.  

 For magnetic multilayers, the RKKY interaction was first extended to 

explain the interaction between magnetic layers through a non-magnetic spacer layer 

by Yafet (1987). He derived that the strength of the interaction between two sheets of 

magnetic impurities separated by a distance, r , decays as 21/r− . Bruno and Chappert 

(1991 - 1992) extended the two sheets impurities to arbitrary crystal structure. They 

derived the periods of the oscillatory coupling in terms of the Fermi surface of the 

spacer. The Fermi surface information by experiments has been used in the 

calculation and gives both short- and long- periods of the oscillations.  

 The long-period oscillation that is found in sputtered multilayers is 

known to be due to the arising effect (or Vernier effect). It has been reported by 

several authors (Coehoorn, 1991; Deaven, Rokhsar, and Johnson, 1991). Bruno 

(1995) extended the theory of the oscillation to the more general form. Although the 

periods of the oscillation that predicted by the models based on the RKKY interaction 

are in good agreement with experiments, the RKKY based models did not enable us 

to present the quantitative description of the amplitude of the oscillatory coupling. 
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Figure 3.6  Oscillation of electron polarizations as a function of distance r  around 

a single magnetic impurity. Alternatively, this figure can be viewed as 

the oscillatory RKKY coupling between two magnetic impurities 

separated by a distance r  in three dimensions. Inset shows closed up 

the vertical axis view [After Jones, 1998]. 

 
 

3.3.4 Quantum Well Model 

 The quantum well model was first proposed by Edwards and Mathon 

and collaborators (Edwards et al., 1991; Edwards et al., 1992; Mathon et al., 1995; 

Mathon et al., 1997) and other authors (Barnas et al., 1992; Erickson et al., 1993). 

This model predicts not only periods of the oscillations but also the strength or the 

amplitude of the exchange coupling. Only the basic idea is presented briefly as follow. 
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 In this approach the coupling is ascribed to the change of density of 

states resulting from the spin-dependent confinement of the electrons (or holes) in the 

quantum well provided by the spacer layer. Figure 3.7 shows a schematic picture of 

the bulk band structure of a multilayer film. The figures demonstrate the electron 

confinement for antiferromagnetic IMC (Antiparallel coupling) and for ferromagnetic 

IMC (Parallel coupling). In the magnetic layers, the bands are completely spin 

polarized so that the minority band is unoccupied above the Fermi level ( )FE . The 

total magnetization of the layers point along the direction of the electron spins which 

occupy in the majority band. In the spacer layer, non-magnetic material, there is no 

polarization of spin so that the up-spin and down-spin bands are degenerated.  

 In the case of antiferromagnetic IMC, the magnetizations of the 

magnetic layers are aligned antiparallel to each other. The propagating state in the 

spacer reaching an interface is reflected if the state in the magnetic layer is not of the 

same symmetry as that of the spacer. If the symmetry is the same, the propagating 

state is allowed to transmit into the magnetic material. This is just caused by the Pauli 

exclusion principle. Then the up-spin electrons in the spacer cannot jump into up-spin 

states in the magnetic layer, since the corresponding empty state is located well above 

the FE , see the right hand side in Figure 3.7(a).  

 The situation is different on the left hand side that the spin-up electrons 

will escape into the magnetic layer. The same situation occurs for a spin-down 

electron which can escape to the right.  
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Figure 3.7 A schematic picture of a magnetic multilayer structure. An arrow 

points the direction of an electron spin, (a) possibilities of reflection 

and transmission of an electron in antiferromagnetic coupling system, 

and (b) the possibilities in ferromagnetic coupling system. 
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 In the case of ferromagnetic IMC, the magnetizations of the magnetic 

layers are aligned parallel to each other. The situation is identical on both sides for up-

spin electrons. They may escape into either the left or the right side (see Figure 

3.7(b)). On the other hand, the down-spin electrons are trapped inside the spacer layer. 

This is similar to the quantum well problem in quantum mechanic. The states of the 

spin-down electrons are, therefore, quantized. 

 Remarkably, the quantum well model yields exactly the same 

oscillatory behavior and decays as the RKKY model does (Edwards et al., 1991-2; 

Mathon et al., 1995-7). In addition, this method also obtains the amplitude.  

 Quantum well states in a multilayer were observed experimentally by 

Ortega and Himpsel (1992) and later the concept was extended to study to more 

systems (Ortega, Himpsel, Mankey, and Willis, 1993). They have investigated 

multilayer films of Co/Cu/Co, Fe/Ag/Fe, and Fe/Cu/Fe using inverse photoemission 

and photoemission spectroscopy. They found the long period and the short period that 

are equivalent to the periods from RKKY theory. 

3.3.5 Biquadratic Coupling Model 

 Slonczeski (1991, 1993, 1995) has introduced two possible sources of 

the biquadratic exchange coupling. The first one is the fluctuation mechanism of the 

bilinear exchange coupling (Slonczeski, 1991). According to this interpretation, the 

biquadratic coupling is an effective coupling due to fluctuation of magnetizations in 

the layer around their average direction (see Figure 3.8).  

 The different thickness regions of a multilayer have different coupling 

strengths. Each region has well-defined average magnetization due to the intralayer 

exchange coupling. However, the intralayer exchange coupling is not strong enough 
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to align the magnetizations in the average direction. The fluctuation of the 

magnetizations in each the region turns out to give an effective interaction between 

the average magnetization direction. This effective interaction favors perpendicular 

alignment of the average direction (Slonczewski, 1991).  

 

 

Figure 3.8  Thickness variations in a trilayer, in which the thickness of the spacer 

layer varies periodically. The broken lines indicate the average 

magnetization direction. The heavy arrows exhibit the local variation 

in the magnetization direction [After Stiles, 2002]. 

 

 The second one is the loose spin model (Slonczeski, 1993). In order to 

account for the strong temperature dependence in the trilayer composed of Fe layers 

separated by Au and Al spacers. He proposed that the indirect IMC such as the RKKY 

coupling is weak owing to the existence of magnetic moments that are only weakly 

coupled to the magnetic layers. He called this magnetic moment (spin) as the loose-

spin. The loose spins exist within the spacer or neighbor to its interfaces which he 

called loose interfacial spins. The basic idea of the loose spin model is shown in 

Figure 3.9(a). 
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Figure 3.9  Loose spin model of the biquadratic coupling. (a) the small solid arrow 

represents a loose spin located in the non-magnetic spacer, (b) the 

loose interfacial spins are locates at the two interfaces of the trilayer. 

 

 The edges of two ferromagnets have the magnetization at the interfaces. 

The loose spins are subjected to the exchange coupling that is induced by the two 

ferromagnets through a non-local spin polarization of an electron gas. He assumed the 

spacer layer to be composed of the free electron gas. Strength of the exchange 

coupling is a function of spacer thickness t and temperature (Slonczeski, 1995). 

Similarly, the loose interfacial spins, they see the potential due to their coupling to the 

magnetic layers, although they are paramagnetic.  

 The loose spin model turns out to be consistent with experimental 

results, both the sign and the temperature dependence in the systems of Fe/Al/Fe 

trilayer (Gutierrez, Krebs, Filipkowski, and Prinz, 1992) and Fe/Au/Fe (Fuss et al., 

1992). However, no confirmation has been reported on sputtered multilayers which 

are studied in this thesis. 
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3.4 Survey of Interlayer Magnetic Coupling Studies in Fe-Al-Gd 

Multilayer 

 The present work is the first one to investigate IMC experimentally in the 

system of Fe/Al/Gd/Al multilayer film. It is interesting to compare the experimental 

results with that on the system of Fe/Gd multilayer film. The interlayer magnetic 

coupling in Fe/Al and Gd/Al will also be discussed in this section. 

3.4.1 Magnetic Coupling in the Fe/Gd Ferrimagnetic Multilayer 

 Fe/Gd multilayer films are well known to be artificial ferromagnets in 

which the interlayer exchange coupling between Fe and Gd layers is strong 

antiferromagnetic. Magnetic phase diagram of the field versus temperature has been 

predicted theoretically by Camley (Camley, 1987-1993) and coworkers (LePage and 

Camley, 1990). Hereafter we report to it as Camley’s model. They predicted, on the 

basis of molecular field model, that there are basically four possible states in Fe/Gd 

multilayer films, namely, 

 1) Gd-aligned state in which all the Gd magnetic moments are aligned 

with the magnetic field and all Fe magnetic moments are antiparallel to the field. 

 2) Fe-aligned state in which all Fe magnetic moments are aligned with 

the magnetic field and all Gd ones are antiparallel to the field. 

 3) Twist state in which both Gd and Fe magnetic moments are at 

varying angles with respect to the external field. The occurrence of this state depends 

on the distance from the interface. 

 4) A state in which the behavior of some of Gd magnetic moments is 

paramagnetic while Fe ones are still in the ferromagnetic order.  
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 This prediction has been accepted by several experiments, e.g., 

magnetization measurements (Takanashi et al., 1992), neutron diffraction (Dufour et 

al., 1993), magnetoresistance measurements (Vaezzadeh et al., 1994), Mössbauer 

spectroscopy (Sajieddine et al., 1994), resonant x-ray magnetic scattering 

(Ishimumatsu et al., 1999; Hosoito et al., 2002), and XMCD (Koizumi et al., 2000; 

Takagaki et al., 2003). Although the experimental results seem to be consistent with 

the Camley’s model, the occurrence of the interlayer coupling between Fe and Gd 

layers is not clear since validity of the assumption of the molecular field model and 

the approximation that anisotropy is negligible are not evident.  

3.4.2 Interlayer Magnetic Coupling in Fe/Al and Gd/Al Multilayers 

 There are only a few groups who study the interlayer coupling in the 

system of sputtered Fe/Al multilayers and no report has yet been appeared on that in 

Gd/Al multilayer film. Magnetic properties of Fe/Al multilayer films depend on the 

thickness of both Fe and Al layers. Moreover, the phenomena are also found to be 

sensitive to the sputtering conditions (Haeiwa et al., 1991). Nagakubo, Yamamoto, 

and Naoe (1988) have reported their studies on Fe/Al multilayer films prepared by 

ion-beam sputtering. They measured the saturation fields and coercive fields of the 

samples Fe layer thickness of which is fixed to be 100 Å. The Al thickness is varied 

up to 100 Å. They concluded that the magnetic properties changed significantly with 

the change of the Al thickness around 15 Å. Wang and coworkers (1990) studies the 

structure of the Fe/Al multilayers, prepared by planar magnetron sputtering, by means 

of x-ray diffraction. They reported that the structure of the Fe(R)/Al(22Å) multilayers 

is amorphous when R is less than 19 Å. They also claimed that this change into the 

amorphous state together with alloying between Fe and Al atoms at the interfaces, is 
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the reasons why the saturation magnetizations of their samples are lower than that of 

bulk Fe. Temperature dependence of magnetization of Fe/Al films is studied by the 

group of Abdul-Razzaq (Wu et al., 1992; Lee and Abdul-Razzaq, 2000). They 

reported that the Curie temperature of the Fe(RÅ)/Al(RÅ) multilayer films decreases 

with decreasing of thickness R. They also remarked that the alloying at the interfaces 

affects the magnetization to be reduced. This effect becomes important as layer 

thickness R becomes small. 



 

 

CHAPTER IV 

EXPERIMENTAL METHODS 

 

4.1 Experimental Techniques 

4.1.1 DC+ RF Magnetron Sputtering 

 The technique for growing multilayer films are grouped into two: the 

chemical vapour deposition (CVD) and the physical vapour deposition (PVD). The 

difference arises from the situation weather the gaseous or the solid source is used (du 

Tŕemolet de Lacheisserie, Gignoux, and Schenker, 2002). PVD processes are divided 

into sputtering, evaporation, or ion planting. The sputtering deposition technique is 

separated into the DC diode sputtering, RF diode sputtering, and magnetron sputtering. 

These techniques can be combined together. For example, DC diode sputtering and 

RF diode sputtering are combined with magnetron sputtering. We refer to this as 

DC+RF magnetron sputtering in this thesis.  

 A DC sputtering system consists of a pair of planar electrodes e.g. 

cathode and anode, as shown geometrically in Figure 4.1. A cathode is attached to the 

material to be sputtered we call the material to be deposited the target. The substrate 

where deposition occurs is attached to the anode. A static voltage, usually 0.5-5 kV, is 

applied to the electrodes to create a plasma discharge. Atoms of inert gas used in the 

sputtering system, mostly argon (Ar) and Krypton (Kr), are partially ionized by 

primary electrons. The positive ions, Ar+, are accelerated toward the target by the 
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electric field. These highly energetic ions sputter the target resulting in the emission 

of sputtered atoms. This is ascribed to the momentum exchange between Ar+ ions and 

the sputtered atoms. Some of the Ar+ are reflected and some of them may be 

implanted in the target which will be sputtered later. Secondary electrons are also 

emitted from the target in the sputtering process. Since these electrons are accelerated 

toward the substrate, collision with Ar atoms occurs, and Ar+ ions are replenished. 

The secondary electrons together with the Ar+ ions eventually form sustaining plasma 

in front of the substrate. The sputtered atoms emitted from the target travel to the 

substrate suffering collisions with Ar gas along the way and deposited on the substrate. 

The deposited atoms are denoted as adatoms in the Figure 4.1.  

 To sustain the sputtering glow discharge, a secondary electron must 

produces sufficient Ar+ ions to release one further secondary electron from the target. 

Therefore, the applied voltage must be high in order that the electrons acquires 

adequate energy to ionize the Ar gas. Moreover, the pressure in the sputter chamber 

must not be too law during sputtering and the distance between electrodes must be 

appropriately long. so that enough for the collision events between electrons and Ar 

gas sustained. In usual the pressure used in the DC sputtering is in a arrange of 50 -

100 mtorr. The bombardment of an insulator with the positive Ar+ ions leads to a 

charging of the surface and subsequently to shielding of the electric field. If this 

occurs the sputtering glow discharge can not be sustained. Therefore, the use of the 

DC diode sputtering is restricted to conducting materials like metal or doped 

semiconductors. This problem can be solved by applying an RF (radio frequency) 

AC-voltage to the target. 
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Figure 4.1  A schematic view of DC the diode sputtering. Dots denote electrons, 

solid circles denote Ar ions, and open circles denote atoms of 

deposited materials. 
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 In RF sputtering, the RF field is supplied by coupling to the input 

cathode (target) through a capacitor. The difference in mobility of the Ar+ ions and 

electrons gives rise to a negative self bias of the cathode, which in turn gives the 

necessary potential for sputtering. These plasma-sheath potentials are maintained by 

the RF power source. In general the RF field accelerated the Ar+ ions across these 

plasma sheaths to strike both target and substrate. However, the density of the Ar+ 

ions hitting the substrate is made low by selecting an appropriate apparatus design.  

 In the RF sputtering system, electrons oscillate inside the plasma and 

the loss of electrons from the plasma is reduced. Subsequently high collision 

frequency works. The high voltage in used in DC sputtering is, therefore, no longer 

necessary. Moreover, the working pressure in the RF sputtering chamber (usually 5-

15 mtorr) is lower than that for the DC sputtering (usually 50-100 mtorr). Since the 

electron mean free path is proportional to the reciprocal of the pressure in the chamber, 

higher pressure can enhance interactions (collisions) in the plasma. These collisions 

can prevent the traveling of sputtered atoms to the substrate, so that the sputtering rate 

decreases. The lower working pressure can be new in magnetron sputtering.  

 In magnetron sputtering, a magnetic field is applied to the target, as 

shown in Figure 4.3, which represents the simplest case of the planar magnetron 

sputtering. The target is magnetized by permanent magnets fixed to the reverse side. 

The magnets provide a toroidal confinement field with the field lines forming a closed 

tunnel on the target surface as exhibited in Figure 4.2. Since sputtering heats the target, 

the magnetron incorporates blocks for water cooling during operation. The field 

strength is so chosen as to provide effective confinement for electrons. However it 

does not confine heavier ions. The transverse field component is typically > 0.1 kOe. 
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The secondary electrons that are accelerated from the target to the substrate due to the 

electric field, are forced into a spiral path owing to the Lorentz force. One component 

of the motion is a helical path about the magnetic field lines. The electrons traveling 

along these helical lines toward the center of the target are reflected because of the 

higher density of field lines in this region and the repulsive electric field encountered. 

After reflection the electrons eventually reach the perimeter of the target where the 

field lines again intersect the surface. The electrons are, therefore, trapped by the 

magnetic field close to the target. Another component of the electrons motions is a 

drift from one field line to another resulting in a race track orbit about the toriodal 

tunnel on the target surface. The combined motion let their path length be long in the 

plasma and increase the possibility of collisions with the Ar gas. This results the 

enhancement of the sputtering rate. This means the magnetron sputtering can operate 

at a lower pressure than that in the DC- and the RF- diodes sputtering (usually 0.1-10 

mtorr).  

 

Figure 4.2 A schematic view of the magnetron configuration. 



 

 

159

 

 

Figure 4.3 A schematic view of the DC+RF magnetron sputtering. 
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4.1.2 SQUID Magnetometry 

 SQUID (Superconducting Quantum Interference Device) is the most 

sensitive device for measuring the magnetic field. SQUID combines two physical 

phenomena: Flux quantization in a superconducting ring and the Josephson effect. 

There are two types of SQUID. They are dc-SQUID (direct current) involving two 

Josephson junctions and the rf-SQUID (resonant frequency) which has only one 

junction. The SQUID-magnetometry model employed in this work is rf-SQUID.   

 Suppose a current flows in a superconducting ring as shown in Figure 

4.4(a) , then a magnetic flux threading in a superconducting ring can only be an 

integral number times the flux quantum 7 2
0 2.07 10 G cm−Φ = × ⋅ . If an external 

field is applied, the flux enclosed by the ring is the sum of the external flux and that 

due to the current in the ring.  Because the external flux is not quantized, the current 

adjusts so that flux quantization is always satisfied.  

 If two superconductors are separated by an insulator, as shown in 

Figure 4.4(b), this junction separates two superconducting regions. The waves of 

cooper-pair electrons in the superconducting regions have a different phase. 

Josephson showed that the electron-pairs are tunnel across the junction and the 

electron-pair waves between the two regions are coupled. This phenomenon is called 

the Josephson effect and the junction between the two superconducting regions is 

called the Josephson junction. The critical current, at which a superconductor changes 

its state to a normal conductor, is significantly reduced at the junction.  
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Figure 4.4 Schematic diagrams showing (a) magnetic flux threading a 

superconducting ring, (b) Josephson junction, (c) rf-SQUID, and (d) rf-

SQUID detector. 
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 The rf-SQUID consists of a ring involving a Josephson junction, seen 

in Figure 4.4 (c).  Figure (d) schematically shows a typical rf-SQUID with a tank 

circuit. Assuming that the SQUID having a magnetic flux aΦ  to be measured. The 

tank circuit is driven by a current oscillating at or near a resonant frequency. The rf-

SQUID inductance L is coupled to the inductor LT of the tank circuit, which is 

connected to a preamplifier. The magnetic flux thus includes the resonant-frequency 

flux aΦ  to be measured. The loss in the tank circuit is represented by the resistance 

RT. This loss is periodic function of the flux aΦ  with the period, 0Φ . This means that 

the rf-voltage Vrf is related to the flux, aΦ . Therefore, by detecting the magnitude of 

the rf-voltage the magnetic flux aΦ  can be measured.  

4.1.3 Magnetic Compton Profile (MCP) 

 In the Compton scattering measurements, the total cross section of the 

scattering, ( )2
2/d d dEσ

Τ
Ω , contains the terms of charge-induced cross section, 

( )2
2 0

/d d dEσ Ω , and the spin-dependent cross section, ( )2
2/
spin

d d dEσ Ω , as expressed 

by (Cooper et al., 2004) 
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where ˆ( , )spin zJ n p is the Compton profile of up-spin or down-spin electrons, and  
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Here,  



 

 

163
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The spin-dependent Compton scattering cross section is proportional to the scalar 

product of between the electron spin direction ˆ( )spinn  and the wave vectors of incident 

and scattered X-rays ( 1k and 2k , respectively, 1 2q = −k k ), as expressed by (Sakai, 

1996) , here φ  is the scattering angle ( )1 2∠k k  and the Stoke parameters CP  and LP  

represents the degree of circular and linear polarizations, respectively. Then, the 

subtraction of up-spin and down-spin Compton profiles can be represented by 

subtracting a Compton profile of a sample that is magnetized in one direction from the 

Compton profile of the same sample that is magnetized in the opposite direction. The 

result gives the magnetic Compton profile ( )magJ , which is defined as a double 

integral of the momentum-spin density ( )( )spinn p  (Sakai, 1997),  

  ( ) ( )mag z spin x yJ p n p dp p= ∫∫  (4.6) 

  ( , , ) ( , , ) ( , , )spin x y z x y z x y zn p p p n p p p n p p p↑ ↓= −  (4.7) 

here ( , , )spin x y zn p p p  is the momentum density of the up-spin ( )( , , )x y zn p p p↑  or down-

spin ( )( , , )x y zn p p p↓  electron state. The integration is performed on all occupied 

electron states. The z axis is taken to be parallel to the scattering vector of X-rays. A 

theoretical momentum density of electrons in crystal is expressed as,  
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Here ,
,nψ
↑ ↓
k  is a real-space electron wavefunction of the wave vector k  and n  is the 

band index. G  is the reciprocal lattice vector. It should be noted that the intensity of 

MCP depends only on the spin and does not on the orbital angular momenta. Since the 

orbital magnetic moments of Fe and Gd MLFs are negligible, we can directly evaluate 

the ratio between the magnetizations of Fe and Gd layers by a line-shape fitting of 

MCPs mentioned below.  

  After a measurement of the momentum distribution spectra ( )n↑ p  for 

magJ
↑ and ( )n↓ p  for magJ

↓ , it is necessary to normalize each profile to the number of 

incident photons so that the spin-independent scattering intensity is completely 

cancelled out by the subtraction as (4.7). A simultaneous measurement of the elastic 

scattering peak intensity in ( )n↑ p and ( )n↓ p is adequate for this purpose because its 

spin dependence is negligibly small. Under the experimental conditions of large 

scattering vectors, as is the case of Compton scattering experiments, the spin-

dependent scattering form factors are very small in comparison with the scattering 

factor of the core electrons since the spin dependence is induced by unfilled outer 

atomic orbitals such as 3d or 4f. In addition, the elastic scattering intensity is 

proportional to the number of incident photons and influenced by the same LP -

dependence as the charge-induced Compton-scattering cross-section. When a sample 

consists of light elements and the incident X-ray energy is high, the intensity of the 

elastic peak is insufficient for the normalization. In such a case, one must measure the 

incident flux intensity of X-rays by using an ionization chamber or some other 

instruments. 
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 After ( )n↓ p has been subtracted from ( )n↑ p , the same procedure is 

applied to the ordinary Compton profiles. The results can also be used to convert the 

resultant spectrum to the MCP. The momentum is determined  by the relation, 

  
2

2 0 1 2

2 2
1 2 1 2
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The total momentum resolution is determined by the relation, 
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In the arrangements of the beamline BL08W station A, where MCP’s were measured 

for the present thesis, the parameters to be put in (4.10) are as follows: 1 0.2EΔ =  

keV, 2 0.5EΔ =  keV, 178θ = D , and 5.6θΔ =  mrad. A 133Ba radioisotope was 

used to determine the SSD energy resolution, 1E  (Kakutani et al., 2003). The incident 

X-ray energy is 1 175E =  keV. The scattering energy at the Compton peak can be 

calculated from 
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 Here 2 CE E=  and 0zp =  a.u.. The other terms are calculated by the formulas 
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Using these parameters the total momentum resolution for the MCP measurements in 

these thesis is  0.42 a.u..  

 The total spin-dependent Compton scattering intensity is related to the 

magnitude spin magnetization of a sample and is insensitive to the orbital momentum 

magnetization. This means the following: When a sample, commonly a ferromagnet, 

is magnetized by an external field along the z -direction, the area of its MCP is 

proportional to zS , the projection of the total spin on the z - direction. The 

constituents of spin-magnetic moments have momentum contributions from free 

electrons, relatively localized 3d or 4f electrons. They are evaluated by the line-shape 

analysis. For rare-earth elements, the Compton profiles of 4f electrons are a broader 

than those of 3d  electrons. The 4f  electrons are represented satisfactorily by free-

atom wave functions except in the case of light rare-earth atoms. Compton profiles of 

3d electrons, on the other hand, cannot be approximated by corresponding atomic 

Compton profiles, because they usually hybridize strongly with itinerant s , p or 

5d electrons.  

 However, it is empirically recognized that apart from the fine structure 

due to crystalline potentials, all 3d elements have almost the same Compton profile in 

the momentum region above 2 a.u., and that these profiles can be reasonably 

approximated by a flat or slightly round distribution above 2 a.u. For diffuse electrons 

such as free electrons, a Gaussian-shaped distribution with an adequate line width is 

usually adopted.  

4.1.4 X-ray Magnetic Circular Dichroism (XMCD) 

 When circularly polarized X-rays penetrate a magnetized sample, the 

X-ray flux through the sample changes its intensity depending on the direction of the 
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magnetization of the sample as shown in the diagram in Figure 4.5.  The difference of 

absorptions, μΔ , is induced by the conservation of angular momentum in the dipole 

absorption process as mentioned in Chapter I. The values of μΔ  are measured 

directly from the XMCD experiments in this thesis.   

 

Figure 4.5   XMCD diagram 
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4.2 Experimental Apparatus  

4.2.1 Sputtering Chamber 

 The DC+RF magnetron sputtering facility employed in this thesis work 

is the product of ULVAC Inc shown in Figure 4.6. The sample chamber is connected 

with the sample rotator system. A turbo molecular pump is used for evacuation. A 

separately designed magnetron source is installed. The targets mounted on the 

magnetron sources are Fe, Gd, and Al. The purities are 99.999% for Al and 99.9% for 

Fe and Gd. The substrate is mounted on the substrate holder which is positioned 

symmetrically among the magnetron sources as shown in Figure 4.7. The substrate 

and each target source are covered by a shutter to start and stop sputtering rapidly. 

The shutters are controlled by a computer. The program was developed by Dr. 

Masafumi Takagaki. 

4.2.2 Superconducting Quantum Interference Device (SQUID) 

 A SQUID system used in this research was from Quantum Design 

MPMS (Magnetic Properties Measurement System). The MPMS model is currently 

used in research laboratories worldwide. The components are shown schematically in 

Figure 4.8 and photographically in Figure 4.9 
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Figure 4.6   The DC+RF magnetron sputtering system. 
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Figure 4.7  A schematic drawing of the DC+RF magnetron sputtering system. 
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Figure 4.8  A schematic diagram of the MPMS system. 
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Figure 4.9   MPMS magnetometer model in the Quantum Magnetism Lab. 



 

 

173

  The principal components comprise the temperature control system, 

the magnetic control system, the sample handling system, the superconducting 

SQUID and amplifier circuit, and the computer control system. The temperature 

control system is basically a liquid helium (4He) cryostat with superconducting 

magnet. The sample temperature, in a range 1.7 – 400 K, can be controlled by a 4He 

gas flow control system. The superconducting magnet can produce an external field 

for the sample up to ± 50 kOe. A sample can be moved stepwise and rotated smoothly 

through the detection coils without transmitting undue mechanical vibration to the 

RF-SQUD. The RF-SQUID locates approximately 11 cm below the detection coils. 

All operating features are under computer control. 

 Magnetization curves can be measured by moving a sample through 

the superconducting coils, which are located at the center of the superconducting 

magnet (see Figure 4.10). As the sample moves through the coils, the magnetic 

moment of the sample induces an electric current in the detection coils. Because the 

detection coils, the connecting wires, and the SQUID input coil form a closed 

superconducting loop, any change of magnetic flux in the detection coils produces a 

change in the persistent current in the detection circuit (tank circuit). The current 

variation is proportional to the change in the magnetic flux. Since the SQUID 

functions as a highly linear current-to-voltage convertor, the variations in the current 

in the detection coils produce corresponding variations in the SQUID output voltage 

which are proportional to the magnetic moment of the sample. In a fully calibrated 

system, measurements of the voltage variations from the SQUID detector as a sample 

is moving through the detection coils provide a highly accurate magnitude of the 
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magnetic moment. The system can be accurately calibrated using a small piece of the 

material having a known mass and magnetic susceptibility. 

 

 

 

 

Figure 4.10  Schematic diagram of the detection coils and the rf-SQUID. Upper 

panel: The tank circuit (detection coils). Lower panel: the output 

voltage curve (respond curve). 
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4.2.3 Beamline BL08W at SPring-8 

 The magnetic Compton profiles (MCP) measurements were carried out 

at the beam line BL08W of SPring-8. The radiation source of this beamline is the 

elliptical multipole wiggler (EMPW). This beamline is designed for Compton 

scattering spectroscopy with linearly or elliptically polarized X-rays in the energy 

ranges of 100 ~ 120 keV and 170 ~ 300 keV. The experimental stations consist of 

station A for Compton scattering measurements and station B for high momentum-

resolution experiments, respectively. Magnetic Compton spectrometer is located in 

station A.  

 The beamline BL08W (station A) is shown schematically in Figure 

4.11. It contains two monochromators and other optical components, e.g. beam 

shutters, slits, fluorescence screens. White X-rays emitted from the EMPW are 

brought into the optics hutch after passing through some filters which protect the 

monochromators from heat loads, and then monochromatized with either of the two 

monochromators (Yamaoka et al., 1998, 2000). One of them horizontally reflects X-

rays of 270 keV – 300 keV into station A, and the other vertically reflects 90 keV – 

120 keV into station B. The former is equipped with a single bent Si 771 crystal. The 

crystal is asymmetrically cut for getting an optimum focal spot on a sample and an 

optimum resolution.  

 In station A, equipment is composed of a superconducting magnet, a 10-

Kelvin refrigerator for cooling a sample, and a 10-segmented Ge solid-state detector 

(SSD) shown in Figure 4.12. A magnetic field up to ± 30 kOe can be generated with a 

current of ± 79 A. The sign of the magnetic field can be altered within 5 seconds from 

+ 30 kOe to -30 kOe vise versa.  
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Figure 4.11  A schematic diagram of the BL08W beamline. 
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Figure 4.12  Experimental equipments in the station A of the beamline BL08W 
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 The magnets are designed to be equipped with two different liquid He 

condensers (one has 3 W cooling power at 4.2 K for He gas recondensation and the 

other 12 W at 20 K for radiation shielding). The sample is cooled by another 

refrigerator (4.7 W at 20 K) at any temperature between room temperature and 10 K. 

The Ge solid-state detector system consists of 10-segmented Ge sensors, 10 

preamplifiers, 10 amplifiers, 10 ADCs, 10 MCAs and one computer. The effective 

area of a Ge crystal is 100 mm2. For the MCP measurement, a scattering angle is 

desirable to be as close to 180º as possible. The Gd crystals are therefore circularly 

arranged around the hole (11 mm in diameter) through which the incident x-rays are 

introduced to the sample. The diameter of the circle of the sensors is 42 mm. The 

distance between the detector and the sample is 1 m. A trigger signal to reverse the 

magnetic field direction is given from the computer synchronized with the change of 

the memory address of the data from the MCA’s. 

4.2.4 Beamline BL39XU at SPring8 

 The BL39XU is an undulator beamline which is equipped with an in-

vacuum type undulator and a rotated-inclined double-crystal monochromator. The 

combination of fundamental / third harmonics of undulator radiation with the Si 111 

reflection of the monochromator covers an energy range from 5 to 37 keV. The 

photon flux onto a sample is maximized at every X-ray energy by synchronous tuning 

between the undulator gap and the monochromator angle.  

 A platinum-coated mirror of horizontal deflection is used to reduce the 

amount of higher harmonics to less than a factor of 10-4. The cutoff energy is 

adjustable from 8 to 20 keV with an appropriate glancing angle between 2 and 9 mrad. 

The mirror is mechanically bendable for providing a horizontally focused beam. A 
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diamond X-ray phase retarder (XPR) is installed between the monochromator and the 

mirror. It functions as a quarterwaveplate with high efficiency. Crystals of various 

thicknesses (0.34, 0.45, 0.73, and 2.7 mm) are available.  

 The superconducting magnet (SCM) is designed for XMCD 

experiments under a magnetic field up to 100 kOe. The assembly of a variable 

temperature insert (VTI) allows measurements between 1.7 and 300 K. The split-type 

superconducting coils are equipped to generate a field in the horizontal direction. The 

diameter of the magnet clear bore is 54 mm. A sample is placed inside a 25 mm-

diameter cylinder in the VTI. The SCM has X-ray transparent Be windows at both 

front and back (on the field axis) and on both sides (perpendicular to the field). The 

opening size of the front and rear windows is 10 mm in diameter, while the side 

windows are 20 mm in diameter. This design of the coils and the windows allows 

XMCD measurements either in transmission mode or in fluorescence mode as well as 

non-resonant magnetic diffraction experiments with a 90º degree scattering angle. The 

SCM is equipped with a liquid helium recondensing cooler which enables continuous 

operation of the SCM for more than 7 days with no additional coolant.  

 When the present work was carried out SCM was available for XMCD 

experiments but not for diffraction measurements because of a vibration problem. 

Sample vibrations are found to have amplitude of approximately ±30 μm. This 

vibration is caused by the vibration of the recondensing cooler. Vibration of this 

magnitude results in a small degradation in the quality of XMCD measurements; the 

effect is negligible in most cases. However, this vibration will seriously influence data 

taken during diffraction measurements with a single crystalline sample. 
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Figure 4.13 (a) The lay-out of Beamline BX39U and (b) the superconducting magnet 

system 
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 The optical system used for the XMCD measurements is shown in 

Figure 4.13. Undulator light linearly polarized in the orbital plane was 

monochromated by a Si(111) fixed-exit double-crystal monochromator. The phase 

retarder was a diamond (111) plate 0.5 mm thick and was in the Laue geometry with 

the (220 ) symmetric reflection plane tilted by 45º with respect to the polarization 

plane of the incoming beam. The piezo-driven oscillation stage was mounted on an 

2ω θ−  rotation stage, which was used to adjust the Bragg condition of the retarder 

crystal. Fast switching of photon helicity was realized by flipping the phase retarder 

around the Bragg angle using the oscillation stage. The X-rays linearly polarized in 

the orbital plane were alternately converted to right circularly (RC) and left circularly 

(LC) at 40 Hz with a 50% duty ratio. The oscillation amplitude of the phase retarder 

was kept at 130 arcsecond while scanning the incident photon energy. During this 

operation the center of oscillation was adjusted by the rotation stage to satisfy the 

Bragg condition for the incident energy. The degree of circular polarization was 

estimated to be more than 90% from the polarization measurements previously 

performed with the phase retarder in a static operation.  

 

4.3 Experimental Procedures 

 Fe/Al/Gd/Al magnetic multilayer films (MLFs) with different Al thickness 

were prepared by means of DC + RF magnetron sputtering. The IMC has been 

examined by measuring magnetic hysteresis and the temperature dependence of 

magnetization curves of the MLF’s using SQUID. Under some specific conditions, 

applied field and temperature, magnetic Compton profiles (MCPs) of some of the 

MLFs were measured at beamline BL08W (station A) of SPring-8. The line-shape 
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analysis of experimental MCP’s using MCPs of Fe/Al and Gd/Al MLFs is useful to 

evaluate the amounts of Fe-spin and Gd-spin in Fe/Al/Gd/Al MLFs. The orientation 

of Gd-spins in Gd layers in the MLF’s were examined by means of X-ray magnetic 

circular dichroism (XMCD) at the Gd-L3 edge.  

4.3.1 Sample Preparation 

 Before describing the sample details, I would like to address here about 

the basic information about the materials which will be used in calculation of 

magnetization value. Table 4.1 shows the basic parameters of Fe, Gd, and Al.  

 

Table 4.1  Basic parameters of the materials, Fe, Gd, and Al [Kittel, Ed. 7th].  

Parameters Fe Gd Al 

1. Electron configuration [ ] 6 23 4Ar d s  [ ] 7 24 5 6Xe f d s  [ ] 23 3Ne s p  

2. Atomic number  

    Atomic mass 

26 

55.85 

64 

157.25 

13 

26.98 

3. Bulk crystal’s structure 

    Lattice constant, in Å 

bcc 

2.87 

hcp 

3.63, 5.78 

fcc 

4.05 

4. Density in g cm-3 

    Concentration in 1022 cm-3 

7.87 

8.50 

7.89 

3.02 

2.70 

6.02 

5. Curie temperature, in K 1043 292 - 

6. Saturation magnetization sM   

      at Room temperature 

      at 0 K 

 

1707 

1740 

 

- 

2060 

 

- 

- 

7. Effective magneton number 

   At 0 K, per formula unit ( )Bμ  
 

2.22 

 

7.63 

 

- 
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 The samples studied in this thesis were prepared by the DC+RF 

magnetron sputtering. The targets sources of Fe, Gd, and Al were employed. The 

purities of the targets were 99.999% for Al and 99.9% for Fe and Gd. Each of the 

sources and the substrate holder were equipped with individual computer-controlled 

mechanical shutters, which were actuated in accord with a deposition procedure. 

Depositing is suddenly started or stopped by switching the shutters (covering the 

target and the substrate) to open and close, respectively. These shutters are working 

under a computer controlled with the thickness detection system. The user interface at 

the PC console provides the option of working under the sequence which is 

programmed by user.  

 The samples were deposited under a pressure ~ 5 × 10-4 torr which was 

previously pumped down to the background pressure ~ 2 × 10-7 torr. High purity 

argon gas was employed at a pressure of ~ 360 torr (0.05 MPa). Rotating technique of 

the substrate was performed for homogenous deposition. The thickness of each layer 

was individually monitored as a shift of the oscillation frequency of a quartz single 

crystal. The discharge parameters and others sputtering conditions are listed in Table 

4.2. 

 All of the samples are listed in Table 4.3. The magnetic multilayer 

films (MLFs) of Al/Fe/Al/Gd were deposited on either polyimide film substrate 

(POL) or polyethylene film substrate (PET). Polyimide film (Kapton® film in 

commercial name) was chosen to be the substrate because of its non-magnetic 

property and convenience of preparing the sample for SQUID. The thickness of Fe 

and Gd was fixed to be 20 and 40 Å, respectively, while the thickness of the Al spacer 

(R) was varied from 0 to 100 Å. Fe/Al MLF of R = 200 Å was made for comparison 
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with those of Fe/Al/Gd/Al MLFs. On the other hand, in order to reduce the Compton-

scattering intensity from a substrate,  the samples of R = 5 and 20 Å MLFs for MCP 

measurements were prepared on 4-μm-thick PET-foils instead of 25-μm-thick 

polyimide films used for the magnetization measurements. In addition, Fe/Al and 

Gd/Al MLFs of R = 5 Å were prepared.  

 

Table 4.2  Sputtering conditions used in preparation of all the samples in this 

thesis. 

 

Discharge Parameters 

Operating pressure ~ 5 × 10-4 torr 

Direct current (Dc) 
    Discharge current (Fe, Gd, Al) 
    Discharge voltage (Fe, Gd, Al) 

 
0.15 Amp 

440 V,220 V, 280 V 

Deposition rates 
    Fe 
    Gd 
    Al 

 
1 
2 

0.5 

Magnetic field 

Sputtering conditions 
Background pressure 
Substrate temperature 
Cooling water rate 
Bombarding gas  

 
~ 2 × 10-7 torr 

Room temperature 
2 litters/min 

Ar 

Gaseous rate 
    Fe – cathode 
    Gd – cathode 
    Al – cathode 

 
6.5 ccm 
6.5 ccm 
10.0 ccm 
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Table 4.3 Series of the samples deposited either on a polyimide film (POL) and a 

polyethylene film (PET). 

 

Magnetic multilayer films Al thickness (RÅ) 

1. POL/[Al(RÅ)/Gd(40Å)/Al(RÅ)/Fe(20Å)]×20/Al(RÅ) 0, 5, 7, 10, 20, 30, 100

2. POL/Al(20Å)/[Fe(20Å)/Al(RÅ)]×20/Al(20Å) 200 

3. PET/[Al(RÅ)/Gd(40Å)/Al(RÅ)/Fe(20Å)]×100/Al(RÅ) 5, 10, 20 

4. PET/[Al(RÅ)/Gd(40Å)]×100/Al(20Å) 5 

5. PET/[Al(RÅ)/Fe(40Å)]×100/Al(5Å) 5 

 

4.3.2 Magnetometry 

 Preparation of the SQUID sample is illustrated in Figure 4.14. MLF 

has a shape of circle (shaded circle in panel (a)), while the substrate is circle or square. 

The SQUID’s sample was cut to have a size of approximately 3 × 3 mm2. Then it was 

fixed inside of a straw by using varnish. Near the bottom and the top of the straw were 

vented, as shown in Figures (b-d). Figure (e) shows an example of the SQUID’s 

sample which is set into the sample rod.  

 Basic magnetic properties of each sample were investigated by 

measuring the hysteresis of magnetizations and temperature dependence of 

magnetizations. The magnetizations versus magnetic fields ( )( )M H  were measured at 

5 K and 300 K; the applied magnetic field up to ± 50 kOe. An external field (H ) was 

applied parallel to the sample plane and the total magnetizations (M ) were measured 
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as a function of H in the direction of the applied field. The magnetizations versus 

temperatures ( )( )M T  were measured under the applied fields 100 Oe and 1 kOe. 

Only in some cases the ( )M T  is measured at 25 kOe. For each ( )M T  measurement, 

the sample was cooled down to 5 K without H. Then, the data were taken in DC-mode 

with increasing temperature up to 300 K. The result is denoted to be zero-field cool 

(ZFC) data. Then the sample was cooled down to 5 K with H left unchanged. Then 

the ( )M T  data was measured with increasing temperature.  The results are denoted to 

be field cool (FC).  

 The M-H of the varnish, without the sample, was measured. The result 

is shown in Figure 4.15. The magnetization (emu/g) of varnish is related to the 

external applied field by equation  

  5 72.01861 10 7.01431 10M − −= × − × ×Η  

Majority of vanish mass is in the order of 10-3 g, so that the magnetization of the 

varnish is in the order of 10-8 at H = 100 Oe, and 10-5 at H = 50 kOe. These are very 

small as compared with that of the raw SQUID’s data which is in the order of 10-2. 

The magnetization curve of varnish was subtracted from the raw data. The raw data 

was normalized by the area of the sample. This sample area was manipulated from the 

picture which is taken together with a scale by optical microscope (see Figure 4.16). 
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Figure 4.14  Sample set up for magnetization measurements using SQUID. 
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Figure 4.15  M-H curve of vanish 

 

 

 

Figure 4.16  SQUID sample taken by an optical microscope. The scale resolution is 

0.05 cm. 
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4.3.3 Magnetic Compton Profile (MCP) 

 Sample setting for the MCP measurements is illustrated in Figure 4.17. 

In order to increase the Compton-scattering intensity, a sample was cut as shown in 

Figure (b). These MLF tapes (10 mm in width) were rolled 12 times (panel (c)), 

pressed to a square shape of 10 × 10 mm2, and then fixed to a copper sample holder, 

seen in panel (d). When the sample was set in the chamber the sample surface is 

parallel to the direction of the incident X-rays and applied magnetic field (see panel 

(e)).  

 All MCP measurements were carried out on the beamline BL08W 

station A, SPring-8. The incident energy of the circularly polarized X-rays was 

selected to be 175-keV. The direction of the incident X-rays was parallel to the 

sample plane. The scattered X-rays with an angle of 178 degrees to the incident X-

rays were detected. The size of the incident X-ray beam at the sample position is less 

than 0.6 × 1.5 mm2 (height × width). Experimental parameters, R, T and H, have been 

selected to clarify the origins of the observed characteristics of M-T curves of R = 5 

and 20. These experimental conditions are tabulated in Table 4.4. In addition, MCPs 

of Fe/Al and Gd/Al MLFs were measured at 300 K under 1 kOe and 10 K under 25 

kOe, respectively for the line-shape analysis. The accumulation times for the sample 

of R = 5 were respectively 9.3, 7.2 and 6.7 hours at 10 K under 1 kOe, 300 K under 1 

kOe, and 10 K under 25 kOe. Those for the sample of R = 20 were respectively 11 

and 13.3 hours at 10 K under 1 kOe and 300 K under 1 kOe. The accumulation time 

of 15 hours was consumed for each of the samples of Fe/Al and Gd/Al MLFs. 
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Figure 4.17   Preparation of MCP’ sample 
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Table 4.4 Experimental conditions for MCP measurements. 

 

Exp. Conditions 
MLFs 

T (K) H (kOe) 

PET/[Al(RÅ)/Gd(40Å)/Al(RÅ)/Fe(20Å)]×100/Al(RÅ)   
 

R = 5 
 

10  
10  
300  

1  
25 
1 

R = 20 10  
300  

1 
1 

PET/[Al(RÅ)/Gd(40Å)]×100/Al(20Å) 10  25 

PET/[Al(RÅ)/Fe(40Å)]×100/Al(5Å) 300 1 

 

 

Figure 4.18 Experimental set up for MCP measurements. 

 



 

 

192

 

4.3.4 X-ray Magnetic Circular Dichroism (XMCD) 

 The samples are prepared to have a length and a width of 10 and 5 mm, 

respectively, and five of the samples are stacked for the measurements, as shown in 

Figure 4.19. The samples and experimental conditions are listed in Table 4.5.  

 The XMCD measurements are made at beamline BL39XU of SPring-8. 

Incident X-rays have the energies of ~7.109 and of ~7.249 keV for measurements at 

Fe-K and Gd-L3 edges, respectively. The hystereses of XMCD signal have been 

measured for the samples of R = 0, 5(PET substrate), 10, and 100. A superconducting 

magnet including liquid helium cryostat has been employed. The direction of the 

applied field is parallel to that of the incident x-rays and the sample plane is fixed at 

~10º away from the incident x-ray direction.  

 A diagram of the electric circuit used for phase-sensitive detection is 

shown in Figure 4.20. It consists of a logarithmic converter circuit and a lock-in 

amplifier. Voltage signals V(I0) and V(I), which were proportional to the intensities of 

incident and transmitted beam, respectively. The logarithmic converter gave a voltage 

signal V(μt) which corresponds to the absorption coefficient ln(I0/I) via V(I0) and V(I). 

The AC component of V(μt) directly gave the XMCD, Δμt, and was measured through 

the lock-in amplifier referring to the frequency of the helicity switching, whereas the 

DC component gave the ordinary absorption coefficient, tμ , and was measured with 

the digital voltmeter. 
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Figure 4.19   Sample preparation for XMCD measurements. 
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Table 4.5 List of XMCD’s samples and of the experimental conditions. 

 

Exp. Conditions 
[Al(RÅ)/Gd(40Å)/Al(RÅ)/Fe(20Å)]×20/Al(RÅ) 

 MLFs 
T (K) H (kOe) 

     R = 0  (POL film substrate) 
160 

280 
Up to ±100  

     R = 5  (PET-foil substrate) 

5 

50 

280 

Up to ±100 

     R = 10 (POL film substrate) 

5 

50 

280 

Up to ±100 

Up to ±50  

Up to ±50 

     R = 100 (POL film substrate) 
5 

280 

Up to ±100 

Up to ±50 

 

Figure 4.20 Schematic diagram of the electric circuit for the XMCD measurement 

and along with the diagram of X-ray beam. 



 

 

CHAPTER V 

EXPERIMENTAL RESULTS 

 

5.1 Magnetization Curves 

 The samples are classified into two groups: one is characterized by a common 

substrate of the polyimide film (POL), and the other by the substrate of the 

polyethylene film (PET). The magnetization curves of the POL-substrate samples 

change greatly as the thickness of Al spacer is gradually increased. The results of 

magnetization measurement on the PET-substrate samples are used for analyzing the 

magnetic Compton profiles (MCPs).  

5.1.1 Magnetization Curves of the Polyimide Film-Substrate Samples. 

 Figure 5.1(a) to (i) show the curves of magnetization versus applied 

magnetic field, ( )M H , of the POL samples. Figure 5.1 (a) covers the magnetization 

at 5 K, and shows different features depending on the thickness, R, of the Al spacer. 

Figure 5.1 (b) to (h) show the magnetic hystereses in a low field region. The coercive 

field, cH , abruptly increases when a 5-Å Al spacer is inserted. On the contrary, cH  

decreases when R is increased from 5 to 30 Å. Small kinks pointed by arrows near cH  

have been observed on the ( )M H  curves of R = 5, 7, and 10 (Figure 5.1 (c), (d), and 

(e), respectively), but not on the others. 
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Figure 5.1 Magnetization curves of Al/Fe/Al/Gd MLFs on POL film; a) at 5 K up 

to 50 kOe, b) ~h) at 5K in a low field region, and i) at 300 K. 
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Figure 5.2 Temperature dependence of magnetization ( ( )M T  curves) of the 

Al/Fe/Al/Gd MLFs measured at (a) 0.1 kOe  and (b) 1 kOe. 
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 Figure 5.1(i) shows ( )M H  curves at 300 K together with a curve of 

[Al(200 Å)/Fe(20 Å)]×20/Al(20 Å) which is denoted as Al(200)/Fe. All of the 

samples show monotonously increasing magnetization with increasing H  except for 

the Al/Fe MLF, whose magnetization is rather constant in a high field region. 

 Figure 5.2(a) and (b) show ( )M T  curves of the MLFs measured at H  

= 0.1 kOe and 1 kOe, respectively. The presence of the Al spacer induces quite 

different ( )M T  curves to that of the Fe/Gd MLF (R = 0). The magnetization of Fe/Gd 

MLF decreases with increasing temperature until around 150 K and changes to 

increase.  The minimum point of the magnetization in Figure 5.2(a) indicates a 

compensation temperature, CompT , which is not found in the present Fe-Al-Gd MLFs.  

 At H  = 0.1 kOe (Figure 5.2(a)), a large difference between the ZFC- 

and the FC- curves was observed in the case of R = 5. The difference is much reduced 

when R is changed to 7. Moreover, It’s almost disappear for R = 30 and 100. At H  = 

1 kOe (Figure 5.2(b)), no difference between the ZFC- and the FC-curves was 

observed for all the samples. 

 For R = 5, the magnetization slightly increases when the temperature is 

increased from 5 K to 50 K and then rapidly increases till 100 K, and after that slowly 

increases until 300 K. For R = 7, the magnetization is much larger than that for R = 5. 

It slowly increases when the temperature increases and is almost constant between 

200 K and 300 K. The magnetization for R = 10 shows the largest value among all the 

samples above 100 K. The amounts of magnetization of R = 20, 30, and 100 

monotonously decrease with increasing temperature. For R = 100, although the 

tendency of ( )M T  curve is similar to R = 30, the amount of magnetization is much 
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smaller than that of R = 30. The amount of magnetization of Al(200)/Fe MLF is 

smaller than those of R = 10, 20 and 30, but larger than that of R = 100. 

 At H  = 1 kOe (Figure 5.2 (b)), small humps were observed on the 

curves of R = 10, 20 and 30 around 30 K, 20 K and 15 K, respectively, but not on the 

others including R = 0. These humps were not observed at H  = 0.1 kOe.  

5.1.2 Magnetization Curves of the Polyethylene Film-Substrate Samples. 

 ( )M H  curves of MLFs on PET film at 5 K up to 50 kOe are shown in 

Figure 5.3(a) to (e), and at 300 K in Figure 5.3(f). ( )M H  curves of R= 10 and 20 at 5 

K exceed that of Al(5)/Fe(20) MLF above 5 kOe, while ( )M H  curve of R = 5 crosses 

Al(5)/Fe(20) line around 20 kOe. Contrary to bulk Gd, which is magnetically soft, the 

magnetization of Al(5)/Gd(40) MLF shows gradual increment, and does not saturate 

even at 50 kOe, indicating the presence of fairly strong magnetic anisotropy in Gd 

layers at 5 K. While at 300 K, ( )M H  of Al(5)/Gd(40) MLF demonstrates that this 

MLF becomes paramagnetic.   

 Low field ( )M H  curves of Al(5)/Gd(40) MLF are shown in Figure 

5.3(b) and those of R = 5, 10,  and 20 are shown in Figs. (c), (d), and (e), respectively. 

We see that cH  of the Al/Gd MLF is comparable to that of R = 5 MLF. cH  decreases 

rapidly with increasing the thickness of Al spacer. The small kinks were observed for 

R = 5 and 10, but not for R = 20. Even though the magnitude of magnetization of the 

PET-substrate samples is different from that of the POL-substrate sample, which 

could be ascribed to the slight differences in actual thickness of Al, Fe and Gd layers 

from the nominal thickness, the tendency of magnetization is similar to the POL-film 

samples with the same R. 
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Figure 5.3 ( )M H  curves of MLFs sputtered on PET substrates; (a) at 5K up to 50 

kOe, (b)~(e) at 5 K in a low field region, and (f) at 300 K up to 50 kOe. 
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Figure 5.4 ( )M T  curves at 1 kOe of MLFs sputtered on PET substrates. 

 

 Figure 5.4 shows ( )M T  curves at 1 kOe. Unlike with an 

approximately flat curve of the Al(5)/Fe(20) MLF, the Al(5)/Gd(40) MLF 

significantly depends on T ,  and almost losts its magnetization above 230 K. The Al 

spacer between Fe and Gd layers induces quite different ( )M T  curves from that of 

the Al/Fe and Al/Gd MLF’s. When the thickness of Al spacer is increased from R = 5 

to 10, like the cases of the POL-film samples, the magnetization increases 

significantly. At 1 kOe, we notice that the curve of R = 20 is accompanied by a small 

hump around 20 K, the same as the POL-film sample of R = 20.  

 Two unexpected features are found in the figure: First, the 

magnetization of Al(5)/Fe(20) MLF at 5 K exceeds the expected value of α-Fe(20 Å) 

MLF, 69 × 10-4 emu/cm2. On the basis of this evidence, it is concluded that the Fe-

layer thickness of Al(5)/Fe(20) MLF on PET film should be corrected to 23 Å, so that 
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its magnetization is consistent with that of α-Fe. Since the MLFs of Al(5)/Fe(20), R = 

10 and 20 MLFs on PET film were prepared in the same sputtering condition, the 

thickness of these Fe-layers should be also corrected to 23 Å. A systematic error on 

the input parameter for the sputtering could be introduced during these sample 

preparations. No such discrepancy was found in the thickness of R = 5 MLF and Gd 

layers.   

 Second, the magnetization of R = 20 MLF is quite smaller than that of 

R = 10 MLF in spite of reexamined Fe-layer thickness of 23 Å. To examine this 

feature, a Mössbauer spectrum of R = 20 MLF at room temperature under 1-kOe 

external field (not shown in this thesis) was measured. The result has verified the 

presence of non- or para-magnetic component, the amount of which was about 20% of 

the normal ferromagnetic part. Some reports suggest the presence of paramagnetic 

intermixture of Fe and Al at the Al/Fe interface(Fonda and Traverse, 2004; 

Carbucicchio et al., 2000) . It is, however, not clear whether the present para- or non-

magnetic component exists in the interface, because the MLFs of R = 5 and 10 do not 

indicate such an amount of intermixture. 

 

5.2 Magnetic Compton Profiles  

 The observed MCPs of R = 5 and 20 are shown in Figure 5.5 and Figure 5.6, 

respectively. The horizontal axis denotes the electron momentum in atomic units 

(a.u.): 1 a.u. = mc/137.036 = 0.19928 × 10-18 cm·g /s, where m is the mass of electron 

and c is the velocity of light.  
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Figure 5.5 MCPs of the sample of R = 5 on PET foil substrate at (a) 10 K under 1 

kOe, and (b) 300 K under 1 kOe. 
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Figure 5.6 MCPs of the sample of R = 20 on PET foil substrate at (a) 10 K under 

1 kOe, and (b) 300 K under 1 kOe. 

  

 The line-shape analysis was made on each MCP by a least-square fitting 

method using three components: experimental MCPs of Al/Fe MLF and Al/Gd one, 

and an assumed itinerant electron-like MCP with a Gaussian momentum distribution 
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in a low momentum region (denoted as 'unknown part'), alike that of itinerant 

electrons. The intensity of each MCP was scaled to the corresponding amount of the 

magnetization induced at the same temperature and magnetic field. The negative signs 

of the Gd MCP in Figure 5.5(a) and (b) mean that the Gd-spin direction is opposed to 

the direction of the total spin magnetization mainly induced by the Fe spins. At 10 K 

under 25 kOe (Figure 5.5(c)), both the Fe- and Gd-spin magnetizations are positive, 

and a low positive peak of an unknown profile was required to be introduced to attain 

a reasonable line-shape fitting. In the case of the sample of R = 20, the Gd component 

is positive in sign at 10 K (Figure 5.6(a)), and is relatively small at 300 K (Figure 

5.6(b)).   

5.3 Hysteresis of the XMCD Effect 

 Examples of X-ray magnetic circular dichroism (XMCD) and absorption 

spectra measured at the Fe K- and Gd L3 edges are shown in Figure 5.7 (a) and (b), 

respectively. The ordinate indicates the magnitude of the observed XMCD effect. The 

spectra were measured on the sample of R = 5 (PET substrate) at T  = 50 K and H  = 

100 kOe. The maximum peaks of the XMCD spectra at the Fe K- and Gd L3- edges 

were found at 7.1095 and 7.2445 keV, respectively, which are pointed by the arrows 

in the figures. The magnetic hysteresis loops of XMCD have been measured at these 

X-ray energies. Note that, at H  = 100 kOe and T  = 50 K, both the XMCD peaks of 

Fe K- and Gd L3 edges show positive. These signs are the same as ferromagnetic bulk 

Fe and Gd samples. This means that the directions of Fe and Gd magnetic moments in 

the MLF are in the same direction of H .  

 The measurements of hysteresis loops of XMCD at the Gd-L3 edge were 

successful, and the results are shown in this thesis. On the other hand, however, the 
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results of the measurements at the Fe-K edge were not included in this thesis, because 

of a poor signal to noise ratio caused by the following reason: As mentioned in the 

Chapter IV, the sample was fluctuated during the measurement by the vibration of the 

recondensing cooler. Since the XMCD signal at the Fe-K edge was weak, the 

hysteresis loops of XMCD at this edge were not good enough to show any useful 

information. One may think of the preparation of more numbers of stacks so as to 

increase the XMCD signal of the Fe-K edge. However, at the same time the 

transmittance of X-rays (measured in transmission mode) is decreased because of the 

absorption by Gd layers, resulting an insufficient signal to noise ratio.  

 Figure 5.8 shows the XMCD-hysteresis loops of the sample Fe/Gd MLF (R = 

0) at 160 K and 280 K. In a low field region, the field dependence of the XMCD 

effect at 280 K is significantly different from that at 160 K, which is just above the 

compensation temperature of about 150 K. 

 Figure 5.9(a) shows the temperature dependence of hysteresis of XMCD effect 

on the sample of R = 5. The XMCD curve intersects with the abscissa at H  ~ 10 kOe 

for 5 K, and ~ 20 kOe for 50 K. Figure 5.9(b) shows that cH  decreases rapidly with 

increasing the temperature. Although it is difficult to evaluate the absolute value of 

the Gd moments, the magnitude of the XMCD effect at 280 K is much reduced from 

that at 5 K.  

 Figure 5.10(a) and (b) show the temperature dependence of hysteresis curves 

of the sample of R = 10. The curve intersects with the abscissa at H  ~ 3 kOe and H  

~ 5 kOe when the temperature is 5 K and 50 K, respectively. In Figure 5.10(b), even 

though the XMCD signal is very noisy at 280 K, it can be deduced that the Gd layers 

in the sample of R = 10 at 280 K are not paramagnetic.  
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Figure 5.7 XMCD and absorption spectra measured at (a) the Fe K edge (7.111 

keV) at room temperature and 100 kOe, and (b) the Gd L3 edge (7.243 

keV), measured at 50 K and 100 kOe. 
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Figure 5.8 Hysteresis loop of XMCD effect of the sample R = 0 at 280 K (solid 

circle) and 160 K (open circle); (a) covers a high field region, (b) a low 

field region. The solid lines are just for eye guide. 
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Figure 5.9 Magnetic hysteresis of XMCD effect of the sample of R = 5 at 5 K 

(open circles), 50 K (triangles), and 280 K (stars); (a) covers a high 

field region, (b) a low field region. The solid lines are just for eye 

guide. 
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Figure 5.10 Magnetic hysteresis of XMCD effect of the sample of R = 10 at 5 K 

(open circles), 50 K (triangles), and 280 K (stars); (a) covers a high 

field region, (b) a low field region. The solid lines are just for eye 

guide. 
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 Figure 5.11(a) and (b) show the XMCD effect for the sample of R = 

100 at 5 and 280 K, respectively. This sample exhibits paramagnetic even at 5 K, and 

also 280 K. Accordingly, in a high field region, the magnitude of XMCD at 50 K is 

increased in comparison with that at 280 K.  
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Figure 5.11 Magnetic hysteresis of XMCD effect of the sample of R = 100 at 5 K 

(open circles) and 280 K (solid circles); (a) covers a high field region, 

(b) a low field region. The solid lines are just for eye guide. 
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Figure 5.12 Magnetic hysteresis of XMCD effect at 5 K of the sample of R = 5 

(open circles), R = 10 (triangles), and R = 100 (solid squares); (a) 

covers a high field region, (b) a low field region. The solid lines are 

just for eye guide. 
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The hysteresis loops of the XMCD effect at 5 K of the samples of R = 5, 10, and 100 

are shown together in Figure 5.12(a) and (b). For the samples of R = 5 and 10, the 

sign of XMCD is opposite to that of the field in a low field region, as seen in Figure 

5.12(b). 

  It is also shown in Figure 5.12(b) that cH  is notably decreased by increasing R, 

and disappears for R = 100. This evidence suggests that the magnitude of cH  is 

strongly influenced by the Gd-layer magnetization, because the disappearance of cH  

for R = 100 is consistent with the paramagnetic behavior of Gd-layer at 5 K in the 

MLF of R = 100, as shown in Figure 5.11. 

 In summary, the experimental results obtained by SQUID, MCP, and XMCD 

techniques show phenomena which depend on the thickness of the Al spacer. The 

phenomena can be itemed as the following contents.  

 (1) The magnitudes of magnetization of MLFs at low temperature depend on 

the thickness of Al spacer. They increase considerably with increasing the thickness 

of Al as seen in ( )M H  and ( )M T  curves (Figure 5.1 and Figure 5.2, respectively). 

 (2) The magnetization of Al(5)/Gd(20) MLF, under H  = 1 kOe, disappears at 

about 250 K, as shown in Figure 5.4.  

 (3) A compensation temperature ( )CompT  was observed for the Fe/Gd MLF, but 

not observed for the Al/Fe/Al/Gd MLFs, as seen in Figure 5.2. 

 (4) Small kinks were observed at low temperatures on the ( )M T  curves of the 

samples of R = 20 and 30 under 1 kOe (Figure 5.2(b)).  
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 (5) The coercive force ( )cH  at 5 K decreases rapidly with increasing the 

thickness of Al from 5 to 30 Å. It also depends on the temperature, as shown in Figure 

5.12(b). 

 (6) The line-shape analysis of MCP confirms the antiferromagnetic spin 

coupling between Fe and Gd layers, and demonstrates that both the spin 

magnetization are changed to positive by an external magnetic field. 

 (7) In the line-shape fitting of MCPs measured at 25 kOe, the introduction of 

an unknown profile was required in the cases of R = 5 and 20. 

 (8) The signs of XMCD signals at the Gd-L3 edge have revealed the 

directional rotation of the Gd-layer magnetization with increasing an external 

magnetic field. 

 



 

 

CHAPTER VI 

DISCUSSION AND CONCLUSION 

 

6.1 Discussion 

 The experimental data are discussed on the basis of the assumptions that the 

total magnetization of magnetic multilayer film (MLF) is mainly affected by (1) 

intralayer exchange coupling in Fe and Gd layers, (2) Zeeman interactions of Fe and 

Gd magnetic moments with an external field ( )H , (3) interlayer magnetic coupling 

(IMC) between Fe and Gd spins, and (4) magnetic anisotropy in Gd layers and the 

negligibly weak magnetic anisotropy in Fe layers. The discussion mainly aims to 

study the IMC in Al/Fe/Gd/Al MLFs. 

6.1.1 IMC in Al/Fe/Al/Gd MLFs 

 The antiferromagnetic IMC between Fe and Gd layers across the Al 

spacer is directly determined by the analyses of MCPs and the hysteresis loops of the 

Gd-XMCD effect. According to the MCP analysis on the sample of R = 5 at 10 K and 

1 kOe, the magnitude of the Fe-layer magnetization is larger than that of the negative 

Gd magnetization (see Figure 5.5(a)). Thus the Fe moments align along the direction 

of the external field, and the Gd moments in the opposite direction. This situation is 

observed as negative signs of the Gd-XMCD-effect on the samples of R = 5 and 10 at 

5 K (see Figure 6.1(a) and (b)).  
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Figure 6.1 XMCD effects in a low field region at 5 K for R = 5, 10, and 100, 

where H  is decreased from 50 kOe to -50 kOe. 
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 When the thickness of Al spacer is increased to 100 Å, the Gd-XMCD-

effect curve shown in Figure 6.1(c) indicates paramagnetic behavior. It can be 

deduced that the IMC between Fe and Gd layers disappears when R = 100. The 

strength of IMC, therefore, depends on the thickness of Al spacer. The quantitative 

discussion on the R dependence of the IMC strength will be made in 6.1.2. 

 As shown in Figure 6.2, the a.f. IMC still exists even at 280 K in the 

samples of R = 5 and 10, which is clarified by the negative sign of the Gd-XMCD 

effect. It should be noted that the Gd-XMCD effect of the sample of R = 10 is still 

negative in sign at H  = 1 kOe, while the Gd-MCP of the sample of R = 20 (Figure 

5.1(b)) is positive in sign, indicating that the external field 1 kOe is enough to turn the 

Gd-spin direction to the field direction for R = 20, but cannot for R = 10. This means 

that the a. f. IMC in the sample of R = 20 is weaker than 1kOe, when it is expressed 

by an equivalent magnetic field.   

6.1.2 Al-thickness Dependence of IMC Strength in Al/Fe/Al/Gd MLFs 

 On the basis of the ( )M H  (Figure 5.1) and  ( )M T  curves (Figure 5.2), 

the effect of Al spacer on the strength of a.f. IMC between Fe and Gd layers can be 

discussed as follows: The increment of the magnitude of M  with increasing the Al 

thickness implies the more reduction of the negative magnetization of Gd layers than 

the reduction of the positive magnetization of Fe ones. These reductions are results of 

the larger increment of a canted angle of Gd spins than Fe spins, which is made 

possible by the reduction of the strength of the IMC between Fe and Gd.  
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Figure 6.2 Hysteresis of Gd-XMCD effect of the samples of R = 5, 10, and 100 at 

280 K. 
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 The general description of ( )M H  curve can be made by the presence 

of the magnetic anisotropy in Gd layers: the magnetic anisotropy in Fe layers is faint 

as has been found in Fe/Al MLF. Under external fields less than 500 Oe, the exchange 

coupling field between Fe and Gd layers is stronger than the external field. Then the 

Fe and Gd spins couple almost antiparallel, where the Fe magnetization is positive, 

and are polarized in the direction of the external field without making large canting 

angles. With the increment of external field, both the spins tend to cant away from the 

field direction, and the total magnetization gradually increases. When the external 

field is reversed its direction, the coupled spins remain its magnetization until the gain 

of the total Zeeman energy is enough to overcome the anisotropy energy of the Gd 

layer. Since the directions of anisotropy-axis may be distributed in the Gd layers, the 

coupled spins may gradually rotate to more stable directions, and the sign of the total 

magnetization changes to negative.  

 We notice, however, the steep changes of the magnetization at low 

fields, the kinks, which are clarified in their derivative curves shown in Figure 6.1(b), 

(c), and (d). We need another mechanism to explain the presence of the kink. If it is 

allowed to assume the spin-flip of an uppermost Fe layer at the external field 

corresponding to the kink position, the sudden reduction of the magnetization can be 

expected. The exchange coupling between the uppermost Fe layer and the beneath Gd 

layer is weaker than that of an inner Fe layer sandwiched by two neighbor Gd layers. 
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Figure 6.3 ( )M H  at 5 K and its derivative curves for the samples of R = 0 to 30 

sputtered on POL film. fH  denotes an external field at the saddle-point 

of the derivative peaks. 
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Figure 6.4  The end-point field of the kinks , fH , versus the thickness of Al spacer 

at T  = 5 K. The solid line shows a fit curve using an inverse 1st 

exponential function. 
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Figure 6.5 ( )M T  curves of MLFs on POL substrate and Al(200)/Fe MLF 

measured under H  = 100 Oe. The Al thickness is denoted by R in 

units of Å. 
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 The uppermost Fe layer is therefore easier to be influenced by a low 

external field than the inside Fe layers, and is easily reversed its spin direction before 

the gradual rotation of the inside spins. Quantitatively the step of the observed kink is 

comparable to the change of the magnetization due to the spin-flip of a single Fe layer. 

Actually the kink has a width. This will reflect the inhomogeneous IMC between Fe 

and Gd layers. In the case of R = 0, the energy of IMC between Fe and Gd spins is 

stronger than the Zeeman energy of the uppermost Fe moment, and no kink was 

observed. While in the case of R = 100, the IMC disappears, and whole Fe and Gd 

magnetic moments behave independently, resulting no kinks.  

 The effect of R on the IMC between Fe and Gd can be quantitatively 

investigated from the change of a magnetic field, fH , which makes the spin flip of the 

outermost Fe layer complete. They are pointed by arrows in Figure 6.3(b) to (d). A 

maximum exchange field between the uppermost Fe layer and the beneath Gd layer is 

considered to be equivalent to fH . When the external field exceeds fH , the inside Fe 

and Gd moments start to gradually rotate. By plotting fH  as a function of R, we 

obtain Figure 6.4. The curve indicates that the IMC strength more decreases when the 

Al thickness is reduced from 5 to 7 Å than from 7 to 10 Å. Empirically, the IMC 

strength is well expressed by an inverse exponential function of Al thickness.   

 The reduction of the strength of IMC is in good agreement with the 

change of ( )M T  curves, as shown in Figure 6.5. To avoid the influence of a random 

spin-orientation or spin glass-like behavior in Gd layers, only the FC curves will be 

discussion here. At low temperatures the increment of the magnitude of M  is larger 

when R is increased from 5 to 7 than when R is increased from 7 to 10. On the 

contrary, M  for R = 20 has a lesser magnitude than that for R = 10. This is 
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inconsistent with the above explanation that the IMC decreases with increasing the Al 

thickness spacer, i. e., the magnitude of M  for R = 20 should be at least equal to or 

larger than that for R=10. The discrepancy of this feature has been solved by the 

presence of a paramagnetic component at least in Fe layers in the actual samples of R 

≥ 20. A Mössbauer spectrum of the R = 20 MLF at room temperature, not shown in 

this thesis, has elucidated the presence of non- or para-magnetic component, the 

amount of which was about 20% of the normal ferromagnetic part. It is, however, not 

clear weather the present non- or para-magnetic component exists in the interface, 

because the MLFs of R = 5 and 10 do not indicate such an amount of intermixture. 

The clarification of this phenomenon is out of the scope of this thesis. 

 For the sample of R = 0, the IMC strength can be estimated using 

( )M H  curves of Gd/Al MLF (Figure 6.6) in the following consideration. At 5 K the 

total magnetization is 26 × 10-4 emu/cm2 under 100 Oe, where Fe and Gd spins are 

considered to be coupled antiparallel and Fe spins are fully polarized along the 

external field direction. This antiparallel coupling between Fe and Gd spins is 

indicated by the Gd-XMCD effect of the sample R = 5 at 5 K (Figure 6.1(a)), in 

which Fe layers are fully polarized along the direction of H ; since the IMC of R = 0 

MLF is stronger and the external field is lower than that for the MCP measurement on 

R = 5 MLF, the Fe-layer magnetic moment at 5 K under 100 Oe can be considered to 

be fully polarized in the external field direction, that is, the Fe-layer magnetization is -

69 × 10-4 emu/cm2. Accordingly the magnetization of Gd layer is estimated to be 95 × 

10-4 emu/cm2. If it is allowed to assume that the same magnetization as the FC 

magnetization in R = 0 MLF at 10 K emerges on a hysteresis curve of Al(5)Gd(40) 

MLF at 5 K, which is magnetized up to 50 kOe, we can read from the curve of 
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Al(5)/Gd(40) MLF in Figure 6.6 that the same amount of magnetization is induced 

when H  is 2.1 kOe. We can thus estimate an effective field from negatively polarized 

Fe layers on Gd layers to be -2.1 kOe. The evaluated magnitude of this effective field 

is reasonable, because it is larger than the twofold magnitudes of IMC shown in 

Figure 6.4 as fH  at 5 K, 0.45 kOe, 0.18 kOe and 0.095 kOe for R = 5, 7 and 10, 

respectively.  
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Figure 6.6 Hysteresis loops of magnetization of the samples R = 0 (POL 

substrate) and Al(20 Å)/Gd(40 Å) MLF (PET substrate) at 5 K. 

 

6.1.3 Compensation Temperature 

 As mentioned in the above sections, the presence of Al spacer between 

Gd and Fe layers introduces the change of the magnitude of IMC between them, and 

varieties of the temperature dependence of magnetization can be explained by the 
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variation of IMC. At the same time the presence of Al spacer reduces the Curie 

temperature of Gd layer. This effect is observed as a shift of the compensation 

temperature of the present MLFs. 

 The ( )M T  curves of Fe(20)/Gd(40) MLF (R = 0) shows a minimum of 

M  around 150 K, as shown in Figure 6.5, i.e., the system has CompT  around 150 K, 

similar to that reported in Fe(33Å)/Gd(49Å) MLF (Morishita, 1985). Since the 

magnetization of Fe layers is not much changed by the temperature below 300 K, the 

presence of CompT  means that, in the low temperature region, the magnetization of Gd 

layers is larger than that of Fe layers, and it becomes smaller than the Fe 

magnetization above 150 K due to the thermal effect. When R = 5, CompT  approaches 0 

K, which means the further reduction of the Gd magnetization due to the lower Curie 

temperature of Gd layer than that of R = 0. 

 It is worthwhile to explain the limited emergence of CompT  only on the 

( )M T  curves for R = 0 and 5 MLFs. The disappearance of CompT  in MLFs having 

thicker Al layers than 5 Å means the further reduction of the amount of Gd 

spontaneous magnetization, probably the reduction of a Curie temperature of a Gd 

layer, when it is sandwiched by thicker Al layers. As a result, the Gd magnetization 

cannot overcome the Fe magnetization. The reduction of Curie temperature of 

crystallized ultrathin Gd(0001)/ W(110) films are reported when the thickness is less 

than 28 monolayers (about 90 Å), and a Curie temperature of 220 K was observed in 

the case of 9 monolayer film (Farle et al., 1993). Since the present 40-Å thick film of 

Gd is roughly in the similar thickness region, the reduction of Gd-layer magnetization 

in MLF can be ascribed to the thickness effect.  
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6.1.4 Coercive field ( )CH  of Al/Fe/Al/Gd MLFs 

 Another phenomenon related with the thickness of Al is the coersive 

field, CH . It decreases significantly from about 600 Oe for R = 5 to 75 Oe for R = 20, 

as plotted in Figure 6.7. This result is also explained by the change of the IMC 

strength that is controlled by the Al-layer thickness. 

 According to Figure 6.7 the Fe/Gd MLF (R = 0) has CH  of 213 Oe. 

This should be ascribed to the magnetic anisotropy in Gd layers, because CH  of Fe/Al 

MLF has been found to be less than 10 Oe. In the case of R = 5, CH  is larger than that 

of R = 0, indicating the increment of the magnetic anisotropy energy of Gd layers due 

to the contact of Gd layers to Al layers. This has been experimentally confirmed by a 

large CH  of Gd(40)/Al(5) MLF shown in Figure 5.3(b), which is almost the same to 

that of R = 5. The contact of Gd layer to Al layer seems to induce a certain change of 

crystal lattice structure of Gd layers.  

 As shown in Figure 6.7, CH  is reduced with increasing R from 5 to 10. 

It should be noted that the decrease of CH  in the hysteresis loop of Gd-XMCD effect 

shown in Figure 6.8. is the same as that of ( )M H  curves between R = 5 and 10 

shown in Figure 5.1(c) and (e). This is one of the clear evidences that CH  is induced 

by the Gd-layer magnetic anisotropy and not by the Fe-layer one. The reduction of 

CH  above R = 5 can be approximated by the following simple relation, 

  
0

2
C

K
H

M
= ,  (3.15) 

where K  is the anisotropy constant of Gd layer, and 0M  is the remanent 

magnetization. This relation is known as a rough explanation of the relation between 
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CH  and 0M  of a simple ferromagnet. The inverse proportion of CH  to 0M means 

that the larger the positive Zeeman energy which is induced by the reversed magnetic 

field, the smaller the coercive field. In other words, the large magnetic moment is 

easy to turn its direction beyond the anisotropy barrier, when the direction of the 

external field is reversed. Using the experimental values of K  and 0M , the 

anisotropy constant K = 12 MOe·emu/cm2  at 5 K is obtained by a three-point least 

square fitting for R = 5, 7 and 10.  Using the relation (3.15), the anisotropy constant 

for the R = 0 MLF is evaluated to be 4.5 MOe·emu/cm2.  

 The IMC becomes weak when R exceeds 10, and Fe and Gd magnetic 

moments behave independently. The hysteresis curve thus approaches to a simple sum 

of two magnetizations. In the present cases, the Gd magnetization is reduced, and the 

resultant CH  is almost determined by that of Fe layer, and becomes small as shown in 

Figure 6.7.  
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Figure 6.7 Coercive field ( )CH  versus Al thickness. The solid line is just a simple 

eye guide. 
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Figure 6.8 Hysteresis loops of Gd-XMCD at 5 K for the samples of R = 5 and 10 

deposited on POL film. 

 

6.1.5 Spin Moments Investigated by MCPs 

 The numerical results of the line-shape analysis on MCPs of the 

samples of R = 5 and 20 (shown in Figure 5.5 and Figure 5.6, respectively) are 

tabulated in Table 6.1. 

  The line-shape analysis on MCP of R = 5 at 10K and 1 kOe clarifies 

that IMC between Fe and Gd layers is antiferromagnetic, and a 25-kOe external field 

is enough to turn the Gd-spin magnetization into a positive value. The reduction of 

magnetization of R = 5 MLF toward low temperatures in Figure 5.4 is thus explained 

by the negative spin polarization of Gd layers, not by the reduction of Fe-layer 

magnetization. This explanation is confirmed by the gradual increase of the FC ( )M T  
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curve of an additional Al(200)/Fe(20) MLF by lowering the temperature, in which 

IMC between Fe layers can be weaker than R = 5 MLF. 

 
Table 6.1 Fe-spin, Gd-spin and unknown part magnetizations for R = 5 and 20 at 

the specified H  and T . The samples were deposited on PET film. 

Magnetization 
R = 5 

(10-4emu/cm2) 

R = 20 

(10-4emu/cm2) 

H  1 kOe 25 kOe 1 kOe 

T  10 K 300 K 10 K 10 K 300 K 

total (SQUID) 31 57 85 72 64 

Fe layer 68(7) 61(6) 52(7) 58(4) 55(2) 

Gd layer -38(8) -6(5) 23(5) 12(4) 6(2) 

unknown part 2(2) 2(2) 10(2) 2(1) 3(1) 

 

 If we try to quantitatively compare the magnetization of R = 5 at 1 kOe 

with Al(5)/Fe(20) in Figure 5.4, the ( )M T  of the latter should be multiplied by 0.9 to 

equalize the thickness of Fe layer to that of R = 5 MLF. After that we find that ( )M T  

of R = 5 MLF at 300K is smaller than that of Al(5)/Fe(20) MLF. This is consistent 

with the presence of negative spin polarization of Gd layer determined by the MCP 

analysis.  As shown in Figure 5.3(a), the ( )M H  of R = 5 MLF at 5K exceeds the 

magnetization of Al(5)/Fe(20) at 25 kOe. This is also consistent with the results of 

MCP analysis, although it is at 10 K. 
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 The MCP analysis on R = 20 shows the positive spin polarization of 

Gd spins at 10 and 300K. It is reasonable to conclude that the increment of Al-layer 

thickness from 5 to 20 Å much weakens a. f. IMC between Fe and Gd layers, and Gd 

spins cannot keep its negative polarization under a 1-kOe field. This positive spin 

polarization of Gd layers explains the hump on the ( )M T  curve of R = 20 around 25 

K in Figure 5.4, that is, Gd spins are in ferromagnetic ordered state below 50 K, and 

are forced to be positively polarized by the external 1-kOe field.  

 According to the MCP analysis on R = 5 MLF at 10K and 1 kOe, the 

Fe-layer magnetization, 68 emu/cm2, is comparable to that of α-Fe of 20 Å in 

thickness. This means that the Fe spins are almost parallel to the external field. 

Consequently, Gd spins, which are coupled to Fe spins by the anti-ferromagnetic IMC, 

are antiparallel to the external field. This is consistent with the indication from the 

XMCD effect in Figure 6.1(a).  

 When the external filed is increased up to 25 kOe at 10 K, both Fe and 

Gd spins positively polarized, and the elucidated magnitudes of them by the MCP 

analysis are smaller than those at 1 kOe. This feature means that both the spins cant 

from the direction of the external field.  At 300 K, the Fe layer keeps high 

magnetization. On the other hand, the Gd layer shows a little amount of negative 

magnetization of -6 emu/cm2, indicating the significant reduction of Gd spontaneous 

magnetization in the MLF of R = 5 at 300 K.  

 The MCP analysis suggests the presence of the unknown component, 

which is tentatively expressed by a Gaussian profile at a low momentum region. 

Contrary to relatively small their contributions in the whole cases, the unknown 

component shows a noticeable amount in the case of R = 5 at a low (10 K) and a high 
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magnetic field (25 kOe). Although its origin is not clear, this seems suggest the 

presence of a few paramagnetic components in MLF.  

6.1.6 Al(5)/Fe(20) and Al(5)/Gd(40) MLFs 

 The attrition ratio of FC magnetization of Al(5)/Fe(20) MLF (see 

Figure 5.4) between  79.8 × 10-4 emu/cm2 at 5 K and 76.5 × 10-4 emu/cm2 at 300 K is 

larger than that of α-Fe. A Curie temperature of Fe layer in this MLF seems to be 

reduced, due to the weak interlayer exchange coupling between Fe layers. In fact, an 

additionally prepared Al(200)/Fe(20) MLF (see its ( )M T  curve in Figure 6.4), in 

which the interlayer exchange interaction between Fe layers is more weakened, shows 

a larger ratio than Al(5)/Fe(20) MLF. These are consistent with a report on Curie-

temperature reduction of a thin Fe layer (Sudhakar Rao et al., 2002). 

 ( )M T  of Al(5)/Gd(40) MLF in Figure 5.4 shows that the magnitude of 

the magnetization of the MLF is almost zero above  250 K. This verifies that the 

Curie temperature of the Al(5)/Gd(40) MLF is lower than that of bulk Gd.  

6.1.7 The Difference Between FC and ZFC Magnetization Curves 

 According to Figure 5.2(a), there is a distinct difference between ZFC- 

and FC-magnetization curves under H  = 100 Oe in the case of R = 5, but not R = 0. 

This difference decreases when R is increased and almost disappears for R = 30 and 

100. Under H  = 1 kOe (Figure 5.2(b)), however, no difference were observed 

between ZFC- and FC-curves for all the samples. The difference between ZFC- and 

FC-magnetization curves can be taken place by the presence of the random 

anisotropic magnetic anisotropy in Gd layers. When Al-thickness is increased (R > 5), 

not only the IMC between Fe and Gd layers is weakened but a Curie temperature of 

the Gd layer is decreased. The Fe layers, which become a major part of magnetization, 
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are then easier to be magnetized by the external field of 100 Oe, and the difference 

between ZFC- and FC- magnetization curves of the samples with R > 5 is therefore 

reduced.  

6.1.8 Fe- and Gd- Spin Orientation in Al/Fe/Al/Gd MLFs 

 The orientation of spin moments in the Gd layer ( )GdM  and that in the 

Fe layer ( )FeM  can be represented by combining the results of the hysteresis loop of 

Gd-XMCD effect and the numerical analysis of MCPs summarized in Table 6. Here 

we assume that Gd or Fe spins are ferromagnetically coupled in each layer. The 

variation in GdM  with increasing H  can be demonstrated by Gd-XMCD effect. In 

general, either kind of states can be induced in a low field region, one is the so called 

Gd-aligned state, where GdM  is fully aligned parallel to the direction of H  and 

antiparallel to FeM , and the other is the Fe-aligned state, where FeM  and GdM  are 

substituted in the Gd-aligned state, as shown in Figure 6.9 (a) and (b).  

 At 5 K without H , the spin orientation of Fe(20 Å)/Gd(40 Å) MLF is 

in the Gd-aligned state, while all of the present Al/Fe/Al/Gd MLFs are in the Fe-

aligned state. When H  is increased, Gd spins in Al/Fe/Al/Gd MLFs tend to rotate to 

decrease their Zeeman energy, associating with the increment of the a.f. IMC energy 

and the balancing rotation of Fe spins. The directions of GdM  and FeM  are then fixed 

in balance with them, and make angles to H , as shown in Figure 6.9(c).  

 In the case of R = 5, the Gd-XMCD effect intersects the abscissa at 1H  

= 8.5 kOe, as shown in Figure 6.10(a), indicating that the direction of GdM  is 

perpendicular to the H  direction (see Figure 6.9(d)). This means that the total 

magnetic moment (M ) is equal to the projection of FeM  onto the field direction. Here 
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M  is read from the ( )M H  curve in Figure 6.10(a) to be 63 × 10-4 emu/cm2. Since the 

magnitude of FeM  is 69 × 10-4 emu/cm2 (equal to that of alpha-Fe of 20Å in 

thickness), which is consistent with the numerical analysis of MCPs (Table 6.1), the 

angle α between the directions of FeM  and H  is obtained as 24D .Similar calculation 

for R = 10 gives 10α = D  with 1H = 2.1 kOe and M  = 68 × 10-4 emu/cm2 (see Figure 

6.10(b)). The reduction of α  with increasing R is one of the results of the attenuation 

of a. f. IMC between Fe and Gd layers, i.e., the more the a. f. IMC is reduced, the 

more the small angle α  is effective to lower the Zeeman energy of Fe spins. 

Unfortunately, the values of 1H  at 280 K cannot be read from the hysteresis of the 

Gd-XMCD effect because of an insufficient signal to noise ratio. 
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Figure 6.9 Fe-spin ( )FeM , Gd-spin ( )GdM , and total magnetic moments ( )M  in 

Al/Fe/Al/Gd MLFs. 
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Figure 6.10 XMCD effect and total magnetization of the sample R = 5 and 10 

measured at 5 K 
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6.2 Conclusion 

 The interlayer magnetic coupling (IMC) was experimentally investigated in 

multilayer films (MLFs) of [Al(RÅ)/Gd(40Å)/Al(RÅ)/Fe(20Å)] × N/Al(RÅ), where 

R = 0, 5, 7, 10, 20, 30, and 100 as nominal thicknesses (N = 100 for R = 5 and 20 on 

polyethylene-film substrates, and N = 20 for R = 0, 5, 7, 10, 20, 30, and 100 on 

polyimide-film substrates), together with [Al(5Å)/Gd(40Å)]×100 and 

[Al(5Å)/Fe(20Å)]×100. Magnetization curves and temperature dependence of them 

were measured.  

 In addition to the bulk magnetization measurements, the synchrotron-radiation 

based methods, X-ray magnetic Compton-profile (MCP) method and X-ray magnetic 

circular dichroism (XMCD) method, have been successfully applied as for element 

selective techniques.MCP measurements were carried out for the samples of R = 5 

and 20. The results have led to the following conclusions. Magnetic hysteresis loops 

of XMCD effect were measured on the samples of R = 0, 5, 10, and 100 at the Gd L3- 

edge.  

The magnetic field dependence of Fe- and Gd-spin orientations has been successfully 

investigated by this element selective method.  

 The whole experimental results, ( )M H , ( )M T , cohesive fields of the Gd-

XMCD curves, canted angles of Fe and Gd magnetic moments, are reasonably   

explained by the attenuation of the IMC by the Al spacer. The following results are 

also mentioned:  

 (1) The IMC in Al/Fe/Al/Gd MLFs is antiferromagnetic coupling, the same as 

that in Fe(20 Å)/Gd(40 Å) MLF. 
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 (2) The Al spacer is effective to control the magnitude of IMC between 

Fe(20Å) and Gd(40Å). They are evaluated as an effective magnetic field from Fe 

layers to be 2.1, 0.9, 0.36 and 0.19 kOe for R = 0, 5, 7, and 10, respectively. 

Empirically, the magnitude of IMC is proportional to an inversed exponential function. 

 (3) The IMC disappears when the Al spacer is above 20 Å in thickness. Even 

at 5 K the sample of R = 100 behaves paramagnetic. 

 (4) The magnetization of Gd layers in Al/Gd/Al/Fe MLF is reinforced by IMC 

with neighboring Fe layers through Al spacer of 5 and 10 Å in thickness, but isolated 

from Fe-layer magnetization in the case of 20 Å.  

 (5) The observed attenuation of the magnetization of Fe(20Å)/Al(5Å) and 

Gd(40Å)/Al(5Å) MLF with increasing the temperature is consistent with the reported 

reduction of the Curie temperature due to the thickness effect. 

 (6) Notable change of coercive force is found to be inversely proportional to 

the remanence field, similar to the cases of common ferromagnetic material. The 

anisotropy constants are evaluated to be 4.5 MOe·emu/cm2 for R = 0, and 

approximately 12 MOe·emu/cm2 for R = 5, 7, and 10. 

 The present study shows that a combination of magnetization and MCP 

measurements is effective to determine individual spin moments in constituent 

magnetic layers of MLFs and spin coupling states between them.  It also suggests that 

useful magnetic properties can be artificially obtained by means of magnetic MLF 

systems composed of [A/B/C] structure, with antiferromagnetically coupled A and C 

layers separated by a nonmagnetic B layer. Although only the thickness of B layer 

was altered in the present study, desirable magnetic properties can be created by 

selecting suitable combination of A, B and C layers. 
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 Further investigation is required to clarify the origin of the reduction of Curie 

temperature and magnetically hard property of Gd layer prepared by a magnetron 

sputtering method. 
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APPENDIX A 

ELECTROMAGNETIC RADIATION 

  

 Light is electromagnetic radiation. Theoretically, it is given by solving the 

electromagnetic equations. In this section the solutions of the electromagnetic 

equations are presented. Light is quantized. Quantized light is particles being referred 

to photons. Maxwell’s equations are expressed by 

 4div πρ=D  (Coulomb’s law) (A.1) 

 0div =B                               (Absence of magnetic monopole) (A.2) 

 1
rot

c t
∂

= −
∂
B

E                     (Electromagnetic induction law) (A.3) 

 4 1
rot

c c t
π ∂

= +
∂

j D
H  (Ampere’s law) (A.4) 

Here, E  and H  are the electric field and the magnetic field in vacuum, respectively. 

D  and B  are the electric and magnetic field in a material, ρ  the charge density and  

j  the current density. D  and B  are expressed using the materials constants as  

  (1 4 )

( 4 )

ε

πα

π

⎫⎪= ⎪⎪⎪⎪= + ⎬⎪⎪⎪= + ⎪⎪⎭

D E

E

E P

 (A.5) 

  α=P E  (A.6) 

  σ=j E  (A.7) 

  μ=B H  (A.8) 
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The electric field vector, D , in a material is called electric displacement vector and 

the magnetic field vector, B , in the material is called the magnetization vector. P  is 

called the polarization vector. The equations given in (A.5) through (3.9) are those 

describing the relations of E  and H  with , ,D B P  and j  and quantities, , ,ε α σ  and 

μ  are tensors. They are characteristic of materials. ε  is referred to dielectric constant, 

α  the polarizability, σ  the conductivity and μ  the permeability. In case of μ , 

relations similar to (A.5) are given by 

  
1 4μ πχ

χ

= +

=M H
 (A.9) 

χ  is called the susceptibility and the magnetic polarization, M , is also referred to the 

magnetization in many cases.  

 The meanings of (A.1) through (A.4) are shown in parentheses. Ampere’s law, 

(A.4), indicates that the magnetic field is formed by electric currents. There, we view 

/ t∂ ∂D  as the current. If the electric field varies with time, the field change is 

equivalent to the current. The quantity, / t∂ ∂D , is called the displacement current. 

Suppose the static current j  equal zero. If the electric field changes with time, (A.4) 

tells us that the magnetic field exists there. (A.3) and (A.4) show that the electric field 

varying with time generates the magnetic field and magnetic field varying with time 

generates the electric field. (A.7) shows the Ohmic law.  

 (A.1) shows that the charge distribution generates the electric field and (A.2) 

shows that the static magnetic field cannot be produced if the magnetization does not 

exist in a material from the beginning. The origin of the magnetization is the electron 

spins and the existence of the electron spin was demonstrated by spectroscopy, 

namely by the analyses of atomic spectra. 
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 The origin of tensors , , ,ε α σ μ  and χ  cannot be clarified by the Maxwell’s 

equations. They are clarified by the electronic theory of solids, quantum mechanics, 

and the statistical mechanics. The constants of materials are investigated through 

analyses of their dependence on photon energy. Since the origins of the materials 

constants are known already, the contemporary researches are made by the 

measurements of spectra and results are used to analyze the electronic structure.  

 Now we solve Maxwell’s equations to find the electromagnetic waves in 

vacuum. In vacuum,  and 0, 0, 0, 0ρ α χ σ= = = = . Then 1ε =  and 1μ =  from 

(A.5) through (A.9). Then, we have  

  

1
0

1
0

0

rot
c t

rot
c t
div

⎫∂ ⎪⎪− = ⎪∂ ⎪⎪⎪∂ ⎪⎪+ = ⎬⎪∂ ⎪⎪⎪= ⎪⎪⎪⎪⎭

E
H

H
E

E

 (A.10) 

as the electromagnetic equations in vacuum. We operate 1
c t

∂
∂

 to the first equation 

and rot  to the second equation. Then we have 

  
2

2 2

1 1
0rot

c t c t
∂ ∂

− =
∂ ∂

E
H  (A.11) 

  1
( ) 0rot rot rot

c t
∂

+ =
∂

H H  (A.12) 

Making [(A.11)-(A.12)], we have  

   
2

2 2

1
( ) 0rot rot

c t
∂

− − =
∂
E

H  (A.13) 

From the formula of vector operation, we have 

  2( ) ( )rot rot grad div= −∇E E E      
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                   2= −∇ E  (∵  (A.10)) (A.14) 

Here,   
2 2 2

2
2 2 2x y z

∂ ∂ ∂
∇ ≡ + +

∂ ∂ ∂
 

Then, we have  

  
2

2
2 2

1
0

c t
∂

−∇ =
∂
E

E  (A.15) 

In a similar way, we operate rot  to the first equation of (A.10) and 1
c t

∂
∂

 to the 

second equation. Manipulating the results in the similar way, we have  

  
2

2
2 2

1
0

c t
∂

−∇ =
∂
H

H  (A.16) 

(A.15) and (A.16) have the same mathematical form. They have the form of a wave 

equation. They are often called the telegraphic equations. Since they have the same 

form, we formulate a equation that gives us the solutions, E  and H , more generally. 

For the purpose to obtain the general equation, we introduce the vector potential, A , 

defined as 

  
1
c t
rot

∂
= −

∂
=

A
E

H A
 (A.17) 

Inserting (A.17) into the first equation of (A.10) and using (A.14), we have  

  
2

2
2 2

1
0

c t
∂

−∇ =
∂
A

A  (A.18) 

In the calculation, the assumption is made that 0div =A . Note that, because of the 

first equation of (A.14), 

  1
0div div

c t
∂

= − =
∂

E A   

  0div∴ =A  (A.19) 
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A general solution of (A.18) is 

  0 ( )f tω= ⋅ ±A A rκ  (A.20) 

  2 21
0

c
ω− =κ  (A.21) 

Here, ( )f ξ  is an arbitrary function of ξ . If we insert (A.20) and (A.21) into (A.18), 

we find (A.20) together with (A.21) is the solution of (A.18). Since the form of the 

differential equation is the same, H  and E  have the same forms as (A.20) with 

(A.21). Thus, we can write the solutions of the telegraphic equations as 

  
0 0

0

0

( ) ( )

( ) ( )

( ) ( )

a a

a a

a a

f t f t

f t f t

f t f t

ω ω

ω ω

ω ω

+ −

+ −

+ −

⎫⎪= ⋅ + + ⋅ − ⎪⎪⎪⎪= ⋅ + + ⋅ − ⎬⎪⎪⎪= ⋅ + + ⋅ − ⎪⎪⎭

0

0

A A r A r

E E r E r

H H r H r

κ κ

κ κ

κ κ

 (A.22) 

For simplicity, we take r  to be z  and consider only ω−  solution. If the phase of 

( )f ξ  at 0t  equals to be 0 0 0 0 0( , )z t z tξ ξ κ ω= = − , and at  0t t+Δ  this phase moves 

to 

  0 0 0 0 0( , ) ( ) ( )z z t t z z t tξ ξ κ ω= +Δ +Δ = +Δ − +Δ  

we have 

  0 0 0 0( ) ( )z z t t z tκ ω κ ω+Δ − +Δ = −  

Then we have 

  z
t

ω
κ

Δ
=

Δ
 

At very small tΔ  , this gives the speed, v , of the movement of the same phase, and 

thus, of ( )f ξ . Therefore,  

  v
ω
κ

=  (A.23) 

From (A.21) and (A.23), we have  
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  v c=  

This means that c  equals to the speed of light. In other words, the solution of 

Maxwell’s equation presents that the electromagnetic wave is nothing but light.  

 The practical form of ( )f ξ  is determined by solving the boundary condition 

problem. The mathematical treatment of this problem is found in many text books of 

the electromagnetic theory and optics. We do not come in this problem here. Instead, 

we consider this problem from phenomenological point of view. We postulate the 

solution ( )f ξ  to be oscillatory functions. This is because the electromagnetic wave is 

generated the oscillation of electrons, more rigorously, by the electric dipole 

oscillation. Examples: Fluorescence, antenna, spark (experimentally by Herz), 

Krystron, magnetron, lasers, etc.  

 Since the solution is an oscillatory function, we can expand the solution, 

( )f tκ ω⋅ ±r , in the Fourier series. In other words the solution is given by the 

superposition of harmonic waves. In order to see the nature of the solution, we 

consider only one piece of plane wave, as 

  
0

0

0

exp ( )

exp ( )

exp ( )

i t

i t

i t

κ ω

κ ω

κ ω

⎫⎪= ⋅ − ⎪⎪⎪⎪= ⋅ − ⎬⎪⎪⎪= ⋅ − ⎪⎪⎭

A A r

E E r

H H r

 (A.24) 

Here, ω  has the nature of the angular frequency. Then we have 

  2
2

cπ
ω πν

λ
= =  (A.25) 

Here, ν  is the oscillation frequency and λ  is the wavelength. From (A.21) and (A.25), 

we have 
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  1 2
c

π
κ ω

λ
= =  (A.26) 

Thus κ  is the wave number vector; it is directed toward the direction of the 

propagation of the wave. We have adopted the ω−  wave. In this case, the wave 

propagates from 0<r  to 0>r . In case of the ω+ , the wave propagates from 

0>r  to 0<r .  

 We insert the third equation of (A.24) into (A.3). Then we have 

  ( )0 0i ti B
rot e

c
ωω ⋅ −− =rE κ  (A.27) 

Here we used the third equation of (A.24) and (3.9) obtaining 

  0

0

exp( )

exp( )

t

B t

μ ω

ω

= ⋅ −

= ⋅ −

B H r

r

κ

κ
 (A.28) 

From (A.27) and (3.9) we have 

  0
i

rot
c
ωμ

− =E H  (A.29) 

From (A.29) and the second equation of (A.17), we have 

  0
i

rot rot
c
ωμ

− =E A  (A.30) 

Selecting an appropriate gauge, we have 

  i
c
ωμ

=E A  (A.31)  

This is an important relation that shows E A& . 

 Next, we come back to (A.24). We put  

  tτ ω= ⋅ −rκ  (A.32) 

Then the electromagnetic waves are written as 
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0

0

0

i

i

i

e

e

e

τ

τ

τ

⎫⎪= ⎪⎪⎪⎪= ⎬⎪⎪⎪= ⎪⎪⎭

A A

E E

H H

 (A.33) 

Wave vector κ  is written as 

  x x y y z zκ κ κ= + +u u uκ  (A.34) 

where ( , , )x y zu u u  is a unit vector directing to the unit vector ( , , )x y ze e e  of r . Then, 

we have  

  y zx y zκ κ κ⋅ = + +xrκ  (A.35) 

Therefore we have from (A.32) through (A.35) 

  

i i
x

i i
y

i i
z

e i ei
x

e i ei
y

e i ei
z

τ τ

τ τ

τ τ

κ

κ

κ

⎫∂ ⎪⎪= ⎪⎪∂ ⎪⎪⎪∂ ⎪= ⎬⎪∂ ⎪⎪⎪∂ ⎪⎪= ⎪∂ ⎪⎭

 (A.36) 

Thus, we have 

  i ie i eτ τ=∇ κ  (A.37) 

Also we have 

  i ie i e
t

τ τω
∂

= −
∂

 (A.38) 

Thus we can replace operation ∇  with iκ  and operation / t∂ ∂  with iω− . Since 

rot  is equal to ×∇  and div  is equal to ⋅∇ . Using these relations, we obtain from 

(A.1) through (3.9), 
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0

0

μω

εω

⎫× = ⎪⎪⎪⎪× = − ⎪⎪⎬⎪⋅ = ⎪⎪⎪⎪⋅ = ⎪⎭

E H

H E

E

H

κ

κ

κ

κ

 (A.39) 

  
0

0

ω

ω

⎫× = ⎪⎪⎪⎪× = − ⎪⎪⎬⎪⋅ = ⎪⎪⎪⎪⋅ = ⎪⎭

E B

H D

D

B

κ

κ

κ

κ

 (A.40) 

From (A.39) and (A.40) we conclude the following important nature of the 

electromagnetic wave: 

 1)  

⎫⎪⊥ ⎪⎪⎪⎪⊥ ⎬⎪⎪⎪⊥ ⎪⎪⎭

E

H

H E

κ

κ  (A.41) 

This means that the electromagnetic wave in vacuum is the transverse wave and the 

electric field is perpendicular to the magnetic field.  
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 2) 

⎫⊥ ⎪⎪⎪⎪⊥ ⎪⎪⎬⎪⊥ ⎪⎪⎪⎪⊥ ⎪⎭

B

D

B E

D H

κ

κ
 (A.42) 

     

 

   

In a transparent material, the electromagnetic wave formed by the B  and D  is the 

transverse wave. However B  is not perpendicular to D . 



 

 

APPENDIX B 

QUANTIZATION OF ELECTROMAGNETIC FIELD 

  

 We consider equation (A.18), from first equation in (A.24) and (A.31) solution 

of the equation (A.18) may be written as 

  0( , ) exp[ ( )]k
k

c
t i t

i
ω

ω
= ⋅ −kA r E k r  (B.1) 

Here k  denotes the wave vector number which is discussed already in (A.26), 

2 2( / )k cω= . If we have a number of waves of different ω  in a large box with 

volume V XYZ= . Then the wave vector k  becomes discrete, and satisfies the 

condition 

  ( , , ) 2 ( )x y zk X k Y k Z Integerπ= ×  (B.2) 

Thus, the general form of the vector potential may be expressed by a superposition of 

kA , namely 

{ }, , , , ,
,

2
( , ) exp[ ( ) exp[ ( )s s k s s s

s

t c A i t A i t
V
π

ω ω
ω

+ += ⋅ − + − ⋅ −∑ k k k k k
k

A r e k r e k r  (B.3) 

Here ,ske  ( 1,2s = ) denotes real polarization vector that satisfy the equations 

  
, ,1 ,2

,1 ,1

0, 0,

1

s ⋅ = ⋅ =

⋅ =
k k k

k k

e k e e

e e
 (B.4) 

and the ,sAk  are complex constants that are proportional to the amplitudes of the wave 

vector potential. Since we shall deal with real quantities, we assume that  
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  *
, ,s sA A+=k k  (B.5) 

Since the time-independent Hamiltonian is equal to the total energy in material system. 

Then, we should expect to obtain a Hamiltonian for the radiation field by computing 

the total energy Ε  in material, namely, 

  2 21
( )

8
E H dV

π
Ε = +∫  (B.6) 

Computing E  and H  from (A.17) using (B.3), and use the notation rot ≡ ∇×A A ,  

  
2

21 1
8

dV
c tπ

⎡ ⎤∂⎢ ⎥Ε = + ∇×⎢ ⎥∂⎣ ⎦
∫

A
A  

  ( ) ( )
1 1 1
8

dV
c t c tπ

∗
∗⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂⎟ ⎟⎜ ⎜⎢ ⎥Ε = ⋅ + ∇× ⋅ ∇×⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎢ ⎥⎝ ⎠ ⎝ ⎠∂ ∂⎣ ⎦

∫
A A

A A  

Because 

  
[ ] [ ]

[ ] 2

( ) ( ) ( ) ( )

( ) ( )

∇× ∇× = ∇ × ∇× + ∇× ∇×

⎡ ⎤= ∇ × ∇× + ∇ ∇ −∇⎣ ⎦

A B A B A B

A B A B B

i i i

i i i
 

 

∴  [ ] 21 1 1
( )

8
dV

c t c tπ

∗
∗ ∗⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂⎟ ⎟ ⎡ ⎤⎜ ⎜⎢ ⎥Ε = ⋅ + ⋅ ∇ ∇⋅ − ⋅ ∇⎟ ⎟⎜ ⎜ ⎣ ⎦⎟ ⎟⎜ ⎜⎢ ⎥⎝ ⎠ ⎝ ⎠∂ ∂⎣ ⎦

∫
A A

A A A A  (B.7) 

The second term of equation (B.7) can be rewritten in the surface integral (Gauss’s 

dispersion formula) and disappears at the surface. Thus, we obtain 

  
2

2 2

1 1 1 1
8

dV
c t c t c tπ

∗
∗

⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎟ ⎟⎢ ⎥⎜ ⎜ ⎢ ⎥Ε = ⋅ − ⋅⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠∂ ∂ ∂⎣ ⎦⎣ ⎦
∫

A A A
A  

2 2( / )k cω=∵  Thus, the energy may be written in the form  

  *
, , ,

,
s s s

s

a aωΕ =∑ k k k
k

 (B.8) 

where 
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,

,

, ,

* *
, ,

s

s

i t
s s

i t
s s

a A e

a A e

ω

ω

− ⎫⎪= ⎪⎪⎬⎪= ⎪⎪⎭

k

k

k k

k k

 (B.9) 

If we now regard ,sak  and ,siak  as conjugate variables and (B.8) as the Hamiltonian of 

the system, we find that the Hamiltonian equations are 

  
, , ,

,

* *
, , ,

,

s s s
s

s s s
s

a i a
ia

a i a
a

ω

ω

⎫∂Η ⎪⎪= =− ⎪∂ ⎪⎪⎬⎪∂Η ⎪= = ⎪⎪∂ ⎪⎭

k k k
k

k k k
k

�

�
 (B.10) 

The solution of (B.10) lead to the time dependence expressed by (B.9). Hence, (B.8) 

actually is the Hamiltonian function of the system.  

 Up to this point, the derivation is within a framework of semi-classical 

member. To present the energy in equation (B.8) in quantum mechanical presentation, 

the following new variables are introduced. 

  ( ) ( )1
,

2 2
Q a a P Q a a

i
λ

λ λ λ λ λ λ λ
λ λ

ω
ω ω

∗ ∗= + = = −�  (B.11) 

or   ( ) ( )1 1
,

2 2
a Q iP a Q iPλ λ λ λ λ λ

λ λ

ω ω
ω ω

∗= + = −  (B.12) 

Substituting into (B.8), we obtain 

  ( )2 2 21
2

P Qλ λ λ λ
λ λ

ωΗ = Ε = +∑ ∑  (B.13) 

Here λ  denotes ,sk . Equation (B.13) is the same as for a system of harmonic 

oscillators. This means that a radiation field is equivalent to a system of harmonic 

oscillators. We use (B.13) to shift to quantum mechanical representation. By 

transforming *( , )a aλ λ  to annihilation and creation operators ˆ ˆ( , )a a+=  through the 

relation (B.11) and (B.12), the hamiltonian becomes   
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  ˆ ˆ ˆˆ[ ]
2
a a aa

λ

ω + +Η = +∑ =  (B.14) 

From   [ ]ˆ ˆ, 1a a+ = , we obtain 

  1
ˆ ˆ[ ]

2
a a

λ

ω +Η = +∑=  (B.15) 

This is a simple harmonics Hamiltonian in quantum mechanics. The wave vector 

potential in equation (B.3) can be written in the general form as 

{ }, , , ,
,

1
ˆ ˆ( , ) exp[ ( ) exp[ ( )s s s s

s

h
t c a i a i

V λω
+ += ⋅ + − ⋅∑ k k k k

k

A r e k r e k r  (B.16) 

  †
, , , ,

,

ˆ ˆ( , ) s s s s
s

t a a+⎡ ⎤= +⎣ ⎦∑ k k k k
k

A r A A  (B.17) 

   { }, ,
, ,

1
exp[ ( )]s s

s s

h
c i
Vλ ω

= ⋅∑ k k
k k

A e k r  (B.18) 

where the symbols ,e k  denote the unit electric field vector (vector of polarization) 

and the wave vector, respectively.  



 

 

APPENDIX C 

HAMILTONIAN OF ELECTRON INTERACTING WITH 

ELECTROMAGNETIC FIELD 

 

 Interaction between electromagnetic field (photon) and electron can be derived 

in classical consideration. The relativistic mechanical equation of a charged particle in 

electric field E  and magnetic flux density B  is 

  
2

1
[ ]

1 ( / )

d m
e

dt cv c

⎧ ⎫⎪ ⎪ ⎛ ⎞⎪ ⎪⎪ ⎪ ⎟⎜= + ×⎨ ⎬ ⎟⎜ ⎟⎜⎝ ⎠⎪ ⎪−⎪ ⎪⎪ ⎪⎩ ⎭

v
E v B  (C.1) 

The right hand side denotes a Lorentz force. This equation can be obtained from the 

following Hamiltonian; the proof is given below. 

  
2

2 2 4
0

e
c m c e

c
φ⎛ ⎞⎟⎜Η = − + +⎟⎜ ⎟⎝ ⎠

p A  (C.2) 

[Proof of Equation (C.2)] 

Hermitian satisfy the following relations. 

  ,
d d
dt dt

∂Η ∂Η
= = −

∂ ∂
r p

p r
 (C.3) 

∴   

( )
( )

2

2
2 2 4
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e
c
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dt e
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−
=

− +
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p Ar
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 (C.4) 
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∴   
( )
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2
1 ( /

e m c
c c

− =
−

p A v
v

 

  
( )

0

2
1 ( /

m c e
cc

= +
−

p v A
v

 (C.5) 

The first term of the right hand side of equation (C.5) is a kinetic momentum of the 

charge particle. That means p  is a total momentum of the system, and ( / )e c A  is a 

momentum induced by the electromagnetic field. Using a relation 

  

( ){ }

x y z

d x y z
dt t x t y t z t

v v v
t x y z

t

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + +
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∂

A A A A A
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and equation (C.5),  
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( ){ }0

2
1 ( /

d d m c e d e
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i  (C.6) 

From equation (C.3) 
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By using (C.4), we obtain 
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By applying a formula 
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,we obtain 
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v A v A
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From (C.3), (C.6)=-(C.9), we obtain 
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This equation is identical to equation (C.1), meaning that the Hamiltonian ((C.2)) is 

correct. The relativistic correction to the Hamiltonian is 

  
( ) ( )

2 4

2
0 2 2 2 2

0 0

1
2 8

e e
c cm c e
m c m c

φ

⎛ ⎞⎟⎜ − − ⎟⎜ ⎟⎜ ⎟⎜ ⎟Η = + − + +⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎝ ⎠

p A p A
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So that within a framework of non-relativistic approximation, we obtain 
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  2 2
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m c e
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φΗ = + + +Η +Ηp  (C.13) 

where 
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  ( ) ( )1
0 02 2
e i e
m c m c

Η = − ⋅ + ⋅ = ∇ ⋅ + ⋅∇p A A p A A
=  (C.14) 
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2
2

0

1
2

e
m c

⎛ ⎞⎟⎜Η = ⎟⎜ ⎟⎝ ⎠
A  (C.15) 

Equation (C.13) shows the total Hamiltonian of the system. The interaction between 

the electron and photon are expressed by 1Η  and 2Η . 



 

 

APPENDIX D 

EXPECTED COMPTON PROFILE FOR FREE 

ELECTRON 

 

 The wave vectors of electrons in a crystal are defined as  

  

interger

( , , )

2

2

2

, , :

x y z

x x
x x

y y
y y

z z
z z

x y z

k k k

k n
N a

k n
N a

k n
N a

n n n

π

π

π

⎫⎪= ⎪⎪⎪⎪⎪= ⎪⎪⎪⎪⎪⎪⎪= ⎬⎪⎪⎪⎪⎪⎪= ⎪⎪⎪⎪⎪⎪⎪⎭

k k

 (D.1) 

Here ( , , )a x y zα α =  is the inter atomic distances and Nα  is the number of atoms in 

the crystal along the α  line. We find that one allowed k  is in the unit x y zn n nΔ Δ Δ  

that is equal to unity. Let the number of states (number of k  vector) in the space 

3
x y zd dk dk dk=k  be ( )N kΔ . Obviously NΔ  is proportional to 3dk , as  

  3dN Ad= k  (D.2) 

Here A  is the proportionality constant. From (D.1) we have  
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3
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V
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= =
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3

3 8
x y zd dn dn dn

V
π

=k  (D.3) 

Here  and,x y zL L L are the lengths of the crystal and V  is the volume of the crystal. 

Obviously, since x y zdN dn dn dn= , we have 

  3
38
V

dN d
π

= k  (D.4) 

Thus, we can convert the summation over k  to the integration as, 

  3
38
V
d

π
→∑

k

k  (D.5) 

Equation (1.13) and the argument leading to this, we have 

  2 2
3

( ) tan
8z z F z

V
N p p dpπ θ

π
= ⋅  

    2
z zap dp=  (D.6) 

Here,  

  2
2
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V
a θ

π
=  (D.7) 

Then we have for the intensity to be observed as 

  
2

( )obs z

z z

N N p

a p dp

σ

σ

=

=
 (D.8) 

Thus, the Compton profile is an upward parabola. 



 

 

APPENDIX E 

ANGULAR MOMENTUM 

 

 The angular momentum is treated mathematically as the irreducible 

representation of the rotational group. By means of this treatment, all the physical 

nature of the angular momentum is mathematically is described quite generally and 

completely.  

 Suppose that there are many electrons and each electron is in the central field 

potential, ( )kV r . The angular momentum of an electron is defined as  

  k k k= ×l r p  (E.1) 

We define the total angular momentum of all electrons as 

  k=∑
k

L l  (E.2) 

In the system in which the central field approximation is valid, the Hamiltonian,  

  2
2 ( )

2

k
k

k k k

h

h V r
m

⎫⎪Η = ⎪⎪⎪⎬⎪⎪= − ∇ + ⎪⎪⎭

∑
=

 (E.3) 

In ( )kV r , the electron-electron interaction 
2

i k ik

e
r>

∑  is averaged and renormalized. This 

is the central field approximation. As a result, the hamiltonian, h , of each electron has 

the partial dependent only on r  and is spherically symmetric. The solution in the 

spherical coordinate, ( , , )r θ φ , is given by 
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  ˆ( , , ) ( ) ( , )nl lmr NR r Yψ θ φ θ φ=  (E.4) 

In this section, however, we see the nature of the angular momentum more physically 

only on the basis of quantum mechanics. For brevity, suffix k  is dropped out. Here, 

( , )lmY θ φ  is the spherical harmonic function and N̂  is the normalization constant. 

Although ( )nlR r  is determined by ( ), ( , )lmV r Y θ φ  has its own characteristics. For 

example, 

  2 2( , ) ( 1) ( , )lm lmY l l Yθ φ θ φ= +l =  (E.5) 

  ( , ) ( , )z lm lml Y mYθ φ θ φ= =  (E.6) 

We should remark that ( / )i= ∇l = . The proof of (E.5) and (E.6) are in many 

standard text books of quantum mechanics. Since the solution ( , , )rψ θ φ  (E.4) is 

variable-separable between r  and ( , )θ φ , (E.3) through (E.6) show 
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, 0z z z

h h h

h h h

⎡ ⎤ ⎡ ⎤= − =⎣ ⎦ ⎣ ⎦
= − =

l l l

l l l
 (E.7) 

From (E.2), (E.3), and (E.7), we have 
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2 2

,

, , 0

, , 0

k k
k

z k k z
k

h

h

⎡ ⎤ ⎡ ⎤= Η =⎣ ⎦ ⎣ ⎦

⎡ ⎤ = Η =⎣ ⎦

∑

∑

l L

l L
 (E.8) 

These indicate that 2L  and zL  commute the Hamiltonian. In other words, the 

eigenfunctions which diagonalizes the hamiltonian also diagonalizes  2L  and zL  . 

 From the definition, (E.1), of the angular momentum, we can proof the 

following commutation relation: 
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y z z y x

z x x z y

x y y x z

l l l l i l
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=

=

=

 (E.9) 

Therefore we have 
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δ
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=

=
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 (E.10) 

From the first equation of (E.10), we see 

  

( ), , , ,
,

, ,
,

,

y z z y y k z j z j y k
k j

x k k j
k j

x k
k

x

L L L L l l l l

i l

i l

i L

δ

− = −

=

=

=

∑

∑

∑

=

=

=

 (E.11) 

Similar commutation relations are held for all components, ,x yL L , and zL . Therefore 

we write 

  
y z z y x

z x x yz y

x y y x z

L L L L i L

L L L L i L

L L L L i L
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=

=

=

 (E.12) 

The relations, (E.10), show that all of , ,x y zL L L  cannot be diagonalized with Η and 

define the orbital angular momenta through the commutation relation as 

  
y z z y x

z x x yz y

x y y x z

J J J J i J

J J J J i J

J J J J i J

⎫⎪− = ⎪⎪⎪⎪− = ⎬⎪⎪⎪− = ⎪⎪⎭

=

=

=

 (E.13) 

As the eigenvector assigning the eigen state of the system, we define M  as 

  J M M M= =  (E.14) 
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Here, we see that we employ the matrix formalism of quantum mechanic. We select 

the eigen states with which the z  component of J  is diagonalized. 

 Instead of xJ  and yJ , we use J+  and J−  defined as 

  
x y

x y

J J iJ

J J iJ

+

−

⎫= + ⎪⎪⎬⎪= − ⎪⎭
 (E.15) 

Using J+ ,  J−  and the commutation relations, (E.12), we obtain the new 

commutation relations as 

  

2

z z

z z

z

J J J J J

J J J J J

J J J J J

+ + +

− + −

+ − − +

⎫⎪− = − ⎪⎪⎪⎪− = − ⎬⎪⎪⎪− = ⎪⎪⎭

=

=

=

 (E.16) 

We operate M  on the first equation of (E.16). 

  z zJ J M J J M J M+ + +− = −=  

From (E.14) we have 

  zJ M M J J M J M+ + +− = −= =  

Therefore 

  ( ) ( )( 1)zJ J M M J M+ += +=  (E.17) 

Similarly we operate M  on the second equation of commutation relation (E.16) and 

have 

  ( ) ( )( 1)zJ J M M J M− −= −=  (E.18) 

Relations (E.17) and (E.18) indicate that both J M+  and J M−  are the eigen 

vectors of zJ . J±  is the operators to change M  to 1M ±  as seen below. From 

(E.14), we have 
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  1 ( 1) 1zJ M M M± = ± ±=  (E.19) 

If we compare this with (E.17) we have 

  1J M Mα+ = +  (E.20) 

In a similar way, from (E.19) and (E.18), we have 

  1J M Mβ− = −  (E.21) 

(E.17), (E.18),  (E.20), and (E.21) show that there are a group of eigen values 

generated by J+  and J−  and differing by 1. So, rewriting α  and β , we can write 

(E.20) and (E.21) as 

  
1

1

M

M

J M c M

J M d M

+

−

⎫− = ⎪⎪⎪⎬⎪= − ⎪⎪⎭
 (E.22) 

Suppose the maximum value of the eigenvalues is J . Then J M+  cannot exist and 

c  

  
1 0

, 1, 2.........

Mc

M J J J

+ = ⎫⎪⎪⎬⎪= − − ⎪⎭
 (E.23) 

From the third equation of the commutation relations, (E.16), and (E.22) we have 

  2
1 1 2M M M Mc d c d M+ +− = =  (E.24) 

Also from (E.23) we have  

  1 MM J M d−− =  (E.25) 

Therefore, 

  

**

*

1

1

1

M

M

d M J M

M J M

M J M

c

−

−

+

= −

= −

= −
=
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Therefore  

  *
M Md c=  (E.26) 

Here we have used the following relations: 

  

* *

* *

( )x y

x y

x y

J J iJ

J iJ

J iJ

J

−

+

= −

= +

= +

=

 (E.27) 

Note that xJ  and yJ  are hermitian. Inserting (E.26) into (E.24), we have 

  22 2
1 2M Mc c M+− = =  (E.28) 

Therefore we have 

  

2 2

ˆ

2

2

ˆ2

1
2 ( )( 1)

2
( )( 1)

J

M
M M

c M

M J J M

M J J M

=

=

= + − +

= + − +

∑=

=

=

 

Thus we have 

  ( )( 1)Mc M J J M eιθ= + − + ⋅=  (E.29) 

We select the phase factor to be unity ( )0θ = . From (E.27) and (E.24), we also have 

  22 2
1 2M Md d M+− = =  (E.30) 

Thus we obtain the same result as (E.29) for Md  in case of 0θ = . Therefore we have 

  M Mc d=  (E.31) 

Suppose the minimum value of M  to be 0M . Then, we have 

  0 0J M− =  (E.32) 

From (E.29), (E.31), and (E.32), we have  
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  0 0 0 0( )( 1) 1 0J M J M J M M− = + − + − ==  

Therefore we have 

  0M J=−  (E.33) 

From (E.23) and (E.24), we see that M  takes values from J  to J−  with an interval 

of an unity. The number of terms is 2 1J + . The number of terms is an integer. Thus, 

we have 

  2 1J + =  integer 

Thus,  J  = integer 

  or half integer. (integer multiple of 1/2 ) 

Next, we have from (E.13) and (E.15) 

  
2 2

2 2

x y z

z z

J J J J J

J J J

+ − = + +

= − +

=

=
 

Therefore we have 

  2 2
z zJ J J J+ −= − +J =  

Thus we have from (E.22), (E.29) and (E.31) 

  

2

2 2

2

( )( 1)

( 1)

z z zJ M J J M J M J J M

J M J M M M M

J J M

+ −= − +

⎡ ⎤= + − + − +⎣ ⎦
= +

=

=

=

 (E.34) 

We write JM  in place of M  given above and summarize the results obtained 

above 

  

2 2, ( 1) ,

, ,

, 1 ( )( 1) ,

, ( )( 1) , 1

z

J M J J J M

J J M M J M

J J M J M J M J M

J J M J M J M J M

+

−

= +

=

− = + − +

= + − + −

J =

=

=

=

 (E.35) 
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Here, J  is either and integer or a half integer. 

 In actual cases, we have to deal with the spin-orbit coupling. In such cases, we 

have to sum two angular momenta. We will discuss this problem below. 

 Let us define an angular momentum J  composed of two angular momenta, 

1J  and 2J , as 

  1 2= +J J J  (E.36) 

Suppose that the eigenvector JM  of J  is formed as 

  
1 2

1 1 2 2 1 1 2 2
,

,
M M

JM J M J M JM J M J M= ∑  (E.37) 

Here, 1 1,J M  and 2 2,J M  are the eigenvectors of  1J  and 2J , respectively. All 

pairs of quantum numbers, 1 1( , ),( , )J M J M , and 2 2( , )J M  satisfy the conditions given 

by (E.35). 1 1 2 2,J M J M JM  is coefficient to be decided using (E.35). Coefficient 

1 1 2 2,J M J M JM  is referred to as Wigner coefficient or Clebsch-Gordon coefficient 

and are generally obtained by the use of the group theory. This part of the theory is 

out of scope in the present thesis. 

 From (E.36), zJ  is given by  

  1 2z z zJ J J= +  (E.38) 

Therefore we have from (E.36) and (E.38) 

  
1 2

1 1 2 2 1 1 2 2
,

,z z
M M

J JM J M J M JM J J M J M= ∑  (E.39) 

  
( )1 1 2 2 1 2 1 1 2 2

1 2 1 1 2 2( )

z z zJ J M J M J J J M J M

M M J M J M

= +

= +=
 (E.40) 

This indicates that 1 1 2 2J M J M  is the eigen vector of zJ . We define M  as 

  1 2M M M= +  (E.41) 
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We insert (E.41) and (E.40) into (E.39) and have 

 

1 2

1 2

1 2

1 1 2 2 1 2 1 1 2 2
,

1 1 2 2 1 1 2 2
,

1 1 2 2 1 1 2 2
,

, , ( )

, ,

, ,

z
M M

M M

M M

J JM J M J M JM M M J M J M

J M J M JM M J M J M

M J M J M JM J M J M

M JM

= +

=

=

=

∑

∑

∑

=

=

=

=

 (E.42) 

Therefore, M  defined as the sum of 1M  and 2M  in (E.41) is eigenvalue of zJ . 

 Through the discussion leading to (E.35), the quantum number J  of the eigen 

vector JM  is equal to the maximum number of M . In the same way 1J , is the 

maximum number of 1M , and 2J  the maximum number of 2M . Form (E.41), we see 

  Maximum Maximum Maximum 1 2M M M= +  

Thus, we have 

  1 2J J J= +  (E.43) 

The only one eigen vector having the maximum number M  is possible to occur. 

It is   1 2 1 2 1 1 2 2,J J J J J J J J+ + =  (E.44) 

In JM , we assign the good quantum number as M . J  is the maximum number of 

M . If M  is changed, the orbital quantum number can be different from J , although 

1J  and 2J  are maximum number of 1M , and 2M . In other words, the value of J  

corresponding to the first equation of (E.35) corresponding to the value of M  which 

is not necessary equal to 1 2J J+ . The various combination of 1M , and 2M  produce 

various combinations of M , 1M  and 2M  which satisfy (E.40). There are two eigen 

vectors operator J  for 1M J= − . One of them is from J  given by (E.43). In this 
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case, 1 2 1M J J= + − . The other is 1 2 1J J J= + −  and 1 2 1M J J= + − . The 

eigenvalue corresponding to JM  are 

  1 2 1 2, 1J J J J+ + −  and 1 2 1 21, 1J J J J+ − + −  

The parent vectors corresponding to 1 1J M  and 2 2J M  are 

  1 1 2 2, 1 ,J J J J−  and 1 1 2 2, , 1J J J J −  

In a similar way there are three JM  for 1 22 2M J J J= − = + − . 

1 2 1 2, 2J J J J+ + − 1 2 1 21, 2J J J J+ − + − 1 2 1 22, 2J J J J+ − + −  

The parent vectors are 

 1 1 2 2, 2 ,J J J J− , 1 1 2 2, 1 , 1J J J J− − , 1 1 2 2, , 2J J J J −  

The situation that the number of parent vectors 1 1 2 2J M J M  increases by 1  as M  

decreases by 1  continues in the range 

  1 2 1 2J J M J J− ≤ ≤ +  (E.45) 

Let us assume 1 2J J> . This does not violate generality. The parent vectors for 

1 2M J J= −  are 

1 1 2 2 2 1 1 2 2 2 1 1 2 2 2

1 1 2 2

, 2 , , , 2 1 , 1 , , 2 2 , 2 .....

......., , ,

J J J J J J J J J J J J J J J

J J J J

− − + − − + −

−
 

The total number of the parent vectors is 22 1J − . For 1 2 1M J J= − − , the parents 

are 

1 1 2 2 2 1 1 2 2 2 1 1 2 2 2

1 1 2 2

, 2 1 , , , 2 , 1 , , 2 1 , 2 ......

..... , 1 ,

J J J J J J J J J J J J J J J

J J J J

− − − − − + −

− −
 

The number of parent vectors is also 22 1J −  and the same as that for 1 2M J J= − . 

This means the 1 2 1J J J= − −  does not occur. Thus, possible Ĵ  values are 
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 1 2 1 2 1 2 1 2 1 2
ˆ , 1, 2,..... 1,J J J J J J J J J J J= + + − + − − + −  

This indicates the possible number of Ĵ  are 22 1J + . The number of independent 

eigen vectors is calculated as 

( ) ( )( ) ( )( )
1 2

1 2

ˆ

1 2 1 2 1 2 1 2 2
ˆ

1 2

ˆ2 1 1 1 2 1

(2 1)(2 1)

J J J

J J J

J J J J J J J J J J

J J

= +

= −

+ = + + + − − − − + +

= + +

∑  (E.46) 

This number equals the total number of parent vectors as should be expected. The 

situation described above is depicted in Figure Appendix 1 for 1 3J =  and 2 2J = . 

As mentioned just below (E.34), 1,M M  and 2M  take the values 

  1 1 1 1 1 1

1 2 2 2 2 2

, 1, 2,......, 1,

, 1, 2,......., 1,

, 1, 2,......., 1,

M J J J J J

M J J J J J

M J J J J J

⎫⎪= − − − + − ⎪⎪⎪⎪= − − + − ⎬⎪⎪⎪= − − + − ⎪⎪⎭

 (E.47) 

 For maximum M , the eigen vector is given by (E.44).  

  1 2 1 2 1 1 2 2, , ,J J J J J J J J+ + =  (E.44) 

We operate 1 2J J J− − −= +  on (E.44) using (E.35) 

 

1 2 1 2 1 2 1 1 2 2

1 2 1 2 1 2 2 1 1 2 2

1 1 1 2 2

, ( ) , ,

2( ) , 1 2 , , 1

2 , 1 ,

J J J J J J J J J J J

J J J J J J J J J J J

J J J J J

− − −+ + = +

+ + + − = −

+ −

= =

=

 

∴

2 2
1 2 1 2 1 1 2 2 1 1 2 2

1 2 1 2

, 1 , , 1 , 1 ,
J J

J J J J J J J J J J J J
J J J J

+ + − = − + −
+ +

  

   (E.48) 
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Figure Appendix 1 Number of eigen vectors ĴM  (number in circles) and Ĵ  and 

M  formed by 1M  and 2M . 1 3J =  and 2 2J = . Note 

J M J− ≤ ≤ ,  1 1 1J M J− ≤ ≤ , 2 2 2J M J− ≤ ≤ , 

1 2M M M= + . 
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If we find the linear combination of 1 1 2 2, , 1J J J J −  and 1 1 2 2, 1 ,J J J J−  which 

is orthogonal to (E.48), it is the eigen vector, 1 2 1 21 1J J J J+ − + − . For doing 

this we define ψ  as  

  
1 1 2 2

1 2 1 2

, , 1

, 1 0

1

A J J B J J

J J J J

ψ

ψ

ψ ψ

⎫⎪≡ + − ⎪⎪⎪⎪+ + − = ⎬⎪⎪⎪= ⎪⎪⎭

 (E.49) 

These result in simultaneous equations: 

  
1 2

2 2

0

1

s A s B

A B

⎫+ = ⎪⎪⎪⎬⎪+ = ⎪⎪⎭
 (E.50) 

The solution gives us 

1 2 1 2

1 1
1 1 2 2 1 1 2 2

1 2 1 2

1, 1

, , 1 , 1 ,

J J J J

J J
J J J J J J J J

J J J J

ψ = + − + −

= − − −
+ +

 (E.51) 

The fact that ψ  is equal to eigen vector 1 2 1 21, 1J J J J+ − + −  can be proved by 

making 1 2 1 21, 1 0J J J J J+ + − + − = . If we apply J−  to (E.48) and (E.51), we 

obtain 1 2 1 2, 2J J J J+ + − , 1 2 1 21, 2J J J J+ − + − . If make the linear 

combination of 1 1 2 2,J M J M  ( 1 2 1 2 2M M J J+ = + − ) so that it is orthogonal to 

1 2 1 2, 2J J J J+ + −  and 1 2 1 21, 2J J J J+ − + − , we obtain 

1 2 1 22, 2J J J J+ − + − , The result is 
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( )( )

( )

( )( )

( )

1 2 1 2

1 2 1 2

1 1 1 1 2 2

1 2 1 1 2 2

2 2 1 1 2 2

1
2, 2

1 2 2 1

2 1 , , 2

2 1 2 1 , 1 , 1

2 1 , 2 ,

J J J J
J J J J

J J J J J J

J J J J J J

J J J J J J

+ − + − =
+ + + −

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥× − − − − −⎢ ⎥
⎢ ⎥
⎢ ⎥+ − −⎢ ⎥⎣ ⎦

 (E.52) 

We can show  

  1 2 1 22, 2 0J J J J J+ + − + − =  (E.53) 

This proves that (E.52) is eigen vector. 

 The coefficients of the linear combinations shown above are the Wigner 

coefficients. In case of orbital angular moments, they are quantized so that they are 

eigen vectors of the hamiltonian with the crystal field in many cases. In such cases, 

the coefficients corresponding to the Wigner coefficients are referred to as the 

Clebsch-Gordon coefficients. Therefore, the name of the Wigner coefficients is used 

only for the spin vectors in many cases. The general formula of the Clebsch-Gordon 

coefficient and the Wigner coefficient are found in a standard text book dealing with 

the problem.  

 In the text, we deal with the Zeeman effect. It is stated there that the energy 

levels of atoms in a magnetic field, H , is given by (1.105) as 

  
L

B
L

W Mg

H

ω

μ
ω

⎫= ⎪⎪⎪⎪⎬⎪= ⎪⎪⎪⎭

=

=
=

 (1.105) 

and Lande’s g  factor as 

  ( ) ( ) ( )
( )

2 1 1 1
1

2 1
J J S S L L

g
J J

+ + + − +
= +

+
 (1.106) 
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In what follows, we consider the abnormal Zeeman effect to show the formalism of 

Lande’s g-factor.  

 First we consider the LS  coupling 

  = +J L S  (E.54) 

A very important assumption here to make is that L  can be a good quantum number. 

In a many electron system, the total orbital angular moment cannot be the constant of 

motion. Therefore L  cannot be a quantum number to design the state of the system. 

However, we assume that the total angular is the constant of motion satisfying the 

commutation relation with hamiltonian Η̂ . Also we assume that total spin S  can be a 

good quantum number of the system. This is the case, if the central field 

approximation is valid. If the spin-orbit interaction is strong, this is not the case. 

However, in many cases, the spin-orbit interaction is weak and it is treated as the 

perturbation. Thus in the ground state without the perturbation can be treated by the 

central field approximation.  

 If the spin-orbit interaction is strong, the orbital angular momentum and the 

spin angular momentum couple to form the total angular momentum of the single 

electron, j . Then the total angular momenta of different electrons couple to make 

total angular momentum of the atom. This coupling scheme is called the j j−  

coupling and important in the inner shell excitation. If the spin-orbit interaction is 

weak, the strong electrostatic interaction align electron spins and the total S  is 

formed. Then LS  coupling results in. This is the case which is observed in the 

valence shell spectra.  

 First we take the direction of J  as the z  axis in the state without the magnetic 

field. From the nature summarized in (E.35), 
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2
21 ˆ, 0

1 ˆ, 0z
z

d
dt i
d
dt i

⎫⎪⎡ ⎤ ⎪= Η = ⎪⎢ ⎥⎣ ⎦ ⎪⎪⎬⎪⎪⎡ ⎤= Η = ⎪⎢ ⎥⎣ ⎦ ⎪⎪⎭

J
J

J
J

=

=

 (E.55) 

Thus 2J  and zJ  are the constants of motion. In the same way, 2 2, ,zLL S  and zS  are 

constants of motion. Since we take the z  axis along the direction of J , we can say 

that L  and S  are making precession around J . This is shown in Figure Appendix 2 

 When a magnetic field is applied and we take the z  axis toward the magnetic 

field H , (E.55) shows that J  makes precession around the field direction as shown 

in Figure Appendix 2. In the text we show that the magnetic moment, μ , associated 

with the angular momentum, J , is given by (1.94) as 

  γJμ=  (1.94) 

  2
e
mc

μ

=−

=− B

J

J

μ
=

 (E.56) 

Here, Bμ  is the Bohr magneton. 

In case of the magnetic moment associated with the electron spin, it is different from 

(E.56) and given by  

  2 Bμ=− Sμ  (E.57) 

This is the intrinsic nature of the electron and proved by Dirac’s quantum 

electrodynamics. The total magnetic moment, μ , is given by 

  cos sinL s S sθ θ⋅ +μ= μ μ  (E.58) 

Here Lθ  and Sθ  are the angles between L  and J  and that between S  and J . From 

(E.57) and (E.58) we have 

  cos 2 cosB L B Sμ θ μ θ=− −L Sμ  (E.59) 
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(E.59) suggests that (E.56) is not valid for the total magnetic moment, since the 

contribution of the spin is not similar to that of the orbital angular momentum; the 

Bohr magneton is practically double. Thus we put, instead of (E.56), 

  gμ=− BJμ  (E.60) 

The precession of μ  around the magnetic field is depicted in Figure Appendix 2.  

 (E.59) is rewritten as 

  ( ) ( )
2B Bμ μ

⋅ ⋅
= − −

L J S J
L S
S J S J

μ  (E.61) 
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Figure Appendix 2  Angular moment consideration of the Zeeman effect. The LS  

coupling is assumed to occur. 
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From (E.60) and (E.61), we have 

  ( ) ( )
g

⋅ ⋅
= + ⋅

L J S J
J L S

S J S J
 (E.62) 

On the other hand we have 

  
( )

( )

2 2 2

2 2 2

2

2

⎫= + − ⋅ ⎪⎪⎪⎬⎪= + − ⋅ ⎪⎪⎭

S L J L J

L S J S J
 (E.63) 

From (E.54), (E.62) and (E.63) we have 

  ( ) ( ) ( )
( )

2 1 1 1
1

2 1
J J S S L L

g
J J

+ + + − +
= +

+
 (1.106) 

A more quantum mechanical explanation is complicated. From the general properties 

of the angular momentum, we have (see Condon-Shortley p. 63 and p. 69) 

  

( )

1 2 1 2 1 2 1 2

1 1 2 2

( )
2 ( 1)

( 1) ( 1) ( 1)

zJM T JM M J T J

R J
J J J T J J J J J T J J

J J

R J J J J J J J

⎫⎪= ⎪⎪⎪⎪⎪= ⎬⎪+ ⎪⎪⎪= + − + + + ⎪⎪⎭

 (E.64) 

From these formulae, we have 

[ ]

[ ]

( 1) ( 1) ( 1)
2 ( 1)

( 1) ( 1) ( 1)
2 ( 1)

z

z

M
JM L JM J J L L S S

J J

M
JM S JM J J S S L L

J J

⎫⎪⎪= + + + − + ⎪+ ⎪⎪⎬⎪⎪= + + + − + ⎪⎪+ ⎪⎭

=

=
 (E.65) 

The level energy to cause the Zeeman effect is  

  ( )2B
z z

H
W L S

μ
= +

=
 (E.66) 

From (E.65) and (E.66), we have 
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( 1) ( 1) ( 1)

2 ( 1) 2 ( 1) 2 ( 1)2 ( 1)

( 1) ( 1) ( 1)
1

2 ( 1)

B

B

W JM W JM

J J L L S SM
H

J J S S L LJ J

J J L L S S
HM

J J

μ

μ

=

⎡ ⎤+ + + − +
⎢ ⎥= ⎢ ⎥+ + + + − ++ ⎢ ⎥⎣ ⎦

⎡ ⎤+ − + + +⎢ ⎥= +⎢ ⎥+⎣ ⎦

 (E.67) 

From (1.99), (1.100) and (E.67), we see 

  ( ) ( ) ( )
( )

2 1 1 1
1

2 1
J J S S L L

g
J J

+ + + − +
= +

+
 (1.106) 
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