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The Roper resonance N*(1440), the lowest nucleon excited state, has
been subjected to intense discussions since its discovery in 1964. In the three—
quark picture the Roper resonance had been commonly assigned to a radial
excitation of the nucleon since its quantum numbers are the same as the
nucleon’s. But detailed studies found that it is very difficult to interpret the
resonance as a three quark state due to its low mass and strange coupling
constants with nucleon and meson. Because of the failure of the three—quark
picture, various other models have also been suggested, but none is very
successful.

In this work we study the nature of the Roper resonance via its decay
processes. We go along with the argument that the Roper resonance is a state
of three quarks and one transverse-electric (TE) gluon. A nonrelativistic quark—
gluon model is employed, where the dynamics of gqG is described in the
effective *S vertex in which a quark-antiquark pair is created (destroyed) from
(into) a gluon. The wave function of the Roper resonance is properly con-
structed to take account into the gluon freedom in the nonrelativistic regime
and the decay process N*1440) — Nz is evaluated analytically. Since the
method developed in the work is very general, it could be applied to evaluate

other decay process like Np, Nzzxr and Az without any problem.
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Chapter I

Introduction

All matter consists of atoms. Atoms in turn are built up by nuclei and
electrons orbiting around. Nuclei are bound states of protons and neutrons by the
strong interaction. Proton and neutrons possess a further substructure of even
smaller constituents, the quarks. Quark has not been observed in experiments as
isolated objects, but only as clusters such as mesons (quark-antiquark system) and
baryons (three quark system). Quark model of hadrons (baryons and mesons) has
made a considerable success and been widely accepted, but it is still a challenge to
understand the natures of all the observed baryons and mesons in various quark
models.

The study of baryon excitation states plays an important role in under-
standing of the nucleon internal structure, the quark model and hence the nature
of the strong interaction. Information is usually extracted from the properties of
nucleon excitation state N*’s, such as their mass spectrum, various production
and decay rate(Burkert, 1994). Since the late 1970’s, very little has happened
in experimental N* baryon spectroscopy (Moorhouse and Roper, 1974). Con-
sidering its importance for the understanding of the baryon structure and for
distinguishing various picture of the nonperturbative regime of quantum chromo-

dynamics (QCD), a new generation of experiments on N* physics with electro-



magnetic probes has recently been started at new facilities such as Continuous
Electron Beam Accelerator Facility (CEBAF) at Jefferson Laboratory (JLAB),
Electron Stretcher Accelerator (ELSA) at Bonn, Grenoble Anneau Accelerateur
Laser (GRAAL) at Grenoble.

The contribution of the lowest-lying baryon resonance, the A(1232), to a
wide range of nuclear phenomena has been extensively studied (Ericson and Weise,
1988). This resonance (J = 3/2,1 = 3/2, P = +1) is the dominant feature of the
pion-nucleon scattering amplitude at low energy. As such, it strongly influences
the creation, propagation and absorption of 7 in the nuclear medium and acts
as an independent degree of freedom of nuclear dynamics at energy scales of the
order of a few hundred MeV.

The next baryon resonance, the Roper resonance or N*(1440), has the
same quantum numbers as the nucleon (J =1/2,1 =1/2, P = 41) and is there-
fore regarded as its first intrinsic excitation, at an energy of about 500 MeV. The
structure of this excitation appears rather complex and its properties could have
profound consequences on the understanding of the baryon spectrum. The under-
standing of the Roper resonance has been a long-standing problem in N* physics.
Its very small branching ratios of electromagnetic decay modes, unusual couplings
to the Nm and No channels, and its low mass together make it is difficult to
identify the resonance as a simple three-quark bound state.

The N*(1440) is a very wide resonance with a full width of (3504+100) MeV
while the neighboring nucleon excitation states N*(1520) and N*(1535) are twice

as narrow (Groom, 2000). It is found that N*(1440) couples strongly (60-70%) to



the m-nucleon channel and significantly (5-10%) to the o-nucleon (more properly

I1=0

o ave-iuCleon) channel (Groom, 2000). There are no data on its coupling

(m—m)
to the vector meson-nucleon channels, except for an upper limit of 8% to the p-
nucleon channel. The branching ratios to radiative final states (0.035-0.048% for
py and 0.009-0.032% for n+y) are unusually small (compared for example to the
branching ratio of 0.52-0.60% for A — N+). The general impression one gets from
these data is that the transition of the nucleon to the N*(1440) (or vice-versa) is
induced mainly by scalar fields (7 and o) and very little by vector fields.

We consider the coupling of the N*(1440) to the N7 channel. From the
partial decay width of the N*(1440) into the N7 channel, 'y« .y, = (228 £
82) MeV, one can deduce the values of the coupling constants g,yn+ and fryy=
characterizing the strength of the 7N N* pseudoscalar coupling and pseudovector
coupling, respectively. We find g2y - /47 = 3.4+ 1.2 and f2y . = 0.011 4 0.004.

The coupling constant g,nyn+ depends on the ¢ mass and on the width
Ly rr(m?) of the o-meson at the peak of the resonance. The o-meson of relevance
in the many-body problem is the effective degree of freedom accounting for the
exchange of two uncorrelated as well as two resonating pions in the scalar-isoscalar
channel. It is expected to have mass of the order of 500-550 MeV and to be a broad
state. It can be shown that g,nn- depends weakly on the value of Iy, (m?)
but rather strongly on m2. The latter effect is a consequence of the coincidence
between the o mass and the difference between the mass of the N*(1440) and of the
nucleon, which determines the phase space limit for the N*(1440) — N7 decay.

Fixing T'y_,-(m%) = 250 MeV, we obtain for example, g2y /47 = 0.34 + 0.21



for m2 = 500 MeV and g2 /47 = 0.56 + 0.35 for m2 = 550 MeV.
Comparing the TN N* and o N N* coupling constants to the corresponding

values for the TN N and o NN vertices, we have

o * 1
and JoNN ~ _,

JoNN 4

grNN*

N | —

grNN

This seems to depart somewhat from the scaling law

grNN*  YGoNN*  YGuNN*  YgpNN*

Y
grNN 9doNN JuNN 9pNN

often used on the basis of constituent quark model arguments. There are however
large uncertainties.

To have more constraints on the couplings discussed above, it is useful to
make meson-exchange models of simple processes in which the Roper resonance is
excited and compare to the coupling constants needed to understand the data on
these processes to their values derived from the N*(1440) partial decay widths.
One should keep in mind however the limits of such determinations: the exchanged
mesons are effective degrees of freedom and meson-baryon vertices involve not only
coupling constants but also form factors which may affect significantly the strength
of the couplings.

In the simple three-quark picture of baryons the Roper resonance would be
the first radial excitation state of the nucleon if one considers only its quantum
numbers. But we will find that the resonance possesses a too low mass to be a

radial excitation state.



In a simple model where quarks are confined in an oscillator potential
whose slope is independent of the flavor quantum numbers, the Hamiltonian of a

three-quark system may take the form

2 2 2
1 1 - 1 L
H= g—lm—l—gim—l—gfg—i-zuw(m—rg) +§,uw(r1—r2)2+§uw(r3—7’1)2. (1.1)

Here we have supposed all quarks involved have the same mass. Introducing the

Jacobi coordinates

X: (7_”\1"—7"\2—27_"\3) é
) \/6 ) cm

GEITESR)

- , (1.2)

and eliminating the center-of-mass motion, the Schodinger equation of the Hamil-

tonian in eq (1.1) gives the wave function of a three-quark system,

‘IJN*(1440) — q;spatial(l—o‘, /\)\Pspinfﬂavorfcolor (13)

with the spatial wave function WsPaal taking the form

\Ijspatial — wnplp(ﬁ)wn,\l,\(;\\)a (14>

where

Unoty(P) = Ry, (P) Vi1, (P), (1.5)

p

YininA) = Rty (N)Vnrin (V). (1.6)



The energy of a state is specified by the quantum number N
3
Ex — <N+2> LN =N, + Ny = (20, +1,) + 20y + 1), (1.7)
and parity P = (—1)*, The N = 1 states have mixed symmetry:

Ui(p) = vo(p)boo(N), (1.8)

U (A) = oo(p)bor(N), (1.9)

and parity P = —1. These states are not corresponding to the parity of the Roper
resonance.

For the Roper resonance with positive parity, the only possibility is
n,=1, nx=0, l[,=00=0 or n,=0, ny=1, [,=1,=0.

In this case the Roper resonance has N = 2 band in a harmonic oscillator basis.
The lightest of these states with a totally symmetrical spatial wave function is
usually attributed to the Roper resonance. Its low mass has present some problems
for simple three-quark picture as these models are not able to describe the right
level ordering of positive and negative parity states (Groom, 2000; Hogaasen and
Richard, 1983). Indeed, various quarks models (Liu and Wong, 1983; Isgur and
Karl, 1978; Hggaasen and Richard, 1983) met difficulties to explain its mass and
electromagnetic couplings.

The N* is not visible as a well-defined peak in the total pion-nucleon cross



section. It is established as a pion-nucleon resonance in the P;; channel only
through detailed partial wave analyzes (Cutkosky, Forsyth, Hendrick, and Kelly,
1979; Cutkosky and Wang, 1990). In contrast to the negative parity baryon res-
onance observed in the 1500-1700 MeV range, which can be described by con-
stituent quark models with harmonic confining potentials (Isgur and Karl, 1978).
The Roper resonance has been considered a good candidate for a collective excita-
tion and interpreted as a breathing mode of the nucleon in bag models (DeGrand
and Rebbi, 1978). A recent coupled-channel calculation (Schiitz, Haidenbauer,
Speth, and Durso, 1998), involving the 7N, 7A and o/N channels, suggest that
the N*(1440) could be explained as a dynamical effect, without an associated gen-
uine three-quark state. It has therefore been suggested to be a gluonic excitation
state of the nucleon, i.e., a “hybrid baryon”.

The aim of the whole project is to investigate if the Roper resonance could
be reasonably interpreted as a bound state of three-quark and one-gluon through
studying all its decay modes such as to Nw, Nnmw, Np, Am and Nv. The thesis
work services as a pioneer study to pave the way for the whole project. We will
first construct the wave function of the Roper resonance to properly include the
gluon freedom in the nonrelativistic regime, then evaluate the transition amplitude
of the process N*(1440) — N in a very general method which could be used,
without modification, to other decay channels. In the work we will mainly em-
ploy nonrelativistic quark-gluon models where the dynamics of the quark-gluon
interaction is described by the effective vertex 3S; in which a quark-antiquark

pair is created/destroyed from/into a gluon and the wave functions of the Roper



resonance, nucleon and mesons are nonrelativistic.

This thesis is structured as follows: in chapter II the wave functions of
mesons, nucleons, and the Roper resonance are worked out in a quark-gluon model
with aid of group theory. In chapter III we introduce the 3S; model for the
description of the decay process. The transition amplitude for the decay of the
Roper resonance is evaluated in chapter IV. Finally, chapter V gives discussions

and conclusions.



Chapter 11

Wave Functions

In this chapter we provide some details on how to construct the wave
functions of mesons and baryons in the quark model with the aid of group theory.
The wave function of the Roper resonance is properly constructed to include the

gluon freedom in the nonrelativistic regime, which is a pioneer work as we know.

2.1 Flavor SU(3) Symmetry

The fundamental assumption of the quark model for hadrons is that mesons
are quark-antiquark bound states and that baryons are three-quark states. The
observed hadrons are eigenstates of the Hamilton operator for the strong interac-
tion Hg. We begin by considering a world with only three quarks u, d and s and
make the following assumptions:

(1) Flavor university of strong interaction, that is, the strong forces should act in
the same way on quarks with different flavors.

(2)Equality of the masses of u, d and s quarks:

My = Mg = M. (2.1)
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The Hamilton operator of the strong interaction Hy is then invariant under SU(3)
transformation of the quarks u, d and s. In the framework of the flavor SU(3)
symmetry, u, d and s quarks form the fundamental representation of the group.

Quark states |¢) are transformed according to

9) = Ulg), (2.2)

with
U'U=UU"=1, (2.3)
detU = 1. (2.4)

The unitary, unimodular matrix U can be written in the form

1
U =exp <—i2)\i0i> , (2.5)

where \; with ¢ = 1,...,8 are linearly independent, hermitian and traceless 3 x 3

matrices. Conveniently, the matrices are chosen to be the Gell-Mann matrices

(Close, 1981)
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0 0 1 0 0 —2 0 0 O
AN = 0 0 0], =10 0 0 [, =10 0 1],
1 0 0 1 0 0 01 0
0 0 O 1 0 O
A 0 0 =101 0 (2.6)
= —i |, = — : .
7 8 \/g
0 ¢+ 0 0 0 =2

2.2 Spin-Flavor Wave Functions of Mesons

In the framework of the flavor SU(3) symmetry, u, d and s quarks and
their anti-objects form nine lightest pseudoscalar and nine lightest vector mesons,
see Table. 2.1. Those mesons are the ground states of the Hamiltonian of the

quark-antiquark strong interaction.

Table 2.1: Meson nonet

Charge Strangeness Examples
ud +1 0 Tt pT
du —1 0 ™ p
Ul 70 pO
dd } 0 } 0 { n' WO
sS 77/0 qu
us +1 K+ K**
ds 0 } 1 { K K
us -1 K- K*~
. 1 o
ds 0 } { K% K*

In the language of group theory, the fundamental representation of SU(3)

is denoted by the Young tableaux

L

while the conjugation representation in which the antiquark states are transformed
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is depicted by

H.

The Young tableaux for mesons are formed as follows:

D@H: ‘@ :

with the corresponding dimensions being;:

33 = 8a1. (2.7)

The ¢G mesons build a nonet (one singlet and one octet) of the flavor SU(3) group.
Since each quark or antiquark can be in a spin-up or spin-down state,
namely S, = £3, the two states form a fundamental representation of the SU(2)

group in spin space. The representations of mesons in spin space are

202 = 391, (2.8)

where the spin wave functions of mesons can take the well-known singlet (spin
S = 0) or triplet (spin S = 1) form. The possible spin-flavor conjugation for
mesons are

(1,1), (1,3), (8,1), (8,3). (2.9)

The nine lightest pseudoscalar and the nine lightest vector mesons which have been

observed and their corresponding flavor wave functions are listed in Table.2.2



Pseudoscalar | Vector Flavor
7t pr ud
T p- du
0 o° - (dJ — ui)
m Wy i (uti + dd + s3)
78 ws }[ (uti + dd — 2s5)
K+ K*t us
K° K+ ds
K~ K*~ —su
K° K +0 sd

13

Table 2.2: Flavor wave functions of the pseudoscalar and vector meson nonets

2.3 Spin-Flavor Wave Functions of Baryons

Baryons are three-quark bound states of the strong interaction in the quark
model. The total wave function of a baryon must be antisymmetric since it is a
system of three identical fermions. All particles observed are color singlet, that
is, the color part of the wave function of a hadron is antisymmetric. Therefore,
the spatial-spin-flavor part of the wave function of a baryon must be symmetric.
For the baryons in the ground state of the strong interaction Hamiltonian, the
spatial wave functions are usually S-states, hence symmetric. The spin-flavor
wave function of a baryon in the ground state is required to be symmetric so that
its total wave function is antisymmetric.

Taking the SU(3) fundamental representation (uds) and combining it with
the SU(2) (T]) one can form a six-dimensional fundamental representation of
SU6), w T,d T, sT,ul,d],s|. Physically in the quark model the intrinsic

SU(3) degrees of freedom will be multiplied by the SU(2) spin of the quarks.

We will quote the following rules for combining states of different permutation
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symmetry and verify it by writing out the states explicitly. Denoting symmetric,
mixed and antisymmetric states by S, M, A respectively, the symmetry properties

that arise are shown in the matrix

S M A

S | S M A

M| M| SM,A | M

Recalling that in SU(3) we found 10g, 87,14, while in SU(2) 4¢ and 2,
emerged, then the above rules imply, for instance, that the 10 with spin % (4 in
SU(2)) will be totally symmetric; the 10 with spin 1 (2 in SU(2)) will be totally
mixed and so forth.

To classify under SU(6) we collect together those states which are symmet-
ric, then those which are mixed and finally those which are antisymmetric. These
are listed below together with their subgroup dimensionalities. The total number

of such states is given on the right.

S:(10,4) +(8,2) = 56, (2.10)
M :(10,2) + (8,4) + (8,2) + (1,2) = 70, (2.11)
A (8,2) +(1,4) = 20. (2.12)

We can immediately verify these results by using the Young tableaux as

Nelzle3] =23 e L2 e 13 g5l
3 5
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Table 2.3: Spin-flavor wave functions of a baryon classified according to permuta-
tion symmetry

56 (9)

(10,4) : 65x5 (8,2) : (¢°x” + ¢*x)/V2
20 (A)

(14) : ¢™x° (8,2) : (O — "X/ V2
70 (p)

(10,2) : ¢5y* (8:4) : ¢"x°

(8:2) : (X" +¢"xM)/V?2 (1,2) : ¢"x
70 ()

(10,2) : ¢Sy (8,4) : ¢*x°

(82) : (¢x* —™M/V2 (1,2) : o'

The corresponding dimensions are

60626 = 567070 20, (2.13)

hence the 56, 70,7 5, 70574, and 204 representation are seen. After this a mixed-
symmetric wave function will be labelled by the superscript A and p for mixed-
antisymmetric wave function. In table.2.3, we list, for completeness, the spin-flavor

wave function of various permutation symmetries.

2.4 The Spatial Wave Functions of Mesons and

Baryons

The spatial wave functions of hadrons are very much model dependent
since the interaction among quarks is still an open question. What has been

commonly accepted is that the interaction must confine the quarks as clusters
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since experiments have never observed any free quark. The most simplest but well
accepted form of the interaction is the harmonic oscillator potential. In this work
we will employ the harmonic oscillator approximation for the quark interaction
in setting up the quark cluster wave function of the mesons and baryons. The
wave functions in the approximation take analytical forms both in coordinate and
momentum spaces.

With the oscillator potential
L5
V(r) = -pwre, (2.14)

where g is the reduced mass of the quark-antiquark pair and r is the relative
coordinate, the momentum space wave function for s-wave and p-wave mesons

take the form

B,(5) = N,exp <—b2 2) \/1_ (2.15)

O,(5) = Ny(bp)exp (—b? ) Vi), (2.16)

where p is the relative momentum with

1
p=§(p1—pz),

and

2b%/2
Tl/a
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2(2/3)1/2b3/2

N, = S

with v? = L.
Hw
For the three-quark objects we assume, as for mesons, that the interaction

between quarks are well represented by the harmonic oscillator potential. The

Schrodinger equation for the three-quark system takes the form

2 2 2
EW(F1, 7o, 7s) = (21’7; + 2+ 2’;2) U(F1, 7o, 73)
1 ~ _ 1 -
+ [2uw2(7‘1 — 7o)’ 4 (T = Ty)°
1 ~ ~ -~
+§,uw2(7“3 — 7“1)2] ‘I’(Tl, T2, 7’3>7 (2'17)

where the three quarks have the same mass m for simplicity, and p© = m/2. We

introduce the Jacobi coordinates

£, = Ta—T, (2.18)
£, — %-(“é”), (2.19)
R — 7’1+7;+7"3 (2.20)

In these new coordinates the Schrodinger equation is rewritten as

1 1
7V?%_|_7

BUELER) = [Tt o

1 N
Vi +—V; ] U(, 89, R
&1 2/1/2 &2 (51 52 )

31 1 o
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where pur = 3m, uy = p and pe = 4u/3. The solution for the ground state in the

center of mass system is

- 2 11, 12 ,
(&1, &2) = Npexp <_22a2£1> exp <_23a2 2), (2.22)

where a? = 1/(v/6uw) and Np = 3%//(7%/2a®). The solution in momentum space

is obtained by Fourier transformation as follows:

N N 2 N N N 2
- oo L o(p1—D I o(p1+ps—2p
U(py, poy, = Ng exp |—=a? | 2 2 exp |—=a? | A2 78 ,
(P1, P2, P3) = N, plz ( 7 )] p[2 NG
(2.23)

where Np, = (3%4a3)/m3/2.
The root-mean-square radii for mesons and baryons might be defined in
terms of the size parameters as follows (Yan, 1994):

For a s-wave meson

1
G = Sy,

1 /3
= —/=b~0.5 fm. 2.24
2\/;19 0.5 fm (2.24)

For a p-wave meson

1
() = SV (@plr2|®y)
1[5
= 5|/t 064 fn. (2.25)



19

For the nucleon

1
N = SV(EIE)
= a~0.61 fm. (2.26)

Here we have used a = 3.1 GeV™' and b = 4.1 GeV~' (Maruyama, Furu, and
Faessler, 1987; Gutsche, Maruyama, and Faessler, 1989), which are determined by
fitting to the nucleon and meson sizes and nucleon-nucleon, nucleon-antinucleon

and pion-nucleon reactions.

2.5 The Nucleon Wave Function

In the quark model, a nucleon is composed of three quarks, with totally

antisymmetric wave function and should take the form

¢ = E\:\j Spatial b l:\:\j Spin—Flavor @@

Color

The spin-flavor part takes the form:

‘ N> Spin—Flavor

1 > (1(1) 1 (2)> 1 (3)>Sp“1
\/§ J=0,1 2 2 J 2 1.5,

1 (1) 1 (2) 1 (3) Flavor
: | < ® = > ® = > . (2.27)
2 "2 )72 [ig

2
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The color singlet wave function of the nucleon is given by

1
—= > €irla)ilaz) jlas), (2.28)

|N>C010r —
\/6 N

where €;;;, is the totally antisymmetric Levi-Civita tensor (see Appendix D). For

the harmonic oscillator interaction
L5,
V(r) = -pwre, (2.29)

the spatial wave function in momentum space takes the form

- N2
I 1 Py — P
/] - N 2 1 2
(p17p27p3) N exXp [ 2a ( \/5 ) }

N N N 2
Cexp | —2a? (P2 P2 = 2Ps (2.30)
2 NG !

where Ny = (31a%) /72, with a = 1/(v/6uw).
Then putting all the parts together, one obtains the total wave function of

nucleon as

N2 o N
N 1 — 1 -2
Yy = —\/g exp [—2&2 <p1\/§p2> ] exp {_2a2 <p1 ‘f’]\)/% p3> ]

10 1@ 1B\ 1) 1@ 1 (3)\ flavor
(2 . >J®z > (2 3 >J®2 >

J=0,1 1.8, 11

1
g 2 Comla)ilae); )i (2.31)
1,7,k
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2.6 The m Meson Wave Function

In the quark-antiquark interaction of harmonic oscillator type, m-meson is

s-wave meson and the wave function in momentum space is written as

1 1
e = N exp (-0 = (2.32)

=

where p is the relative momentum with p = L(p; — p,), and N5 = 202 /7

with ? = 1/(uw).

The spin-flavor part of the m-meson can be written in form:

. 1 (1) 1 (2) spin 1 (1) 1 (2) flavor
spin—flavor — - _ . — — . 2.33
eee|(yey ), |G en ), o e

00

The color singlet wave function of m-meson is

3
color — Z |q2 (234)

The mmeson wave function is then

(1 ® <2)> >Spm
— ® —
2 2 00

1(1) 1(2) flavor 1 3
Al = = — q 2.35
| <2 ® 7 ) > 5 > @) (2.35)

1t.

U, = Npexp {—;lﬂ (f?l — ]32)2}

where N, = N5V /\/dr = (b/7)3/2.
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2.7 The Roper Resonance Wave Function

Hybrid resonances (¢*G and ¢gG) have been studied mainly in bag model.
A general conclusion of those studies is that the hybrid states should have their
rooms in nature. It has also been concluded that the confined gluon might be both
TE (transverse electric) and TM (transverse magnetic) modes, and a TE mode
is the lowest eigenmode. Considering its low mass, we presume that the Roper
resonance is composed of three valence quarks and a TE gluon, denoted by ¢*G.

Three quarks states and hybrid states may have the same quantum num-
bers; a study of the spectroscopic assignments will therefore not be sufficient to
discriminate between the ¢® and ¢3G states. A hybrid state is excited in the spin-
flavor space, and has an SU(6) spin-flavor wave function orthogonal to that of the
nucleon, where as the spin-flavor wave function of a radial excited state is identical
to that of the nucleon. The gluon is in the color octet representation of SU(3)
(Perkins, 1986). In analogy with the (flavor) octet of mesons in Table.2.2 we can
write the color-anticolor states of the 8 gluons as follows:

b1 b bi. aF Erf—bl; T+ bb — 294
r 7T7 7 T? r? ) )
9,99 ar, g /2 /6

(2.36)

With 3 colors and 3 anticolors, we expect 32 = 9 combinations, but one of
these is a color singlet and has to be excluded.

Let ¢, x and ¢ denote flavor, spin, and color wave functions for three
quarks and let superscripts S, p, A and a denote the permutation symmetry ( S/a

is totally symmetric/antisymmetric under any exchange among the three quarks,
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and \/p is symmetric/antisymmetric under the exchange of the first two quarks).
The quantum number of the ¢>G states are dictated mainly by the requirements
that the three-quark state transform as a color octet. The totally antisymmetric

¢>G states are explicitly (Li, Burkert, and Li, 1992; Li, 1991)

[\
=
~—
I
DN | —

(67" = ™) v = (0 + ) ¥ ®1G),  (2.37)

'Ny) = ;[(WW—WW)XS}@IG% (2.38)

where superscript 2 and 4 denote the total quark spins as 25 + 1. In the spin-
flavor-color wave functions |*?N,) and |*N,) above, the color components of the

three-quark core take the form

Z |G3)i A - €5ril @)k |g2)1, (2.39)
zgkl
1
Yo =5 2 (lan)ilea); + ladilaea) N - €jualas), (2.40)
i.gkl

where \* are the Gell-Mann matrices. One may write [*N,) and |?N,) explicitly

1 1) 1 (2) 13)
I*N,) = ® = ®
2 1 2
mi23

i

spin

ylml p1+p2+p3 §4)®e1ms)1m/]
2 115’//

1 1 (3) >ﬂavor l
_ - Q = = CO or
(2 ) 2 1 TN \/_ za:
1 1 (2) 1 (3) flavor R 1
® S g | Y (241
[\ ) &3 ) 5T (2.41)

0

NI
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|2Ng> -

N —

(1|

Ji2

<1(1) 1(2)> 1 (3)>
- Oz ® = ®
2 2 /), 2 .

5,M123

spin
(y1m1<ﬁ1 +52 +ﬁ3 - 54) ®elms)1 i ]
2 lS//
PRI
1M 1(2)> 1(3)>ﬁa"°r 1
S e ® = —= Y g
(2 2 Tia 2 L \/é =

’ (1(1) 1(2)> 1(3)>
— &® = & &
1| \2 2 T 2 L

5,123

spin
(y]-ml(ﬁl + Py + Py — Py) ® e1ms)1 ,2] )
357

10 1@ 1)\ faver e
- - — color | 4 (2.42
5 ®5 . ® 5 7 Xa:%!% (2.42)

1
2 7Tz

The total wave function of the Roper resonance is the linear combination

of the [*N,) component and the [2N,) one, taking the form

Pt [ARN) + BN 243
with
A2+ B2 =1. (2.44)

In the approximation of the harmonic oscillator interaction among quarks and

gluon, the spatial part ‘Iﬁf,’ffﬁlm) may take the form

spatia 1 P1— D 1 P1+ Dy —2p
\111\1;*214140) = Npy+exp [—2a2< 1\/5 2) ]exp [—2612 (1\/2_63
1 2

exp |~ ¢ (Bu+ ot B~ Pa) |

(2.45)
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where Ny. = 31/423/2¢3¢5/2 | 77/4,

Then, the total wave function of the Roper resonance can be written as

N N2
1 o(pi—p
\I’N*(1440) = Ny~ exp {—2(12 (1\/5 2)]

1, (D4 Do — 2P\
2 1 2 3
ex ——Q —_—
p{ 2 ( NG >]

1o,/ o o N2
eXP{—SC <p1+p2+p3—p4)}

Vim, (B1 + Ps + P — Ba) [APN,) + BI'Ny)| . (2.46)
with
|2N, = Z O(l S”mlg (S —m123))
m123 mi

C (111; (S;’ - m123)m1(5g — Mgz — My))

5 ’ (1(1> 1<2>> 1(3)> o
5 ®3 ® 5 €1im,

J12 2 2 J12 2 %7771123 %,Sg
1(1) (2) 1(3) flavor ; 1 Z p| >COIO

= —1)"— a a '
i) e >W< ) vl

(5 ¢
| <1(1 2 1(3)>
® . elmS
2 1—J12 2 1

,M123 1 17
2 151

(3 =3 ) 1(3)>ﬂm e b an
Wl el Ly et e
Jia 1 \/g «

spin
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and

4
"Ng) =

\/_ Z C <221 S/,mlgg(s — mlgg))
mi123,M1

C (111; (SY — mya3)my(S7 — mya3 — my))

1M (2) 13\ Pin
(' Gt ) 2 > )

14 1 v 1 color
{‘ (2 ) >1T” 8 | >a

10 1@ 1® flavor o
_‘ (2 ® ) > 1/} |g>a ) (248)

where the first Clebsch-Gordon coefficients in both eq. (2.47) and (2.48) come

%\H

w\»-t

from the coupling between the spin of the three-quark core and the total angular
momentum of the TE gluon, and the second from the coupling between the spin

and orbital angular momenta of the gluon.



Chapter 111

The Interaction Operators

In this chapter, we provide some detail on how to construct the interaction
operator for the decay of the Roper resonance. First, we discuss the relevant qqg
dynamics, as defined in the so-called 3S; model. Then we work out the interaction
operator of our model in the nonrelativistic approximation.

The dynamics of a qgg vertex is effectively described by vector 3S; inter-
action. We start with the quark-antiquark-gluon vertex, which can be deduced

from the interaction Lagrangian density
_ A&
Liny = @DQWMA,OJ?@U’ (3.1)

where ¢ is the strong coupling constant, ’\7(1 is the SU(3) generators, Aj is the
gluon fields (o = 1,...,8) and ¥ is the quark field. The gluon field A7, might be
rewritten as

A% = A°A,,

with A% responsible for only the color sector. For free quarks, i are just the
four-momentum eigensolutions of Dirac’s equation (see Appendix C), taking the

form

Y = u(p)e’, (3.2)
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Figure 3.1: Diagram for the quark-antiquark-gluon vertex.

where u is a four-component spinor independent of z.

For the transition, depicted in Fig. 3.1, of a quark with momentum p; into
an antiquark with momentum p 7 and a gluon with Lorentz index p and color label

a (=1,...,8), the Lagrangian is simply

N . Y
Line = 0(p )™ 9" A, A u(p;)e™™, (3.3)

where the Dirac spinors for the quark (u;) and antiquark (vy) are defined as

RN Ez—i—m Xi
U; iV = ) 34
(5,5 il B (34)
BmXi
5T
. E;+m [ BmXS
v (B, 0p) = |75 , (3.5)
!
with
vy =o',

where y and y are 2-component spinors respectively for quark and antiquark,
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defined as:

1 0
X (spin up) = . X(spin down) = :
0 1
(3.6)
0 -1
X (spin up) = , X (spin down) =
-1 0
The vector potential A, is given by a plane wave:
A, (z, 2) = 5u(%)Nk (e_“” + eik'””) , (3.7)

where ¢,(k) is the polarization vector of gluon and Ny is the normalization con-

stant. The general polarization vectors of gluon is given by

- k-2 -
e, (k) = L E— k. 3.8
M( ) ( mg mg(kg—l—mg) ) ( )

We choose only one direction of the gluon then eq.(3.7) is reduced to

Substituting eq.(3.9) in eq.(3.3) gives

—

L AY , ~
ﬁint — 1_}(pf)ezpf.zg’)/'ug,u(k)Aa?GZpihxeilkmu(pi)

N (67

- AT -
= 6B )9 =R Ay ) (310)
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The interaction Lagrangian in eq.(3.10) can be written out explicitly using

the following representation of the Dirac 4 x 4 matrices

7 = , = | : (3.11)

where ¢*(i = 1,2, 3) is the indicated Pauli matrix, 1 denotes the 2 x 2 unit matrix,
and 0 is the 2 x 2 matrix of zeroes.

Now

e, =10 — 7 - €, (3.12)

hence

A ei(pi+pf—k)~mu(ﬁi)

Linw = 0(py)g (7050 -7 gu) Aa;

o, E' E a)\OZ i(p; —k)x N
= 9(p;)g?’° )A 76(”*” Meu(p,)
k-2

N A
Ll AcZ— i(pitps—Fk)z, (=
b A )

RPN 'g a)\a i(p; —k)x N
= v(pf)gvo( )A 76(“*1’1‘ R (p,)

(%

I -
—0(By)g7 - EATG PO u(p)

k-2 N
(7 " ) (F-k)AY i(pitps—k)z, (5 )
v(py)g (mg<k0 +mg)> (v-k) ke u(p;)

2m 2m X1 Ef+m E;,+m E;+m E;,+m
(G (5T e\
G.E (2L s By c o-k
Ef+m) \E;+m) \ mg(ko+my)

«

—0 - k:] gAa)\zei(pierf_k)'wxi. (3.13)
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The interaction is given by

Wy = / Lind'z

= X Vi, (3.14)

with

Vi = \/Ef+m\/Ei+m Ef.ﬁ“ra’"@ (O Pp (TP s
Fi 2m 2m Efr+m  Ei+m Ef+m E;,+m

L~ (55D (i D k-2 .
_0'.8_ O'.
Ef+m) \E;+m) \ mg(ko +my)

N

oo Y
—a-k}ng‘Qé(pi—i—pf—k). (3.15)

1

In the nonrelativistic quark model, the quark-antiquark-gluon transition
operator corresponds to the nonrelativistic quark-antiquark-gluon interaction of
lowest order QCD, where the created g carries the quantum number 1L ; =
35;. In the nonrelativistic approximation, namely E ~ m, ko ~ m,, and |p,| =

Dl = |E| ~ (), we have

Wi = Xr Viixis (3.16)
with
aAaA - - o 7.
Vii = —gA X ed(p; +py— k)
A ..
= gA" - (=1)""ote_,d(p; + by — k). (3.17)
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Here we have used

A-B=Y(-1)"A4,B_,, (3.18)

w
with
A ! (A, +iA,)
- T = T 1 )
1 \/5 Y

AO = AZ7
1 .

Ay = — (A, —iA,). (3.19)

It can be easily proven that

<B’071‘a> = _\/éaa,gaa,%a
(blo°)a) = V20,

(Blo'a) = —v25,59, (3.20)

1
_57

where a and b are spin states of quark and antiquark respectively and o* are

defined as

1
1 _ T oy
o = ———= (0" +107),
0_0 — O_Z’
1 r . .
o = —= (0" —id"). (3.21)

The operation of the o could be understand as that it operates a quark

state to an antiquark state, or that it projects a quark-antiquark pair onto a spin-1
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state. We may write eq. (3.20) in the form
(0,00%11; ® X;lun) = (=1)MV20,100 - (3.22)

For the flavor a quark-antiquark pair which annihilates into a gluon must have

zero isospin. So we may introduce a unit operator 15 with the property
(0,0[15|T, T.) = V267,067, 0. (3.23)
The operation of the € which operates on the unit vector of gluon can be in form
(0,0le_plesms) = 6—pm. - (3.24)
Finally one may write the 3S; operator in the form

OlAa — — 7
Vg = g2 (=1)'olj15e 0 A°-6(p; + By — k), (3.25)
i

where g is the effective coupling strength, and the two body matrix elements given

by

(0,010410%; ® X,lunt) = (=1)V26,100,—, (3.26)
(0,017, T.) = V2671001, 0, (3.27)

(0,0le—plesm,) = 0—pm.- (3.28)



Chapter IV
The Transition Amplitude for

N*(1440) Decay

The transition amplitude of the Roper resonance decay into nucleon and
pion is evaluated in hybrid baryon picture. The method developed in the chapter
is general, and could be applied to other decay channels without modification. The
whole transition amplitude is derived by calculating the spatial part, spin-flavor

part and color part separately.

Y Y
2

N*(1440)

W A N =

Figure 4.1: Feynman diagram for N*(1440) — Nw
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4.1 The Derivation of the Transition Amplitude

The transition amplitude for the decay of the Roper resonance N*(1440)

into nucleon and m-meson is defined as

9
Tn+(1440)—=Nr = /HdﬁiquJrVwO\I]N*(UMO)a (4.1)
=1

where Wy, and Wy«(1440) are the final and initial wave functions, respectively. The

momenta p; are labelled as in Fig. 4.1. The operator O is defined as
O = 6(py = P5)0(Ds = P6)d (D3 — Do) Va5 (*S1), (4.2)

with the 3S; interaction vertex

.
Vi;(3S)) = 92(—1)““0%15&;;14“35(% +p, — k). (4.3)

0

In the center-of-mass frame, the wave function of the Roper resonance
includes the internal motion of three quarks and a T'E gluon and a plane wave
(delta function in momentum space) representing the global motion of the particle,
taking the form

Ly (D115 Lo (Pat o= 25\
\I/N*(1440) = Np-exp [—2(1 < \/5 ) ]exp [—QG (\/6) ]
2

c” o/ N N . \2 N N N N
exp —g(p1+p2+p3—p4) 0(py + P2+ Ps + Pa)

spin—flavor—color
vy (1440) : (44)
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The wave function of the final state is composed the internal motions of
the nucleon and meson quark clusters and the relative motion between nucleon

and meson. It takes the form

N N 2 N N — 2
1 Ds— P 1 Ds + Pg — 2p
Unr = NyNpexp |—za® [ |exp |[—za® [ 22—

1 — ~\2 — — — spin—flavor—color
exp [—862 (bs — o) ] 3(Ps + Py — p)Wpy ok, (4.5)

There is one delta function either in Wy« 1440y or in ¥y, which describes the center

of mass motion. In fact only one of these functions,

6(py + Py + Ps+ py)

and

0(ps + Pe + P7 + Ps + Po)

needs to appear in the eq.(4.1) with the overall momentum conservation main-
tained.
In order to evaluate the transition amplitude for a certain final state, we

expand the total transition amplitude in partial waves

TN+(1440) =N = ZTlmly;nl (D), (4.6)

Imy

where ), is the spherical harmonics with [ and m; denoting the total orbital

angular momentum and its projection of the final N7 state.



37

The partial wave transition amplitude 7j,,, for the N*(1440) decay into
nucleon and m-meson takes the form
Tlm = g Z lel [210 (;;1; S;’mus(S;’ - m123))
mi,mizs
C (1115 (57 — magz)ma (S — magz —ma)) Q1
+BQC (;21; S;/m123(5g - m123))

\/_
O (].]_1, (S;, — m123>m1<S;, — My23 — ml)) Q2‘| s (47)

with

9 2 /5 5\ 2
o R Ps — DPs
Bm = NN*NNNW/ dpidpylm (p) C€Xp | ——= < )
1 2:1_[1 l 2 \/5
a® (s + ps — 2p7 i 0 2
-5 <\/6 exp _—* (pg - p9>
L (P pa\ | | (Pt P =2
2\ V2 2 V6
2

- exp l_S (131 + ﬁ2 + 53 - ﬁ4)21 9 (131 + 52 + 133 + 234) 0 (T% - ﬁs)

- exp

'5(]38 + 59 - ﬁ) €xXp

6 (P2 — Do) 6 (Ps — Do) 6 (Pa — D7 — Ps)

ylm1(ﬁ1+ﬁ2+z_§3_z_§4)a (48)

in—fl —col
Ql = <\I]?\1[3;Tn avor—eo Or’Ospin—ﬂavor—color|2N;>a (49)

and

in—fl —col
Q2 = (U O favor—coton| N ) (4.10)



38

where
2 A7l 1M 1@ 16 .
| Ng> _ Z 5 ® 5 X 5 €1m,
Jiz iz 3z 1
27 Evsg
1O (2)) 1) >ﬁaV°r 1
- ®: | ®3 (=1)72 == D vglg)
| (2 2 J1o 2 %szN \/g “
‘ (1(1) 1(2>> 1(3)> -
[z @= ®5 etms
2 2 1—Jio 2 1,mias 1.8y
1 1<2>> 1(3>>ﬂ“0r 1
S ®s | ®; VDAL TR
| (2 2 Ji2 2 Ly \/g @
and

10 1@\ @\
4 Nl
N =l @5 2 "
m123

flavor

1 (1) 1 (2) 1 (3) p color

Z
ﬂavor
1

2
1M 1 1 col
1 1 1 L yolor 4.12
oE 2>®2 >_,f; "
22
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4.1.1 The Spatial Part of the Transition Amplitude
In this subsection we calculate the spatial part P, of the transition

amplitude for the decay of the Roper resonance into nucleon and m-meson,

P = NNy [ a9 1158 (31— 55) 6 (72 = B0) & (5 — 7o)
=1

'5(134—137_798>5(51“‘52"‘@3"‘54)5(58"‘59_5>

@ (55— D6\ [ @ (s B~ 257 )]
5 6 5 6 — <P7
CeXp [ ——= exp |—— [ =2 ¢
b 2( V2 ) b 2( NG )

i a? 51_f72 d | a? 51+ﬁ2_2ﬁ3 d
ceXp | ——= exp |—— [ ——= =<

b 2( V2 i NG

o \2 A, L 2
$€xp _—g (ps_p9> €xXp —g <p1+p2+p3—p4)
Vimy (P1 + Do+ D3 — D) Vi (B)- (4.13)

Due to the d-functions in the equation, the integration could be largely simplified.

One can easily derive

N N 2
o . . 1 o (ps—p
lez = NN*NNNW/dpp4p5p6ylmz(p)ylm1(2p4> eXp [_2a2< 5\/5 6) ]

. S L2
1 —2(—py — ps — pb
- exp —§a2 <p5+p6 (\/%4 bs— P >> ]

- — — 2 — N N N N
coxp | —La? (P3P | exp |- La2 (P57t Ps = 2Py = Ps — Do)
2 V6 2 NG

1o/ - - . \2 1 N
-exp [—862 (P + 254 + 255 + 2Ps) } exp {—802(2194)2}
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= Ny-NuNs [ dp 3B (5)Vims (2p4)

a? b A2\ o 5  D*\ 2 s b 2
exp | — §+§+§ Dy — | 2a —1-5 ps — | 2a —i—; D

(E ) ) Gt -5 550

9
2 Son 2 32 =
— (a +2> (p-Ps+7 Do) — (20° + %) (m-m)} (4.14)
a? b\ o JEIN R N
= Ny«NyNgexp |— 3 tg)P / dpp4D5P6Yim, (P)Vim, (2D4)

a> b 2\ s b2\ o b2\ o
exp[—<3+2+2>p4— 2a2+§ Ps — 2a2+§ Pe
—(a +b)(p4'p5+p4~p6)—§(p'p4)

(4 5) G par i) - ) (55| )

The standard way to carry out the integration above is to first eliminate the cross

terms. We make the following transformation

Qy = ai1py+ asps + aspg + asp,
Qy = bips+ baps + b3pg + bap, (4.16)

Q3 = c1p4+ CaPs + C3Dg + CaD.
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Then,

L2 .2 L2
—Q —Qy —Qs —ap
= — (cu2 + b2+ 012) ]342 - (CL22 + by% + 022) ﬁsQ
— <a32 +b3° + C32> 562 - (CL42 + b4 + ey — Oé) 52
—2 (a1ag + biby + c1¢2) Py - P5 — 2 (araz + bibs + c1¢3) Py - P

—2 (a1aq + b1by + c1¢4) P - Dy — 2 (a2a3 + babs + ca¢3) Ps - D

—2 (agay + boby + c2¢4) p - p5s — 2 (agay + bgby + c3¢4) P - pg. (4.17)

Let the coefficients of all the cross terms zero and also let by = 0, ¢; = 0 and

co = 0, we obtain

(2@2 +3b% + 302> 2
ay = ;

6
a’ + b? 6 3
@ = T (2a2+362+302> !
a’ + b? 6 3
B = Ty ( > ’

2a? 4+ 302 + 3¢?
1

b? 6 2
“= <2a2 + 32 + 302) ’
by — (5&4 + 8a?b? + 12a°c? + 3bzc2>;

4a? + 6b2 + 6¢2 ’

by — a* 4 2ab? + 6a’c® + 3b*c? |

[(5a* 4 8a?b? + 12a%c? + 3b%c?) (4a? + 6b2 + 6¢2)]
b — 4a* + 5a*b? + 6a*c* + 3b*c? N

2 [(5a* + 8a2b? + 12a2c? + 3b2c?) (4a? + 60 + 6¢2))2

6ab + 6a2b%c2 + 18a'c? + 10a%b? 2
@ = ( S5at + 8a?b? + 12a2c? + 3b2c? ) '
4a® + 3a®b*c? + 5a'b? + 6a'c!

2[(5a* + 8a2b? 4 12a%c? + 3b%¢?) (6a8 + 6a2b*c? + 18a*c? + 10a4b2)]%

NI

Cy = )
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8a® + 3b%c? + 8a*b? + 12a*c® + 5a?b* + 12a2bc?
24a% + 24b%¢2 + 40a2b? + 72a2c2 ’

—_— =

The spatial part of the transition amplitude P, is expressed in the

new coordinates @y, @y, @5 as

Pin, = NNy Ny |CF [ dpd@Q,d Qs Qs Vin, ()

2

y1m1 (ﬁl@1 + ﬁ2©2 + 53@3 + ﬁ4f7> exXp (—ap )
2 .2 2
exp (—Ql —0, - Qg) , (4.18)

where |C| is the Jacobian, coming from the coordinate transformation in eq.

(4.16). All the coefficients in the above equation are listed below as:

6

ol = v , (419)
(3a8 + 5a*b? + 9atc? + 3a?b?c?)1/?

5 = 2v/6 (4.20)
(2a% + 3b% + 3c2)1/2’

5, — 6v/2(a? + b?) (4.21)

27 (50t + 8a2? + 12022 + 362¢2)V/2(2a2 + 302 + 3¢2)1/% '
6v/2(a* + a?b?)
(5a* + 8a2b? + 12ac? + 3b2c2)1/2(3a8 + 3a?b?c? + 9atc? + 5a*h?)’

Py =

(4.22)
B = 12( = 120" — 130" + 47" 4 60a°b — 180'°c + 123a°*¢”

+294a50*? + 81a*b%c? + 234a°b?c* + 153a*b et + 27a2b6c4)

1
4a? + 6b2 + 6¢?) (10a* + 16a2b? + 24a2c? + 6b*c?)
1
6a’ + 6a2b%c? + 18a*c? + 10a*b?)’
— (8a® + 3b'c? + 8a'b? + 12a*c® + 5a*b? + 12ab>c?)

— . 4.24
“ (24a* + 24b2c2 + 400202 + 72a2¢2) (424)

T

X (4.23)
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Integrating over the coordinates @1, @1, @1 and p in eq. (4.18), we derive

P,

= Ny NyNg [C (4)° [ dpViom, (9)Vi o () (—1)™

[ 401d0:20Q:Q:Q3Q3 8w exp (@3 - @5 — Q3 - a?)
N+ Ny N [C1* (47)2 (=1)™ 81 101my -, Bap exp(—p®)
[ Qe taQu [ Qe %aQs [ Qi

I'(3/2
N Ny N [CJ (47)3 (= 1061 18y Bap D —p?) ( 3/ ))

23/2
3
T 1
NN*NNNW|C]3(4#)3(—1)m’(517l(5m17,mlﬂ4pexp(—apQ) [(\é_ ) (23/2”
N NA N O (1™, 2 4.25
27\/5 N*IVN 7r| | (—) 1, ml,—mlﬁwexp(—@p ) ( )

Here we have used

Vims (1Q1 + 52Qs + B3Qs + BaD)

and

= B1Q1 V1, (Q1) + 32Q2Vim, B(Q2) + B3Q3V1my (Q3) + BapVim, (),

dQ = Q*dQdQ,

[ A0 Y1, (Q1) Vi, () = 0,

Vimy () Vimy (D) = (=1)™ Vi, (D) Vi gn) (B)-
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4.1.2 The Spin-Flavor-Color Part of the Transition

Amplitude
Now we turn to evaluate the spin-flavor-color part of the transition
amplitude

Ql = <‘P?\If)iniﬁavoricdor’Ospinfﬂavorocolor|2N;/>, (426)

™

and

Q2 = <\IJ§\1[D;n_ﬁavor_COIOr’Ospin—ﬂavorocolor‘4N;/>' (427)

The operators for the spin-flavor part and color part are

Ospinfﬂavor = (_1)u+10¢857u1$87 (428>
1 a A«
Ocolor = 5 78A ) (429)

respectively. The spin-flavor-color wave function of the Roper resonance, nucleon
and m-meson have been constructed in chapter II. Eq.(4.26) is more complicated

than eq.(4.27), so we evaluate the latter first as follows:
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spin—flavor—color 4 \7!
<qij |Ospin—ﬂavor Ocolor| Ng >

sfcqysfe eN
= <qjN \IJW |Ospin—ﬂavor(9color| Ng>

16) 166 1
- AE(G7er), 3
[/ /160 16 1 1® 10
(G o), e )= (6 es)
[ /10 1@ 1) pin
(1) 08, on]”

10 1@ 1 (3)\ faver
z °3 ),°3 >m
10 1@ 1 (3)\ flaver
(2 e >0®2 >§,TZ~}
1® N | ]P"

(G

spin

0

1® 10
1®<<2 ¥3 )
2

flavor

S,S.

Ospin—ﬂavor
77T,

1

color color 1 color
{<N| : <7T‘ : Ocolor|ﬁzwg’g>al

color color 1 color
—<N| ! <7T‘ : Ocolor|ﬁzw3’g>al

Z K ( 16 1(6)) 1D
= — ® = ® =
Js6 2 J56 2

0

S,S.

[/ (16) 10 10 1® ey | ] ’

< <2 ® 5 >J ® 5 h ® < (2 ® 5 > X spin—flavor

L 56 5 T

_‘ (1 (1) 1 (2)) 1 (3)> ] spin (1 1) 1 (2)> 1 (3)>ﬂavor
o ® 5 &5 €1m, = & = & — ,

\272 )72 [y ™, N2 T2 T2

(4.30)
where the two color parts of the transition amplitude are evaluated as follows:

color color 1 color
<N| ! <7T| ! Ocolor|72¢§|g>al

color

= <qqq|<qQ|Ocolor‘\/—ZI/}p|g
_ 1 1 - 1)\a Ao
= (\/Gﬁijk<Q5|i<QG|j<Q7|k> (\/§<QQ|I<Q8|Z> 5%

(4\1/_1/]2 |G3)ir Niv o+ €| @) [ g2) 1 9) )

/k./l/
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1

= 4861]k Z ﬁ‘fj’k’l’<Q5|z‘|QI>k’ <Q6|j|QQ>l' <Q9|l|93>z" (@8|l<Q7|k)\?s Aa|9>ﬁ>\§j/
i gk,
1 a
= 486”k Z €j’k’l’6ik’5jl’5li’/\lk6aﬁ)‘gj’
/j/’kl’l/’ﬁ

1
(e e
= 7€ijk§ Ej’ij)‘lk)‘lj’
48 I

1
_ aya
= = D €ijk€iji AR ALy
j/

1 1
= Ipeae = L

24 24 ’ (4.31)

Wl Do

and

1
<N|color <7T|C010r0color| 7 Z ¢2|g>3010r

= (299/(4q|Ocoler| \/—ZW )color

- <\}6€ijk<QS|i<QG|j<Q7|k> <;§<Q9|I<QS|Z> ;)‘?8Aa

1
— = Z [|QI>7L"Q2>j’)\gj/€j’k’l’|Q3>k’+|QI>i’|QZ>j’)\?/l/€i’k’l"CIS>k’}
42,

/k/l/
1

= 4861,]]6 Z {Ej’k:’l’ <Q5’i|Q1>i/ <QG‘j|QQ>j/ (C]9|Z\C]3>k/ <Q7‘k<QS‘ZA A“ |g> ’l’
/j/,k/,i/ng

+ evwr (aslilq1) <C.76|j|6]2> (@olilas)y (arlr{dsiAzsA® 19)A /z/}
1
48
1

a Yo a o
= 4—8 Z [_ejikejll’/\kl)‘il’ + €ijk€ill’)‘kl/\jl’]
l/

61]k Z [Ej’k’l’6 5 ’5lk’/\ 5&6)‘gl/+€i’k’l’6 5 ’5lk’/\k16aﬁ)‘ /l’:|
LR

1
= ZS [_ (6il5kl/ — 6il/5kl> )\gl iol{/ + ((sjlékl/ — jl/dkl) )\%l)\?l’}
I

= [0 - R + (8 - 8]
= j[(Tr[Aa]f—(Tr[Aa]ﬂ = 0. (4.32)

oo
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An easy way to evaluate the spin-flavor part of the transition amplitude is to

recouple the quark spins and flavors using the formulas

|(]1 ® j2)]12 ® (]3 & j4)J34>J7M
= > {(7173) s (G2J4) dags TM|(G172) 112> (J3J4) gas JM)
J13,J24

[(J1 ® J3) s @ (J2 @ Ja) joa) g0

with

<(j1j3)J137 (j2j4)J24; JMl(jljZ)J12> (j3j4)J34; JM>
1 g2 Ji

=@+ )25 + V)25 + 1)(2Joa +1)3 G5 Ju Jsa . (4.33)

Jis Joa S

Eq.(4.30) may be rewritten as
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spin—flavor—color 4 \7!
<qij |Ospin—ﬂavor Ocolor| Ng >

V2 1\ /11y
- 3%§<<J562>g<22);m

16 106 1)
(), o0
56

5 (), (53,55

a’/a

1 11
), (), 7
(562 17\22/,
1(7) 1(8) flavor
.®<<2 ) )
? T, T,

1 11
(J562)% (33).: SSZ>

J

< <1<5> 1(6)) 109 < <1<7> 1(8)) pin
S ®z = | @(|z ®=
2 T2 ), T2 |, 2 72 Jl], .
10 1@ 1 )\ faver
(=1 otge 1 ( ® 3 ) ® 5 >
2 72 )2 [ug
O 16 1%
s @z | ®= Cim, (4.34)
2 T2 ), T2/,
5,123 i %,Sg
2 1\ /11 1 11
= £ Z<<J56) ,<) ;1T (J56> ) ) ;TTZ>
Joo 6] of 2 i 22 j 2 % 22 1

; (
1 11 1 11
<<J562)a’ (22),355| (Fn3) (22>07552>

2,M;

flavor

@ 1®
@ L ) 5™ (ame, (S, — my)|SS.)

202 ) i my) ma

160 1) 1(9) [spin 1M 16
(aea),on LG ee )
56 QMo

®
10 1@ 1(3)\ Haver
2 Y2 ) 93

spin

ﬁ7(Sz*ma)

(1) ote 17

2
1 7
3 ,’I‘z/

‘ (1(1) 1<2)> 1<3)>SP1“ (435)
- ®z = €1(SY—ma23) 4.35
2 2 1 2 §,m123 w
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- TEE % 5((a), (q2), 7| (4e3), (32),77)

1 11
z (J562)é ) <22>0 ) SSZ>

(imi, j(Tz = mi)|TTz) (ama, B(S: — ma)|SS:)

15) 1(6)> 1) (1(1) 1(2)> 1(3)>
Js6 2 2 1 2 %,Tg

0, 0>
0,0

2 2 2
17
(1(1) 1(2)> 1(3)>
2 2 . 2 5

< <1 ™M 1 (8)>

— ® —

202 Jlimm

< < §7m123

(5) (6) 1)
) ® 2
Js6

m;

2

a,Mmeq

0.0 0.0 lexsroman). (430

078

67(Sz_ma)

By using the operations in eq.(3.26), eq.(3.27) and eq.(3.28), we get

spin—flavor—color 4 \7l
<qjNﬂ |Ospin—ﬂavor Ocolor| Ng >

- Oy 3 () (33) 7

1 11
Jo5) -+ (53) ;TTZ>
Js6 Z] mi, Mo < 2 % 22 1
11 1 11
<<J562>a7<22)ﬁa882 <J562)é’<22>07552>

<Zm7,7.](Tz - mz)’TTz> <amomﬁ<sz - ma)‘SSz>

056,101 Oms 72V 265,007 —1m,.000, 3 O s
(= V2(=1) 565 165 ), 057 —mrzg),
- 22{03), (G3), (12); (33),7%)
1 11 1 11
<(12) (33),:95: (12) ’(22)05552>
< T 00‘ >< Miaz, 1(S. — mia3)

SSZ> (5TZ,TZ”5SZ,S;’- (4.37)



Next, we calculate eq.(4.26)

spin—flavor—color AN
<qij |Ospin—ﬂavor Ocolor| Ng >

sfcysfc 2 nTH
= <\I}N \Pn |Ospin—ﬂavor0color| Ng>

[< (1(5> 1(6))
— ®7
2 2 ).

1

(G

AU

1M
\(2 N

(Il

1M

2

1M
5 ®

_ \f% [< (;(5)

(G
(1

2

)

1@

1
2

1
2

b2

2

1M 1
o

2

1 (6)> 1(M
— ® —
2 ). 2

1M

2

(2)>
J12

©3

(2)>
J12

2

(2)>
J12

1 (2)>
1-J12

1<2>> 1
® = & =
2 Ji2

1(7)
)

3,M123

1 (3) >ﬂavor
R —
2 /g

color color 1 color
(1 N O 1

1 (3)> 1
® “ elms
2/,

5,M123

1 (3) >ﬁavor
R =
2
sy

color color 1 color
<N‘ ! <7I" ! Ocolor‘ﬁzwékwal )}

1 (6)>
R =
2 Js6

1(6) 1(M
) )
J56

2

2

1(7)
)

1
2
3

1
53,1123

1(3) flavor
e3 ), ")
3T

1(®)
{6
p

1® 10
cleer)

1 (2)> 1 (3)> 1
® = ® = elms
2 T, 2 L

spin

1 gn
§7Sz

1(®)
(3 o
p

1@ 10
(e ea)

) spin
> €1(S/—my23)

1

1

spin

1)
®5 )

flavor

T.T,

1 gn
ivsz

1)
. )

flavor

T,T,

spin

0lg.s,

Ospin—ﬂavor

spin

0lg,s.

Ospin—ﬁavor

50

(4.38)



with

color color 1 color
(N[eeler (| OcolorlﬁZ@/}ZIgM =

S wlN

1
N color T color Oco or A color
(N] (| ! If\/gg%lg%x
Eq.(4.38) can be rewritten as

spin—flavor—color 2 a1l
<qjNﬂ |Ospin—ﬂavor Ocolor| Ng >

= TTE((w), (33), 77

1 11
=) (52) 7T
<‘]562>;’<22>1’ >

J56 9]
1) 16 1O TR
2 93 >J,®2 .®<<2 “3 )

56 1 JA1T,T,

1 11
(‘]562); (33), 552>

spin

! &
2 2

1 11
)., 5
Z<( %2).7\22/5
< () 1(6)> 1) <<1(7) 1(8)>
= ® = (s @3
Js6 a 2 2 B
1D 1@ 1 3\ favor
(=) lobee 1L (2 ® 5 ) ® 3 >
Ji2 Ji2 %7T£/

2

‘ (1(1) 1(2>> 1(3>>Spin (—1)

_ R — R — el(sg_m 3) —1)712
2 2 JQ 2 123

S,S.

1
3,M123

o1
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-2 5 () (30), 7 (), (33), 71

< J 3). @E) (‘]56;)5’(;;)0;Ssz>

3
Z img, j(T, — my;)|TT,) (ameg, 5(S, — mq)|SS:)

< ( 1 (6)) 1 (3) | flavor < <1 (7) 1 (8)) flavor
- ®z ® - S o®=
2 2 Js6 2 i,m; 2 2 3,(Tz—my)
<<1(5) o 1(6)) o 1(3) spin <<1(7) . 1(8)) spin
2 Js6 2 My 2 2 B,(T—ma,)

- - 10 1@ 1 () favor

1 _.1 — — —

(—1) ohge @ 78J12 (2 ®2 )J ®2 >l )
12 5.1%

1 1(2) 1(3) spin
‘ (2 2 >J ® 2 >1 81(52’—ml23)(_1>J12
;1123
V2 << 11 1 11
ye 56 ) ) () ;1T <J56) , () TT,
3 JZJE) ;jaﬂmi,ma%: 22 j 2 i 22/)1

(), (33, 55)

L) {amyg, B(S, — my)|SSs)

(1 ™ 1 (2)> 1 (3)>
2 2 ), 2 Ly

(1(1) 1(2)> 1(3)>
2 2 /), 2 )

5,M123

710, 0> (le-ulei(sy—muzs))-

)55
B

078

B,(Sz—ma)

By using the operations in eq.(3.26) and eq.(3.27), we get
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spin—flavor—color AN
<qjNﬂ |Ospin—ﬂavor Ocolor| Ng >

11

2y Yy Y >((#3), - (53), 7

Ji2,J56 4] @,B8 MiMa
1 11
J ) ’() ;SSZ
(562 17\22/,

1 11
(Jsﬁz)% (33). ,TTZ>
11
(J%z)a’ (zz)ﬁ 95

(img, j(T, — m)|TT.) (amg, B(S, —ma)|SS.)

5J56 ,J12 51,% (577% T \/55]'70(57} —my; ,Oéa, 1 5moz ,M123

(_1)u+1+J12\/5(_1)(Sz—ma)56,15(527%)’7“5(32,7%23)’7#
- -5 <0 ) (52), 77 (03), - (53), 7
2 22 2)1°\22/4
1 11
( 355, (02>é,(22>0,552>
1., 1
PR OO‘TT > <2m123, 1(Sz - m123) SSZ> 5T2,T;'5Sz,sg
(1), <“> (1), (33), 7
2 22 2/1°\22/4
1 1 11
1= —— ;865,
2 (2);’(22)& >

SSZ> 5TZ,TZ”(5SZ,SQ] . (4.39)

2

(
(1),

1 1
2T” OO‘TT > <2m123, 1<Sz — mlgg)

'SSZ
1

(
£
(
(

4.2 Decay Width of N*(1440) — Nn

We are now ready to evaluate the decay width of the reaction N*(1440) —
Nm. With the the transition amplitude of the reaction is expressed in the partial

wave expansion

T=> T Y, (4.40)

lml
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the partial wave amplitudes 7}, are derived in the previous sections as

11
Tim, = g Y, P [ ( -1 S/,m123(5;/—m123))

mi,Mm123 2 2
C (111; (S? — my3)mi(S) — myaz —my)) Qy

B 13 , 1"
+ﬁ0 (221 S7mags (ST — m123)>

C(111; (S —m123>m1<s — M1z — My)) Q2]

A B
= g9s,,5001, 10 Pim, [2@14‘\/5@2]; (4.41)
with
Pipn, = (=1)™Bpexp(—ap?), (4.42)
- ! el ol) (1LY
Q = mmK(oz) ,TTZ <O2>1,<22)1,TTZ>
11 11
2) <22)1’S ( > ’(22) ’SS>

T!,OO’TTZ>< m123, S — Mi923 SS>
1
2

<<
(3
((13),-(35), 7| (18), (32), )
(
(3

1 11 1 11
15), (32),55 (2);’(22)0’552>

1
1, 1
T OO’TT > < m123, S — m123) SS >‘|

2 z)
C (111 (S mlgg)( Z)(S;/ — M9z + ml)) , (443)

11

<221 S/,m123(5; - m123)>
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sz — _& <<1

(1), (1), 555

1
<2T;’,00|TTZ>

1 3 7 1/
C <1; Szmlgg(sz - m123)>

22

where

™

22
(1
2

123, 1(Sz - m123)

9/2

e

11

) T,
0

(13), (

11
22

Ny« Ny N, |C]?By.

292
) ;SSZ>

0
SSZ>

C (1115 (ST — maas) (—my) (ST — mazs +my)),

11
) ;TTZ>
1

Listed below are the values of ()] and @ for the different initial and final

states with (7" =1/2, T, = £1/2) and (S =1/2, S, = £1/2):

Table 4.1: Values of Q)] and @, for different initial and final states.

my Tz Sz Qll QIQ

1 1/2 1/2 0.064  0.091
1/2 -1/2 -0.032  0.091
1/2 1/2 -0.064  0.091
1/2 -1/2 0.032  0.091

0 1/2 1/2 0.032 0
1/2 1/2 -0.032 0
1/2 1/2 0.032 0
1/2 -1/2 -0.032 0

1 1/2 1/2 0.032  -0.091
1/2 -1/2 0.064  -0.091
1/2 1/2 0.032  -0.091
-1/2 -1/2 0.064  -0.091

The decay width of the process N*(1440) — N7 can be evaluated in the
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formula

EnErp
FN*(1440)HNW = 27T]\N47/ df} ’TN*(1440)*>N7T|27 (4'46)
N*

where Tn+(1440)— N 1s the total transition amplitude and p the magnitude of the
final momentum of © or N. Integrating over the solid angle €2 of the final particle
N or m and averaging over the initial states, one derives the unpolarized decay

width in the partial wave transition amplitudes

E E.pl
Iy (1a40)=Ne = ]\]\; Z Z | Tim, |2
N S. Imy

EnErpl

MN* §ZZ|T1WZ|2

S, ™My

= 27

2

2.

S, ™My

Y

o (fen )
(4.47)

DO | —

ENE;
= QWAZ*N* ¢*5%p? exp( 2ap2>

where the factor % comes from the average over the initial states. It is found that
the Roper resonance decays into N7 through only the [ = 1 channel in the hybrid
picture.

The ratio of the decay widths for the difference values of the free parameters

A and B is derived as follows:

M(A=1,B=0):T(A=0,B=1):T(A/B=1):T(4/B = —1)

= 0.307 : 1.656 : 0.388 : 1.574.

Note that it is independent of the effective coupling constant g and the length

parameters a, b and c.
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It is too early to seriously compare the theoretical predictions with the
experimental data because there are more than one free parameters needed to be
nailed down. The model has the effective coupling constant g of the quark-gluon
interaction and the mixture parameter A or B free, even if the length parameters
a, b and ¢ could be borrowed from other works in low-energy quark models.

On this stage, however, we may estimate the strength of the effective cou-
pling constant g by using the parameters employed in other works. Here we would
take a = 3.1 GeV~! and b = 4.1 GeV~! as determined in Maruyama et al. (1987)
and Gutsche et al. (1989), A = —B = 1/y/2 as used in Li et al. (1992) and Li
(1991). As for the length parameter ¢, we just let it equal to the parameter a since
we have nowhere to refer to. Using the nucleon, pion and the Roper resonance
masses respectively as My« = 1440 MeV, My = 939 MeV and M, = 135 MeV,

we obtain

p= J ( N +2MN ) — My?=397.9 MeV, Ey =1019.83 MeV,
N*

E.=1420.17 MeV, 3=0.545x 1072 MeV™', and a =3.67 x 1075 MeV 2

Putting all the pieces above together, we get

I (1440)—nr = ¢°[MeV] ™' - 85.91[MeV]?. (4.48)
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By comparing with the experimental data I'y«(1440)—nr = 200 MeV, we get

g°/4m =~ 0.18 MeV ™. (4.49)

To compare with the electromagnetic coupling constant o = 1/137 and the ef-
fective strength GM% = 1.01 x 1075 of the weak interaction and the coupling
constants of the nucleon-nucleon-meson systems in models of hadron level, we
may multiply the effective coupling constant g* by a typical mass scale (m, ~ 100
MeV) in nonrelativistic quark models to derive the dimensionless effective coupling
constant in our model

~—m, ~ 18. 4.50

47 q ( )
The value of the effective coupling constant is reasonable considering the coupling

constants g3 y,/(47) ~ 14 and g%y, /(47) ~ 10 ~ 20 in models of hadron level.



Chapter V

Discussions and Conclusions

In the thesis we have evaluated the transition amplitude of the decay pro-
cess of the Roper resonance to N7 in a nonrelativistic quark-gluon model. The
Roper resonance is treated as a hybrid, that is, composed of three valence quarks
and a gluon of the TE (transverse electric) mode (a TE mode is the lowest eigen-
mode). The wave function of the Roper resonance has been constructed to prop-
erly establish the gluonic degree of freedom, which has been a fascinating challenge
in nowadays non-perturbative QCD physics.

We have estimated the effective coupling constant ¢? in the best knowledge
of the mixture parameters A and B and the length parameters a and b, by compar-
ing our theoretical prediction for the decay width of the process N*(1440) — N
with the experimental data. It is found that the coupling constant is very reason-
able. We may conclude at this stage that the model is promising.

The work here is not sufficient to judge if the Roper resonance could be rea-
sonably interpreted as a bound state of three valence quarks and a TE gluon since
only the N7 channel has been studied. However, the thesis work has paved the
way for the whole project to study all the decay channels of the Roper resonance
such as to Nmm, Np, Am and N~. The method developed here can be applied,

without modification, to other decay channels. Once all those decay channels are
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evaluated, one could adjust all the free parameters (the effective coupling constant
g of the quark-gluon interaction and the A or B which gives information of the
combination of the |?N,) and |*N,) parts of the Roper resonance) to experimental
data and find out if the theoretical predictions are consistent with data.

It has been indicated in the study of photoproduction of baryons (Li, 1991)
that not only the Roper resonance but also other lower-lying baryons like N and
A may have a component of gluon. To confirm or rule out the argument, a
systematical study for the strong process of those baryons are essential. The
presence of the gluonic degrees of freedom may solve the long-standing puzzle
of the Roper resonance, and hopefully provide an explanation of the observation
that the spin content of nucleon is not carried dominantly by valence quarks. It
might be argued that nucleon may also include glunic degrees of freedom since ¢*
and ¢*G states could be strongly mixed in physical baryon resonances because of
the quark-gluon coupling. The gluonic components of nucleon do not change the
isospin and flavor structure, and therefore the ratio of the magnetic moments will

be the same as in the conventional ¢® picture, namely, p,/, = —3/2.
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Appendix A

Baryons Wave function

The quark model description of baryons is more complicated than for me-
son. Since quarks have baryon number B = % the simplest way to construct
baryons from the basic quark triplet is to form gqq states. The quark content of
these states are unambiguous but in order to explain the observed baryon spec-
trum we need to consider the symmetry of the quark wave functions. The overall

wave functions

U = W (spatial)¢(flavor)x(spin)i(color)

must be antisymmetric. Each quark flavor comes in three colors, red, green and
blue (rgb), which form a fundamental triplet of the SU(3) color group, SU(3).,
which, unlike SU(3) flavor symmetry, is assumed to be exact. The SU(3),. singlet

wave function for baryons

P = (rgb + gbr + brg — grb — bgr — rbg) (A.1)

Sl-

is antisymmetric in the exchange of any two quark colors. Its inclusion in the over-
all wave function ¥ guarantees antisymmetry provided W (spatial)p(flavor)x(spin)
is symmetric.

Let us focus on the lowest-lying baryon multiplets, the JZ = " octet and

1
2
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q2

q1

as
Figure A.1: Relative orbital angular momenta in a three-quark system

the %Jr decuplet. The relative orbital angular momenta [ and [’ in these three-quark

state (Figure.A.1) are assumed to be zero and therefore W(spatial) is symmetric.



Appendix B
Theoretical Expectation for

Hybrid Baryons

B.1 General Expectation

Augmenting the quark ¢ and antiquark ¢ by gluons ¢ leads to additional
states in the spectrum relative to the expectations of the naive ¢q and qqq quark
model. Physically allowed (color singlet) states in the baryon spectrum may be
constructed from |ggqqg) "hybrid” basis states, in addition to the familiar |gqq)

quark model states:

lqqq)

—12828110 (B.1)

colo

lqqqg) = (18810)8=1?228°®... (B.2)

color

The lowest hybrid baryon basis state is color octet and spatially symmetric in the
qqq part of |gqqg), making it a 70 of SU(6). Since this gqq subsystem is combined
with the angular momentum of the gluon, we predict that |ggqg) multiplets do not
span the same |flavor, Jiot) states as an SU(6) |ggq) multiplet. Thus we should find
evidence for ”incomplete” or ”overcomplete” SU(6) baryon multiplets due to the

presence of hybrids. More detailed predictions for the multiplet content typically
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require the application of a specific model, although there has recently been work
on the derivation of general properties of hybrid baryon states and their decays in

the large quark mass and large N, limit (Chow, Pirjol, and Yan, 1999).

B.2 Bag Model

This model places relativistic quarks and gluon in a spherical cavity and
allows them to interact through QCD forces such as one gluon exchange (OGE),
the color Compton effect and so forth.

The calculation for light bag model hybrids of Barnes and Close (Barnes
and Close, 1983) was the first published. This reference found the spectrum shown

in Fig.B.1 ; in order of increasing mass the states are

(1/27N)% (3/27N)%; (1/2FA); (3/27A); (5/27N).

Note that the lightest hybrid baryon is predicted to be an extra 1/27N* Pj; state
at about 1.6 GeV, which might possibly be identified with the Roper resonance.
A subsequent calculation by Golowich, Hagg and Karl (Golowich, Hagg, and Karl,
1983) basically confirmed these results, but used a parameter set that gave a mass
of about 1.5 GeV. for this lightest hybrid, so identification with the Roper was

given more support.
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Figure B.1: The spectrum of light nonstrange hybrid baryons found by Barnes
and Close (Barnes and Close, 1983) in the bag model

B.3 QCD Sum Rules

This approach, which has been applied to hybrid baryons is several papers
of the previous decade, finds the masses and other parameters of the lowest-lying
states in terms of numerically known vacuum expectation values (VEVs), called
“condensates”. Since the sum rules related known VEVs to a sum of resonance
contributions, there are systematic uncertainties in separating the individual res-
onance and “continuum” parts. Identification of excited states such as hybrids is
rather difficult in this approach, since higher-mass contributions to the sum rules
are suppressed exponentially. This exercise can be carried out for hybrids, for
example by calculating matrix elements of several operators and diagonalizing the
result. In practice the calculations also use qqqg operators, which one would ex-
pect to have larger hybrid couplings. Up to now only hybrids in the nucleon/Roper

sector 1/27 N have been studied by using QCD sum rules.
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The first published hybrid baryon QCD sum rule calculations was in the
Soviet journal of nuclear physics by A.P. Martynenko. He estimated the lightest
1/27 N hybrid baryon mass to be near 2.1 GeV. A subsequent study by Kisslinger
and Li (Kisslinger and Li, 1995) report algebra errors in matrix elements calcu-
lated in the Martynenko paper, and published a revised mass estimate of about
1.5 GeV, again vaery suggestive of the Roper. A more recent review by Kisslinger
(Kisslinger, 1998) concluded that the Roper is largely a hybrid (meaning domi-
nantly |¢qqg)), the nucleon has little evidence for a hybrid component, and also
considers how one might calculate strong couplings. Some of this program of decay
calculations was carried out by Kisslinger and Li (Kisslinger and Li, 1999), who
conclude that the lightest hybrid should have a rather small branching fraction

ratio N (7wm)s/Nw, consistent with observation for the Roper.

B.4 Flux Tube Model

The flux tube model assumes that glue forms a dynamically excitable tube
between quarks and antiquarks, and that the lightest hybrids are states in which
this flux tube is spatially excited. The determination of excited states in the
baryon sector (gqq+ spatially excited flux tube) is a rather complicated problem
which has only recently been treated. Flux tube model predictions for the lightest
hybrid baryons were report by Capstick and Page in 1999 (Capstick and Page,
1999). They find that the lightest hybrid baryons is the nnn flavor sector are two
each of 1/27 N and 3/2T N, all at a mass of 1.87 GeV.

Thus the lowest flux-tube hybrid baryon level is predicted to include Roper
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quantum numbers, as was found in the bag model, though twofold degenerate and
at a higher mass. In addition a degenerate 3/2T N pair is expected. There are
other differences in the multiplet content; the flux-tube hybrid baryon multiplet

contains the states

(1/2°N)* 5 (3/2°N)*; (1/27A) 5 (3/274) 1 (5/2%A),

so the flux tube model finds a high-mass 5/27A; in the bag model the high-mass
state was a 5/27 N. The flux-tube A hybrids are predicted to be degenerate, with
a mass of 2.09 GeV.

The implications of this work for searches for hybrid baryons, including
various experimental search strategies such as overpopulation, strong decays, EM
coupling and production amplitudes, were recently reviewed by Page (Page, 1999,
2000). In particular Page suggests seraches for hybrids in the final states N7, Np

and Nw.



Appendix C

The Dirac Equation
The free spin—% particle satisfies the free Dirac equation
(170 — m)yp =0, (C.1)
where we have introduced four Dirac vy-matrices
" =0"%7). (C.2)
4 is running from 1 to 4 and the 4* are the 4 x 4 matrices with the properties
(") =1

(v")? = —1 where i =1,2,3
Ty A =0 for pF v

We can summarize the above set of equations to be

{77} = 29", (C.3)
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where g is the element of the Minkowski matric g defined as

1 0 0 0
0 -1 0 0

9= (C.4)
0 0 -1 0

The explicit representation of the v* matrices is not unique. In this work we use

one of the two most popular forms listed, see below:

1 0
o’ = ( ) . (C.9)
0 -1



Here below are some useful properties of the y*

From the v* matrices, we may define

v =iy
which has the explicit form
0 1
7 =
1 0

The solutions of the Dirac equation take the general form

) = Au(p)eii”'w + Bv(p)eip“,

with u(p) and v(p), the Dirac spinors, satisfy the equations

5

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)

(C.15)
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which are indeed the Dirac equation in momentum space. By solving the above

equations, one may derive the explicit form of the Dirac spinors as follows:

N E+m Xi
i\Pi, 0i) = , C.16
Eirm Xi
and
N E+m Xi
(P, 7)) = , C.17
w(Fn5) = Tp | (c.17)
EirmXi

where £ = \/]32 + m?, and x; are 2-spinors with ¢ = 1,2. Usually, y; are chosen
to be the eigenfunctions of the o or the helicity operators h = p - /|p|. The
normalization constant \/E;—mm is chosen so that the Dirac spinors are normalized

according to

u;(p)uj(p) = dij, (C.18)
vi(p)vj(p) = —dij, (C.19)

where
7 =u’, (C.20)

7= vyl (C.21)



The completeness relations for the Dirac spinors are

S wilp)i(p) = LT

By 2m
—_ YpPp—m
vi(p)vi(p) = —5——.

o 2m

7

(C.22)

(C.23)



Appendix D

The Levi-Civita Tensor

The Levi-Civita symbol € is a tensor of rank three and is defined by

0, if any two labels are the same

Cijk = 1, if 4,4,k is an even permutation of 1,2,3 (D.1)

—1, if 4,4,k is an odd permutation of 1,2,3

The Levi-Civita symbol € is antisymmetric on each pair of indices.

The determinant of a matrix A with element a,; can be written in term of

€ijk as
11 Q12 413
3 3
det | ayy amy sy | = DD D €ijk@ilojaz, = €5j101,0;a3). (D.2)
i=1j=1k=1
a31 azz2 Aas3

Note the compact notation where the summation over the spatial direction is
dropped. It is this one that is in use.
Note that the Levi-Civita symbol can therefore be expressed as the determi-

nant, or mixed triple product, of any of the unit vectors (é1, €5, €3) of a normalized
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and orthogonal frame of reference.

€k = det(éi7éj,ék) = éz . (éj X ék) (D3)

Now we can define by analogy to the definition of the determinant an additional

type of product, the vector product or simply cross product

€1 €9 €3
ax b =det ay ay ag | = €ijk€ia;by, (D.4)
by by b3
or for each coordinate
b (D.5)

(6 X b)z = eijkajbk.
The product of two Levi-Civita symbols can be expressed as a function of

the Kronecker’s symbol 9;;

€ijk€lmn = +5115jm6kn + §im5jn6kl + 5in6jl6km

_5im5jl5kn - 5il(5jn5km - 5zn5jm5kl (D6)



Appendix E

Linear Transformation

In this appendix we show the calculation of |C| in eq.(4.18) which is the

determinant of the linear transformation matrix C, which is

. D4
N
R Ps
Q, | = C , (E.1)
R Do
Qs
p

with

a; ag a3 Qg
C=1 b by by by |- (E.2)
Ci Cy C3 (4

Note that there is no cross term in the new expression of the P,,.

Py = 711Q1 +712Q5 + 113Q5 + V14D,
Ps = 72101 + 7122Q + Y23Q5 + V24D,

Pe = 7131Q1 + 7132Q9 + V33Q5 + V34D,
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we can write those equations in matrix form

b Qs
Bs | =] @ |, (E.3)
s Qs
where
Y1 Y12 713
Y= Y22 V23 |- (E.4)
Y31 Y32 33

But in our case use the transformation as eq.(4.16) and can be written in matrix

form as - .
@ ar az as Dy
@2 =|b b b3 Ps (E.5)
@3 €1 C2 C3 Ps
Thus,
a; az as
by by by | =~"" (E.6)
¢ ¢y c3
From eq. (4.18)
C = detr = detly_l, (E.7)
a1 G2 as a; ao as
dety™ = det| b by by | =det| 0 by by (E.8)
cpL ¢y C3 0 0 c3
_ (3@6 + 3ab*c? —é— 9a*c® + 5a4b2>; . (F.9)



Then,

o

6

3ab + 3a2b%c? 4+ 9a*c? + 5a*bh?

>1/2
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(E.10)
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