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The purpose of this thesis is to explain the unusual isotope effect of high-T.
superconductor by considering the influence of the pseudogap, the density of states,
the phononic and the electronic interactions in the weak-coupling limit. Exact
analytical expressions for the isotope exponent (0) with s-wave and d-wave pairing
symmetry are derived. By using the constant, Van Hove singularity and power law
density of states cases we find that our formula for a fits well with the experimental

data, especially in case of the d-wave pairing symmetry.
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CHAPTER 1

INTRODUCTION

Basic Properties of Superconductors
Heike Kammerling Onnes was able to liquefy helium in 1908, the field

of low-temperature physics started. Three years later, he reported another remarkable
discovery. At 4.19 K, the resistance of mercury (Hg) dropped abruptly to zero. Thus,
T. =4.19 K for Hg, and he found similar transitions in lead and tin and he called this
new the state of matter the "superconducting state"(Kamerling Onnes, 1911).

Superconductivity is fairly common place among nonmagnetic metals. Of all
the elements, Nb has the highest transition temperature (T.=9.25 K). Table(1.1) lists
T, values for elements and a few of the hundreds of compounds that have been

reported (Burns,1992).

Element T.(K) Compound T(K)
Nb 9.25 Nb;Ge 23.2
Pb 7.20 Nbs;Ga 20.3
A% 5.40 Nbs;Au 10.8
Ta 4.47 V;Si 17.1

Hg(a) 4.15 NbN 17.3
Hg(B) 3.95 MoC 14.3
Lu 0.10 UBe3 0.85
Be 0.026 UPt; 0.54

Table(1.1) Values of T, for the elements and compounds that are superconducting at

atmospheric pressure (Burns,1992).




In this section, we will show the experimental facts that has been observed in

the matter in the superconducting state.

DC Electrical Resistance

The general behavior of a normal conductor and a superconductor is shown in
Figure(1.1) .
superconductor
Resistivity

normal conductor

0 T. T
Figure(1.1) The general behavior of a normal conductor and a superconductor (Lynn

et al., 1988).

The superconducting state is associated with the precipitous drop of the
resistance to an immeasurably small value at specific critical temperature T, . The
most familiar property of superconductor is the lack of any resistance to the flow of
electrical current. Classically we call this phenomenon perfect conductivity. However,
the resistanceless state is much more than just perfect conductivity, and in fact cannot
be understood at all on the basis of classical physics, hence the name superconductor.

Now consider initiating a current in a closed loop of wire. For a perfect
conductor we might at first expect the current to continue forever. However, the
electrons circulating in the loop of wire are in an accelerating reference frame, and an
accelerating charge radiates energy. By considering these classical radiation effects a
current will decay with time, and hence there is resistance. In a superconductor, their
is no observable decay of the supercurrent (with an experimental half-life exceeding

10° years)(File and Mills, 1963).



The Meissner Effect

In 1933, it was found that when a superconductor was cooled below T, in a
magnetic field, the magnetic flux was expelled from the superconductor. Thus, in a
weak magnetic field, a superconductor has perfect diamagnetism, a phenomenon

called the Meissner effect.

N1

T>T, T<T,
Figure(1.2) The Meissner effect (Kittel, 1991).

The Meissner effect implies that in a magnetic field, superconductors develop
surface current, which give rise to magnetic fields that exactly cancel the external
field, leaving a field-free bulk. The Meissner effect also implies a critical field, H,
above which superconductivity will be destroyed (Burns, 1992). Experimental values
of H. vs. T are shown in Figure(1.3) The experimental result can be approximately

described by a quadratic temperature dependence as
T 2
H (T)=H (O -] (1.1)
with H¢(0) is a critical magnetic field at 0 K. For a conventional superconductor, H.(0)

values less than 10° Oe .

Hc

0 T, T
Figure(1.3) Phase diagram in H-T plane, showing superconducting (S) and normal (N)
regions, and the critical curve H¢(T) or T.(H) between them(Lynn et al., 1988).



Magnetic Levitation

One of the most fascinating demonstration of superconductivity is the
levitation of a superconducting particle over a magnet (or vice versa). Typically this is
done by dropping a particle of superconducting materials in a dish of liquid nitrogen,
with a magnet underneath, and watching the particle jumps and hovers above the
magnet when the temperature drops below T, .

The repulsion of the particle from the magnet is caused by the flux exclusion
from the interior of the material. We assume for simplicity that the particle is spherical
with radius R and that R>>A; , where Ap is the London penetration depth, so that we

may neglect surface effects. We have (Lynn et al., 1988).

B’(a)a’

h=][
41102

]1/3 (1.2)

where B(a) is the value of the field at the surface of the magnet, a is position of the
surface of the magnet, p is the density of sphere and h is the height of the sphere
above the magnet. We also assume that the average value of B may be taken at center
of the sphere (h>>R).

Note that this result does not depend on the size of the particle and in fact the
only material-dependent parameter is the density . This equation is valid only in the

regime that h>>R>> Ap .

Flux Quantization

Consider a normal metallic ring placed in magnetic field perpendicular to its
plane. When the temperature is lowered, the metal becomes superconducting and
expels the flux. Suppose the external field is then removed; no flux can pass through
the superconducting metal, and the total trapped flux must remain constant, being
maintained by circulating supercurrents in the ring itself. Such persistent currents

have been observed over long periods.



Normal ring in magnetic field Cooled below T¢; magnetic field then remove

Figure(1.4) Flux trapping in a superconducting ring (Kittel, 1991).

Measurements of flux quantization were published by two groups in 1961-Doll
and Nabauer (1961) and Deaver and Fairbank(1961) which revealed that the magnetic
flux through a superconducting ring can only take up discrete value n¢o (n=1,2,3,...).
To do this, persistent currents had to be set up in superconducting ring by means of
various magnetic fields and the magnetic flux created by these currents were measured
so accurately that the resolution revealed the individual quantum jumps. Their results

are shown in Figure(1.5).
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Figure(1.5a) Results of Deaver and Fairbank (1961) on flux quantization in a cylinder.



4 i I ! T
H
] A
1
4 : -49',-
Z 3 ' g
5 Vi
= : 4
c Ve
= / .
= /s
= I~ // —
E s
-~ - -)-Io'.:
’
2 1~ ’ —
= /
= /
= /7
o 4 .
2 /
=
= 0 q
c ’
2 s
o« ,’
"
-1 | |

: 1
- 0 0 0.2 03 04
B, in Gauss ——

Figure(1.5b) Results of Doll and Nabauer (1961) on flux quantization in a Pb cylinder.

London (1950) has already predicted the quantization of the magnetic flux in a
superconducting ring for theoretical reasons as 1950. He assumed that a

superconducting ring with its persistent current can only take up discrete states which

are determined by some sort of quantum conditions.

The current density in any conductor is defined by j = nq¥, where n is the
density of carriers, q is the charge, v is their average velocity and m is the mass . In

the presence of a magnetic field we can write this in term of the vector potential A as

- p A
J=HQ[E-QE] (1.3)

where P is the momentum of a carrier.

If we integrate around a closed path deep inside the superconductor where
j =0, and use the relation IA .dl = ¢ , ¢ is the magnetic flux, and apply the Bohr-
Sommerfeld quantization condition as London (1950) did, then we find that the
magnetic flux is quantized

he
b, = ?= 4x10™" gauss-cm2
London arrived at this quantity of the flux quantum because he assumed that

single electrons carried the supercurrent. Now we know from BCS theory that the

supercurrent carried two electrons, Cooper pairs. The flux quantum must be



he -11 2
=—=2x auss-cm .
Q, = e 2x 10 g (1.4)

Another way to obtain the quantization condition is to employ the theory of
Ginzburg and Landau (1950), which is a general thermodynamical approach to the

theory of phase transition.

Energy Gap

One of the central features of a superconductor is that there exists an energy
gap in the excitation spectrum for electrons, which was first discovered in specific
heat measurements. In a normal metal the specific heat at low temperatures is given by
(Lynn et al., 1988)

C=yT+pT’ (1.5)
where the linear term is due to electron excitations, and cubic term originates from
phonon excitation. Below the superconducting transition, the electronic term was
found to be of the form exp(-A/kgT.) which is characteristic of a system with a gap in
the excitation spectrum of energy 2 A . The gap is directly related to the
superconducting order parameter, and hence we might expect that A~ 0as T - T, .

The transition in zero magnetic field from superconducting state to the normal
state is observed to be a second-order phase transition. At a second-order transition
there is no latent heat, but there is a discontinuity in the specific heat , evident in

Figure(1.6) .

Figure(1.6) Schematic diagram of specific heat in a superconductor.



Isotope Effect
It has been observed that the critical temperature of superconductors varies
with isotopic mass smoothly. The experimental results within each series of isotopes

may be fitted by a relation of the form (Kittel, 1991)

M°T, = constant (1.6)

where a is the isotope exponent.

element Hg | Sn | Cd | Tl | Mo | Os | Ru
Isotope exponent O 0.501047]1048| 05 (03302 | 0.0

Table(1.2) Isotope exponent of superconductors (Park, 1969).

From the dependence of T, on the isotope mass we learn that lattice vibrations
and electron-lattice interactions are deeply involved in superconductivity. This was a
fundamental discovery : there is no other reason for the superconducting transition
temperature to depend on the number of neutrons in the nucleus.

The isotope exponent may be lower than 0.5 in superconductor because of
the Coulomb repulsion and anharmonicity of phonons. Therefore any finite value of a
measured experimentally shows that phonons are involved in the pairing mechanism.
However the absence or small isotope effect does not mean that the electron-phonon

interaction is irrelevant for superconductivity.

Josephson Superconductor Tunneling

Consider two metals separated by an insulator, as in Figure(1.7). The insulator
normally acts as a barrier to the flow of conduction electrons from one metal to the
other. If the barrier is sufficient thin (less than 10 or 20 A) there is a significant
probability that an electron which impinges on the barrier will pass from one metal to

the other : this is called tunneling.



Insulator

v

A C B
LS A

N e 7

Figure(1.7) Two metals, A and B, separated by a thin layer of an insulator C
(Kittel,1991).

When both metals are normal conductors, the current-voltage relation of the
sandwich or tunneling junction is ohmic at low voltages, with the current directly
proportional to the applied voltage. Giaever (1960) discovered that if one of the
metals becomes superconducting the current-voltage characteristic changes from the

straight line of Figure(1.8a) to the curve shown in Figure(1.8b) .

Current Current

Voltage V. Voltage

a) b)
Figure(1.8) a) Linear current-voltage relation for junction of normal metals separated
by oxide layer ; b) current-voltage relation with one metal and the other metal

superconducting (Kittel,1991).

Under suitable conditions we observe remarkable effects associated with the
tunneling of superconducting electron pairs from a superconductor through a layer of
an insulator into another superconductor. Such a junction is called a weak link. The
effects of pair tunneling include : DC Josephson effect and AC Josephson effect
(Kittel,1991).



DC Josephson Effect
When a dc current flows across the junction in the absence of any electric or
magnetic field. DC Josephson Effect occurs when wave function of the phase
correlation of all Cooper pairs are stricted. In a given superconductor the wave
function of the pairs are represented by W = W, exp(i0), where 0 is the phase and is
the same for every pair.Josephson found that the current J of superconducting pairs

across the junction depends on the phase difference 0 as (Kittel,1991)
J=1J,sind=17J,sin(6, —6)) (1.7)

where Jj is proportional to the transfer interaction . The current Jj is the maximum

zero-voltage current that can be passed by the junction.

AC Josephson Effect
A dc voltage applied across the junction creates rf current oscillations across
the junction. Further, an rf voltage applied with the dc voltage can then cause a dc

current across the junction. The current oscillates with frequency
_2eV
n

where V is a dc voltage that is applied across the junction and e is the charge of

w

(1.8)

electron..

A dc voltage of I UV produces a frequency of 483.6 MHz.

Type of Superconductor

The magnetization curve expected for a superconductor under the conditions
of the Meissner-Ochsenfeld experiment is shown in Figure(1.9a) . Above H, the
specimen is in the normal state and below Hg, it is in the superconducting state. Pure
specimens of many materials exhibit this behavior ; they are called type I
superconductor or, formerly, soft superconductors. The values of H, are always too

low for type I superconductors to have any useful technical applications.

10
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A Type I T Typen
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HC Hcl Hc Hc2
(a) (b)
Figure(1.9) Magnetization(M) versus applied magnetic field (B,) for a bulk

superconductor a) type I superconductor b) type II superconductor.

Other materials exhibit a magnetization curve of the form of Figure(1.9b) and
are known as type II superconductors. They have superconducting electrical properties
up to a field denoted by H, . Above Hc,, they are in normal states or are normal
conductors. Between the lower critical field H.; and upper critical field H, the flux
density By and the Meissner effect occurs incompletely. In this region, the
superconductor is threaded by flux lines and are in the vortex state. The value of H,
may be a hundred times or more higher than the value of critical field H, of type I

superconductor.

Theoretical Survey

There are many theories or models that try to describe the properties of
a non-conventional superconductor but they can describe only one or two properties of
superconductor. For most of these, there are still useful assumptions and models that
are valuable for consideration . It should be the first step of study to reach the theory

that can describe high-T, superconductor (Burns,1992) .

Two-Fluid Model

The superfluid properties of helium (*He, which has zero electron and nuclear
spin and thus is a boson) can be well understood by the two-fluid model. The helium
atoms can be considered to be in two states. A fraction of the atoms are in the

condensed Bose-Einstein ground state, while the rest are in the normal state. The
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fraction in the condensed state are assumed to lead to the remarkable properties of
superfluid He .

Gorter and Casimer (1934) used this idea of superfluid helium and applied it to
superconductivity. The conduction electron density is n = N/V , where N is the
number of conduction electrons in the sample of volume V. Then n, and ng are the
densities of normal-state and superconducting electrons, where n=n,+ny . Of course,
the separation of the conduction electrons in this manner is a drastic assumption. Take
x=n,/ns and 1-x to be the fractions of normal-state and superconducting-state

electrons, respectively. They assumed a free energy for the conduction electrons of the

form
F(x,T) =x"*f (T) + (1 -x)f,(T) (1.9)
The f, and f; terms were taken as
fn(T):—y;r2 (1.10)
f(T)=-B (aconstant) (1.11)

The yT? /2 term is the usual free-electron energy in a normal metal that yields a yT
(linear) specific heat at low temperatures. The superconducting condensation energy is
taken as -[3 . At T=0, the free energy is -[3, since all the electrons are in the condensed
state, and at T= T, it is yT* /2, since x=1 .

This model can describe the ratio of the electronic specific heat in the
superconducting and normal phase well, in agreement with experiment. But the
agreements with experiment are not too surprising, since the unusual form for the free
energy ( Eq.(1.9)) was chosen to yield these results. Nevertheless, two-fluid model
gives a physical basis for understanding superconductivity, a useful free energy

expression that yields quantities in agreement with experiment.

The London Equation
The brothers F. and H. London (1935) used ideas based on the two-fluid model
to try to understand the Meissner effect. Let n, n,, ns be the densities of all the

conduction electrons, the normal state electrons, and the superconducting electrons,
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with n=n,+ng. Assume ng(T.) = 0 and ng(0) = n . Then, the current due to the
superconducting electrons is given by J = -ev¢ng and from Newton's law,

m (dv/dt)= -eE,

o g 112
=) (1.12)
I(ED— 4 /\}D 1.13
= (A)) (1.13)
where
m
N=— (1.14) .
n.e
. . . w108
Combining these results with Maxwell's equation, [IxE= — <ot ,yields
0 W W
a[cDx(l\J)l- BEF 0 (1.15)

This general equation for any metal with conduction electron density ng, will not
account for the Meissner effect. The Londons realized that the characteristic behavior
of a superconductor could be obtained by restricting the full set of solutions of
Eq.(1.15) to those where the expression within the square bracket in Eq.(1.15) is zero,

not only its time dependence. Thus
B'= —cOx(AJ) (1.16)

which is the London equation, and A or ng can be considered a phenomenological

parameter. Taking the curl of both sides, using Maxwell's equation,

W 4na . . . = bt 250 25 .
UxB= —1J, and using the identity,[1k] xB U -B) = =B B, we obtain
c
o B
0°B= 2 (1.17)
L
o T
W= (1.18)

N
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L)W E
4T e

S

where Ar is the London penetration depth, A = (

The specific form of the solution to Eq.(1.17) depends on the particular
geometry and boundary condition, but is typically of form B, exp(—x /A, ). Hence
Eqgs.(1.17) and (1.18) indicate that at an air-superconductor interface, the magnetic
field decays from the surface into a superconductor bulk exponentially with a
characteristic length scale A . Thus, the London equation gives a simple picture of the
Meissner effect ; a current is set up that shields the interior of the sample from the

external magnetic field.

Ginzburg-Landau Theory

Ginzburg and Landau (1950) proposed a phenomenological theory of
superconductivity, which is related to Landau's theory of second-order phase transition
. The free energy is expanded in terms of an order parameter, which is zero in the
high-temperature phase. The Ginzburg-Landau, or GL theory, introduces a complex
pseudo-wave function ) as the order parameter, which is hypothesized to be related to

the local density of superconducting electrons as

N

n, =5 =luof (1.19)

and ny is the conduction band electron density.

Near the critical temperature W(r) is small and the Gibbs free energy ( Q ) may
be expand into a series in W(r) . In the absence of magnetic fields and in the absence
of spatial variations, the free energy density between the superconducting and normal

state is taken as
) 1 4
Q, =Q, +a¥ +5M% +.. (1.20)

Since the theory is built up for the vicinity of T, the coefficients a and b can be
expand in T=(T-T,)/T. and only the first nonvanishing terms need be retained.
Since the minimum of Q  corresponds to W=0 above T, and W #0 below T, , the
coefficient a change sign at the transition point; therefore, a =01 , where a >0.

From the condition that W=0 must correspond to the minimum of € ¢ at the transition
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point too, we have b =b(T,) >0 .Differentiating with respect to Y-, we obtain the
condition of the minimum of Qg ;
Wt + bW ) =0 (1.21)
This yields the equilibrium value :
$=0 , T>T,
W ()FP=-at /b,  T<T.
Substituting the equilibrium value into Eq.(1.20),

(@)’ 1@1)° _ @1)°
- =- +— =
2-Q, b 2 b 2b

Since we consider the equilibrium in a given field, we have to use the formula

(1.22)

2
81T

free energy in the magnetic field. The magnetic field can penetrates a normal metal

for Fyy where F; = F, — , Fo 1s free energy without magnetic field and Fy is the

completely and superconducting metals are nonmagnetic, therefore p=1. Hence,

2

F (H,,T)=F, - 8_;[ From this we see that magnetic contribution to F, is much larger

than that to Fs. We have the condition for the superconducting transition that is

F,(H,,T) =F,(H_,T). We obtain

2

H
F (T)-F(T)=— 1.23
(D =E(T) =g (1.23)
Comparing Eq.(1.23) with Eq.(1.22), we have
0,-q =@ M (1.24)
T 2b 0 8m '

where Hy, 1s the thermodynamic critical field of a bulk superconductor. From this
equation, we can also derive a microscopic formula for a certain combination of
coefficient dand b .

Suppose now that an external magnetic field is applied to the superconductor.
In this case, both the field in superconductor and W depend on the coordinates. We

will assume that the variation of W in space occurs slowly then
WP =W+ @ g (W 4 3 (WR

Here, we permit one to consider only the correction |[¥ |2to the free energy and
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Wy= W. The momentum operator —iNLJ must necessarily be included in the
. . 2e W ) . .
combination (—iNL> (—)A) , where A is the vector potential and we take into
c

account that the pair has a charge 2e .So we can get the kinetic energy of a particle of

2

1 ) 2e
mass 2mas —|(-inlLF- —A))W
4m c
The free energy in the present of magnetic field can be written as
s Loy 1] 2ewm P H?
Q, =Q, +at|¥” +-b|W" +—|(AnF —A)H + — (1.25)
2 4m c 81

The total free energy , Q;, equal to Q, =[Q.dv .
In order to obtain the minimum of the total free energy, we vary Q; with

respect to Wand we obtain

s

o \ Y 2e @ 2ew O
[IBW ot + SWHW W+ (i =AY i —A)Wiv =0
O 4m c c 0

or

2¢e @? U
) e
-in+ TE‘ ‘PEHV:O (1.26)

B 1
[3W TotW+ bW W+ —
0 4m

The variation of 34" is arbitrary, For 8¥~= 0 at the surface, we get

* 2 1 2¢ W X 2e W
J3W (atW+b¥* W+—(——)A(ANE —A)Wdv= 0 (1.27)
4m- ¢ c
For 8W” is arbitrary at surface, we get
oW ) 2¢e @
—[ind¢ ifF —A)Wds 0 (1.28)
4m c
We find that
1 . 2¢ @, )
E(_IHE’L TA) W oty bW YE 0 (1.29)

Applying Guauss's law, § AlAds = [ D Adv, to BEq.(1-28), we get

. 2¢ W
hl{-inG- 7A)LIJ 0 (1.30)

surface™

Eq.(1.30) is the boundary condition of Eq.(1.29). The meaning of these equations is

that the current perpendicular to surface equal to zero.
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Now we vary Q; with respect to the vector potential A, assuming that
H = OxA . The variation of H? gives ZDX(ﬁ xéAw). We may use the formula
M @EbE 80 xa° @) xb. This yields 26A0% xA ([ (@A xA). The volume
integral of div is transformed to a surface integral and vanishes.Equating the variation

to zero, we find

w W 41T
Okl xAa 0O =H TJ (1.31)
and
W . . 2e? W
=N yrw- ww - P (1.32)
2m mc

Eq.(1.31) is a Maxwell's equation. The boundary condition is the specification of the
field at the superconductor surface. Expression (1.32) corresponds to the quantum-
mechanical current in the magnetic field if the wave function is equal to W, the charge
is 2e and the mass 2m .
We now pass over to new units which will allow us to drop most of the

constants in Egs.(1.29)-(1.32). We introduce the following notation :
_v po M

%o V2H,,

r 2mc

r'=— =

> 414 (2¢)?

LIJI

2
Wy =—— (1.33)

A _ 20t/

e H
V28H “ Jb

As a result, the equations become

A=

-0 @
(IT—A)qu—wﬂlew:o (1.34)

m_;(—D—Aw)w

=0 (1.35)

surface
W -1 . ,
and Okl xA a(w @- Y@ WA (1.36)

Equations (1.34), (1.35), and (1.36) contain only one constant, X, which is called the

Ginzburg-Landau parameter ; it is defined as X = 2°? eHcmé2 /nec .
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In the vicinity of T, we have

1
X < ﬁ for type I superconductor

1
> — for type II superconductor
X \/5 yp p

Let us consider the simplest case : the penetration of a weak magnetic into the
bulk of a superconductor with a planar boundary. Let the superconductor occupy the
half-space x=0 . The field is applied to it along the z axis. The field penetrates the
superconductor and decreases rapidly in the bulk, it depends on x . Therefore, we
choose the vector potential N along the direction y.

W w dA
H=OxA= —1
dx

(1.37)

It is natural to assume that is also depend only on x . We obtain the Ginzburg-Landau

as
2
¢ Y Ay w0 (1.38)
dx
and L (1.39)
dx

surface

Then we obtain |L|J|2 OF A%0 1 or W= constant. Eq.(1.36) yield

d2
@A—A =0 (1.40)

Wecanget A=Ape™.

Differentiating with respect to x, we derive a similar equation for H. the
solution that satisfies the boundary condition H=Hy then H = Hope™ or, in
conventional unit H = Hy ¢™° where 3 is the London penetration depth near T, . In
this case, we get =1 . Substitution & into Eq.(1.33), we will find the relation of T, H,
and the other that can describe the properties of superconductor .

Using the GL theory, we are able to obtain a temperature-dependent coherence
length (&) besides a temperature-dependent penetration depth (A) . The importance GL

parameter is the ratio of these two lengths,
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X (1.41)

1]
">

For the most of conventional superconductor, X <<1 and for all high-T,
superconductor, X >>1 .

When first proposed, the GL theory was not thought to be particularly
important.Because it cannot explain what is the meaning and mechanism of occurring
of order parameter. Today, the GL theory is not only appreciated, it is essentially the
only way to deal with spatially inhomogeneous systems such as thin films, proximity

system, and others.



CHAPTER 11

BCS THEORY

We consider the theory introduced by Bardeen, Cooper, and Schrieffer
(BCS) in 1957 (Bardeen, Cooper, and Schrieffer, 1957). The BCS theory has been
very successful in describing conventional superconductors. It is based on the idea
that in the superconducting state, the electrons near the Fermi surface have a mutual
attraction. This attraction was due to polarization of the ionic lattice by the electron
(the electron-phonon-electron interaction). An attractive force among electrons

combines two electrons with momenta pand -p into a Cooper pair (Cooper, 1956).

p-nk ~p+nk

-p
Figure(2.1) The electron-phonon interaction

The BCS theory incorporates the assumption of a weak net attractive force. The BCS
ground-state wavefunction for the many electrons is an antisymmetrized product of
identical, pair wavefunctions, where each pair wavefunction has a total momentum of
zero and a total spin of zero. The simple model (Golovashkin et al., 1981) which
permits such behavior is given by the BCS “reduced” Hamiltonian, H = Hyp-Hiq,

where

HO = kzcakczocko (2~1)
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Hiq = k%,vkk'CETCJ—rkLC—k'LCk'T : (2.2)

where g is the energy of the conduction electron above Fermi energy. C,4(C,4)is the
creation (annihilation) operator for electron. Vy,. is interaction matrix element. O is
spin index. Interaction in Eq.(2.2) contain terms that scatter pairs of electron from one
pair state (k1 ~k! )to a different one (k't —~k'!) . The interaction matrix elements
V. are at this state unspecified. Bardeen, Cooper and Schrieffer had in mind the
Frohlich or Bardeen-Pines (Bardeen and Pines, 1955) effective phonon-induced
interaction which V. is negative.

The characteristic BCS pair-interaction Hamiltonian will lead to a ground state
which is some phase-coherent superposition of many-body states with pairs of state
(k1 k! )occupied or unoccupied as unit. Because of the coherence, operators such as
C_,,C,, canhave nonzero expectation values <C_, C, > .The bracket <>

denotes the thermal average. We define

A= ka <C,.C, > (2.3)

In terms of A, the model Hamiltonian becomes

H= kzakc;cckc + %A(CL C*,, +hc) (2.4)
(6)

here h.c. is hermitian conjugate .

We define the Green’s function as

+

Oc, ¢
G(k,w,) =< T (DW} (0) >=<-T,0 M & K 7~
E:—klckr C—kLC—kl

@
@

I:IIgI:I

— |]:}11 G12 O (2 5)
E}Zl (}22H .
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where W = (CET C_,,) and Ty is the time ordering operator for the imaginary
time T =it .
Using the Heisenberg’s equation of motion for the creation and annihilation

operators with the BCS Hamiltonian.We get

d
lacm =[C,, ,H].
zekckr _chkl
then
.d .
(15—81()CkT +AC., =0 (2.5.1)

Proceeding in the same manner for C”, | ,we obtain the equation :

d
(ia +g,)C!,, +AC,, =0 (2.5.2)
By Fourier transforming Eq.(2.5.1), we obtain the matrix elements of the Green's

function as

(i(x)n - 8k) < _thkrcl:r > +A < _TTCJ—rklcltt >:[th ’Cl:r ]
or
(iw, —§,)G,, +AG,, =1 (2.5.3)
Similarly from Eq.(2.5.2), we can get
(iw, +£)G,, +AG,, =0 (2.54)

where ,=(2n+1)1T with n is integer and T as temperature. Eqgs.(2.5.3) and (2.5.4)

can be written in matrix form as

0w, — &, A OG,, GuD1 55
3 2 i +eHE, 6,5 (2:33)



We find the single particle Green’s function of a superconductor as

Gk,w,) = (i = § T +4T) " (2:6)
_ . _ O 10 a od
where T, and 13 are Pauli matrices with T, = H 0Eand T, = % B IE .

Because of the relation A=3V, <C_, C, >, we canrewrite Atobe a
K

function of the Green’s function as

A= ngGZI(kﬁwn) (2.7)

Using the Green’s function of a superconductor and for constant interaction

potential V=V and constant density of state N(£)=N(0), we get

© A
A=2T Ve
&2 W +& +A

wp
=2N(0)TV | de A 2.8
© { %mﬁ+sﬁ+A2 28
T T 1 1
Usi = -
g 2 BT 22K, e, + By i~y
where E, =+/ef +A” is the energy of one-particle of Cooper pair.
1
We calculate the frequency sum of form Y ————. We require a

n lwn +Ek

meromorphic function with the same poles as

d
T3 f(i0,) = np(2)f(2)

23



24

where np(z) = —5 " is fermion distribution function.
[§] +

The integration can be performed by using the residue theorem and we get

S = ()
= ann(——
Wi +EZ 2E, 2T

Substitution this equation in Eq.(2.8) ,

\E +A2
wp tanh(————
0 /Ez +A2

A=AT A dEk

where A=N(0)V .

If A does not depend on electron energy , we write

w/E2 +A2
1/E2 +A2

dEk . (29)

BCS Gap and Critical Temperature

It follows from the above consideration that the BCS superconductivity
is linked with the order parameter A , which is defined as a gap in the quasiparticle
spectrum.

At T=0 ,order parameter A(T) = A(0) and tanh(1/T) =1, the nontrivial

solution of Eq.(2.9) is determined from

1 “ de
¥ = _(|)' ——32 20 =sinh~ (m) (2.10)

applying the approximation ~sinh™ (g) Uln(x) , when x>>1 which is applicable in

this case because we consider the weak-coupling limit, wp >> A, then

200,
A(0)

1
— =In(

x ) or A(0)=2w,e™" (2.11)
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for A<<I, the limit to which the theory is applied.
At T=T, , A(T,) =0 . T is determined by the equation,

1 %D tanh(e/2T
1% tanh(e/2T,)
A 0 €
wp /2T,
= (In¢ tanh(e)) | > = ] Ine sech’ede (2.12)
0

/2T, o

Because wp >> T. then we replace I byJ- and tanh(wp/2T,) Ol
0 0

« Tt
We get [Ine sech’ede = ln(4—y) where y =e¢® =178 and C[0.577 is the Euler's
0

constant. Eq.(2.12) because

LEVEC R
= In( ) =)

A
_ 1 2Y @p
= (Y P) (2.13)
or
2
T, = (?y)m,)e‘m = Ll4ape (2.14)

Therefore Eq. (2.14) and Eq. (2.11) give the gap-to-T, ratio as

202 22 s @15)
T Y

C

This is the BCS ‘s universal ratio of a superconductor.
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A (meV)
[ ]

kT, (meV)

Figure(2.2) Comparing measured energy gap of superconductor (dot) to the calculated

gap of BCS theory (solid line).

From Figure(2.2), we find that the BCS predicted that superconductors
with large A(0) have large T, . But this prediction does not agree well with the
experimental data of superconductor with T, in higher region ( about 30 K).

At very low temperature T<<T. (T #0) and let A(T)=A(0)+ A(T)
where Aj(T) << A(0), we expand

g2 +A*(T) Je2 + A2 (0)

tanh
o) HEnh
-2 +22 (0)
OF 2e T
2

Ao, &
001 2e T 2TA(0)

tanh( )

)

Substitution of these equations into Eq.(2.9) yields

2
o€ 2TA0)

—d
{ \Jer + A% (0) :

1

wp 1
— 0 —=————ds¢
Ao g2 +A%(T)

NO%,

20 wp/A[2TA(0) —x2
b )_ 9 BONT I €

01
") 0 X2 +A0)/2T

dx




27

A(0) Wp,
We take /T, and >> ,We can get
“ 2T~ 2Ta@) o
%/@ T I g T
e dx= |T——
0 x> +A(O)/2T O 2A(0)
i 1 | ( ) find that
since —=In e find tha
! YN M
2nT
In (_) ln( ) e—A(O)/T
A(0) AT~ VA0
By using the approximation
T A (T A (T
A, _ g 4 i, B(D)
A(0) A0) " A(0)
We then find the relation between A(0) and A(T) as
A(T) = =\2TTA0) e 2O/T
and A(T) = A(0) —/2TTTA(0) e 20T (2.16)

In the vicinity of T, where (T.-T)/T. << 1 the gap is small compared
with temperature. However direct expansion in powers of A cannot be applied to Eq.

(2.9) . Instead it is convenient to use

tanhx » 1

X nfex? +(T(n+1/2))>

Substitution this relation into Eq.(2.9) yields

1 4T®D/2Ttr Q}) : d 2.17
—= - 5 de :
A ngo 0 7+ +w} @17



28

where ,=TtT(2n+1), @y is Matsubara frequency , n=0,1,2,3,...

1

———— in powers of A , and get
g2 +A? +uwb P 8

We expand

1 - 1 AT
e +A +w g+a (€+ )’

Substituting the approximation in Eq.(2.17) , we find

1 wp/21T wp ] @ A’(T)
—=4T de - d 2.18
A n§0 ({ g2+’ ; g (> +uwp) ) (2.18)
1 2wpY

But we have N ln(—Tﬂ, )

C

Consider the first term on right-hand side of Eq.(2.18) and take

wp [
I -], weget
0 0

wp/2T 1 op/2 1T T ZQ)DV
4T — _de=2T =1
P ££2+wﬁ 2 man+n ")
by using the formula  [————dx =
y using the formula . x=o.

Consider the second term on right-hand side of Eq.(2.18) and take

wp o wp /21T )
J - Jad Y - Y ,weget
0 0 n=0 n=0
sy T LNV R (V-
=0 o(e? +w})? T? n=0(2n+1)°
N (T) 7
- —1(3) .
TT? SZ()
By using th lt'T L ax=" and2(x)= 5 is theRi ¢
usin € relation X = an X) = — , 1S € Riemann zcta
y £ 2 (x* +a%)’ 4a’ n=in® ’
function
@ ] 1 1 1 1 1 1
and ——— =ttt . 5 = ]

w0 (2n+1)° 23 33 43
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1
=¢(3) - (1 3 +3—3 +..)

7
=210

Substitution these equation into Eq.(2.18), we get

20, Y 200,y 7, . N(T)

In( T, ) = In( T )—51(3) 272
N (T)
or ln(_) __Z( )T[2T2

Because T is near T, we can use the relation

T T-T, T-T,
ln(T—)Zln(1+( - ) O T

So we get
2
N (T) = ( )T[ZT (7Z(3) (2.19)
or
1/2 —_
A(T) =T(T,(T, - T)) 0 ,4(3) =1.20206
=3.06,/T.(T. - T) (2.20)

Thermodynamic function
In the uniform system, the thermodynamic potential in the normal state
and superconducting state are Q, ,Qgrespectively. A relation between Q, and Qg can

be written as

d(1/ V)

A
Q,-Q, =-v[dA(A)?
R T

2.21)

where v is volume of material and V is the interaction potential where



@D tanh(ve* + A /2T)
Ve? + A

1
v—N(O)I

then

Q. -Q, wp A 5 tanh(\/s +A” /2T)
= N(0) Jdef da(a)* ).
v 0 0 Ve? + A2

2 [

N
tanh(ve? + A% /2T) - 2IdA' tanh(ve? +A”? /2T)] .
Vet + A’ Vet +A”

=N(0) I de[—=——

Consider the second term on right-hand side and use the method of

A
changing variable x =+/¢* +A> O so that d&= —dA
X

2,2
- 2J?i A tanh( X s = 4TI OOE £ /2D),

e A X 2T cosh(e/2T)
We have
1 [COSh(\/Sz + /A’ /2]")] | [e 82+A2/2T+e— £2+A2/2T]
n =In

cosh(e/2T) QE/2T 4 o /2T
e
2.2 _ 1+ e
= ln(e e°+A° /2T s/ZT) +1n( +e_8/T )

I
= o (Je? + 47 —g) +In(1 46T —n(l 47T

then

Q,-Q, AN @D “p 2
= T SON(O) [ (Ve? +4% ~e)de—4N(O)T [ In(1 +¢7V " T)de
0 0

wp
+4N(0)T [ In(1+e™*T)de (2.22)
0

00

Because wp >> T, we can approximate the integration I by I , then
0 0

@ 1
JIn(1+e™*Tyde = —10T
0 12
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and
sinh™ (QD/A) 2
I (e + % —g)de = A cosh’ ede—%
0
W
—[smh (wD/A)+—\/1+(wD/A) ]——
2 2
DA4 A—ln(&)
AP N2
Wp 1 2wy,

A ) A In(

4 2 VA7 2 NOV A(O)))

Y S S A(O)
=7 vy T2 )

Substitution of this integration into Eq.(2.22), we get

Q. -Q

= —lN(O)Az —A*N(0) In(—— ( )
\% 2

)+ N(0)T°T?
- 4N(0)wa In(1+e V& 2Tyqe  (223)
0

When T - 0 , we may interpret the thermodynamic potential Q as

Gibbs free-energy density , G ,or Helmholtz free-energy density, F ,by the relation

1
G(T.0) =G, (T.0) ¢ H (2.24)

1
and F,(T,0) =F, (T,0) - o H? (2.25)

H_. is the critical magnetic field of a superconductor.

As T is near 0 K, we express Eq.(2.23) in Helmholtz free-energy
density's form where F=F(T,0) and F,=F,(T,0), then we get

F -F O+ %N(O)A2(O)+ %N(O)T[zTZ . (2.26)
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A(0)
A

WD 2 A2

Because [ In(1+e™¥*/Mde 00 and In(—) 0O0.
0

Using Eq.(2.25) and Eq.(2.26), we get

H? = 41N(0)A% (0) —% TCN(0)T?

5 2 °T?
= 4TIN(0) A% (0)(1 -~

3 A’ (0))

or

2 T
He =H (01-3e())"™ by

C C

Ly To
OHO)(F 5 (2)?)

C

T 2
OH, (O 106()’] (2.27)

C

where

H_(0) = A(0)/4TIN(0) (2.28)
is the critical magnetic field of superconductor at 0 K. Since N(0) determines the

normal-state specific heat

210
C, = TN(O)kgT

Egs.(2.26) and (2.28) together predict a second universal constant

T.C,(T.) _ exp(2y)
H2(0) 6T

=0.168 (2.29)

which is independent of the material. Each of these parameters is measurable, and

experimental confirmation is satisfactory in conventional superconductors.

Consider the thermodynamic potential of superconducting state, Qs

we have



Q. (T)-Q,(0) = —4N(0)VT°fds In(1+e™¥T) = %N(O)VT[zTZ (2.30)
0

Q. —Qn
\%

from Eq.(2.30) into Eq.(2.23), we get

and the relation of

Q _9%,0 _lN(o)AZ ~A"N(0) In(
A v 2

()

) —4N(0)T J deln(l +e @/T)

(2.31)
When T is almost 0 K , we can use the approximation wp/T.— o and A [A (0)

and

o I
[deIn(1+e Ve ¥ 1Ty 00T 21TA ) -
0

Substitution this relation into Eq.(2.31), then we have

Q Q.0 1
» —=0 V() —N(0)A% (0= 2N(0)e 2O T 2A0)T?  (2.32)
Since the ent -0 d specific heat —Tﬁ
mce the entropy S = 6T and speciiic neat ¢ = 6T
then
Os —-A(0)/T \/— A(O)
2N(0),/2TA0) e G \/_
/2T[
and
cs _ ) Ao ()
7—2TN(O)(A(O))32 2me A0 - ST T5/2]
N(0
D2N(O)ﬁ(%)”ze_“0w (2.33)
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at temperature T and 0 K by Eq.(2.23). Substitution

The electronic specific heat in the superconducting state obtain by Eq.

(2.33), and we find that, ¢, « e AO/T
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In the preceding calculations we considered only the low-temperature
behavior, where A-4 is exponentially small. Although a general evaluation of Eq.
(2.17) for all T<T, requires a numerical analysis, it is possible to derive explicit
expressions near T, where A< kgT provides a small parameter. We start from the

gap equation Eq.(2.17) which may be expanded in powers of A :

LoonoT [
— =2NO)T Jde2 55—
% ©) 0 %ez+A2+cof1

Wp 1 A2
DzN(O)TjdsZ(82 T ui)z)

Weh d—(i) D4N(0)wadazL
e have ALY L )

h O _ N1 Ty fan— 2
then > == —4N(0)T [de '
\% © 0 n 0 (€2+(L)n2)2
= N(O)TA“Q})dEZ;
) 0 w(E’+up)’
wp 00
Using the approximation Gp>> T.then | - [
0 0
® 1 T
We have |

de =
o (87 + )2 26

Above equation yields

Q,-0Q © 0 _1
L= -N(O)TA' ¥ — O~
\% n:—oo4 (Qn

_ _NOA* = 1
©2PT? s (2n+1)°

——ZZ3N0A—4 T-T
_8()()2n2T3 T =T, .

Substituting A” from Eq.(2.26) into the above equation, we have
Q. -Q 7 N(0)

s n __ 1 3 o

g ¢ )2n2T3 (71(3)

> T (T, -T)?
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=S NonzTC2 -y 2.34
= N0« Tc) (2.34)

Changing the thermodynamic potential to be Helmholtz free-energy density by the

relation

Q.-Q LHz
\ 81

=
I

o3|
|

-]
I

where  H,(0) = /4TIN(0) A(0) =/4TN(0) =T,

We can rewrite Eq.(2.34) as

T

V2,9 _ %
1)

H, =H (O)eV[7Z(3)

T
OL74H O =) .T- T

C

(2.35)

Egs.(2.27) and (2.35) are very similar to the phenomenological relation.

We also have the relation between the Helmholtz free-energy density

and the magnetic field at temperature T , T<T,, as

F.(T,H) - F, (T,H) =$(H2 -H?) (2.36)

We have s= ( ) s-entropy, and H=H.(T) then
T,H)-s (T,H —LH T d—H T
ss( > ) Sn( s )_4T[ c( )dT c( )

S
and the specific heat is given by ¢ = T(O_T

We obtain

- l dt, +H & — H (T
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At T=T,,

dH,

— Tc 2
Cy— anCar ) l=n

s T

(

where H, is defined by Eq.(2.35), so we find

dH,  H,(0)e"

C

—_ 8 12 _ 8 1/2
a T e TVANOGG)

Let ¢, = (2/3)TEN(0)T is normal state specific heat then we get

C,—C, 12

i =7 0143 (2.37)

C

which is in a perfect agreement with the experimental results for a conventional

superconductor as shown in Table(2.1).

Element T(K) c,—c¢,
c, %
Al 1.16 1.45
Zn 0.85 1.27
Ga 1.08 1.44
In 3.4 1.73
Tl 2.38 1.5
A% 53 1.49
Pb 7.19 2.71
Nb 9.22 1.87

Table(2.1) Data relevant to the specific heat jumps at T, for some elemental

superconductors (Burns, 1992).




Isotope Effect

We define the the definition of isotope exponent , Q, as

_ O0InT, 538
a= 0lnM (2.38)

where M is the atomic mass. If atom motions behave harmonically, the Debye

frequency will be proportional to 1 / VM as
1
wpa N
With this condition, the isotope exponent can be written in the

following form.

o= 1 0InT,
" 20lnw,

wp 9T,

T, dup

(2.39)

N | —

From the Eq.(2.13), the derivative of T, respect to wy is

oT. T,

owp Gy

(2.40)

Substituting Eq.(2.39) in Eq.(2.40), we get

(2.41)

N | —

The BCS isotope exponent of a superconductor under an harmonic

approximation is equal to 1/2 .
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CHAPTER IIT

HIGH-T. SUPERCONDUCTOR

The Discovery of High-T. Superconductor

The first of a new family of superconductors, now usually known as the high-
T, or cuprate superconductors, was discovered in 1986 by Bednorz and Muller (1986).
It was a calcium-doped lanthanum cuprate perovskite. When optimally doped to give
the highest T,, it had the formula La, g5 Cag ;5 CuO4, with a T, of 30 K. This was
already sufficiently high to suggest to the superconductivity community that it might
be difficult to explain using the usual forms of BCS theory, and a large number of
related discoveries followed quickly. In the following year Wu et al. (1987) found
that the closely related material YBa,Cu307.5, now known as “1,2,3 compound”, has a
T, of about 93 K when 8=0.10 , well above the boiling point of liquid nitrogen (T=77
K) . With superconductivity at temperatures above the the boiling point of liquid
nitrogen it was possible to enthuse about the large-scale industrial application of this
phenomenon.

Within the space of one year (1987) the properties of the new materials were
studied very precisely and the results published in a large number of papers. In 1988,
there were reports of new superconductors in systems Bi-Sr-Ca-Cu-O (Maeda et al.,
1988) with T, values of up to 110 K and in Tl-Ba-Ca-Cu-O with T, values of over 120
K (Parkin et al., 1988) .
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cuprate materials (Kirtley and Tsuei ,1996).

Structures

Compared to structures encountered in most areas of solid-state physics, those

of the high-T, crystals are complicated.They are layer compounds typically tetragonal,

39

or orthorhombic and close to tetragonal, and contain Cu-O planes with the formula

CuO; lying normal to the ¢ direction. These planes contain mobile charge carriers and

are thought to be seat of the superconductivity. The carriers are usually sharply

localized in the planes, and this makes contact between the planes relatively weak. For

this reason the cuprates often have extremely anisotropic properties.
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Figure(3.2) Structure of YBa;Cu;0; (Buckel,1991).
Formula T(K) n Notation
(Lay er)CuO4 38 1 La(n=1) 214
(Lazx Sry)CaCu;04 | 60 2 La(n=2) -
T1,Ba;CuOg 0-80 1 2-Tl(n=1) T12201
Tl,Ba;CaCuy0g 108 2 2-Tl(n=2) TI2212
T1;Ba;CayCu30y 125 3 2-Tl(n=3) T12223
Bi2Sr;CuO¢ 0-20 1 2-Bi(n=1) Bi2201
Bi;Sr,CaCu,04 85 2 2-Bi(n=2) Bi2212
Bi,Sr;Ca;Cu30 110 3 2-Bi(n=3) Bi2223
YBa;Cu304 92 2 Y123 YBCO
YBa;CuyO4 80 2 Y124 -
Y,BasCu;04 40 2 Y247 -
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Table(3.1) List of materials in the more widely studied families along with
descriptive abbreviations : we use the ones in the fourth column. The idealized
chemical formulae are given, the approximate T, values, and n values(n refer to the n

Cu-O planes that are immediately adjacent to each other in the unit cell)(Burns,1992).

T, values

The most impressive property of high-T, superéonductors is their high
values of T, (Burns,1992). Before 1986, the highest T, was 23.2 K for Nb;Ge, and it
was felt that if this value were surpassed, it would only be by a degree or two. Now
many high-T, materials have T, >77 K (the boiling point of liquid nitrogen), as shown

in Figure(3.1).

100 T T T T T T T T T
K
80 ~
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s
g 3
S mflcm
< L0 d1o
«:'_;: s
e 46 >
20 =
—H4 =
3
42 &
0 ' ' | | 1 i ) ' 1 0
7.0 6.5 6.0

Content of oxygen

Figure(3.3) Influence of the oxygen content on the critical temperature T, and the
electrical resistivity of YBa,Cu307.5 : 000, ® ¢ e (Batlogg et al., 1987); AA A
(Tarascon et al., 1987).

The effect of doping on T, for all of the high-T, materials is the same
manner as shown in case of YBa2Cu307.5-. For YBa,;Cu3O7.5, the variation of T, with
doping is shown in Figure(3.3). This can be done by subjugating the crystals to excess
oxygen pressure or a reducing atmosphere. Or the doping can be changed by replacing
some of the Y>* by Ca®" ; both of these ions usually occupy positions between the

immediately adjacent Cu-O planes. T, vs. doping (carrier concentration) curve for the
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most of high-T, materials is bell-shaped curve. There appears to be optimal doping for
the highest T.. Also, most of these materials can be doped until they become

insulators or non-superconducting metals.

Paired Electron (Burns,1992)
In conventional superconductors, by measuring the magnetic flux,@,
trapped in hollow superconducting cylinders, It was found that this flux is an integral

multiple of a fundamental unit, the fluxoid quantum @, such that

¢®=n(h/2e) =nQ,

where n is any integer. The factor 2 in the denominator shows that the
superconducting ground state is composed of paired electrons.

Early in 1987 (Gough et al., 1987), experiments were performed on
high-T. materials to determine if the superconducting state consisted of paired
electrons. It has been demonstrated that high-T. superconducting carriers consist of
paired electrons, and not some thing more complex.

The nature of the pairing mechanism in high-T, superconductors is not
understood at present. Certainly, phonon-mediated pairing is consistent with the
experimentally observed s-wave pairing. There are many reasons to support and not
support the phonon-mediated superconductivity in the cuprates. Many non-phonon
pairing mechanisms have been suggested for the high-T, materials. Spin-fluctuation
exchange mechanisms or mechanisms based on large on-site Coulomb repulsion tend

to give d- or p-state pairing, but much more work remain to be done.

Evidence of Non-S-Wave Pairing

The cooper pairs of conventional superconductors take on s-wave symmetry.
This is the chance of finding one carrier in a Cooper pair given the position of the
other falls off at the same rate in all direction in space. If we plot the wave function
keeping one member of the Cooper pair at the center, the probability of finding its

partner would appear as a sphere around the center. The next most highly symmetric
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state for the cuprates is the d state. Plotted, it would appear as four lobes lying in
plane, like a four-leaf clover. Each lobe represents a likely position of one member of
the Cooper pair with respect to its partner. D symmetry also means that the Cooper
pair members are not so close to each other that their mutual repulsion interferes with

their coupling (Kirtley and Tsuei,1996).
Figure(3.4)Two types of symmetry of the
/ superconducting wave function are s-

wave and d-wave. In the s-wave
condition, one member of a Cooper pair

is located in the spherical area around its

s-wave symmetry partner. For d-wave symmetry, the
partner lies somewhere in one of the four

lobes (Kirtley and Tsuei ,1996).

d-wave symmetry

In s-wave states, Ay may be taken to be real and without nodes. The
gap then has the full crystal symmetry and only relative weak anisotropy. In d-wave
superconductivity, the gap have the same symmetry as an x>-y* orbital with nodes at
45° to the a and b axes if we have full tetragonal symmetry (Figure(3.2)). For an
orthorhombic symmetry the corresponding state will be somewhat distorted, with the
nodes no longer at exactly 45° (Annett et al., 1990) .

Evidence which is more specific comes from Josephson effect experiments of
Kirtley and Tsuei (1996) that have shown that the yttrium-based and bismuth-based
superconductors are all consistent with d-wave symmetry.

In case of cubic lattice, Scalapino, Loh and Hirsch (1987) find the different

types of wave function of Cooper pairs as
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WY(p)=1 for s-wave

W, ,(p)=cosp,a—cosp,a for d-wave
If we ignore the lattice effect then W, ~ (p) =cos28, which corresponds to a gap

function A(p) = A(T)cos20, where 8; is the polar angle in the plane (Fehrenbacher
and Norman, 1994).

Pseudogap

The existence of a pseudogap (PG) in the normal state of underdoped in high-
T, superconductors is considered to be among the most important features of cuprates.
Evidence for gaplike structure in the normal state at T* > T, was provided by variety
of experimental methods, particularly by angle-resolved photoemission spectroscopy
(ARPES) measurements in Bi,Sr,CaCu,0s;5 (Ding et al., 1996), nuclear magnetic
resonance (NMR) and nuclear quadrupole resonance (NQR) results in YBa,CusOg
(Williams et al., 1998; Raffa et al., 1998) and neutron spectroscopic measurements in
Tmy,; Yo.9 BayCu3Og9 (Osborn and Goremychkin, 1991), HoBa,CusOg and
Er,BasCu;0;5 (Mesot et al., 1998; Rubio et al., 2000).

The remarkable properties of PG are discussed by many researchers, some of
them are shown below. Ding et al.(1996) find that a pseudogap with d-wave
symmetry opens up in the normal state below T* and develops into the d-wave
superconducting gap below T.. Kristoffel and Ord (1998)show that this pseudogap is
related to the superconducting gap (order parameter) below T, and acts as a normal-
state precursor of the true gap. The pseudogap seems to be a property of underdoped
high-T. materials becoming suppressed in the optimally doped region. Renner (1998)
suggested that superconducting gap (SG) smoothly connects with pseudogap at T,
with a sizable magnitude. Bouvier and Bok (2000) suggest that the pseudogap is only
seen in the underdoped sample. The pseudogap has not been observed in the
conventional superconductors. The pseudogap magnitude decreases with doping with
anisotropic in the CuO, planes and PG have the same symmetry as SG. Suzuki and
Watanabe (2000) find that PG magnitude (T=T.,) is much greater than SG (T=0 K) in
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the underdoped region but PG magnitude is much smaller than SG in the overdoping

region. Both gaps show the smooth connection near the optimum doping.
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Figure(3.5) dI/dV-V curves at various temperature for the specimens in
Bi,Sr,CaCu;y04.+5 system. The thick lines indicate curve very close to T, (Suzuki and

Watanabe, 2000).
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T. (K) SG at T=0 K, (K) PG at T, (K)
70 457.9 869.5
79 457.9 753.6
85 446.3 463.7
77 260.8 173.9

Table(3.2). Shows the magnitude of superconducting gap (SG) at T=0 K and
pseudogap (PG) at T=T. for different T, in Bi,Sr,CaCu,0s,5 system (Suzuki and
Watanabe, 2000) .

The explanation for origin of the pseudogap is not clear yet but many
proposals have been presented. Fukuyama (1992) and Lee et al.(1998) suggest that
the pseudogap is caused by the singlet formation of spinons which appears as a result
of the spin-charge separation. Emery and Kivelson (1995), Kwon and Dorsey (1999),
and Koikegami and Yamada (2000) suggest that pseudogap is related with the
antiferromagnetic phase which is reached by controlling the doping or the pressure.

The most accepted theory is proposed by Emery and Kivelson (1995) . They
pointed out that superconductivity requires more than just paired charge carriers, it
also requires" phase coherence" between those pairs.Each pair has a quantum wave
associated with it, for the pairs to condense into the superconducting state all waves
have to be in phase with one another. As the pseudogap exists almost up to room
temperature, it could be that some feature of cuprate structure makes it possible for
pairs to form at high temperature above T.. If the onset of superconductivity would
signify not the formation of pairs, but the setting in of phase coherence below T, .
This idea is supported from experiments by Corson et al.,(1999) in Bi,Sr,CaCu,Os; 5.
They found exactly the sort of fluctuations above T, . In Emery and Kivelson theory,
above T, the pairs have so much thermal energy that they can no longer maintain

phase coherence. Superconductivity should become fragmented or fluctuating.
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Comment on High-T. Superconductor

Knowledge of mechanism of pairing of carriers and of the nature of the normal
state is central to an understanding of the high-T, superconductors. Superconductivity
is a correlated many body state of pairs which is well described by the BCS theory in
weak-coupling limit A<l. Depending on the specific bosonic field, which glues two
carriers together, the BCS superconductor could be not only phononic but also
excitonic, and plasmonic .

The BCS theory like any mean-field theory is a rather universal description of
the cooperative-quantum phenomenon of superfluidity in *He with T, a few mK, in a
conventional superconductor, and as is believed, even in atomic nuclei with
T.=10""K ( Anderson and Schrieffer, 1991).

We will compare the properties of the high-T, materials to the results of BCS
.In BCS theory it is assumed that the attractive electron-pairing interaction is due to
electron-phonon coupling, that pair are weakly coupled compared to average phonon
energies (call weak-coupled BCS), and that pair are in a spin-singlet s-state which
implies that the superconducting energy gap is isotropic. In the high-T.
superconductors, they show many unusual effects.

In some observations, they find that the high-T, superconductors are almost
identical to conventional BCS superconductor's properties. But in some observations ,
there are still difficult to reconcile their unusual properties to BCS .We list a few of
these here (Burns,1992).

1. In the superconducting state, the electron are paired. Although theses
materials show electron-pairing superconductivity, it is possible that the pairing
interaction may not be phonon-mediated. Phonon-mediated superconductivity with
some sort of a booster to increase T is also a possibility.

2. There is an energy gap in the superconducting state as in conventional
superconductors. However, the energy gap is probably anisotropic and lies in the
range 3.5 to 8 kgT, which is larger than the isotropic BCS value of 3.54 .

3. Several experiments suggest pairing into s-wave state, as predicted by BCS.

But there are several experiments shown d-wave state in high-T, superconductor.
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4. The high-T, materials display many of the familiar superconducting
properties, such as Josephson tunneling and vortex structure as found in BCS
superconductors.

At this state, we think that BCS theory can describe properties of high-T,

superconductor if we modify this theory by using the facts from experimental data.



CHAPTER IV

THEORETICAL SURVEY OF HIGH-T. SUPERCONDUCTOR
IN BCS SCENARIO

Van Hove Singularity Density of States

A Van Hove singularity scenario (VHS) in the electronic density of states
(DOS) was initially proposed (Labbe et al., 1976 ; Kieselmann and Rietshel, 1982;
Hirsch et al., 1986) to explain T, enhancement in superconductors over and above the
T, predicted by BCS theory. Since the origin of cuprate superconductivity is to be
found in CuO; planes, which are weakly coupled together along perpendicular axis,
their electronic structures will be quasi-two-dimensional (2D). This necessarily leads
to at least one VHS coinciding with saddle point in the £(k) surface, these saddle
points being present in all 2D band structures.

Getino et al.(1993) derive the exact T, formula within the VHS scenario. They

begin with the equation for the finite-temperature gap energy A(T), with a general

density of states N(E),
R dE J(E-E,)’ +&°(T)
== N(E) tanh 4.1
v E;_r% JE—Ey emr) e 2T ] “.1)

where V is a positive coupling constant representing the electron-phonon interaction,
which is nonzero in a narrow shell of thickness 2wy centered about the Fermi energy

Er . They assume a Van Hove singularity DOS of the form

N(E)=N, In (4.2)

F
E-E,
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Putting x=(E-Ef)/2T., Z=0x/2T,, and W=E/2T,, in Eq.(1) and Eq.(2) with
A(T.)=0, they obtain

1 —Zd tanhx1 w 3)
NOV_OX x  x '

Integrating this by parts gives

1
N,V

w1
= tanthnZln? +5tanhZ In* Z -D(Z,W) (4.4)
where
f L2 ,
D(Z,W) = [dx(Inx In—+In’ x)sech’x (4.5)
0

Multiplying both sides of Eq.(4.4) by 2 cothZ, adding In*(W/Z), and

rearranging, leads to

1 2 W 2
v +D(Z,W)]2cothZ +1n 7 =ln" W (4.6)

0

[N
which on exponentiation leaves the exact T, formula given by

1 O 1 w, E w, E, ,U
T.=—E - +D(—,—))2 coth— +In> —-1"20 4.7
« =5 FBrexpg [(NOV (2Tc’2Tc)) coth>—~ +In ] a 4.7)

c D

This T's equation provides significantly larger values for T, than the standard

BCS formula as shown in Table(4.1).

NoV wp(K) Er(K) Te(K)
BCS with VHS 0.081 754 5800 40

0.12 754 5800 92
Standard BCS 0.081 754 - 0.004

0.12 754 - 0.2

Table(4.1) Shows the comparison of T, between BCS and VHS (Tsuei et al., 1990) .
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Gap-to-T, Ratio
Getino et al.(1993) calculated the exact T, equation, Eq.(4.7), but they
evaluated gap-to-T, ratio (R) approximately. Ratanaburi et al.(1996) derived an exact

R equation as

I(Ti tanhxl E, Z%ﬁ; ln‘2EF / RT.x 49)
X n————| = X——— :
0 X 2XTC 0 \IX2 +1

where R=2Ay/T. .

The numerical calculation of R based on Eq.(4.8) is shown in Figure(4.1) .

4.0

3.9

3.7

3.6

/T,
Figure(4.1) Value of R for a DOS with a VHS at the Fermi level for different wp/T.
values and taking Ez=4000 K and wp=500 K (Ratanaburi et al.,1996).

Figure(4.1) showed that the values of R do decrease with increase in wp/T,
and tend to reach the BCS limit of 3.53 for very high value of wp/T. The reason for
this is because the increase in wp/T, enlarges the effective region of the DOS and
hence the R value is diminished.

At this step, we derive Eq.(4.8) for an exact solution of R and get
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Wy /2T,

Id tanhx i tan™\( b )In( F )
J & 2Tx zon(n+l/2) 2T (n+1/2) 218 (n+1/2)
+CL 2 tan " (Lo dtan T () ]
2 2T (n+1/2)) 4 21T (n+1/2)
and
2E;
20p/RT, 1N(5 )
dx—F——== Cl ,(2i smh_l(—))]
‘or Vx®+1

where Cl,(z) = —Idx In(2 sin(%)) is the Clausen integral (Prudnikov, Brychkov, and
0

Marichev, 1992).

Combining the above equations, we get

4EF < -1 wD EF
R = 1
T ol Z()T[(n+1/2)[ M m+1/2) "G (n+1/2)
¢ sinh™ ( ) ¢ ¢
40l 2tan " (2 Lo dtan T )
2t 12 4 MO (m+1/2)
—Re[—Cl (2i sinh™ (4.9)
Isotope Effect
In harmonic approximation
_ 1oy, dT, 4.10
T2 T, dw, (4.10)
Rewrite Eq.(4.3) as
1 @t dx E
= —1 ") tanh 4.11
N,V ‘Or x NG ) tanhx 1D
Differentiation Eq.(4.11) with respect to u), all the way, we find
1 & tanh &
aT, T n(, ) G ) 1
e, - W, E W, wp /2T, (4.12)

In(— ") tanh(= ) + I &= tanh x
W, 2T, X

0
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Since
wp /2T, o /2T,
I d—tanhx=z I dx 2
0 n=0 o

(4

< 2 . w,
= Z I tan~ ( I )
Tnn+)) 2 (n+)

Substituting Eq.(4.12) into Eq.(4.10), we get

1 & t h&
L (g, tanh(y)

- (4.13)
2 [ln(iF) tanh(;)TD) + Zzltan‘1 (Ll)]
D ¢ n=0 T[(n + E) 2Tlch (Il + 5)

Asymmetry of the Isotope Exponent

Tsuei et al.(1990) and Goicochea(1994) used a VHS model to explain the
dependence of a on doping superconductor. They showed that a maximum transition
temperature with minimum isotope shift exponent occurs when the Fermi level lies at
the energy of the VHS, and T, decreases while o increases as the Fermi level is
displaced from the VHS. This behavior is in good agreement with the experimental
results of high-T, oxide systems. Apart from exhibiting a minimum at optimum
doping, the a curve is asymmetric about the point where T, is maximum. Bhardwaj
and Muthu (2000) have used a slightly modified version of a VHS to explain the

asymmetry in the o curve. They consider a DOS with a Van Hove singularity of the

form
N(E)=N, L‘ (4.14)
E-E. -0
where &=-0; : Er-o)p € E < Ep
=0 : Er < E < Er+wp

and0< O, O, < 2T, .
Using Eq.(4.1) and taking T=T, (A(T.)=0), the BCS gap equation is



tanh(* %)
R T
= |dE In
N,V .2~ E-E, |E-E, -}
=1, +1, (4.15)

ith 1 (]Ddxt h(=) In—| and
1 = | —ftanh(—)In an
v b9 x 2T, |x

_61

[
d

I, = I—X tanh(—) In
X

0

(4.16)

X62

Bhardwaj and Muthu (2000) have made an approximate calculation of the a
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exponent but here we can work out the equation to get the exact solution for o defined

by Eq.(4.10) . First, we separate the limit of integration into 2 parts

1= j— tanh(—) ln( )

)+ j— tanh(—) ln(

Differentiating Eq.(4.15) with respect to wp all the way, we find

2

1 Er
= tanh( ) ln(

- )
h 1 L —-T.(f(3,) +f(d
L s PR R CORLCY)
where
f(d —it h 0 | 0
(®) = tan (2Tc>n<%_5)

('OD 2
2(52 ot (2 e CLICrS

~27T, (2n +1) tan™ (ﬁ) ]

For d = &,= -0, , the density of state can be reduced to be

N(e) =N, ln that is considered by Goicochea (1994). We can get

(E -9)



2

Wy, E;
) 1 tanh(2TC)1n(w]2) ~ 62)

2

2 anh 2y In—E )+ tanh(-2 ) in( 2~ 0
{anh(y ) I ) + tamh(y )i 2

2m(n+1/2)tan”" (@, / 1T, (2n +1))

w3
n=0

(;;C)2 +(T(n +1/2))’

(4.18)
Goicochea (1994) derived the T, formula which corresponds to the density of
tates, N(€) =N, 1 Er
states, N(€) =N, na_(EF 3 , as
T, =136E il 24 2(EF)+62( Lo ) 117} (4.19)
=1 - n(—)+— —) - )
TEEPEINGY T ) T2 en) Ty

Using Eq.(4.15)-(4.19), we can get the numerical result of a, for case
0=0,= -0, ,as shown in Figure(4.2).

o8t I\

0.4

20 40

100

Figure(4.2) Isotope effect exponent () as a function of T.. Here we have used E=500
meV, wp=65 meV, and NV, = 0.11. Experimental data are taken from Franck et al.
(1991)(000) and Bornemann and Morris (1991) (¢ ¢ ¢ ) (Goicochea ,1994).
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Figure(4.2) shows the isotope exponent as a function of T, for a VHS , and the
results are compared to experiments on the yttrium-based compounds. The lowest

value of the isotope exponent remain unattainable with a VHS.

Power Law Density of States

Because of the high value of R above the BCS result, it is possible to
take into account of any DOS singularity. Mattis and Molina (1991) evaluated the
zero-temperature gap-ratio with the singular density of states of the form

N(e) = A|£|B, have €e=E-Ef, and found a slow decrease of the value R from R=4

at
=-0.8 to a low R=2.9 at 3=1 . Abrikosov et al.(1993), using the observed extended
saddle point singularities along I'-Y symmetry direction in a 1-2-3 high-T,
superconductor showed that the DOS diverges as the square root of energy. Using the
Eliashberg theory and a model DOS of the form , Zeyhar(1995) showed that large
enhancements of T, and strong reductions of the isotope exponent cannot be

explained.

Gap-to-T, Ratio
Udomsamuthirun et al.(1996) used the singularity density of states of the form,

N(g) = Ale|P where e = E - E .. They obtained the exact formula for R :

W /2T,
Idx x P tanh x

R =4[5 I (4.20)
Jax x P +1/x7)
0

for 3<0, and 3>0, They have

Wy /2T,

Jdx x*(1- tanh x)
R = 455w 1" (4.21)
Jax xPa-(1+1/x2)7?)
0

A numerical calculation of R based on Eqs.(4.20) and (4.21) is shown in

Figure(4.3) as a function of B for different value of wp/T. .



0.5 0 0.5
B
Figure(4.3) Plot of R=2A/T. for different choices of wp/T. as a function of the
exponent 3 .0p/T, — o (), wp/Te —» 754/40 (-----), wp/T. - 754/90 (U0 ),
and op/T. — 754/90 (- [ ) (Udomsamuthirun et al.,1996) .

At this step, we can derive Eqs.(4.20) and (4.21) for an exact solution of R and get

wp/2T, 1 B+1 1-B. Wy
IdxxB tanhx—z(ﬂ(n+_)) B( 2 T (2T (n+1/2))

%Id X1, BB
e 202

)

For [3<0, we obtain

Z(n(n+ )) B (L J)
R =4[ Br1 B 1P (4.22)
B, (7 *)
and for 3>0, we obtain
1 1-
B(f)ﬁ Z(n(n+ ) B(L J)
T w,, 1. B+ P e

por) 2B )
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Isotope Effect

Consider density of states of form
B
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N(E) = N |——F (4.24)
EF
At T=T,, substitution Eq.(4.24) into Eq.(4.1), x=(E-Er)/2T, and A(T,)=0,
Wy /2T,
~ v = (2T.)" j'dx x*" tanhx (4.25)
Differentiation Eq.(4.25) with respect to u), all the way, we find
0V}
oT W' tanh(—D)
awc = [3 coD/ZT (426)
P Titanh(i) B2°f TP Idx xP" tanh x
wp /2T, o Wp/2T, XB
We have I dx x*" tanhx = 220 Idx e
T X )
o O 1
=2 dgr(n +-)]*" tan®
2 Jaormn+))
- +1 1
= St LR
n=0
O wp
where 6 =tan™ ( ), X= T and
2T (n+7) wy, +(2Tffc(ﬂ+5))2
arcs1n\/7
B, (p.q) = Idt P (1 -0 =2 J'sm2p "Bcos’* B6d6
B, is the incomplete beta function .
We find
w
. tanh(—")
o== B+ 1 B (4.27)
B, )]
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The Effect of Coulomb Repulsion on T,

In this section we will show the development of the Cooper model potential
which qualitatively accounts for the effects of Coulomb repulsion (Ketterson and
Song, 1999). We have the BCS gap equation as

tanh(&)
2T

———dE 4.28
g Ok (4.28)

A(E,) =N, JV(E, )AE,)
We introduce the Bogoliubov model (Bogoliubov et al., 1958) potential shown in
Figure(4.4), which may write as

-V +V, for -w, <E,. <w,

E,.)=010 4.2
V(E\) 0 +V. for wD<‘Ekk"<0')c (4.29)
Vv
Ve
Exe (V) (Ve
V(/'Vp

Figure(4.4) Schematic diagram of the Bogoliubov model potential.

The differs from the Cooper potential (which contains only the attractive
component -Vp) by the addition of a constant repulsive potential, +V,, in the interval
W < Expe < @, where w, is a Coulomb cut-off frequency.

The function A(Ex) will be described in terms of two values A; and A, as

follows :

A, for —w, <E, <w,
AE,) = ElAz for @y < ‘Ek‘ <@ (4.30)
Consider when Ey < wp, we can get
® tanh(€/2T),) ‘R tanh(e/2T,)
A=A, [deN(-V, HV) T A, JdeN,v, — (4.31)
0 (S8
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and when Ey > wyp, we get

tanh(€/2T),)

tanh(e /2T,) ¢
T, JdeN, v, — (4.32)

Wp
A, =4, [deN,y,
0

The above equations can be write into 2x2 matrix as :

O d I,,A O
B FH, L HAH (333
2 21
here
‘¢ tanh(e/2T,)
I, =N,(-V, +VC)Idsf
0
113w,
=Ny (=Y, V) I
‘® tanh(g/2T
I, =N,V, Ids—an (E )
=N,V. ln( =) =1,
1130,
and I,, =N, V., In( L)

C

Introducing the parameter A= NV, and 4 =NV, the critical temperature

can be obtained from the solution of

1.13
A=) -1
c D —
IS i)

Setting the determinant to zero yields the condition

0,
) >) =0
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M
1+ pin(w, / w,)

Introducing a quantity p" = , we get T, 's equation within the

Coulomb repulsion as

T, = 113w, exp{-{3 _IHD]} (4.35)

The isotope effect can be obtained by differential Eq.(4.35) with respect to wp . We
find that

oI _ T 1 e 4.36
0w, o T+, /o)) (336)
then the isotope exponent is
1 2
a=—[l H (4.37)

2 _1+uln(ooc/wD)]

For the present of Coulomb repulsion, the isotope exponent is decrease from the pure
electron-phonon interaction, 0=1/2, that agree with experiment for the conventional

superconductor .

The Short-range Pairing Interaction

Yoksan (1991) purpose the influence of logarithmic singularity density of
states as well as the short range interaction on the isotope effect exponent.

This kind of density of state occurred when we consider the Hubbard model on

a two-dimensional square lattice that

H=-)tege, +UY n.n, (4.38)

ijo

here t denotes the transfer integral, and U the renormalized on site Coulomb

. . — +
interaction, the number operator n,; = c,C,,

. In case of the nearest neighbour
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hopping, the band energy is E(k) = —2t(cosk, +cosk, ). This gives rise to the density

of states in the form

E

K[1-(—)*1" |El <4t

[ (4t)] |E|
|E| > 4t

A1
N(E) = 2t (4.39)
Ho

when K is the complete elliptic integral of the first kind, and N(E) is non-zero only
when 0 < E <4t, for E = 0, N(E) takes the form

1
210t

E

N(E) =- 1_6t

ln‘ (4.40)

Here N(wyp) is analogous to the density of states at the Fermi level of the BCS
theory.

He assumed the short range pairing interaction of form

v _%i—VI—V2 ,for 0<E <w, 141
KT O-V,  for w, <E <4t (441

is independent of the phonon frequency. Here V, is the phonon-mediated interaction
and V; is the extra interaction which may be of nonelectron-phonon origin. E is the
electron energy measured from the Fermi energy, u) is the Debye cut-off energy and
4t is the energy cut-off for V, .

Considering in the BCS scenario, we can use the BSC gap's equation as

V(k - q)A(q) tanh(\/ E* + A’ (q)
E’+A’(q) 2T

1
Ak) =5 Z ) (4.42)

Based on equation (4.41) has the following form

A (T)A, LifE<w,
MRD=0C DA B> (4.43)



Here A} and A, are temperature-independent constants. Upon substitution equation

(4.43) into (4.42), we obtain the following equations

Al[l _(Vl +V2) 21(T)] :szz 22(T)
AV, 3 (T)=A4,[1-V, 3,(T)] (4.44)

when

N(E) VE? + AN :

tanh(

Wp
M= 21
JE? + AN
NE) tanh( "5 ) (4.45)

4t
>,(T)=)dE
2 u{, VE? + A0, 2T

We obtain Eq.(4.45) by replacing the summation over q by the energy

integral.
At T=T, Ay(T.)=0, with the aid of the expression for N(E) we can see that
integrals in Eq.(4.45) are dominant around E=0, so we approximated Eq.(4.45) as

__ L oW
21(Tc) - 2T[2tF(2Tc)

and

32(1) = 3 F G ~FG)
which the function F is defined by (Labbe and Bok, 1987)

A = [ ax ™ a3
G = J ax=anh o)

c

= L0222 10819 In(2) +4 102 (22 -1
=y () *O819InCe ) +5 " () —1

When Eq.(4.44) are compatible we arrive at the following condition

@y a4t Wy RAZNIPLC N
1+)\F(2TC ) +0F () +AOF(OIF() F(ZTC )] =0 (4.46)

c c c
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here we have introduced the variables A = 2—T[12t and 0= 2T[22t .

Putting F in Eq.(4.46) and rearranging, one arrives at the equation for T, .

1
Nigl 0.6646

In(0, / 16t)

T, = 113w, exp{ } (4.47)

where
o
0'= =9 (4t N (64t)
— ln(—) In(——
2 W, (ON
The isotope effect exponent can be derived from Eq.(4.47) as
dInT,
a=

dinM

:%{1—[1—)\(0.6646 FIn(-2) 1n( L. N —ln(T°/1'134wD)} (4.48)

16t" 11340, In(w, / 16t)

In the limit of low T, , it is straight forward to show that Eq.(4.48) can be
estimated as
TC
1134w,

=L - -amE)
@ = (1=[1-A () In(— =]

in our model is equivalent to NoV; in Eq.(12) of

LV Wy
here the quantity St 1n(1_6t)

Daemen and Overhauser (1990).

In conclusion, he found that the singularity contributes to the conspicuous
enhancement of T.. He also found that the behavior of the exponent o depends
sensitively on the relative magnitudes of the two interactions. The isotope effect
decreases as the ratio V1/V, decreases and increases as the ratio V1/V; increases.

The zero isotope effect can be achieved both for high and low T, materials.

64



CHAPTER V

THE ISOTOPE EFFECT IN HIGH-T. SUPERCONDUCTOR

It has been observed that the critical temperature of a superconductor
varies with isotope mass (Justi,1941). In mercury, T, varies from 4.185 K to 4.146 K
as the average isotope mass M varies from 199.5 to 203.4 atomic mass units
(Kittel,1991) . The transition temperature is found to change smoothly when we mix
different isotopes of the same element. The experimental results within each series of
isotopes may be fitted by a relation of the form M“T, = constant (0 called the isotope
exponent).

The BCS theory (Bardeen, Cooper,and Schrieffer,1957) found that
T.a M™%, M is atomic mass, or a=1/2 .

This relationship is obeyed very well by wide range of conventional

superconductors. The results obtained on measuring the isotope exponent are

summarized for several conventional superconductors in Table(1.2).

Experimental Results

Isotope effects have been measured in the high-T. superconductors, most
commonly by varying the oxygen isotope as replacing '°O with 'O because it is
thought that O-atom vibrations(the highest-frequency phonons) might be responsible
for the major part of the electron-phonon interaction. The result is that the isotope
effect is strongly dependent on the hole doping. Some optimally doped samples show
a very small isotope exponent of the order of 0.05 or even smaller (Batlogg et al.,
1987) and some samples show a higher value than 0.5 in contrast to the conventional
value of 0.5 or less which one expects for a conventional phonon induced pairing

interaction (Franck,1994).
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Reports on the isotope exponent, d, of a high-T. superconductor is shown in

Table below, here x is doping concentration.

X(%) T(K) o
0 92.3 0.025
10 91.9 0.039
20 77.3 0.140
30 73 0.213
30 60 0.269
40 49.3 0.324
50 383 0.380

Table(5.1) Dependence of o on T, in Y Ba, Lay,Cu307.5 system (Bornemann and
Morris, 1991).

Bornemann and Morris (1991) reported the dependence of the oxygen isotope
shift on the critical temperature in the system Y Ba, x La,Cu3;0;75with0<x<0.5.
They found a significant oxygen isotope shift at low temperatures (0=0.38 at T.=38.3
K) which decreases gradually with increasing T, and finally falls rapidly above 73 K
to 0=0.025 for T, =92.3 K. Their results suggest a dominant role for conventional

electron-phonon coupling in the high-T. cuprate superconductors .

x(%) T(K) o
20 75.6 0.09
30 60.4 0.15
40 46.2 0.27
50 30.6 0.45

Table(5.2) Dependence of o on T, in (Y Pry)Ba,Cu307.5 system (Franck, Jung, and
et.al., 1991).
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Franck, Jung and et.al. (1991) studied the oxygen isotope effect in the system
(Y1 Pry)Ba,Cu307.5 . They found that the oxygen isotope exponent O increases with
increasing x and therefore decreasing critical temperature T, . For the highest Pr
concentrations O tends toward 0=0.5 . The value of the isotope exponent depends on
the concentration of mobile holes. The lower this concentration is , the larger becomes
the isotope exponent. They concluded that ,in the (Y« Pry)Ba,CuzO7.5 system, lattice
vibrations dominated by oxygen apparently play an important role in the behavior of

high-T, superconductors.

X(%) T(K) o
20 74.9 0.09
30 59.6 0.24
40 45.8 0.32
50 27.7 0.79

Table(5.3) Dependence of o on T, in (Y« Pry)Ba,Cus;07.5 system (Soerensen and
Gygax, 1995).

(%) T(K) a
20 67.5 0.04
25 63.0 0.04
40 55.4 0.07
50 38.5 0.02
60 294 0.09
70 19.1 0.12
75 12.7 0.13

Table(5.4) Dependence of o on T, in YBa,(Cu;_, Zn,);07.5 system (Soerensen and

Gygax, 1995) where z is doping concentration.
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x(%) (%) T(K) a
20 0 67.5 0.14
20 5 63.0 0.08
20 10 55.4 0.09
20 15 38.5 0.05
20 20 29.4 0.08
20 25 19.1 0.06

Table(5.5) Dependence of o on T in (Y.x.y PryCay)Ba,Cuz0O7.5 system (Soerensen

and Gygax, 1995) where x and y are doping concentration.

Soerensen and Gygax (1995) measured the oxygen isotope exponent in
YBa,Cu307 substituted with Pr, Ca, and Zn and analyzed it in detail. They found that
for the Pr and Pr : Ca substitutions there is a correlation between the isotope shift and
the width of the transition. This suggests that the upturn in the isotope exponent for Pr
substitutions could be due, at least partially, to a sample quality problem. They also
point out that a linear extrapolation to 100% '*O substitution results in an

overestimate of the isotope exponent.

x(%) T(K) a

7.5 24.0 0.30
9.0 29.3 0.53
10.0 29.2 0.62
15.0 29.1 0.21
17.5 24.6 0.11

Table(5.6) Dependence of o on T, in La, x BayCuO4 system (Crawford et al.,1990) .
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x(%) T(K) a
12 29.4 0.78
13 344 0.57
14 36.9 0.15

Table(5.7) Dependence of o on T, in La, x SryCuOj4 system (Crawford et al., 1990) .

Crawford et al. (1990) studied the oxygen isotope effect on in La, x BayCuO4
and La, SryCuO4 system. They found the maximum o values (a >0.5) for x near

12 %.

Theoretical Survey

The explanation for the isotope effect in high-T. cuprate superconductors
remains obscure though there are many possible explanations for its unusual doping
dependence (Franck, 1994). Experimentally it is found that optimally doped samples
show a very small isotope exponent o of the order 0.05 or even smaller (Batlogg et
al., 1987) . This unusually small value in connection with the high value T, leads to
early suggestion that the pairing interaction in high-T. cuprates might be
predominantly electronic in origin with a possible small phononic contribution
(Marsiglio et al., 1987) . This scenario is difficult to reconcile with the fact that some
isotope exponents also show unusually high values, reaching values of 0.5 or even
higher in some doping superconductors (Dahm, 2000).

In recent years, researchers found the existence of a pseudogap in the normal
state of underdoped high-T, cuprate superconductors for gaplike structure in the
normal state at temperature T*, T >T.. And pseudogap develops into
superconducting gap below T, .

To explain the unusual isotope effect of cuprate both smaller, almost absence,
and higher than the conventional value 0.5, many models have been proposed such

as the van Hove singularity (Labbe and Bok, 1987; Tsuei et al., 1990; Radtke and
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Norman, 1994), anharmonic phonon (Schuttler and Pao, 1995; Pietronero and
Strassler, 1992), and pairing breaking effect (Carbotte et al., 1991) . Recently, Dahm
(Dahm, 2000) studied the influence of the pseudogap on the isotope exponent having
an electronic pairing interaction with a subdominant electron-phonon interaction. In
the weak-coupling limit, he found that the introduction of a pseudogap leads to strong
increase of isotope exponent above its values in the absence of a pseudogap. He
performs his study numerically.

The purpose of this research is to explain the unusual isotope effect of cuprates
both smaller and higher than 0.5 by considering the influence of the pseudogap and
subdominant electron-phonon interaction in the weak-coupling limit. We will derive
exact formula of the isotope exponent for the superconductor having a constant and
power law density of states.

Within the simple model of Loram et al. (1994) superconductivity gap and
normal-state pseudogaps are assumed to arise from independent and competing

correlations and hence the superconducting gap can be written as
A% (T) = A% (T)+E§ (5.1)

where A'(k) is the superconducting order parameter and E, is the normal-state

pseudogap. Therefore at T=T, A(T.)=E, and the linearized gap equation in the weak-

coupling limit for an anisotropic pairing interaction V(k,k”) read

tanh(,/g,.” + E /2T,)
A'(k) = ZV(k,k) \/7“52

Here g is the band dispersion and V(k,k') is the pairing interaction .

Ak) . (5.2)

We introduce the short-range interaction by following closely the work of
Dahm (2000) . We assume that the pairing interaction consists of two parts : a

phononic part V,(k,k') and an electron part V(k,k'), such that the pairing interaction

V(kk) =V, (k) + V, (k, k') (5.3)

The dominant contribution should be V.. We have
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b

V. (k)= Voo o't (), (k) ifle,
epr
0

MELW (5.4)
0 else

here wx. and wy, is the characteristic energy cutoff of the electronic part and phononic
part respectively. @, is assumed to be independent of the isotopic mass and wy, varies
with isotopic mass M like 1/v/M as in the harmonic approximation. ¥, (k) is the

basis function for the pairing symmetry considered and

Wk = 1 for s-wave pairing,

= c0s20, for d y.,» wave pairing, (5.5)

k
where 8 = tan™' (k—y) is the angular direction of the momentum k in the ab plane.

X
In our basis function, we have s-wave pairing that is always found in
conventional superconductors and d .., wave pairing that is found in cuprates .

For such an interaction the superconducting order parameter can be separated

into two parts :  A(k) = A, (k) +A (k) with

Because it is widely accepted that the pseudogap in cuprate occurs
below a certain temperature T-, which is much higher than T, (Timusk and Statt,1999)
so we can assume that T* >3, >.. We also assume that A(k) and Eq(k) have the same
symmetry (Ding et al., 1996; Williams et al., 1997; Loeser et al., 1996) , so we
choose E,(k) to be

OE,, fors — wave

E, (k)= E,Ego cos(20,) ford — wave (.7

where Eg, 1S constant.
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With this ansatz Eq.(5.2) becomes a 2x2 matrix equation for the two
order-parameter components A¢y and A, by using the condition &, >, , we arrive at

the following equation,

meo O Ij\/eOL( T ) VeOL((*%’Tc) |:IIeO L 58
[ O .
%pOD %’p VpOL(%’TC)%pOD ( )
where
2 2
N(e) \E+E
L(@T,) = —jdewn(e)jd tanh(~—— 5. (5.9)
JE +Eg c
The solution of Eq.(5.8) is
VoL +V oL, 1
M@0, T) = =4 (VL = VgL, #4V VL (5.10)

where Le=L(w.,T¢) and L,=L(w,,T,) .
T, is determined from the implicit equation

Aw,,0,,T,) =1 (5.11)

From Egs.(5.10) and (5.11), the isotope exponent O can be calculated :

oA OL,
1dInT, _ 1w, oL, aw

“2dln@, 27T, A 0L, OA oL,
oL, aT oL, o,

10, oL,

2 T, aoo (5.12)
0L, Ve 1= Vo Lp+2Vp0Le oL, '
oT, V 1-V,L, oT,

Isotope Exponent for a Constant DOS
For a superconductor with the constant density of states, N(E) = N, through
out the Fermi energy. It is a basic DOS consideration that was firstly considered by the

BCS theory. If we look closely at the calculation in detail, we will consider many



73

cases such as s-wave without a pseudogap, s-wave with a pseudogap, d-wave without

a pseudogap, and d-wave with a pseudogap.

S-Wave without a Pseudogap
Inserting a constant DOS and the condition for s-wave without
pseudogap in Eq.(5.9), we get
L(@T,)= Tds& tanh(—) (5.13)
y € 2T,

4N0§ L, ” )
= an
m &2n+1 2T, (n+1/2)

)

This equation is the BCS's gap equation .

oL
To find the isotope exponent, we must calculate F and T We obtain
OL(wT,) N, ()
————— =——tanh(z— 5.14
ow w (ZTC ) (5-14)
and
aL(U)) Tc) _ NO W
aT. = T. tanh( 2TC) (5.15)

Substituting Eq.(5.14) and Eq.(5.15) into Eq.(5.12), we find the s-wave

isotope exponent without a pseudogap as

1 W,
Etanh(ﬁ)
Do = © v, I-V,L +2V_L o (5.16)
p0—p p0 e]tanh( e)
2T,

t h p + e0
Gty sy, L

where L(w,T,) is defined by Eq.(5.13) and L,=L(w,,T.), and Le=L(,T.) .
For a purely electronic interaction, V=0, Eq.(5.16) gives a=0 and for a purely

phononic interaction, V=0, it gives 0= 1/2 that is the BCS' result, it also agrees with

the Dahm 's (2000) result.
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S-Wave with a Pseudogap

In this case, we assume that A? (T) = A (T)+ Eé 0 and for T=T,

,superconducting gap is equal to zero then A(T,) =E . . Inserting a constant DOS

g0
and the condition for a pseudogap in Eq.(5.9), we get
@ N, JE E2
L@T,) = Jde—= tanh( ) (5.17)
0 A ;8 + EgO Tc

0 0
To find the isotope exponent, we must calculate —— and —— . We obtain

ow 0T,
L(w,,T,) N, Jo, +Eg
= tanh( ) (5.18)
Goop ('0]2) + E;O 2TC
and
L(wT,) LT) < o[ 1
=== - >»8N,a’|de
oT, T, Zo o '0[ [€* +Eg, +a’ ]’
_L@T,) _ i 4N, tan” (W/ 4B, +a’) . ©
T SE’ +a® E2, +a? W' +E}, +a’
(5.19)
Here we let a = 21T (n+1/2)
Since
o0 2

2 2 >
nz (a +E0)(a +E2 +00) 4T002[ w +E, tanh( (.02+Eg0/2TC)

~E,, tanh 5 2 (5.20)

C

We find the s-wave isotope exponent with a pseudogap as



P 2
o, +E

w
P
tanh( )
a _l 1[(&)?) +E§0 2Tc (5 21)
s o)+ V., [I—VPOLP +2V L, () .
ShP Voo 1-V,L, ShOF
where
£ V(‘02 +E20 h sz +E20 EgO ah EgO
(@ =3 anh () == eanh (50
o 4TE? (5.22)
-2 - §03/2 tan”'[ 2 2]
Il:O(Ego-'-a ) EgO +a

This equation can be reduced to the s-wave case without a pseudogap by

taking Ego =0 .

D-Wave without a Pseudogap

For a d-wave superconductor without a pseudogap, we must include

the effect of the angular direction of momentum between 1?; and 1?; . Inserting a

constant DOS and the condition for d-wave and a pseudogap in Eq.(5.9), we get

€

1 21 w N
L@T)=7" {dewﬁ (9){d ETO tanh(7—)

€

E) (5.23)

w NO
S HC) >'0[d8Ttanh(
1
For the d-wave case, Y, (0) = cos(260) then we get < LlJﬁ (8) >= 5 -

0
To find the isotope exponent, we must calculate —— and —— . We obtain

0w 0T

IL@T) _N,

W
30 ) (Dtanh(ﬁ) (5.24)

and

aL((D)Tc) _ NO W
T =TT tanh(2T ) (5.25)

c C C
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Substituting Eq.(5.24) and Eq.(5.25) into Eq.(5.12), we find the relation of a

d-wave isotope exponent without a pseudogap as



L anh( oy
an oT

2
Qo = v, 1-V L +2V, L, ® (5.26)
tanh(—— )+~ Jtanh(=)
ot v, b 1=V, L, 2T,
where
Lart)=e S L2 (5.27)
W)= Lon 1™ QT (n+1/2) '

,and Ly=L(wy,,T¢) , L=L(w, To) .
The d-wave isotope exponent equation without a pseudogap has the same

formula as the s-wave without a pseudogap equation, but
L(w,T,) of d-wave =(1/2) L(w,T,) of s-wave (5.28)
D-Wave with a Pseudogap

For a d-wave superconductor with pseudogap, we must include the

effect of the angular direction of momentum between l\g; and l\g; in the pseudogap
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condition of the d-wave superconductor. Inserting a constant DOS and the condition

of a d-wave and pseudogap in Eq.(5.9), we get

128 @ N \/82 +E;, cos’(26)
L(WT,)=— | d8cos’(20)] de 0 tanh( )
2”‘([ { \/82 +E2, cos’(26) 2T,

ON,T, ¢ °F & 1
=——|de|d6
Tt ‘Or I I; EZ, +€ +a’ +[e’ +a’]tan’(26)

0

Si have [ =S —\/Et B \/Et
ince we have a+btan2(x)_(a—b)[x N an  ( . anx)]|

then we find

L(@T,)= §4N°T°(w Tds ﬁ) (5.29)
Wl A Ezo J e2 +4° +E§0 .

From the relation (Prudnikov et al., 1992),

( x*+b> b’ x? +a’
Idx Cral ::F((p,k)—aE((Qk)ﬂ( Zibl , a>b>0, x>0
0




where

¢ d(p
F(@ k) = | —=—==—== is the elliptic integral of the first kind
(@10 = [ o g s the ltipic it

]
and  E(@,k) = Id 1-k*sin® @is the elliptic integral of the second kind.
0

We get
W +E +a’
_ 0 c W— 2
L@T)=" HZ{ [J—F(rsq) ~E +a B(BQ) + o — =
(5.30)
0 0
To find the isotope exponent, we must calculate %% and GT We obtain
OL(WT,) 0Eq.(529)
dw 0w
o0 wZ +a2 5 31
B, ZO o e+ (531)
and
OL(WT,) 0Eq.(529)
oT, 0T,
= > Id 1- 2 Lo NEeta
EgO pa { gl +E2 (82 +32 +E§0)3/2
2
a
- 1
JE +a’)(Ee” +a’ +E2)
We have Tds 1 = ! F(p. k)
JE +at)E® +a’ +E2)  fal+E%
and

]—’ . VeE* +a’ _ 1 E(@.K)
J® e+’ +E§0)3/2 o +Ezo @,

2
Eg w

(a® +Eg) \/(wz +a’ +E2 (& +a’ +E2))
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g0

W
where @=tan"'(—) and k = ———= .
a Ja’ +E3,

o o L
Substituting the above equation into ———, we get

0T

C

OL(T,) L(oo,T) 4N,
oT T TE ; f{E(cp,k) F(qk)
WE;,

B T )(EL +a? 0 ) (A +a)

Y (5.32)

In this step, we can find the exact equation of the isotope exponent of

a d x.y2 wave pairing with a pseudogap as

(5.33)

P Vpo l_VeOLe ©
where
LwT)E}, & 2a’
f (= + E(B,q) - F(B,
d( ) N, ;\/EEOT{ (BCI) (BCI)
) WE;, \
JEZ +at) (@' +a’)(F +E2, +a?)
= tan” (————— o Fe d,F dE the ellipti
B_ an (zﬂc(n_'_l/z))aq_ E§0+a2 and, (Baq) an (Baq) are the clliptic

integral of first and second kind respectively .
In the case Ey =0, Eq.(5.33) gives 04, of a d-wave superconductor

without a pseudogap.

Isotope Exponent for a Van Hove Singularity DOS
The Van Hove singularity (VHS) in the density of states is considered to be the
DOS of a cuprate superconductor. Since the origin of cuprate superconductivity is to

be found in CuO, planes, which are weakly coupled together along perpendicular axis,



79

their electronic structure will be quasi-two-dimensional (2D). This necessarily leads to
at least one VHS coinciding with saddle point in the €(k) surface, these saddle points
being present in all 2D band structures.

Let us now use a DOS of the form

N(E)=N, In (5.34)

F
E-E;
We will consider effect of Van Hove singularity density of state on the isotope

exponent of s-wave and d-wave superconductors for both cases of with a pseudogap

and without a pseudogap.

S-Wave without a Pseudogap
Inserting a VHS density of states and the condition for s-wave without

a pseudogap in Eq.(5.9), we get

L(@T,)=N J'—ln(—)tanh( ) (5.35)

0 0
To find the isotope exponent, we must calculate —— and —— . We obtain

ow 0T,
OL@WT) Ny Ee o @
Y wln( w)tanh(zTc) (5.36)
and
oL@T) _ Ny Eeoo oW S PR B
o, Un(g)tenhGr* Zo(n+l/2) Grtm+1/2))
(5.37)

Substituting Eq.(5.36) and Eq.(5.37) into Eq.(5.12), we find the s-wave

isotope exponent without a pseudogap as

I By
—In(—) tanh(7)
o = 2w, 2T, (5.38)
sv0 V,, 1=V,L, +2V L, St () '
sv0 (L)

(@) + O T

\Y%

pO

where
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E; w = 4 w
foo (@) = In(—%) tanh(ﬁ) > ————tan™'(

pa (n+1/2) 2 (n+1/2))

S-Wave with a Pseudogap

In this case, we have used an assumption that A(T,) = E _ . Inserting a

20
Van Hove singularity DOS and the condition for pseudogap in Eq.(5.9), we get

In(E, /&) VE +Eg
L(@T,)=N J’d = tanh(~——)
N +E, c
0 w 1
=4N,T —+£
0 ZO JO' ( )32+E o +Q2TT,(n +1/2))

€ can gc 90 an aT as

L@WT,) _ N, VO +EG

l—th
R e L Gre Lt e

(5.39)

) (5.40)

gO
and

L@T) &% E I
e AN In(—&
T, OZO Jo'd‘c' e +E2, +(21.(n +1/2))’

n

& 9 E 2nT, (n+1/2))°
—-8N deIn(— ¢
020 { Eind 3 )[82 +E;, + (21T, (n +1/2))*]*

Since we have

j’— ln(E / €)

Od & +a’ +E2, _\/T{(PSV1H(\/7)+ Cl (2(psv)+ Cl L(T=2 @)}

and

@ 1 w Q

ds — + SV
J(: (€* +a’ +E§O)2 2(w +a’ +E§o)(az +Ezo) 2(a’ +E§0)3/2
and

w

J- Ing 1 wln W ln ~ lme

w
de = -
v (e8+a’ +E})’ 2(a’ +E§o)[w2 +a’ +E;, [a? +E2 { +E
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w z
where =tan~' (——=), Cl, (z) = —| dx In]2 sin(x / 2)| is the Clausen integral .
Q,, (\/E;)i"'az) ,(2) { | ( )| gr

: 1 : 1
Note [dx In(sinx) = —xIn2 -5 CL(2%) and [ dx In(cosx) = —xIn2 +-Cl, (T -2%).
0 0

From above integrations , we find

6L(w,T)_4N Z {(psvlnE a’wn(E; / 0
= +a2 ((*)2 +E§o +az)(E§0 +az)

(E(p—)m[a In(eE;) +E}, In(/EZ, +a’)]

2

W[Cl ,(29,) +CL (-2 @)1}

(5.41)
Substituting of this density of states in Eq.(5.9) yields

Jw +E2

- ooD ln(i) tanh( T )

a_ = (5.42)
sV 1-V_ L +2V_L
T [ 2+E2 f + eO p0~p p0~—e £
c wp gO( sv(('op) (Vpo )( l_VeOLe ) sv((“g))

where

¢, InE, a’wWn(E, / ©)

D=2 e va @ B e (B )

—(Ez(p—)m[a In(eE; )+E2 In( Eéo +a%)]
g0

2

W[CI 2 (20,) +ClL (=2 @)} (5.43)

that is the s-wave isotope exponent with a pseudogap in a Van Hove superconductor.

D-Wave without a Pseudogap
For a d-wave superconductor without a pseudogap , we must include
the effect of the angular direction of momentum . Inserting a VHS density of states

and the condition for d-wave in Eq.(5.9), we get
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N, ? In(E,/€) 3
L(@T,) = 2—T°[ Jdeuz (9 de —— tanh(>—)
0 0 c
_Nop, In(Ep/w) €
== B[ds L tanh( 2Tc) (5.44)

1
For a d-wave case, Y, (6) = cos(26) then < L|Jr2] (6) >= >

oL
To find the isotope exponent, we must calculate 9% and T We obtain
LT, _N, E, w
P 200111( oo)tanh(2Tc) (5.45)
and
OL(wT,) N, E; w - o W
== - In(—) tanh(<— —
JT, o, () @nhGr) + Zon( +1/2) " O mr1/2)!

(5.46)

Substituting Eq.(5.45) and Eq.(5.46) into Eq.(5.12), we can find the d-wave

isotope exponent without a pseudogap as

1B O
5 (k)

ade = f Veo 1_Vp0Lp _|_2\/p0Le f (547)
w. )+ w
{de( p) Vpo( 1_\760Le ) de( e)}
where
£ro(@ =I5y tanh(-2) + S~ tan (o
= In(—)tann(—— - __tan -
o w 2T, &5 mn+1/2) 21T, (n+1/2)

Eq.(5.47) is the same as Eq.(5.38) that is the isotope exponent of s-wave
without a pseudogap, but
L(w,T,) of d-wave =(1/2) L(w,T,) of s-wave (5.48)

D-Wave with Pseudogap

For a d-wave superconductor with pseudogap, we must include the
effect of the angular direction of momentum in a pseudogap and the d-wave condition.
Inserting a Van Hove singularity DOS and the condition of d-wave and pseudogap in
Eq.(5.9), we get



&3

In(E, /€) . JE* +EZ cos’ (26)
tan
\/8 +E , €os’ (26) 2T,

L@T,) =~ j'decos (2e)jd )

(5.49)

_2N J ¢ & In(E; /£)
Id Idez 5By +€” +a’ +[e? +a’]tan’(26)

oL oL
To find the isotope exponent, we must calculate — and T We obtain

0w )
OL(wT,) N, E, & °f 4T
———=—Ln(—- do :
0w T[n( )ZO ‘Or W +E} +a’ +(«f +a’)tan’(26

that the same integration is done in the case of d-wave with a pseudogap with the

constant density of states, we get

OL(T,) NOT W +a’
= - 5.50
0w Ez )z( W +a’ +E ) (5-50)
and
OL(w,T,) 4N0 S a’e’ +a’
Z I de 1n(_)[1 - B2 32
0T, EgO n=0 o Ey (8 +a’ +Eg0)
(8 +a’)(e’ +a’ +Eg0)
No < EF a2E§0
deln(—)[1 - ]
Ezo ; 'Or € €2 +2a° +E2 /82 +2> (82 +a2 +E§0)3/2
(5.51)

The result of integration in Eq.(5.51) is very complicated so it is better to leave
it in the integration form.
Substitution of Eq.(5.50) and Eq.(5.51) into Eq.(5.12), we can find the d-

wave isotope exponent with a pseudogap as

2 +a2
ELTDXEN ey
Ay = o )+V0 1-V,L, +2Vp0Le]f ) (5.52)
dv p Vpo I_VeoLe dv c

where



AN, & @ E £ +a’ a’El,
£, (W) =—5 deln(—)[1 - - £ 1.
d Ezo I; { € €2 442 +E§o /82 +32 (82 +22 +E§0)3/2

Isotope Exponent for a Power Law Singularity DOS

Let us now use a DOS of the form(Bhardwaj and Muthu, 2000)

E-E,|°

Eg

N(E)=N, (5.53)

where Ny includes factors which may be required to normalize N(E) and -1< 3 <I .
This is another form of the DOS that has a singularity point .

We will consider influence of a power law singularity in the density of states
on the isotope exponent of s- and d-wave superconductors, both with and without a

pseudogap.

S-Wave without a Pseudogap
Inserting a power law in the singularity density of states and the

condition for s-wave without a pseudogap in Eq.(5.9), we get

L(@T.)=N Tﬁ(i)stanh(i) (5.54)
A 2T, '
. 0 :
To find the isotope exponent, we must calculate 9% and T We obtain
OL(wT,) N, . ()
T 0w :E—Ewﬁ ltanh(ﬁ) (5.55)
and
OL@T) _ N, w,, 0 o2 e
o = -0 ()P anh(—) +BN, TP (=) P! tanh
or = () tanh) #BNGTI ()P faxx ranhx
We have
W2T, o +1 1-
'0[ dxx"! tanhx:; [M(n+1/2)]""'B,, (BT’TB)

2
w
Here x, = o ral and Biy(p,q) is the incomplete beta function given by
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B, (p,q) = [dt " (1-1)""
0

sin(v/x)
=2 Idesinzp_l(e) cos’7(0) , x<I

0

then we get
OL@T) _ Ny, W VAN pp PHL 1B
o - E) tanh(2T0)+[3N0Tc &) ;(T[(n+l/2)) B, (55
(5.56)

Substitution of Eq.(5.55) and Eq.(5.56) into Eq.(5.12), one finds the s-wave

isotope exponent without a pseudogap as

1 w,
5 of tanh( T )

Dopo = Var 17 VL, #2V, L (5.57)
w )+ ()]
{ spO( p) Vpo [ 1_ VeOLe ] spO( e)}
_ of W Bl prl _B
where £, (@) = of tanh(—) ~2BT, Za B, (@( ).

If =0 and V=0, Eq.(5.57) is reduced to be the BCS's result .

S-Wave with a Pseudogap

In this case, we assume that A(T,) =E . Inserting a power law

g0
singularity DOS and the condition for a pseudogap in Eq.(5.9), we get

N, ¢ e’ VE +Eg
L(wT,) = —Ids— tanh(—) (5.58)
c B >
EF 0 1}8 +Eg0 Tc
4T N
; { g + E2 +a’
2N T B+1 1—[3
Z(Ego ) (o)
To find the isotope exponent, we must calculate —— and —— and obtain

0w oT

c
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L@T,) _N, of W +Eg
=—5 tanh( ) (5.59)
0w E lw +E 2Tc

and

OL(WT,) _ 4N r a’eP

oT - {I +E? _2Id8 2 4,2 2 2}
c F n0 0 0 o (€ +a +Eg0)

We have

© B

€ B+1 1-

de5———5=— +E ] Y L

J(: e’ +a’ +E} (a ) B..( 272 )
and

® B

€ B+ 3-P
de - +E BB (——,—
J(: [’ +a® +E ]’ 2(a ) X2(2 2 )
(1)2
g0

With these results of integration, we can get

GL(Q),TC) 2N 2 2 \(B-1)/2 B+ II_B 2 2 \(B-3)/2 B+ 13 B
aTC_Eﬁ,Z){(+E) B, (5. )2’ +E) "B, (.
(5.60)

Substitution of Eq.(5.59) and Eq.(5.60) into Eq.(5.12), we can find the s-

wave isotope exponent with a pseudogap as

VO, +E§0)
2T

ToVL, P2V, L (5.61)

Ty, +Eg02{ (@) + v (@)

L " tanh(
4

where

£l -
£, (@) = (Eg +a%) 2 sz(%’lz—ﬁ)_hz(Ezo +a’ ) Bx2 (% i B)

In the case Ey0 =0, Eq.(5.61) gives a of the s-wave superconductor without a

pseudogap .
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D-Wave without a Pseudogap
For a d-wave superconductor without a pseudogap, we must include
the effect of the angular direction of momentum. Inserting a power law singularity

DOS and the condition for d-wave and pseudogap in Eq.(5.9), we get
N, °f ede € £
L(@T.)=—=|doy? (6)| —(—=—)® tanh(—
@)= Ja8y O ()" tanh( )
N, 7 €
=<?(0) >— | de £ tanh(=—— 5.62
W8 >y Jae e anh( ) (5.62)
1
For d-wave case, ), (6) = cos(26) then we get < |} (6) >= 5

. 0 0 :
To find the isotope exponent, we must calculate —— and —— and obtain

0w oT,
L(wT,) _ N, W e
o 2pf MG ®@ (563)
and
OL@T) _2N, @, o W a2 63 pg BT I-B
ot = () tanhG) 4RI ;(n(nﬂ/z)) B, (5
(5.64)

Substitution of Eq.(5.63) and Eq.(5.64) into Eq.(5.12), we find the d-wave

isotope exponent without a pseudogap as

1 w
- zwﬁ : (2T°) 5.65
Dapo = € @) VeO[I—VPOLp +2Vp0Le]f () (5.69)
w )+ W,
a0 ’ VpO 1 - VeOLe 0
w - o B+1 1-B
where f, (@) = of tanh(z=) =2BT, » a"'B, , (——,—=) .
2T, % 272

Eq.(5.65) is the same as Eq.(5.57) that is the isotope exponent of s-wave
without pseudogap, but
L(w,T,) of d-wave =(1/2) L(w,T,) of s-wave (5.66)



D-Wave with a Pseudogap

For a d-wave superconductor with a pseudogap, we must include the
effect of the angular direction of momentum in pseudogap and the condition of
d-wave. Inserting a power law singularity DOS and condition of d-wave and

pseudogap in Eq.(5.9), we can get

N, (€/E,)" \/82+Ezocosz(29)
L(@T,) = Idecos (2e)jds e tanh( T )
(5.67)
_ANGT ¢ a2 (e/E.)"
I Idﬂz oo T8 +a’ +[e’ +a’]tan’(26)
We get
INT. & 1, +11
L@T) =152 (5@ vEL) B ([3 ZB)
w I_l(2p 1) B-2k-1 1 1+2k -
S —ES@ +E) ¢ B AR
U N@p+2)
p=0

oL oL
To find the isotope exponent, we must calculate — and T and obtain

0w )
OL(WT,) _4N ,T.° i (e/E.)"
0w . & B2, +e’ +a’ +[e’ +a’]tan’(20)
AN T, @ 5< o +a’
=—2c(— - 5.68
B G 20 e (5.68)
and
OL(@T,) 4N, &f ¢ £2+a2 a’Ey,
oT T R OZIdE(E_)[ 24+32 +E? B 2 2 2g 2 2 ]
T, w0 a0 Ep a 0 (€ +a’)(e? +a’ +EL)

Consider the integration



&9

w E .
dee”(1- deeP § e
Jo’ ( +E2 )= I (e? +a’ +E2,)
|L|
2p-1) 2k+2
— - E
+Z pk_l 2 k 1}
k=1 (e +a” +E; )"
(2pt+2) ¢
[
= z( +E2)2B (B 11_8)
4 0 X2 2
ﬁ
(2p )
= L +1 1+2k —
+Ez Pkl E2k+2( 2 +E§O) 2 B (B , 2 B)
““I‘I(zp+2)
(5.69)
and
@ EB ) 1
{ Ve' +a’ (e’ +a’ +E)" I @+ +Ey)
k
[lee-n g
+Z pZIk 2 2 = 2 kz}
(=1 (e*+a” +E; )"
2 g
p[!( p)
1 B3 - B+13-B
=5(a2 +E2) 2 B, ()
ﬁ
had ( [32k3
3 Eéé(a +Ey) * B, (B+1,3+2k 2
26 |'|(2p) 2
(5.70)

Substitution of Eqs.(5.68), (5.69), and Eq.(5.70) into Eq.(5.12), we find the d-

wave isotope exponent with a pseudogap as

|3+1 0 +a
X! L AL )
0 i oo +a’ +E

Qo = 1-V,L + VL (5-71)

{fdp(wp)+ve°[ T (@)

PO

1-V,L,



90

where (w)_z 0)2B(B . 32B
ﬁ(z 1
=P~ p-2k3 1 342k -
—a’ (C)E (a7 +E}) 2 Bx(ﬁz+ = Py
p|:|12p
N,T. » 1 B +1 1
and L(WT,)= F?BC ZO{E( 0) 2B (B_ _B)
F =
. H(ZP 1) B-2k-1 _
S By 2 B AR
11p+2)

In case Eq9 =0, Eq.(5.71) gives o of a d-wave superconductor without a
pseudogap having the same form as that of s-wave without a pseudogap for both cases

of the constant DOS and VHS DOS.



CHAPTER VI
DISCUSSION AND CONCLUSIONS

The purpose of this work is to explain the unusual isotope coefficients of
cuprates by considering the influence of the pseudogap and the phononic and the
electronic interactions in weak-coupling limit. Exact analytic expressions for the
isotope exponent () for the s-wave and d-wave pairing symmetry with constant,
VHS and power law density of states are derived .

The equations of the isotope exponent are so complicated to understand. In
order to understand those formula , the numerical calculation is used.

The computer program is written by using the iteration method, numerical
integration and numerical summation. To solve the equation, the Newton iteration

method is defined as

_ o f(x,)
n+l Xn f'(Xn)

X

where f(x) is any function that f(x)=0 and
fx,) — £(X,)

Xn - Xn—l

f'(x) =

We also compare our calculation of all cases to the experimental data of
La,« Ba,CuOy (@), Lay, Sr,CuO4(M) (Crawford et al., 1990), and (Y .y Pr,Cay)
Ba,Cus075 (0), (Y1« Pry)Ba,Cu3;07.5 (L), YBay(Cuy., Zn,);07.5 ()(Soerensen and
Gygax, 1995), and (Y« Pry)Ba;,CuzO7.5 (+) (Franck et al., 1991), and
YBa, xLayCu3O7.5 (A) (Bornemann and Morris, 1991) .
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Constant Density of States

By computing Eq.(5.10), Eq.(5.21) and Eq.(5.33) numerically, we plot the
isotope exponent O against T, for the s-wave and d-wave cases. The influence of
pseudogap on the isotope exponent for the s-wave pairing is shown in Figure(6.1) and
that for the d-wave pairing is shown in Figure(6.2) .

In Figure(6.1), we have shown for all s-wave cases with various values of w
p» W, A, and Eg, here we define that A,=NoV o and A=NyV . All curves shown that
the isotope exponent decreases when the T, of doped cuprate increases. In low-critical
temperature region the isotope exponent is higher than conventional value of 1/2, and
in the high-T, region the isotope exponent has small almost zero values (depending
on the parameters). When ,=500 K, «d. =400 K, A,=0.3 and E4, =50 K is shown it has
the highest isotope exponent and t,=500 K, wa. =400 K, A,=0.2 and E4 =0 K is shown
the smallest isotope exponent. This mean that if we vary the value of A, between 0.2
to 0.3 and E, between 0 to 50 K we can fit every experimental data.

In Figure(6.2), we have shown the d-wave cases. All curves show the similar
behavior as the s-wave cases but they are different in values. The graph with },=700
K, w. =650 K, A,=0.4 and E4, =150 K is shown to have the highest isotope exponent
and the graph with w,=500 K, w, =400 K, A,=0.35 and E4, =0 K is shown to have the
smallest isotope exponent. We can therefore assume that if we vary the value of A,
between 0.4 to 0.35 and E, between 0 to 150 K, we can fit every experimental data.

In the d-wave cases, we have used the higher values of parameter than in the s-
wave cases. But the values of Eg is not of the same magnitude that found in

experiments and the value of A, is high almost beyond the weak-coupling limit.
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Van Hove Singularity Density of States

By computing Eq.(5.10), Eq.(5.42), and Eq.(5.52) numerically, we plot the
isotope exponent O against T, for the s-wave and d-wave cases. The influence of
pseudogap on the isotope exponent for the s-wave pairing is shown in Figure(6.3) and
that for the d-wave pairing is shown in Figure(6.4) .

In Figure(6.3), we have shown for all s-wave cases with various values of w
p» W, Ap and Eg . All curves show that the isotope exponent decreases when the T
of doped cuprate increases. In the low-T, region the isotope exponent can be higher
than conventional value of 1/2, and in the high-T, region the isotope exponent has
small almost zero values (depending on the parameters). The graph with Ez=5580 K,
w=500 K, w. =400 K, A,=0.08 and E4 =100 K is shown to have the highest isotope
exponent and that with EF=5580 K, w3,=500 K, w, =400 K, A,=0.06 and E,, =0 K is
shown to have the smallest isotope exponent. For the VHS density of states, if we
vary the value of A, between 0.06 to 0.08 and E,y between 0 to 100 K, we can fit
every experimental data.

In Figure(6.4), we have shown all d-wave cases. All curves predict the same
behavior as in the s-wave cases but they are different in parameter values. The graph
with EF=5580 K, t3,=700 K, w. =650 K, A,=0.2 and E4, =700 K is shown to have the
highest isotope exponent and that with Ez=5580 K, 13,=500 K, w. =400 K, A,=0.1 and
Eq0 =0 K is shown to have the smallest isotope exponent. We can be certain that if we
vary the value of A, between 0.1 to 0.2 and Eyy between 0 to 700 K, we can fit every
experimental data.

In the d-wave cases, we have used the parameters having higher values than
the s-wave cases. The value of Ey 1s of the magnitude that is found in experiments

(Suzuki and Watanabe, 2000) .
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Power Law Density of States

By computing Eq.(5.10), Eq.(5.61), and Eq.(5.71) numerically, we plot the
isotope exponent O against T, for the s-wave and d-wave cases. The influence of
pseudogap on the isotope exponent for the s-wave pairing is shown in Figure(6.5) and
Figure(6.7) and that for the d-wave pairing is shown in Figure(6.6) and Figure(6.8).

In Figure(6.5), we have shown for all s-wave cases with various values of w
p» W, Ap and Ey. All curves show that the isotope exponent decrease when the T, of
doped cuprate increases. In the low-T, region the isotope exponent can be higher than
the conventional value of 1/2, and in the high-T, region the isotope exponent shows
the small almost zero values (depending on the parameters). The graph with Ez=5580
K, =500 K, w, =400 K, A,=0.1, f=-0.3 and E4 =100 K is shown to have the highest
isotope exponent and that with Er=5580 K, 0,=500 K, 2, =400 K, A,=0.08, 3=-0.3
and E4 =0 K is shown to have the smallest isotope exponent. Thus for the s-wave, if
we vary the value of A, between 0.08 to 0.1 and E4 between 0 to 100 K, we can fit
every experimental data.

The effect of B on isotope exponent is shown in Figure(6.7) for the s-wave
cases. Graphs with values of 3 between -0.2 to -0.5 give the highest value of 0 and o
increases when Eg increases.

In Figure(6.6), we have shown all d-wave cases. All curves show the similar
behavior to the s-wave cases but they have different parameters. The graph with
Er=5580 K, u3=500 K, w. =400 K, A,=0.1, f=-0.3 and E4, =700 K is shown to have
the highest isotope exponent and that with Ez=5580 K, t,=500 K, w. =400 K, A,=0.1,
B=-0.3 and E,, =0 K is shown to have the smallest isotope exponent. Thus in this case,
if we vary the value of A, between 0.1 to 0.2 and E,y between 0 to 700 K, we can fit
every experimental data.

In the d-wave cases, we use the parameter having higher values than in the s-
wave cases. The value of Ey used is of the same magnitude as that found in

experiments .
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The effect of 3 on isotope exponent is shown in Figure(6.8) for the d-wave
cases. We find that when of 3 varies between -0.2 to -0.5, it gives the highest values

of o and O increases when Ey increases in the same as the s-wave cases.
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Conclusions

We have investigated the effect of the pseudogap on the isotope
exponent in the s- and d-wave pairing states in the weak-coupling limited. Our
formulas can explain the unusual isotope effect of cuprates having both smaller and
higher values than 0.5 . The magnitude of the isotope exponent is proportional to the
magnitude of the pseudogap in the lower T, region and there is no effect of pseudogap
in the higher T, region.

In our model, we use the values of the material parameters in the d-wave case
having higher than those in the s-wave case yet in both cases, our o fits the
experimental data well for the constant DOS, VHS DOS, and power law DOS. So we
need more experimental data to confirm our prediction for o .

Although, we cannot fit all points using one set of parameters, we are sure that
every experimental points can be fitted with an appropriate set of parameters. We can
predict the trend of isotope exponent by using this model. The isotope exponent of a
high-T, superconductor should decrease and is almost absent in high T, region and
for the low T, region it depends on the magnitude of the pseudogap. In the low T,
region, the higher values of the pseudogap give higher values of isotope exponent.

And in the high T, region, the pseudogap has no effect on the isotope exponent.
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APPENDIX

Evaluation of Frequency Sums
The frequency sum in Eq.(2.8) is typical of those occurring in many-body

physics. This equation had been done by Fetter and Walecka (1971).

=X

Fig.(A.1) Coutour for evaluation of frequency sums (Fetter and Walecka,1971) .

For definiteness, consider the case of boson, where the sum is of the form

> (i@, —x)7! (A.1)

with w, =2n7t/ BN and B=1/k,T. Eq.(A.1) is not absolute convergent, for it would

diverge logarithmically without the convergence factor ; N must therefore remain
positive unit after the sum is evaluated.
The most direct approach is to use contour integration, which requires a

meromorphic function with poles at even integers. One possible choice is
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Bn(eB”Z —-1)™", whose pole occur at z = 2nTi / B = iw, , each with unit residue. If C
is a contour encircling the imaginary axis in the positive sense (Fig.(A.1)), then the

contour integral

m dz "
2miceP —12-x

(A.2)

exactly reproduces the sum in Eq.(A.1), because the integrand has an infinite sequence
ionn
of simple poles at i, with residue ————— . Deform the contour to C' and I
Bn(iw, —x)
shown in Fig.A.1 . If |z| - oo along a ray with Re z >0, then the integrand is of order
exp[—(Bn —n)Rez]

&

;if |zl - oo along a ray with Re z<0, then the integrand is of

exp(nRez)
12

order . Since BN >n >0, Jordan’s lemma shows that the contributions of

the large arcs [ vanish and we are left with the integrals along C'

5 e PBn dz eV
Tiw, —x  2miceP -1z-x

(A3)
The only singularity included in C' is a simple pole at z=x, and Cauchy’s theorem
yields

. e —Pn
lim 2 - = o
I’]ﬂ()nevenl(k)n_x e -1

(A.4)

where the minus sign arises from the negative sense of C', and it is now permissible to

let n — 0. This derivation exhibits the essential role of the convergence factor.

Although the function also has simple poles at z=iw, with unit residue, the

e P —q

contributions from I would diverge in this case, thus preventing the deformation from

CtoC'.
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A similar analysis may be give for fermions, where w, = (2n +1) 1t/ n

. The function N " has simple poles at the odd integers z=iw, with unit residue,

eBnZ +

and the series can be rewritten as

e —Bn, dz eV
nodd i, —X 270 ceP? +1z-x

(A.5)

where C is the same contour as in Fig.(A.1) . Jordan’s lemma again allows the contour

deformation from C to C' because 3n>n >0 , and the simple pole at z=x yields

e Bn
li = A.6
rllir(l)nozdd iw, —x  P™+1 (A.6)
The two case can be combined in the single expression
ei@nn
lim 3 - =M il (A.7)

nﬁonl(,on—x_ ™ 1

For general case, if we consider  f(iw,) by using the same process as above,
n

we can get formula for fermion system as

d
TY f(iw, ) = —fz—:ﬁ np(2)f(2) (A.8)

where ng(z) = Tﬂ is fermion distribution function and w, = (2n+1) 7k, T/n .
e
For boson system, we get

d
TS f(iw,) = fz—TZﬁnF(Z)f(z) (A.9)

where np(z) = is boson distribution function and W, =nTk,T/n .

eZ/T _1
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