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The tunneling conductance spectrum of a normal metal-insulator- d-wave
superconductor junction is studied theoretically. The effects of surface orientation
and non-zero temperature on the conductance spectrum are investigated, using
the scattering method, known as the Blonder-Tinkham-Klapwijk formalism. It
is found that for the junction with (100) surface, the conductance curve is linear
at low voltages, increases with voltages and peaks at the maximum gap. For the
junction with the interface orientation away from (100) surface, in addition to the
feature at the maximum gap, there is a peak at zero voltage, and a small peak
at the energy gap of the excitation that has its momentum along the interface
normal. The latter feature implies that the tunneling spectroscopy can be used
to determine the magnitude of the energy gap at different points on the Fermi
surface.

All the features of the conductance spectrum are easily observed when the
temperature is not too high. When the temperature is higher than ten percent
of the critical temperature, the smaller features are smeared out, thus, hard to
detect. However, the zero-bias conductance peak is still observable, only that its

width is broadened and its height is lowered.
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Chapter I

Introduction

1.1 Motivation

During the past couple decades, high temperature superconductivity has
been one of the most studied topics in the condensed matter physics commu-
nity. The question of what mechanism leads to such high transition tempera-
ture (higher than 77 K) remains unsolved. Nevertheless, there are a few other
questions involving the pairing symmetry that have been answered. The phase-
sensitive experiments, such as tricrystal experiments, and tunneling experiments
reveal that the pairing symmetry of the cooper pairs in these materials is d-wave
(Wollman, D. A., et al. 1993; Walker, M. B., et al. 1996; Tsuei, C. C., and
Kirtley, J. R. 1998; Wei, J. Y. T., et al. 1998; Bang, Y., and Choi, H-Y. 2000).
Their gap functions have nodes and change sign along the 45° and 135° lines
in the momentum space. This property results in a linear dependence at low
energies of the density of states (DOS). The linearity of the density of states at
low energies leads to the power-law behaviour of many physical properties at low
temperatures, such as specific heat and heat capacity (Gagnon, R. 1997; Taillefer,
L., et al. 1997). This behaviour is different from that of the conventional su-
perconductors, which have low transition temperatures and isotropic energy gap.
The specific heat C'y of a conventional superconductor is proportional to e_(’fBAT)
at low temperatures where A is the energy gap, kp is the Boltzman constant,
and 7' is the temperature. This dependence implies that there are no excitations

at energies lower than A. Understanding the physical properties of high tem-



perature superconductors would lead to the understanding of the nature of their
quasiparticle excitations. This would be a crucial step towards the understanding
of the pairing mechanism.

One of the most powerful tools used to study the nature of the quasiparticle
excitations of the superconductor is the tunneling spectroscopy of normal metal-
insulator-superconductor (NIS) junction (Giaever, I. 1960; McMillan, W. L., and
Rowell, J. M. 1969; Tanaka, Y., and Kashiwaya, S. 1995; Kashiwaya, S., et al.
1996; Tinkham, M. 1996; Wolf, E. L. 1986). The conductance spectrum of the
junction in the low transmission limit is proportional to the local density of states
of the superconductor (Tanaka, Y., et al. 1994; Tinkham, M. 1996; Rainer, D.,
et al. 1998). The shape of the conductance curve also depends on the symmetry
of the energy gap. For the conventional isotropic s-wave superconductors, their
tunneling conductance at finite temperatures is almost zero at low voltages, peaks

at the gap and becomes constant at voltages larger than the gap (see Fig. 1.1).
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Figure 1.1: The plots of differential conductance of isotropic s-wave gap at T' =0
and T > 0. The solid curve refers to T" = 0, and the dashed curve
refers to the spectrum at finite temperatures. Note that the current
at T = 0 is similar to the bulk DOS of superconductor. (Tinkham,
M. 1996).



Because of their isotropic gap symmetry, the conductance of the isotropic
s-wave superconductors does not depend on the interface orientation of the junc-
tion. However, the story is different for d-wave superconductors. Their tunneling
spectroscopy depends strongly on the crystal orientation of the superconductor.
As shown in Fig. 1.2, for the junction with (100) interface, the conductance as a
function of applied voltage curve is linear at low voltages and peaks at the max-
imum of the energy gap. For the junction with (110) interface, the conductance
has a peak at zero voltage but no peak at the maximum gap. The peak at zero
energy for the junction with (110) interface implies the existence of a number
of states at zero energy and this is a consequence of the sign change of the gap
function. The zero-energy surface bound states are formed due to the change in
sign of the gap function (Hu, C. R. 1994). These bound states are in fact the
combination of the incoming and outgoing quasiparticle excitations, the gap func-
tions of which have different signs. These bound states are not formed at (100)
interface, because the gap functions of all incoming and outgoing excitations have
the same signs.

The effect of the crystal orientation is very dramatic for d-wave supercon-
ductors. It is interesting to understand how the tunneling conductance curve
would evolve with the angle between the a-axis of the crystal and the interface

normal of the junction, as well as with the temperature.

1.2 Assumptions and Method

This thesis is the study of how the crystallographic orientation would affect
the tunneling spectroscopy of d-wave superconductors both at zero temperature
and at finite temperatures. Because all high temperature superconductors are
either tetragonal, or nearly tetragonal, with the ratio of the lattice constant ¢
to the lattice constant a bigger than 3, they will be treated as two-dimensional
systems.

In the calculations throughout this thesis, the Fermi surfaces of the both
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Figure 1.2: The plots of d,2_,2-wave pair potential in the momentum space and
the conductance spectra for 2 different crystal orientations: (a).(100)

and (b).(110).

normal metal and superconductor are taken to be isotropic for simplicity. The
shape of the Fermi surface should affect only the smaller features that the conduc-
tance curve may have, but not affect the main features (Pairor, P., and Walker,
M. B. 2002). Also, the energy gap is taken to be zero on the normal side and finite
on superconductor side and dependent only on the direction of the momentum.
The proximity effect at the interface will be ignored in this thesis as well.

The method used to calculate the current across the junction in this the-

sis is the scattering method known as the Blonder, Thinkham and Klapwijk



(BTK) formalism (Blonder, G. E., et al. 1982). This method makes use of the
Bogoluibov-de Gennes (BdG) equations, which are two component energy equa-
tions, and the appropriate matching conditions at the interface to obtain the
reflection and transmissions coefficients, which in turn are used to calculate the

current, across the junction.

1.3 Outline of Thesis

This thesis consists of five chapters. In the next chapter, the current
and conductance formula in the scattering method of normal metal-insulator-
superconductor (NIS) junction are derived.

The conductance spectra of s-wave and d-wave superconductors at zero
temperatures and at different interface orientations are then investigated in Chap-
ter IT1. The evolution of the main features in the tunneling conductance spectrum
of the d-wave superconductor with the orientation are examined thoroughly.

In Chapter IV, The effect of finite temperatures on the tunneling spectra
will be examined and discussed. The evolution of the tunneling conductance with
temperature will also be studied.

Finally, the conclusion of this work is drawn in Chapter V.



Chapter 11

Current and Conductance of NIS

Junction in the Isotropic Model

2.1 Introduction

The current and conductance spectra of the normal metal-insulator-
superconductor (NIS) junctions in this thesis are calculated based on the as-
sumption that the electronic structures of both superconductor and the normal
metal are isotropic. Because the system of interest is either tetragonal, or nearly
tetragonal, with high £ ratio, the Fermi surfaces for both normal metal and su-
perconductor are taken to be cylindrical. The junction is modelled as an infinite
system with the interface on the yz plane. Figure 2.1 shows the geometry of the
junction. The insulator is located at the plane x = 0, the normal metal is on
the left side (x < 0), and the superconductor occupies on the right side (z > 0).
The insulating barrier is described by a delta function potential of strength H.
The gap is taken to be zero in the normal side, but finite and unchanged with

position in the superconductor side.
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Figure 2.1: The model describes the normal metal-insulator-superconductor

junction used in the thesis. The gap function is taken to be A(k)O(x)

where £ is a wave vector and ©(z) is the Heaviside step function.

2.2 The Reflection and Transmission Probabi-
lities

The current and conductance of of the junction are calculated using the
scattering method. This method starts from the Bogoluibov-de Gennes (BdG)
equations and a wave function of each side (Demers, J; Griffin, A. 1971). The wave
functions are later on matched at the interface with the appropriate boundary
conditions to obtain the reflection and transmission probabilities.

Figure 2.2 shows the dispersion relations of the quasiparticles in a normal
and superconductors. As can be seen from Fig. 2.2, for each incoming electron
from normal metal side, there are two reflected excitations, which are the nor-
mal reflected and Andreev reflected (Andreev, A. F. 1964), and two transmitted

excitations, which are electron-like and hole-like.
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Figure 2.2: The sketches of the bulk quasi-particle energies of (a) the normal

metal and (b) the superconductor.

The Bogoluibov-de Gennes (BdG) equations that described the junction
are

PjiW—MMﬂ+A®Mﬁ=EMﬂ, (2.1)

A*(F)u(r) +[ V2 + plo(r) = Ev(r) (2.2)
where A(7) is the pairing potential, y is the chemical potential, m is the electron

mass, and u(7) and v(7) denote the electron-like and hole-like components of the

wmz(zg). (2.3

The wave function of the normal side takes the form

wave function, or

T/JN(JU < an) = zpinc +1/)refl )

where

1| .
Vine = eia+a+kyy)
mc



and

Vrept = a 0 etla-z+kyy) | 1 e a+z—kyy) ’

0

where a,b are the amplitudes of Andreev and normal reflections, respectively.

Thus

1 : 0 . 1 : "
Yy(r < 0,y) = et +q err 4+ b e T ey (2.4)
0 1 0

The wave function of the superconductor is written as

1/)5(«%' > an) = wtrans )

or
u U_L

Ys(z > 0,y) = (c Al P
Vg

- e““‘“") ethvy (2.5)

+ V_k_

where ¢,d are the amplitudes of electron-like and hole-like transmitted excita-
tions, respectively.
The bulk excitation energy of the normal metal is therefore
2

Bl ) == |5+ )~ ) 26)

and the quasiparticle energy of the superconductor in the bulk is

E(ky, ky) = /&2 + N2, (2.7)

where
2

= [y (K + k) 1] (2.9

Here ¢, k, are the z and y component of a wave vector.

The ug, vg in the Eq. (2.5) are

E + &
Up = )
VIE + &% + [A]?
Ay
Vg

CVIEFEGP AP
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Note that |ug|? + |vg]? = 1.
The amplitudes of the a,b, c,d can be found by the matching conditions
at the interface. The appropriate conditions for the two wave functions are the

continuity of the two wave functions at x = 0:

Vs =N ; (2.9)
=07 z=0"
and the discontinuity of their derivatives at boundary, that is
s O 2mH
—— - — = 2.10
Ox ox h? vs (2.10)
x=0* x=0" x=0*

With these two boundary conditions, the amplitudes of reflections and transmis-

sions can be found from the equation:

[ -1 0 (N V_f 1[4l [ 0
0 -1 Uk, U_f_ 1

0 0 g, (thky +igy —2Zkp) wu_y (igy —tk_ — 2Zkp) 2iqy
| 0 0w (thy —iq- —2Zkp)  —v_p_(iq- +ik- +2Zkp) | 0
(2.11)
The dimensionless parameter Z = h’gl,f; represents the strength of the barrier in

this equation.

For A < FEp, the following approximation can be made: ¢ =~ ¢, ~ ¢,

where ¢, = /q; — k2, and k_ ~ ky ~ k,, where k, = [k}, — k2.

Therefore, the reflection and transmission amplitudes can be found as

4Uk+ U k_qz k:z:

Sl RIS (AR ERy 273 B e ey ey 27
b— (vep v — v_p_ug, ) (g2 — k3) — dizqe — 42°k7]
Conctma )b+ 027+ 12— oo e~ P+ A2
o 20 i_[(ko + 0) — 2i7Zk5] '
(uk+U*k—)[(kI + %)2 + 422k12!?] - (u*k—vkq-)[(qx - k:r)2 + 422k12'?] ’
g 2¢u Vi, [(kz — u) — 20 7kF]

(uk+U*k—)[(kI +q.)? + 4ZQk12!?] - (u*k—vkq-)[(qx —kp)? + 4ZZk12'?] .

If 0 is the angle between the Fermi wave vector and the z-axis, the wave
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vector k, = kp cosf, and the reflection and transmission amplitudes become

ANvg, v_f_ cos® 0

“= (g, vk )[(1 + A)2cos?0 + 422 — (u_p_vp, )[(A — 1)2cos? 0 + 42%kF]

- (g, u—g — Vg ug, )[(A* — 1) cos? @ — 4iNZ cos § — 427]
 (up,v_g )[(1+ A)2cos? 0 +422) — (u__vi, ) (A — 1)2cos? 0 + 422k2]
B 2 v_j_cosO[(1 + A) cosf — 2iZ]

‘= (g, v )[(1 + A)2cos?0 + 422 — (u_p_vg, ) [(A — 1)2cos? 0 + 42%kF]

J— 2Avg, cosO[(A — 1) cos b — 2iZ]

(o, v (L + N2 cos? 0+ 427] — (u_y_vp,)[(N — 1)2cos2 0 + 422k2]
(2.13)

where \ = Z—F )
F

The reflection probability is equal to the magnitude of the ratio between

the current density of the reflected excitation and that of the incident excitation.

Jrefi - wiz YR Ugefl
= |2 (2.14)
Jinc lbl lb] v;nc
where ' is the adjoint of the wave function ¢, v}*/" and v/"* are the group

velocities of the reflected and incident excitation, respectively. Therefore, the

Andreev reflection probability A(F, ) is equal to

q+
|~ |a(E,0) 7 (2.15)

x

A(E,0) = |a(E,0)]?

and by the same token the normal reflection probability B(F,0) is
B(E,0) ~ |b(E,0). (2.16)

The transmission probability is defined as

S| _ [tk e o
Jine W]y vine

where vg’" is the group velocity of either transmitted electron-like or hole-like
quasiparticle. Thus, the transmission probability of the electron-like quasiparticle
C(FE,0) is equal to

L+

x

C(E.0) = e, 00| fues s )

T

= O(B,0) ~ |c(E,9)|2<|uk+|2 - |uk+|2> (2.18)

1
)\ ’
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and similarly the transmission probability of the hole-like quasiparticle D(E, )
is
1

D(E,0) ~ |d(E, 9)|2<|uk+|2 - |vk+|2> T (2.19)

Note that, the conservation of the coefficient probability required that
A(E)+B(E)+C(E)+D(E)=1.

In the case of the superconductor become normal metal i.e, T > T,, the
Andreev reflection A(F,#) = 0, and the amplitude of reflection and transmission
b(#) and ¢(f) for the system would be

() = i(A—=1)cosf +27
i(A+1)cosf —27°

() = 2i\ cos 0
(14 N)cosf —27

(2.20)

Thus, in the case of normal metal-insulator-normal metal junction, the probabil-

ities of reflection and transmission are

() = (A —1)2cos? 0 + 422
(1+A)2cos?0+ 472"
4\% cos?

(1+N)2+472%sec?0

C) = (2.21)

Notice that both probabilities do not depend on FE.

2.3 The Current and Conductance Formula

2.3.1 The Current

The current across the junction can be calculated from the reflection
and transmission coefficients. In a two dimensional system, the tunneling current
is a sum of charge and group velocity products of all states ki~ (kg, ky) of energy

E}, that have positive group velocities vy, therefore the current can be written as

I = Z NEevy, , (2.22)
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where ny = [14+ A(F) — B(E)]f(E) is the number of electrons moving across the

junction( f(F) is the Fermi-Dirac distribution function) and vy, = ,—11% is the
group velocity in the 4z direction.

When there is no applied voltage across the junction, the current to the
right is equal to the current to the left, so that there is no net current across a

junction. The magnitude of the current to the left and to the right is
L2€ +00 +00
IH:I“:W/_OO dky/_oo dE(14+ A(FE) — B(E))f(FE) . (2.23)

However, when the voltage across V' becomes non-zero, the current to the right

becomes

L26 +o00o +00
=t /oo dk, /oo AE(1+ A(E) - BE)f(E—eV).  (224)
Therefore, the net current at this voltage is
Inet = INIS =]7 I

e [*2dk, [T dEQ1 + A(E) - B(E))(f(E —eV) - f(E)),

= IR J-

(2.25)

or,
L%

Define the normalized current I as the ratio of the current across NIS
junction to that across NIN junction

_ [Zdk, [os dE
[ dk, [oy dE

(2.27)

where 0 =1+ A(k,,eV) — B(ky,eV) and oy = 1 — B(k,). Write k, = kpsin®,
where —7/2 < 0 < 7/2 is the angle between the z-axis and the wave vector .

Therefore, the Eq. (2.27) becomes

[dE f::r/; df ogcosl
 JdE [T d0 oy cost

(2.28)
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2.3.2 The Conductance Spectra

The normalized conductance is defined as the ratio of the conduc-
tance of the NIS junction to the conductance of the NIN junction:

NIS
a=S5 (2.29)

GNIN ’

NIS __ dInis NIN _ dInin
where GG = =f% and G = =

Thus, the normalized conductance is

[dE [*T2d00 + A(9, B) — B(0, E)] cos SL(E — eV)
[dE [*72d0 ox cost SL(E —eV)

G(eV) = (2.30)

The expressions in Eq. (2.28) and (2.30) for both normalized current and con-
ductance are used throughout this thesis.

In the next two chapters, the results of the calculated normalized con-
ductances of s-wave and d-wave superconductors at zero and finite temperatures
will be presented. All the plots of the normalized current and conductance as a

function of applied voltage are done using Eq. (2.28) and (2.30)



Chapter I1I

Tunneling Spectroscopy at Zero

Temperature

3.1 Introduction

Before discussing about finite temperature tunneling spectroscopy, it is
always useful to examine the tunneling spectroscopy at zero temperature. In the
next section, the tunneling spectroscopy of isotropic s-wave superconductors is
reviewed. After that the tunneling spectroscopy of d-wave superconductors is
thoroughly examined in Section 3.3. Its dependence on the interface orientation
is the main focus in this Section.

In the calculation of the tunneling current and conductance spectra
throughout this chapter, the Fermi wave vectors of both normal and superconduc-
tor are taken to have the same magnitude, or A = 1 for simplicity. The different
magnitudes between the Fermi wave vectors from both sides has the same effect

as increasing the strength of the insulating barrier.

3.2 Isotropic s-wave Superconductor

Isotropic s-wave superconductors have isotropic energy gaps, as shown in
Fig. 3.1. This means the gaps of both transmitted excitations have the same

value, i.e., Ayp = Ap.
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7

Figure 3.1: The sketch of an isotropic Fermi surface (thick circle) of the system

with an isotropic s-wave gap Ay.

The plot of all transmission and reflection probabilities A(E), B(E),C(E)
and D(FE) in this case are illustrated in Fig. 3.2. The parameter Z represents the
barrier strength at the interface.

When the barrier is weak (small Z), the normal reflection and both trans-
mission probabilities are small for £ < Ag. The most probable process causing
the current across the junction is the Andreev reflection. This process would
result in two electrons tunneling across the interface (Andreev, A. F. 1964). An-
dreev reflection probability is high in the high transmission limit. For £ > A,
the probability of transmission without branch crossing is dominated. Electrons
tend to tunnel to the electron-like excitation states, when the barrier is weak.

When the barrier is strong (large Z), the normal reflection dominates for
all energy ranges. However, it should be noted that at £ = A, only Andreev
reflection is allowed. A(E = Ay) equals to 1 for all Z. Note that A(E)+ B(E) +
C(F) + D(F) equals to 1.
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£/ =T

E fAg

Figure 3.2: Plot of the reflection and transmission coefficients A, B,C and D at
different barrier strengths (Z= 0.0, 0.3, 0.5, and 1.5).

At zero temperature the normalized current is

_Jy"dE [ dk,[1+ A(E) — B(E)]
Iev) = eV [dk, (1— B)

The I —V curves for various barrier strengh Z are depicted in Fig. 3.3. For the

(3.1)

junctions with Z=0.0, the slope of the current when Ve < Ay is twice the slope
of the current when Ve > A,.

In the case of larger Z, there is almost no current when Ve < Ay. When Ve > Ay,
the current starts to flow and reach the Ohm’s law limit when the applied voltage

is high.
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Figure 3.3: Plots of the normalized current at diferent barrier strengths.

The corresponding normalized conductance curves are shown in Fig. 3.4.
In the tunneling limit, or the case of large Z, the conductance curves have the
same shape on the bulk DOS of the superconductor. In the high transmission
limit, or small Z, because the Andreev reflection dominates when E < Ag, the
normalized conductance can be larger than one. This reflects the fact that there
can be two electrons transmitted across the junction per one incident electron,

via the Andreev reflection process.
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Figure 3.4: The plots of the normalized conductance vs applied voltage at differ-
ent barrier strengths (Z= 0.0, 0.5, 1.5, and 3.0).

3.3 d-wave Superconductor
The gap function of the d-wave superconductor has the form
A(k) = Ag(cos ky — cos k). (3.2)

It can be positive or negative number and has four-node shape in k space. Let 6
be the angle between the wave vector on the Fermi surface and the x-axis, and
a be the angle between the a-axis of the superconductor and the z-axis, the gap

function in Eq. (3.2) can be written in the following form

A(0) = Az cos[2(0 — a)]. (3.3)
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Aok2
2

where Az = Figure 3.5.(a) shows all the reflection and transmission
processes occurring at the normal metal-insulator-superconductor interface. In
this picture, the vertical line along the y-axis represents the insulator, and the
arrows illustrate the processes. Figure 3.5.(b) show the Fermi wave surface and
the gaps in two cases. The dashed curves represents the gap in the case where

the a-axis is along the x-axis and the thick solid curve represents the gap in the

case when the a-axis makes an angle o with the x-axis.

—
o]

—

o

—

electron -
]
—

o )
electron- likce
quasiparticle

hole
,.--"'". {:}N.,

A
hole-like
quasipatticle

electron

normal metal superconductor

() (b)

Figure 3.5: (a) The transmission and reflection processes at the junction. (b) the

Fermi surface and the energy gaps in two cases.

The plots of the energy gaps of the two transmitted excitation (k*, —k7)
for different surface orientations are shown in Fig. 3.6. For a =0, A+ = A_-.
For o # 0, A is different from A_;-. They both sometimes have the same signs

but sometime do not. For a = 7, they both have different signs for all values of

6.
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Figure 3.6: The energy gaps of both transmitted excitation for different angles

a. The solid lines represent A_j; and the dash line represents A .

The plots of the reflection and transmission probabilities are illustrated in
Fig. 3.7 and 3.8 with parameter Z=1.5. When o = 0 (Fig. 3.7(a)), the features
of each probability are similar to those in the isotropic s-wave superconductor
case, only that the main feature like the peak in A(F) now occurs at the energy
gap of the excitations with the momentum that makes an angle # with the a-axis.
When « = 7/4, as shown Fig. 3.7(b), the peak of Andreev reflection appears at
zero energy. This peak is the signature of the formation of zero-energy surface
bound state. Both transmission probabilities start to be non-zero at the energy
gap of the excitations with the momentum that makes an angle # with the z-axis

as well.
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The plot of each probability in the case of different angles 6, and the angle
a # 0 is shown in Fig. 3.8. When # is in the region where the two gaps (A_j-
and Ag+) have the same sign, there is no sharp peak in A(F) any more. There
is a broader feature which starts at Agz+(f) and ends at A ;- (#). When @ is in
the range where the two gaps have different sign, there is a peak at zero energy

in A(E) as well as two features occurring at Ag+(6) and A_;-(6).

s
- a=0 " (@ |
) 0.5 _
. A
o
05 « A\

2.3

(b)

2.5 45 -1 05 0 nf\? 15

0= 7/8

Figure 3.7: Plots of the reflection and transmission coefficients A, B, C' and D for
(a) =0 and (b) o = 7/4 with § = 7/8 and the strength of barrier
Z=1.5.
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Figure 3.8: The plots of reflection and transmission coefficient A, B, C' and D for

(@) # = 0.0,(b) # = 0.1 and (¢) § = 0.5 with & = 7/6 and the
strength of barrier Z=1.5.
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Figure 3.9: The plots of normalized conductance with different angle o = 0, 7/4,

7/6 for: Z=0.0 (solid line), Z=1.5 (dotted line) and Z=5.0 (dashed

line).
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Figure 3.10: The plots of normalized conductance with different angle o = 0,

/4, /6, w/8 for Z=1.5.

The calculation of the tunneling conductance for d,»_,»-wave supercon-

ductor junction is done using the Eq. (2.30), which is

[dE [7T2 0]+ A(6, B) — B(0, )] cos0 2L(E — eV)
[dE [*72d0 ox cost SL(E —eV) '

G(eV) = (3.4)

The plots of the normalized conductance as a function of energy at zero
temperature and at different angle o are show in Fig. 3.9. When « = 0, there is
a main feature at Ve = A,,,,. For Z= 0.0, the conductance has an inverted gap
structure. For large Z, there is a peak at A, When a = 7/4, there is a zero-
bias conductance peak. When a # 0, there are two features at Ve = A+ (6 = 0).

Figure 3.10, shows the plots of normalized conductance spectra with the
strength of barrier Z= 1.5, and different angles . It can be seen that the smaller
peak (indicated by the arrows in the picture) moves when « is changed. This
peak occurs at the energy gap of the excitation that has its momentum parallel
to the x-axis. This implies that the NIS tunneling spectroscopy can be used to

determined the magnitude of the energy gap topology on the Fermi surface.



Chapter IV

Tunneling Spectroscopy at Finite

Temperatures

4.1 Introduction

The magnitude of the energy gap depends on the temperature. At zero
temperature, it is maximum. As the temperature rises, magnitude gets smaller
and goes to zero at T,. From the BCS theory (Bardeen., et al. 1957; Parks, R.
D. 1969; Thinkham, M. 1996)

D)= lao(1- Rt ent= P @z, wy

A(T) T\
41— = T~T,, 4.2
IO < Tc) ’ (42)

where A(0) is the gap at zero temperature which is equal to 1.764kgT., and
kp = 1.380662 x 10722 JK~! is Boltzmann’s constant. The plot of A(T) in BCS

and

theory is shown in Fig. 4.1 .
In the case of anisotropic d,2_,2-wave superconductor the gap function at

finite temperatures takes the form
A(T,0) = A(T) cos[2(0 — o), (4.3)

where A(T) is taken from the BCS theory, a is an angle orientation between a-

axis and z-axis, and # is the angle between the incident electron direction and the
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x-axis as defined previously. Note that only the magnitude of the maximum gap
depends on temperature. Therefore, all the calculations done at finite tempera-
tures are the same as all those done at zero temperature, expect the magnitude
of the maximum gap is varied.

The normalized conductance formula at finite temperature is

[dE [*T2d00 + A(9, B) — B(0, E)] cos SL(E —eV)
[dE [*T2d0 ox cost SL(E — eV)

G(eV) = , o (44)

where oy is the conductance of normal metal-insulator-normal metal.

A
A(0)

] | I
0.2 04 0.6 0.8 1

T
Tl:

Figure 4.1: The plots of the temperature dependence of the energy gap in the
BCS theory (Tinkham, M. 1996).

4.2 Isotropic s-wave Superconductor

The conductance spectra of isotropic s-wave superconductors are calcu-
lated from Eq. (4.4), the results are shown in Fig. 4.2. The features seen at zero
temperature are also observed at T" # 0, but they are broadened and smeared

out.
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Figure 4.2: The plots of the normalized conductance at different temperature
T =0.0, 0.17;, 0.27,. and with different strength barrier Z=0.0, 0.5,
1.5, 3.0.

4.3 d-wave Superconductor

The conductance spectra in this case are calculated in the same way as in
the previous section. Figure 4.3 shows the plots of normalized conductance at
different temperatures and the angle o when the strength barrier is high. All the
features in the conductance spectrum become broadened at high temperatures
and the smaller features are smeared out. The width of the zero-bias conductance
peak is broadened when the temperature is increased and the height of the peak
is also decreased. The smearing behavior at finite temperatures suggests that if
one wants to use the tunneling spectroscopy to measure the magnitude of the

gap on the Fermi surface, one needs to do the experiment at 7" < 0.17..
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Chapter V

Conclusion

In this thesis, the current and conductance spectra of normal metal-
insulator-d-wave superconductor are calculated using the BTK formalism. In this
approach, the dependence of the tunneling spectroscopy on the barrier strength,
the interface orientation, and the temperature can be examined. In the high
transmission limit, the conductance spectra indicate that the Andreev reflection
dominates at small applied voltage. The normal reflection dominates in the low
transmission limit.

The dependence of the tunneling conductance spectrum on the crystallo-
graphic orientation is found to be very useful in determining the magnitude of
the energy gap in the momentum space. It is found that, in general, there are
three distinctive features in the conductance spectra of d-wave superconductors.
These features occur at maximum gap at zero voltage and at the voltage cor-
responding to the energy gap of the state with the momentum parallel to the
interface normal of the junction. This features are very distinctive form those of
the junction with low transparency at low temperatures. The existence of last
feature implies the ability to use the NIS tunneling spectroscopy as a tool to
determine the magnitude of the gap at different points on the Fermi surface.

All the features found at zero temperature tend to be broadened and
smeared out at higher temperatures. The width of the zero-bias conductance
peak is broadened when the temperature is increased, whereas the height of the
peak is decreased.

In the future, it is interesting to explore how the increment in width and
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decrease in height vary quantitatively with temperature. The effect of finite
temperatures implies that to use the NIS tunneling spectroscopy as a tool to
measure the magnitude of the gap at different points on the Fermi surface, one
should make sure that the experiment should be done at lower temperatures than

10% of T..
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