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An exact and explicit expression is derived for the mean number <N> of
photons emitted per revolution in synchrotron radiation. The latter involves a

remarkably simple one-dimensional integral. In particular, we show that the familiar

high-energy expression 57Ta/ \3(1-B?), printed repeatedly in the literature (e.g., in
the “Particle Physicist’s Handbook™: Review of Particle Physics), is found to be
inaccurate and only truly asymptotic with relative errors of 160% (1), 82% (!) for B =
0.8, 0.9, respectively. Our explicit expression for <N> provides a new improved high-
energy expression for it to replace the earlier formula. For completeness,
representations for <N> are also derived in the low and intermediate energy regimes.
Since this work relies heavily on Schwinger’s monumental work, a fairly detailed
derivation is also provided of the so-called Schwinger power integral which is

subsequently used in our work.
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The following symbols are used throughout this thesis unless otherwise stated.
The numerical values of following physical constants are based on The Review of

Particle Physics by the Particle Data Group (1998).

c = Speed of light in vacuum, and is given by 299792458 m s™

h =h2m = Reduced Planck constant, and is given by 1.05457267 x 10 Js
or 6.582122 x 10> MeV s

e = Electron charged magnitude, which is 1.60217733 x 10" C
or 4.8032068 x 10" esu

m = Electron mass, which is 0.51099906 MeV/c?
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a=elhc = Fine-structure constant

w = Photon’s energy (frequency)

o(x) = Dirac’s delta function

P = The power of radiation
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Chapter |

I ntroduction

1.1 Early Historical Review-Accordingto Lea (1978) and Pollock

(1983)

1.1.1 Brief Historical Review of the Early Theory of Synchrotron

Radiation

The synchrotron radiation is widely recognized as an important research tool
in physics, chemistry, biology and medicine. The theory of synchrotron radiation is
essential for the construction of synchrotrons and storage rings, and provides an
explanation for the source of the nonthermal radiation form magnetic stars, especialy
pulsars. Theoretically, since its main features are well known, it provides us with a
good modd for the continuing improvements of the calculationa methods and
simplification of final results.

Asfar back as 1898, Liénard (quoted in Pollock, 1983) first pointed out that an
electric charged particle moving in a circular path should radiate energy and he
calculated the rate of radiation from the centripetal acceleration of an electron.
Several years later, Schott (1912) derived expressions for the angular distribution of
the radiation from a relativistic electron circulating in a uniform magnetic field as a
function of the harmonics of the orbital frequency. Then in the 1940's, Schwinger

developed the classical theory of radiation for arbitrary electron trgectories, and

Copyright 2000 Suranaree University of Technology



showed for the case of circular motion how the radiation was distributed among the
harmonics of the orbital frequency. Schwinger who in 1945 (Pollock, 1983) reported
detailed calculations on the theory of radiation, and published in 1949, examined
further the limits of validity of the classical treatment.

At the same time of the above work in the United States, Soviet scientists had
been tackling similar problems. In a 1944 paper Ivanenko and Pomeranchuk predicted
considerable radiation losses in circular accelerating motion. This work of Schwinger,
Invanenko and Pomeranchuk, and, in particular, the monumental research
contribution of Schwinger of 1945, 1949 laid the theoretical foundations of
synchrotron radiation. The theoretical work of Schwinger, and its direct experimental
impact, was so important that Langmuir (Pollock, 1983; cf. Elder et al. 1947) when he

first observed the “spark” of radiation he referred to it as “ Schwinger Radiation”.

1.1.2 Brief Historical Review of Early Experimental Work in

Synchrotron Radiation

When the building of multi-million-volt accelerators began, the problem of
radiation loss of accelerated electrons received particular attention. Circular electron
accelerators of various designs were proposed, by Slepian in 1922 at Westinghouse,
by Wideroe in 1928 in Norway, and by Kerst and Serber in 1941 at the University of
Illinois. The first such machine that was successful was the 2.3-MeV betatron that
Kerst built at Illinois. In this machine radiation loss from the electrons was so small
that it could be neglected. With the building of larger electron accelerators the

increase of radiation loss, as the fourth power of the energy of a relativistic electron,
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became a serious matter. Baldwin (1975) recalls such an occasion at the General
Electric Research Labs, in Schenectady, NY., when the 100 MeV betatron was
constructed in the mid forties. Prompted by Blewett and colleagues (1946),
researchers used a sensitive radio receiver to look for emission at the fundamental and
severa harmonics of the 57 MHz orbital frequency. They set up receiving aerias
external to the betatron vacuum vessel, which was a silver-coated doughnut, and later
tried with an internal antenna. “But” wrote Baldwin (1975), “with an opaque
doughnut coating, complete concrete radiation shield, and closed minds, we did
not see the light, literally or figuratively”. The light was not observed until 1947
when the first observation was made. It occurred in the same laboratory, when a 70
MeV eectron synchrotron was constructed under the direction of Herbert Pollock. As
Pollock was anxious about electrical breakdown on of his assistants ventured a very
quick glimpse, with the aid of a mirror, around the corner of the radiation shield, to
make sure there was no sparking. He reported an intense “arc” inside the doughnut
was observed, which to everyone' s amazement, he says, persisted even after the beam
deflection voltage was turned off. The bright glow was, indeed, a portion of the
radiation of relativistic electrons at harmonics ~ 107 of the orbital frequency. Elder et
al. (1947) reported in 1947 this observation of what is now referred to as synchrotron
radiation.

As new generations of electron accelerators were born and brought into use for
nuclear and high-energy research, the synchrotron radiation was regarded as a

hindrance to achieving higher electron energies.
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1.2 Purposeof the Thesisand Achievements

The purpose of this thesis is to derive an explicit expression for the mean
number <N> of photons emitted per revolution in synchrotron radiation with no
approximations made. A remarkably simple one-dimensiona integral expression is
derived for <N>. We make explicit use of the monumental work of Julian Schwinger
(1949, 1976, 1978) in this field. As the latter work turns out to be very important in
this project, we start ailmost from scratch and derive, in the process, the Schwinger
power integral for synchrotron radiation.

In particular we show, by using our explicit exact expression derived for <N>,

that the familiar high-energy expression 5pa/ «/W , for the charged particle,
printed repeatedly in the literature (e.g., in the “Particle Physicist’'s Handbook”:
Review of Particle Physics, 1996, p.75; 1998, p.79) give relative errors as high as
160%(!). As a byproduct of the work we provide a new and much improved high-
energy expression for <N> following from our explicit expression, to replace the
earlier well-known formula. For completeness, we have also derived low and
intermediate energy representations for <N>.

Although the main features of synchrotron radiation have been well known for
a long time, there is certainly room for further developments as this thesis certainly
provides. Also, although most of research seems to be of experimental nature, several
recent papers are of theoretical nature as they have appeared recently in the literature:
Hirschmugl, Sagurton and Williams (1991); Lieu, (1978); Milton, deRaad and Tsai,

(1981); Orisa, (1982); Tsai, (1978); White, (1981).
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A very brief account of this work is being published (Manoukian and

Jearnkul prasert, 2000).

1.3 Plan of theThess

Chapter 11 is devoted to a detailed derivation of the total power of radiation in
synchrotron radiation. In Chapter 111 we establish the main result to this work, that is,
the explicit exact expression for <N>. This chapter (Section 3.1) also includes a
detailed derivation of the Schwinger power integral, which is particularly needed in
the subsequent work. Chapter 1V deals with providing, respectively, high and low/
intermediate regimes representations for <N>. The concluding Chapter V summarizes
our findings. Three mathematical appendices are provided including equations and
formulae used throughout the thesis. Some properties of vectors are listed in
Appendix A. A list of important integrals used in this thesis is given in Appendix B.
Appendix C is devoted to the problem of Laurent expansions of some of explicit

functions appearing in this work.
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Chapter |1

Derivation of the Power of Synchrotron Radiation

The previous chapter has deat with some of the historical developments of
synchrotron radiation. In this chapter, before launching into a general discussion, it is
worth providing an elementary derivation of the total rate of radiation, based on
Larmor’s classical formula for a lowly moving electron, and arguments of relativistic

invariance.

2.1 TheGeneral Solution of Maxwell’s Equation

We sart with the Maxwell equations (eg., Jackson, 1975) for the

electromagnetic fields (written in standard notation and in cgs units).

N 1B gl % (2.1)

We have just seen that N- B = 0. It is convenient to set
B=N"A. (2.2)
Where A is the vector potential. The divergence of B is then automatically equal to

zero because the divergence of acurl is zero, and

N' E:-EE
c qt

q po. LIRA)
(o qt
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R E+118) =0
c Tt

Accordingly, we may introduce ascalar F and set

E+1TA - RE.

c 1t

Thus we can rewrite E as

g-- 114 NF , (2.3)

c It

where F isthe so-called the scalar potential. We impose the Lorentz gauge condition

N ah ey 2.4)

c It

Maxwell’s equations can be rewritten as wave equations for the potentials. For the

scalar potential, we start from the Maxwell equation for the divergence of E

N-E=4pr,

N (- RF - 22 = 4pr

N2F +%%N A=-4pr,

NP+ g =-or

N2F - C—lzﬂﬂ: =-Jdpr . (2.5)

This is the wave equation for the scalar potential. For the vector potential, we consider

the Maxwell equation involving the curl of B

N' B:1E+£j’
c It C

where we have used Egs. (2.2), and (2.3). Thus
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N (N A)—El(-NF-EE)+£,
cqt it
N - A)- R2A =- 2 je + 294y, 99,
c it c It Cc
AE 2T Rea=- 1 0ge. LTA 40 )
c it c it c’ 1t c
-or 1 TPA _ 4p.
N - —_ = . 2.6
e ) (2.6)

Now we will find the solution of Egs. (2.5), (2.6) which is equivalent to finding the

solution Y of the equation first:

2
N?Y - iﬂ”tf =-S. (2.7)
C

Where Sis called the source. Of course, Srepresents 4pr and 4pj/c corresponding to
F and A, respectively.
In free space r and | are zero and we get that the potentials satisfy the three-

dimensional wave equation without sources, whose mathematical form is

2
N?Y - iz'q”tf =0. (2.8)
C

To find the solution of Eq (2.8), we consider first the one-dimensional wave equation:

%Y 1 9%Y
- — =0. 29
®? c? qt° (29)

Then one possible solution isafunction Y (x,t) of the form
Y (x,t) =f(x-ct), (2.10)
which is, some function of the single variable (x-ct). The function f(x-ct) represents a

“rigid” pattern in x which travels forward positive x at the speed c. Sometime it
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convenient to say that a solution of the one-dimensional wave equation is a function
of (t-x/c).

Let us show that f(x-ct) is a solution of the wave equation. Let f/ represents the
derivative of f with respect to its variable x and f / represent the second derivative of f.

Differentiating Eq. (2.10) with respect to x, one obtains

. f/(x- ct). (211)
x

The second derivative of Y with respect to x is

2
‘]HTZ = £/(x- o). (212)

And taking derivative of Y with respect to t, we have

iy

— = f/(x- ct)(-¢c)
‘I?ZtY . (2.13)
t? =f"(x- ct)(c)

Weseethat Y doesindeed satisfy the one-dimensional wave equation.
We start now describing spherica waves. Suppose we have a function that
depends only on the radial distance r from a certain origin (a function that is

spherically symmetric). Let’s call the function Y (r), wherer is

the radial distance from the origin. In order to find out what functions Y (r) satisfy the
wave equation, we will need an expression for the Laplacian of Y. Thus we want to
find the sum of the second derivatives of Y with respect to x, y and z We use the
notation that Y'(r) represents the derivative of Y with respect to r and Y’(r)

represents the second derivative of Y with respect torr.
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First, we find the derivatives with respect to X. The first derivative is

iy (r)

I
=V -
fix ") ix

The second derivative of Y with respect to x is

Y () _

0 Y”(r)( )2 +Y' (f)

We can evaluate the partial derivatives of r with respect to x from

E:ﬁ, ﬂ___(l__)

% r x?

Thus the second derivative of Y with respect to X is

7Y _x* .1 X2
=—Y"+-(1- =)Y". 2.14

>> r? r( rz) (214)
Likewise,

2 2 2

TY Y voila Yy, (215)
Ty r r

2

"%Z Z—ZY + _(1 —)Y’ (2.16)
Z r

The Laplacian is the sum of these three derivatives. Remembering that
X2+y>+ 7 = r?, one obtains

1Y 17 17Y
x> ﬂy2 ﬂzz'

N2Y (r) =

- X 1 y y z° 1, 7°
NZY(r)—r—ZY”+?(1 )Y +> Y”+ (1 )Y’ + 2Y”+?(1- r—z)Y/,

X2+y2+22
3

Roy (1) = &Y T2y By

Y/,
r? r r

2 2 2
NZY(r):(X +y2+Z)Y//+§Y/_£Y/’
r r r
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K%Y (1) :Y”(r)+F2Y’(r). 2.17)

It is often more convenient to write this equation in the following form:

1‘[2
M

N2y :% (ry). (2.18)

Y ou can see that the right-hand side of Eq. (2.18) isthe same asin Eq (2.17).
We wish to consider spherically symmetric fields, which can propagate, as

spherical waves, our field quantity must be a function of both r and t. Now we want to

know what function Y (r, t) are solution of the three-dimension wave equation

<2 19 _
N2y (r,t) - Fral (r,)=0. (2.19)

Since Y (r, t) depends only on the spatial coordinates and is also a function of t, we
should write the derivatives with respect to r as partial derivatives. Then the wave

equation becomes

1 92 1 92
= ry)- =L v =o.
rﬂrz(r ) c? qit?

If this equation is multiplied by r, one obtains

Y)- izﬂ—z(rY) =0. (2.20)
c It

1'[2

This equation tells us that the function rY satisfies the one-dimension wave equation
in the variable r. We know that if rY is a function only of ¢-ct) then it will be a
solution of Eq. (2.20). Thus one obtains that spherical waves must have the form

rY (r, t)="f(r-ct),

Y (r,t)= f

M . (2.21)
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Physicaly this is a solution of Eq. (2.8) everywhere except right near r=0, where it
must be a solution of the complete Eq. (2.7). Let’s see how that works. What kind of a
source s would give a spherical wave.

Suppose we have a spherical wave and see what happens when r goes to zero.
This means that the retardation term —/c in f(t-r/c) can be neglected. Let f be a

smooth equation. Then Y becomes
Y (r,t)= R0} (r® 0). (2.22)
r

Therefore Y is like a Coulomb field for a charge at the origin that varies with time.
Thusif we had alittle lump of charge with adensity r and we know that

F=2

r

Where Q = ¢y d°r and F satisfies the equation
\%

N?F =-4pr .
Following the same mathematics, it is seen that Y of (2.22) satisfies
N2Y =-s (r® 0), (2.23)

where sisrelated to f by
with

S=cpd’r.
\

The only difference is that in the general case sand Scan be a function of time.
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Now the important thing is that if Y satisfies Eq. (2.23) for smal r, it dso
satisfies Eq. (2.7). As we go very close to the origin, the 1/r dependence of Y causes
the space derivatives to become vary large. But the time derivative keeps its same
value. So as r goes to zero, the term %Y /t* in Eq. (2.7) can be neglected in
comparisonto N?Y , and Eq. (2.7) becomes equivalent to Eq.(2.23)

Then the source function s(t) is localized at the origin and has the total

strength

S(t) = ¢p(t)d’r, (2.24)
\%

and the solution of EqQ. (2.7) is

_ 1 8t-rlc
Y(r,t)= 4p—r : (2.25)

The only effect of theterm 2Y /qt* in Eq. (2.7) is to introduce the retardation (-r/c)
in the Coulomb-like potential. The solution corresponding to a spread-out source, may
be thought of as the source s(r,t) is made up of the sum of many point sources. Since
Eq. (2.7) is linear, the resultant field is the superposition of the field from all of such
source el ements.

By using Eq. (2.25) one knows that the field dY at the point () and the time t

from a source element sd®r / at the point (r /) is given by

Iy 3/
dY(r,t):S(r - R/c)d’r ’

AR

where Ris the distance from r/ to r. Adding the contribution from all the pieces of the

source and integrate over al regions where sis not equal to zero, one obtains

(r',t- R/c)d’’
4pR

Y=o (2.26)
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Thismeansthe field a r at timet is the sum of al spherical waves that leave from the
source at r/ at the time (t-R/c).

From this we obtain the general solution of Maxwell’ s equations. When we let
Y represent F the scalar potential, the source function becomes 4r. On the other
hand if Y represents the vector potentia A, the corresponding source function is

4pjlc. Thus one obtains the so-called Liénard-Wiechert solution:

r(r’,t- R/c)d’’

Fr=g . 2.27)
Art =g ’t'CRR’C)d . (2.28)

These potentials are known as the “retarded potentials”’.

2.2 Electric Field of a Point Chargein Motion

The electric field of an arbitrarily moving point charge can be obtained from
the Liénard-Wiechert potential. We now specialize Egs. (2.27) and (2.28) to the case
of a point charge e moving along a trgjectory w(t) (position of charge at time t-see
Fig.2-1), for which the charge density and current density are given by
r(r,t)=ed[r - w(t)], (2.29)
j(r,t)=evdr - w(t)], (2.30)
wherev is the three-velocity of the charge. The potentials for such a source are given
by

é N
FEn=gir'd Sdlr’ - wit)dd’ - t+ R(t )g,
R e c d

(2.31)
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RE) Firl
]
q

Position at /'

kime t'=t-R./c
w i)

q \
Fostion

of tithe t

Figure 2-1 The electromagnetic field at time t, of the charge g moving aong a

trajectory w(t), depends on its position at the retarded timet =t — R/c

Al D)= i dt! ev(t SO - W(t’)]d%’ Ct+ R(t/)g, (2.32)
c R e c d

where R=| r — ' | (distance from the retarded position of the charge to the point P).
From the presence of the delta function in Egs. (2.31) and (2.32), it is clear,
that the potentials depend on the retarded position and velocity of the charge, and

implies that there will be contributions only when the condition:

RE) _ Rt) _
C C

t-t+—2 t-t/, (2.33)

is satisfied. Thisis known as the “light cone” condition.
At this stage, one could carry out the integrations in Egs. (2.31) and (2.32) and
obtain the usual expressions for the Liénard-Wiechert potentials. The electromagnetic

fields are then obtained using Egs. (2.2) and (2.3). However, it turns out to be
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convenient for our purposes to find YA/t and NF ,usng F and A as given in

(2.31) and (2.32). First, we evaluate NF by using the basic integral result,
Of (d(x - y)d°x = f(y),

to can carry out the spatial integrations in (2.31) and obtain

F(r.t) = ot ed(t’ 1+ 5y,
c
/
wherenow R(t") = | r —w(t) |. And from R = r — w(t), one obtainds gt—R— - dv(\;t(f )
dw(t’ )
sincer is held constant. The charged particles velocity is denoted by v(t') = pry
hence one obtains v(t') = - dR(t ) . Therefore,
N 1é e & N
RE o - =o'l Rodgt! - t+ Ry R 9] 2.34)
qr i R cdH R df b

wheref(t) =t' - t + Ric. The first term in the Eq. (2.34) can be simplified by using the

formula

o] d(t/ - to)
o 7’|,

t' =tg

dif(t')] =

where to stands for the zeros of f(t)). This gives T as the solution of t' = t - R(t')/c .

Thus one obtains
/ -
di’ - t+5) dit’' -T) ,
/
c ig’-'ﬁR(t)g
dt/ é C t=T
and that
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i_ig’_t+—R(t )@:1+££d_R
%tf’ dt’@R c @ c dR dt’
Do YRy,
dt’ Rc

/_
d(t/-t+—R)=M.

c 1- vy

For the second term, notice that

ﬁ = (i)l ﬂ
df  Cdt’T dt’

Upon substituting Egs. (2.35), and (2.36) into EqQ. (2.34), one obtains

i & R U
'|'é N dd6t’ - t +—7
, i}
RF(ry=epr/je RAC-Tg, 1 R cd,
& R (1- V) § (- vg) CcR? dt/ i
.J.e R/ U R )
t b

NF (r,t) = -

/
e R+ e ¢ 1 R dd(t'-T)

o A/
(1' VR) R® (1' VR) Oj (1' VR) cR?
From the property of the Dirac delta function

o0 D=1,

finaly we have

(D> (D~

0
RF(ey=-—_R__¢ d R

1-v,)R® (1- v,) cdt’ RP(L- V)0

where now t’ is the retarded time.

dt’

17

(2.35)

(2.36)

(2.37)

(2.38)

Similarly, we do the same thing with the vector potentia A to find A /qt.

Starting now form Eq. (2.32) and by carrying out the spatia integrations in (2.32) we

obtain
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acn =2t O L R2

¢ R & CE
ALY 1 @) 1,8 RO
t c R ft & b

TACY . Lo &) T E RO

it c R 7f & co
/ et
ﬂA(r!t) - l(\ﬁt/ e‘/(t )é‘ai? idgt/ t+BO
fit c R &t qit’ & co
ﬂA(r!t) - 1 (\ﬁt/ 1 e\/(t ) ﬂ d(t/ T),
It cd- vg) 1-v,) R 1t

x (0]
mWry__ 1 ¢ & - (2.39)
(%]

o ve) Tt ERA- Vo)
Upon substituting Egs. (2.38), and (2.39) in Eqg. (2.3), one obtains for the electric field

1A

E=-=-—-KNF,
c It
é u é u
E=- 1 T é ev U+ e £+- e d é R L;l’
’(1- V) ' EREA- V)i (- V) R (1- v) ot 8R*(1- Vo)
¢ u
g-_© n__ e d &R (v/c)Ru. (2.40)

(1- vi) R? (1-v,)cdt’ § R®(L- v,) 0
Noting from Eq. (2.33) that

dt’ drR R
— =1-—=(1-v,)to1- =,
dt cdt (- ve) c

Eq. (2.40) becomes
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& RO €1- R/c) & al
E:ﬂgl_ B:+ eié—(l R/c) Cn- X:u
RR& co ct€ R & cdi

And with t' standing for the retarded time, the required derivatives are

/ /
B_i W(t/)]:-ﬂw—(t)__ qt
Tt Tt it 8ﬂtz
o]
TR fet- 1] =61 ﬂi:
M 9t it o

or

E:i—\/R R=n- G—_— ( )qt/o

Mt &t & &t &
and

'ﬂ_n_lgﬁli ——[n(n V) - v]

Mt &Rz R its

With these properties at hand one obtains

en enR edé1&@ nrR v VR
g= . R, ediIG . IRV, RS,

R? R?c cdt@Rg c ¢ c2dH

0 é ou
p-o. R, edn ed®RY g dRABR G

R R’c cdR cdtgcRﬂ c? dt@RSc H

0
- _ R edn ed&RY ii,ievg(l_ 3,
b

R R°c cdtR cdtgcha 2 dtf RE

—l enR+edn edg%RO q 1e 3%1t
S SR EEN_EHE ——|—
R R c cdtR cd8Rs c diRé 8&3{)
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en enR edn ed@RO qdi1¢ @&@'0 R’ O
E=— - —— - —— - =T+ 28 V&—T- n(n- v)s—1
R Rc cdtR cdt&Rp c2diRE &dt o &dt o
/..\'.' k)
+n(n-v)gqu:'
8dtéﬂL[y3
: 5 b6 16
g eR,edn ed®RY g di1g . @2
R? R2c cdtR cdt&Rp c? dtfRE §dt o
ot
+ Ri[n(n- V)- v]gqi%x
R dt eb

en enR edn ed&@RO e dé1® dn dr®
E=-—. — 4+~ _ . ——9—;+——§—QR—+n—;l:|
R Rc cdR cd&Rs c dtERE dt at &

en enR edn ed&®RO ed€1d u
g S R,edn edehRe, e &t (R,

R° R*c cdtR cdtgcREJ c? dt &R dt g

2n 0 2
Eze +eRAEN =, €dn (2.42)

R° cdtiéR’s c? dt’

Thus Eqg. (2.40) is related in a rather smple way to Feynman’s formula (Feynman, et
al., 1989). Feynman also gives a simple interpretation to his formula for the electric
field. The first term is the Coulomb field of the charge at its retarded position. The
second term takes into account the motion of the charge and is roughly the time rate
of change of the retarded Coulomb field multiplied by the time the charge takes to
travel from the retarded to the present position. The third term is, in a non-obvious
way, a higher-order correction to the electric field.

For to sake of completeness, one also provide the derivation of the usual
expression for the electromagnetic field due the charged particle, starting from Eq.
(2.40), by defining, in the process, first K = (1 — vg). All that one has to do is to carry

out the time differentiation in Eg. (2.40), noting that
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KR e RO 1
T —ﬂQR-V T==(v-v-cn-v-R-a).

Mt & C @ C

From Eq. (2.40)

E= e n. . ¢ ng-(v/c)RH
(L- Vo) R® (- v,) et/ R (L- v,)

. 0

g=fn,e d -9y
KR Kcdt'8 KR H

& 0
g-en,edgn v2

KR Kcdt' 8KR cKRp

_en e‘?ldn dgelo 1 dv vdgelgt)J
KR cKBRK dt! dt’ &KRs cKRdt! c dt’ SKRZA
é U
E:£L+ e!n(n V) V n @/z_c(n.v)_R.d_vq__l ﬂ
K R? CKT R?K ck?R? 8 dt’f cKRdt’
e L
vV &*-cn-v)-R- ﬂw
c’K?R? 6 dt’ tb
Fin- v) - e 0 0
E:£L+i% n(n V) V- 1 Qn_ X_évz_ C(n V) R - ﬂu
KR ki RK K2R c® dt' 8
1 va
cKR dt’ b
P2 8! .y 0 . . F= <) o}
g-_en & on vi+e[n(n V-v] e Qn-xjvz
K2R? & c @ cRZK2 CKRE o ’
® 0 o)
+ Qn-!:(n.v)+ Qn_x .ﬂ_ N ﬂ
KR & cp c?K R28 cz  d’ K2Rt
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£-_© g}l_lg_en(n-v)jLen(n-v) e 8%_!9\/2
K’R°& cB KR’ cK2R2 CKRE  co o
& 0 v Gee 0 ® n.y0
+—2 G- Yonv)+ Ch. VYRR Qe e Fon V:ﬂ
CKPRE&  cp c’K Rzg c® dt's c?K°RE c gdt’
e @& V§ n-vo e e vov e
E:—n-—c:&:‘L- +- n- ———+ n n-v
K3R28 cg C g K3Rzg cgc? cK RZQ cé( )
e @& V§ dv & e é @ viadv ’
+ h-~%R-—2.__° =R.%H.
c’K Rzg cé dt' g c’K3R® & 8 c;zﬂdt’
& 0 & 0 & 0
E=—2 ¢n X:- € ¢n X_V—+ © Qn-lj(n-v)
K*R? g co K3R? 8 coc> KR’E o
} éxe o} e o} ’
- ° l “é&n- —7 UP © Qn-xz(n-v)
KSRZT & cp c2dt'bb cKR2E co
F 8 e 20 éx 0
e H.ovg e e g &Ly &g
KRE& cd c?o KRET & cp czdt’z
The final result can be written in the form
0 i & 0
_ 1 v/c)g v9 e !,R,é(;n_lf, dv UP (2.43)
R*(1- vg)° 8 co R @-vy)®t & co czdt’g
For the magnetic field we have
_ &v'n)@-b? (@-n(v'n a nu
BT TR KR OKRY (244)
é a
as it follows from
B=n"E. (2.45)

The latter expression for B involves the unit vector (n), from the retarded position of
the charge to the observation point. Evidently, the magnetic field of a point charge is

always perpendicular to the electric field and to the vector from the retarded point.
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One can be see that the first term of E involves the velocity (but not the
acceleration) of the particle; it has vector components parallel to R = Rn and to the
velocity v, and reducesto the familiar Coulomb field at low speeds. The second term
is proportional to the particle's acceleration a, and is perpendicular to R. Thus the
electric field may be decomposed into a velocity component (velocity field) and an

acceleration component (acceleration field).

2.3 Total Power radiation by an Accelerated charge- Larmor’s

Formula

The energy flux associated with the fields of a point charge is given by the

Poynting vector
C . Cor’r, - c

S=—E " B=—[E" (n” E)]=—[nE*- E(n- E)]. 2.46
= 4Io[ (n" E) 4p[ (n- E) (2.46)

However this is not al energy flux representing radiation; some of it is just the field
energy carried along by the particle as it moves. To calculate the total power radiated
by the particle at time t/, we draw a sphere radius R (Fig.2-2) and have the particle at

its center. Let the appropriate interval

RO
C )

for radiation correspond to the radius of the sphere. From the section 2.2, both the
electric and magnetic fields may by decomposed into a velocity component and an

acceleration component. The velocity fields obey inverse-square laws of the distance,

E,, B, U I%]

Copyright 2000 Suranaree University of Technology



24

Figure 2-2 Trajectory of the charged particle

On the other hand, the acceleration fields obey inverse-first-power laws,

Ea’BaMi

Rl
Thus the Poynting vectors associated with the various portions of the fields scale with

distance as
C
SW[:_EV ’ Bv] H
4p
Sva’ Sav’p' |

Saa HI%]

Now we consider the integration of the Poynting vector over the surface of the sphere

Al Al

(using t’ as the retarded time for all points on the surface of the sphere at time t).
Because the area of the sphere is proportional to R, thus any term in S which goes to
zero like /R? will give finite contribution, but terms like /R® and UR* will
contribute nothing in the limit when R goes to infinity. For this reason only the

acceleration field represents radiation. Thus E will be rewritten only in terms of the

radiation term
e s
e-— ¢ lp . & ¢ (2.47)
R(1-v,)'f & co czdt’a
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(the velocity fields carry energy, and as the charge moves this energy is dragged
along-but it’s not radiated. In particular, a charge must accelerate in order to radiate.).
The radiation field is perpendicular to R at any point on the sphere. Thus the second
term in the square brackets on the right-hand of Eq. (2.46) is equal to zero. One then

obtains the Poynting vector given by

Because the Poynting vector, in magnitude, represents the energy per unit time, per
unit area, of radiation emission we set

P:-%:@S-da:@jﬂsmw.

S

This means that the power radiated per unit solid angle is

R T
dw p
7 e 2
ee 0
P_cl e prgn.Vvd _dv (2.48)

W 4p|Re-v,)® & co cidt
If the speed of a particle is sufficiently small that it can be neglected in comparison to

c, then Eq. (2.48) becomes

dP €

W dpc {n" [n" V]}I. (2.49)

If qis the angle between the acceleration v and n, as shown in Fig. 2-3, then power

radiated can be written

2
P _ € |vpsniq.

dw 4pc?
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[

Figure 2-3 Angular dependence of the acceleration

A polar plot of this“sir? " distribution of radiated power is shown in Fig. 2-4. No
power is radiated in the forward or backward direction (it is emitted in a donut shape

about the direction of instantaneous acceleration).

Figure 2-4 Angular dependence of radiation from a slow accelerated charge.

The total radiated power is obtained by integrating over the entire sphere:

o WP EIVER L
PTQ M e O O A
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or

_2e’|vf

P
3 ¢

. (2.50)

Thisis the familiar Larmor formula for a nonrelativistic, accelerated charge.

2.4 Total Power Radiation by an Accelerated charge- Larmor’s
Formula with its Relativistic Generalization

The Lamor's formula for the power radiated by an eectron that is

instantaneoudly at rest in its co-moving frame is

_2e’|v]
3 ¢&

or it can be written as

2 .2
p-2 e 33"&9_ (2.51)
3mc’ édt g

Now, radiated energy and elapsed time transform in the same manner under Lorentz
transformations, thus the radiated power must be an invariant. We shall have
succeeded in deriving a formula for the power radiated by an electron of arbitrary
velocity if we can exhibit an invariant that reduces to Eg. (2.51) in the instantaneous
rest co-moving system of the electron (b® 0). To accomplish this, first the time
derivative is replaced by the derivative with respect to the invariant proper time. The

differential of proper time is defined by
d 2 _d.t2 1 d 2 +d 2 +d 2
s® =dt” - C—z( X* +dy” +dz%),

or
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20,
ds=- VEg=d

c’o g

(2.52)

28

where g = (1-v¥/c?)¥2. Secondly, the square of the proper time derivative of the

momentum is replaced by the invariant combination

aglp ¢ ® alpd 1xEs

8&,5 %z Ce%ﬂ

Hence, as the desired invariant generalization of Eq. (2.51), one obtains

2 e &mpo 1aEdEoU

3mcP @dsg  c? &ds g g

_2 e’ eaedp dto 1 E dtoU

m?c® @dt dsg c? &dt dSﬂg

P_2 e’ ézéej 02 gsz(jzl‘il
TAme D Edty  Cedigy
g € tg c°e tﬂg

p.2€_ e’ gmzc“eaedpo ] 18551E00
@mz ceng

P-2 e oeaallpo 1aeElEol\J

3mic® gmc géedt;a c? gdtﬂg

The conventional form of this result is obtained on writing

mv mc?

and performing the indicated differentiations. Thus, from Eq. (2.53) when substituted

in Eq. (2.54) gives

_2¢ 1 eaE!leo &, dvou

3¢ (I-b) Edtg & diog
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To check that Eg. (2.55) comes form Eqg.

expressions:
®Eo _@ m® 106 _ 1
&mc o g(l- b’)Y*mc’y 1- b*’

dpdaem/('j

dt  dt¥(@- b?)V7 g

dp _ m dv

d
—_——tmnV——
dt (1_ b2)1/2 dt d.t (1_ b2)l/2

|
|
dp_ m f v
dt  (1- b?)Y2 ot i o
jc*Gl- —7
i & o
dp m dv m
__& (-)'”2_+ Y vEev
dt 91-V—: dt ngl-v—j
& g & g

a@lpo om IaEdvo 1 %
C—/~ ~t—5—>VCV-
Sdtyg (- b)i€dt g c2(L-b?) &

2

0 2 1 o ®
%p m :éﬁj\/_ ;gv.__
8dm (1- b?)i&dts (- b?)&
and

é 2 u
dE_dg M° o i;m
dt  dt §1- b2)v2 H dtgﬁ_vzg
& c2p

dE mc 2 e dvo

at c21- b9)72E dtg

29

(2.53), we evaluate the following

(2.56)
2

Y RS YT sy
c'1- b*)2 8 & dtdl}
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gE__m & VO
dt  (1-b2)2 & dtg

gy’ m g dvg

=2 =-_ 7 : 2.58
Edty (L-b?)°& dip (259
Substituting Egs. (2.56), (2.57) and (2.58) into Eq. (2.53)
2m2g2e? ,tavo | 292 dvo | vig* dve g* dv o i
P== = + & .VO 4 & Yo 8 &K VOV,
3 mic O ’If%@ c? & dtg cf & dtg c2& tra'i;
P_294eziaedvoz+292 dve . vig! dvo  g'e dv o §
T3 1S5 o 2 ot o 4 o o2& —t-g
fédtg c* & g c' é g c’é 2
_2g%?} 1 a@lve | 2 dvg | vig? dvo 2 dv o’ fl
R o A L )
fg°édtg c°é dtg ¢ é& dtg c°é dtﬂg
29%e’1é Vi | 2 dve | vig? dve g2 dve’fl
p=29c ] LS. 28 Q0L VO R MO0 R QO
c’ 1é Cc'(edtg c°e to c’ e tg ce tﬂZ,
_2g°e?iaave Vialve | 2 dvg | vig? dve g2 dv & fi
P e S S, + & e 7 =2 LK. =Ly,
fédtg c edtg c"é t g c' & dtg c°é dtg?g
_2g°e®fave Valvg | 2 dve g’ dvoe V2o
P== Q.Y @vVo L 2K VO 8 & DVO&H. Y =,
3¢ %gaﬂ CCédtlyg c’é& dig c'e dig cz%

2g°e?iaalve Vialve | 1 dv o §
P== 9 L EYY L oK. .22,
3¢ %gaz &ty & tﬂ%

leading to Eq. (2.55)
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_2¢eg° ea@lvo &, dve U

U.
3¢ @edt;a gc dt o

For the circular trgectory for an electron in a synchrotron, in such machines
the momentum p changes rapidly in direction as the particle rotates, but the change in
energy per revolution is small. This means that

dp|  1dE
cd

Then the radiated power Eqg. (2.53) can be written approximately

2 &€ E oaedpo

P
3mc Emclgédt g
Now
aloo _ 2, W, 5 E?
Q —\w2pr=LbpE
<ot » b P =7 C

where wp and R are the instantaneous angular velocity and radius of curvature. Hence,

;e E

(;,—

P:EV\/O
3 mc?

. 10,

€h
R

@D

The energy radiated per revolution is then

2O
DE=2p ¢& %

3 ng gmc

9
P
A useful form of thisresult is

I:]Ekev :88'5(EGeV)4 / Rneta
where Egev is the electron energy in units of 1 GeV = 10° eV, R is the radius of the
electron orbit in meters, and DE,,, is the energy radiated per revolution in units of

1 keV = 10° eV.
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Chapter 111

Explicit Expression for the Mean Number of Photons

The purpose of this chapter is to derive an explicit expression for the mean
number <N> of photons emitted per revolution in synchrotron radiation. The resulting
expression is a remarkably simple one-dimensional integral. To this end, in Section
3.1, we first provide a derivation of the Schwinger power integral expression
(Schwinger, 1949, 1976, 1978). The main expression for <N> is then derived in
Section 3.2, by explicitly taking into account the vanishing property of <N> for b® 0.

This section also establishes the existence of the integral for <N>.

3.1 TheSchwinger Power-Integral Expression

The derivation of the Schwinger power integral expression is based on a

consideration of the rate at which the electron does work on the electromagnetic field,

- O Ed’r.

ret

Which can be conveniently divided into two essentially different parts on writing

1 1
Eret :E(Eret +Eadv) +§(Eret - Eadv) (31)

Here E and Eyy are the retarded and advanced electric field intensities
generated by the electron charge and current densities, r and j. The first part, derived
form the symmetrical combination of Ee and Eay, changes sign upon reversing the

positive sense of the time and therefore represents reactive power. It describes the rate
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at which the electron stores energy in the electromagnetic field, and inertial effects
with which we are not concerned. However, the second is derived from the
antisymmetrical combination of E;« and Exy. The latter remains unchanged upon
reversing the positive dense of time, and therefore represents resistive power. Subject
to one qudification, it describes the rate of irreversible energy transfer to the
electromagnetic field, which is the desired rate of radiation. Included in the second
part is a term, which has the form of the time derivative of acceleration-dependent
electron energy. The for all realizable accelerations the latter is completely negligible
compared to the electron kinetic energy. It will be a ssmple manner to eiminate these
unwanted terms after evaluating the dissipative part. Thus, the power carried away by

radiation is, provisionaly,

P=-¢-Ed°r, (3.1
with
E:E(Eret - Eadv):_im_ NF .

2 c

The expression of P in terms of the vector and scalar potential, A and F, can be

simplified by employing the charge conservation equation

N - J+ﬂ—r—0
qt

Thus,
« ATA 03

P= Z " +NF 3,
o gcﬂ %)
_\é— ﬂA 63
== —+j- NF#°r,
CEC It o
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é u
P:@:ij.ﬁm-(jl:)-l:(ﬂ-j)gd‘“*r,

Bc 1t ¢!

é U
P=gpsi- R Ry +F ey

Bc it Tt @

é u
ch‘ﬁlj.ﬁ+ﬂ.(jF)+—ﬂ(Fr)-rE§d3r,

Bc Tt 1t fit

& ﬂA ﬂF 3 RGO NYET 3
pP= . LN TR d°r + N - (jF)d°r .

O W "y O oY~ UF)

Now, da=r?sinqdqdj and jp 1/r?, F p Ur; therefore, the integral vanishes as 1/r as

r becomes very large. Thus one obtains

\ael TA TFgs ,d s

P= r—d°r +—cfrd-r.
Gl w Twe ad

The second term of this formula is of the acceleration energy type and may be

discarded. Hence the expression for the radiated power, which still includes unwanted

acceleration energy terms, becomes

- A F
p=c@;. 1A TF (32)
&c’ Tt ﬂt ra

The scalar potentials can be conveniently written as
oo
Tr(r/,t)dqrdt’
/%)
-]

x
dbt’ - t+
¢
e

F ret,asv (r’t) = c\)

Upon introducing the Fourier integral representation of the delta function d(t):

d)= - ¢#dw,

-¥

the potential assumes the form
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1 \eiw(t/—t)eti(w/c)lr—r/|r (r /,t/)

Fret,adv(r,t)=2—po o d’r’dt’dw,
whence
i e¥-9 gn VEv|r -r!
— h I 4l 3./ !
F(r,t)—z—po Y r(r’,t")d’ dt'dw. (33)
Similarly,

ae r-r'|0

dSt’ - tiule(r’,t’)dg'r’dt’
G ~C

e 1]

Aret,adv(r’t):c |I’- r/|

. e" g V—v|r - r’| 1
_ s C
A(r,t)—go |r_ I"/| E

i’ t)d3 'dt’dw. (3.4)

The total radiated power, calculated from Egs. (3.2), (3.3), and (3.4) is

g - eiw(t/—t) sn W|r _ r/| E
P = ¢t 2i(r, ) - L& ¢ Lig )0 ot/
c Tt 62p Ir-r] c 7
e d
é w'-t) g YW / u '
. é i e sn—|r -r | d
- c‘)dgrr(r,t)—g— c r(r’,t’)d3r’dt’dw3
Mt 620 r-r’| 4
e 9]
eiw(t/—t) dn V_V|r ) r/|
~ W . seo o4l C 3. A3y [ A/
Pt)=o—i(r,t)- j(r',t") dd°r ‘dt’ dw
= oo
"t gn V—v|r -] ’
W
- O—r(rr@’th ¢ d%d®'dt’ dw
= o]
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__ 1 ¢ VI O el U
P(t) = 2pcér(r,t)r(r 1) CZJ(r,t) j(r ,t)H

- . W
elw(t—t) sn _|r - r/|
c d3rd>r’dt'wdw

-]
¥
P(t) = (P(w,t)dw.
0
Hence it may be inferred that
c‘f!?r (r,0r (1) - C—lzj(r,t) (¢ ooswt- )

PGwt) =- =
p

. W /
sn—|r - r |

c drd’r/dt’
-]

P(t) =i‘jl|W_J|[_- V—V(‘)gr(r,t)r(r’,t’) - ij(r,t)- j(r ’,t’)gcosw(t - t)

o 1 p B c? ¢
sn iV|r -] Iu (3.5)
—C drdrdt'y
-] :|:
b

The former expression P(U,t) represents the power radiated at the time t in a unit

angular frequency range about w.
Thus far, we have dealt with the radiation of an arbitrary charge-current

distribution. For a point electron of charge e, located at the variable position R(t),

1) =ed[r - R(t
jr(sr,t)): evd[[rr . R((t))]]’ (36)

where v(t) = dR(t)/dt. Substituting Eg. (3.6) into Eq. (3.5) gives
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P(t) = gjvx} 3 Wid[r SRl - ReH- v - vl - Ryl - R(t’)EE
p c?
sn V—V|r -] :J
COSWU( - t’)|c—|d3rd rlot'y
rr i
b
Our various formulae can now be simplified by performing the spatial integrations.
Hence
) sn YRt - R(t))
P(t) = - 01 Ojt’ ew L vy vt )]ucosw(t _t)—C
0 o & o R(t)- R(t")

By replacing t’ - t = t, the above integral reduces to

. v s ; snZ|R(t) - R(t +1)
P(t) =- cpiw it =& +1)|dcoswt ) —C
o ¥ p B ¢ ¢! |R() - R(t +1)|

The electron is moving with constant speed in a circular path. Since the motion is

periodic, the spectrum will consist of harmonics of the rotational angular frequency
wy =V/R. The position vector R(t) isgiven by R(t) = (Rcoswst, Rsinwet, 0) thus

v(t) - v(t+t)=v?coswt ,

and
. wt
IR(t +t) - R(t) = 2Rlsin o1
Hence one obtains
o]
an—Z%sin Wt |
€ cosw.t U &
P(t)° P=- ijvgjtew V" cosv, Ucosw(t ) c 2 2
p 6 C2 g Zﬁsnwot
2
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. BRwv|. wit|9
. sné— sn ;
YooY ewllcoswit U c 2 g
P = cpw (it é % - Icosw(t :
Oj Oj & 2 : ) Wit
0 ¥ mg c H §n —0
2

Upon defining variables of integrations: x = wst and z= wwg one obtains

dx =w,dt, dz:dlv.
Wo

Thus Eq. (3.7) becomes

wa : xQ
g sn={
¥ é u ow, 2l
P= ¢y, dz dx e’'wv? COSX 1ucos ]
0 ¥W 2RE 2 B w gn X
2
@l 2
. Sn¢=—|gn 2|~
¥ wé2 U =
= otz e EWEY OSX _pfioep €c | 2o
o v 2oRE c? H gn >
2

which is the Schwinger power integral formula.

3.2 Derivation of the Explicit Expression for <N>

The mean number of photons emitted per revolution is

P(vv) dw
hw

Wo

Thus the expression for <N> is

Copyright 2000 Suranaree University of Technology

(3.7)

38



39

2 )
sin92bzs'n—:
(N): 2pc Oj cosx-l] < 20
hw,co ¥ 2;R an —
2
58 x 0
s'nészs’n—:
_e C izx 2 _ Zﬂ
(N)——szga [b COS X 1]—. < ,
hvco  -¥ an —
2
6
sn(?2bzsm5
(N)-—szdjxe *(b? cosx- 1]—)(2” (39)
: sn =
2

2
where a =< is the fine structure constant. Eqg. (3.8) may be rewritten as

hic
& 50
- sn92bzsn—:
(N)=agyz c‘)jxe“zx[bzcosx- 1]—)(2'5. (3.9)
o ¥ bsan—
2

Since the integrand in Eqg. (3.9) multiplying the exponential factor exp(-izx) is an even
function of x, only the real part of the integral in Eg. (3.9) is non-vanishing as one is
integrating over the symmetrical region: -¥ <0< ¥. It iseasly verified that for b® 0,
the integrand in Eq. (3.9) goes over to €72z Upon using in the process the

elementary integral

¥

¥
¥z Ope *dx =0,
0 -¥

we readily infer that <N>® 0 as b® 0 as it should. This latter vanishing property of

<N> may be taken explicitly into account by rewriting Eq. (3.9) as
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i & U

x0
T Sn&2lkesn —= T
(N>—a¥‘ z¥‘ xe“”b‘ r:[cosx_8 20 2 écos@er sn i (3.10)
Oz gxe ™ r i — P —_ ]uy
0 -¥ 0 : an — b @ 29 H
f 2 b
In order to evaluate Eq. (3.10), we first integrate over z then over r. To this

end we note that

x 0
sn92bzsn—‘ . )
¥ - ¥ 2izb sin— -2id sin—
~p | COSX
(fize ™ cosx 20_ OJI ze (e Z-e 2),
. X
0 an — an—
2 2
¥ ' 2izo sinX - 2id sinX € - ix+2ibsind) 2(-ix- 2ib sinXy U
(Fize (e 2-e 2)——Od ae 2 -je 2 U,
From the table of integrations (Appendix B ):
¥ .
- icpxe®™ = ——,
?j a+ie
where e® +0. Thus
¥ iz(- x+2b sinY) iz(- x- 2b sinX) 1 1
Cyiz(ie 2 - ie 2)=- — + —,
0 X0 XO
9 x+2bdn="+ie Q— X+2bdn="+ie
28 & 25
¥ @ iz x+2psind iz(- x- 2b sinX) U 1 1
(‘jizge 2 -je 2 U=- +
H -x+b+ie - x+b+ie
1 1

(-x+ig-b (-x+ie)+b
- X+ie+tb+x-ie)+b

(-x+ie)® - b?
2b

(- x+ig? - b?
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¥ @ iz-x+2bsindy iz(- x- 2bsin2) U 2b 2D
c‘plzae 2 -je 2 U= =- ,
o B H x*-b*> b*-x°
where b = 2bsin(x/2), thus one obtains
bcosx*. . .., 2dsn®  -2ipsind bb cos x
—ngze (e 2-e 2) =— (3.12)
29n—= o (b% - x*)sn=
2 2
And for the second term
¥ _ x 2 _ i2zr sint -i2z sind
(fize ™ 2zcog(2zr 9n —) =— cylze “z(e 2+e 2)
0 2 20
¥ é -iz(- 2=z sin§+x) -iz(2zr sin£+x) l]
= (pdzée 2 +e 2.u
o 8 H
This equation can be integrated by parts. Let
iz(-2r sins+x) -iz(2r sina+x)
u=z dv, = dze 2, dv, =dze 2
.o-iz(x-2r sini) . -iz(x+2r sini)
ie 2 ie 2
du=dz, v, = , v, =
. X . X
X- 2r 9n — X+ 2r 9n —
2 2
then
é § ¥ § u
, N ~ i _2 . i _2 . ~ 7
¥ e -iz(-2zr sin£+x) -iz(2z siner) u ? 202 Sm;) ¥ . 202 st) l:I
N A 5 ,  o_6ize ., ie U
Odzéee +e U=g - gjz—x(J
o & H éx-2rsnZ| o x-2rs€nZu
& 2o 2H
e ¥ u
€ -iz(x+2r sind) y -iz(x+2r sind) U
gize 2 <, ie 20
+ - -
€ . X oz . xU
éx+2r 9an— 0 XxX+2rd9n—u
g 2 1o 24
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|z(x 2r sm—) -iz(x+2r sini)
e -iz(-2zr sm—+x) -iz(2z sm—+x) U ¥ 2 ¥ ie 2

Z% 2 +e 2 U—- Z -ofz———.
oZOI 5tz vl oy —
H o x-2rinl o x+2rsnZ
2 2

From the table of integrations (Appendix B):

¥
iCpixe ™ =
0

a-ie’

where e® +0. Thus

¥ é -iz(-27 sin£+x) -iz(2zr sini+x) l:l 1 1 1 1
Qydzée : ote 2 = - ’

o 8 H x-cx-c-ie x+cx+c-ie

¥ e -iz(-2zr sin£+x) -iz(2z siner) u + +C- i + _ o~
(‘)zdzée . te 2 (= (Xx+c)(x+c-ie)+(x-c)(x- c- ie)
o & H (x2 - a )[(x |e)2 a’]

x +2XC- ieX+C?% - i+ X° - 2xz- iex+c? +iec

(X*-c¢ )[(x- ie)? - c]

2x% +2¢? - 2iex

X? - cz)[(x- ie)? - 02]

2x% + 2¢?

¥
Cyize 2z cos(2zr sin g) =- raraa (3.12)
0

where ¢ = 2rsin(x/2). Substituting Egs. (3.11), and (3.12) into Eq. (3.10), the latter

becomes

(N) :a¥(‘ﬂxF(x),

(3.13)
where
- 2
1 € bbcosx 2x +2¢2 240
F(=—¢re . - S
0 g(bZ_XZ)s-n_ (X ‘C) X a
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é u
é 2 g ° X“+4r°gan‘—
F(x):%: bb” cosx -@gﬁz(‘ﬂr 2_, (3.14)
g(bZ- x’)gn= X g o (¢-4rtsn )2
Considering the integral term
b x2+4rzs'n2§ N b 2
~Ir _Oj —+djr—er
0 (x2-4r23'n2§)2 (-er®)’ o7 (et
2
where e = 4sir?(x/2). From the table of integration
X . 1 naé)+ao
o7 - %)~ 2(6°- X*) 4b &b- ag
and
: 1 dx = a naé)+ao
o7 %7 " 207 - %)) a0’ éb- ap
Thus
b 2 2 b
R X xXZ 1
(ﬁ (XZ erz)zzg r(fz_rz)z'
0 0
:\ﬂr X _f?é b 1 & +bdl
P er?)? T e @2f2(f2-x%)  4f? gf-bm

:‘)jr X __ b 1 a@f+bd
(xX*-er?)? 2e(f?-x%) Acf gf-ba’

and

b 2 2

< er

Oj (X _er. _Oj (.I:Z 2)2’

° er 2 1¢é b af + bl

g1 P 1,
O e a2 " e af &1 - b
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Sir er? b Iaef+bo
(- er2)?  2e(f2- x2) daef gf-bg

0

where f = X . And one obtains

Je
b 2 b 2 ..
\ X N er b 1 a&f+bo b
r———=+0gir = +—In =+
91 (X* - er?)? 9j (X*-er?)? 2¢(f%- x?) A4cf gf-b'g 2e(f?- x%)
L b0 |
26 &7 - b
b 2 b 2
N X < er b
Ofr ————— + ¢gr = .
) (XZ_ er.2)2 ) (XZ_ er2)2 e(fZ_ XZ)
Substituting this equation into Eq. (3.14) one obtains
¢ u
_ 1€ bb?®cosx 2bu b
F( =18 it
&b - x2)snX X g &f7-X)
e 2 9]
i U
i cog(x)Sn&="~ i
F =11 €% . H, 0w
e 0 u 2 e Ouy
b': &b®sn®e=7- x 2ggn > X & 4b29n2§(— i
i & B 2 @ Squp
i U
: ;
! , !
F(x):i}e 2b c;):((:;) = 2b+e 2b 5 L
! )
b::: ab2dn26=7 x?q X &x?- 4b2dn 26 u,
fé &o g &2 dip
i s U
[ 2b(4b251'n283(—j- x*)i
0 11 2x?b® cos(X) 2bx? &p i
=1 T p . . - N
é o _u é o .u é 0 U
bl i X*&4b® &n 28X2. X2 x2§4b25in283(_'- X2 x2e4bzsn28g(__- X u:
P8 S5 B8 &5 H 8 &0

Copyright 2000 Suranaree University of Technology



i 8b39nzg§?
1§ 2x° b cos( X g
F(¥) =—} P S((-j) o6 269; W'
b: X2(:94b2 sn Zaj_ ng NG §4b2 S-nzgs(—i' x* l;':
P8 &20 H 8 &5

i o U
:
I

i o) U
i 4sn 286(—: x* cog(x) 1
F()=2b?| €20 I,
. e ] a(wl.
&* - 4b%dn* ="
8 &2 dp

—— —

With a change of variable x/2® x thus one obtains

1 dn?(x) u
| ———=- cos(2x) |
F(2x)=bz1f X2 i f
: € b’ snz(x)l}}/'
j 2 ———0
t 8 x> Hp

Substituting this equation into Eq. (3.13), we finally obtain the remarkably simple

expression:
i 2 u
, i il (X) cos(2x) |
2
(N):a(‘)'deb2¥ X Y
¥ i ,S b?dn?(x)Yi
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: ¢INX= cos(2x)
(N) = 2ab? gyix{ =X 3. (3.15)
o 1 € ,&n x 9 Uy
i ngl b?¢—= : Uy
P& &xaff
The latter may be rewritten as
(N)=af (b),
where
i L2 U
. : o) by
iR
o I
f (b) =2b? gjx X —y. (3.16)
o T ? Rin O Uy
i ngl b?¢——= : HI
P& &x o)

There is no question of the existence of the latter integral for al 0 £ b <1. We can
calculate this integral by using, for example, elementary numerical techniques in the

MapleV Program. The table below provides some numerical values of f(b):

Table3.1 Some numerical values of the integral in Eq. (3.16)

b 0.2 0.4 0.6 0.8 0.9 0.99

f(b) 0.1731 0.7694 2.1351 5.7951 11.4003 | 54.7651
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Chapter 1V

Explicit Representative Expressionsfor <N>in Arbitrary

Energy Regimesfor the Charged Particle

4.1 Explicit Expresson in the High-Energy Regime for the
Charged Particle-Significant Improvement of the Well Known

Formula

We are now interested in the case of a high-energy charged particle, b® 1. To

carry out such a study starting from Eqg. (3.16), we consider first the Laurent series of

. .2
a@nxQ and 8@&9 - cos(2x). Egs. (C.3), and (C.4) in Appendix C provide the
e X g e X g

: .2
Taylor series of 8§n—X9 and 3@9 - cos(2X) :
e X g e X g

X6

) X X
= =1 —+—- +.
3 45 315

in on _Bx2 28" 3x6
g 3 45 35

. .2
F)=81X0 1. X —q4px?,
e X g 3
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: .2
g(x) :gﬁg - cos(2x) » X ax’
e X g 3

where b =-1/3 and a= 5/3. We first rewrite the exact Eq. (3.15) as

i
v B v O
P Enx2 cos(2) + . i}
iyl & x B A S -5 TCO N
f(b) =207 gt = =201 y=26(b),
" el p@ndy o il o 1ol
P& exon
where
L i
[1 b f(x)]b

¥

D> D

1 2 o 2,2
ol bg(x) T dx ab“x
I 2 ® 2 22 (
o fx?fi- b f(x)]b ox? §1- b? - bx?b?)Y. ..,

with the latter evaluated at b? = 1 this equation can be integrated out explicitly thus

G(b) = ¥dx; b2g(x) 5 Bd_xg abx? 3 Bd_xg abx? ﬂ
0 %2 1[1 b2 (9] °x* &1- b?- bb?)l °x &d- b? - bx?b?)
2 0 vé u v é 2 u
G(b) = dXI b°g(x) |,+\A abax i c‘)d—xé alx 0 (4.1)
0 x? 1[1 b? f(x)]b “ox?b?)H o x? §1- b? - bx?b?)H
Consider the second term of thisintegral, let
ab u
f,(b) =2 :
(b) = dee(l b? - b’b?)H
and we have
& ab u_5% badx 5% dx
U_ 5 05—
o g(l- b2_bx2b2)H 39(1- b? - bx*b?) bo(x +i_3)
b2
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Therefore from the well know integral (Eqg. (B.9)), in Appendix B we have,

5% dx 5 p

___ 9
‘, - - .
b 0(X2 +b_32_ 3) 2b iz_ 3 2’\/51’1' b2
b

Thus

f(b)=—2 4.2)

J3f1-b?
and Eq. (4.1) becomes

1e 2 u é 2 Uil
G(b) = dx b“g(x) 0. abx A

0 X2 18[1 bt (9] & b2 - bxb)ub/b 2«/’1/1 b?

Now that we have our exact expression, the next step is to consider only the

D> (D>

4.3

first integra in Eq. (4.3). Let

T éxn 6 ud
(b X2 ool
YN N b e (4.4)
: 21 bzg%”xgzg f 261 b2 Xz)g. |
T - — U ol A
: DU
{ & 8 X QH b e 3 H

Setting first b = 1, the first and second terms above are equal, respectively, to

g’én_x; - C0S(2x)
g ,X 4 >— and 5. Therefore, we will add and subtract these two terms to
E Ex oY
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Eq. (4.4). Accordingly, we can rewrite Eq. (4.4) as

S i x§ u r
?bz?a%m—XT - cog(2x)uu &in x9 ,
5 5 gu —=7 - co(2Y)
h(x) =& & x o Gy _ 5bx’ Ex 5
e ; .2 L:J e 2 U é ) 20
g @- bzaasn_xg) H 3ié|.- b2(1_ X_)g el_ é‘%n XQ l;
e 28 xo g € 38 ¢ ¢ 50 |
0
éa%ﬂ: - c0s(2x)
& X0 .55
él.- g%n XQ l;l
€ & x ol
! éaéin X0 l:J : ) i
o g PIES T o290 FES - cos(2) 2 i
G(b)_\dxl, ee g H e Xog ] 5bx . i
_9)(_2-:- ZaSn x('jz asin sz & ) 0 5|y
i @-b¢—=) (1-¢—%) 3gl- b*(L- ?)Q |
A o 2 <
n X3 O
¥ g 58@—9 - cos(2x) U
T S B T - R s
g qo@nxg) 2B b
é e X g g
Let
€asin X9 u
¢ &——= -cos(2x)
_z‘dXée X g -50
o x* € asin X a
*Te - &) U
e e X g g

This integral can be evaluated numerically. Using, for example, the elementary
MapleV Program, yields:
ap = -9.5580. (4.6)

Eq. (4.4) becomes
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i
'r
o blgg g s
0 %2 |[1 bz)f(x)] [1- f(9)] 3éL b(l-—)u
T g 38 b
477899+ — P

24/3\1- b?

Consider the following combination:

G(b) =

b9 g() _b*g()- b*gf (- g +b*gr)f(x)
- b2 (0] [1- f(0) - b?F (- f(x)]

D900 g __ (b*-Dg(x)
- b2 1] [1- f(0] [2- b2 FOOJL- £ ()]

(4.8)

The remaining part of the integrand in EQ. (4.7) may be rewritten as:

22

b -5bx
ﬂ

31- b)+b ’

15%? b2 +

- 5bx?

2

X
391 b2(1- ?)

O C'

2 2
b 3 Bbx?
g (l+ b)

3(1- b)+b2x2 (1+b)’

15?[ b2 +

2 bz 2 2
- b7+ 22 B +15b§[ b

ﬂ
3(1- b?)1+b)+b?x¢(1L+ b)

b?x? 9 52?2
o

_15- 15b° +5b?x’ - 5bx? +15b - 15b° +5b°x? - 5b2x
31- b?)(L+b)+ b2x2(L+ b)

_15-15b°- 5bx* +15b - 15b° +5b°X’
3(1- b?)(1+ b) + b2x?(1+ b)
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- 5bx? 45 150 b?) +15b(1- b?)- 5x*(@1- b?)
2 5 - _ h2 2,2
321_ b2(1- X_)l:I 3(1- b*)(1+b)+b"x°(1+b)
é 3'4

-5b¢ Lo - 51- b)[b - 31- b)

é x2 U 3(1- b’)(1+b)+b’x*(1+b)’ 49
38l- b?(1- =)
é 3’0

Thus, from Egs. (4.8) and (4.9) the Eq. (4.7) becomes

¥ gl 2 et i
G(b):(‘)d_X} (b"-Dg(x)  5A- bI)[bx"-31-b) T

y
o x?f [1- bzf(X)l[Fl)- f(¥] 31- b*)L+b)+b*x*AL+Db)p. (4.10)

477899+ X
24/3\/1- b?

We add and subtract

¥ dx 9 X2

dl- bz)_z . 2 N

: X’ 10b é3(1- b*) 0
6= TXQ
é b U

to Eq. (4.10), Thus Eq. (4.10) becomes

¥ i 2 ]
G(b) = - (1- bz)(\)d_xll g(x) + H bx 31- b)]
o x? flL- b2 F(0JL- f(¥] 3~ b?)(1+b) +b*¢ (L+Db)
i
¢
2 | ¥ 2
-9 X "-dl-b2)%9 X +i+ﬁ_
106 & by LU x210b €31- b?) L9 2 2
& - )+ng.|. e:3( - )+ng
e 2 Uy e 2 u
é b u e b a
(4.11)

The second integral may be explicitly integrated out as before. Let

Ydx 9 NG
f,(b)=2(1- b?)¢ ,
(B) =2 )9x_210b é31- b?) U
e b ¥

Copyright 2000 Suranaree University of Technology



and
*dx 9 NG 9 * dx
@- b*) o —(1- b?) o) .
X G2 100 é3(1- b’ ) 10b “é3(1- b*) = ,u
e.. b X LJ e: b2 +X l,:\l
e u e u

In the integral formula (B.9), let

_ [32- b%)
Thus, we have
2 0
Y d 9 (g; =
1- b?) 9 oy X -=(1- b*)—¢ P .
10b ;°€3(1- b?*)  _,u 10b¢_ [3(1- b?) «
& =2 X €2 —
é G g\ b 5
And
f.(b) = 4/1- bz&l/——gp. (4.13)
Therefore EQ. (4.11) becomes
2 - -
G(b)=- (1- b? )‘dXI g(x) N Hbx® - 3(1- b)]

0 x2 1[1 b2f(Y1- F()] 31- b))+ b)+b*x*(L+b)
u
|

9 X W&Ep a0+

10b 20 2 2

é3(1 b’ )+x
8 b* ub

and from Eg. (3.16) we conclude that

f(b) =fo(b) + & +f1(b) + &),

thisis an exact equation, where
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fo(b):i’
J3,/1- b?

ap = -9.5580,

f,(b)=41- b? &[—g’p,

and

o(b) =~ 21+ B) 18, (% D)+ 5, (x,D) + g(x b)]. (4.14)
with

E‘a@nTxg - cos(2x)u

9,(x,b) =

asn
-

5bx? - 31- b)]
3(1- b?)(1+b)+b*x*1+b)’

9.(xb)=

9 NG
10b é3(1- b?) , ,U

e.. b2 X Q
e u

gs(X7 b) =-

For b = 1, the integrand in &b) reducesto

g%ﬂ;-cos(Zx)

& X o 15 .8
, 2 !
¢ mo,oU X 5
§. GANX2 g
€ &x ol

and form Eg. (C.5), in Appendix C, we have
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0
E%E: - cos(22)
’ 15 8
2P T4 2=0(2).
€ in 20 U zZ 5
& g%m z: i
S & z fald
Thus
I i
: Qﬂ: - cog(2x) :
¥ dx '[8 X @ 15  8i
Oci & T
0 X c in xO Y X 5
i . gén x2 4 i
T S !
{ é g X 9 bb:l
exists. Also
e(b) = O(/1- b?):b® 1. (4.15)

Because of the (1 - b?) factor multiplying the integral in (4.14), one may naively

expect that g(b) vanishes like O(1 - b?) for b ® 1. The careful analysis given above,
however, shows that it vanishes like O(y/1- b?) as indicated. That is, at high

energies we may write

Ny@—2_+aa. (4.16)

V3(1- b?)
The asymptotic constant ap is overwhelmingly large in magnitude. It is the important

contribution that survivesin the limit b ® 1 beyond the ]/ 1- b® term. The relative

errorsin EqQ. (4.16) are quite satisfactory some of which are given in the table below.
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Table 4.1 Reative errors of the mean number of photons in the high-energy regime

according to our representation in Eq. (4.16)

b 0.8 0.9 0.99

Relative error 4.11% 1.34% 0.063%

These relative errors are to be compared with the well-known relative errors of the
well-known formula printed repeatedly in the literature. These corresponding relative

errors are given in the table below.

Table4.2 Redative errors of the well known formula

b 0.8 0.9 0.99

Relative error 160% (1) 82% (1) 17%

Our novel high-energy expression is a definite replacement to the well-known

formula as it provides a significant improvement to the latter.

4.2 Explicit Expression in the Low and I ntermediate Regimes for

the Charged Particle

In the case of low and intermediate energies of the charged particle, the particle
velocity is relatively small compared to that of light. From Eq. (3.17) when b << 1 we

can be expanded
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1 1
0 =1+ Z2+2°+ 2%+

1. bzg@nxo 1-z

e X g

wherez® b (sinx/x). Therefore from Eqg. (3.16) we have

2K

C

. é
f (b) =2b? P ;;.a%ﬂ; - cos(2%) 08 2bz 3N X
e

0x2' X O =

i
i
¥ 5
+2b” — S ;;.a%_n X; - cos(ZX)g ! —- a
2 S
& x o 0 p. peeanX
t & x

From Eqg. (4.17) we may write
f(b) = g(b) + € (b)

thisis an exact equation, where

2 k

o(b) =2b2 5 ee%ﬂ; - 052998 ebza%”—

0)(2- X @ ﬂkoe X

(4.18)

Q- IO
OO

Thisintegra is readily calculated numerically and gives
g(b) = 4.1888b” + 3.351b" + 2.8125b° + 2.4678K° + 2.2241b™°

and

&(b) =2b’ od—?

Similarly, Eqg. (4.19) is caculated numerically, and leads to the following

table:
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Table 4.3 Errors in the mean number of photons for low and intermediate energy

regimes for the charged particle according to Eq. (4.19)

b

0.2

04

0.6

0.7

0.75

&b)

0.1409

0.2547

0.4707

-0.1382

-0.1936

The relative errors in Eq. (4.16) (calculated by MapleV Program) are more than

satisfactory as shown below in the following table:

Table 4.4 Relative errors of mean number of photons for low and intermediate energy

regimes for the charged particle according to Eg. (4.19)

b

0.2

0.4

0.6

0.7

0.75

Relative error

0.00019

0.005%

0.31%

0.5%

3.1%
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Chapter V

Conclusion

We derived an exact and explicit and remarkably simple expression for the
mean number <N> of photons emitted per revolution in synchrotron radiation. The

latter is given by the elementary integra

N
:C:

(DOvO[ﬁg
&
X

Q- o

x

—— S —

()26bcﬁx

—_——— —
x
N
DDy D
1
oy

It was shown that the familiar high-energy expression 5pa/4/3(1- b?) printed
repeatedly in the literature (e.g., Review of Particle Physics (the “Particle Physicist’'s
Handbook”), 1996, p.75, 1998, p.79), is found to be inaccurate and only truly
asymptotic as it provides relative errors of 160%, 82%, and 17% for b = 0.8, 0.9, and

0.99, respectively.
Our explicit expression provides a much-improved high-energy expression for

<N>, over the familiar one, and is given by:

(N) @& +aa, (high-energy regime)

Ja1- b?)

where ag = -9.5580 and is overwhelmingly large in magnitude. It is the important
contribution that survivesin the limit b ® 1 beyond the ]/ J1- b? term. The relative

errors of the above representation are only 4.11% (!) for b = 0.8, 1.34% for b = 0.9,
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and 0.063% for b = 0.99 providing a much significant improvement over the familiar
expression.

For completeness, we have also provided a representation for <N> in low and
intermediate energy regimes given by
<N> @a{4.18880° + 3.351b* + 2.8125b° + 2.4678b° + 2.2241b'°}
The relative errors of the above are satisfactory with 0.19 ~ 10 %, 0.31%, and 3.1%
forb=0.2, 0.4, and 0.7.

This thesis concludes an important chapter in the theory of synchrotron

radiation.
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Appendix A

Vector Analysis Formulae

We collect here, for easy reference, some (e.g., Spiegel, 1990) vector
identities, vector differentiations and integration formulae which have been useful in

writing up the thesis.

A.1 Vector algebra

(A" B)- C=(A- C)B—(A- B)C (A.2)
(A" B)- (C"D)=(A- C)B- D)-(A- D)B- C) (A2
A" B° CD=[A" B)- DIC-[(A" B)- C|D (A.3)
A" [B” (C° D)]=(B-D)A" C)+(B- C)YA" D) (A.4)

A.2 Vector differential operators

gradyj)=y gradj +j grady (A5
grad(A- B)=A" curlB+B” curlA+(A- N)B+(B- N)A (A.6)
div(y A)=y div A+A grady (A7)
dv(A” B)=B- curlA-A - curl B (A.8)
curl yA)=y curlA-A”~ grady (A.9)
curl (A” B)=AdivB-BdivA+(B- N)A-(A- N)B (A.10)
curl curl A =grad divA - N?A (A.11)
curlgradj =0 (A.12)

Copyright 2000 Suranaree University of Technology



67

divcurl A=0 (A.13)

A.3 Integral Theorems
The divergence theorem (or Gauss' Theorem) states that
OlivAdV =gA - nda (A.14)
v s
where the closed surface S bounds the volume V; n is the unit vector in the direction

of the outward normal.

Stokes' Theorem states that

GourlA - nda=gA - dl (A.15)
S |

where the closed line | bounds the open surface S; the positive sense of traversing | is

such that the right-hand screw direction is parallel to n.
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Appendix B

Useful Integral formulae

The following integrals have been of utmost importance leading to the explicit

expression for <N>:

Of (0d(x - y)d3x = f(y), (B.1)

f(t)dd(t Da=-t'q, a<T<b (B.2)
1%,

d(t) = — og™dw (B.3)
&

¥ ¥ )

Pz Oze “dx =0 (B.4)

0 ¥-¥ | 1

- |9jxe :a+ie (B.5)

i¥‘ xe ' = 1 (B.6)

EPI Ca-ie '

X . a 1 agb+ap

N TS T B9

Oy X = o 2 a0 ©.8)

So?- x?) 2207 - X0 a7 &b- ap

¥

. dx _ p(an- 3! B9

K var) 227 (2n- 21
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Appendix C

L aurent Expansions of Some Singular Functions

In this appendix, we provide a very brief account of Laurent expansions which
has applications to the function for <N> in the high-energy regime. One frequently
encounters functions that are analytic in an annular region, say, of inner radius r and

outer radius R, as shown in Fig. C.1.

P x

Figure C-1. The complex z-plane.

For a function that fails to be analytic (singular) at a point 3, we cannot develop a
Taylor expansion at that point. Then Taylor’s formula no longer applies, and we need
a new type of series, known as a Laurent series, consisting of positive and negative
integer powers of z— z and being convergent in some annulus (bounded by two
circles with center z) in which f(2) is analytic. f(zZ) may have singular points not only

outside the large circle (as for a Taylor series) but also inside the smaller circle.
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C.1 TheLaurent Theorem
If f(2) is analytic on two concentric circles C; and C;, with center zy and in the

annulus between them, then f(z2) can be represented by the Laurent series

¥
[o]

3 b,
f@=aa - z)"+a ———=

n=0 n:l(z' Zo)n ’
2 bl b2
f(2) =a, +a,(z- z,) +a,(z- )" +...+ + > (C.1)
z-z, (z-z,)
The coefficients of this Laurent series are given by the integrals
_ 1. f@)

" 26 8- )

[ cl(t- z) (C.2)

b, :%?t- zo)”'lf(t)dt.

¥
In the Laurent expansion of a function f(z), the first part é_ a,(z-z)" is
n=0

called the analytic part (regular part) which is similar to the Taylor’'s series of the

¥
function and the remainder é_ (b—”)n is known as the principa part. The second
n=1 (Z~- Zo

summation is of chief interest in our work, since it contains the singularity.
But the Laurent series coefficients need not come out from evaluation of
contour integrals (which may be very intractable). Other techniques such as ordinary

series expansions may provide the coefficients.

C.2 Some Examples of Laurent Expansions

Laurent series about the indicated singularity for some important functions are
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worked out:

z

e

1 oz=1.
1) -1
Let Z-1=u.
Then
e1+u eu
f(2) = = :eu—z,
e é u? ud u
f(2) =—ad+u+—+—+..,
@ uzgl 23 Y

f=—0t + © e 820 dz )",
(z-D? (z-1) 2 3 4

Herez=1 isapole of order 2

1
®) Zae b 0<|q <[4 <[n|-

e ——
(z- a)(z- b)
1 ¢1 1
f(2) = + T
(@ a-b8&-a b-zH{
€ y
é a
f@=—re——+—=
a-bé g ao Z60
aZCl- —= bcl- —=
828 Zg gi b ot}
7 1~
a Lt
1 et 29 -Eg d
fg=—-_& 20 & 280
-be z b u
€ u
e b

Copyright 2000 Suranaree University of Technology



N

A 3 2 3
e z z° 7
é]_+g+a_+a_+ 1+—+—+—
1 2z 22 7 b b> b
f(2) = é +
a-bea z b
e
1 e 3 32 a 11 z # 7
f@)=——a.+tF+5t+t5+—-+—+++—+
a-bg 2z z2 z2 z b b® b b

Hence f(2) had an essentia singularity at z=0

(3) 9 z=0.

form
22 7
an(z2)=z- —+—- ...,
n( 2) R
16 22 22 7 O
f(2) =—az- - =0
z7g 3 38 7y
2 4 2 4 6 6 6
f(2) = 1_z_ zZ .z 7z z Z Z

6 36 6 120 120 5040 5040 720 720

22 27* z6
3 45 135
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Thus about the points z = 0 the Laurent series contains no terms of the

principa part. Hence z= 0 isaremoval singularity of f(2).

(4 ¢— agan - cos(2z); z=0.
rzs

f()—a§”z°

+ - cog(22),
Z o

from
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_ 2 g4
COS(Z)—].'E'FZ'E"' ,

4 6
cos(22) =1- 222+2; |4z +...

45

N

asinzy 5z 28z 37°
¢—~ - cog(22) = - + -
e Z g (22) 3 45 35

(C.4)
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Thus about the points z = 0 the Laurent series has no principa part. That is,

z=0isaremoval singularity of f(z).

. 2
gaﬂg - cos(22)
) €z g_ > ; z=0.
a8n zo
@-c—=)?
e Z g
T2 - coy22)
f@=22
asin z§
- =)’
e Z g

and from Egs. (C.3) and (C.4) we know the series expressions of

géﬂg - c09(22) :
e Z g
L asnze 28 22' 2%
$7 5 3 a5 13
¢ ?35'}1'nzfjzuz %2 2z
g_- Q—:U =C—__
€ &2 58 &3 45 135

N
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Thus,
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¢——=+ - cog(22)
15 8
€z @ == 2402 . (C.5)
, . .2\2 ZZ 5
€ asinzo U
d-c—= 40
g € Z g9y

The Laurent series differs from the Taylor series by the obvious feature of
negative powers of (z - z). For this reason the Laurent series will aways diverge at

least at z = 7y and perhaps as far out to some distance.

Copyright 2000 Suranaree University of Technology



Biography

Ngarmjit Jearnkul prasert was born on 26™ August 1977 in Bangkok. She went
to study at St. Francissevia Convent, where she graduated with a High School
Diploma in 1993. After that she went to study in the Department of Physics, Faculty
of Science, at Mahidol University, where she graduated with a B.Sc degree Physics in
1998. In 1998, she decided to study for a Master’s degree in the School of Physics,

Institute of Science, Suranaree University of Technology.

Copyright 2000 Suranaree University of Technology



	Copyright: 


