จินคาวัลย์ วิบูลย์อุทัย : ผลการขับยั้งของการสร้างในตริกออกไซค์ต่อการอักเสบและ อะพอพโตซีสในแมคโครฟาจ RAW 264.7 โดยสารสกัดจากเปลือกหุ้มเมล็ดมะขาม (INHIBITORY EFFECT OF NITRIC OXIDE PRODUCTION ON INFLAMMATION AND APOPTOSIS IN MACROPHAGE RAW 264.7 BY EXTRACT FROM SEED COAT OF *TAMARINDUS INDICA* L.) อาจารย์ที่ปรึกษา : ผู้ช่วยศาสตราจารย์ คร. เบญจมาศ จิตรสมบูรณ์, 143 หน้า.

การตรวจสอบฤทธิ์ทางชีวภาพของสารสกัดจากเปลือกหุ้มเมล็คมะขามประเมินจาก ้ความสามารถในการต้านอนุมูลอิสระ ต้านการอักเสบ และการยับยั้งการตายของเซลล์แบบอะพอพ-์ โตซีส ภายหลังการสกัดเปลือกหุ้มเมล็คมะขามด้วย 50% อะซิโตนได้ปริมาณสารสกัดร้อยละ 45.8 ของน้ำหนักแห้ง โคยมีสารประกอบฟีนอลิกเทียบเท่าน้ำหนักกรคแกลิค 178±3.8 มิลลิกรัมต่อกรัม และมีคณสมบัติซึ่งแปรผันตามปริมาณสารในการต้านอนุมูลอิสระและการรีดักชั่นสุงกว่าวิตามินซึ และสารสกัดจากเมล็ดองุ่น เมื่อประเมินโดยวิธีทดสอบ DPPH และ FRAP สารสกัดยับยั้งการผลิต ในตริกออกไซด์ได้สูงถึงร้อยละ 60 ในเซลล์ RAW 264.7 เมื่อถูกกระตุ้นด้วย LPS และ IFN-γ ที่ ความเข้มข้น 10 ใมโครกรัมต่อมิลลิลิตรของสารสกัด ซึ่งเป็นระดับสารที่ไม่ก่อให้เกิดพิษต่อเซลล์ นอกจากนั้นความเข้มข้นเดียวกันของสารสกัดสามารถลดระดับการแสดงออกของเอมไซม์ iNOS และ COX-2 และลดการเกิดอะพอพโตซีสของเซลล์ RAW 264.7 ที่ถูกกระตุ้นด้วยอีโทโพไซด์ได้ ร้อยละ 10 เมื่อประเมิน โดยวิชี annexin-V-PI ซึ่งผลที่ได้สอดคล้องกับการลดการแตกหักของดีเอ็น-เอที่แปรผันตามปริมาณของสารสกัด เมื่อป้อนสารสกัดที่ 400 มิลลิกรัมต่อกิโลกรัมในหนูเมาส์ ICR พบว่าสารสกัดช่วยบรรเทาความเจ็บปวดโดยลดการหดเกรึงของกล้ามเนื้อหน้าท้องที่ถูกชักนำโดย กรคอะซิติกได้ร้อยละ 44 และลดความเจ็บปวคร้อยละ 50 เมื่อทคสอบด้วยวิธีม้วนหางหนีความร้อน ดังนั้นสารสกัดจึงมีผลทั้งต่อระบบประสาทส่วนกลางและส่วนปลาย โดยรวม การศึกษาชี้ชัดว่าสาร สกัดจากเปลือกหุ้มเมล็คมะขามเป็นแหล่งสำคัญของสารต้านอนุมูลอิสระตามธรรมชาติซึ่งมี ้ประสิทธิภาพสูง ราคาถูก และมีฤทธิ์ทางเภสัชวิทยาที่ควรค่าต่อการพัฒนาให้เป็นยาธรรมชาติเพื่อ การป้องกันหรือผลิตภัณฑ์เสริมอาหารต่อไปในอนาคต

สาขาวิชาชีววิทยา	ลายมือชื่อนักศึกษา
ปีการศึกษา 2549	ลายมือชื่ออาจารย์ที่ปรึกษา
	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม
	ลายเบื้อสื่ออาจารย์ที่งไร้คนาร่าง

JINDAWAN WIBULOUTAI : INHIBITORY EFFECT OF NITRIC OXIDE PRODUCTION ON INFLAMMATION AND APOPTOSIS IN MACROPHAGE RAW 264.7 BY EXTRACT FROM SEED COAT OF *TAMARINDUS INDICA* L. THESIS ADVISOR : ASST. PROF. BENJAMART CHITSOMBOON, Ph.D. 143 PP.

TAMARIND/NITRIC OXIDE/INDUCIBLE NITRIC OXIDE SYNTHASE/ CYCLOOXYGENASE-2/ANTI-APOPTOSIS/ ANTI-INFLAMMATION

Effects of seed coat extract of *Tamaridus indica* Linn. (TAM) on the biological activities, including antioxidant capacity, anti-inflammatory, and anti-apoptotic activities were investigated. After 50% acetone extraction, the yield of TAM extract was 45.8% and the total phenolic content was 178 ± 3.8 mg/g gallic acid equivalent. TAM extract showed a higher dose dependent radical scavenging activity and power of reduction than vitamin C and grape seed extract as evaluated by the DPPH and FRAP assays. TAM extract induced a high suppression ($\approx 60\%$) of NO production by LPS plus IFN- γ activated RAW 264.7 cells at 10 µg/ml, the concentration that had no cytotoxicity. In addition, TAM at the same concentration induced a dose-dependent inhibition of iNOS and COX-2 protein expressions. TAM at this concentration also reduced the etoposide-induced apoptosis of RAW 264.7 cells by 10% as evaluated by the annexin V-PI binding. The decreased apoptotic result was also confirmed by a dose-dependent reduction of DNA fragmentation. TAM exerts its pain-relieving effect in a dose-dependent manner by anti-nociceptive activity in ICR mice. The maximal inhibition of the nociceptive response assessed by

acetic acid-induced writhing test was 44% at 400 mg/kg, p.o., whereas the same dose significantly increased the analgesic activity by 50% in the tail flick response to thermal-nociceptive stimuli. Therefore, the TAM extract possesses both peripheral and central analgesic activities in mice. Overall, the present data suggest that TAM extract has a high and real potential as a safe, effective, low-cost source of natural antioxidants with many pharmaceutical properties and is worthwhile to be developed as natural chemopreventive products or nutraceuticals in the future.

School of Biology	Student's Signature
Academic Year 2006	Advisor's Signature
	Co-advisor's Signature
	Co-advisor's Signature