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This thesis is devoted to developing an algorithm for applying group anal-

ysis to functional differential equations. The definitions and theorems concerning

group analysis for delay differential equations (DDEs) and functional differential

equations (FDEs) were established in the thesis. The algorithms developed show
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B.1 The Function
∂ū (gλ(x̄))



Chapter I

Introduction

The purpose of this thesis is to develop an algorithm for applying group

analysis to functional differential equations (FDEs).

In applications, many phenomena in Mathematics, Physics, Chemistry and

Biology are modelled by FDEs. A present, most solutions of these equations are of

numerical type, with only approximate solutions obtained. Among all the meth-

ods used for finding exact solutions of differential equations, group analysis of

differential equations is one of the most powerful methods.
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into an easier form. One can use symmetry groups to determine special types of



3



Chapter II

Functional and Delay Differential Equations

Functional differential equations were first encountered in the late eigh-
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Examples of FDEs (Hale; Kolmanovskii and Myshkis, 1992) follow:

•
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Similarly to the classification of differential equations by order, we classify

FDEs according to the order of the highest derivative appearing in the equation.

Definition 2.2. The
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Definition 2.4 (DDE). Delay differential equations with one independent vari-

able, or functional differential equations of retarded type, are of the form

u′(x) = f(x, u(g1(x)), ..., u(gq
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the existence theory of solution of DDEs. They are similar, but more general, to

the existence theory for ODEs. The following definitions and theorems come from

Driver (1977).

Consider a delay differential system

u′(x) = f(x, u(g1(x)), ..., u(gq(x))). (2.3a)

By definition 2.4, we may assume that

x− r ≤ gλ(x) ≤ x for x ≥ x0, λ = 1, ..., q,

for some constant r ≥
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Definition 2.8.
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depending upon a real continuous parameter a, which lies in an open symmetric

interval S, with conditions

ϕx
i (x, u; 0) = xi, i = 1, . . . , n,

ϕu
α(x, u; 0) = uα, α = 1, . . . ,m.

(3.2)

These transformations are assumed to be sufficiently differentiable with respect to

the variables xi and uα, and to be analytic functions of the parameter a.

It is said that these transformations form a one-parameter group G if the

successive action of two transformations is equivalent to the action of another

transformation of the form (3.1), i.e.

ϕx(x̄, ū; b) = ϕx(ϕx(x, u; a), ϕu(x, u; a); b) = ϕx(x, ux; ux; ux; ux; ux; ux; ux; u



14

1. T
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The first-order differential operator (3.7) is written briefly as

X
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and ω denotes the set of transformations of the first derivatives, or ω = {ωα
i }.
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in the space [[A]]. This solution is given by formal power series, i.e.,

x̄i = xi +
∞∑

β=1

Ai
βa

β,

¯
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are determined by

ūα
,i1···is−11

ūα
,i1···is−12

...

ūα
,i1···is−1n


=



(ϕ
u
s
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of the same equation by letting

x̄ = ϕx(x, υ(x); a), (4.1)

ū = ϕu(x, υ(x); a). (4.2)

In order to write ū as a function of x̄, we first have to derive

x = ψ(x̄; a) (4.3)

from equation (4.1).

For ODEs, the
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depending on the independent variable x̄ and the parameter a is identically equal
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where gλ(x





Chapter V

Application of Group Analysis to FDEs
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The solution can be related with another solution of the same equation by

letting

x̄ = ϕx(
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The determining equations (5.5) can also be written in the form

X̌Ξ
∣∣∣
(5.1)

≡ 0.

Thus we have another representation of the determining equations for FDEs.
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We find that:

˜
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6.3 The Equation
∂u

∂t
+ u

∂u

∂x
= g(u, û)

Let us consider the equation

∂u

∂t
+ u

∂u

∂x
= g(u, û), (6.3)

where u = u(x, t), û = u(x, t− r), r > 0, and g is a function of u and û such that

∂g

∂û
6= 0 (otherwise it is not a delay differential equation.)

Let G be an admitted group of transformations

x̄ = ϕx(x, t, u; u and ˆ
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and u,1 =
∂u

∂x
(x, t), u,2 =

∂u

∂t
(x, t), û,1 =

∂u

∂x
(x, t− r), û,2 =

∂u

∂t
(x, t− r),

g,1
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Then the determining equation for equation (6.6a), which is considered in a neigh-

borhood N+
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derivative at the points x0 and x0 − r are:

u(x0) =
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where C1 and C2 are arbitrary constants and2
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Since F ′(µ) > 0, where µ > µ∗, the function F is strictly increasing where µ > µ∗

and F(µ) > 0 when µ
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The initial value problem (6.23) has a solution for any arbitrary value t0



41

respectively.

Because u and û are independent, then equations (6.25) and (6.26) imply
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Therefore
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The invariants are
u

x
and t. Then the representation of an invariant solution is

u =
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Case 7. C1 = 1, C2 6= 0, C3 6= 0 :

The group of transformations is

x̄ = (x+ C2)ea − C2, t̄ = t+ C3a, ū = uea.

The invariants are
u



Chapter VII

Conclusion
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Appendix B

Derived Equations

Let



55
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Other derivatives are

ϕx
,1(ψ(x̄; a), υ(ψ(x̄; a)); a)

∣∣∣
a=0

=

[
lim
h→0

ϕx(ψ(x̄; a) + h, υ(ψ(x̄; a)); a) − ϕx(ψ(x̄; a), υ(ψ(x̄; a)); a)

h

]
a=0

=

[
lim
h→0

ϕx(ψ(x̄; a) + h, υ(ψ(x̄; 0)); 0) − ϕx(ψ(x̄; a), υ(ψ(x̄; 0)); 0)

h

]
a=0

=

[
lim
h→0

ψ(x̄; a) + h− ψ(x̄; a)
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Similarly, one can find derivatives

ϕu
,1(ψ(x̄; a), υ(ψ(x̄; a)); a)

∣∣∣
a=0

=

[
lim
h→0

ϕu(ψ(x̄; a) + h, υ(ψ(x̄; a)); a) − ϕu(ψ(x̄; a), υ(ψ(x̄; a)); a)
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Hence

∂ψ(x̄, a)

∂a

∣∣∣∣∣
a=0

=
−ξ(x, υ(x))

1 + 0υ′(x)
= −ξ(x, υ(x)). (B.8)
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B.2 The Function
∂ū′

∂a

∣∣∣∣∣
a=0

The derivative of the transformed function ū(x̄







Appendix C

Some Material for Review and Reference

C.1 Definition of a Functional

Mapping. Let X and Y be sets and
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Partial Fréchet derivatives. Let Xi and Y be normed linear spaces and X =

X1 ⊕ · · · ⊕ Xm. Let U ⊂ X be open and F : U 7→ Y . Let x = (x1, . . . , xm) ∈ U .

Fix k ∈ {1, . . . ,m}. For z near xk in Xk, (x1, . . . , xk−1, z, xk+1, . . . , xm) lies in U .

Define fk(z) = F (x1, . . . , xk−1, z, xk+1, . . . , xm). (Thus fk(z
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An arbitrary invariant F (x) of G is given by the formula

F = Φ(ψ (x(
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