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This thesis is involved, a priori, with the very complex problem of the exact
ground-state energy of neutral atoms for Z — oo . Explicit upper and lower bounds are
derived for the exact ground-state energy of neutral atoms, involving one-body Green

functions, and which for Z — o are shown both to coincide with the ground-state

energy of the Thomas-Fermi atom. The basic idea of our strategy is to rewrite the
exact Hamiltonian of neutral atoms as one-body Hamiltonians and c-functions with
readily established properties. This analysis is then followed by a systematic study of

scaling properties of integrals involving the respective one-body Green functions.
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Chapter I

Introduction

The Thomas-Fermi atom was born over seventy years ago through the work of
Thomas (1927) and Fermji (1927, 1928) when quantum mechanics was still in its
infancy. It has captivated the hearts of physicists ever since and continues to do so
into the twenty-first century due to its extreme simplicity and remarkable success
(Dreizler and Gross, 1990: Morgan and Drake (ed), 1996). The literature on the
Thomas-Fermi atom is quite vast. The very remarkable property of atoms is that in the
limit Z — @ the Thomas-Fermi theory becomes exact (Lieb and Simon, 1973, 1977;
Lieb, 1976, 1981 Baumgartner, 1976), where Z is the atomic number. That is, for
Z — w0 the ground state energy of atoms is given by the ground-state energy of the
Thomas-Fermi one. Unfortunately, the very ingenious proofs of this beautiful result
are somehow quite complex. The difficulty of the proof of this important result has
prevented the presentation of its intricacies even in most advanced treatments of the
subject (Dreizler and Gross, 1990). The importance of this result in physics cannot be
over emphasized. It provides the initial stage (Dreizler and Gross, 1990; Lieb, 1981;
Morgan and Drake, 1996; Schwinger, 1980, 1981; Englert and Schwinger, 1984a,
1984b; Manoukian and Bantitadawit, 1999) for the evaluation of the ground-state

cnergy of the atoms in our world, as appearing in the periodic table. Also It
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participates in explaining through a rigorous investigation, in part, of the Thomas-
Fermi theory for large number of clectrons, the stability of matter (Dyson, 1967;

Dyson and Lenard ,1967, 1968; Lieb, 1976, 1991) and of our very own existence.

The Thomas-Fermi (TF) atom, introduced originally as a means of calculating
electron distributions and fields in heavy atoms (Thomas, 1927: Fermi, 1927, 1928),
has proved to be of very considerable value in tackling many-body problems in
quantum mechanics (Lieb, 1981) and by now has been applied to molecules, solids

and nuclei.

The original idea of the Thomas-Fermi model is to exploit the density—functional

theory of the electronic structure in which one replaces the complicated N-¢lectron

wave function ;.-;f(xl,xz,...,.r_”} and the associated Schridinger equation by the much

simpler electron density n(r} and 1ts associated calculational scheme (Parr and Yang,

1989).

There is a long history of such theories, which until 1964 only had status simply
as models. The history begins with the work of Thomas and Fermi in the 1920s
(Thomas, 1927; Fermi 1927, 1928; Gombas, 1949; March, 1957; Teller, 1962; cf,,
Parr and Yang, 1989; Dreizler and Gross, 1990; Bransden and Joachain, 1995). What
these authors realized was that statistical considerations can be used to approximate
the distribution of electrons in an atom. The assumptions stated by Thomas (1927) are
that: “Electrons are distributed uniformly in the six-dimensional phase space for the
motion of n electrons at the rate of two for each 4 of volume” and that there is as

cffective potential field * which is itself determined by the nuclear charge and this
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distribution of electrons.” The Thomas-Fermi formula for electron density can be
derived from these assumptions. We give in Chapter Il a slightly different, but

equivalent, derivation of the Thomas-Fermi theory.

The Thomas-Fermi theory was the first method to propose using the electronic
charge density as its fundamental variable instead of the wave-function. The model

can be understood with reference to Figure 1.1. Although the charge density is that of

a non-uniform electron gas, the number of electrons in a given volume element, d°r,

can be expressed as n(r)d’r, where n(r) is the charge density for a uniform electron
gas at that point. It is then possible to express the energy as a function of n(r). The

density #(r) is just the three-dimensional single-particle density and the quantum
theory for the ground-state can be put in terms of it. Density-functional theory has its
roots in the papers of Thomas and Fermi in the 1920s, but became a more accurate
theory (as opposed to a model) only with the publications in the early 1960s of Kohn,

Hohenberg, and Sham (Hohenberg and Kohn, 1964; Kohn and Sham, 1965).

Density Functional Theory (DFT) was born over 35 years (cf., Dreizler and
Gross, 1990). It 1s applicable to several branches of physics and chemistry (solids,

liquids, plasma, molecule, nuclei, and surface physics)

DFT was originally developed by Hohenberg and Kohn (1964) and later

developed by Kohn and Sham (1965). The crux of this work is the proof that it is
valid to use the charge density and becomes a unique functional of the charge

density and the energy E is uniquely defined by n.
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DFT is a way of simplifying the many body problems by working with the
electronic charge density as a fundamental variable rather than the wave function. It is

a ground-state theory that incorporates both exchange and correlation effects.

" (r)jr

Locally uniform
electron gas

Figure 1.1. Schematic diagram showing the principle of the local density
approximation, as done in the Thomas Fermi theory, namely that for a given radial slab, dr |

the local density can be considered to be n(r), the density of an equivalent uniform

homogeneous electron gas.

The Hamiltonian of a multi-electron neutral atom consists of the kinetic
energy part, the potential due to the nucleus and the potential due to electron-electron

interactions. In detail it is given in a standard notation by

2 ]
H=i P. _Z +i—€ (1.1)

=] | _
“N2m r, ﬁl.ra rﬁ.|
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We recall that the Thomas-Fermi atom is a model and does not follow from

the exact Hamiltonian. The ground state energy of the Thomas-Fermi atom is given

by

Err =-0.76872 7" (1.2)
and this will be worked out in detail in Chapter 11 as it is relevant to our work.

Much work has been done to improve upon the expression of the ground-state
energy as given by the Thomas-Fermi model (cf. Lieb, 1973; Schwinger, 1980, 1981
Englert and Schwinger, 1984a, 1984b). The monumental work of Schwinger (1980,
1981; Englert and Schwinger, 1984a, 1984b; cf., Manoukian and Bantitadawit, 1999)

gives the remarkable expression for the ground-state energy

E(Z)=2""|-0.785745 + T 1 0269961 Wf— (1.4)

2 Z 13 Z 23’3 _:l aU
where a, = h’/me” is the Bohr radius. As an improvement over the Thomas-Fermi
model, equation (1.4) still represents a model and is not directly obtained from the
exact Hamiltonian H given in (1.1). The second term Z~"*/2. in the square brackets
in (1.4), is due to the electrons tightly bound to the atom and is referred to as the Scott

factor (Scott, 1952). The last term —0.26996Z *" in the square brackets in (1.4) is

due to “exchange” and includes a quantum correction.

The purpose of this thesis is to provide an accessible derivation of the Z — =

limit of the exact ground-state energy E, for neutral problem. We use, in the process,
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basic scaling properties we derive for one-body Green functions. Green functions are
widely used in quantum physics and quantum field theory (e.g., Schwinger, 1961,
1993; Fitter and Walecka, 1971; Rickayzen, 1980; Manoukian and Bantitadawit,

1999). Our derivation follows by deriving upper and lower bounds, involving one-

body Green functions, for the exact ground-state energy E, for neutral atoms, which

for 7 —» o are shown both to coincide with the ground-state energy of the Thomas-

Fermi atom.

The plan of the thesis is as follows. Chapter II is devoted to the Thomas-Fermi
theory and a detailed derivation of its ground-state energy. In Chapter III, we develop
the machinery of taking expectation values of one-body and two-body interactions
with respect to determinantal functions. These results will be quite important in
Chapter V. In Chapter 1V, we derive and study the structure of a lower bound for the
electron-electron repulsive Coulomb potential. This result is subsequently used in
Chapter V1. Chapter V is devoted to the derivation of an upper bound for the exact

ground-state energy E, of neutral atoms for Z —» «. Chapter VI is devoted to the

derivation of a lower bound for E, for Z — . In the concluding Chapter VII, our
method of investigation is summarized concerning the upper and lower bounds for
E, derived, respectively, in the two earlier chapters. The comparison of these derived

bounds finally establishes our main result. The research investigation carried out in

this work is being published (Manoukian and Osaklung, 2000).

Copyright 2000 Suranaree University of Technology



Chapter 11

The Thomas—Fermi Atom and Its Ground—State

Energy

2.1 The Fermi Electron Gas

Before we analyze the theory developed by Thomas and Fermi for the ground-
state energy of multi-electron atoms, it is convenient to consider the simpler problem
of the Fermi electron gas, that is a system consisting of a large number N of free
electrons confined to a certain region of space. We shall suppose that the N free
electrons of our system are confined to a large cube of sides each of length L. Each
one of the electrons is therefore moving independently in a potential which is
assumed to be a constant (we may take this constant to be zero) inside the cube, and is
assumed to be infinite at the boundary. Thus, the spatial part of the wave function

describing the motion of an electron satisfies the free particle Schridinger equation

El 5,2 52 az
——| st 5t —
2m| axt &' &z

]w(r} = Ey(r) (2.1)

inside the cube, while y = 0 at the boundary.
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Since the equation (2.1) is separable, in particular, in Cartesian coordinates,
we may use the results for the one-dimensional infinite square well potential.
Generalizing these results to three dimensions, and choosing the origin of our
coordinate system to be at one of the comers of the box we find that the
eigenfunctions of (2.1) which vanish at the boundary (i.e., the wave-functions for a

spinless particle in a cubical box each of side L) are given by

1‘:-4

T n,mw ) 1 !

. H R . . .

Vi o (€)= Csin| " x |sin ’—stm[ P (22)
L L L.

/2
where C = [E/ L‘J is a normalization constant and »n,.n ,n_ are positive integers.

yr'tz

The corresponding allowed values of the energy E of an electron are

2,2
E=TR (2 42 4n?
2ml”
241
_mh o, (23)
2ml’
where
n’ =n3+ni+nf (2.4)

We remark that each energy level in (2.3) can in general be obtained from a number
of different sets of values of (nx,ny,nz}ﬁ and E, for a given n, is generally

degenerate.
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Since electrons have spin 1/2, we must multiply the spatial part (2.2) of their
wave-functions by the spin functions y,, , with m;=+1/2. The individual

electron wave-functions are therefore the spin orbitals
'r‘"."rﬂ‘n’n__ml = i-'r"r.l'zkil:J ", (r)zl_.'rZ,mJ (2.3)

and the quantum states of an electron are specified by the three spatial quantum
number (nx,n},,n___) and the spin quantum numbers m,. We note that for each energy
level (2.3) labeled by the quantum numbers (nx__n}.ﬁnz), there are two spin-orbitals,

one corresponding to spinup m, =+1/2 and one to spin down m, = —1/2, so that the

degeneracy of the individual energy level (2.3) is multiplied by two.

Because energy spacing is very small for any reasonable macroscopic box of
sides L, it is a good approximation to consider that the energy levels are distnbuted

nearly continuously. We may then introduce the density of states or density of orbitals

D(E), which is defined as the number of electron quantum states (i.e., the number of

spin orbitals) per unit energy range. Thus D{E] dE 1s the number of electron states

for which the energy of an electron lies between E and E +dFE .

In order to obtain the quantity D(E) , we consider the space formed by the axes

corresponding to the values taken by n,,n,,n. (see Fig. 2.1). Since ny,ny,n, are
positive integers, we are interested only in the octant for which #, >0,n,, >0,n, >0.

As seen from Fig. 2.1, each set of spatial quantum numbers (n“n }.,nz) corresponds
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to a point of a cubical lattice, and every elementary cube of the lattice has unit

volume.

J'I‘_ I

Fig. 2.1. Three-dimensional n-space used in the calculation of D(E). To each state
{n:.n},,n:}, 15 associated a cube of unit volume. For fairly large values of some or all of the

components of {n:,ny,n:) the total number of states within a sphere of radius of size

] 112 . .
n= (nj +n, + rzi} equals the volume of one octant of a sphere of radius n in n—space.

Thus, for fairly large values of the quantum triplet (nx,n },,nz), the total number of

spin orbitals for all energies up to a certain value E is closely equal to the number of

individual electron states for energies up to £ and is therefore given approximately by

Copyright 2000 Suranaree University of Technology



) 14 1
Ny=2-Zm’ = -’ (2.6)

83 3

where the factor 2 is due to the two spin states per spatial orbital. Using (2.3) and

setting V = I, we may also rewrite this result as

32

1 (2 .-

N, =—/| 2| pE? (2.7)
372\ A2

The number D(E)dE of electron states within the energy range (£,E +dE) is then

obtained by differentiating (2.7), namely

32
1
a’NI:D(E}a’E:—[EE] vE'?dE (2.8)
272 a2
s0 that
/ 32
dN ;
pEy="s 1 2—’”] vEY? (2.9)
dE  27x° \h®

According to the Pauli exclusion principle, the total wave-function describing
the entire system of N electrons must be fully anti-symmetric in the (spatial and spin)
coordinates of the electrons, and will therefore, for the free electron gas, be a Slater
determinant constructed from the individual spin orbitals (2.5). The corresponding
total energy is the sum of the individual electron energies. Assuming that the system
is in the ground state (i.e., our Fermi electron gas, in particular, is at absolute zero

temperature T = 0 K), the lowest total energy is then obtained when the N electrons

Copyright 2000 Suranaree University of Technology
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fill all the spin orbitals up to an energy Er, called the Fermi energy, the remaining
orbitals (with energies £ > E) being vacant. This is illustrated in Fig. 2.2, which
shows the density of states D(E) as a function of E, the occupied orbitals
corresponding to the ground state of the Fermi electron gas being represented by the

shaded area.

D(E)

L)

Fig. 2.2. The density of states D(E) as a function of the energy E. The occupied orbitals

corresponding to the ground state of the Fermi electron gas are represented by the shaded area

The Fermi energy may be evaluated by requiring that the total number N of

electrons in the system should be equal to

Eg
N = [D(E)dE (2.10)

Copyright 2000 Suranaree University of Technology
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In writing this equation we have used the fact that the system contains many

electrons, so that the integral (2.10) is a good approximation to the corresponding sum

over discrete states. Moreover, since N is large, it does not matter whether the last

level contains one or more electrons. Using the result (2.9), we have

s0 that

where

U (2m) E
N:—-—[—m] v [EVaE
0

32
1 (2 ;
=- _[_’”J vE} (2.11)
3r? L n?
ﬁg ) 3
Ep =" (322pf (2.12)
2m
J;\vr
o= (2.13)
v

is the number of electrons per unit volume, i.e., the density of electrons. We note that

the total energy of a Fermi electron gas in the ground state (at absolute zero) is

THE CENTER FOR LIBRARY RESOUKCES AMD EDUCATIONAL MEDIA
L SURANAREE UNIVERSITY G TECHNOLOGY

Ee
E, = [ED(E)dE
]

ot

— —— B S
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1 (2m)"? 2
5

3
=2 NEj (2.14)

5

where we have used (2.9) and (2.11) . The average electron energy at T = 0 K is

therefore

- E 3
E:_.{ﬂ:_ﬁ'F (2.15)

N 3

It is also instructive to study the problem of the Fermi electron gas by
imposing periodic boundary conditions on the (spatial) wave-functions of the
electrons, 1.e., by requiring these wave-functions to be periodic in x,yand :z witﬁ
period L. Instead of the standing waves (2.2) we then have travelling wave solutions

of the Schrédinger equation (2.1), having the form

vicr)=e™" (2.16)

The allowed components of the wave vector k are then given by

k,=""n k,=""n, k,=""n, (2.17)
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where n_,n y>M; are positive or negative integers, or zero. The number of spatial
orbitals in the volume element dk = dk,dk ,dk, , about K , is (L/27) dk dk ,dk, , and
this number must be multiplied by 2 to take into account the two possible spin states.
A umt volume of k-space will therefore accommodate I/f 47* electrons (with

V = L*). Thus, the individual electron states having energies up to £ = h’k zfim will

be contained within a sphere in k-space, of radius &, the number N, of these states

being given by

Vo4

Ny=— 2k =—w&?
47?3 32
32
1 [2 .-
- (_’”] VEY? (2.18)
7% K2

in agreement with (2.7)

We have seen above that for the ground state of our Fermi electron gas, the N
electrons fill all the states up to the Fermi energy £, . Thus in k-space all states up to
a maximum value of radius k equals to kr are filled, while the states for which k=kg
are empty. In other words all occupied orbitals of a Fermi electron gas at T=0 K fill a
sphere in k-space having radius kr. This sphere, which is called the Fermi sphere,

obviously contains

—Vk; =N, (2.19)
3r’
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orbitals, so that

kF==@n2py” (2.20)

At the surface of the Fermi sphere, known as the Fermi surface, the energy is the

Fermi energy
Ep=—1ifp (2.21)

and we note that the result in (2.12) immediately follows upon substitution of the

expression (2.20) in (2.21). It is also convenient to introduce the Fermi momentum

Pr,the Fermi velocity v and the Fermi temperature T, such that

E, =2 = mp? =T, (2.22)
2m 2

where k 15 Boltzmann’s constant.

2.2 The Thomas-Fermi Theory

The theory developed independently by Thomas (1927) and Fermm (1927,
1928) for the ground-state of complex atoms (or ions) having a large number of
electrons is based on statistical and semi-classical considerations. For many years the
Thomas-Fermi theory was considered as an uncertain approximation to the N-particle

Schridinger equation. Lieb and Simon in 1973 have then shown that the Thomas-
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Fermi theory is really a large Z theory - to be precise it is exact in the limit Z — oo |
The N electrons of the system are treated as an electron gas in the ground state,
confined to a region of space by a central potential ¥ (r) which vanishes at infinity. It
1s assumed that this potential is slowly varying over a distance which is large
compared to the de Broglie wavelength of the electrons, so that enough electrons are
present in a volume where V' (r) is nearly constant, and the statistical approach used in
studying the Fermi electron gas can be applied. In addition, since the number of

electrons is large, many of them have high principal quantum numbers, so that semi-

classical methods may be used.

The aim of the Thomas-Fermi model is to provide a method of calculating the

potential ¥(r) and the electron density n(r). These two quantities can first be related

by using the following argument. The total energy of an electron is written as

p2 / 2m +V(r , and this energy must be non-positive, so that the electron be bound to
the atom. Since the maximum kinetic energy of an electron in a Fermi electron gas at

T =0 K is the Fermi energy Er, we write for the total energy of the most energetic

electrons of the system, the classical equation

Emax =Ep + V(.P') (2.23)

where V(r) includes the external potential v(r)=—Ze®> 1 /“‘; , due to the nucleus

i

and the electrostatic potential produced by the electronic charge density.
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It is clear that £, must be independent of r, because if this were not the
case electrons would migrate to that region of space where E_ 15 smallest, in order
to lower the total energy of the system. Furthermore, we must have E_,, =0. We

note from (2.21) and (2.23) that the quantity k5 is now a function of ». That is,

k3 =22 [E V(] (2.24)

?32

Using (2.12) and (2.24) we then have

2
[E] £ - V() (2.25)
2

h

n(r)=

2

T

where we have denoted p in (2.12) by nlr) and we see that » vanishes when

V =E .- In the classically forbidden region ¥ > E we must set n=0, since

otherwise (2.23) would yield a negative value of the maximum kinetic energy £p.

Let us denote by

o(r)=- 49, (2.26)

e
the electrostatic potential, and by @y =~ E . /e anon-negative constant.

Setting

p(r)=el o(r)-op ] (2.27)
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we see that n(r) and ¢(r) are related by

1 (2m)
n(r) - _] .Z’E P (r} =0 (2.28)
3z’ L i’
=0 ¢ <0 (2.29)

For a neutral atom (N = Z) the electrostatic potential @(r) vanishes at infinity and

we will set @, =0.

A second relation between n(r) and @(r) may be obtained as follows. The

sources of the electrostatic potential @(r) are:

(1) the point charge Ze of the nucleus, located at the origin

(11) the charge density distribution due to the N electrons.

Treating the charge density — en(r) of the electrons as a continuous function of r, we

may usc Poisson’s equation of electrostatics to write

V200)= L )= 4menr) 230)
rdr®

The equation (2.28) and (2.30) are two simultaneous equations for n(r) and

¢(r). Eliminating n(r) from these equations, we find that for ¢ > 0

L) -2 @y ), $20 (231)

Fdr’ 3mh’
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On the other hand, when ¢ < 0 we see from (2.29) and (2.30) that

ﬂ,z
-« _z_w,(,,)] —0, $ <0 (2.32)
d

I

For r — 0 the leading term of the electrostatic potential must be due to the nucleus,

so that the boundary condition at » = 0 reads
lim rg(r)= Ze* (2.33)
r—() '
On the other hand, we also have the normalization condition

[drn(r)=N (2.34)

In order to simplify the above equations, it is convenient to introduce the new

dimensionless variable x and the function ®(x) such that

where
r=xb, ré(r)= Ze*®(x) (2.35)
23 )
(3217 &2 |
|| 3= & 1_ = 0.0885q,77" (2.36)
k 4 2me’ ) 723
ﬁz
and a; = —— is the Bohr radius.
me
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From (2.30) and (2.36) we will have

n(r)= ZEPIF(R}: ZE[I—{EE(—)} (2.37)

4mh’ 2
where we have introduced the vector R defined by
R =7"r (2.38)

The important equation (2.31) may be then rewritten in dimensionless from as

e _ 0¥ (2.39)
. 12
This is the famous * Thomas — Fermi” equation.
The boundary conditions are:
o0)=1, D(x)=0 (2.40)

The following well know numerical value is to be noted (e.g., Dreizler and Gross

1990, p.129)

®'(0)= -1.5881 (2.41)

for the slope of @(x) near the origin, and

D'(0)=0 (2.42)
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2.3 Some Properties of the Thomas-Fermi Function.

The Thomas-Fermi equation (2.39) and the boundary conditions in (2.40):
®(0)=1,®(0) = 0, define a universal function d(x) for all neutral atoms. Values of

this function are obtained by numerical integration. At x = 0 one has from (2.41) that

in the vicinity of the origin

D(x) ~1-1.5881x+- (2.43)

—+0

From (2.37) we then conclude that we have the following power law behavior for

pre(R):

|
FrF {R) -

- 2.44)
.y RY? (

By direct substitution in (2.39) we readily check that @(x)==144/x" is a
solution of this differential equation. Since the latter solution in not valid for x = 0
(©(0)=1), we may infer from (2.37) that

1 .
pre(R) ~ — (2.45)

ergﬁ

The knowledge of the behavior of p,, (R) for R — 0 and R —> = as given,
respectively, in (2.44) and (2.45) tumns out to be quite important in establishing our

lower bound for the exact ground-state energy of neutral atoms for Z —» o in Chapter

VL
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2.4 Derivation of the Ground-State Energy

From (2.25) we may write

1
n(r)=— ?pj (2.46)
3T h
or
2

d
dn = 22 (2.47)

R2ﬁ3

and thus, we have the following explicit expressions for the kinetic energy per unit

volume:

5 - (2.48)
o 107z°m
and for total kinetic energy we have
2 F3, 2
3 h
ba?) a2 [ @) (249)
R ]
107 “m
The potential energy between the electrons and the nucleus is
&
—Z [—n(r)d’r (2.50)
r

The potential energy due to electron-electron interactions is
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@ e hle) o

|r—-r |

(2.51)

Accordingly, for the ground-state energy of the Thomas-Fermi atom we have the
expression:

(2.52)

E. —( LJ};SB (r)d’r -—é_[—n{r)d%- + = J’j‘:{r)”(r rd’r

107 m

with the subscript “TF" referring to the Thomas-Fermi atom. We will evaluate each

ol the three terms above separately. The Thomas-Fermi density n(r) actually

minimizes the expression (2.52) (Lieb, 1981).

The first term is the kinetic energy part:

2 ir S 52 5 213
)" n Jas js.na,m fae 1 @m)" 270Gy e

107 m 0 ('i;rl}s"j h* (xb)"

g, =07

=M 5/ bV (45 )J‘ {I)

107%m B’

]|I.-g - l _ .} NEE (x }

FUe g x 12

] - 143
= E (im)f'; i 750 53_;"{ ( ht
_F] 3

|
5 mm 4 \ 2me’

20m) ¢ [B_ﬂT - j LN

S mm kP \ 4
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8 2
-2 [3_”] € 23 [—Etb’([})]
~0.7687- 77
087 —4£ (2.53)

where
= {1}5_.-'2():) 5
I_'l-z = -=¢'(0) (2.54)
ooy 7

and @'(0)=—1.5881

d’r = r’sin0d0dg = (xb) sin@ d6d¢bdx = x’b*dxsin6 d6 dg

The second term in (2.52) may be rewritten as

Ey_, =—Ze* j'”&—)..rf-‘*r
¥

ook X = | {Zm]:‘";z Y '11‘13"'.2{:(]
=—Ze” | dg [sin@d@ [dx—— L _z¥2 = ] 23
Jasfsnodofax B0 o7 Tg) e

L 3CmY & sy (96,
0

3 W x/?
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13 /2
_ 4(2”1)3 7502 h? 1 T (x
. .‘- T
?z3 4 2 '

3 2me ZVe & X

/3
=_3_m[3_ff] e J‘m”(x}

I\ 4 Bt

Q

1/3

8 (32) €2 g5 =¥

=__.( T] e” 3 j'I' (x}!
3}‘1\4 {ID I

8 3 -"'l]'l|13 2 =
[_EJ E_z?}"} J-q}n(x}ix
ap

]

2
=-1.79378_ 7773
ap

For the third term in (2.52) we have

=& 1 (Em)l e®z3 fdc;}?sm-‘?dﬂfd Lﬁ:

s ) a0 oo ()"

32 1.2
X jffgﬁ _{Sin{?dﬁ'jdr'qj (1-'2) - bx
0 0 ( } \/r —r'? - Err c::::sr;’i
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- %((—L)zib- 2k j’d’gﬂr?smﬂdﬁ _[afx ¥ E{X)

2z " f]_,"lz ¥z ¢
X J(f@" j'sm&:fﬂ'jd' X0

0 Wxlex?io 2xx'cosd

_1(m) f*_ys(ﬁff_]“'“ Y
z(hzf R\ 4 2me’ | 7%

I (3 ¥
T = )
_ {_] e (2.56)

where the integral / is defined by

2 P22 (y)
I= J'dgﬁ jsmt?dﬁ' _[afx X D¥? (x)x Ia’gﬁ j'sm gda’ fa’x

0 0 x4+ x? o 2xx'cosd

(2.57)

Consider the expansion in terms of Legendre polynomials (e.g., Arfken and Weber,

1995, p. 695)

' —L.-"E o0

[xz +x'2—2n’cﬂsﬁ') ZIEPICGSS Jor  x'<x
x :

ii——ﬁ (cos6) Jor x'>x

xr J-:{. f:

where f=x'/x.
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Thus for the integral [ defined above we may write

ix

I= J'd¢ j'd;a j'smf?d&'jdxjdx x'“zflfz{x)x“"zihm{x }Z j'f—‘{mqﬂ)f sinf dg

1=0 g

im Iz =&
+ g Jag [sin0do | Jax jatr LV ()Y ()5 T LCST) o
f!

0 I=0p

Using the orthogonality relation ( Arfken and Weber, 1995, p.709)

-
jP} (cos@)P,, (cosf)sin 616 = 2o (2.58)
0

20 +1

we may integrate over # to obtain

'Jn d ¥ 3 ¥ '
[=167" [0 xli' I}Jcix )2 0¥ (x)+167° [0 (x) [%cw”{x’) (2.59)
[ X

I

or upon integration by parts, we obtain

I = mﬁ{— D'(0)- j—‘i {iD(x))sfer (2.60)
0x”

L

Upon using (2.54), the latter gives
32 5.,
[ =->2220'(0) (2.61)

7

Finally we substitute (2.61) in (2.56) to obtain
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E_, =— _[3_”} e_z?.-"3[_32,73c1:’({})}

7

ar

:v: X
E,, =025655 7" (2.62)
ay

where we have used the fact that @'(0)=-1.5881.

The ground-state energy of the Thomas-Fermi atom in (2.52), is then obtained by

adding (2.53), (2.55) and (2.62):

Egp = (0.7687 ~1.7937 +0.2565)— 2

H[]

2
= 0.76855- 77" (2.63)

a,

L
Finally we note from the expression of the ground-state energy expression

(2.52) we may write

EPRALEFE
Z_?_-'.'mETF — M I(IHR(,L)“_ (R})”' B E’? I.:FIRP”—@
107 m R

Ez 3 ] ] r
+— [d*Rd* R py (R)———py (R') (2.64)
2 |[R- R

where p,(R) is the scaled Thomas-Fermi density in (2.37): nr)= Z’p.(R) and

R=7"r,

To prove the validity of equation (2.64), we reconsider equation (2.52)
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2,2
E. = Bz*)"n’ J’ﬂﬂ.-'? (t)Md°r Zj (e)d’r + & ’T{r)”(r Prd’r
107 m 2 r |

and introduce the following transformations:

L (r ﬁ',r,r {H}

3
and r= ;f%, dr = d’R
we then have
f - %571 -
3zt R? d'R d’'R
Ey = s ) [2 % @) "7J-(R 7“.]72,@[56} Z
107 m 7 /

@ RAR 70

ZE R. R | 4 {R}PH{RF}

53 5
Epe = Z?ﬁ{ (BHE} e JdHR(pTFb:IJ(R))_E?: J.(J'RR—'G""F (R)

107 m R

+ & [d*Rd*Rpye (R) P (R) } (2.65)

2 R-R

which establishes the validity of equation (2.64).
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Chapter II1

Expectation Value of One-Body and Two-Body
Interactions with respect to Determinantal

Wave-Functions

The purpose of this chapter is to develop the general theory of the expectation
value of operators with respect to determinantal functions - the so-called Slater
determinants. This will be essential for the work done in Chapter V on the upper

bound of the exact ground-state energy for Z —» oo

To the above end, we must provide first the method of calculating the matrix
elements of an arbitrary operator F . Specific cases for F will be considered later.

More generals cased are considered in Bethe and Jackiw (1993).

! | . ] ;
To evaluate (W Hi;,-'f}.ﬁ , where /{ is the Hamiltonian of a system, and for other

applications we must calculate the matrix elements of an arbitrary operator F between

determinantal wave-functions
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im(l) u,{?.)... II[(A"'-'r]
!I.';f=;ug:(l] uz{:l'},. u, (N) (3.1)

'uﬁ-(l) ul.h.{-l].., u_w-‘-:f"v’)

where
w,(j)=ur, )x(o,) (3.2)

fu (1), (1)d7, = 5, (3.3)

w=(N)"Y e, l:_[u,. (i) (3.4)

] " .
=) S e TTulP ) (3.5)
I i=1

where the sum extends over all permutations and &,1s + or — depending on whether

P, Ps,..., Pyisan even or odd permutation of 7, 2, ..., N.

To evaluate expectation values, we assume that the orbitals corresponding to

w, are u,(j), and y correspond to v,(j) then

(F)= ;’I I;sg Ii]u:(Ql.}fJZP:gplj[vﬁ (;‘]dr}.] (3.6)
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For the mitial wave function we permute the states, and for the final wave
function we permute the electrons. F must be symmetric in the coordinates of all the
electrons, since these electrons are identical. To simplify, we group the terms

referring to the same electron coordinates together and set j = (;

fey

N
W NI J%%‘EQEP l—{ ”r" (Qj }FVP{J, (Q. }dfgl (3.7)

where £

L&

o = Epg-
Now (J;1s only a dummy variable in the integral, and we may set (J; = i, this does not
change the integral in question:

1 N
()= H%%Emjﬂ“; (0)Fvpp (Q.)d7, (3.8)

Now the integral and &,, are independent of (), each O gives the same contribution

and the total contribution 1s N ! times the contribution of P = [ . This eliminates the

. 1 .
normalization factor N Replacing PO by P, then

(F) = %ap ﬂju;(i)FvE_ (i)dz, (3.9)

Consider particular forms of F :

1. F =1. Because of the orthogonality of the one-electron wave functions, we obtain
(F)=0, unless for some one P, v, =u, foralli. Only u, =v, for all i and v must
be arranged in the same order with u (u,v are for identical particles) then
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(F)=1 (3.10)
.
Z , Where f; = a one-electron operator operating on electron i
N N
ZZ":PI u! (i) Vo (i)dz, (3.11)
=1 P =]

Foru;, =v, foralljexceptj=iand u; # v, for some one i we get

(F) = (il /1) = [ ) Ay, (1), (3.12)
where P = [ is the identity permutation.

If u, =v, foralli,

(F)=>(ilrli) (3.13)

Only the identity permutation P = [ contributes to (3.12) and (3.13).

For example if

then

.N

{F}:Z_{dm;(r{—%vz J (r) (3.14)

3. F= qu » g 1s an operator operating on electrons i and ;-

ie
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(F} - Zggf’ .‘-H”;(‘.}ggvﬁ. (i)dz, (3.15)

i<

If u, # v, for more than two i's

(F)=0 (3.16)
If u, = v, forall i

(F) = Zlileli)~(ilel o) G17)
where

(lelkl) = [} (1)e; (2)g v, (1, (2)d 7, (3.18)

If for some i, u, # v, but for all j exceptj = 1 , u, =v

(F) = 2 lilelo)~islel o) (3.19)

F#i

If for some § and J» u; # v, and u, #v,, but for all k except k =i , k = j we have

u, =v, and
() ={illg|i) - (i7]g| ji) (3.20)

For example if

1
F:Zglj‘ & =—

i
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then

{F} = ZLZU: Irfr,drzu_,'(r, }u(r ]guur.(rl )ui.(rl ]>-<|;‘,;r {‘3":13]!}:’;{"3"; r

ff| oy,

— _,Zn J‘d?,ﬂrfzﬂ: (r, }4;{1'3 g1, (r, }“f (r)

xI;-(Cﬂ)X;(Jz}zg-['jz}i’;(m] ] (3.21)

-

and where we have taken u, (j)= ”f('"x )X.-(” }.], and used the orthogonality relation,

with 7, j corresponding, respectively, to m,

?

m,

%_“ I:T._r (‘T}Im‘,_l. (.-:r) = ‘;(mn L }
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Chapter IV

Detailed Derivation of a Lower Bound for the

Coulomb Potential

Before deriving the lower bound for the exact ground-state energy for atoms
for large 7, we first provide a detailed derivation of a lower bound for the Coulomb

potential. This result will be used later on in Chapter VI

4.1 Lower Bound for Interactions of Positive Type

Let ¥(r) be a real potential function of positive type (i.e., with a Fourer

transform ¥ (k)= 0, ¥(0) < =). A known result by Thirring(1981), that will be needed

in Chapter VI, is

: w [ow) ]
Srr, -r, )z @, )- E ‘1 -+ ZV (k)| (4.1)
200, w[ ZONE

provided the integrals on the right-hand side exist and where ®(r) is an arbitrary real

function. We provide a detailed proof of (4.1).
Proof:

It follows from the positivity of the following expression:
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0< _l'a” m”r'[i &(r-r,)- p(rﬂ Vir- r'{i‘ﬁ; (r'—r,)- P{rr]]

n=l r

Zz

= J.d:*rd'lr’[i53 (r—r)V(r- r'}iﬁs (r'-r,)- Z‘F (r—r, )V(r—r)plr')

=]

- iﬁ’{r' —r_ )V(r—r)plr)+ V(r —r')olr)olr) }

or
z 7 o , ,
0< S¥(r, -1, )23 [dcV(r-r,)olr)+ [drd’r'plr)plr) Vir 1)  (4.2)
nm=| n=1
since
V(rﬂ - rm} - ;.;[rﬂ' o rlll} [4I3}
thus
z F4
Z V{ru - rm} =2 Z V{I‘n - rrr:}_' JV{{}} (4.4)
nm=] RE M

Accordingly (4.2) leads to

2 i!»’{rﬂ -r, )= Ei [d’rV(r-r,)plr)- ZV(0)- [dr &' p(r) o) V(-1
e =1

R=>M

i Vir,-r, )= i_ _{chr Vir-r,)plr)- % ¥(0)- IE [d°r drp(r) plr') V(r - )

i:f(rn -r, )= itll[rn]-- -gV{ﬂ}— ; [d* d'r'p(r)pr )V (r—r) (45)

n=l
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where we have used the definitions

d’k e
V(r-r)= [—*r Pk 4.6
) I[EH}J (k) (4.6)
d’k
plr)= [——e™ plk) 4.7
Ty P -
@(r)= [drp(r')V(r -r') (4.8)
Equation (4.5) finally leads to the inequality
e z Z L dK ey 1 dK e
z dk |-
-Yob)-3 5oy {30) [P (K)+ 27 (k)
z | Dk J 1
kOO, (4.9)

Where @(r) is arbitrary and real provided that the integrals on the right-hand side of

the above inequality exist.
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4.2 A Lower Bound to the Electron-Electron Interaction Potential

z
We have seen that for ¥ of positive type, 2. V(r, —r, ) can be bounded from

oyt

below with arbitrary one-particle potentials. Since the Coulomb potential becomes
infinite at 0, it is first necessary to find a smaller function finite at 0 and with a
positive Fourier transformation, which is an idea due to Thirring(1981). We introduce
the potential:

V()= = exp-pr) 1 (4.10)
r ¥

For the subsequent analysis we use the following properties

5i(r)= | 2—(? ' (4.11)

V2= =—475°(r) (4.12)
r
—eH ) e
v?[l_E_J:vll__v* L (4.13)
r ¥ r
Consider
1 A’k
V2= = —4x [——e™

r (2:-'3‘}3

1 —dr  dK ar
roov? I(zxr}?e
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ar

| d'k ™"

B Pl Pl 4.14
¥ HI{?TF E—.ﬁ:zi { )

4 . .
Thus the Fourier transform of L is equal to —':{ Next we consider the following
¥ k

cxXpression

= [?ZE_N J+ (‘F o I‘J ]—] + [‘Fz l}?‘” + (‘? . F["?e o ) (4.15)

Upon using

8 28
?2 — ——-1; + .
cir ror

because of the spherical symmetry of the problem at hand, we obtain

= — s
viE _ _ 1 S 2—‘”9 e 4mS (e 4 2u =

¥ F ¥ r

Since &°(r)e™™ =&°(r), this gives

ar
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(V2= ) a0

thus
e'“" -[ }."kr
¥ —,u {E;r}
=4z | Ak el (4.16)
(r) (& - 1)
So the Fourer transform of e is . Therefore the Fourier transform of
r k* +
1-e*) . 4z 4r
S e T ()
¥ 4
That 15
V(k)=- i’ (4.17)
K[k + u’)
MNext, we set
d(r)= [d°r »lr) (4.18)

r-rl

From (4.9), upon transforming back to r-space we obtain:

;f: Vir, -r, )z f ®(r, ) - IE { [d*ra(r)p(r)+ dmu [dir p* )+ Zu (419)

Rz
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Optimizing this equation with respect to ¢ we obtain
—-87 .
0= —3 J‘I'j-,l" pz(r)+ z
u

or

z 2 1
ZV(rn -rM)£Z'
— a<fi |By =Ty
we get
z ] £ ,oplr) 1 rd'r’
Z_ _EZjd'r—’( ——— (} (r
r'“:’ﬁ|r,, “rgl r,-r 2 j r-r

-3 jare L )t
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(4.20)

(4.21)

(4.22)
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27 [d'rp?(r)+ , /[ - [d*rp’ ]}
E; Idsmz(r}] 3

Zjdj o) 1 Ia’ rd’r' o()p(E)- ‘3?1']. rp*(r) B
B e T ey
L? J

or

z 1

|3ijffJ } 'Ij-d:*rd” (}}(t‘) |3£ﬁ,{j'd3rp {l"}

-t 23 r-r]

i rn.‘r L

(4.23)

Here p(r) is an arbitrary real function provided that the integrals on the right-hand

side of the above inequality exist.
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Chapter V

Upper Bound for the Exact Ground-State

Energy of Atoms for Large Z (Z — «)

In this chapter we will develop an upper bound for the exact ground-state energy

of atoms for large Z .

We consider first the seemingly unrelated problem of a one-body potential with

Hamiltonian

P!
h=2—+¥(r)
2m { )

where ¥(r) is the Thomas—Fermi potential

()= -2 4 e [a’r -:{rr}
r :

o]

_ Z-:-I.'SP(R}

2 I - ,
- _QI_IH; (3‘?1-2 }""Zd’q{p”.{f{} - . P = Rt"lrzl:}

and n(r)= Z*p,,.(R) is the Thomas—Fermi density normalized as
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“-a”r n(r)=2

The Green function corresponding to (5.1) satisfies the equation

{— mi—ivf + V(r)]tj:: (rt,r'0)=58"(r —r")s() (5.3)

ar  2m

where with appropriate boundary conditions:

G (re,r'0)=F —

D(H)tru(rr r'o;v), r=Y (5.4)

Wi

where O(t) is the step function. We write quite generally

3 -[“1 +U(E k::]
. —I T T,
d'K v 2

—(:? E

(27)"

G, (rr,r'0V) = I

(5.5)

We want to solve this equation for U/ in the limit Z — e . To this end (5.3) leads to

\

[2;{ | 2m|_

| .ﬁik’r_‘_[_,] ,

=ih -&e;k(r- I";'IE_ { 2m J[_ i-ﬁk_" B Ta{{J
()

2m ot
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LT reneo e ess (e o e o )

. (‘v’e‘*ﬂ ]_ (verk(r—r']] } + Ve ikl ) }

Khr .
Pk atr [ *“] n'k?  oU .
_ J' L k(o) L 2w {_ o= (5.6)
2z 2m Ot
We readily see that U satisfies the equation
A K !
v V——k.vu+—{vu) AL LT (5.7)
Car ™ 2m

with the boundary condition UJ,_,= 0. We are particularly interested in the integral
[d°r G, (re,x0;7) (5.8)

where the exp|ik (r—r")] in (5.5) becomes simply replaced by one. Since r and k in
(5.8) are merely integration variables, we have the liberty of making convenient

changes of these variables

To solve this equation we carry out the following changes of variables and

substitutions:

- ;;3 ? k= 2Z"K (59)
r 43 T
4 (r): ZH V(R), = 7 (5.10)
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¥

Equation (5.7) then simply becomes

L dU n? 3 b’ h
-2 i 2P R)-ZK o T ,U + 22 T (9,00 + P 2VRU =0 (512)
oT m 2m 2m
or
TR T eV U+ e (V,U) + TR (5.13)
ar m ZW3 2m 243 2m 743

When we take limit Z —» o the latter equation collapses to the simple equation:

U (@®)=0 (5.14)

ar

U =v(R)T (5.15)
where v(R) is independent of Z .

To find a bound on the sum of the negative eigenvalues of (5.1) for Z — oo, we start

with

GQ(I"T, r{};V)z J’ﬂe-i[“::wm]zﬂ]—.

o)

(5.16)

for Z — =, and consider the following elementary limit:
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a0

. 3 2 dr | LT
lim _[d rE ;[r _{_Hfh,,{l‘ﬂrﬂilf} (5.17)

L

To integrate the latter we use the residue theorem. Let & = Kﬁ ‘k 2!/ 2“}*‘ "{R}Z 4” }

For @ >0 we close the contour of integration in the complex 7 -plane from below to

obtain (Figure 5.1)

- L!rl' ilex|r ~0

e

Complex 7 -plane

Figure 5.1. The contour of integration in the complex 7 -plane is closed from below.
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For @ <0 we close the contour of integration in the complex T -plane from above

dr x| T ,
[ 4L el — 2
e T —IE

le _ N
o L e
—e

. =2m (5.18)
L T—lig

ar

+ Complex T -plane

Ti.ﬂ‘

Figure 5.2. The contour of integration in the complex T -plane is closed from above.

That is (5.17) is non-zero for & < 0.

1,2 43
mk L WR)E— <0

2mh h

- %1 "@ Z43
i |

k<
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[ 2mu(R).
k< |- —‘m"(g)z’”
I&]

which from (5.10) yields the following bound on |K|, with K denoted in (5.9)

K| {\;— 2mv(R) (5.19)
h

Thus equation (5.17) reduces for Z — = to

*?
=i —+v[R)|r
_.f?r_‘;_:_h |. 2m J

[ "

a kO
Id:’ri [ dLGD(rr,rD;V)—‘r jffjrij'{'f . J
2m T —iE 2m Qr) =r-ig

Emrve

L 67) fa’rz? [ |K[ dIK|

Q=) !

5 X2

2 () [dgﬂzzl(_ 2mv(R)
3@r)  Z nt )

2

ix \, h-

. _Z ]-a"’R( : MR)]H
2 l

=Z[d’R p(R)=Z (5.20)

where the factor 2 multiplying 7 -integrals is to account for spin. The 7 —integral

projects out the negative spectrum of h,for Z —wo.
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Equation (5.20), in particular, is of fundamental importance. It states that for

large 7, the Hamiltonian /, allowing for spin, has Z (orthonormal) eigenvectors
corresponding to its negative spectrum. Let gl[r,a},_..,gz{r,a) denote these

eigenvectors for large Z. Define the determinantal (anti-symmetric) function

D, (r|‘3r| s 50, ) = (2!)™ det [gu (rﬁ_._,crr,{ )] (5.21)

Since such an anti—symmetric function does not necessarily coincide with the exact

ground-state function of the Hamiltonian A for neutral atom, the expectation value
(@, [H|®, ), with respect to @, in (5.21) can only over estimate the exact ground

state energy £, of H or at best be equal to it

We rewnite the exact Hamiltonian equivalently as

ff:ihu+i ¢ _Ezij. d’r -n() (5.22)

- e i rﬂ - r',-jl|

where /4, is defined in (5.1) with variables r_,p, referring to the & electron, and

where we recall that the exact Hamiltonian 1s

7 2 2 7 2
H=%|Pe_ Ze” |, I (5.23)
asll 2m r, a<f|r, —rﬁ|

That 15,

(W ceae I’H| Bf’.-m:) =E; = (‘ﬁ(‘? Tyseea Mz 0, )I.H|'if’(rl’5| oMz 0y )} (5.24)
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where ®(r,o,,..,r,c,) is defined in (5.21), and ,,,., denotes the exact ground-state

wave function whose knowledge is not necessary.

Accordingly,

limZ "E, {Ilmé"l{tb \H|®,)

£ —p

=1limZ" ”Z{gm |g.)+limZ " F, (5.25)

&=z
=]

where
Z _[d rd’r’ nz (ro,ro)n(r)
Z J' | [nz(rcr ro, (r'er'e’)-|n, (ro,r'e’) (5.26)
n, (r-:r,r'f:r'}: i:gu (r,cr}g; {r‘?::r'} (5.27)
F, <—¢* '[dlrr d’r { (r [Z”/ (ro. I'D'}J LZ}’!?{I’O‘ ro ]L%nz[r o'\ r'o }ﬂ

(5.28)

where in writing the equality in (5.26) we have used the machinery developed in

Chapter I1I on expectation values with respect to determinantal functions.
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lim 7~ an (ro,ro)= lim 722 _[—G (rr.r0:¥ )= p,. (R) (5.29)
2mi-=r—ig
Ts z .
limZ7" 5 (g, h.|g.)= l1m[ ’ﬁzz,ﬂ]
=1 A<l
o 2 %t odr 8G,(rr,r0;V)
:1 Z 743 d'l = 0 ] 1 5-3

z j rEm' _{r—z‘r:l ks (5-30)

Where ZA in EZA 1s a sum over all the negative eigenvalues of 4 in (5.1)

A il Aai)

allowing for multiplicity but not spin degeneracy.

We can evaluate equation (5.30) explicitly upon using (5.16)

2 % dr 0GyrnrO¥) B fa zjd k {rﬁﬂ-z +v(;e}z“-"3\_

lim 7 3 _{ﬂ'!r P
Z—+x 2m L T—iE iks Z-peo ] 2m ' J
(_ Kip? S
o 'E]:i k - L{RJZ 43
\ 2mh J

=limz™7" Id Rz (47) j 7KK

)

h 74 1]{2 + {R}?43 | Il—zmbiﬁl\l
1 h 2 y-2mv{R) K1 \I'W
= -—-2- jdER{ == I Kddl{"‘V{R) I szl_{ }
2m M J
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W hﬂmfijgw_%ﬂﬂfﬂ

n | 3 h?
(5.31)
From
prr(R) = 3?1_2 [— ET}R}TE (5.32)
the expression on the right-hand side of equation (5.31) is equal to
BT ) (R, )
e IT—_“TJ; (R)ore (R) (5:33)
where
WR)=2%v(r) =2% [E ’ [|:—“;n(r)| (5.34)
and
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That 1s,

2 /3
V{R}:_.ﬁ..._:*g [z PrF(R ) 4 R'{ -
R R-R' | 77
E F’TF {R )st 55,

From (5.25)+5.30), (5.33), we obtain

drd’r'

'

"y (ro,ronlr)

£—ran ) i Z =30

lim Z 7E, < lim Z Jzz,t ~lim Z 7Y |

|

(5.36)

Tg-;i_r&,z ”Z [a}rrdrll‘ [n (ra,ra),(r'c’.r'a’)=|n,(ra,r'c’)

BT or g ) R g () R () (1)

10mz* R-R/|

d’Rd’R’

J |R R Pu( )PJ;’-‘(Rr}

372 )" d°R
lim ZPE, < nl [d°R pii (R)-e® [“——pp(R)
2 £ Yomr? / ) IR "

d’Rd4d’R'

W Pw( PTF(R) (5.37)

yE

The expression on the right-hand side of the above inequality is the coefficient of

7™ of the exact ground-state energy of the Thomas-Fermi atom developed in
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Chapter 11 (see equation (2.64)) and E, , here, denotes the exact ground-state energy

of atoms.
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Chapter VI

Lower Bound for the Exact Ground State

Energy of Atoms of Large Z (Z — )

We will use the detailed derivation of the lower bound for the Coulomb
potential given in Chapter IV to help us derive a lower bound of the exact ground-

state energy of atoms for large Z

Given any arbitrary real and positive function p(r), we have established in

equation (4.23) of Chapter IV that

Lo e P LY )3 e ([ )

< i .r - r-’;’i a=] |rr.|: = I‘| . 2 |r - 'r’|

(6.1)

where p(r) is real and arbitrary, i.c., may be chosen at will, to the extent that the

integrals on the right — hand side of (6.1) exist. We will conveniently choose it in such

away that p(r)— Z*p_ (R) for Z —» =, where pr(R) is the scaled Thomas-Fermi

density given in (2.37).
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We rewrite the total Hamiltonian of the multi-electron atom

P. Ze’ < 1
H=y| P2 D J—— (6.2)
“l2m or, afly — rml
as
H-Zﬁ;+lﬁ— —ez_[jr p) (6.3)
& |':|:{"‘:|'||rl:“I _rﬁ| |ra _r|
where
h; ; _‘|V_pﬂ‘ _£€ +€! J-ﬂ;: p{r} ‘ (64}
“ Lﬁm r, r, —r|
or
pz
e == +V'(r,) (6.5)
2m
with

)2y g 2

¥ r, —rl

@ LR 4

The index « refers to the labeling of a” electron in the atom. ¥'(r,) is a Thomas-
Fermi-like potential and will coincide with it only when we take Z — oo with pl(r)

conveniently chosen. ¥'(r) may be chosen to be locally square integrable and such
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that ¥'(r) >0 for r —> . Let W be a normalized anti-symmetric function in

(ro\,...r,c,). Then (6.1) implies that

rd’r’ N3 s 2 2 /3 :
WlHlv) 2 (IS lv) =5 [T Tmpbel )32 220 () 6

r—r

since

LR 3 dir dir ,
H=2Y Pa _Ze J-a'_r,ir} 1. I;-p{r)p(r)

=\ 2m  r Ik, —rl ) 2 F—r

_;H.,.qzz,.-_xezUﬂ,zrp:(r))’-’j (6.7)
2

k| i s
=Sh L j”’ rd Lp(r)p(r')_Efrwz:-’-‘e-*(J’dirp'-’(r))"“ (6.8)
- Ir—r’ 2

Consider the lowest energy E for the Hamiltonian Zh; . Pauli’s exclusion

a

principle comes to the rescue here. Concerning the Hamiltonian Zﬁ; ,the Z “non—

"

interacting” electrons, but each interacting with an external potential ¥’ can be put,

according to Pauli’s exclusion principle, in the lowest energy levels of Zh;

a

(allowing for spin degeneracy) if Z is < the number of such available levels. If Z is

larger, then the remaining free electrons should have arbitrarily small kinetic energies

to define the lowest energy of >k, . In either cases, E > 2> A, where A4 is
o A=l A<D

defined as before, below equation (5.30), now applied to &',
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Accordingly,
lim Z Py |Hly) = limK, (6.9)

where

2 % dr 8G,(rr,r0V") . el dirdir
K :Z T3 11'3- = i s 0 3 LA /3 - .
‘ Js rz;zi_;Er—iE ot ‘ 2 I r—r| P ()olr’)
3 sy 13

and Gc,(rr,r(};V’} is defined as before, now corresponding to the potential ¥’ in

(6.5), and where we have used the equality on the extreme right-hand side of (5.30)

Since the right-hand side of the inequality (6.9) is independent of y, this
mequality is true with y corresponding to the ground—state function of 4 as well, ie.,

with (w|H|y) corresponding to

min{y |H|y) = E, (6.11)
That is
lim Z7RE, = lim K, (6.12)

as well. To the extent that p(r) is arbitrary we choose it conveniently to be given by

pr)=72 pyr (R)1 -7 | (6.13)
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where @ > 0 is an arbitrary scale parameter, and

lim p(r) = 27 p,. (R) (6.14)

£

We recall from Section 2.3 that

1 .
Pre(R) ~ — (6.15)
R—0 R
1
Pre(R) ~ — (6.16)
B R

The factor (I—CXP—ZRR}]"T will ensure the integrability of the last integral on the

right-hand side of (6.10). We estimate the latter for 7 — o0 as

%;‘rm ;:;?[J.dFRPFZ'F (RX] g 7ak )]1.-'3

13
5%::‘-”352[ J'a.’E‘R Rp R]+£— J [d°Rpi. (R % [d*Rpj, (R)

aR<l/Z Z IzaR=1{Z ~ Rzl
(6.17)
where we have used the rigorous bound

l—e%ef <1 ez max{zf )

giving the coefficients
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to the second and third integrals, respectively, in the square brackets in equation

(6.17).

From (6.15) the second integral on the right-hand side is at worst logarithmic

in Z . Hence the last term on the right-hand side of (6.8) vanishes for Z —» = . Since

—[lﬂe'm’? )3—1, the second term (with the minus sign) on the right-hand side of

(6.10) is bounded below by

2 Il

Now we can find a lower bound to the exact ground state energy E z for Z 5w,
From

r = - _r/rf
2¥ A= [ddr = [ 42 ;0G(re.r0:1)

ien 24 L T—is or

and from (6.10)-(6.18) we have

w2 drd’r ,
limZ "E, > limZ7P2Y 4 - Liim 272 _[—r -,—_rp{r}p{r]

Z=ym Z—m A< 2 Zom !r-.r |

K d°R d’Rd°R' ,
Eﬁnj Rp; (R)-é’ J z P (R)+* I— Pre(R)ps (R)
1 d’R d°R'
T 2.{ |R (R| Pre R)PTF(R} (6.19)

where we have used (6.18) and (5.33).
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That is
. 213 (32252 d°R 1 5 d'Rd'R’ ,
7[.1_130102 CE, 23 1O j'f.r’jl-l p;:; (R]—ez _{ R Prr {R} : Ee | i—R_R—rI:pTF (R)p”. (R7)

(6.20)

Again the expression on the right-hand side of the ahove inequality is the coefficient
of Z77 of the exact ground-state energy of the Thomas-Fermi atom developed in

Chapter II (see (2.64)), and E , here, denotes the exact ground-state energy of atoms.
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Chapter VII

Conclusion

The conclusion of our research investigation follows by tracing back our
derivations of upper and lower bounds to the exact ground-state energy £, of neutral

atoms for Z — oo We first reconsider our derivation of the upper bound for £, . The

exact Hamiltonian of neutral atoms
1= %[ P ZW e
- e - 4 = 11
; 2m o F Z (1.1

was re-wrilten as

z £ g - d'r
H :-ZP}.D +Z‘ I—-ce‘ZJ’- —— n(r) (5.22)
o=l a<f|l, — rﬁg; ar=1 |ru- ) ]"!
where
hn:p—‘;—;e—‘+ezj—d-r n(r} (7.1)
2.??’1 rrl |r|:r _rl.

and & denotes the labeling of the electrons, and n(r) is the Thomas-Fermi density

normalized as

-‘-cfjnr(r):-- z (7.2)
K4

For Z >, the * Hamiltonian” 'k, was shown to have Z eigenvectors
=

corresponding to its negative spectrum. The expectation value of the exact

Copyright 2000 Suranaree University of Technology



66
Hamiltonian H in (1.1) with respect to the determinantal function constructed out of
these Z eigenvectors can only over estimate, or at best be equal to, the exact ground-
state energy E, of H. By considering the expectation value of H, with respect to the

determinanatal function just discussed, and by a systematic analysis, in the process, of

scaling properties of integrals involving the one-body Green function corresponding

to the * Hamiltonian” k, defined in (7.1), we have derived the following upper bound

in Chapter V:
i f R
}i_m_Z'T”E'z Egﬂi)z—hz _{dJRp;’;{R}—ez '[dR o (R)
L= T
2 d'Rd’'R ,
+'62 ] |R_'PWPFF(R}JDTF(R} (5.37)

where p,,(R) is the scaled Thomas-Fermi density in (2.37). The expression on the
right-hand side of the above inequality is exactly the coefficient of Z™ of the
ground-state energy of the Thomas-Fermi atom (see (2.65)).

To derive a lower bound for F,, we have first derived in Chapter VI, the

following lower bound for the exact Hamiltonian H in (1.1):

rd’r 3 o af T
H=Yh, - L J.E rdr pr)plr)-- x""Z‘-"eJUd"rp‘ (r)) (6.8)
i 2 lr—r| 2
where
;
W= P, _Ze | jdﬂr:ﬂ (6.4)
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and p(r) is real and is otherwise an arbitrary function of r. We have conveniently

chosen

p)= 77 pre (RY1 - % )" (6.13)

where @ >0 is an arbitrary scale factor, and p,.(R) is the scaled Thomas-Fermi

density. The factor (1—e % )I";J provides an important convergence factor (see (6.17))
and most conveniently approaches 1 for Z —» . By using the lower bound on A in
(6.8), using the definition of the function p(r) in (6.13) and deriving, in the process,
important scaling properties of integrals involving the one-body Green function
corresponding to the “Hamiltonian™ A, in (6.4), we have obtained, in Chapter VI, the

following lower bound:

3 £
limZz "E, >]|m,4' EZA——1H1K“3IJ‘ﬂp(I’]p(ﬁ}

E—pm P 2 F—x |r —r'

NEIN

10mx’

d'R L ed’RAR )
P (R)=e* [ = pr (R) 4 [ mp e (R}, (R)

d'Rd’R'
R-R|

1

——ej

PrE (R Prr (H ]

353ﬂ>
BT g ) R (1) [CRER (a0

10m7" |R R|

(6.20)
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Upon comparison of (5.37) and (6.20) above we have established without tears

the basic result stated in our thesis. That is, limZ"E, = £, , where E, is the exact
£ —os -

ground-state energy of atoms.

The method of investigation carried out in this work is expected to have
applications in one of the most intriguing problems in theoretical physics: in the
problem of “Stability of Matter.” That is, why matter is stable and does not collapse

with us and around us!

Copyright 2000 Suranaree University of Technology



References

Arfken, G. B. and Weber, H. J. (1995). Mathematical methods for physicists.
(4"ed.). San Diego: Academic Press.

Baumgartner, B. (1976). The Thomas-Fermi theory as result of a strong-coupling
limit. Comm. Math. Phys. 47: 215.

Bethe, H. A. and Jackiw, R. (1993). Intermediate quantum mechanics (3" ed.).
Massachusetts: Addison-Wesley.

Bransden, B. H. and Joachain C. I. (1995). Physics of atoms and molecules. London,
England: Longman.

Dreizler, R. M. and Gross, E. K. U. (1990). Density functional theory. Berlin,
New York: Springer-Verlag.

Dyson, F. J.(1967). Ground-state energy of a finite system of charged particles.
Journ. Math. Phys. 8: 1538,

Dyson, F. J. and Lenard A. (1967). Stability of matter I. Journ. Math. Phys, 8: 423,

Dyson, F. J. and Lenard A. (1968). Stability of matter II. Journ. Math. Phys. 9: 698.

Englert, B. G. and Schwinger, J. (1984a). Statistical atom: Handling the strongly
bound electrons. Phys. Rev. A 29: 2331,

Englert, B. G. and Schwinger, J. (1984b). Statistical atom: Some quantum
impovements. Phys. Rev. A 29: 2339,

Fermi, E. (1927). Un metodo statistico per la determinazione de alcune priorieta

dell’atome. Rend. Accad. Naz. Linzei. 6: 602.
Copyright 2000 Suranaree University of Technology



71

Fermi, E. (1928). A statistical method for the determination of some atomic properties
and the application of this method to the theory of the periodic system of
elecments. Z. Phys. 48: 73. [A translation into English may be found in March
(1957)].

Fetter, A. L and Walecka, J. D. (1971). Quantum of many-particle systems. New
York: McGraw-Hill.

Gombas, P. (1949). Die statistischen theorie des atoms und ihre anwenodungen.
Berlin: Springer-Verlag.

Hohenberge, P. and Kohn, W. (1964). Inhomogeneous electron gas. Phys. Rev. 136
BE64.

Kohn, W. and Sham, L. J. (1965). Self-consistent equations including exchange and
correlation effects. Phys. Rev, 140: A1133.

Lieb, E. (1976). The stability of matter. Rev. Mod. Phys. 48: 553,

Lieb, E. (1981). Thomas-Fermi and related theories of atoms and molecules. Rev.
Mod. Phys. 53: 603.

Lieb, E. (1991). The stability of matter from atoms to stars. Berlin, New York:
Springer-Verlag.

Lieb, E. H. and Simon, B. (1973). Thomas-Fermi theory revisited. Phys. Rev. Lett.
31: 681.

Lieb, E. H. and Simon, B. (1977). Thomas-Fermi theory of atoms, molecules and
solids. Adv. Math. 23; 22.

Manoukian, E. B. and Bantitadawit, P. (1999). Direct derivation of the Schwinger
quantum correction to the Thomas-Fermi atom. Int. Journ. Theor. Phys. 38:

897,
Copyright 2000 Suranaree University of Technology



=)
[ 3]

Manoukian, E. B. and Osaklung, J. (2000). Derivation of the Z — < limit for atoms.
Progr. Theor. Phys. 103: (No. 4) ( in press).

March, N. H. (1957). The Thomas-Fermi approximation in quantum mechanics. Adv.
Phys. 6: 1. A Quarterly Supplement of the Philosophical Magazine.

Morgan, J. D. and Drake, G. W. (ed.). (1996). Atomic and molecular handbook.
New York: American Institute of Physics.

Parr, R. G. and Yang, W. (1989). Density-functional theory of atoms and
molecules. New York: Oxford University Press.

Rickayzen, G. (1980). Green’s functions and condensed matter. London. Acadamic
Press.

Schwinger, J. (1961). On the bound states of a given potential. Proc. Natl. Acad. Sci.
(US.). 47: 122.

Schwinger, J. (1980). Thomas-Fermi model: The leading correction. Phys. Rev. A22:
1827,

Schwinger, J. (1981). Thomas-Fermi model: The second correction. Phys. Rev. A24:
2353,

Schwinger, J. (1993). The Greening of quantum field theory: George and 1. Lecture
given at Nottingham. July 14. (hep-ph/9310283).

Scott, J. (1952). The binding energy of the Thomas-Fermi atom. Phil. Mag. 43: 859.

Teller, E. (1962). On the stability of molecules in the Thomas-Fermi theory. Rev.
Mod. Phys. 34: 627.

Thomas, L. H. (1927). The calculation of atomic fields. Proc. Camb. Phil. Soc. 23

524,

Copyright 2000 Suranaree University of Technology



Thirring, W. (1981). A course in mathematical physics (Vol4), New York:

Springer-Verlag.

Copyright 2000 Suranaree University of Technology



74

Biography

Miss Jarin Osaklung was born on 7% February 1977 in Kalasin, Thailand. She
graduated with a High School Diploma from Kanarat Bumroong Pathumtani in 1993,
She later went to study in the Department of Physics, Faculty of science, at Kasetsart
University, where she graduated with a B.Sc. Degree in Physics in 1997, After that
she decided to study for a Master’s degree in the School of Physics, Institute of

Science, Suranaree University of Technology.

Copyright 2000 Suranaree University of Technology



	Copyright: 


