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The 40 MeV electrons from the Linear Accelerator (LINAC) pass through
the Low-Energy Beam Transport Line (LBT) and reach the Booster Synchrotron
(SYN). Then, the electrons are accelerated to 1 GeV, kicked out from the Booster
Synchrotron into the High-Energy Beam Transport Line (HBT) and finally injected
into the Storage Ring (STR).

The electron beam dynamics and characteristics of the accelerator complex
of the Siam Photon Source have been studied. First, the characteristics and motion of
electrons in circular accelerators are described analytically. Then, the parameters
characterizing the accelerators are calculated numerically with programs LATTICE
and BETA to the first-order approximation. In the numerical calculation, the gradient
fields of the quadrupole magnets are varied until the desired beam characteristics are
carried out. The results of calculations are displayed both numerically and
graphically. For the Storage Ring, the dynamic aperture is simulated.

In this thesis, not only the beam dynamics and characteristics of the electron
beam in the Storage Ring but also the paths from the Low-Energy Beam Transport
Line, the Booster Synchrotron, and the High-Energy Beam Transport Line are

considered.
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Chapter I

Introduction

1.1 Siam Photon Project

The Ministry of Science, Technology and Environment of Thailand started the
Siam Photon Project in early 1996. For implementing the project, the National
Synchrotron Research Center (NSRC) of Thailand was established in May 1996. The
Center received an accelerator complex for a synchrotron light source from SORTEC
CORPORATION. The components of the dismantled SORTEC ring and its injector
system arrived at NSRC in January 1997. It is now installed in the Siam Photon
Laboratory of NSRC which is located in the campus of Suranaree University of
Technology. This light source, named as the Siam Photon Source, is the first light
source accelerator in Thailand.

In the Siam Photon Project, the SORTEC ring is modified so that the beam
emittance is reduced and the insertion devices can be installed. Therefore, lattice
structure is changed from quadrupole doublet lattice to double bend achromat lattice
(DBA) and the ring with four long straight sections is built. The Project aims at
promoting the scientific research based on spectroscopic methods in the vacuum
ultraviolet and soft x-ray (VUV-SX) region in the first stage, and later the applications
of x-ray from the superconducting wiggler will be considered. Also, applications of
synchrotron radiation to the development of the new technology will be considered.
The Project is promoted as a part of the human resources development plan. Young
scientists and engineers will be trained in various fields of technology, beam line
optics, measurement technology and practical technology, and various fields of
accelerator physics (Pairsuwan, W. and Ishii, T., 1998). More specifically, the Siam
Photon Project is summarized as follows:

I A 1.0 GeV electron storage ring with four long straight sections for
insertion devices will be constructed. Future up grade of the electron
energy to 1.2 GeV is considered.

2 Beam lines and experimental stations for advanced spectroscopic studies
on gases, solid, materials, surfaces and interfaces will be built.
Experiments are planned as follow:

2.1 Spin- and angle-resolved photoemission.

2.2 Soft x-ray fluorescence.

2.3 Magnetic circular dichroism.

2.4 Photoelectron-photoion coincidence measurements.

2.5 Two-color experiments by simultaneous irradiation with laser and
synchrotron light.

2.6 High-resolution spectroscopy of gaseous atoms and molecules.



3 Conventional beam lines for routine photoabsorption experiments and
radiation biology will be built.

4 A beam line for basic researches on metrology using synchrotron radiation
as intensity standard of light and on microlithography and
micromachining will be built.

5 The installation of superconducting wiggler magnets is considered. Beam
lines will be built for x-ray experiments associated with:

5.1 Protein crystallography

5.2 X-ray microscopy

5.3 Applications to metallurgy and mineralogy
5.4 X-ray microanalysis

1.2 Siam Photon Source

The Siam Photon Source consists of the following component accelerators, an
injector linac, a booster synchrotron and beam transport lines, a low-energy beam
transport line, high-energy beam transport line, as shown in Fig.1.1:

| oY
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Figure. 1.1 Layout of component accelerators in the Siam Photon Source

1.2.1 Injector Linac (LINAC)

The injector of the SORTEC facility is used in the Siam Photon Source
without modification. The injector linac is shown in Fig.1.2. The linear
accelerator, abbreviated as LINAC, is about 9.5 m long. A pair of acceleration
tubes is used in the linac, the length of one acceleration tube is 2.3 m. The RF
power to the tubes is supplied by a Klystron, PV-3035, maximum output
power is 35 MW. In this thesis we will not simulate the electron beam in the



LINAC, so some designed parameters of the SORTEC system are used in
simulation of other paths. The electron beam is accelerated to 40 MeV with a
large current of 60-80 mA. The electron beam has properties as the low energy
dispersion, energy width Ag/€ of 0.7 %, and a low emittance of 700 nm rad.

LINAC is installed in an underground room.

Fig. 1.2 Injector Linac

1.2.2 A Low-Energy Beam Transport Line (LBT)

The low-energy electron beams, 40 MeV, from LINAC are led to the
booster synchrotron. This path is, therefore, called the Low-Energy Beam
Transport Line, abbreviated as LBT. The LBT is located between the injector
linac and the booster synchrotron. The LBT of SORTEC system is used
without reformation, but the new beam position monitors comprising of
fluorescent screen monitors are used. LBT is shown by Fig 1.3.

1.2.3 A Booster Synchrotron (SYN)

The synchrotron of SORTEC system is also used without modification
in the Siam Photon Source, which receives electrons of 40 MeV from LBT and
accelerates them to 1 GeV. Therefore, it is called the Booster Synchrotron,
abbreviated as SYN. It is shown in Fig 1.3. The circumference is 43.19 m. The
lattice structure is FODO type. The yokes of the bending and quadrupole
magnets are made of laminated silicon steel plates of 0.5 mm thickness. The
inflector magnet and four bump magnets are used for beam injection. The 118
MHz RF acceleration cavity is of reentrant type and made of copper. The
details of the synchrotron are discussed in Chapter III.



Fig.1.3 A Low-Energy Beam Transport Line (LBT) and Booster Synchrotron (SYN)

1.2.4 A High-Energy Beam Transport Line (HBT)

This path is located between SYN and the storage ring. The 1 GeV
electrons from SYN are transported through the high-energy beam transport
line (HBT) to the storage ring. Because LINAC and SYN are installed
underground and the configuration of the storage ring is modified, HBT is
newly built. The inflector magnets and bending magnets deflect the electron
beams. The electron beams are deflected of 17.5° in the vertical plane and
deflected twice in the horizontal plane: first by 4° at a 5.1 m point away from
the injector magnet of the storage ring and second by 2° at an about 1.7 m
point from the inflector. The details are also discussed in Chapter II1.

1.2.5 Storage Ring (STR)

A storage ring accumulates and stores electrons that have been
accelerated and transport them from the injection system to produce the
synchrotron light. The SORTEC ring has a beam emittance about 500 nm Tt
rad. It is not necessary to have a small beam size, because it was optimized for
microlithography. To reduce the emittance and install insertion devices, the
storage ring is reformed as:

- The lattice structure is changed from the quadrupole doublet lattice
to the double bend achromat (DBA) lattice. To fulfill this
modification, the quadrupole magnets and the sextupole magnets
are increased.

- Four long straight sections are built to install the insertion devices,
three undulators and a superconducting wiggler will be installed.

- New vacuum chambers will be built.



The STR circumferences 81.3 m, the structure of the lattices are discussed in
details in Chapter IIl, and important parameters of the modified ring are
calculated in this thesis.

Not only these, all of the machine control system was newly built. This is
because the control system of the SORTEC machine is too old and inadequate for
controlling the new machine system. The maintenance of the old system is not easy.

In order to force the high-energy beam to move in the desired direction and to
confine the beam in the space near the ideal orbit, the locations and sizes of magnets
and associated magnetic fields should be known. In addition, necessary collection
such as chromatic collection should also be known. The electron beam motion in a
given magnet structure is called the beam dynamics. In this thesis, numerical
calculation will be carried out by the computer codes, LATTICE and BETA. We
obtain the characteristics of the electron beam with various parameters calculated with
these programs.

1.3 Beam Dynamics

Beam dynamics is the word for calling the revolution of particle trajectories
under the influence of Lorentz force. In this thesis we will discuss the theory of linear
beam dynamics, the mathematical description of particular trajectories in the presence
of only the linear field.

After electrons are accelerated and transported from the injection system, the
electrons are stored in packets called bunches which are held together in the direction
of motion by the bunching effect of the radio frequency system in RF cavity. Since
the injected electrons are displaced with respect to the ideal orbit, the betatron
oscillations around this orbit occur in transverse directions. The electrons lose energy
due to synchrotron radiation and their energy losses are compensated in the RF cavity.
This loss and gain of energy causes the synchrotron oscillations. The electrons
circulate inside a vacuum chamber in which a high vacuum is maintained. The
chamber is delimited by metallic wall. The bending magnets curve the electron
trajectories and the focusing magnets, quadrupole, keep them close together in the
plane perpendicular to the direction of motion.

Obviously, it is essential to carry out the electron beam dynamics analysis in
designing an accelerator. Thus, we need to perform the beam dynamics calculation for
the new magnet lattice in the Siam Photon Source. In this thesis, the calculation is
implemented. In what follows, simple analytic parts of the beam dynamics are
described. The change and characteristics of the beam are expressed by the basic
equation of motions which are described in reference system, ideal orbit, with an
azimuthal axis tangent to the orbit, and the transverse horizontal and vertical
coordinates, lying in the plane perpendicular to the ideal orbit. The betatron
oscillation is used to describe an oscillation of the electrons around the ideal orbit.
The Courant-Snyder invariant, the Twiss parameters and the phase ellipses are used to
characterize the electron beams. For each element of the transport, the transformation
matrix conveniently describes the system.



1.4 Purposes of the Work

In this thesis, the calculation is limited only to the case of the ideal arrangement
of the magnetic field. Thus, the field error arising from magnet misalignment,
mechanical imperfection and energy spread at the time of the beam injection are not
taken into account. The effect of correction fields, such as those of sextupole and
steering magnets are not introduced in the calculation explicitly. These correction
fields are considered only to make bending and focusing fields to be ideal and perfect
and assumed to be involved in the perfect fields. In this sense, the data to be obtained
here is not realistic. However, the data will provide us with the basic characteristics
that are necessary in designing the magnet lattice structure as the starting point.

The purposes of this work, therefore, are to study the beam dynamics
summarized as follows:

1.4.1 Describe the analytical part of the electron motion in a storage ring.

1.4.2 Calculate the important beam parameters.

1.4.3 [Illustrate the beam size and dispersion function graphically. They are
the [3 function (betatron function) and the 1 function (dispersion).

1.4.4 Illustrate the dynamic aperture.
1.4.5 Calculations will be carried out for LBT, SYN, HBT and STR.



Chapter 11

Electron Motion in a Storage Ring

2.1 A General First-Order Theory of Beam Transport
Matrix

2.1.1 The Coordinate System

In order to describe charged particle beam dynamics we must choose the
appropriate coordinate system to maximize physical clarity and minimize
mathematical complexity. So the reference plane should be imposed on the
field configuration that will be designated as the magnetic midplane. The
magnetic midplane is defined as the reference plane with which the magnetic
scalar potential ¢ shall be an odd function in the transverse coordinate Yy, i.e.,
d(XY,S) = —¢(x-Y,S). We suppose a particle in the ideal trajectory toward
the directions, see Fig.2.1. The ideal trajectory lines on the magnetic midplane.
The radius of curvature of the ideal trajectory, p,, in its bending part is given

as:
I:)O

“eg

Here, B, is the strength of the magnetic field that is perpendicular to the

Po @.1)

magnetic midplane, and P, is the momentum of the particle on the ideal
trajectory. Obviously, p, is equal to the radius of the circular orbit of the
charged particle moving in a uniform magnetic field directed toward the y
direction.

In Fig.2.1 R is the position vector of the electron and O is the origin.
We use the coordinates (X, Y, S) , variable S is the coordinate vector that is the

arc length measured along the ideal trajectory and Yy is positive on the upward
side of the magnetic midplane while y is designate of negative for downward.
Coordinate vector X may have any direction as long as the X direction is
orthogonal to S and Yy, X is the distance from the ideal trajectory in the median
plane. In other words, X,y and S form the right-handed curvilinear coordinate
system. Since the ideal trajectory is known and fixed, we are only interested in
the deviation of the individual particle trajectories from the ideal trajectory. This
path is called individual trajectory.



dR Individual trajectory

Ideal trajectory lines on
magnetic midplane

Magnetic midplane

Fig.2.1 Coordinate system (Brown, K. L., 1982)

To bend and direct the charged particle beam close to the ideal
trajectory, a dipole magnet is used. We indicate the static magnetic field of the
bending magnet by B, the velocity vector of the particle by v and the charged
of the particle by e. We may write the relation of the time rate of the change of
the momentum P according to the Lorentz force as:

% =e(vxB) (2.2)

Comparing the partial differential of equation (2.2) with the partial differential
of coordinate vector R. By expressing the equation in terms of dR/dR (the
unit tangent vector of the trajectory) and d’R/dR?(the deviation of the unit
tangent vector) and S is the distance transversed (see Appendix A for details),

we expect the momentum to be constant. Note that S :IdR. We obtain the

equation of motion in the form of:

" l R’ d 2 e ] ]
R'"-————(R)"==—R(R' xB 2.3
2 (Ry? as R = p R(R'*B) (2.3)

We use the prime to indicate the operation d/ds. Then, we substitute the
coordinate vector dR = xdx+ ydy+ (1+ hx)Sds (see Appendix A, (A.6)). Here
X,y and S are unit vectors in the X,y and s directions, respectively. (see

Appendix A for details), we obtain the general equation of motion in the form
of:



I

X
B¢ — h(L+ hX) = (XX" +yy" + (L + %) (' + h'x)) X +
0 (R)? ( )D

n y, . n /) I 1
- xX'X" + +(1+hx) X' + h'x +
E}, oy G VY + @) 6 ))EV
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U
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e o 3 e _, U
_%R(yss (1+hx)By)§?+§5R(ﬂ-+hX)Bx XBS)@

(XX" +yy" +(L+hx) Ox + h’x))gﬁ (2.4)

€ o
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Note that in this equation form, the equation of motion is still valid to all orders
in the variables X,y and their derivatives. If we approximate

1
(R)?

=1-2hx+. . and keeping up terms only to the second-order we obtain:

X" =h(@l+hx) = x'(hx" + h'x) = ° R(yB, -(1+hxB,)
P (2.5)
Y = y(h +h) = S R(L+ 9B, - XB,)

So far we have used the ideal trajectory as the reference trajectory. For the ideal
trajectory X, ¥, X, Y, X" and y" equal to zero under this condition, we obtain:

e
h=—B,00s) Or B,p,= (2.6)

0

@ |50

If we put B, = B, we obtain equation (2.1). Equation (2.6) is well known as the
beam rigidity.

2.1.2 First and Second-Order Expansion of a Magnetic Field

In the coordinate system, we have already chosen the reference trajectory
on the magnetic midplane. The magnetic scalar potential is an odd function in
direction y, @(X V,S) = —@(x,—Y,S). This is equivalent to saying that on the
midplaney =0, the components of the magnetic fields are such that
B, =B, =0 and only B, remains nonzero (see Appendix B). In other words,
on the midplane B is always normal to the plane. For the particle in the vacuum
the magnetic field, B, may be expressed by the relation B =@, and ¢@

derived from Laplace equation (we omit the minus sign for convenience since
we are restricting the problem to static magnetic fields):
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0% =0 (2.7

Finally, the expression for the magnetic field components may be expressed in
the forms of (see also Appendix B):

B,(X V,S) = Epe—"@—nhzy+ 2Bn%xy+. ... ]
B,(X Y,5) = EP—"@h+ —nkex + Bnex? —%(h" SR 2B +. .. (2.8)
e

B.(X V,S) = @P—O@(h’y— (Wh? + 2nk + h)xy+. . ).
e

where P, is the momentum of the ideal trajectory.

2.1.3 Equation of Motion to Second-Order

Combining equation (2.5) and equation (2.8) we obtain:

X" =h(1+hx) = x(hx" + h'x) = % R{ (L+ hx) Fh+nhx - Bh°x?)

+%(h” R+ 28)Y A hy 4. .. (2.9)

y' =y (hx' + h'x) = % R{-xhy-(1+hx) hh*y -28n°xyj +. . . }
Let
— 0 =1-5+07+.. (2.10)
And we have
1
2

Rr — [X:2 + yrz +(1+ hX)Z]

Substituting them into equation (2.9) we obtain the expression of the equation of
motion to the second-order as:

X"+(@-n)h’x=hd +(2n-1- B)N*xx’ + h'xx' + % hx'?

#(2-NNXG + (0 ~nbf + 2p7)y" +yy —hy”

-hd? + hi gheor det er s (2.11)
y" +nhfy = 2(B - n)h®xy+ h'xy' — h'x'y + hx'y’ + ni?yd

+hi gheor det er s
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From this equation, the equation of motion for the first-order terms may be
extracted as:

X"+ (1 -n)h’x = ho

(2.12)
y' +nhfy=0
where d may be approximated as being equal to AP/P, where AP =P - P,
(see equation (2.10)).

Consider the case of quadrupole field. Because the interior of the
quadrupole (Fig.2.2) field is current-free, one can define the scalar magnetic
potential which can be calculated with Laplace equation in two dimensions.
Assuming that the length effect is negligible, we derive the ideal quadrupole as:

Fig.2.2 lllustration of interior of the quadrupole magnet

Solving the Laplace equation in the cylindrical coordinate, we obtain the scalar
potential of the pure quadrupole field as:

2
o= ysi o = Boxy
a a

2
where B, is the field at the pole, a is the radius of the quadrupole aperture and

r and 6 are the cylindrical coordinates (see Fig.2.2), respectively. From
B = @, we obtain the constant gradient field as:

9B, _B_ _nthP_o@ 2.13)
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If we define the quantity qu as follows:

(2.14)

Then, substitute equation (2.14) into (2.11), in case of quadrupole h—-> O,
h' >0 we find that the equations of motion up to second-order for a pure
quadrupole are:

X"+ k?x = k?xd
X =k (2.15)
y' - K3y =-k;yo

This equation is useful in the matrix elements for the pure quadrupole.

2.1.4 The Solutions of the Equations of Motion

Equation (2.12) is the first-order equation of motion of charged particle
in the magnetic static field. The solutions are presented in Appendix C. The
Taylor expansion and the boundary conditions are used to express the first-order
solutions in the forms:

X= Z (X|Xopo6 Yo 0 )X%oYoXo Yo O
Y= (Y%eYoXo Yo O )% Yo% Yo O

X= CxXO +SXXO +r’x5

‘ (2.16)
Y=C,Yo +S, Yo

where
(X|X0) =cC, (X|X?) =Sy (X|5) =« (2.17)
(y|yo) = Cy (X|y0) = Sy

The symbols shown by parameters are the Taylor expansion coefficients of the
first-order. We assume that the solutions X and y are given by the Taylor
expansion as to parameters X,, X, Yo, Yo and 0. J is defined in the expansion
shown in equation (2.10). For general expressions, see Appendix C. When we
insert these solutions into the equation of motions and then compare the
coefficients of Xy, X, ¥y, Y and O, we find the differential equations, both
homogeneous and inhomogeneous forms. For homogeneous equations, after
deriving with boundary conditions, we find that the coefficients of Taylor’s

expansions are in forms of cosine like solutions and sine like solutions, namely
(see Appendix C for detail):
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c.(S) =cok,s S, (s) = (ki)si K. S
1X (2.18)
c,(s) =coks s,(s) = (k—)si K,S
y
And for k,, k, with negative values:
1, .
c.(s) =coslk,|s s.(s) = (W)SI nk,|s
1* (2.19)
c,(s)=cosfk|s  s(9) :(W)si nk,|s
y

where ki =(1-n)h? and ki = nh’. At this stage, we are only interested in the

positive Kk, K, because both forms are similar. For the inhomogeneous equation

Green’s function method is used. The particular solution of the inhomogeneous
equation is expressed by (see Appendix C, (C.14), (C.15)):

N, =8,(9) M) (D)dT —c,(, h(D)s, (1)t (2.20)

Using equation (2.18), we assumed that h(7) is constant. Finally, the solutions
are expressed by:

n, :k—hz[l—coskxs] :k—hz[l—cx] (2.21)

X X

where K, is positive value. The function of 1, is called dispersion function. The
physical interpretation is simply that the particular solution of the equation of
motion, (see equation (2.16)),n,0 , determines the offset of the trajectories of
the particles with a relative energy & from the ideal trajectory. We note that the
right side of the equation has the term of h=1/p,, ie., the first-order

dispersion is generated only in regions where the ideal orbit is deflected, in
dipole magnet or bending magnet.

2.1.5 The Transfer Matrix R

So far the first-order solutions of the equation of motion have been
expressed in terms of the coordinate system (X, Y,S). To facilitate matching
boundary conditions between the various components comprising a beam
transport system, we transform this coordinate system to the rectangular
coordinate system (X, Y, z), as shown in Fig.2.3. And introduce the angular
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coordinates 8 and ¢, defined as follows (use approximation tam =6 and
tamp=g):

pox X _ X
:z z’ (1+'hx) (2.22)
qo:_y:l’: y

Using these definitions, equation (2.16) and their derivatives (may be see in
Appendix C, C.2), we may express the solutions of the equation of motions for
X,0,Y,¢ and O in terms of rectangular coordinate system. The expressions

X,0,y,¢ and O at the end boundary of a system as a function of initial
variables are given below:

X = (X%y) X, + (X6,)6, +(X5)S
0= (9|X0)Xo + (9|90)90 + (9|5)5

(2.23)
y= (Y|yo)yo + (Y|(po)(po
Q= ((qyo)yo + (‘ﬂ(po)%
X=CX, +S06,+n,0
6=cx +s06,+n.0
xXO X~ 0 r’x (224)

Yy=CY, +S,¢
@=CyY, +S,%

where
©)%)=c,, (66,)=s,, (¢dy,)=c,, and (@@)=s,

It is useful to regard the equations as these which treat charged particle motion
through a system of magnetic fields by the matrix multiplication. To describe
the characteristics of such particles, any specified position of an arbitrary
charged particle is represented by a single column matrix X, whose
components are the positions, angles, and momenta of the particle with respect
to the ideal trajectory.
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~

S
ideal trajectory

Fig.2.3 Rectangular coordinate system

X=0n0o (2.25)

Here the definitions are:
X: The horizontal displacement of a beam with respect to the
ideal trajectory.
0 : The angle that the beam makes in the horizontal plane with respect to the
ideal trajectory.
y: The vertical displacement of a beam with respect to the ideal
trajectory.
@: The angle that the beam makes in the vertical plane with respect to the
ideal trajectory.
| : The path length difference between the beam trajectory and the ideal
trajectory.

0= %: The fractional momentum deviation of the beam from the ideal

trajectory.
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The trace of the three-dimensional vectors (X, Y, z) forming a part of vector, for

a given particle, generates a beam. Suppose X the initial coordinate vector is
represented by X(0). It can be transformed to the final coordinate vector, X,

by the transfer matrix, R, namely:
X = RX(0) (2.26)

The traversing of several magnets and interspersing drift spaces are described
by the same basic equation (2.26), but with R now being replaced by the
product matrix R=R(n) ... .R(3)R(2)R(1) of the individual matrices of n

system elements. Using first-order Taylor’s expansion, the beam transport
matrix is expressed as:

X0 TX%) (08) (dye) (@) (Xly) (X8)D 0

BE delx,) (66, (6l ©lw) (©llo) (©o)gH, o

YO_dyix) (8:) Oiv) () Oly) GOED
D5 Hox) (@) (@ve) (dm) (@) @o)SmE

e émxo) 18 (ly) (lw) (lly) (p)BH, O

N OO
B0 o) (06,) (Gv) (Gl (Gl (GB)EHB O
We may write equation (2.26) in the full form as:

XD Ry, R, Rs; R, Ry RgOXO
92 R Ry Ry Ry Ry Rienon
EVD (Ryy Ry, Ryg Ry Ry ReeUO,0
B (2.28)
g”g ;};;11 R42 R43 R44 R45 R4GB§0§
1 R Ry Ry R Ry
55 Ry Ry Re Ry Re RuO0

Comparing equation (2.27) with equation (2.23) we find that the following
elements of the transfer matrix in equation (2.28) equal to zero, namely:

Rl Rl4 R23 R24 RSl R32 = R41 = R42 R36 = R46 =

These zero elements are direct consequences of the midplane symmetry. The
elements in fifth column are also equal to zero, because the variables X,6,Yy, @

and O are independent of the path length difference | , namely:

And, for the elements in the sixth column:
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Rsi =R, = Rs = Rey = Res =0,

because we have restricted the problem to static magnetic fields, where the
scalar momentum is a constant of motion. Expanding and retaining only the

first-order terms of (dR)® =dx* +dy” +(1+ hx)*ds’ (see Appendix A) we
obtain the first-order path length difference as:

l=1,=(S-5s) = I:X(T)h(r)dr + Higher order terms

Just for the mathematical convenience, we use parameters T to express a point
on S in the path integral formulae.
Using equations (2.16) and (2.17), we obtain:

| =1, +x, J’:CX (r)h(r)dr +6, I:sx(r)h(r)dr +3 I:nx(r)h(r)dr (2.29)

From equation (2.29) we may write:

=15 = Re;X = R0, = Ryed (2.30)

where

Rey = [, c(Dh(r)dr
Rs, = [, s.(Dh(r)dr (2.31)
Res = =[,n(D(T)dr

Consider the case where both of the dispersion and its derivative are
zero,n, = 0,n, = 0. We define the system as Achromaticity (first-order) and the
lattice is Achromatic Lattice. From equation (2.20) and (2.31) we find that
R;; = R, = 0. Substitute them into equation (2.30) we note that if a system is
achromatic, all particles with the same momentum have equal path lengths
through the system. If the path length of all particles is independent of their
initial momenta, R, = R, = R,y =0, the path length is the same through the
system. We define this system as Isochronous System.

Let us find the elements given in (2.31) for the ideal orbit for which the
curvature of ideal orbit, (h(s) ), is constant. For positive K, , we obtain:

h . h h? .
RSl = _k_SI kas, R52 = _F[l_cog(xs] ’RSG = _F[ka_SI rk><S] (232)

X X X

From Taylor’s expansion, equations (2.23), (2.24) and (2.32) with zero elements
we find that:
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R, = (Xx,) =¢, =coxk,s

R, =(X6,) =s, :kisi K, S

X

h
Re=(Xd)=n, = F[l_ coXk,s]

R,, = (0]%,) = ¢, =k, si ks
R,, =(6]6,) =S, =cok,s

R = 00) =1, = s s

X

Rss = (VlYo) =€, = COKS

R = (i) =5, =i ks

y

R =(@@) =c, =k, siks

Rs, = (||Xo) :_kLSi K, S

X

Re2 = (18,) = =3 [1- cosk,g
Res = (|||o) =1

Ry =(1|10) = —E—E[kxs—si K, S|

X
Res = (90) =1
The other elements equal to zero.
From the results described above we conclude that the first-order matrix for the

ideal magnets with path length L, as follow:
The transfer matrix for the general ideal magnet, M :

o cokL ésik;L 0 0 o lg(l—coka) .
S h_ .
B k.silkL cok L 0 0 0 ESI kL B
M(L/O):B 0 0 cok L klysilq/L 0 0 B
B 0 0 —k,sikL cogL O 0 B
0NGige -Na—cogl) o 0 1 —h—z(IgL—sik;L)D
Uk, K K A
H o 0 0 0O 0 1 .

(2.33)
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where h: i kZ:(1-n)h?, ky2 : nh?
0
n : Dimensionless quantity defined by

s

L : The field length of the bending magnet along the trajectory

For a pure quadrupole magnet, the matrix is evaluated by taking the
limiting case h - 0 and letting: (see equation (2.15))

2=k k=K

we obtain the first-order transfer matrix, M q» 88

Ecosqu k—lqsi e L 0 0o 0 oé

ok, sik,L  cosk,L 0 0 0 0Op
Mq(L/O):E 0 0 costk,L kiysi nk,L O OE (2.34)

O 0 0 -k, sintk,L costk,L 0 0O

5 0 0 0 0 1 07

H 0 0 0 0 0 1

where qu : BB—O%LE
Oa O0Bp,

Bp,: The magnetic rigidity of the central trajectory.

a : The radius of the aperture.
B, : Field which is positive for focusing in the horizontal direction ( X)

and negative for defocusing in the vertical direction (y).
L : The effective field length of the quadrupole magnet.

In case of drift space, k, =k, =0. Using equation (C.7) and the initial

boundary conditions (C.8) in Appendix C, we obtain the first-order transfer
matrix for drift space, M, ,,, as:
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Mg (L/0) =1 (2.35)

I:IO
O O O o ornr
o O O O o o
O O or oo
O r O O O O

where L : The length of the drift space

For the first-order transfer matrices for the fringing fields at both
entrance and exit faces of bending magnets, we use impulse approximation. In
this thesis such matrices are presented without derivation as a function of two

new variables. They are the angle of inclination (3, of the entrance face, the
angle of inclination f3, of the exit face, see Fig.2.4:

B, <0
Ideal orbit

Fig. 2.4 Field boundary for bending magnets

If the finite focusing terms of the fringing field is not included, the first-order
transfer matrix for the fringing fields of the entrance face of bending magnet is
expressed by:

o1 0 0 0 0 0p
htarg,, 1 0 0 0 O
0o o 1 0 0 0 236
5 0 0 -htang,) 1 0 0f
0o o0 0 0 1 oO
30 0 0 0 0 1f
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2.2 The Betatron Oscillation
2.2.1 Betatron Functions

We have already studied the beam transport system in the forms of
multiplication of transfer matrices. Although the transfer matrices are convenient,
especially for computations on computer, They do not reveal characteristic
properties of the particle trajectories. To deeper insight, the betatron functions are
used and the motions are expressed by the Courant-Snyder invariant and Twiss
parameters. Now, we start to solve the equation of motion analytically. The
homogeneous differential equation of motion is:

u"+k(sju=0 (2.37)

where U stands for X or y and k(s) stands for k, or k,, k(s) arises the results

from the magnetic focusing as an arbitrary function of s. All constants and
variables appearing here stand for their X or y components. The general

solution of equation (2.37) is simply expressed by:
u(s) = yef(s) cos(s) —y,) | (2.38)

where the quantities € and (J, are integration constants. The function

amplitude B(S)is a function of the path length s and the phase function (Ss) is
given as (see Appendix D for details):

s dr
W(s) —J-Om +, (2.39)

Since the phase function must satisfy the periodic boundary conditions, we can
write:

W(s+L)-(s) =0 (2.40)

where L =S, —S,. The betatron phase advance is given as:

_ - ds
®=J; B(s)

We note that the amplitude function [B(S) is also the local wave number of
betatron oscillations. The betatron solution may be expressed in the form of the
Courant-Snyder invariant C(u,U’) (see Appendix D):

(2.41)

C(u,u') =& = w® +2auu’ + Bu'® (2.42)
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where

(2.43)

The Courant-Snyder invariant is the function of twice the action. It is
independent of S and has the form of the equation of an ellipse. The area of
phase space enclosed by (u,u’) of equation (2.42) is equaled to 71e. The

constant £ is called the beam emittance. Sometimes the product 77€ is also
called the beam emittance. The ellipse parameters (,aand y are called the

Twiss parameters. Particularly, [ is called the betatron function or beta
function.

2.2.2 Phase Ellipse

The Twiss parameters 3,0 and y are dependent on t. As a charged
particle move always its trajectory in the real space, point (u,u’) in the phase

space move along the contour of an ellipse. Figure 2.5 shows the ellipse given
by the Courant-Snyder invariant for a beam emittance €. Sometimes, this
ellipse is called the phase ellipse.

u’ sf ope - y/a

A —
~a,¢/ Vi |
sl ope-a/p
e m\,/"’/T
............. > ||

A =T1e JeB

Jely

Fig. 2.5 The Phase ellipse due to the Courant-Synder invariant. £ is the beam
emittance, B, g and Yy are the Twiss parameters. 3' > 0 is assumed.

The rms beam width is /¢(8(S) and the rms beam divergence U’ is ,/€y(S).

Since y = (1+a?)/B, the rms beam divergence is smaller at the location with a
large [ value. The form of the ellipse changes constantly depending on the
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focusing properties at particular point on S. However, the area surrounded the
phase space ellipse is not changed and equal torre. This leads owing to
Liouville’s theorem: ull' is constant independent of S (see Liouville’s
theorem, H. Wiedemann, Particle Accelerator Physics Vol. 1, (1993)).

So far we know that any particle starting on the phase ellipse will stay
on it. Now, we want to be able to describe how the phase ellipse transforms
along the beam trajectories. We consider the Courant-Snyder invariant at the
starting point S =0, equation (2.42) becomes:

Vole™ + 20UoUp + Puy” = € (2.44)

Using the transformation, the solution of the homogeneous equation of motion
are:

U =CU, +§U, (2.45)
Ui =CU, +SU,

where the subscript i stands for x and y. Insert (2.45) into (2.44) then

compare the coefficients of u?,u” and uu’ with those of equation (2.42) we

may write the results in the form of the ellipse transfer matrix (see also H.
Wiedemann, (1993)) as:

H3D Bciz _ZCiS 32 EH?OD
wEETeoc (So+s¢) -SSAdon (2.46)
F8 He® -25¢  s° HE,H

Parameters [3,a and yare called the Twiss parameters. Consider the simplest

case, for example, the phase ellipse in the drift space of length s, equation
(2.46) becomes:

Bo A -2s sOB,0

SR 1 sl (2.47)
HEH® 0 1HH

In equation (2.47), the parameter y =y, is constant, i.e., the beam divergence,
\/E , stays constant. This is obvious, since no force acts on the charged
particles and they make constant linear motions. The parameters a =a, — y,S
and B = B, —2sa, +S°y, are changed when the observation point s changes.
Since we describe the transverse motion of a particle with equation (2.38), the
amplitude function m and the phase function (/(S) must changes so that
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equation (2.38) expresses the constant linear motion. The phase ellipses are
those shown in Fig. 2.6:

u' u’' 1
A )

P
>r—

/; VE.

N7 V7

Y

Jely Jely Jely

s=0 579 57%
Diverging beam Diverging beam
u' u’
A A

A
/

S
N

S=S,; S=5,
Converging beam Beam waist

Fig. 2.6 Transformation of a phase ellipse along drift space at different
locations. (Wiedemann, H. 1993)

For obtaining the result shown in Fig.2.6 we assume a, # O at a location

s=0. The orientation of the phase ellipse immediately tells us the
characteristics of particles behavior. The divergent bean is such that u' > O for
u>0 or U <0 for u<0. On the other hand, the convergent beam has signs of
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uand U as U'>0 for u<0 or U' <0 for u>0. In Fig.2.6, the majority of
(u,u’) points satisfies the condition of divergence for S=s and s,. Similarly
the majority of point (u,u’) satisfies the condition of the convergence for
S=S5,. Suppose the minimum beam signed occurs at S=5,. We assume that

the betatron function takes the minimum value at the point where the beam size
is minimum. Since [((S) and a(s) are given as

B(s) = B, —2sa, + Szyo

2 2
—_ aO aO
8
‘% Vo é Y
and a(s)=a, —y,S,
B(s) is minimum for:
_%
Yo

s, (2.48)

At s,, a(s,) = 0. So far, we did not take the phase function (/(S) into account
explicitly. Thus, that the occurrence of the beam waist at S, in the drift space
holds only approximately.

We transform the equation of motion by letting w(¢) = u(s) / m where the
phase is defined as:

$(s) = % =l dr (2.49)

where U is the constant which is called betatron tune. This shall be discussed in
next section. The form of the equation of motion becomes (see Appendix D for
detail):

d?w
dg?

+0°w=0 (2.50)

These coordinates (w, @), are called the normalized coordinates. Obviously,

the linear betatron motion is a simple harmonic motion with the frequency v
which is called betatron oscillations.

2.2.3 Betatron Tune or Betatron Wave Number; v,,u,

We consider the phase ¢ in equation (2.49) for a full turn around a
circular accelerator of the circumference L. For the full turn ¢ =2
obviously. Then, the quantity U become:



26

u:if+L£ (2.51)
2rrds  B(1)
The quantity v stands for the transverse v,, and the vertical v, . These are

called betatron tune wave numbers or the operating points of the circular
accelerator. We note that the betatron tunes are equal to the number of
oscillations per revolution.

2.3 Beam Parameters
2.3.1 Momentum Compaction Factor o,

The first-order solutions for X in equation (2.12) can be written as the
sum of two parts:

X =Xg + Xg (2.52)

The solution of equation (2.12) is not periodic although nh’ is a periodic
function. In equation (2.52), we take the solution X; to be non-periodic and X¢

periodic. For a solution of the form shown in equation (2.16). X, =CX*S, X

is the betatron displacement and X is a displacement which depends only on

the energy of the particle. In this section we focus only on the energy
displacement:

X =198 =n,(9 S (2.53)

0

where 1, (s) is the dispersion function which is shown in section 2.1.4. Now we

wish to study various quantities and some effects caused by deviations. So, an
important consequence of the energy deviation is the associated change in the
circumference of the closed orbit.

An electron of the nominal energy E_circulates around the ideal orbit in one
revolution for distance L, the circumference of the ideal orbit. For any other
trajectory the path length is expressed by:

L =J’L°dS=IL° Jd2 +dy? + 1+ hx)?de
° T (2.54)
=L, +J’O°hxds+. .

We are only interested in the first-order terms. From the solution according to
equation (2.52), equation (2.54) becomes:
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L=1L, +IOL° hxﬁds+'[0Lo hn,ods+.

Because of the oscillatory character of the betatron motion IOLO hx,ds=0. If

higher-order terms associated with betatron motion are neglected, we obtain:
AL=L-L, = 5J’OL° hn,ds (2.55)

We note that the change of the circumference depends on the dispersion
function n, , which is normally positive, 1.e., the total path length L for a higher
momentum particle is longer than the ideal path length L. Since the dispersion

is generated by the dipole magnet (bending magnet), the strong change of the
circumference is dependent on a dipole field error. From equation (2.55) we
obtain:

AL _ 1 L
== == "hn,ds
L0 LOIO &
AL/LO_<

=(h =
AP, - () =d

c

1

a, =(hn,)= . f%xds (2.56)

0

The momentum compaction factor a_, depends on the average dispersion
function. If the particle momentum is larger or smaller than that of the particle
on the ideal orbit, a,_ is positive this means according to that L is longer or
shorter than L, . This arises from @, increases only in curved sections where p
is finite. As a consequence, o, =0 means that the trajectory is a straight line

and the length does not depend on the momentum.
In an isomagnetic field, the same radius of curvature of the orbit is equal along
the orbit. The characteristic of his as follows:

hy, =1/ p,,i magnet

Ep,el sewher e ?i somap (2.57)

h(t) =

Equation (2.56) becomes:

a, :&fnxds (i sormag) (2.58)
I‘O
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2.3.2 Closed Orbit

In a storage ring, each successive trajectory of an electron making the
betatron and synchrotron oscillations is not completely closed. As we mentioned
already concerning equation (2.52), X is non-periodic. Thus, the electron
starting at a point in a storage ring does not return to the start point after one
turn. In addition to this, there is additional reason of the non-periodic nature of
X, if we discuss the phenomenon more rigorously. The emission of photons
giving rise to excitations and damping of electron oscillations occurs randomly
and the total process of the radiation damping is stochastic. This causes the
energy spread of the electron beam mentioned below. However, the bundle of
the trajectories oscillating transversely betatron oscillation and forming the
electron beam as a result of a many turns makes a close beam with a finite
cross-sectional size simply called the beam size. The trace of the center of the
beam cross section forms an orbit closed completely. This average orbit is
called the closed orbit. The location of the closed orbit differs if the average
electron energy is different. Since the electron beam energy is decided by the
balance of the radiation energy loss and its restoration by the RF acceleration,
the closed orbit is often referred to as the equilibrium orbit. Although the
betatron and synchrotron oscillations are nominally caused by restoring force
acting toward the ideal orbit, the closed orbit is different from the ideal orbit and
shifted from it. This is not only caused by the beam energy difference but by
various errors existing in the storage ring, such as magnet misalignment, the
field strength error, fringing field, the structure error of the RF cavity, the error
in the RF frequency, the scattering of electrons by molecules in the residual, etc.
The ideal orbit in a storage ring with drift spaces is often called the designed
orbit. The phenomenon that the closed orbit is shifted from the designed orbit is
called the closed orbit distribution (COD). Obviously, the closed orbit distortion
does not occur uniformly along the designed orbit. Thus, the location of the
closed orbit must be measured precisely and correction of the closed orbit must
be made. This is implemented by adjusting the magnetic field strengths and the
RF frequency. The misalignment of magnet locations must be corrected in some
case. Such correction of the closed orbit distortion is usually called the COD
correction.

2.3.3 Transition Energy y,

Consider the revolution period of a particle in individual trajectory. Then,
we have T = L/v, where L is the orbit length and v is the velocity of the
particle. The fractional change of the revolution period is:

AT _AL _Av

T L \Y;

_HAL/L _ Av/v AP
i
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Using the simple relation P =myv, where y:]/ J1-v2/c?, and equation
(2.56), we obtain:

AT @, -Lys=ns (2.59)
T y

Where the phase-slip factor n is:

u=a, - y_lz (2.60)

The more important case is that the phase-slip ¢ = 0. We obtain:

v: =/1a, (2.61)

where Yy, is called transition energy. On the other hand, we write equation
(2.60) in the form of:

p=—-= (2.62)

If the phase-slip is zero, the revolution period is independent of the particle
momentum (see equation (2.59)). All particles at different momentum travel
rigidly around the orbit with equal revolution frequencies. This is the
isochronous condition. For y <y., u <0, the revolution period is shorter than
a synchronous particle for a higher momentum particle. Although a higher
energy particle has the orbit length L longer than an synchronous particle L,
in this case it travels faster, its speed exceeds the effect of its longer orbit length.
Thus, the higher energy particle will arrive at a fixed location earlier than an
synchronous particle. Another case is y >y, the converse is true.

2.3.4 Energy Loss per Turn U,

The energy loss per turn due to synchrotron radiation is expressed by
(see Appendix E, (E.70) for details):

’ (2.63)

where C, =8.85x10° m/GeV>and |, is radiation integral defined by equation

(E.64) in Appendix E. For isomagnetic ring, the bending radius the same for all
bending magnets p = p,, the energy loss per turn is:
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(i somap (2.64)

0

2.3.5 Damping Partition Numbers J ,J ,J;

x1 Yy

Higher energy electrons lose more energy into synchrotron radiation than
lower energy electrons (see equation 2.63). This lost energy is compensated by
longitudinal electric field of the RF cavity. The energy loss into synchrotron
radiation causes the radiation damping of the beam oscillation to occur in
longitudinal phase space with the damping coefficient a . This oscillation
damping is understandable, because the loss of the beam energy results in the
shrinkage of the orbit. The energy gain from RF cavity occurs in the way that
the acceleration toward longitudinal direction is enhanced. This causes the
damping in the transverse direction. The damping coefficients are designated as
a, for the horizontal damping and a for the vertical damping. These damping

coefficients for the betatron and synchrotron oscillations (see Appendix E,
(E.22)) can be expressed by the three degrees of freedom in a bunch, namely:

o =g P
a,=Ja,=J T (2.65)

where i stands for x,y and E. a, :<Py> /ZEO. The damping partition

numbers are:

J,=(1-D), J, =1, J.=2+D (2.66)

y
or
J :1—:—4, J, =1, JE:2+:—4 (2.67)
2 2

X y

where |,,1, are defined by equations (E.64) and (E.66) and D is defined by
equation (E.33) in Appendix E. Specifically consider a strong focusing gradient,
k > 0, with beam deflection, p # 0. For D =1 all damping in horizontal plane
is lost and turn to excitation for D >1. However, the beam is still stable owing
to adiabatic damping. Conversely, strong defocusing, vertical focusing, k <O,
that is D <1, the horizontal damping increases actually. There is a limit for the
stability of synchrotron oscillations for D =2. These damping partition
numbers satisfy the Robinson’s damping theorem:

Y3 =3,+3,+3 =4 (2.68)
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This indicates that no vertical bend occurs, since J, +J. =3, J, <3. In
practice, the maximum tolerable value is J, <2, which we note that the
synchrotron oscillation damping is twice as strong as the transverse damping.
2.3.6 Damping Times 7,7 ,7;

x1 by

Damping time constants are expressed as (see Appendix E, E.62):

(2.69)

We note that for the isomagnetic field the damping time is inversely
proportional to the cube of the power of energy. For a fixed B, it is inversely
proportional to the square of the energy (see equation E.2 in Appendix E).

2.3.7 Energy Spread o,

So far, we have only considered the total energy loss due to synchrotron
radiation. But electromagnetic radiation occurs in quanta of discrete energies,
photon emission. When a photon is emitted, the electron energy makes a small
discontinuous jump. The energy of electron is suddenly decreased by an amount
hw . Emission of many photons causes a changes in the electron energy leading
to the spread energy within the beam. The relative energy spread o /E,is

expressed by (see Appendix E, (E.82), for details):

eH_c YV 8
I

or

|
EH =C y?—2 2.71
Eog Y @, +1,) @70

where |, is defined by equation (E.65) in Appendix E; C, = 3.84x10 net el

is called the quantum constant. We note that the energy spread is independent of
the RF voltage.
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2.3.8 Bunch Length o,

Electron in a synchrotron and a storage ring is bunched. The bunching is
brought about the RF acceleration. Electrons reading the RF cavity when
voltage across the electrodes is toward the acceleration mode cannot pass
through it. More precisely, only electrons making stable synchrotron oscillations
can pass the RF electrode. The acceleration voltage range that traps electrons in
the stable synchrotron oscillations is called the bucket existing in the accelerator
is equal to the harmonic number mentioned later. The bunch length is expressed
by (see Appendix E, (E.129), for details):

o, = 2cy.|c, TeloFo s 2.72)
& (20,+1,)

where V is the slope of RF voltage, C, is equal t03.84x10™*net e and |, is

q
radiation integral. We note that the bunch length can be varied by varying the

RF voltage and o, 01/ \/\7 . The bunch length is shorter for higher RF voltage;

the resulting phase-space area is smaller for lower RF voltage the phase-space
area is larger.

2.3.9 Beam Size 0,0,

The beam size or the distribution of the positions of electrons in the
storage ring is determined by the damping effect due to synchrotron radiation.
and the quantum excitation effect due to the photon emission. Since the
damping effect causing by the quantum excitation a stochastic or random
process, it leads to electron in equilibrium where the distribution of well
approximated by the beam is Gaussian form in six degrees of freedom,
X, X,¥,Y,z2 0. z is longitudinal displacement from center of the bunch. The
beam size or beam width in horizontal direction is expressed as (see also
Appendix E for details):

2

I e A CI W I Dl
T e el Y

For an isomagnetic ring is:

2 H _ 2
O'f _ quo @ﬁx< (S)>| somag+ r’x (S) E (I Son'a_g) (274)
Po J Je

X

where H(s) is defined by equation (E.89) in Appendix E.
The vertical beam size is expressed as (see Appendix E):
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02=C M (2.75)

y ~ “a Jy<]/p2>

For flat designed orbit, J, is roughly equal to 1. For an isomagnetic ring, the

vertical beam size may be written as:

o; =C, <'By>, (i sonag) (2.76)

Po

where < > is the average over one revolution of the betatron oscillations.

2.3.10 Natural Emittance £,

In section 2.2 we have already discussed the basic of the beam emittance.
The emittance determines the beam size along with the betatron function:
For the horizontal emittance:

o, =&, B, (2.77)

o, =&,B, (2.78)
Natural rms emittance € 3 is defined as (see equation (E.100) in Appendix E):

g0 =T _ % M (2.79)

3,(1p°)

For an isomagnetic ring:
o H(s)). _
& =CYo——F———, (isomag (2.80)

2.3.11 Chromaticity, ¢, ¢,

So far, we have not taken any structural and other error into account.
However, errors do exist in practice. For a storage ring, we will consider a first-
order error arising from the deviation of electron energies from the ideal
designed energy. The focusing (or defocusing) power of a quadrupole magnet is
inversely proportional to the electron energy and causes the focal length of the
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quadrupole magnet, f , to vary (see Fig.2.7). The Fig.2.7 shows that the focal

length is shorter or longer when the energy of the electron is smaller or longer
than the energy of the synchronous electron, respectively. This effect is called
chromatic effect. It leads to the dependence of the tunes on energy. The
dependence is different in the horizontal and vertical direction. in order to
indicate the chromatic effect quantitatively, we define the quatity called the
chromaticity as:

Av Av
§,=—2-, &, =—~ (2.81)
AE/E, AE/E,

where Auv, | are the shifts of tune from those of the synchronous electrons.

e
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f(AE/E, > 0)

Fig. 2.7 Chromatic focusing errors

Because the focusing action decreases with increasing energy, the tune
decreases with increasing energy. Thus, the uncorrected chromaticities are
negative numbers. Equation (2.81) implies that the spread in energy corresponds
to the spread of tune within an electron beam. To correct the chromaticities,
sextupole magnets are used. The nonlinear field of the sextupole magnet is
utilized for the chromaticity correction. Most accelerators operate with zero or
slightly positive chromaticities.

2.3.12 Harmonic Number k

The synchronous RF phase angle is presented in equation (E.18) in
Appendix E. It is given as:

W, = kE
TO
2nfrf = 2rkfre\/
f =kf, (2.82)
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This equation means the RF frequency f,, is an integer multiple of the

revolution frequency f, (f,.,=1T,). The integer wave number Kk is called

rev
harmonic number. The harmonic number is the maximum number of bunches
that can exist in the storage ring.

2.3.13 Dynamic Aperture

Suppose we inject the electron beam in a storage ring. The obstacles
exist in the vacuum chamber including the chamber walls. If the electron beam
hit an obstacle, it cannot be stored in the storage ring. The clearance through the
obstacles is called the physical aperture.

Suppose the physical aperture of the storage ring is wide enough. Even
in a case like this, we cannot necessarily store the electrons in the storage ring.
The reason is as follows: The electron motion in the storage ring is so
complicated that an electron cannot make many turns in the storage ring and is
lost away to infinity unless its initial condition is appropriate. The complicated
electron motion is brought about by the structure of the betatron function in the
unit magnet lattice and the random change in the motion by the emission of
photons. So we have to investigate the initial condition of the electron,

Xo» Yor Xo» Yo €tc, that keeps the electron on the closed orbit for many turns. This

can be implemented only by the computer simulation of the electron motion. In
this simulation, we have the electron beam consecutively for many turns. If we
set up an initial condition, and find the location the electron after N turns, where
N is sufficiently large. If the location is in the finite range, we change the initial
condition and seek the location of the electron after N turns. We repeat this until
we find the initial position (X,, Y,) at which the electron is lost to infinity after

N turns. By finding many points (X,,Y,) we can draw a borderline. If an

electron occurs outside this border, it cannot be held in the finite area after N
turns. If the electron occurs inside the border, it is kept in the finite area after N
turns. The area surrounded this border line is called the dynamic aperture.

For the simulation of the dynamic aperture, the computer code specially
written for the purpose is available. Figure 2.8 shows the dynamic aperture for
7,500 turns in the Siam Photon Source, which is simulated by Prof. Goro
Isoyama. We note that the dynamic aperture is reduced when magnet
misalignments and field imperfection are included in the computation.



[ [ [
100 = T 7500 turns 7
80 |- 4+ _
60 — |
y mm) |
40 — =+ _|
With errors
0 /7 7~ ;'c ________________ —
Vacuum chamber
| | |
-100 50 0 100
X (mm)

Fig. 2.8 Dynamic apertures for a perfect machine and a realistic
Machine with error (Isoyama, G. 1998)
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Note that the dynamic aperture is larger than the physical aperture. In this thesis,
we will only simulate the dynamic aperture for a perfect and machine with only

error of nonlinear sextupole field.



Chapter 111
Beam Dynamics Calculation

3.1 Data Collection

We deal with four paths of the Siam Photon Source, shown in Fig.1.1, which
include LBT, SYN, HBT and STR. Dipole magnets and quadrupoles magnets, for
guiding and focusing form the field give rise to only the linear effect on the electrons.
Sextupole magnets used for the correction of chromatic aberrations caused by the
quadrupole magnets give rise to the nonlinear effect. The real magnet lattice with
alignment and other errors includes small corrector dipole magnets: Horizontal (STH)
and vertical (STV) steering magnets. In addition to these, SYN and STR are equipped
injection devices including bump (kicker) magnets and septum magnets and a RF
cavity for acceleration and longitudinal focusing. We will briefly discuss the
component magnets.

Bending magnets (BM) are used for bending electron beams. In the storage
ring of the Siam Photon Source, sector type bending magnets are employed. The
radius of curvature of the ideal orbit inside it is reference radius p,, its arc length L
and deflection type angle ¢ =L/p, = Lh,, where h, is the curvature of the ideal
orbit. Figure 3.1 shows the rectangular bending magnet of SYN.

Fig. 3.1 Bending magnet of SYN
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The dipole field is A, = B(0,0,s) = hP,/e(see Appendix B). In a pure sector bend
the ideal path of the electrons enters and exits normal to the magnet. In general cases,
the edges may be rotated by angles S,, 3, (see Fig.2.3) and the rotation is included in
the coordinate transformation along the direction normal to the eadg. If the magnet
has parallel entrance and exit face with B, = 8, =—@/2, it is called rectangular

bend. If B, # [3,, it is called wedge bend.

Quadrupole magnets (Q) are used for focusing (QF) and defocusing (QD).
The field gradient is given by (see Appendix B):

= —niefo f

x=0 e
0

Fig.3.2 Quadrupole magnets and steering magnets

Sextupole magnets (SX) are used for the correction of quadrupole chromatic
errors (see section 2.3.11). The storage ring requires both sextupole focus (SXF) and
sextupole defocus (SXD). The field gradient is given by (see Appendix B):

1, _10°B| ___ [P,
PR v Bl e
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Figure 3.3 shows a sextupole magnet in SYN of the Siam Photon Source.

Fig.3.3 Sextupole magnet

RF cavity (RF) is used to provide a source of electric field for beam
acceleration and longitudinal focusing. Figure 3.4 shows the RF cavity in STR of the
Siam Photon Source.

Fig.3.4 The RF cavity in STR

Correction or Steering magnets (ST) are used for correction of close orbit
locations. The example is shown in Fig.3.2. However, in this thesis, calculation does
not include the steering magnets.

Septum magnets (SM) are used for the injection or for the beam separation in
collider. A septum magnet is a copper sheet of high current attached to a dipole
magnet in order to provide a sharp cut-off the field.
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Kickers or bump magnets (BM) are used for injection, SYN and STR require
either fast kickers to bend the injected beam toward the axis or slower kickers for
multiturn injection. This device is not considered in the calculation of this thesis.

For the calculation and simulation, we have to collect some data to input in the
computer software. We will consider the data in each path as following.

3.1.1 Low-Energy Beam Transport Line (LBT)

Descriptions of the transfer magnets are shown in Fig 3.5. For details of the
data such as the distance between the magnets, angles of bending magnets, pole
lengths etc. are listed in Appendix F.

T Sarmhrinm

.,
L-5CMA ? - -
RN Froom Linsc
o 1-5TH-R13 "
L-ATY-NH F
b’ L-12%l
"'&xl 5
1 . 0
l\:\l.‘:{#. r
L-50HIT
LA - h2
b
(IR RT ] LATH-
¥ STV R L-5T-
STV LD
[ %Y.

b . L .-.
-ﬁ'-d 3-8 .-'"q.' L-LLF
b ‘}"i A3la
A
LA0F- s [
1 RO
l L

T 15 L-Fel- i

S

Fig. 3.5 Transfer magnet elements of LBT

Table 3.1 Magnet parameters of LBT

Magnet parameters of the magnets

Bending magnets, B

Type of magnets wedge bend

Numbers of magnets 2

Radius, p, 0.5m

Bending angle 50.5°

Pole face rotation angle, 8, = 3, 13.87°

Maximum magnetic field, B 0.267 T
Quadrupole magnets: q1-q10

Number of magnets 11

Pole length 0.1M

Maximum field gradient, dB, /dx 3 T/m




3.1.2 Booster Synchrotron (SYN)

41

The magnet structure of SYN is shown in Fig. 3.6. For details of data, see in

Appendix F.2.
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Fig.3.6 Magnet structure of SYN

Table 3.2 Parameters of SYN

Parameters of SYN

Bending magnets, B
Type of magnets
Numbers of magnets
Radius, p,
Bending angle
Pole face rotation angle, 8, = 3,
Maximum magnetic field, B

Rectangular bend
2(6)=12

3.030 m

30°

15°

1.1T
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Quadrupole magnets, Q

Number of magnets: ql, g2 2(6),1(6) =18
Pole length 0.25m
Maximum field gradient, dB, /dx 4.8 T/m
Injection energy 40 MeV
Maximum energy 1GeV
Lattice structure FODO
RF frequency 118 MHz
Maximum RF voltage 60 kV
Chamber pressure (with beam) <1x10° Torr

3.1.3 High-Energy Transport Line (HBT)

The magnet structure of HBT is shown in Fig. 3.7. For details of data is shown
in Appendix F3.

P P BV1 Q5 Q7 Bv2 P
00 :
BH1 Q1 Q3 Q4 P @ B2

Fig.3.7 Magnet structure of HBT (Top view)

Table 3.3 Magnet parameters HBT

Parameters of magnets

Bending magnets, B

Type of magnets: bh, bv wedge bend, rectangular bend
Numbers of magnets: bh1, bh2, bvl, bv2 4
Radius, p,: bhl, bh2, bvl, bv2 7.162,7.162, 3.3356, 3.3356 m
Bending angle : bh1, bh2, bvl, bv2 4.0°,2.0°,17.5°,17.5°
Pole face rotation angle
bhl, B, = 3, :ehl 20
bh2, B, = B, :eh2 1°
Maximum magnetic field, B: bv, bh 1,047 T
Quadrupole magnets, Q
Number of magnets: ql- q8 8
Pole length:
ql q6 0.4m
9293 q7 g8 0.3m
qs 0.6 m
Maximum field gradient, dB, /dx
ql,q2,93,94.95, -8.01,6.34,-7.64,6.31,8.84,

96,97.98 -2.87,5.07,-2.24
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3.1.4 Storage Ring (STR)

Lattice Description

The storage ring has a double bend achromat lattice (DBA) and fourfold
symmetry with four straight sections (see Fig. 3.8). The achromat lattice consists of
two dispersion free straight and family of quadrupoles between. The magnet
parameters and some designed parameters of the STR are listed in Table 3.
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Fig. 3.8 Unit cell of magnet lattice

Table 3.4 Parameters of STR

Parameters of STR

Bending magnets, B

Type of magnets sector bend
Numbers of magnets 2(4)=28
Radius, p, 2.78 m
Bending angle 45°
Maximum magnetic field, B 12T
Quadrupole magnets, Q
Number of magnets: ql1-q4 7(4) =28
Pole length 0.29 m

Maximum field gradient, dBy/dX:ql,q2,q3,q4 10,10,12,12 T/m
SExtupole magnets, SX

Number of magnets: sf, sd 8,8

Pole length: sf, sd 0.15,0.2 m

Maximum field gradient, |d*B, / dxz‘(l /Bp,) 3.6 m™
Maximum energy 1 GeV
Lattice structure DBA
Superperiodicity 4
RF frequency 118 MHz

Maximum RF voltage 120 kV
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The magnet structure of STR is shown in Fig.3.9. List of input data are shown in
Appendixes F.4, F.5 for program LATTICE and Appendix F.6 for program BETA.

S-OF-M3E&2, S-SXF-M12
R vty

Fig.3.9 Magnet structure of STR
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3.2 Software

In the calculation of electron beams, computer programs LATTICE and BETA
are used to obtain the positions and characteristic etc. of an electron in the system.

LATTICE is a computer program that calculates the first-order characteristics
of synchrotrons and beam transport systems. John Staples developed the program in
Lawrence Berkeley Laboratory, University of Califormia Berkeley in 1987. Though
program LATTICE is a first-order program, the effect of sextupoles on the
chromaticity of a synchrotron lattice is included, and the optimizer sets up the
sextupole field strength for zero chromaticity. The program uses matrix algebra to
calculate the progression of the betatron parameters and twiss parameters along the
beam line. LATTICE has two distinct modes which are the lattice mode and the
transport mode. In this thesis, we use the lattice mode to find the matching functions
of SYN and STR, while transport mode is used to propagate a predefined beam
through LBT and HBT. The result of calculations will be displayed in both
numerically and graphically.

BETA is a computer program for using in the analysis of the synchrotron and
storage ring, In this thesis, we use BETA to analyse only STR. Most of the output
data are displayed in the form of plots. With this program we can perform the
following calculations:

1) Linear lattice parameters calculations: BETA computes fully coupled
motion of the synchrotron oscillation and the betatron oscillation of
electrons. Although the cause of the betatron oscillation an that of the
synchrotron oscillation are coupled. This easily understandable because
the synchrotron oscillation is accompanied by the change in the orbit
length and the oscillatory change in the orbit length contains the
transversal oscillation components. The relevant parameters of STR such
as first-order matrix elements, twiss parameters, dispersion functions,
betatron and synchrotron tunes, tune shifts as a function of betatron
amplitudes, damping partition numbers, damping times, beam emittances,
the bunch length and the energy spread are displayed.

2) Linear lattice matching.

3) Calculation of the second-order transfer matrix.

4) Calculation of the horizontal and vertical chromaticities and the
adjustment of any values.

5) The dynamic aperture simulation. The simulation is also performed in the
presence of errors.

6) Simulation of multipole field errors.

7) Simulation of the close orbit distortion.

8) Treatment of the linear and non-linear effects of wigglers and undulators
on the beam dynamics.

However, in this thesis we use BETA to deal with only items 1) and 5).
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3.3 Twiss Parameters

To help clear understanding, we will show the locations of the magnets with the
schematic layout of each path before showing its twiss parameters.

3.3.1 Twiss Parameters of LBT

Fig. 3.10 The schematic layout of LBT



Table 3.5 Twiss parameters of LBT
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Blements B, a, By a, N, .

(m (rad) (m) (rad) (m) (rad)

4.38 0.00 4.38 0.00 0.00 0.00

dl 4.41 -0.09 4.41 -0.09 0.00 0.00
ql 4.57 -1.56 4.29 1.27 0.00 0.00
d2 5.58 -1.78 3.58 1.09 0.00 0.00
q2 5.61 1.44 3.58 -1.00 0.00 0.00
d3 2.40 0.56 8.19 -1.89 0.00 0.00
q3 2.51 -1.64 7.85 5.19 0.00 0.00
d4 3.62 -2.08 5.06 4.12 0.00 0.00
q4 3.73 1.01 4.66 -0.05 0.00 0.00
ds 2.92 0.76 4.75 -0.14 0.00 0.00
e 2.92 -0.68 4.75 1.66 0.00 0.00
b 1.59 2.88 3.44 1.31 0.18 0.77
e 1.59 2.09 3.44 2.62 0.18 0.86
do 0.30 -0.05 1.04 1.17 0.73 0.86
qs 0.31 -0.04 0.93 -0.07 0.77 -0.00
d7 0.45 -0.69 1.01 -0.29 0.77 -0.00
d7 0.86 -1.34 1.16 -0.50 0.77 -0.00
qs 1.04 -0.45 1.42 -2.17 0.73 -0.86
d8 2.08 -1.18 5.78 -4.71 0.18 -0.86
e 2.08 -2.20 5.78 -2.51 0.18 -0.77
b 2.34 1.77 8.24 -3.07 -0.00 0.00
e 2.34 0.61 8.24 0.06 0.00 0.00
do 1.71 0.06 8.24 -0.06 0.00 0.00
qoé 1.71 -0.02 8.24 0.02 0.00 0.00
d10 1.77 -0.20 8.23 -0.01 0.00 0.00
q7 1.97 -1.78 7.60 6.18 -0.00 -0.00
di1 6.52 -3.58 0.82 1.80 -0.00 -0.00
g8 6.59 2.88 0.57 0.75 0.00 0.00
di2 2.71 1.68 1.27 -1.57 0.00 0.00
q9 2.21 3.23 1.72 -3.10 0.00 0.00
d13 0.73 1.68 4.13 -4.94 0.00 0.00
ql0 0.52 0.53 4.59 0.61 0.00 0.00
di4 5.11 -3.40 3.39 0.13 0.00 0.00
sep 6.77 -0.00 3.33 0.00 -0.50 -0.50
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3.3.2 Twiss Parameters of SYN

R | |
WD @ D
q1 q1 e
Al “ <‘a
__5'_':._3' '.\_.-'_"A_.llll
."Il ' 1HI". Y
e sl
I —
R ey
z F
'l._--:._-_ I_.--.'_'_?-_-
L b _.-.
< Q
i .ﬁ
/. g
&/ {___ —|_| |-,III— _____'5 A
Fig. 3.11 The schematic layout of SYN
Table 3.6 Twiss parameters of SYN
a a !
Elements B, X B, Y M M
(m (rad) (m) (rad) (m) (rad)
6.77 -0.00 3.33 0.00 1.86 0.00
dl 6.93 -0.15 3.66 -0.31 1.86 0.00
ql 6.40 2.20 4.18 -1.86 1.78 -0.66
d2 5.16 1.93 5.39 2.17 1.58 -0.66
e 5.16 1.47 5.39 -1.72 1.58 -0.52
b 1.42 0.67 12.68 -2.88 0.98 -0.22
e 1.42 0.54 12.68 -1.80 0.98 -0.13
d2 1.18 0.27 13.79 -1.90 0.94 -0.13
q2 1.18 -0.27 13.79 1.90 0.94 0.13
d2 1.42 -0.54 12.68 1.80 0.98 0.13
€ 1.42 -0.67 12.68 2.88 0.98 0.22
b 5.16 -1.47 5.39 1.72 1.58 0.52
e 5.16 -1.93 5.39 2.17 1.58 0.66
d2 6.40 -2.20 4.18 1.86 1.78 0.66
ql 6.93 0.15 3.66 0.31 1.86 0.00
dl 6.77 0.00 3.33 -0.00 1.86 0.00




3.3.3 Twiss Parameters of HBT
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Fig. 3.12 The schematic layout of HBT
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Table 3.7 Twiss parameters of HBT
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Elements B. a, By a, Ny P

(m (rad) (m) (rad) (m) (rad)

6.77 0.00 3.33 0.00 1.86 0.00

Sepl 6.42 0.39 3.56 -0.26 1.68 -0.40
dl 6.20 -0.33 10.45 -1.46 0.07 -0.40
ehl 6.20 -0.36 10.45 -1.41 0.07 -0.40
bh1 6.58 -0.39 11.94 -1.56 -0.12 -0.33
ehl 6.58 -0.42 11.94 -1.50 -0.12 -0.33
d2 7.04 -0.51 13.51 -1.64 -0.28 -0.33
ql 9.72 -6.80 11.19 6.89 -0.46 -0.59
d 14.24 -8.26 7.45 5.59 -0.64 -0.59
q2 16.35 1.69 5.62 0.90 -0.75 -0.13
d3 6.99 -0.80 22.75 -2.52 -2.07 -0.13
q3 9.07 -6.58 19.81 11.64 -2.33 -1.58
d 13.45 -8.04 13.45 9.58 -2.80 -1.58
q4 15.86 2.62 9.74 0.58 -3.00 0.59
d4a 11.55 2.17 8.81 0.46 -2.47 0.59
d4b 8.05 1.73 8.09 0.33 -1.94 0.59
d4c 5.34 1.28 7.61 0.21 -1.42 0.59
dad 3.44 0.84 7.34 0.09 -0.89 0.59
dde 2.33 0.39 7.29 -0.04 -0.36 0.59
daf 2.02 -0.05 7.47 -0.16 0.17 0.59
ddg 2.52 -0.50 7.86 -0.28 0.70 0.59
d4h 3.81 -0.94 8.48 -0.41 1.22 0.59
d4i 5.90 -1.39 9.32 -0.53 1.75 0.59
d4j 8.79 -1.83 10.38 -0.65 2.28 0.59
bvl 13.04 -2.34 10.83 0.23 2.88 0.59
ds 15.50 -2.58 10.63 0.18 3.17 0.59
qs 13.15 6.02 14.68 -7.72 2.96 -1.30
d 9.79 5.17 19.69 -8.96 2.57 -1.30
qo6 7.72 0.35 22.70 1.96 2.30 -0.05
do 16.58 -1.19 5.11 -0.29 1.72 -0.05
q7 15.20 5.60 6.01 -2.83 1.59 -0.77
d 12.03 4.96 7.85 -3.29 1.36 -0.77
g8 10.64 -0.10 8.80 0.26 1.21 -0.22
d7 10.76 -0.15 8.57 0.20 1.10 -0.22
bv2 11.17 -0.25 7.54 0.78 0.88 -0.22
d8 12.02 -0.38 5.78 0.49 0.58 -0.22
eh2 12.02 -0.41 5.78 0.50 0.58 -0.22
bh2 12.22 -0.37 5.55 0.45 0.53 -0.19
eh2 12.22 -0.40 5.55 0.46 0.53 -0.18
d8 13.50 -0.53 4.70 0.16 0.28 -0.18
Sep2 13.39 0.69 4.58 -0.00 0.23 0.06
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Fig.3.13 The schematic layout of STR
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Table 3.8 Twiss parameters of STR
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Elements Ay @ Ay @ Tx Tx

(m (rad) (m) (rad) (m) (rad)

13.38 -0.00 4.58 -0.00 -0.00 -0.00

dl 14.30 -0.26 7.25 -0.76 -0.00 -0.00
ql 11.37 9.58 9.61 -7.96 -0.00 0.00
d2 5.01 6.31 17.04 -10.64 -0.00 0.00
q2 2.78 1.98 18.99 4.46 -0.00 0.00
d3 1.47 1.26 15.56 4.01 -0.00 0.00
bl 0.55 -0.16 9.73 3.11 0.12 0.29
b2 4.03 -2.18 3.28 1.61 0.81 0.71
d4 7.17 -3.04 1.74 0.95 1.24 0.71
q3 7.39 2.33 1.60 -0.44 1.31 -0.24
dsf 6.47 2.15 1.81 -0.59 1.26 -0.24
st 6.47 2.15 1.81 -0.59 1.26 -0.24
ds 1.78 0.74 5.68 -1.80 0.87 -0.24 -
sd 1.78 0.74 5.68 -1.80 0.87 0.24
dsd 1.48 0.54 6.55 -1.97 0.81 -0.24
q4 1.41 -0.00 6.84 0.00 0.80 -0.00
q4 1.48 -0.54 6.55 1.97 0.81 0.24
dsd 1.78 -0.74 5.68 1.80 0.87 0.24
sd 1.78 -0.74 5.68 1.80 0.87 0.24
ds 6.47 -2.15 1.81 0.59 1.26 0.24
st 6.47 -2.15 1.81 0.59 1.26 0.24
dsf 7.39 -2.33 1.60 0.44 1.31 0.24
q3 7.17 3.04 1.74 -0.95 1.24 -0.71
d4 4.03 2.18 3.28 -1.61 0.81 -0.71
b2 0.55 0.16 9.73 -3.11 0.12 -0.29
bl 1.47 -1.26 15.56 -4.01 -0.00 -0.00
d3 2.78 -1.98 18.99 -4.46 -0.00 -0.00
q2 5.01 -6.31 17.04 10.64 -0.00 -0.00
d2 11.37 -9.58 9.61 7.96 -0.00 -0.00
ql 14.30 0.26 7.25 0.76 -0.00 -0.00
dl 13.38 0.00 4.58 -0.00 -0.00 -0.00
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3.4 Result of Calculations and Discussion

In this section will show important parameters such as beam sizes and betatron
functions and dispersion functions and discuss about them. betatron functions.
The complete results are shown in Appendix F.

3.4.1 LBT

We will only show the beam sizes, betatron functions and dispersion
function of the beam through the elements of the lattice, because in transfer line
the other characteristics are not important. (see Appendix F.1)

wia=5% m

w=0m|  y=10m

\ x/\ ]

TUE 3 2001 5415247 Iagh goa w [Fin

Fig.3.14 Betatron functions and dispersion function in LBT

Figure 3.14 shows how the beam from LINAC change in LBT. The
betatron functions are [, =4.375(m, B, =4.375(m and the dispersion is

equal to zero at the entrance to LBT. At the end of LBT, where a septum
magnet is located, the betatron functions are [, =6.7724m, B, =3.3311m.
However, the dispersion is not equal to zero but 1, =-0.113¢ m (see the

results in Appendix F.1 for details). This implies that the beam is bent at the
septum location,



54

Figure 3.15 shows the beam sizes in both horizontal and vertical directions
are 0, =0.22cm and 0, =0.15cm at the end of LBT. (see the results in

Annendix F.1 for details)

eta—=F m

w=dap  y=ldan
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Fig 3.15 Beam sizes in LBT, electron energy 40 MeV.
3.4.2 SYN

The important parameters of SYN are listed in Table 3.9. (see Appendix F.2)

Table 3.9 Main parameters of SYN

Parameters of SYN

Minimum electron energy 40 MeV
Maximum electron energy 1 GeV
Circumference, C 43.188 m
Superperiodicity 6

Natural rms horizontal emittance, € 273.562 1 nm rad

Betatron wave numbers or tune numbers,V , v, 2.25,1.25
Damping partition numbers, D, J,,J,, Je 0.09996, 0.9004, 1.00, 2.0996

Damping times,7,,T,, T¢ 18.893,17.011, 8.1021 ms
Synchrotron radiation (energy loss per turn), U,  0.029349 MeV/turn
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The septum magnet located at the entrance of the synchrotron injects
electrons of 40 MeV. Then, they are accelerated by the synchrotron acceleration
mechanism (the betatron acceleration plus the compensation of the energy lost
to synchrotron radiation) until its energy increase to 1 GeV. The natural
emittance is 273.562 mldmlrhd. In one revolution, the electron loses energy as
0.029349 MeV. The horizontal and vertical tunes are 2.25 and 1.25,
respectively. This indicates that the electron oscillates 2.25 times per turn in the
horizontal direction and 1.25 times per turn in the vertical direction.

" [‘!-I.l.'ill:l".‘i-:.l.*.'l.l.tl'l.l'l|l:|' B iidlioras eat

=g | y=a2m

=1 m

TUE I &1 T80l 1 42 Eeggls, ps

Fig. 3.16 Betatron functions and dispersion function in SYN

Figure 3.16 shows the betatron functions and the dispersion function in
the unit cell of the lattice. At the straight section ), =1.862'm, B, =6.767m

and B, = 3.334fm. The maximum betatron values are 3, max = 6.926(m and
B, max =1379Im.

Figure 3.17 shows the beam sizes, 0, =0.13cm and g, =0.03cm, at
the end of the unit cell. The maximum beam sizes are 0, max = 0.13cm and

o, max = 0.06cm. The details of the results of the calculations are shown in
Appendix F.2.
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Fig. 3.17 Beam sizes for SYN in a unit cell of Lattice.

3.4.3 HBT

The betatron functions and the dispersion function are shown in Fig.
3.18. The beams are injected from SYN with B, =6.77m, 3, =3.33m and
N, =1.86m. At the exit of the lattice, B, =13385(m,, =4.582Em and

n, =0.228€m. The detail of results of the calculations is shown in Appendix
F.3.

Figure 3.19 shows the horizontal and vertical beam sizes in HBT. At the
end point, the horizontal and vertical beam sizes are 1.8 mm and 0.3 mm,
respectively.
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Fig. 3.18 Betatron functions and dispersion function in HBT
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Fig. 3.19 Beam sizes in HBT
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3.44 STR

The 1 GeV electrons injected from HBT are stored in the storage ring.
The storage ring of the Siam Photon Source has a circumference of §1.3 m. It
has a four 7 m long-straight sections and fourfold symmetry with Double Bend
Achromat (DBA) cells. The natural emittance is 73.411 7m[dmltad. This is 7
times smaller than that of the original ring of SORTEC, 500 77dmlrthd. The
reduction in the emittance implies that the beam size is also small. Therefore,
the synchrotron light acquires more brilliance.

Without chromaticity compensations, the chromaticities in the horizontal
and vertical directions are —7.648 and —6.727, respectively. These values imply
that the chromatic errors occur in both horizontal and vertical directions. The
details of results of the calculations without chromaticity corrections are shown
in Appendix F.4. In this thesis, the chromaticities are corrected to be zero. For
this case, both program LATTICE and program BETA are used. The details of
results from program LATTICE and program BETA are shown in Appendix F.5
and Appendix F.6, respectively. The main parameters of STR are shown in
Table 3.10.

Table 3.10 Main parameters of STR

Parameters of STR

Electron energy, E, 1.0 GeV
Circumference, C 81.3m

Magnet lattice DBA
Superperiodicity 4

Long straight sections 7m %X 4

Natural rms horizontal emittance, £ 73.411 ™ nmrad
Natural chromaticities, &,, &, -7.648, -6.727
Beam sizes, 0,,0, 0.95,0.18 mm
Betatron wave numbers or tune numbers,U,,U, 4.76,2.82

Damping partition numbers, D, J,, Jy, Je

Damping times, T, T,, T

0.09996, 0.9004, 1.00, 2.0996
18.893, 17.011, 8.1021 ms

st x1 by
Synchrotron radiation (energy loss per turn), U,  0.031900 MeV/turn
Energy spread, o /E, 5.0220x10™

An electron loses energy of 31.9 eV per revolution into synchrotron
radiation. In the revolution, electrons have the horizontal damping and the
energy damping with damping partition numbers of 0.9004 and 2.0996,
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respectively. However, the balance between the damping and the quantum
fluctuation (random change in the beam energy by emitting photons) of the
beam energy occurs an equilibrium distribution of electrons in the beam is
attained. It determines the equilibrium values of the beam emittance and the
energy spread. The value of the energy spread is 5.0220x 10™. The operating
points in the horizontal and vertical directions are 4.76 and 2.82, respectively.

Figure 3.20 shows the betatron (3,, 3,) functions and the dispersion
function (n,) in a unit cell of STR at the operating point, v, =4.76
v, =2.82. In section 3.3, Table 3.8 shows the slope of the betatron functions
equal to zero, a, =a, =0, at the end of lattice. This indicates that the beam is

parallel to the ideal orbit. The maximum values of the betatron functions are
B, max =14.30m at the location of the defocusing quadrupole magnet and

B, max =19.36m at the location of the focusing quadrupole magnet. The

minimum value of the horizontal betatron is 3, m n=0.55m at the location of
end of bl. This is 0.82 m away from the dispersion free straight section side.

HUZ = 4. 70 R = 12835
HUS = 23] ALPHA= 2 140E-02 ORFTICAL FUNCTIONS ExfGam*2= 1 $15E-14

] T

15 Bx
(m)
10,

% 2 4 i B 1 T 14 T 18 20

(m)
Fig. 3.20 Betatron functions and dispersion function in a unit cell of STR

We notice that the horizontal betatron function is focused at the locations

of ql and g3, and it is defocused at the locations of q2 and g4. Inversely, the
vertical betatron function is focused at the locations of q2 and g4, and it is



Table 3.11 The field gradient of the quadrupoles in STR
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defocused at the locations of ql and q3. In order to obtain the betatron functions
as shown in Fig.3.20, we used the field gradient of the quadrupole magnets as
shown in Table 3.11.

Quadrupole Field gradient Type
ql 9.198045 Focusing
q2 -9.573124 Defocusing
q3 8.410067 Focusing
q4 -6.888579 Defocusing

Figure 3.21 shows the beam sizes for the horizontal and vertical directions
in a unit cell where 10% coupling is assumed. The horizontal beam size is
0, =0.95 mm and the vertical beam size is 0, = 0.18mm. The maximum

horizontal and vertical beam sizes are 0, max = 0.98mm and o, max = 0.36
mm, respectively (see the results in Appendix F.5 and F.6 for details).
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Fig. 3.21 Beam sizes in a unit cell of lattice of STR
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Figure 3.22 shows the dynamic aperture for the perfect machine simulated
at the center of the long straight section by tracking a electron for 4,000 turns. It
is much larger than the physical aperture of the vacuum chamber. Therefore, the
horizontal and vertical phase spaces of the electron for many oscillation
amplitudes within the physical aperture are not distorted very much.

[EN |

L0 |

.04

LeE

Physical aperture

=01 -0 1013 0 01,05 [ER|
(m)

Fig.3.22 The dynamic aperture for perfect machine at the center of the long straight
section. The dashed line is the physical aperture of the vacuum chamber



Chapter IV

Conclusion

The purposes of this work are to explain the analytical part of the electron
motion in a storage ring and calculate the important beam parameters. I started by
studying the basic theory of the beam dynamics in the storage ring. Then, I studied the
usage and performance of program LATTICE and program BETA. After that, I
collected the various data such as the structure of the lattice, parameters of the
magnets, etc. These input data are used to calculate the Twiss parameters and the
important beam parameters with program LATTICE. From plotting the Twiss
parameters, I have the betatron functions and the dispersion function in graphs in both
horizontal and vertical directions. The horizontal and vertical beam sizes are also
plotted. Moreover, the program BETA is used for the simulations of the dynamic
aperture, here the field gradient of the magnets from program LATTICE are used as
the input data for program BETA.

4.1 Beam Dynamics

The 1 GeV electrons in the storage ring are relativistic, traveling with a
velocity very close to the speed of light. The trajectories of these electrons are kept
close to the ideal orbit by focusing and bending electron orbit by the magnetic fields.
These linear magnetic fields, produced in dipole and quadrupole magnets, determine
the single particle behaviour in the storage ring in the linear approximation. The
electrons execute transverse betatron oscillation around the ideal orbit (see Fig. 3.20).
The electron beam contains electrons with energies that differ from the designed ring
energy. These off-momentum electrons have a new ideal orbit that depend on the
momentum deviation and is described by dispersion function. They execute betatron
oscillations around this new momentum-dependent closed orbit. Furthermore, by the
process of synchrotron radiation and acceleration in RF cavity, synchrotron
oscillations result.

4.2 Beam Characteristics

As mentioned in section 3.4, the important characteristics of the beam are
concluded here. The natural emittance of the beam is 73.4 Tt him[thd. At the mid-point
of the long straight section, the horizontal and vertical beam sizes are 0.95 mm and
0.18 mm, respectively. The minimum value of the horizontal beam size is 0.2 mm at a
position about (3/8)L away from the edge on the dispersion free straight section,
where L is the bending magnet length (see Fig. 3.21). In a revolution, the electron
oscillates about 4.76 times and 2.82 times in horizontal and vertical directions,
respectively. The number of bunches in the storage ring are about 32.
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4.3 Future Perspective

The calculations of various parameters using program LATTICE in this
thesis have been carried out only first-order matrix transport. This implies that the
Twiss parameters and various beam parameters are of the first-order, too. In future,
the BETA program should be considered more in detail, because with program BETA
we can calculate parameters to the higher-order and take various errors of the beam
into account.

At the time when this thesis was written, the assembly of the Siam Photon
Source was not yet completed. However, when the machine is ready to run, the results
of this work should be examined experimentally.

In the near future, the insertion devices, undulators and wigglers, will be
installed in the storage ring. So, beam dynamics studies including the effect of these
devices will be necessary. The beam dynamics studies of the undulators and wigglers
are interesting to work out.
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Appendix A

Equation of Motion

We derive the equation of motion of the charged particle in the static magnetic
field.

dR Individual trajectory

Ideal trajectory lines in
magnetic midplane

Magnetic midplane

Fig.2.1 Coordinate system (Brown, K. L., 1982)

We define three mutually perpendicular unit vectors, (X,Vy,S). The direction of
motion of the particle is tangent to the ideal trajectory and in positive direction of S.
X is perpendicular to the S direction and parallel to the magnetic midplane.y is
perpendicular to the magnetic midplane. We write the relations of the unit vectors as:

w>

X

I
v <

(A1)

X
X
X

0 <
Il

1
0
< X

Consider the ideal trajectory, unit vectors depend only on the coordinate S. We use
the prime to indicate the operation d/ds. We may write as:
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X
1
[

h
0 (A.2)

<
I

—hX

h=1/p, where p, is the radius of curvature of the ideal trajectory defined as
positive as shown in Fig.2.1. To facilitate the equation of motion, we rewrite the
equation of motion in terms of the expressions dR/dR (the unit tangent vector of the

trajectory) and d’°R/dR?(the deviation of the unit tangent vector), where R is the
coordinate vector and R is the the abslolute value of R, namely:

dR _dR ds _R’

dR dsdR R
dR_1dR[
dRF R dsOR' O
d’R 1 R d
R)? =R"-= —(R)? A3
(R) dR? 2 (R)? ds( ) (&.3)

Consider the equation of motion for a particle in a static magnetic field. Let e be the
charged particle, B the static magnetic field and Vv the velocity of the particle. We
write the relation of the time rate of the change of the momentum according to the
Lorentz force:

d—li: =e(vxB) (A4)

We write the velocity Vv in terms of the tangent unit vector of trajectory as %Q{

and the momentum P as %@3 . Equation (4) becomes:

VariEnPEE e xB ]

dROMR [

d R dRE&H Bd—XBQ

dROJRO [OdR

Since the static magnetic force is always perpendicular to the velocity of the particle,
the momentum P is expected as constant. dP/dR is, therefore, vanished. The final
result is:

d’R eEd_xBH

dR PR H
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Substituting this equation into equation (A.3) and after simplification we obtain:

1 R d e
R'-————(R)*==R(R'xB AS

Consider the coordinate system, the three dimensions is illustrated by Fig. A.1

<>
>
<>

>

>

ideal trajectory

Fig. A.1 Deflecting of a particle trajectory, ideal

A

trajectory S and individual trajiectory S.

where dO is the deflection angle. From the Fig.A.1 the deflection angle for the ideal
trajectory is d8 = p,ds (see Fig.A.1), so when df is small, we can approximately

calculate the path length element for individual trajectory as:

dR = ydy+ xdx+ SAL
= ydy+ Xdx+ $(p, + x)d6
dR = Xdx+ ydy+ (1+ hx)sds (A.6)
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and we obtain:
(dR)? = dR @R = dx* +dy* + (1+ hx)*ds’
Differentiating equation (A.6) with respect to S. From equation (A.2), we obtain:

R'=xX+yy+(1+hxs

(Rr)22X12+y12+(1+hX)2

1 d n2 n non ] ]

——(R) " =xX"+ +(1+ hx) hx + h'x

2dR( ) yy' +( ) O )
and

R" = (X" - h(1+ hx))x + y"y + (2hx’ + h'x)s

Substituting these equations into equation (A.5), we obtain the equation of motion as:

1

B — h(L+ hy) =2 (X%" + yy" + L+ hx) (% + hx) K
O (R) O

# 0y =X (0 4y + @ g 0 + 0
0 (R) O

1+ hX I n I n
&RY)&X+yy

_Me oyun e ., oy
_QSR(th (1+hx)By)§?+§5R(ﬂ-+hX)Bx XBt@

¥ E(th’ +hx) - +(1+hy) X + h'x))Eg (A7)

€ in
+%Rum wo§

If now we retain only terms to second-order in x, y and their derivatives and note

that (R)? =1+ 2hx+. .., that is 1/(R)* =1-2hx+. .. The components of the
equation of motion, Xand y as:

X" =h(@+hx) - x'(hx' + h'x) = < R(yB, - (1+hxB,)
P (A.8)
y' = y(hx' +h'x) = g R((L+hxB, - XB,)



Appendix B

Magnetic Field Expansion to Second-Order Only

For the particle in vacuum, we may express the relation of the static magnetic
and the scalar magnetic potential as: (since we are restricting the problem to static
magnetic fields, we can omit the minus sign, for convenience)

B=0gp (B.1)
The scalar magnetic potential ¢ will be expanded in the curvilinear coordinate about
the ideal trajectory on the midplane which is already shown in Fig.1.1. And the
Laplace equation is used:

O%¢=0 (B.2)

In appendix A we have:
dR = xdx+ ydy+ (1+ hx)sds

therefore, the Laplace equation has the form of:

=0 (B.3)

2
7 1 a§1+hx)a_cpm+agf+ 1 90 1 opd
axH ay? (1+hx) dsHLl+hx) asH

~ 1+ hY) ox

Since the scalar magnetic potential @ is an odd function, @(X,V,S) = —@(X,~Y,S).
This is equivalent to say that:

B, (X ¥,8) = =B,(X%-Y,s)
B, (X ¥,8) = B,(X-VY,9) (B.4)

B,(x y,8) = -B,(x~-y,9)

For the ideal trajectory, on midplane y = 0, equation (B.4) gives B, = B, =0. Only
B, remains nonzero, therefore, generaly we make an answer of the Laplace equation,

with equation (B.1), in the form of a power expansion with respect to the ideal
trajectory:
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3

x? x?
P0Y,9) = (Ao A AL~ b ) (A At Ay~ s s (BS)
where (see equation (B.4), only B, is nonzero on the midplane)

G“By )
A = o = Function of S only (B.6)

0
0

y
Substituting equation (B.5) into equation (B.3). Give the recursion formula, but

instead we shall only be interested in the first- and second-order, namely we shall find
that:

A30 = _(Afo + hAl + Aiz)

Inserting equation (B.5) in to (B.1), we obtain:

B, (% Y,8) = Ayy + Apxy+. . ..

1 1
B,(x,Y,5) = A, + A x+ B ALX° +5 ALy +. . (B.7)

1
1+ hx)

B.(x y,8) = (A + A xy+. . ).

Inspection, consider the ideal trajectory particle, y = 0. Equation (B.7) becomes:

B,(x0,5) =0
B,(x0,5) = A, + A,X +%A12x2 +. . (B.8)
B.(x0,5) =0

Considering only B, using equation (B.6) we obtain:

B
x=0 T h
y:

0x

1 0°B,
+ =
x=0 2l OXZ

y=0

B,(x0,5) =B,

(B.9)

x=0
y=0

If we write B, in terms of dimensionless quantities n(s) ,5(s) etc., we shall obtain:
B,(x,0,5) = B,(0,0,5) L - nhx+ ph*x* +. . (B.10)

Direct comparison of equation (B.9) and (B.10) yields:
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B ’B
n=—Ei%%’ and fB= ]; > (B.11)
hB, Hox = 2h’B, Hox =

From the beam rigidity in equation (2.6) and equation (B.10), we obtain the
coefficients of the field expansions as:

—_ — PO
Ao =B,(0,0,5) = h%@

0B
—_ Yy — nh2 0
All OX |x=0 éﬁeg
y=0
1 10°B
Pria tiaten 2y :2[3h3 OH
] | -
2! 20X | Oe O (B.12)

A, =

ge

ro— ] 2 PO
A =-{2nhh' +11 h @?@

Substituting this equation into equation (B.7), we obtain:
B.(x v,s) = Befl-nity + 280°xy+. .. ]
ge g

B,(X v, ) = Q%@h +—nkEx + B —%(h" N +2B0°)Y +. .. (B.13)
B.(X, V,S) = g%@(h’y— (n'h? + 2nh’ + hh')xy+. . )



Appendix C

The First-Order Solutions of the Equation of Motion

We express the specific position of an arbitrary particle with respect to the
ideal trajectory at S=0 as X,, Y,, X, ¥y and O . These five boundary values are equal

to zero for the ideal trajectory. The fivefold Taylor expansion shall be considered in a
general way using these boundary values and detailed formulas only first-order shall
be developed. The expressions are written as:

XZZ(X

Y= (% Yo Xe' Vo %)X Yo X' ¥y O

KA HrV SX N vK A v HAV XX
Xo Yo Xo Yo 0%)%; Yo %o Yo O

(C.1)

Where Z indicates the summation over zero and all-positive integer values of the

exponents K, A, 4,V and X . X and Y are the deviations of an arbitrary trajectory with
respect to the ideal trajectory as function of S. The parentheses are the symbol for the

Taylor coefficients, these coefficients are function of S. The detailed calculations
involve only the terms of first-order, namely:

x = (X1) +(x|x0)x0 + (x|y0)y0 +(X|%5) X, + (X|Yp) Y, +(X|0)3 + Hi ghepr de

(C.2)
y =(yD) +(VIXO)X0 +(YYo) Yo + (¥X0)X5 + (¥¥s)Ys + Hi gheor der

The terms which indicate a coupling between the coordinates X and y would be zero,
and the constant terms are zero also, namely: (results from the midplane symmetry.)

(X|yo) = (y|X0) =0
(Xys) = (¥%) =0 (C.3)
(x1) =(y) =0

Equation (C.2) becomes:

X = (XX%o) X, + (X[Xg)Xg +(X|8)S

C4
Y = (M¥0)¥o + (¥1¥0)Ys (€4

It is convenient to introduce the following abbreviations:
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(X|XO) = Cx (X|X£)) = Sx (X|5) = nx

C.5
YYo)=c,  (X|ys) =s, (€

The equation (C.4) becomes:

_ r
X= CxXO + SxXO +nx6

‘ C.6
y = nyO + SyyO ( )

Substituting equation (C.6) into equation (2.12), By comparing the coefficients of
Xos %01 Yo» Yo and O, we obtain:

cl +k’c, =0
sl +k’s =0
cy +kic, =0 (C.7)
s, +kis, =0
ny+kn, =h

where ki =(1-n)h* and k; = nh*. Equation (C.7) indicates that the solutions of the
first-order equations of motion (equation (2.12)) are C,S,,n, for the X motion and
C,,s, for the y motion. At s=0 the coefficients in equation (C.5) satisfy the
following boundary conditions:

c(0)=1 c'(0)=0
s(0)=0 s(0)=1 (C.8)
n.(0)=0  n(0)=0

Now we shall calculate the solutions of equation (C.7) both the homogeneous and
inhomogeneous equation.

Solutions of the homogeneous equation of motion

It is very convenient to approximate h, n, and k®in the equation of motions
as uniform piecewise. With these restrictions and the boundary conditions (equation
(C.8)), the solutions of the homogeneous equations of motion (C.7) are the simple
trigonometric functions, namely:

c.(s) = COsk s 5.(9) = (ki)si s
1X (C.9)
c,(s) =coks s,(s) = (k—)si K,S
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And for k,, k are negative values:

c(9)=cosli|s  s(s)= (ﬁ)si ks
D (C.10)
c,(s) =coslk /s s,(s) = (W)SI nk,|s

where ki =(1-n)h’and k; =nh®. h=1/p, is constant where p, is the radius of
the ideal trajectory. ¢; stands for C,,C,, and s stands for S,,s,. They are represented

in each interval of uniformity by a sinusoidal function, hyperbolic function, linear
function of s, or a simply constant. The ¢, and S are called cosine like solutions and

sine like solutions, respectively. Using equation (C.7), we may write the interested
relation as:

Integrate this equation, use the boundary conditions (C.8), we find:
(cs-cs)=1 (C.9)

This expression is the determinant of the first-order transport matrix representing
either X or y equations of motion (see Wronskian determinant), namely:

G S

! !

‘ =1: Constant (C.10)

This equation is equivalent to Liouville’s theorem (see Wiedemann, H. (1993).
Particle Accelerator Physics (Vol. 1)) which states that phase areas are conserved
throughout the system in either X and y plane motions.

First-Order solutions of the inhomogeneous equation of motion

In equation (C.7) an inhomogeneous equation is shown as:
ny+kin, =h (C.11)

From equation (C.5) we have 1, =(x|0) where d =AP/P. This indicates that the

beam is not monochromatic but has a finite spread of energies. The variation in the
deflection is caused by such a chromatic error AE in the bending magnets. The
function n, 1is called dispersion function. We use Green’s function method to solve

this perturbation equation by obtaining:
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n, = Iosh(r)G(s 7)dr (C.12)
where T is just the variable of integration and:

G(s 1) = 5,(8)c,(T) — ¢, (T)s,(9) (C.13)
After inserting equation (C.13) into equation (C.12), we obtain:

N, =8(8)f h(T)e, (1)dT ¢, () h(D)s, (1)dT  (C.14)
The first derivative of equation (C.14) respects to S as:

N =S, (S)_[OS h(t)c, (T)dT + ¢, (s)s,(s)h(s) - C'X(S)j: h(7)s, (T)dT - ¢, (s)s,(S)N(s)

=5, (9)[, h()e,(1)dT ~ (I, h(r)s,(T)dr
And the second derivative respects to S:
n = SZ(S)J'OS h(t)c, (T)dT - C'X'(S)J'OS h(t)s, (T)dT + 5, (s)c, (s)h(s) — C, (S)s, (S)N(s)
Using the relation (c;s —c¢'s ) =1, (C.9) we obtain:
;. = sy(8)[ h(T)e, (1)dT = ci(s)[ h(T)s, (1)dT +h(s)
Substituting them into equation (2.11), we obtain:

ny +kin, = h(s)

which is the identical to equation (C.11). Therefore, equation (C.14) is indeed a
particular solution of the inhomogeneous equation. That is:

N = S,(Y, (T)e,(T)dT —c, (), h(r)s, (T)dr
Using equations (C.9) and (C.10), we find that:

h h
n, :F[l—coskxs]:F[l—cx] (C.15)

X X



Appendix D

Betatron Functions

The homogeneous differential equation of motion:
u"+k(sju=0 (D.1)

We apply the variation method of integration constants and use the try solutions with
amplitude and phase as function of S, namely:

u(s) = /eB(s) cosy(s) — ) (D.2)

The first and second derivatives of equation (D.2), B = B(S) i =Y(S), are:
u'=%ﬁcosw—wo)—@si W=~ o)y (D.3)

u" = \/E—B’BHZ_BEEZ cosl -Ll/o)‘\/%ﬁ'si W-y,)
—JEB si i~ )y" - JeB cosy —y )y’

(D.4)

Substituting equations (D.4) and (D.2) into (D.1). Regard that equation (D.2) is the
solution on the condition that the sum of all coefficients of the sine and cosine terms
equal zero, namely:

S -5 B+ pk=0 (D.5)
and

B+ By’ =0

(By') =0

By' = Constant

By =1 (D.6)

Where the constant is chosen equal to the unity since the normalization of the phase
function, after integration we obtain the phase function as:

_ s dr
Y(s) —Lm +, (D.7)
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Inserting equation (D.6) into (D.5), we obtain:

1 n 1 !
EBB —ZB2+ﬁ2k:1 (D.8)
a = —% B’
with A+a?) (D.9)
B
Equation (D.8) becomes:
B"+2kB -2y =0 (D.10)

Using the general solution u(s) of equation (D.2), its derivative U'(S) of equation
(D.3) and the phase function, equation (D.7), we obtain:

C(u,u') =& = w® +2auu’ + Bu'® (D.11)

where C(u,u’) is the Courant-Snyder invariant. € 1is the emittance and the
parameters Y, and [ are called Twiss parameters. Particularly, [ is called the

betatron function or betafunction.
To normalize the coordinate (U, S) we define new variables as:

u(s)
= D.12
w(¢) 39 (D.12)
_Y_1s dr
d y_1 D.13
o ) (B-13)

where the phase function ¢ in coordinates (w,¢) stand for ¢, and ¢, . The betatron
tune U stands for v,and v,. From equation (D.12), d¢/dt=¢’', we obtain the

derivatives:

u=.pBw

L ldw, B 1
v Bd¢+2\/f ' uB

e 1 dw, OB B’ZE
v?p* d(l)2 \/_ ap”
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Inserting these equations into equation (D.1), we obtain:

dw . L0BB" B a0
d¢2+”EB2 4+kﬁE”‘°

Using equation (D.8) we obtain the final form of harmonic oscillation equation, these
coordinates (W, @) are called the normalized coordinates:

2
iTV;I+U2W:0 (D.14)



Appendix E

Radiation Damping and Excitations

Synchrotron Radiation Power per Turn

The instantaneous power radiated by a relativistic electron at energy E depends
on the angle between the force and the electron velocity, namely:

P, =y°P, (E.1)

where Yy =(E/nt?)?. Since, the power when the force is perpendicular to the

velocity P, = Py is much larger than when the force is parallel to the velocity, we

shall consider only P, which is defined by:

e%c?

21T

P =C

Y y

E*B® (E.2)
where B is the magnetic field. E is the energy of the electron. Cy is Sand’s radiation
constant defined as:

C, =8.85x10° m/GeV?
Sometimes we usefully express equation (E.2) in the form of:

c E*
P =C,—— (E.3)
21T p?
If we integrate the power Py with respect to time t once around the ring, we shall get
the total energy radiation in one revolution U, . Since dt=ds/c, we obtain:

C,E! C,E,
U, =V—°fE = fh (s)ds (E.4)

By using the distance around the ring L = 27R, we can write equation (E.4) in the
useful form as:
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1
U, :CyEg‘Rtfhzds:CyEg‘R<h2> (E.5)

For an isomagnetic ring, h=1/p, we obtain:

C E!

(i somay (E.6)

0

Therefore, the total average of synchrotron radiation power per turn is:
cC
— -0 — 4/ K2
<P>—T—O——Eo<h> (E.7)

Here T, =c/27R is the revolution period where R is the average radius of the storage

ring. For an isomagnetic ring the total average of synchrotron radiation power per turn
is:

oG e, _cGE
(P,) = R Lo, (i somay (E.8)

Damping of Synchrotron Motion

The variation of the synchrotron radiation power around synchronous energy
E, may be written as:

U, .(E)= U,+ WAE (E.9)
du
where W= —rad (E.10)
dE E=E,

Consider the moving position of the synchronous electron at the center of the bunch
and any other electron position in the bunch by giving its longitudinal displacement z
from the bunch center. The Figure E.1 shows the positions of two revolutions of the
electron within a bunch. One revolution the electron is ahead of the synchronous
electron by distance z . Next revolution the longitudinal displacement has decreased

to z,.
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3
>

Synchronous electron c

X Next revolution
o L S
>\ )\ One revolution

Bunch z, =cr1,
) z, = CTZ’
z+ct <
Az = cAT

Fig.E.1 Longitudinal motion of an electron within a bunch

We assume that the electron travel at the speed of light c. Therefore, the time
displacement from the center of the bunch is:

AT(t) =

AAt) (E.11)
C

We note that the time displacement is positive when the electron arrives at each
azimuth ahead of the synchronous electron. The path length difference between the

any electron of energy E and the synchronous electron of energy E,is (see section
2.3.1):

AL =a, L, AE—E (E.12)

0

where o _is the momentum compaction factor and L, is the ideal trajectory path

length. The electron fails to reach its previous azimuth distance Az =-AL. From
equation (E.11-12), we obtain:

AT =-aT,=— (E.13)

where T, = L,/c is the period of the synchronous electron. Thus, the time rate of
change (on average) of T is AT/T, or:
dr _ AE

ar _ _, At E.14
it O (E.14)
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During the revolution, the electron loses energy U, ., into synchrotron radiation. This
loss is compensated by the RF energy gain, eV(7), in the RF cavity. Thus, the net
changes in energy is (on average):

d(AE) _ eV(r) -U(E)

rad EIS
dt T, ( )

We focus only on the small energy oscillations which is small time displacement. We
retain only the linear part of the variation of V(7). Then, we write the energy gain in

the RF cavity U, to compensate the energy loss as:
U, =eVr)=U, +eVr (E.16)

where U, is the energy gainat T =0 and V = dV/dr .
To simplicity, we assume that the RF voltage of the RF cavity in storage ring to have

a sinusoidal variation with time, namely:

V(1) =V,sim, (T +1,) (E.17)

where w,Tis called the synchronous RF phase angle. The RF angular frequency is:
(;J,f =kT_=ka (EIS)

where K is the harmonic number and w is the revolution angular frequency.

From equation (E.17) and (E.16) at T = 0 we obtain:

U, =eV,si np,t,) (E.19)
and
V =w, V,cos,T,) (E.20)

Combining equations (E.15) and (E.16) and approximation for small T and AE, using
equation (E.9), we obtain:

d(AE) _ eVT - WAE
dt T,

(E21)

Taking the time derivation of (E.14) and combining with (E.21) we obtain:
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d’r dr
—+2a. —+wT=0 E.22
dt? Edt (E-22)
with
w
a. = — E.23
== o1 (E.23)
and
o = 2 (E.24)
TOEO

Equation (E.22) is the equation of the damped harmonic oscillator with synchrotron
frequency w,and the damping constant a. This oscillaitions is simply called the

synchrotron oscillations. Since the damping rate in storage ring is normally small,
o << w, the solution of (E.22) is:

T = Ae“ cos@t -6,) (E.25)
The Damping Partition

Consider equation (E.23), we have:

W du
a.= N - 1 W (E.26)
2T, 2T, dE |,

The radiation energy loss per revolution can be evaluated by:
U ,=¢Pdt=¢P Eds—l P (1+hx)ds
rad -f y .f y d s C-f y

We choose only the displacement due to energy deviation that is x=n, AE/E,.
Equation (E.26) becomes:

1 AE
U _,==§PHA+nh——Hls
rad C-f y%‘ r]x EO

Substituting into equation (E.10), we obtain:

1 .HdF P
:—j{ +n,h— ds (E.27)
eze, CJ[OdE E, e,

Since P, is proportional to the product E°B?, we obtain:

W - dUrad
dE
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dﬂ:22+21@

dE " E, B, dE
But

dB_dxdB_n, dB

dE dEdx E, dx’
so that

P PP
9 o5 4y 1 dB (E.28)
dE E, B, E, dx

Putting it into (E.27), we obtain:

P P P
U4 =lf%_uz_y’7_x@+nxh_y ds (E.29)
esg, © Eo B0 Eo dx EO =E,

W:ﬁgy 1f XPVEnid_B%E s@ (E.30)
EOD cy, B, dx 0 0

We may write the damping coefficient in equation (E.26) in the form:

P
arE:ﬂ:—U0 (2+D):(2+D)—< y>
2T,  2T,E, 2E,

1 2 dB
D= CUOfEMPyE’HEO&%E:E Ejs (E.32)

Equation (E.32) be written in a more useful form by taking equations (E.4) and (E.5)

(E.31)

with

and we defining the quadrupole field gradient, n(s) = —%2—8 , (see equation (B.11)
X

in Appendix B.) Equation (E.32) becomes:

o _fl.on*a-2ns)s

(E.33)
fhzds

This equation is called the damping partition number. For an isomagnetic ring,
h=1/p, , we obtain:
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D= h—gfnx(s) L-2n(s)ds (i somag (E.34)
21

Damping of Betatron Oscillations
Vertical Betatron Oscillations

We approximate the motion by ignoring the variation of 8, with s, then we
write the betratron phase-space coordinates as:

y = Acosp
. A . (E.35)
y=—-sS1'®p
By
where @ = S/ B, - The amplitude A can be obtained by:
A =y +(B,Y) (E.36)

The energy gain dp from RF accelerating force on the average is parallel to the ideal

orbit (See Fig.E.2). We write pfor component of momentum p that is perpendicular
to the ideal orbit.

5 S
7
Fig.E.2. Effect of energy gain from RF accelerating system on the
vertical betatron oscillations.
Since the angle are small, we can write the slope as:
y =Fo (E.37)
p

The accelerating field from RF cavity does not changes Y, but change Yy which goes
over to:
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y . P P %_@% y’(l—%) (E.38)

= -y (E.39)

where OE = |05p| is the amount of energy loss into synchrotron radiation. Using
differentiation of equation (E.36), the corresponding change of amplitude A is:

AGA = (B2yDY) = ~{(B,Y)") 2 (E40)

0

where we now average over the betatron oscillations in one revolution. Since the
motion is sinusoidal, we have <( Byy’)2> = A?/2 . Equation (E.40) becomes:

A__U (E.41)
A 2E,

Therefore, The derivation of amplitude can be obtained:
1dA_10A__ U, (E.42)

By integrating, we find that the motion is exponentially damped, namely A = A)e_ayt ,
with the damping coefficient is:

(E.43)

We note that this damping does not occur from the synchrotron radiation process, but
occurs from process of energy gain from RF system.

Horizontal Betatron Oscillations
The horizontal displacement from the ideal orbit is:

X=Xg + Xg (E.44)

with
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% =9 S (E45)

0

where X; is the betatron displacement, X is the off-energy closed orbit, 1, is the

dispersion function and OE is the amount of energy change in one revolution.
Similarly, the position in space of the electron is not changed, i.e., the total
displacement X does not change. Therefor, we obtain:

OX=0X; +X: =0
oE

OXg = =OXg = =1, — (E.46)
EO

The resulting change of betatron amplitude can be obtained by the change of the
betatron slope (see Fig.E.3):

oE

5X23 = —5X'E = —n; — (E.47)
E,
Before After
A
X
>< Off-energy orbit

Fig.E.3. Effect of energy changes at S on the horizontal betatron displacement.

We may consider the horizontal betatron motion by:

Xz = ACOogp
(E.48)

I

A .
Xy =——simp

B
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and
A =X, + (B, X;)° (E.49)

where @ = s/, the change in the amplitude becomes:
AdA = X0, + B*X; 0 (E.50)
Using (E.47), we obtain:

I ! 6E
A6A:_(r’xx/3 +B2r’xx[3)E_ (ESI)
0

To simplify the discussion of the damping, we restrict the consideration to separated
function of function guide field, so we express the off-energy in an element length Jl
as:

OE = —@d (E.52)

Expanding to first-order of this equation and using equation (E.2) and (A.6), we
obtain:

1 P, dB
CE=-=[P +2X —x, HL+ hx, ds E.53
CH% B i, pﬂl % (E53)

Substituting equation (E.53) into (E.51) and neglecting all linear terms in Xj. Since

their average over the betatron phase is zero, we obtain:

P
AOA = xﬁnX§+ 2 dB X, + xﬁhﬁc—yds (E.54)
B, dx, =

Averages over the betatron oscillations in one revolution, with <Xﬁ> =0 and from

(E48) (x5) = A*/2, we find that:

h3(1-
@) _ U, [fr.ra-200M v, s5)
A 2E, fh°ds 2E,

Here we used equation (E.33). We note that the right side is positive, i.e., the rate
change is increase in horizontal betatron amplitude due to synchrotron radiation. The
contribution from the RF acceleration goes exactly the same as for the vertical
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oscillations which is shown in equation (E.42). Thus, we obtain the total effect in one
revolution as:

1 AA U,

———=—-1-D E.56
T, A ( ) 2T,E, ( )
therefore, we obtain the damping coefficient in horizontal oscillations as:
P
a, =(1- D)L =(1- D)M (E.57)

2T,E, 2E,
Damping Partition Numbers

The damping coefficients in equations (E.31), (E.43) and (E.57) may be written
in three degrees of freedom in a bunch, namely:

(E.58)

where i stand for X,y and E. a, = <Py > / 2E, and the damping partition numbers

arc:

J,=(1-D), J, =1, J.=2+D (E.59)

y

Consider the summations:
ZJi:JX+Jy+JE:4 (E.60)

Note that the results satisfy the Robinson’s theorem (see Robinson’s theorem, H.
Wiedemann, Particle Accelerator Physics Vol. 1, (1993)).

Damping Times

The damping times are defined by 1/a; . From (E.58) we obtain:

(E.61)

Using equation (E.4), we obtain:
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y y X X
r, = 2B, _ 4_7T£03 = ﬂ-ro (E.62)
J(R) C,JE U,
7 =25 _4mRp _ 2B,

Radiation Integrals

In summary we list the radiation integrals as below:

[, :pr—XBIs:fhr)de (E.63)

Op 0O

I, = ds= §h*ds (E.64)
) fﬂlg f
000

_ 1 —fh3
I, —f%éds—fh ds (E.65)

= f”xap_a 2n) :,Sth“‘nx(l— 2n)ds (E.66)
2 ' 12
I :f(ynx + 20”7x’37x + B, )ds:fH|h|3ds (E.67)
fe

where h=1/p, n=-(1/Bh)(dB/dx). n, is the dispersion and

H =yn; +2an,n, + BN} (E.68)

From equation (E.7) with T, = L, /c, the total average radiated power per revolution
becomes:

E (E.69)

—
<V
~——
1
N <
~
=l

From equation (E.5) the total energy radiation in one revolution becomes:
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B (E.70)

From equation (E.59) the damping partition numbers become:

J :1—:—4, J, =1, JE:2+:—4 (E.71)
2 2

X y

Energy Spread

To evaluate the effect due to emission of photon, quantum excitation, we
express the energy deviation from the synchronous energy in complex form as:

AE = A e (E.72)

where A, is amplitude of synchrotron motion, and w, is the synchrotron frequency.
Now we suppose that at some instant t, the energy is suddenly decreased by an
amount U via quantum emission. After t, the energy oscillation is:

AE - IAbein(t_tO) _ uéws(t—tl) - Aeiw(t—tl) (E73)
By multiplying the second equality with its imaginary conjugate, we obtain:
A? = A? +u® - 2uA, cosu,(t, —t;) (E.74)

We note that the synchrotron oscillation has changed the amplitude. Since the time at
which photon emission occurs is random, we average the amplitude as:

(aA) = (A - A}) =u? (E.75)

The rate of change of the amplitude per unit time around the ring is obtained as:

dA2 d A2 . 2 \ 2
(] =25 == i), e

|q

where subscripts q and S indicate the effect due to quantum excitation and an
average over the ring, respectively. N(uU) is the number of photon of energy U emitted

per unit time, N onis the total flux of photon. Since, damping causes the reduction in
amplitude of energy oscillations, we obtain:



95

d(A?
—<dt> = ~20¢(A?) (E.77)

d

Since the growth of the effect is limited by damping, quantum fluctuation and
damping lead to an equilibrium state, thus from (E.76, E.77) we obtain:

2ac () = (N,(1))
() = (N1, = e, ©78)

20
where 7. =1/a; is called the synchrotron oscillation damping time. We assume the

energy distribution due to statistical emission of photon is as a gaussian distribution,
therefore the mean square equilibrium energy width is expressed as:

()

rE<Nph<u2>>S (E.79)

DN NP

o

Using (E.78) ol

The expression of the mean square energy fluctuation rate over one revolution around
the ideal orbit without proof as (Lee, S. Y., 1999):

We’) (E.80)

where C, =5524/3. Using equation (E.62) with E, =mjc?, equation (E.79)
becomes:

"Y1 p?) (E.81)

EH - Y 3
s

where

=3.84x10%° m (E.83)
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For an isomagnetic ring, we obtain:

2

EO =C yo, (i somag) (E.84)
Eoé " Jepo

From equations (E.64), (E.65) and (E.71) we obtain the energy spread in the form of:

E — 2 |3
E%E S @, ) (583

Beam Width and Emittance

Horizontal Beam Width

The emission of photon also excites random betatron oscillations. However the
position and direction of a electron with respect to ideal orbit is not change. The
quantum fluctuation gives only a change in the magnitude of the momentum. So we
may write the change of the betatron displacement and slope when a photon emits
energy U as:

u u
X=0=0%&, +n,—, Ny =N, —
B r’x EO B r] EO
! ] ] u 1] 11 u
X =0=0; +n, —, OXg = =1, — (E.86)
EO EO

To modify these equations, we substitute them into the Courant-Snyder invariant,
W+ 2axx' + BX'? = £, we obtain:

y(AX,)? + 200%,0%, + B*(x;)? = Oe, (E.87)

u® : ,
6£x :?(yr’f +Za’7xr’x + Br]xz)
0
2

3, = —_H(s) (E.88)
EO
where

H(s) = (yn; +2an,n, + Bn’) (E.89)

The result in equation (E.88) gives the amplitude produced when we start with zero
amplitude. If we have an amplitude \/Z and the quantum emission is completely

random the change in the probable value of &, is just o€, , namely:
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6<EX> EZ
0

H(s) (E.90)

We average over all photon energies, multiply by the number of photons emitted per
unit time and then integrate over once around the orbit, we obtain the resulting change
which we may write A<£X> as:

1

Ag,) = = prh<u2>H(s)ds (E.91)
Ale,) = §T§<Nph<u2>H(s)>s (E.92)

Here we take the time dt = ds/c. The rate of change of the oscillation amplitude due
to the quantum fluctuation occurs in the time 27R/c of one revolution becomes:

<Nph<u2>H(s)>S (E.93)

where the subscript S indicates averaging around the ring. We know that this
excitation is compensated by damping, similarly to (E.77):

die,)| __ __2e)
at |, 2a,(g) = - (E.94)
Using (E.93) and (E.94), we obtain:
(60) = ZTEXZ (N(U?)H () (E.95)

Consider the simple solution of equation of motion, as:

X5 = A€, B, COSG, +@,)

We expect the betatron displacement rms spread to:
ai =(x5(s)) :1<e \B (E.96)
Xg B 2 X X .

From equation (E.95), we obtain:
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0.2

XB _ 1 TX * 2
3 Cae (Nw(u®)H(S)). (E.97)
Using equation (E.80):
. =
<Nph<u2>H(s)> gc hey® <]</;)Z><H(s)/p3> (E.98)

where C, = 55/ 24\/_ and from (E.62) we obtain:

a_;_c <H<s)/p>

B, I Ye)

(E.99)

where C is defined by equation (E.83), we define equation (E.99) as the natural

. (0] .
emittance €, , namely:

o’ H(s
g, =—==Cy’ < ()/p> (E.100)
B, 3,
For an isomagnetic ring the natural emittance becomes:
o’ H(s
gy =—==C.y; Mg (i somay (E.101)
Bx J pO

Comparing this equation with equation (E.84), we obtain:

—J_E £ -
=, (H ()),SW%E, (i somag) (E.102)

Note that we have already considered the radial spread due to X, but not yet from the

contribution from energy oscillation term, X; =1, (S) U/E, . The mean-square radial
spread due to the energy spread is expressed by:

2 —p?E-E E.103
a2 n%% (E.103)

We may add both radial spread due to batatron and energy oscillations to the total
radial spread as:
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oy =0y +0y (E.104)

Consider only the case of an isomagnetic field, from equations (E.84) and (E.101) we
get the mean square horizontal beam size as:

2 H . 2
o C, Y2 EM () comg LX) E (i somag) (E.105)
Po J Je

X

Vertical Beam Width

So far we have assumed that the emission of photon has not change the
direction of motion of the electron, this is not strictly correct. Since, when the electron
emits a photon at nonzero angle with respect to its direction of motion, it experiences

the small transverse impulse. Consider a photon with momentum u/C is emitted at
angle @, with respect to the electron’s momentum, the transverse component kick is
then equal to ug, / . Since the position of electron is not changed, we may write the

transverse angular kicks on phase-space coordinates as:

=0, 5x':Eiqu, 3 =0, @':Eigoy (E.106)

0 0

where @,, @, are the projections of ¢, onto X,y axes respectively. We consider only

in the effect on vertical betatron motion, because X' is very small compared to
equation (E.85). Using equation (E.106), equation (E.90) becomes:

2

u
5(e,) = ?goyz,By (E.107)
0

. . . . . 2 It 12 _ . .
where the phase ellipse invariant along y axis is Wy +2ayy' + fy'“ = &,. Similarly to
the horizontal direction, we obtain the equilibrium vertical beam width as:

2
y

B_ _y<Nph<(p;uz>By>s (EIOS)

Since we are dealing with the small effect case, we make the approximation:

(@2u?) = (¢ )(u?) (E.109)

and because the synchrotron radiation is emitted in the forward direction within a
cone of angular 1/y , we then have:
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(E.110)

(E.111)

(E.112)

Q
m N
m
(=3 N}

Using equation (E.62), we obtain:
(E.113)

[ERN
(o

o

—_— =

<N

2

E

m N
o N

For the flat designed orbit J, roughly equal to 1. The vertical beam size in an

isomagnetic ring is:
(E.114)

(E.115)

Linear Coupling Emittance

The horizontal emittance was defined by:

2 (E.116)

The vertical emittance was defined by:

(E.117)

Q

y

g, =2

2
y By
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The quantum excitation of the radial oscillations can be shared with the vertical
oscillations in proportion up to equal division.

£ +e, =& (E.118)

X y X
where natural emittance £° is defined by equation (E.100). The horizontal and

vertical emittances can be redistributed with appropriate linear betatron coupling,
namely:

g =L g0 £, =— g (E.119)
1+k 1+k
where K is the coupling constant, is defined by:
£, = KE, (E.120)

Bunch Length

The distribution function for energy deviations is approximately Gaussian ,
when we assume the energy oscillations are linear , so called Gaussian distribution.

2

_ 1 = U
L:U(E)_ \/EO'E exp(ZGé)

(E.121)

where U is emission quantum energy and the parameter Ois often called the

standard deviation. And we find that the time displacement is Gaussian distribution
when we defined the time displacement T by:

r=—26 (E.122)

where w, is the angular frequency of the energy oscillation. a, is momentum

compaction factor and 6 is just a scale equivalent of T. The distribution in the
normalized time displacement 0 is: (Matthew Sands, SLAC 121, (1970))

2

1 ~0
w(e)_\/ﬁ% eXp(ZUé) (E.123)

Equation (E.121) and (E.123) follow that there are associations between time
displacement T and the standard deviation O, from equation (E.122) we may write:

a
o =—%t0 E.124
"Wkt ( )

S




From equation (E.85) we obtain:

az yll
O‘TZ :Cq _2—3
S (2|2+|4)

Taking w,from equation (E.24), we obtain:

acTOEO y2|3
eV (21,+1,)

ol =C,

For the case of an isomagnetic field, using equation (E.84), we obtain:

Ve

5, (isomag)

Taking w, from equation (E.24), we obtain:

2 CYC-I-O EO yg
O-T Cq eV J p2 !
EIF0

(i somag)
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(E.125)

(E.126)

(E.127)

(E.128)

when we multiply the spread of time displacement o, by the speed of electrons C,
we obtain the spread of longitudinal displacement from the center of the bunch. This

is called bunch half length, and we obtain bunch length as:

o, =2cy,[C, aCTO.EO 5
ev (21,+1,)

(E.129)



Appendix F

The Results of Calculations

F.1 The Results of Calculations for the Low-Energy Beam Transport
Line (LBT) by the Program LATTICE

0.1351194 t-m
0.070000 0.070000 cm-mrad

Beam rigidity =
X,y emittance =
dp/p = 0.000%

Elements of the low-energy beam transport line

1 paramslit 0.0 0.000000 0.000000 0.000000 0.0000 0.0000
2d1 drift 0.0 0.400000 0.000000 0.000000 0.0000 0.0000
3d2 drift 0.0 0.300000 0.000000 0.000000 0.0000 0.0000
4 d3 drift 0.0 1.600000 0.000000 0.000000 0.0000 0.0000
5d4 drift 0.0 0.300000 0.000000 0.000000 0.0000 0.0000
6 d5 drift 0.0 0.457200 0.000000 0.000000 0.0000 0.0000
7 d6 drift 0.0 0.633850 0.000000 0.000000 0.0000 0.0000
8 d7 drift 0.0 0.200000 0.000000 0.000000 0.0000 0.0000
9ds drift 0.0 0.633850 0.000000 0.000000 0.0000 0.0000
10d9 drift 0.0 0.946600 0.000000 0.000000 0.0000 0.0000
11 d10 drift 0.0 0.300000 0.000000 0.000000 0.0000 0.0000
12 d11 drift 0.0 0.850000 0.000000 0.000000 0.0000 0.0000
13 d12 drift 0.0 0.850000 0.000000 0.000000 0.0000 0.0000
14 d13 drift 0.0 0.300000 0.000000 0.000000 0.0000 0.0000
15d14 drift 0.0 1.600000 0.000000 0.000000 0.0000 0.0000
16gq1 quad 1.2 0.100000 -0.431809 0.000000 0.0000 0.0000
1792 quad 2.2 0.100000 0.780228 0.000000 0.0000 0.0000
1893 quad 3.2 0.100000 -1.191100 0.000000 0.0000 0.0000
1994 quad 4.2 0.100000 1.138408 0.000000 0.0000 0.0000
2005 quad 0.0 0.100000 1.537801 0.000000 0.0000 0.0000
2196 quad 5.2 0.100000 -0.015168 0.000000 0.0000 0.0000
22q7 quad 6.2 0.100000 -1.073487 0.000000 0.0000 0.0000
2398 quad 7.2 0.100000 1.324245 0.000000 0.0000 0.0000
2499 quad 8.2 0.100000 1.011914 0.000000 0.0000 0.0000
250910 quad 9.2 0.100000 -1.746145 0.000000 0.0000 0.0000
26 e edge 0.0 13.870000 0.270239 0.025000 0.0000 0.0000
27 b bend 0.0 0.440695 0.270239 0.000000 0.0000 0.0000
28 sep bend 0.0 0.445059 -0.158965 0.000000 0.0000 0.0000
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The structure of the lattice

1. di1 ql d2 g2 d3 g3 d4a

8 g4 ds e b e dé a5

15: d7 d7v g5 ds e b e

22: d9 g6 d1o q7 dil g8 di2
29: @9 di3 qlo di4 sep

Machine consists of 1 period

Initial Twiss parameters

Transport mode
betax = 4.3750 alphax = 0.0000
betay = 4.3750 alphay = 0.0000
etax 0.0000 eta'x = 0.0000
etay 0.0000 eta'y = 0.0000

Fit Twiss parameters for a machine of 1 period

variable target value weight location
1 betax 6.7724 100.000 @end
2 Dbetay 3.3311 30.000 @end
3 alphax 0.0000 20.000 @end
4 alphay 0.0000 20.000 @end
5 etax -0.1100 10.000 @end
6 etay 0.0000 10.000 @end
7 eta'x -0.5000 10.000 @end
8 bxmax 10.0000 1.000 @end
9 bymax 10.0000 1.000 @end

Scales x<cm> y<cm> e<cm> ey<cm> vsize<cm>
Sc 5.000 5.000 5.000 5.000 5.000 21

To calculate the beam parameters at the end of the beam line

* LBT of Siam Photon Source By Ritthikrai

Total length = 11.998 Total bend = 71.000, 0.000 degrees

betax = 6.7724 meters alphax = -0.0000 1/gam = 6.7724; z=-0.0000
betay = 3.3311 meters alphay = 0.0000 1/gam = 3.3311;z= 0.0000
eta x = -0.1139 meters eta' x = -0.5000 psix = 445.54 degrees

etay = 0.0000 meters eta'y = 0.0000 psiy = 291.36 degrees

x = 0.2177 cm x = 0.3215 rl2 = 0.0000
y = 0.1527 cm y' = 0.4584 r34 =-0.0000
m(1,6)= -0.1139 m(2,6) = -0.5000 m(5,6) = -0.1298

m(3,6)= 0.0000 m(4,6) = 0.0000 resolves: -3.8243%



To track the Twiss parameters through every element of the lattice

* LBT of Siam Photon Source By Ritthikrai

elemt Ith sum| betax
(m) (M) (m)

0. 0. 4.38

di 0.40 0.40 4.41
gl 0.10 0.50 4.57
d2 0.30 0.80 5.58
g2 0.10 0.90 5.61
d3 1.60 2.50 2.40
g3 0.10 2.60 2.51
d4 0.30 2.90 3.62
g4 0.10 3.00 3.73
d5 0.46 3.46 2.92
e 0.00 3.46 2.92
b 0.44 3.90 1.59
e 0.00 3.90 1.59
dé 0.63 4.53 0.30
g5 0.10 4.63 0.31
d7 0.20 4.83 0.45
d7 0.20 5.03 0.86
g5 0.10 5.13 1.04
ds 0.63 5.77 2.08
e 0.00 5.77 2.08
b 0.44 6.21 2.34
e 0.00 6.21 2.34
do 095 7.15 1.71
g6 0.10 7.25 1.71
di0 0.30 7.55 1.77
q7 0.10 7.65 1.97
dil 0.85 8.50 6.52
g8 0.10 8.60 6.59
di2 0.85 945 2.71
q9 0.10 955 2.21
di3 0.30 9.85 0.73
gql0 0.10 9.95 0.52
di4 1.60 1155 5.11
sep 0.45 12.00 6.77
beta x min = 0.297

beta x max = 6.772
etax min = -0.114
etaxmax = 0.771

(rad)  (m)
0.00 0.00
-0.09 0.00
-1.56 0.00
-1.78 0.00
1.44 0.00
0.56 0.00
-1.64 0.00
-2.08 0.00
1.01 0.00
0.76 0.00
-0.68 0.00
2.88 0.18
2.09 0.18
-0.05 0.73
-0.04 0.77
-0.69 0.77
-1.34 0.77
-0.45 0.73
-1.18 0.18
-2.20 0.18
1.77 -0.00
0.61 -0.00
0.06 -0.00
-0.02 -0.00
-0.20 -0.00
-1.78 -0.00
-3.58 -0.00
2.88 -0.00
1.68 -0.00
3.23 -0.00
1.68 -0.00
0.53 -0.00
-3.40 0.00
-0.00 -0.11
betay min =
beta y max
etay min

eta y max

alphax etax

eta'’x psix
(rad) (deg)

0.00 0.

0.00 5.2
0.00 6.5
0.00 9.9
0.00 10.9
0.00 36.8
0.00 39.

0.00 44.8
0.00 46.4
0.00 54.3
0.00 54.3
0.77 64.6
0.86 64.6
0.86 131.8
-0.00 150.7
-0.00 183.3
-0.00 202.1
-0.86 208.0
-0.86 233.5
-0.77 233.5
0.00 243.6
0.00 243.6
0.00 271.8
0.00 275.2
0.00 285.1
-0.00 288.2
-0.00 301.9
0.00 302.8
0.00 314.4
0.00 316.7
0.00 330.3
0.00 339.8
0.00 441.4
-0.50 445.5

0.573
8.238
0.000
0.000

(m)

4.38
4.41
4.29
3.58
3.58
8.19
7.85
5.06
4.66
4.75
4.75
3.44
3.44
1.04
0.93
1.01
1.16
1.42
5.78
5.78
8.24
8.24
8.24
8.24
8.23
7.60
0.82
0.57
1.27
1.72
4.13
4.59
3.39
3.33

betay alphay

(rad)

0.00
-0.09
1.27
1.09
-1.00
-1.89
5.19
4.12
-0.05
-0.14
1.66
1.31
2.62
1.17
-0.07
-0.29
-0.50
-2.17
-4.71
-2.51
-3.07
0.06
-0.06
0.02
-0.01
6.18
1.80
0.75
-1.57
-3.10
-4.94
0.61
0.13
0.00

105

etay eta'y psiy
(rad) (deg)

(m)

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.
5.2
6.5
10.9
12.5
29.7
30.4
33.2
34.4
39.9
39.9
46.2
46.2
65.8
71.7
83.6
94.3
98.8
111.6
111.6
115.3
115.3
121.9
122.6
124.6
125.4
145.3
153.8
248.3
252.2
258.7
260.0
283.9
291.5
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To track the beam size through every element of the lattice
X
* LBT of Siam Photon Source By Ritthikrai

elemt Ith suml|l X x' etax psix x+disp vy y' etay psiy y+disp

(m (m) (cm) (mrad) (m) (deg) (cm) (cm) (mrad) (m) (deg) (cm)
di 0.40 0.40 0.18 040 0.00 52 0.18 0.18 040 0.00 5.2 0.18
ql 0.10 050 0.18 0.72 0.00 6.5 0.18 0.17 0.65 0.00 6.5 0.17
dz2 0.30 0.80 0.20 0.72 0.00 99 0.20 0.16 0.65 0.00 10.9 0.16
g2 0.10 090 0.20 0.62 0.00 109 0.20 0.16 0.62 0.00 125 0.16
d3 1.60 250 0.13 0.62 0.00 36.8 0.13 0.24 0.62 0.00 29.7 0.24
q3 0.10 260 0.13 101 000 39.1 0.13 0.23 158 0.00 304 0.23
d4 0.30 290 0.16 101 000 448 0.16 0.19 158 0.00 33.2 0.19
qé 0.10 3.00 0.16 061 0.00 46.4 0.16 0.18 0.39 0.00 344 0.18
d5 0.46 3.46 0.14 061 0.00 54.3 0.14 0.18 0.39 0.00 399 0.18

e 0.00 3.46 0.14 059 000 543 0.14 0.18 0.74 0.00 399 0.18
b 044 390 0.11 202 0.18 646 0.11 0.16 0.74 0.00 46.2 0.16
e 0.00 390 0.11 154 018 646 0.11 0.16 1.26 0.00 46.2 0.16

dé 0.63 453 005 154 0.73 131.8 0.05 0.09 126 0.00 658 0.09
a5 0.10 463 005 151 0.77 150.7 0.05 0.08 0.87 0.00 71.7 0.08
d7v 0.20 483 0.06 151 0.77 183.3 0.06 0.08 0.87 0.00 83.6 0.08
d7 0.20 5.03 0.08 151 0.77 202.1 0.08 0.09 0.87 0.00 94.3 0.09
a5 0.10 5.13 0.09 090 0.73 208.0 0.09 0.10 1.67 0.00 98.8 0.10
ds 0.63 5.77 0.12 090 0.18 2335 0.12 0.20 1.67 0.00 111.6 0.20

e 0.00 5.77 0.12 141 0.18 2335 0.12 0.20 0.94 0.00 111.6 0.20
b 044 6.21 0.13 1.11 -0.00 243.6 0.13 0.24 0.94 0.00 115.3 0.24
e 0.00 6.21 0.13 0.64 -0.00 2436 0.13 0.24 0.29 0.00 115.3 0.24

do 0.95 7.15 0.11 0.64 -0.00 271.8 0.11 0.24 0.29 0.00 121.9 0.24
q6 0.10 7.25 0.11 0.64 -0.00 275.2 0.11 024 0.29 0.00 122.6 0.24
dio 030 7.55 0.11 0.64 -0.00 285.1 0.11 0.24 0.29 0.00 1246 0.24
q7 0.10 7.65 0.12 1.22 -0.00 288.2 0.12 0.23 190 0.00 1254 0.23
dil1 085 850 0.21 1.22 -0.00 3019 0.21 0.08 190 0.00 1453 0.08
q8 0.10 8.60 0.21 0.99 -0.00 302.8 0.21 0.06 1.38 0.00 153.8 0.06
di2 085 945 0.14 0.99 -0.00 3144 0.14 0.09 138 0.00 248.3 0.09
a9 0.10 955 0.12 191 -0.00 316.7 0.12 0.11 2.07 0.00 252.2 0.11
di3 0.30 985 0.07 191 -0.00 330.3 0.07 0.17 2.07 0.00 258.7 0.17
gql0 0.10 995 0.06 1.31 -0.00 339.8 0.06 0.18 0.46 0.00 260.0 0.18
di4 160 1155 0.19 131 0.00 4414 0.19 0.15 046 0.00 283.9 0.15
sep 0.45 12.00 0.22 0.32 -0.11 4455 0.22 0.15 046 0.00 91.5 0.15

beta x min = 0.297 betay min = 0.573
beta x max = 6.772 betay max = 8.238
eta x min -0.114 etay min 0.000
eta x max 0.771 eta y max 0.000
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Give exact maximum and minimum of the Twiss parameters

cp
* LBT of Siam Photon Source By Ritthikrai

elemt Ith sum | betax alphax etax eta'x psix X betay alphay psiy vy
(m (m) (m) (rad) (m) (rad) (deg) (mm) (m) (rad) (deg) (mm)
0 0 438 0.00 0.00 000 O 438 0.00 O. 2

di 0.40 040 4.41 -0.09 0.00 0.00 5.2
gl 0.10 050 457 -156 0.00 0.00 6.5
dz2 0.30 0.80 5.58 -1.78 0.00 0.00 9.9
g2 0.10 090 5.61 144 0.00 0.00 10.9
ds 1.60 250 240 056 0.00 0.00 36.8
g3 0.10 2.60 251 -1.64 0.00 0.00 39.1
d4 0.30 290 3.62 -2.08 0.00 0.00 44.8
g4 0.10 3.00 3.73 1.01 0.00 0.00 46.4
d5 0.46 346 292 0.76 0.00 0.00 543
e 0.00 3.46 292 -0.68 0.00 0.00 54.3
b 044 3.90 159 288 0.18 0.77 64.6
e 0.00 3.90 159 2.09 0.18 0.86 64.6
deé 0.63 453 0.30 -0.05 0.73 0.86 131.8
a5 0.10 463 0.31 -0.04 0.77 -0.00 150.7
d7 0.20 4.83 0.45 -0.69 0.77 -0.00 183.3
d7 0.20 5.03 0.86 -1.34 0.77 -0.00 202.1
a5 0.10 5.13 1.04 -0.45 0.73 -0.86 208.0
ds 0.63 5.77 2.08 -1.18 0.18 -0.86 233.5
e 0.00 5.77 2.08 -2.20 0.18 -0.77 233.5
b 044 6.21 234 1.77 -0.00 0.00 243.6
e 0.00 6.21 2.34 0.61 -0.00 0.00 243.6
do 0.95 7.15 1.71 0.06 -0.00 0.00 271.8
q6 0.10 7.25 1.71 -0.02 -0.00 0.00 275.2
dio 0.30 755 1.77 -0.20 -0.00 0.00 285.1
q7 0.10 7.65 197 -1.78 -0.00 -0.00 288.2
dil1 0.85 850 6.52 -3.58 -0.00 -0.00 301.9
q8 0.10 8.60 6.59 2.88 -0.00 0.00 302.8
dl2 085 945 271 168 -0.00 0.00 314.4
a9 0.10 955 221 323 -0.00 0.00 316.7
di3 0.30 9.85 0.73 1.68 -0.00 0.00 330.3
gql0 0.10 9.95 0.52 053 -0.00 0.00 339.8
di4 160 1155 5.11 -3.40 0.00 0.00 441.4
sep 0.45 12.00 6.77 -0.00 -0.11 -0.50 445.5

441 -0.09 5.2
429 127 6.5
3.58 1.09 10.9
3.58 -1.00 125
8.19 -1.89 29.7
7.85 519 304
5.06 4.12 33.2
466 -0.05 344
4.75 -0.14 39.9
475 1.66 39.9
344 131 46.2
3.44 2.62 46.2
1.04 1.17 65.8
0.93 -0.07 71.7
1.01 -0.29 83.6
1.16 -0.50 94.3
142 -2.17 98.8
578 -4.71 111.6
578 -251 111.6
8.24 -3.07 115.3
8.24 0.06 115.3
8.24 -0.06 121.9
8.24 0.02 1226
8.23 -0.01 124.6
7.60 6.18 1254
0.82 1.80 145.3
0.57 0.75 153.8
1.27 -1.57 248.3
1.72 -3.10 252.2
413 -4.94 258.7
459 0.61 260.0
3.39 0.13 283.9
3.33 0.00 291.5

NNRRRPRRNNP o RrRRRRRRROORRRRENNRRNNNNN
N N SN
NNNNR R, RRPNNNNNNONNRRRrRE TNNNONNN

Extremes ..max: betax[33] = 6.7724; betay[ 6] = 8.2414; eta[14] = 0.7715
[at el#] ..min: betax[13] = 0.2967; betay[28] = 0.3657; eta[27] = -0.0000



F.2 The Results of Calculations for the Booster Synchrotron (SYN)

by the Program LATTICE

Beam rigidity =
X,y emittance =
dp/p = 0.000%

Elements of the lattice

3.3373450 t-m
0.024868 0.002487 cm-mrad

1 param slit 0.0 0.000000 0.000000 0.000000 0.0000
2d1 drift 0.0 1.037500 0.000000 0.000000 0.0000
3d2 drift 0.0 0.300000 0.000000 0.000000 0.0000
491 quad 1.2 0.250000 4.836936 0.000000 0.0000
5092 quad 2.2 0.250000 -3.676933 0.000000 0.0000
6e edge 0.0 15.000000 1.101430 0.027500 0.0000
7b bend 0.0 1.586504 1.101434 0.000000 0.0000
The structure of the lattice

1. di ql d2 e b e d2

8. (2 d2 e b e d2 ql

15: di

Fit parameters for a machine of 6 periods

variable target value weight location
1 nux 2.2500 1.000 @end
2 nuy 1.2500 1.000 @end

To calculate the beam parameters just at the end of the beam line

* Booster Sychrotron by Ritthikrai

Matched functions for 6 periods

Total length = 43.188 Total bend = 360.000, 0.000 degrees
betax = 6.7673 meters alphax = -0.0000 nux = 2.25000
betay = 3.3345 meters alphay = -0.0000 nuy = 1.25000
etax = 1.8621 meters eta’'x= 0.0000 gamtr = 2.35684
etay = 0.0000 meters eta'y= 0.0000

Calculate the various parameters

* Booster Sychrotron by Ritthikrai

nu x = 2.250 nuy = 1.250

tr gamma

beta x min
beta x max
etaxmin = O
eta X max =

dnux/(dp/p) =
normalized x=

1.862

2.357
1.142
6.926
.932

compaction
beta y min
beta y max
etay min

-0.995
-0.442

etay max =
dnuy/(dp/p) =
normalized y=

0.18003
3.335
14.030
0.000
0.000
-2.195
-1.756
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Space charge integrals: avg beam half width, height = 0.1010, 0.0407 cm.

Synchrotron integrals: 11 = 7.779082 m-1, 12 = 2.073658 m-1
I3= 0.684376 m-2, 14 = -0.048267 m-1,15= 0.393778 m-1
I5/(12-14) = 0.185576 13/(2*12+14) = 0.166960

Functions for electron storage rings:
D =-0.02328,

Natural rms x emittance

Jx =1.023,

Natural rms energy spread =

Synchrotron radiation

0.497 MeV

Je = 1.977
= 0.273562 pi mm-mrad

0.029349 MeV/turn

Damping times (sec): Horiz: 0.009599, Vert: 0.009822, Energy: 0.004969

To track the Twiss parameters through every element of the lattice

Cc

* Booster Sychrotron by Ritthikrai

elemt

di

ql
d2

dz2
q2
dz2

dz2

q1
d1i

Ith
(m)

sum |
(m)

0. 0.
1.04 1.04
0.25 1.29
0.30 1.59
0.00 1.59
1.59 3.17
0.00 3.17
0.30 3.47
0.25 3.72
0.30 4.02
0.00 4.02
1.59 5.61
0.00 5.61
0.30 5.91
0.25 6.16
1.04 7.20

nu x
tr gamma
beta x min
beta x max
eta X min

eta'y
(rad)

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

betax alphax etax eta'x psix betay alphay etay
(m) (rad) (m) (rad) (deg) (m) (rad) (m)
6.77 -0.00 186 000 0. 333 -0.00 0.00
6.93 -0.15 1.86 0.00 8.7 3.66 -0.31 0.00
6.40 220 1.78 -0.66 10.8 4.18 -1.86 0.00
5.16 1.93 1.58 -0.66 13.8 5.39 -2.17 0.00
5.16 1.47 1.58 -0.52 13.8 5.39 -1.72 0.00
1.42 0.67 0.98 -0.22 47.9 12.68 -2.88 0.00
1.42 054 0.98 -0.13 47.9 12.68 -1.80 0.00
1.18 0.27 0.94 -0.13 61.3 13.79 -1.90 0.00
1.18 -0.27 0.94 0.13 73.7 13.79 1.90 0.00
1.42 -054 0.98 0.13 87.1 12.68 1.80 0.00
1.42 -0.67 0.98 0.22 87.1 12.68 2.88 0.00
5.16 -1.47 1.58 0.52 121.2 5.39 1.72 0.00
5.16 -1.93 1.58 0.66 121.2 5.39 2.17 0.00
6.40 -2.20 1.78 0.66 124.2 4.18 1.86 0.00
6.93 0.15 1.86 0.00 126.3 3.66 0.31 0.00
6.77 -0.00 1.86 0.00 135.0 3.33 -0.00 0.00 0.00
2.250 nuy = 1.250
= 2.357 compaction = 0.18003
= 1.176 betaymin = 3.335
= 6.926 betay max = 13.791

0.940 etaymin = 0.000

1.862 etay max = 0.000

eta X max =

psiy
(deg)

0.
17.3
21.0
24.6
24.6
35.7
35.7
37.0
38.0

39.3
39.3
50.4
50.4
54.0
57.7
75.0
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To track the beam size through of every element of the lattice

X

* Booster Sychrotron by Ritthikrai

elemt Ith suml X x' etax psix x+disp vy y' etay psiy y+disp
(m) (m) (cm) (mrad) (m) (deg) (cm) (cm) (mrad) (m) (deg) (cm)

di 1.04 104 0.13 0.19 1.8 87 0.13 0.03 0.09 0.00 17.3 0.03

ql 0.25 1.29 0.13 048 1.78 10.8 0.13 0.03 0.16 0.00 21.0 0.03

d2 0.30 159 0.11 048 158 13.8 0.11 0.04 0.16 0.00 24.6 0.04

e 0.00 159 0.11 0.39 158 13.8 0.11 0.04 0.13 0.00 24.6 0.04
b 1.59 3.17 0.06 050 098 479 0.06 0.06 0.13 0.00 35.7 0.06
e 0.00 3.17 0.06 048 098 479 0.06 0.06 0.09 0.00 357 0.06

d2 0.30 3.47 005 048 094 61.3 0.05 0.06 0.09 0.00 37.0 0.06
g2 0.25 3.72 005 048 094 73.7 0.05 0.06 0.09 0.00 38.0 0.06
d2 0.30 402 0.06 048 098 87.1 0.06 0.06 0.09 0.00 39.3 0.06
e 0.00 402 0.06 050 098 87.1 0.06 0.06 0.13 0.00 39.3 0.06
b 159 561 0.11 039 158 121.2 0.11 0.04 0.13 0.00 504 0.04
e 0.00 561 0.11 048 158 121.2 0.11 0.04 0.16 0.00 50.4 0.04
d2 0.30 591 0.13 048 178 1242 0.13 0.03 0.16 0.00 54.0 0.03
ql 0.25 6.16 0.13 0.19 1.8 126.3 0.13 0.03 0.09 0.00 57.7 0.03
di 1.04 7.20 0.13 0.19 1.86 135.0 0.13 0.03 0.09 0.00 75.0 0.03

nu x = 2.250 nuy = 1.250
trgamma = 2.357 compaction = 0.18003
betax min = 1.176 betay min = 3.335

betax max = 6.926 betay max = 13.791
etax min = 0.940 etay min = 0.000
etaxmax = 1.862 etay max = 0.000

Give exact maximum and minimum of the Twiss parameters

cp
* Booster Sychrotron by Ritthikrai

elemt Ith sum | betax alphax etax eta'x psix X betay alphay psiy vy

(m) (m) (m) (rad) (m) (rad) (deg) (mm) (m)  (rad) (deg) (mm)

0. oO. 6.77 -0.00 1.86 0.00 O. 3.33 -0.00 O.

di 1.04 1.04 6.93 -0.15 1.86 0.00 8.7 3.66 -0.31 17.3
ql 0.25 129 6.40 220 1.78 -0.66 10.8 418 -1.86 21.0
dz2 0.30 159 5.16 193 158 -0.66 13.8 539 -2.17 246
e 0.00 159 5.16 147 1.58 -0.52 138 539 -1.72 246
b 159 3.17 142 0.67 098 -0.22 47.9 12.68 -2.88 35.7
e 0.00 3.17 1.42 0.54 0.98 -0.13 47.9 12.68 -1.80 35.7
d2 0.30 347 1.18 0.27 0.94 -0.13 61.3 13.79 -1.90 37.0
g2 0.25 3.72 1.18 -0.27 0.94 0.13 73.7 13.79 1.90 38.0
d2 0.30 4.02 1.42 -0.54 0.98 0.13 87.1 12.68 1.80 39.3
e 0.00 4.02 1.42 -0.67 0.98 0.22 87.1 12.68 2.88 39.3
b 159 561 5.16 -147 158 0.52 121.2 5.39 1.72 504
e 0.00 561 5.16 -1.93 158 0.66 121.2 539 217 504
dz2 0.30 591 6.40 -.20 1.78 0.66 124.2 418 1.86 54.0
ql 0.25 6.16 6.93 0.15 1.86 0.00 126.3 3.66 0.31 57.7
di 1.04 7.20 6.77 -0.00 1.86 0.00 135.0 3.33 -0.00 75.0

HHHI—\HHHHHHHHHHHH
oo 0COoORRFRPRRRRLROOOOO

Extremes ..max: betax[ 2] = 6.9287; betay[ 8] = 14.0296; eta[ O] = 1.8621
[at el#] ..min: betax[ 8] = 1.1422; betay[ O] = 3.3345; eta[ 8] = 0.9315
nux = 2.2500; nuy = 1.2500
dnux/(dp/docy) = 0.0000; dnuy/dp = 0.0000
4L/(mb”2g"3) * dnux/(dQ) = -0.0000; dnuy/(dQ) = -0.0000
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F.3 The Results of Calculations for the High-Energy Transport Line
(HBT) by the Program LATTICE

Beam rigidity =
X,y emittance =

dp/p = 0.000%

Elements of the lattice

e
2d
3dl
4 d2
5d3
6 d4a
7 d4b
8 d4c
9 d4d
10 d4e
11 d4f
12 d4g
13 d4h
14 d4i
15 d4j
16 d5
17 d6
18 d7
19 d8
20 d9
219l
22 g2
23 g3
24 g4
25395
26 g6
27 q7
28 g8
29 ehl
30 bh1
31 eh2
32 bh2
33 evl
34 bvl
35 ev2
36 bv2

drift
drift
drift
drift
drift
drift
drift
drift
drift
drift
drift
drift
drift
drift
drift
drift
drift
drift
drift
quad
quad
quad
quad
quad
quad
quad
quad
edge
bend 0.0
edge 0.0
bend 0.0
vedge 0.0
vbend 0.0
vedge 0.0
vbend 0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.2
2.2
3.2
4.2
52
6.2
7.2
8.2
0.0

37 Sepl bend 0.0
38 Sep2 bend 0.0

3.3373450 t-m
0.024868 0.024868 cm-mrad

0.300000
4.000000
0.500000
10.586480
0.898128
0.898128
0.898128
0.898128
0.898128
0.898128
0.898128
0.898128
0.898128
0.898128
0.500000
10.586480
0.500000
1.375000
0.875600
0.400000
0.300000
0.300000
0.400000
0.600000
0.400000
0.300000
0.300000
2.000000
0.500002
1.000000
0.250001
8.750000
1.018801
-8.750000
1.018801
0.872577
0.727802

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
-5.836873
7.310100
-7.468121
6.079376
3.320636
-4.337961
4.782795
-4.855686
0.465979
0.465979
0.465979
0.465979
1.000523
1.000523
-1.000523
-1.000523
-1.002205
1.200484

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.018000
0.000000
0.018000
0.000000
0.023000
0.000000
0.023000
0.000000
0.000000
0.000000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 0.000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
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Structures of the lattice

|

1: Sepl dl ehl bhi ehl d2 ql
8 d g2 d3 a3 d q4 d4a

5: d4b d4c d4d d4e daf d4g d4h
2:  d4i d4j bvl ds a5 d g6

9: dé6 q7 d q8 d7 bv2 d8

6: eh2 bh2 eh2 ds Sep2

Initial Twiss parameters (injected from SYN)

t

Transport mode
betax = 6.7673 alphax = 0.0000
betay = 3.3345 alphay = 0.0000
etax 1.8621 eta'x = 0.0000
etay 0.0000 eta'y = 0.0000

Machine consists of 1 period

Fit Twiss parameters for a machine of 1 period

variable target value weight location
1 Dbetax 13.3849 100.000 @end
2 betay 4.5803 100.000 @end
3 bxmax 16.0000 1.000 @end
4  bymax 22.0000 1.000 @end
5 alphax 0.0000 10.000 @end
6 alphay 0.0000 10.000 @end
7 etax 0.0000 10.000 @end
8 eta'x 0.0000 10.000 @end

To calculate the beam parameters just at the end of the beam line

g

* HBT of Siam Photon Source by Ritthikrai

Total length = 46.992 Total bend = 5.987, 0.000 degrees

betax = 13.3850 meters alphax= 0.6878 1/gam = 9.0864; z= 6.2497
betay = 4.5825 meters alphay = -0.0000 1/gam 4.5825; z= -0.0002
eta x = 0.2286 meters eta' x = 0.0554 psix 407.18 degrees
etay = -0.1029 meters eta'y = -0.6905 psiy 394.19 degrees

x = 0.1824 cm x = 0.1654 rl2 =-0.5667
y = 0.0338cm y' = 0.0737 r34 = 0.0000
m(1,6)= -1.5513 m(2,6) = 0.2904 m(5,6) = 1.3596

)
m(3,6)= -0.1029 m(4,6) = -0.6905 resolves: -0.2352%



To track the Twiss parameters through the beam line

Cc

* HBT of Siam Photon Source by Ritthikrai

elemt Ith sum| Dbetax alphax etax eta'x psix betay alphay etay

(m)  (m) (m) (rad) (m) (rad) (deg) (m) (rad) (m)

0. 0. 6.77 0.00 186 0.00 0. 3.33 0.00 0.00
Sepl 0.87 0.87 6.42 0.39 168 -040 7.5 356 -0.26 0.00
dl 4.00 487 6.20 -0.33 0.07 -0.40 46.8 10.45 -1.46 0.00
ehl 0.00 4.87 6.20 -0.36 0.07 -0.40 46.8 10.45 -1.41 0.00
bhi 050 5.37 6.58 -0.39 -0.12 -0.33 51.3 11.94 -1.56 0.00
ehl 0.00 537 6.58 -0.42 -0.12 -0.33 51.3 11.94 -1.50 0.00
d2 050 587 7.04 -051 -0.28 -0.33 556 13.51 -1.64 0.00
gl 040 6.27 9.72 -6.80 -0.46 -0.59 585 11.19 6.89 0.00
d 0.30 6.57 14.24 -8.26 -0.64 -059 59.9 7.45 559 0.00
g2 0.30 6.87 16.35 1.69 -0.75 -0.13 61.0 5.62 0.90 0.00
d3 10.59 17.46 6.99 -0.80 -2.07 -0.13 159.0 22.75 -2.52 0.00
g3 0.30 17.76 9.07 -6.58 -2.33 -1.58 161.3 19.81 11.64 0.00
d 0.30 18.06 13.45 -8.04 -2.80 -1.58 162.8 13.45 9.58 0.00
g4 0.40 18.46 1586 2.62 -3.00 0.59 164.3 9.74 0.58 0.00
dda 0.90 19.36 11.55 2.17 -2.47 0.59 168.1 8.81 0.46 0.00
d4b 0.90 20.26 8.05 1.73 -1.94 059 1735 8.09 0.33 0.00
d4c 0.90 21.15 534 1.28 -1.42 059 1813 7.61 0.21 0.00
d4d 0.90 22.05 3.44 0.84 -0.89 059 193.4 7.34 0.09 0.00
d4e 0.90 2295 2.33 0.39 -0.36 0.59 2119 7.29 -0.04 0.00
d4f 0.90 23.85 2.02 -0.05 0.17 0.59 236.4 7.47 -0.16 0.00
d4g 0.90 24.75 252 -0.50 0.70 0.59 259.8 7.86 -0.28 0.00
d4h 0.90 25.64 3.81 -0.94 1.22 0.59 276.7 8.48 -0.41 0.00
d4i 0.90 2654 590 -1.39 1.75 059 287.6 9.32 -0.53 0.00
d4j 0.90 27.44 879 -1.83 228 0.59 2948 10.38 -0.65 0.00
bvli 1.02 28.46 13.04 -2.34 2.88 0.59 300.3 10.83 0.23 0.15
d5 0.50 28.96 1550 -2.58 3.17 0.59 302.3 10.63 0.18 0.30
g5 0.60 29.56 13.15 6.02 2.96 -1.30 304.5 14.68 -7.72 0.55
d 030 2986 9.79 517 257 -1.30 306.1 19.69 -8.96 0.72
g6 0.40 30.26 7.72 0.35 230 -0.05 308.8 22.70 1.96 0.86
dé6 10.59 40.85 16.58 -1.19 1.72 -0.05 378.1 5.11 -0.29 2.26
g7 0.30 41.15 1520 560 1.59 -0.77 379.1 6.01 -2.83 2.45
d 0.30 4145 12.03 4.96 1.36 -0.77 380.4 7.85 -3.29 2.79
g8 0.30 41.75 10.64 -0.10 1.21 -0.22 382.0 8.80 0.26 2.95
d7 0.50 4225 10.76 -0.15 1.10 -0.22 384.6 8.57 0.20 2.88
bv2 1.02 43.26 11.17 -0.25 0.88 -0.22 390.0 7.54 0.78 2.46
d8 1.38 44.64 12.02 -0.38 0.58 -0.22 396.8 5.78 0.49 1.52
eh2 0.00 44.64 12.02 -0.41 0.58 -0.22 396.8 5.78 0.50 1.52
bh2 0.25 44.89 12.22 -0.37 0.53 -0.19 398.0 555 045 1.35
eh2 0.00 44.89 12.22 -0.40 0.53 -0.18 398.0 555 0.46 1.35
d8 1.38 46.26 13.50 -0.53 0.28 -0.18 404.1 4.70 0.16 0.40
Sep2 0.73 46.99 13.39 0.69 0.23 0.06 407.2 4 .58 -0.00 -0.10

beta x min = 2.023 betay min = 3.334

beta x max = 16.584 betay max = 22.751

etax min = -3.002 etaymin = -0.103

etaxmax = 3.175 etay max = 2.946

eta'y
(rad)

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.30
0.30
0.55
0.55
0.13
0.13
1.14
1.14
-0.13
-0.13
-0.68
-0.68
-0.69
-0.69
-0.69
-0.69
-0.69
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psiy
(deg)

0.
14.7
55.6
55.6
58.2
58.2
60.4
62.2
64.1
66.8
177.4
178.1
179.2
181.3
186.9
193.0
199.5
206.5
213.5
220.5
227.2
233.5
239.3
244.6
250.0
252.7
255.6
256.6
257.7
337.0
340.1
342.6
344.7
348.0
355.1
367.2
367.2
369.7
369.7
385.3
394.3
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Give exact maximum and minimum of the Twiss parameters
cp
* HBT of Siam Photon Source by Ritthikrai

elemt Ith sum | betax alphax etax eta'x psix X betay alphay psiy vy

(m (m (m) (rad) (m) (rad) (deg) (mm) (m) (rad) (deg) (mm)

0. 0. 6.77 0.00 186 0.00 O. 1 333 0.00 O. 0
Sepl 0.87 087 6.42 039 168 -040 7.5 1 356 -0.26 14.7 O
di 400 487 6.20 -0.33 0.07 -0.40 46.8 1 1045 -146 6556 1
ehl 0.00 487 6.20 -0.36 0.07 -0.40 46.8 1 1045 -141 556 1
bhl 050 537 658 -0.39 -0.12 -0.33 51.3 1 11.94 -156 582 1
ehl 0.00 537 6.58 -0.42 -0.12 -0.33 51.3 11194 -150 582 1
d2 050 587 7.04 -051 -0.28 -0.33 556 1 1351 -164 604 1
ql 0.40 6.27 9.72 -6.80 -0.46 -0.59 585 2 11.19 6.89 622 1
d 0.30 6.57 14.24 -8.26 -0.64 -0.59 59.9 2 745 559 641 O
g2 0.30 6.87 16.35 1.69 -0.75 -0.13 61.0 2 562 090 66.8 O
d3 10.59 17.46 6.99 -0.80 -2.07 -0.13159.0 1 22.75 -252 1774 1
q3 0.30 17.76 9.07 -6.58 -2.33 -1.58161.3 2 19.81 11.64 178.1 1
d 0.30 18.06 13.45 -8.04 -2.80 -1.58162.8 2 1345 9.58 179.2 1
q4 0.40 18.46 15.86 2.62 -3.00 0591643 2 9.74 058 181.3 O
d4a 0.90 19.36 11.55 2.17 -2.47 059168.1 2 881 046 1869 O
dab 0.90 20.26 8.05 1.73 -1.94 0591735 1 8.09 0.33 1930 O
d4c 0.90 21.15 534 1.28 -1.42 0.59181.3 1 7.61 0.21 1995 O
ddd 0.90 22.05 344 084 -0.89 0591934 1 7.34 0.09 2065 O
dde 0.90 2295 233 0.39 -0.36 0592119 1 7.29 -0.04 2135 O
daf 0.90 23.85 2.02 -0.05 0.17 0592364 1 7.47 -0.16 2205 O
d4g 090 24.75 252 -050 0.70 0592598 1 7.86 -0.28 2272 O
ddh 090 25.64 3.81 -0.94 1.22 0.59276.7 1 848 -0.41 2335 O
d4i 090 2654 590 -139 1.75 0592876 1 9.32 -053 2393 O
d4j 090 2744 8.79 -183 2.28 0592948 1 10.38 -0.65 2446 1
bvli 1.02 28.46 13.04 -2.34 2.88 0.59300.3 2 10.83 0.23 250.0 1
d5 0.50 28.96 1550 -258 3.17 0.59302.3 2 10.63 0.18 252.7 1
a5 0.60 29.56 13.15 6.02 296 -1.303045 2 1468 -7.72 2556 1
d 0.30 29.86 9.79 5.17 257 -1.30306.1 2 19.69 -8.96 256.6 1
q6 0.40 30.26 7.72 0.35 2.30 -0.053088 1 2270 196 257.7 1
dé 10.59 40.85 16.58 -1.19 1.72 -0.05378.1 2 5.11 -0.29 3370 O
q7 0.30 41.15 15.20 5.60 159 -0.77379.1 2 6.01 -283 3401 O
d 0.30 4145 1203 496 1.36 -0.773804 2 7.85 -3.29 3426 O
q8 0.30 41.75 10.64 -0.10 1.21 -0.22382.0 2 8.80 0.26 3447 O
d7z 0.50 42.25 10.76 -0.15 1.10 -0.223846 2 857 020 348.0 O
bv2 1.02 43.26 11.17 -0.25 0.88 -0.22390.0 2 7.54 0.78 355.1 O
ds 1.38 44.64 12.02 -0.38 0.58 -0.22396.8 2 578 049 367.2 O
eh2 0.00 44.64 12.02 -0.41 0.58 -0.22396.8 2 578 0.50 367.2 O
bh2 0.25 4489 12.22 -0.37 053 -0.193980 2 555 045 369.7 O
eh2 0.00 44.89 12.22 -0.40 0.53 -0.18398.0 2 555 0.46 369.7 O
ds 1.38 46.26 13.50 -0.53 0.28 -0.18404.1 2 470 0.16 3853 O
Sep2 0.73 46.99 13.39 0.69 0.23 0.06407.2 2 458 -0.00 3943 O
Extremes ..max: betax[30] = 16.6439; betay[11] = 22.8759; eta[26] =
3.2283

[at el#] ..min: betax[19] =

2.0181; betay[10] =

3.0881; eta[13] = -3.0326



To track the beam size through of every element of the lattice
X

* HBT of the Siam Photon Source by Ritthikrai
elemt Ith suml|l X x' etax psix x+disp vy y etay
(m  (m) (cm) (mrad) (m) (deg) (cm) (cm) (mrad) (m)

Sepl 0.87 087 0.13 021 168 7.5 0.13 0.03 0.09 0.00

di 400 487 0.12 0.21 0.07 46.8 0.12 0.05 0.09 0.00
ehl 0.00 4.87 0.12 0.21 0.07 46.8 0.12 0.05 0.08 0.00

bhl1 050 537 0.13 0.21 -0.12 51.3 0.13 0.05 0.08 0.00
ehl 0.00 5.37 0.13 0.21 -0.12 51.3 0.13 0.05 0.08 0.00
d2 0.50 587 0.13 .21 -0.28 556 0.13 0.06 0.08 0.00

ql 0.40 6.27 0.16 1.10 -0.46 585 0.16 0.05 0.33 0.00
d 0.30 6.57 0.19 1.10 -0.64 599 0.19 0.04 0.33 0.00
g2 0.30 6.87 020 0.24 -0.75 61.0 0.20 0.04 0.09 0.00
d3 10.59 17.46 0.13 0.24 -2.07 159.0 0.13 0.08 0.09 0.00
q3 0.30 17.76 0.15 1.10 -2.33 161.3 0.15 0.07 0.41 0.00
d 0.30 18.06 0.18 1.10 -2.80 162.8 0.18 0.06 0.41 0.00
q4 0.40 18.46 0.20 0.35 -3.00 164.3 0.20 0.05 0.06 0.00
dda 0.90 19.36 0.17 0.35 -247 168.1 0.17 0.05 0.06 0.00
d4db 0.90 20.26 0.14 0.35 -1.94 1735 0.14 0.04 0.06 0.00
d4c 090 21.15 0.12 0.35 -1.42 181.3 0.12 0.04 0.06 0.00
d4dd 0.90 22.05 0.09 0.35 -0.89 1934 0.09 0.04 0.06 0.00
d4e 090 2295 0.08 0.35 -0.36 2119 0.08 0.04 0.06 0.00
d4af 0.90 23.85 0.07 0.35 0.17 236.4 0.07 0.04 0.06 0.00
d4dg 090 24.75 0.08 0.35 0.70 259.8 0.08 0.04 0.06 0.00
ddh 090 25.64 0.10 0.35 1.22 276.7 0.10 0.05 0.06 0.00
d4j 090 2744 0.15 035 2.28 2948 0.15 0.05 0.06 0.00
bvli 1.02 2846 0.18 0.35 2.88 300.3 0.18 0.05 0.05 0.15
d5 0.50 28.96 0.20 0.35 3.17 302.3 0.20 0.05 0.05 0.30
a5 0.60 2956 0.18 0.84 296 3045 0.18 0.06 0.32 0.55
d 0.30 29.86 0.16 0.84 257 306.1 0.16 0.07 0.32 0.72
q6 0.40 30.26 0.14 0.19 230 308.8 0.14 0.08 0.07 0.86
dé 10.5940.85 0.20 0.19 1.72 378.1 0.20 0.04 0.07 2.26
q7 0.30 41.15 0.19 0.73 159 379.1 0.19 0.04 0.19 245
d 0.30 4145 0.17 0.73 136 3804 0.17 0.04 0.19 2.79
q8 0.30 41.75 0.16 0.15 1.21 382.0 0.16 0.05 0.05 295
a7 0.50 4225 0.16 0.15 1.10 384.6 0.16 0.05 0.05 2.88
bv2 1.02 43.26 0.17 0.15 0.88 390.0 0.17 0.04 0.07 2.46
d8 1.38 44.64 0.17 0.15 0.58 396.8 0.17 0.04 0.07 1.52
eh2 0.00 4464 0.17 0.16 0.58 396.8 0.17 0.04 0.07 1.52
bh2 0.25 44.89 0.17 0.15 0.53 398.0 0.17 0.04 0.07 1.35
eh2 0.00 4489 0.17 0.15 0.53 398.0 0.17 0.04 0.07 1.35
d8 1.38 46.26 0.18 0.15 0.28 404.1 0.18 0.03 0.07 0.40
Sep2 0.73 46.99 0.18 0.17 0.23 407.2 0.18 0.03 0.07 -0.10

beta x min = 2.023 betay min = 3.334
beta x max = 16.584 betay max = 22.751
etax min = -3.002 etaymin = -0.103
etaxmax = 3.175 etay max = 2.946

psiy
(deg)

14.7
55.6
55.6
58.2
58.2
60.4
62.2
64.1
66.8
177.4
178.1
179.2
181.3
186.9
193.0
199.5
206.5
213.5
220.5
227.2
233.5
244.6
250.0
252.7
255.6
256.6
257.7
337.0
340.1
342.6
344.7
348.0
355.1
367.2
367.2
369.7
369.7
385.3
394.3
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F.4 The Results of Calculations for the Storage Ring (STR) without
Chromaticities Compensation by the Program LATTICE

Beam rigidity = 3.3373450 t-m
X,y emittance =

dp/p = 0.000%

Elements of the lacttice
e

1 param slit 0.0 0.000000
2d1 drift 0.0 3.500000
3d2 drift 0.0 0.400000
4 d3 drift 0.0 0.405000
5d4 drift 0.0 0.600000
6 d5 drift 0.0 1.624000
791 quad 1.2 0.290000
802 quad 2.2 0.290000
993 quad 3.2 0.290000
10g4 quad 4.2 0.145000
11 bl bend 0.0 0.818778
12b2 bend 0.0 1.364629
13 dsf drift 0.0 0.205000
14 dsd drift 0.0 0.230000
15 sf sex 5.2 0.000001
16 sd sex 6.2 0.000001

Structures of the lattice
I

1: di ql d2 g2
8. d4 q3 dsf sf

15 g4 q4 dsd sd
22: @3 d4 b2 bl
29: ql dl

Machine consists of 4 periods

Calculate the parameters
g

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
9.198042
-9.573120
8.410067
-6.888579
1.200480
1.200480
0.000000
0.000000
0.000000
0.000000

d3
d5
ds5
d3

* STR of Siam Photon Source by Ritthikrai

Matched functions for 4 periods
Total length =

sd

0.006726 0.000673 cm-mrad

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

0.000000
0.000000

bl b2
dsd
dsf

dz2

sf
q2

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000

81.299 Total bend = 359.999, 0.000 degrees

betax = 13.3849 meters alphax = -0.0000 nu x = 4.76000
betay = 4.5803 meters alphay = -0.0000 nuy = 2.82000
eta x = -0.0000 meters eta' x = -0.0000 gamtr = 6.83314
etay = 0.0000 meters eta'y = 0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
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Calculate the various parameters

ch

* STR of Siam Photon Source by Ritthikrai
nu x = 4.760 nuy = 2.820
trgamma = 6.833 compaction = 0.02142
beta x min = 0.531 betay min = 1.561
beta x max = 14.300 betay max = 19.354
eta x min = -0.000 etay min = 0.000
etaxmax = 1.316 etay max = 0.000
dnux/(dp/p) = -7.648 dnuy/(dp/p) = -6.727
normalized x= -1.607 normalized y= -2.386

Space charge integrals: avg beam half width, height = 0.0640, 0.0203 cm.

Synchrotron integrals: 11 = 1.744828 m-1,12 = 2.260124 m-1
I3= 0.812992 m-2,14 = 0.225767 m-1,15= 0.102107 m-1
I5/(12-14) = 0.050192 13/(2*12+14) = 0.171300
Functions for electron storage rings:

D = 0.09989, Jx = 0.900, Je =2.100
Natural rms x emittance = 0.073989 pi mm-mrad
Natural rms energy spread = 0.503 MeV

Synchrotron radiation = 0.031988 MeV/turn
Damping times (sec): Horiz: 0.018847, Vert: 0.016964, Energy: 0.008079

F.5 The Results of Calculations for the Storage Ring (STR) with
Compensation Chromaticities by the Program LATTICE

3.3373450 t-m

Beam rigidity =
X,y emittance =
dp/p = 0.000%

Elements of the lacttice

1 param slit 0.0

2d1 drift 0.0
3d2 drift 0.0
4 d3 drift 0.0
5d4 drift 0.0
6 d5 drift 0.0
791 quad 1.2
82 quad 2.2
993 quad 3.2
10g4 quad 4.2
11 bl bend 0.0
12b2 bend 0.0
13 dsf drift 0.0
14 dsd drift 0.0
15 sf

0.000000
3.500000
0.400000
0.405000
0.600000
1.624000
0.290000
0.290000
0.290000
0.145000
0.818778
1.364629
0.205000
0.230000

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
9.198045
-9.573124
8.410067
-6.888579
1.200480
1.200480
0.000000
0.000000

0.006726 0.000673 cm-mrad

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

sex 0.0 0.000001 6877662.751800 0.000000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

16 sd sex 0.0 0.000001 -10317118.549900 0.000000 0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
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Structures of the lattice

|

1. di1 ql d2 g2 d3 bl b2
8. d4 q3 dsf sf d5 sd dsd
15 g4 q4 dsd sd ds sf dsf
22: @3 d4 b2 bl d3 q2 d2
29: q1 dl

Machine consists of 4 periods

To calculate the beam parameters just at the end of the beam line

g

* STR of Siam Photon Source by Ritthikrai

Matched functions for 4 periods

Total length = 81.299 Total bend = 359.999, 0.000 degrees
betax = 13.3849 meters alphax= 0.0000 nux = 4.76000
betay = 4.5803 meters alphay = 0.0000 nuy 2.82000
eta x = -0.0000 meters eta' x = -0.0000 gamtr= 6.83314
etay = 0.0000 meters eta'y = 0.0000

Calculate the various parameters

ch

* STR of Siam Photon Source by Ritthikrai
nu x = 4.760 nuy = 2.820
trgamma = 6.833 compaction = 0.02142
beta x min = 0.531 betay min = 1.561
beta x max = 14.300 betay max = 19.354

etax min = -0.000 etay min = 0.000
etaxmax = 1.316 etay max = 0.000
dnux/(dp/p) = 0.000 dnuy/(dp/p) = -0.000
normalized x= 0.000 normalized y= -0.000

Space charge integrals: avg beam half width, height = 0.0640, 0.0203 cm.
Synchrotron integrals: 11 = 1.744828 m-1, 12 = 2.260124 m-1

I3= 0.812992 m-2,14 = 0.225767 m-1,15= 0.102108 m-1
I15/(12-14) = 0.050192 13/(2*12+14) = 0.171300

Functions for electron storage rings:

D = 0.09989, Jx = 0.900, Je =2.100

Natural rms x emittance = 0.073989 pi mm-mrad

Natural rms energy spread = 0.503 MeV

Synchrotron radiation = 0.031988 MeV/turn

Damping times (sec): Horiz: 0.018847, Vert: 0.016964, Energy: 0.008079



To track the Twiss parameters through every element of the lattice

Cc

* STR of Siam Photon Source by Ritthikrai

betay alphay

etay eta'y

(rad) (m) (rad)

0.00 0.00
-0.76 0.00
-7.96 0.00
-10.64 0.00

4.46 0.00
4.01 0.00
3.11 0.00

1.61 0.00

0.95 0.00
-0.44 0.00
-0.59 0.00
-0.59 0.00

-1.80 0.00

-1.80 0.00
-1.97 0.00

0.00 0.00

1.97 0.00

1.80 0.00

1.80 0.00

0.59 0.00

0.59 0.00

0.44 0.00
-0.95 0.00
-1.61 0.00
-3.11 0.00

-4.01 0.00
-4.46 0.00

10.64 0.00

7.96 0.00

0.76 0.00

-0.00 0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
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psiy
(deg)
0

37.4
39.5
41.2
42.1
43.5
47.3
61.3
75.8
86.2
93.1
93.1
123.5
123.5
125.7
126.9
128.1
130.3
130.3
160.7
160.7
167.6
178.0
192.5
206.5
210.3
211.7
212.6
214.3
216.4
253.8

betax alphax etax eta'x psix betay alphay etay eta'y

18.994

elemt Ith sum| betax alphax etax eta'x psix

(m) (m) (m) (rad) (m) (rad) (deg) (m)

0. O. 13.38 0.00 -0.00 -0.00 0. 4.58
di 3.50 3.50 14.30 -0.26 -0.00 -0.00 14.7 7.25
gl 0.29 3.79 11.37 9.58 -0.00 0.00 15.9 9.61
d2 040 4.19 501 6.31 -000 0.00 18.9 17.04
g2 029 4.48 278 1.98 -0.00 0.00 23.6 18.99
d3 0.41 489 1.47 1.26 -0.00 0.00 35.1 15.56
bi 082 570 055 -0.16 0.12 0.29 99.3 9.73
b2 1.36 7.07 4.03 -2.18 0.81 0.71 161.4 3.28
d4 060 7.67 7.17 -3.04 1.24 0.71 167.8 1.74
g3 0.29 796 7.39 233 1.31 -0.24 170.0 1.60
dsf 0.21 8.16 6.47 215 1.26 -0.24 171.7 1.81
sf 0.00 816 6.47 215 1.26 -0.24 171.7 1.81
d5 162 9.79 1.78 0.74 0.87 -0.24 200.3 5.68
sd 0.00 9.79 1.78 0.74 0.87 -0.24 200.3 5.68
dsd 0.23 10.02 1.48 0.54 0.81 -0.24 208.4 6.55
g4 0.15 10.16 1.41 -0.00 0.80 -0.00 214.2 6.84
g4 0.15 10.31 1.48 -0.54 0.81 0.24 220.0 6.55
dsd 0.23 10.54 1.78 -0.74 0.87 0.24 228.1 5.68
sd 0.00 1054 1.78 -0.74 0.87 0.24 228.1 5.68
d5 1.62 12.16 6.47 -2.15 1.26 0.24 256.7 1.81
sf 0.00 12.16 6.47 -2.15 1.26 0.24 256.7 1.81
dsf 0.21 12.37 7.39 -2.33 1.31 0.24 2584 1.60
g3 0.29 1266 7.17 3.04 1.24 -0.71 260.6 1.74
d4 0.60 13.26 4.03 2.18 0.81 -0.71 267.0 3.28
b2 1.36 1462 055 0.16 0.12 -0.29 329.1 9.73
bl 0.82 1544 1.47 -1.26 -0.00 -0.00 393.3 15.56
d3 0.41 1584 2.78 -1.98 -0.00 -0.00 404.8 18.99
g2 0.29 16.13 5.01 -6.31 -0.00 -0.00 409.5 17.04
d2 0.40 16.53 11.37 -9.58 -0.00 -0.00 412.5 9.61
gl 0.29 16.82 14.30 0.26 -0.00 -0.00 413.7 7.25
dl 3.50 20.32 13.38 -0.00 -0.00 -0.00 428.4 4.58
elemt | th s uml
psiy

(m) (m) (m) (m) (rad) (deg) (m)

nu x = 4.760 nuy = 2.820

trgamma = 6.833 compaction = 0.02142

beta x min = 0.546 betay min = 1.600

beta x max = 14.300 betay max =

etax min = -0.000 etay min = 0.000

etax max = 1.307 etay max = 0.000

(m) (rad) (deg)
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Give exact maximum and minimum of the Twiss parameters
cp
* STR of the Siam Photon Source by Ritthikrai

elemt Ith sum | betax alphax etax eta'x psix X betay alphay psiy y
(m  (m) (m) (rad) (m) (rad) (deg) (mm) (m)  (rad) (deg) (mm)
0. 0. 13.38 0.00 -0.00 -0.00 O. 1 458 0.00 O.
di 3.50 3,50 1430 -0.26 -0.00 -0.00 14.7 1 7.25 -0.76 37.4
ql 0.29 3.79 11.37 9.58 -0.00 0.00 159 1 9.61 -7.96 39.5
d2 040 419 5.01 6.31 -0.00 0.00 189 1 17.04 -10.64 41.2
g2 0.29 448 2.78 1.98 -0.00 0.00 23.6
d3 041 489 1.47 1.26 -0.00 0.00 35.1
bli 082 570 0.55 -0.16 0.12 0.29 99.3
b2 136 7.07 4.03 -2.18 0.81 0.71 161.4
d4 060 767 7.17 -3.04 1.24 0.71 167.8
q3 0.29 796 7.39 233 1.31 -0.24 170.0
dsf 0.21 8.16 6.47 215 1.26 -0.24 171.7
sf 0.00 8.16 6.47 215 1.26 -0.24 171.7
ds 162 9.79 1.78 0.74 0.87 -0.24 200.3
sd 0.00 9.79 178 0.74 0.87 -0.24 200.3
dsd 0.23 10.02 148 0.54 0.81 -0.24 208.4 6.55 -1.97 125.7
q4 0.15 10.16 1.41 -0.00 0.80 -0.00 214.2 6.84 0.00 126.9

0 18.99 446 421
0
0
1
1
1
1
1
0
0
0
0

q4 0.15 10.31 148 -0.54 0.81 0.24 2200 0 6.55 197 1281
0
0
1
1
1
1
1
0
0
0
1
1
1

15.56 4.01 43.5
9.73 3.11 47.3
3.28 161 61.3
1.74 095 75.8
1.60 -0.44 86.2
1.81 -0.59 093.1
1.81 -0.59 093.1
5.68 -1.80 1235
5.68 -1.80 123.5

dsd 0.23 10.54 1.78 -0.74 0.87 0.24 228.1 568 1.80 130.3
sd 0.00 10.54 1.78 -0.74 0.87 0.24 228.1 568 1.80 130.3
d5 1.62 1216 6.47 -2.15 1.26 0.24 256.7 1.81 0.59 160.7
sf 0.00 12.16 6.47 -2.15 126 0.24 256.7 1.81 0.59 160.7
dsf 0.21 1237 7.39 -233 1.31 0.24 2584 1.60 0.44 167.6
g3 0.29 1266 7.17 3.04 1.24 -0.71 260.6 1.74 -0.95 178.0
d4 0.60 13.26 4.03 218 0.81 -0.71 267.0 3.28 -1.61 1925
b2 1.36 1462 055 0.16 0.12 -0.29 329.1 9.73 -3.11 206.5
bl 0.82 1544 147 -1.26 -0.00 -0.00 393.3 15.56 -4.01 210.3
d3 0.41 1584 2.78 -1.98 -0.00 -0.00 404.8 18.99 -4.46 211.7
g2 0.29 16.13 5.01 -6.31 -0.00 -0.00 409.5 17.04 10.64 212.6
d2 0.40 16.53 11.37 -9.58 -0.00 -0.00 412.5 9.61 7.96 2143
gl 0.29 16.82 14.30 0.26 -0.00 -0.00 413.7 7.25 0.76 216.4
dl 3.50 20.32 13.38 -0.00 -0.00 -0.00 4284 1 4.58 -0.00 253.8

co0000COP000000000000000CO

000000

Extremes ..max: betax[29] = 14.3018; betay[ 4] = 19.3586; eta[22] = 1.3161
[at el#] ..min: betax[25] = 0.5308; betay[22] = 1.5596; eta[ 2] = -0.0000
nux = 4.7600; nuy = 2.8200
dnux/(dp/docy) = 0.0000; dnuy/dp = 0.0000
4L/(mb"2g"3) * dnux/(dQ) = -0.0000; dnuy/(dQ) = -0.0000
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To track the beam size through of every element of the lattice

X

* STR of the Siam Photon Source by Ritthikrai
elemt Ith suml|l X x' etax psix x+disp vy y' etay psiy
(m  (m) (cm) (mrad) (m) (deg) (cm) (cm) (mrad) (m) (deg)
di 3.50 3,50 0.10 0.07r -0.00 14.7 0.10 0.02 0.04 0.00 374
gl 0.29 3.79 0.09 0.74 -0.00 159 0.09 0.03 0.21 0.00 395
d2 040 4.19 0.06 0.74 -0.00 189 0.06 0.03 0.21 0.00 41.2
q2 0.29 448 0.04 0.34 -0.00 23.6 0.04 0.04 0.09 0.00 421
d3 0.41 489 0.03 0.34 -0.00 35.1 0.03 0.03 0.09 0.00 435
bl 0.82 570 0.02 0.36 0.12 99.3 0.02 0.03 0.09 0.00 47.3
b2 1.36 7.07 0.05 031 081 1614 0.05 0.01 0.09 0.00 61.3
d4 0.60 7.67 0.07 031 1.24 167.8 0.07 0.01 0.09 0.00 75.8
q3 029 796 0.07 0.24 1.31 170.0 0.07 0.01 0.07r 0.00 86.2
dsf 0.21 8.16 0.07 0.24 1.26 171.7 0.07r 0.01 0.07 0.00 93.1
sf 0.00 8.16 0.07 0.24 1.26 171.7 0.07 0.01 0.07r 0.00 93.1
d5 1.62 9.79 0.03 0.24 0.87 2003 0.03 0.02 0.07 0.00 1235
sd 0.00 9.79 0.03 0.24 0.87 200.3 0.03 0.02 0.07 0.00 123.5
dsd 0.23 10.02 0.03 0.24 0.81 208.4 0.03 0.02 0.07 0.00 125.7
qé 0.15 10.16 0.03 0.22 0.80 214.2 0.03 0.02 0.03 0.00 126.9
qé 0.15 10.31 0.03 0.24 0.81 220.0 0.03 0.02 0.07r 0.00 128.1
dsd 0.23 10.54 0.03 0.24 0.87 228.1 0.03 0.02 0.07 0.00 130.3
sd 0.00 1054 0.03 0.24 0.87 228.1 0.03 0.02 0.07r 0.00 130.3
ds 1.62 12.16 0.07 0.24 1.26 256.7 0.07 0.01 0.07 0.00 160.7
sf 0.00 12.16 0.07 0.24 1.26 256.7 0.07 0.01 0.07 0.00 160.7
dsf 0.21 12.37 0.07 0.24 1.31 2584 0.07 0.01 0.07 0.00 167.6
g3 0.29 12.66 0.07 0.31 1.24 260.6 0.07 0.01 0.09 0.00 178.0
d4 0.60 13.26 0.05 0.31 0.81 267.0 0.05 0.01 0.09 0.00 1925
b2 1.36 14.62 0.02 0.36 0.12 329.1 0.02 0.03 0.09 0.00 206.5
bl 0.82 1544 0.03 0.34 -0.00 393.3 0.03 0.03 0.09 0.00 210.3
d3 041 15.84 0.04 0.34 -0.00 404.8 0.04 0.04 0.09 0.00 211.7
g2 0.29 16.13 0.06 0.74 -0.00 409.5 0.06 0.03 0.21 0.00 212.6
d2 0.40 16.53 0.09 0.74 -0.00 4125 0.09 0.03 0.21 0.00 214.3
gl 0.29 16.82 0.10 0.07 -0.00 413.7 0.10 0.02 0.04 0.00 216.4
dl 3.50 20.32 0.09 0.07 -0.00 428.4 0.09 0.02 0.04 0.00 253.8

nu x = 4.760 nuy = 2.820
trgamma = 6.833 compaction = 0.02142
beta x min = 0.546 betay min = 1.600
beta x max = 14.300 betay max = 18.994

etax min = -0.000 etaymin = 0.000
etax max = 1.307 etay max = 0.000
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F.6 The Results of Calculations for the Storage Ring (STR) by the

Program BETA

OPTION(%%,$,Z,VI,AX,X,DE,MO,FI,DIAG,SY,GR,TR,CO,
NUDP,XXP,ZZP,LDP,XZ,EXZ,DEFQ,DEFD,DEFM,AL
AJ,AJ2,SX,SXLD,LDSX,AVAR,NLOG,MO2) : mo

Structure as RING(BETA) or TRANSFER LINE(BEAM) (RI/TL) [RI]:

32

D1 SD .35000000E+01

QF1 QP .28999999E+00 .27560966E+01

D2 SD .40000001E+00

QD2 QP .28999999E+00 -.28684850E+01

D3 SD .40500000E+00

Bl DI .29452431E+00 .27800000E+01 .00000000E+00
B2 DI .49087384E+00 .27800000E+01 .00000000E+00
D4 SD .60000002E+00

QF3 QP .28999999E+00 .25199873E+01

D5 SD .20500000E+00

SF SX .10000000E-05 .10304093E+07

D6 SD .16240000E+01

SD SX .10000000E-05 -.15457075E+07

D7 SD .23000000E+00

QD4 QP .28999999E+00 -.20640895E+01

D8 SD .23000000E+00

D9 SD .16240000E+01

D10 SD .20500000E+00

QF3 QP .28999999E+00 .25199873E+01

D11 SD .60000002E+00

B2 DI .49087384E+00 .27800000E+01 .00000000E+00
Bl DI .29452431E+00 .27800000E+01 .00000000E+00
D12 SD .40500000E+00

QD2 QP .28999999E+00 -.28684850E+01

D13 SD .40000001E+00

QF1 QP .28999999E+00 .27560966E+01

D14 SD .14890000E+01

D15 SD .20109999E+01

.00000000E+00
.00000000E+00

.00000000E+00
.00000000E+00

RF CA .12000000E+06 .32000000E+02 .10000000E+10
K1 KI .00000000E+00 .00000000OE+00 .00000000E+00

NEXT ?:
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D1 QF1 D2 QD2 D3 Bl B2 D4 QF3 D5
SF D6 SD D7 QD4 D8 SD D9 SF D10
QF3 D11 B2 Bl D12 QD2 D13 QF1 D14 RF
D15 D1 QF1 D2 QD2 D3 Bl B2 D4 QF3
D5 SF D6 SD D7 QD4 D8 SD D9 SF
D10 QF3 D11 B2 Bl D12 QD2 D13 QF1 D14
D15 D1 QF1 D2 QD2 D3 Bl B2 D4 QF3
D5 SF D6 SD D7 QD4 D8 SD D9 SF
D10 QF3 D11 B2 Bl D12 QD2 D13 QF1 D14



123

D15 D1 QF1 D2 QD2 D3 Bl B2 D4 QF3
D5 SF D6 SD D7 QD4 D8 SD D9 SF
D10 QF3 D11 B2 B1 D12 QD2 D13 QF1 D14

D15
NEXT ?:

NUMBER OF SUPERPERIODS [ 1]:
PARTICLE [E ]:

FIRST OR SECOND ORDER(1 OU 2):
OPTION :BETA
STRUCTURE: E:\The results\strgood.str
0/ 121
FIRST-ORDER MATRIX

6.280E-02 -1.336E+01 0.000E+00 0.000E+00 7.506E-10 1.245E-06 0.000E+00
7.456E-02 6.280E-02 0.000E+00 0.000E+00 -1.253E-11 -9.906E-08 0.000E+00
0.000E+00 0.000E+00 4.258E-01 -4.144E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 1.975E-01 4.258E-01 0.000E+00 0.000E+00 0.000E+00
-9.902E-08 1.245E-06 0.000E+00 0.000E+00 1.000E+00 1.741E+00 0.000E+00
2.737E-11 2.490E-10 0.000E+00 0.000E+00 2.966E-04 1.000E+00 0.000E+00

MACHINE RADIUS = 12.939185
CELL LENGTH = 81.299301
NUX= .760001 NUZ= .820000  NUS=*#x¥xkhrix

NEXT PAGE ?
The beam matrix

1.3385E+01

-4.4531E-09 7.4711E-02

0.0000E+00 0.0000E+00 4.5803E+00

0.0000E+00 0.0000E+00 -1.3013E-08 2.1833E-01

-2.9413E-10 -9.9247E-08 -5.2709E-15 1.6561E-16 1.3184E-13
-1.0592E-10 1.9987E-11 2.4016E-17 -5.2465E-18 -2.6549E-17 6.1854E-21

CLOSED ORBIT
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
CHROMATIC CLOSED ORBIT
1.3286E-06 1.0269E-11 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
ALPHAP= 2.142E-02 ETA= 2.142E-02
W= 1.000E+09 EO= 5.110E+05

V/C= 1.000E+00 GAMMA= 1.958E+03
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NEXT PAGE ?
0/ 121
DAMPING  PARTITION EMITTANCE
TIME (s) NUMBER INVARIANT PROJECTION DP/P=0

X 1.8893E-02 9.0040E-01 7.3411E-08
Z 1.7011E-02 1.0000E+00
S 8.1021E-03 2.0996E+00

X -1.7072E-01 -6.6299E-07 6.6299E-07 6.6299E-07

Z -3.4233E+29 -6.5383E-05 6.5383E-05 6.5383E-05

S 0.0000E+00 0.0000E+00 6.9735E-24 6.9735E-24
COUPLING 0.0000E+00 9.8618E+01 9.8618E+01

ENERGY SPREAD 5.0220E-04

ENERGY LOSS/TURN (MeV) 3.1900E-02

11 1.7397E+00

12 2.2601E+00

13 8.1300E-01

14 2.2510E-01

15 1.0149E-01

NEXT PAGE ?

200 HARMONICS

D .11621E+03 NUX- 4 .11077E+03 .95317E+00
G .15503E+03 NUX- 4  .24520E+03 .15817E+01
DG  .24349E+03 NUX- 4 .16481E+03 .67685E+00
F -.16878E+02 3*NUX- 16 -.13627E+02 .80737E+00
L -.70231E+02 NUX+2*NUZ- 12 -.91374E+02 .13010E+01
H -.80839E+01 NUX-2*NUZ- 0 -.45813E+02 .56672E+01

BETATRON TUNES
NUX= 4.760002 NUZ= 2.820000
TUNE SHIFTS WITH AMPLITUDE

DNUX/(EX/PI)= -.49183E+02 DNUZ/(EX/PI)= -.90670E+02
DNUX/(EZ/PI)= -.90670E+02 DNUZ/(EZ/PI)= -.19178E+02
NEXT PAGE ?
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