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Chapter I

Introduction

1.1 Motivation

The tunneling spectroscopy of a normal metal-insulator-superconductor
(NIS) junction is one of most powerful tools used to study the quasiparticle ex-
citations of the superconductor (McMillan, W. L. and Rowell, J. M. 1969; Wolf,
E. L. 1985). The physical quantities measured in the tunneling experiment are
the current (7) that tunnels across the junction and the associated applied voltage
(V). In addition to the (I — V') characteristic of the junction, the conductance,
the derivative of current with respect to the applied voltage, is also the quantity of
interest. In the tunneling limit, or low transmission limit, the tunneling conduc-
tance of the normal metal-superconductor junction is proportional to the density
of state (DOS) of the quasiparticle excitations of the superconductor (Giaver, I.
1960; Giaver, I. and Megerle, K. 1961). Therefore, for isotropic s-wave super-
conductors, the plot of the conductance as a function of applied voltage in the
tunneling limit provides a way of measuring the magnitude of their energy gaps
(Tinkham, M. 1996; Duzer, T. V. and Turner, C. W. 1999). The isotropic nature
of the energy gap of isotropic s-wave superconductor results in the independence of
the tunneling spectroscopy on the direction, into which the injected current flows
with respect to the junction interface. In contrary, the tunneling spectroscopy
of anisotropic superconductors would depend on the interface orientation (Kashi-
waya, S., et al. 1996; Pairor, P. and Walker, M. B. 2002). Thus, the tunneling

spectroscopy can be used to study the values of the energy gap of an anisotropic



s-wave superconductor at the different points on the Fermi surface.

Anisotropic s-wave superconductors are among the anisotropic supercon-
ductors. Their gap functions change with the direction in the momentum space.
The rare-earth borocarbides, such as LuNi;B;C, YNi,BoC, and MgB, are the pos-
sible examples of anisotropic s-wave superconductors (Pickett, W. E. and Singh,
D. J. 1994; Mun, M-O., et al. 1998; Zarestky, J., et al. 1999; Civale, L., et al.
1999; Buzea, C. and Yamashita, T. 2001; Maki, K., et al. 2002). The crystal
structures of the borocarbides compounds are tetragonal with the ratio ¢/a about
3 (Mun, M-O., et al. 1998; Civale, L., et al. 1999) while the structure of MgB,
is hexagonal with ¢/a > 1 (Buzea, C. and Yamashita, T. 2001). Because of the
large c/a ratios especially of the borocarbides, these systems can be considered
quasi-two-dimensional.

There is still a debate over what is the type of the gap symmetry of these
materials. In order to help clarify the gap symmetry of some of these materials, it
is useful to study the directional tunneling spectroscopy of two-dimensional super-
conductors. Because there are a number of experiments indicating that the gap
of these materials has anisotropic s-wave characteristics, it interesting to examine
the tunneling spectroscopy of superconductor with such gap symmetry. The result
of this study can be used to compare with the tunneling experimental results and
may help eliminate or support this gap symmetry.

In this thesis, the tunneling spectroscopy of tetragonal anisotropic s-wave
superconductors both at zero temperature and at finite temperatures are theoreti-
cally studied. For simplicity, throughout this work, the system is assumed to have
two-dimensional isotropic Fermi surface. To calculate the current and the con-
ductance of the tunneling junction, the scattering method known as the Blonder-
Tinkham-Klapwijk (BTK) formalism (Griffin, A. and Demers, J. 1971; Blonder,
G. E., Tinkham, M., and Klapwijk, T. M. 1982) is used. This method has at least
one advantage over other methods, like the transfer Hamiltonian method. In the
BTK approach , the insulating layer can be set to have arbitrary strength. This

freedom provides the ability to study the dependence of the tunneling conductance



spectrum on the strength of the barrier potential as well.

1.2 Method and Assumption

One of the theoretical approaches widely used to study the NIS geometry
is the scattering method. This method makes use of the Bogoluibov-de Gennes
(BdG) equations, which are two-component energy equations and a general form
for the quasiparticle wave function of each side of the junction. In a simple case,
the wave function of the normal metal is a linear combination of an incoming
electron, an Andreev reflected hole, and a normal reflected electron, whereas the
wave function of the superconductor is a linear combination of two transmitted
quasiparticle excitations: one is electron-like and the other is hole-like. The two
wave functions are later on matched at the interface using appropriate bound-
ary conditions in order to evaluate all the reflection and transmission amplitudes.
With the associated reflection and transmission probabilities and a suitable Boltz-
mann equation that explains the non-equilibrium quasiparticle populations in the
presence of an applied voltage, the distributions functions of the incoming, re-
flected and transmitted quasiparticle can be found ( Blonder, G. E., Tinkham,
M., and Klapwijk, T. M. 1982; Kashiwaya, S., et al. 1996). As a result, the elec-
tric current across the junction and the tunneling conductance can be expressed in
terms of these distribution functions. This method provides an exact expression
of the differential conductance and allows one to study it over a wide range of
the barrier strength, i.e., from the high transmission or Andreev limit to the low
transmission or tunneling limit. This technique is now commonly known as the

Blonder-Tinkham-Klapwijk formalism.

1.3 Outline of Thesis

This thesis contains the theoretical study of the tunneling spectroscopy of

tetragonal anisotropic s-wave superconductors at zero and finite temperatures.



Chapter II of this thesis provides the review of the formalism used to obtain the
current and conductance of NIS junction at zero and finite temperatures. The
model of the junction and all the assumptions used in all the calculations are also
described.

In Chapter III, the current and the conductance of NIS junction at differ-
ential barrier strengths and angle orientations are studied at zero temperature for
both isotropic and anisotropic s-wave superconductors. The comparison of the
tunneling conductance spectra of both types of superconductors are discussed.

In Chapter IV, the conductance spectra are examined at finite temperatures.

Finally, the conclusions are provided in Chapter V.



Chapter 11

Current and Conductance in the

Isotropic Model

2.1 Introduction

This chapter mainly provides the review of the method used to obtain
the tunneling current and conductance spectrum of a normal metal-insulator-
superconductor (NIS) junction in the isotropic model. The assumption used in
this model is that the Fermi surfaces of both normal metal and superconductor
are isotropic. Since the systems of interest are the borocabides, the crystal struc-
tures of which are tetragonal with the ratio of the lattice constants ¢/a > 3, their
Fermi surfaces are taken to be cylindrical, as well as those of the normal metal for
simplicity. The shape of the Fermi surface definitely has some effect to the tunnel-
ing conductance spectrum; however, it should not affect the main characteristics
of the spectrum (Pairor, P. and Walker, M. B. 2002).

The NIS junction is taken to be an infinite system. The insulating layer is
taken to have zero width and lies on the yz plane. The normal metal is in the
region where x < 0 and the superconductor fills the x > 0 region. Figure 2.1 shows
the geometry of the NIS junction. The insulator is represented by a delta function
potential V(x) = Hd(x), where H is the strength of the potential barrier. The
energy gap is assumed to be zero in the normal metal but non-zero and uniform

in the superconductor, or A(z) = A(k)O(z), where A(k) is the BCS value of the



energy gap and ©(x) is a Heaviside-step function. The gap can be assumed to be
a step-function, since the values of the coherent length & of the Borocarbides are
small (Nohara, M., et al. 1997; Shulga, S. V., et al. 1998; Mortensen, N. A.; et al.
1999).

H 3 (x)

A (k)O(x)

Figure 2.1: The sketch of an NIS junction used in the isotropic model. A potential
barrier of the insulating layer is represented by Hd(z). A(k)O(x) is

the gap function. ©(z) is a Heaviside-step function.

The Bogoluibov-de Gennes equations used to describe the junction are,

therefore, written as

—5-V?+ Hé(z) — Ep 2 A(k)O(x) b(r) = E(r), (2.1)
A(k)O(z) ;—mVQ — Hé(z) + Er

where Ef is the Fermi energy, m is the electron mass, and ¢ (r) is a two component

u(r)

wave function, or ¢(r) = , where u(r) is the electron-like quasiparticle
v(r)

part and v(r) is the hole-like quasiparticle part.
Because the system is two-dimensional and taken to be in the xy plane, the

bulk excitation energy of the normal metal is obtained as

2

h 2 2



where ¢,, g, are the x and y components of the wave vector in the normal state.
Note that the energy is always positive and the plus and minus signs correspond
to the electron and hole excitation energies, respectively.

Similarly, the bulk excitation energy of the superconductor is

E(kxa ky) =V 613 + Ai ) (2'3)

where & is the normal-state excitation energy

2

h
= %(lﬂi + kZ) — Er (2.4)

and Ay is the gap function. The electron-like and hole-like quasiparticle amplitudes

are taken to have the form u(r) = upe and v(r) = vre’® ™, where u; and vy, are the

BCS electron-like and hole-like quasiparticle excitation amplitudes, respectively.

Note that u; and vy, are

E+ &
"o VIE + &P+ A2
k k
A (2.5)
Uk )

C VIE &P AR

and |uk|2 + |Uk|2 =1.

2.2 The Reflection and Transmission Probabili-
ties

In order to obtain the current flowing across the junction, the reflection and
transmission probabilities are calculated by assuming that an electron incoming
from the normal metal side tunnels to the superconducting side. The wave vector
of the electron incoming from the normal metal side, g™, has the direction that

makes an angle # with the z-axis (see Fig. 2.2(c)).



There exist two types of reflections here. The first one is called Andreev
reflection, which has a wave vector ¢—, and the second is the normal reflection with
the wave vector —¢". Note that while the normal reflection process reduces the
number of electrons tunneling across the junction, the Andreev reflection process
results in a transport of two electrons across the junction. This is due to the fact

that the reflected excitation in the Andreev reflection process is a hole excitation.

A E@q,.q) b Ek,.k,)

hike fransmittgd excliatio

A“n‘d(\asv reflgcted h
h e-likg transiitted excitéiion

ar, | Incoming e | \C
Fyf ! l !
l 1 : {_?x I A k l JIEI{Jr
0 - + - - + >
dx grdy _kF _kx 0 '&"—F kx

(a) (b)

Normal metal Insulator Superconductor

+ +
\ e-like quasiparticle

glactron
hole-like quasiparticle
L{;? g ah quasiparti
47 X
. F— —_
Incoming e® x q —k
hole

Figure 2.2: The sketches of the bulk quasiparticle energies of normal metal (a)
and superconductor (b). (c) shows the reflection and transmission
processes occurring at the NIS interface. For electron with the wave
vector ¢ coming from the normal metal, there are two reflected ex-
citations: the Andreev and normal reflected excitations with ¢~ and
—q" respectively. There are also two transmitted electron-like and

hole-like quasiparticle excitations with k* and —k~ respectively.

There are two transmitted excitations, one is electron-like quasiparticle with



the wave vector k™ and the other is hole-like quasiparticle with the wave vector
—k~. Since the system has a translational invariance for the direction parallel to
the interface, the wave vector components along this direction are conserved, and

the wave function of an incoming electron on the normal side can be written as

Un(x <0,y) = 1 + Vrp) + Vree)s

1| . ol (I I W
Yn(r <0,y) = e +q e + b e Mt ey - (2.6)
0 1 0

where a, b are the Andreev and normal reflection amplitudes respectively and ¢
satisfy the energy equation Eq. (2.2) for electron and hole excitations. In Eq.
(2.6), the first term is the incident electron, the second is the Andreev reflected
hole, and the third is normal reflected electron. In the superconductor, the wave

function is the sum of the two transmitted excitations

Ys(x > 0,y) = Upe) + Yrpy,

Ys(z > 0,y) = (C [ e } M 4 d ’V ok } e_ik”> ey (2.7)

[ Vg+ V_f—

where ¢, d are the two transmission amplitudes, and k satisfy the energy equation
Eq. (2.3) at the same k,. In Eq. (2.7) the first term represents the transmission
of the electron-like quasiparticle and the second term represents the transmission
of the hole-like quasiparticle crossing the Fermi surface.

The amplitudes a, b, c and d are calculated by using the matching conditions

at the interface, which are

¢S(l‘7y) :¢(an) )

=01

(2.8)

d
- %%\r(% y) = 2kFZ,¢}(07 y) )

r=0"
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mH

where 7 = W

is a dimensionless parameter to represent the insulating barrier
strength of the junction (H is the strength of the potential barrier).

Because the energy range of interest is of the same order as the energy gap
which is usually a few orders of magnitude smaller than the Fermi energy, the
wave vectors of the quasiparticles will be approximately ¢;7 =~ ¢, ~ gpcosf and
kil =~ k; =~ kpcos, where 6 is angle between direction of the wave vector and

the z-axis.

Let the ratio of the two Fermi wave numbers A = ¢r/kp. Eq. (2.8) can be

written as
0 1 —Up+ —U_p- a -1
1 0 — —U_p— b 0
. w ¢ - ], @9
0 A+ 2Z)  wr —u_p- c (A — 22)
- - 35) 0 ver v | | d] ] 0]

the solution of which is as follows

a(E 9) - 4Uk+'U,k—)\
U wprv - (472sec? 0 4 (14 N)2) — u_p-vpr (472 sec2 0 + (A — 1)2)
b(E. 9) (u_p-vpr — uprv_p= ) (1 + 4Z%sec? 0 + 4iZ X sec 6 — \?)
T uprv_ - (422 sec20 + (14 N)2) — u_p-vpr (472 sec2 0 + (N — 1)2)
(E.0) = 2u_j-AsecO((1+ \) cosf — 2i2)
amt = uprv_p-(422%sec? 0 4+ (1 + N)?) — u_p-vp+ (42%sec? 0 + (A — 1)2) 7
A(E.9) 2up+ Asec(2iZ + (1 — X) cos )

up+v_p- (422 sec? 0 + (1 + N)?) — u_p-vp+ (422 sec?2 0 + (A — 1))
(2.10)
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The Andreev reflection probability A(E, ) is equal to the magnitude of the
ratio between the current density due to the reflected hole and the current density

due to the incident electron, i.e.,

where ngpy = [Vrn)|® and vgg,) is group velocity of the reflected hole. Similarly,
niey = |Yre))* and vy is group velocity of the incident electron. The Andreev

reflection probability is therefore equal to

gt

A(E,0) = |a(E,0)*| 2| ~ |a(E,0)] . (2.11)

T

By the same token, the normal reflection probability of the junction B(FE,#) is

J e e e
B(E,§) = || = | TP | 2, )2 (2.12)
J1(e) Mi(e)VI(e)
where npey = |tr()|? and vge) is group velocity of the reflected electron. The

transmission probability of the electron-like quasiparticle through the interface of

the junction C'(F,#) is equal to

Jr(e) N7 (e) VT (e) 9 2 on | B
C(E,0) = = =le(E,0)]"(lu —|v =
(E,0) Tre oI (B, 0)]*(lug+]" — v+ ]7) -
2 2 2 ]'
= C(FE,0) = |c(E,0)|"(Jug+|” — |vg+] )X ) (2.13)

The other transmission probability of the hole-like quasiparticle D(FE, 0) is

N7 (h)VT(h)

= |d(E, 0)*(Ju—-|* = [v-4-[*)

k, ‘
q-l-

nl(e) Ul(e) P

I (2.14)
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Because there is no lost in the number of particles,
A(E,0)+ B(E,0)+C(E,0)+ D(E,0) = 1. (2.15)

In the case where the superconductor becomes normal, or the system be-
comes an NIN junction, the Andreev reflection probability A(F,0) = 0, and
so is the hole-like transmission probability D(F,#). Eq.(2.15) would become
B(E,0)+ C(E,0) = 1. Also, the amplitude of reflection and transmission b and ¢

for this system would be

2\

(1+ ) +2iZsech
2\

(14 \) + 2iZsect

b(h) = -1+
(2.16)

c(f) =

Thus, the reflection and transmission probabilities in the case of an NIN junction
are
(A —1)*+4Z%sec*d

B(0) = 2.1
(6) (1+X)2+422%sec?f (2.17)

4\
co) = (1+N\)2+472sec?0

(2.18)

Note that they do not depend on the energy F.

2.3 Current and Conductance Formula

In general, the current flowing in the +z direction (positive group velocity)

across the junction is given by

I= anvke, (2.19)
k

where ny; is number of electron tunneling through the junction, the summa-

1dE

tion is over all the states with positive vy = 37, which is the group veloci-

ties, and e is the electron charge. The number n; can be written in terms of



13

the refection and transmission probabilities and the Fermi distribution function

f(E)=[1+exp(E/kpT)]™" as
ny = (1 + A(E,0) — B(E,0)|f(E).

The Fermi distribution function f(E) describing the probability of a state with
energy E being occupied at a finite temperature 7', kg is the Boltzmann constant.
The value [1 + A(E,f0) — B(E, )] can be interpreted as the number of an elec-
tron getting transmitted from the normal to the superconducting region per one
incident electron. At equilibrium (no applied voltages), the current flowing from
the normal metal to superconductor is the same as the current flowing from the
superconductor to the normal metal. If there is a non-zero applied voltage, the
two currents will be different and cause the net current across the junction. The
current flowing across the junction with the applied voltage V' from normal metal

to the superconductor can be written as
L26 +o0 400
Inys = m/ / dk,dE[1 + A(E,0) — B(E,0)|f(E — Ve),
m —00 —00

while, the current flowing from superconductor to the normal metal can be written

as
L2e +o0o 400
Fox =g [ dbdBL+ AE0) - BEOI(E)

Thus, the net current crossing the junction is

I(Vea 9) =Inos —Ison

S I(Ve,0) = 4[7’;1 / +°° / "k dE[L + A(E,0) — B(E,0)][f(E - Ve) — £(B)] .
(2.20)

— 00 o0
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where L? is the size of the system, (Ve) is the resulting difference in the chemical
potential across the junction. Because k, = kpsind = dk, = kpcosfdf, the net

current, across the NIS junction can be rewritten as

w/ 00
Inis(Ve,0) = eLQkF/+ 2d00059/+ dETn1s[f(E —Ve) — f(B)],  (2.21)

4m2h —7/2 0

where Ty = [1+A(E,0)—B(E,0)]. For the NIN junction A(E,0) = 0=Tnn =

[1—B(9)] = Wﬁm the net current crossing the NIN junction becomes
€L2kp +7/2 +oo
Inin(Ve,0) = 1h / / dﬁcosﬁ/ dETyiN[f(E —Ve)— f(E)]. (2.22)
—7/2 —00

Define the normalized current of the junction as the ratio of the NIS current to

the NIN current:

I(Ve,) = Ints _ f_t:r/; dfcosf fj;o dETNrs|f(E —Ve) — f(E)]

Intn ::r/; dfcost) [ dETnin[f(E — Ve) — f(E)]

The conductance of the junction is the derivative of the current with respect
to the applied voltage across the junction. The conductance of the NIS junction
is
dIst(Ve, 9)

GNIS(Vea 9) = v )

and for the NIN junction the conductance is

dl 0
GNIN(Vea 9) = —Nnéifve’ ) .

The normalized conductance of the junction is defined by the ratio of G g to
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GniIn:

[T d0cost [T dETxrs 2 f(E — Ve)

Gnis —n/2
G(Ve,0) = = . (2.24)
Gy [*T2 dfcost [ dETnin G f (E — Ve)
At zero temperature Eq.(2.24) is reduced to
+7/2 +o0
G _ g dBcost | " dETyrs
G(Ve,0) = =25 = Jons J (2.25)

GNINn ::r/; dfcosd [*>° dETn 1y '

The normalized current and normalized conductance formula in this chapter are

used to obtain the current and conductance spectra in the next chapters.



Chapter I1I

Tunneling Spectroscopy at Zero

Temperature

3.1 Introduction

In this chapter the current and conductance for the isotropic and anisotropic

s-wave superconductor at zero temperature are presented. The effects of the crys-

tal orientation of the superconductor and the barrier strength are examined in

details. For simplicity, the magnitudes of the Fermi wave vectors of both normal

metal and superconductor are taken to be the same, i.e., A = 1. It is found that

difference in the magnitude of the two Fermi wave vectors affects the tunneling

spectroscopy in the same way as an increase in the barrier strength.

The normalized current and the normalized conductance can be calculated

from
+m/2 +o0
H(Ve.t) = Inis _ f_ﬁ/Q dfcost) [~ dETy ;s
’ Inin j:/; dfcost fj—;o dETNIN
and +7/2
e ffn/2 dOcos0Tn1s
G(Ve, 9) — G - —|—7T/2 ’
NIN f_ﬂ/Q dfcosOTn N
where

TNIS - []. —|— A(E,g) - B(E, 9)]

(3.1)

(3.2)
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and
1

T =1-B#))=————-.
NIN [ (9)] 1+ Z2sec?0

T'nrs is the transmission probability across the insulating barrier when the system
is NIS junction and T,y is the transmission probability across the insulating
barrier when both sides of the junction are normal metal. Both Tx;y and Tyrs
can be considered as a number of electrons crossing NIN and NIS junctions for

each incident electron respectively.

3.2 Isotropic s-wave Superconductor

The gaps of an isotropic s-wave superconductor are shown in Fig. 3.1.
The energy gap is the same at all points on the Fermi surface. Therefore, the
energy gaps of both transmitted excitations are the same, i.e., Ap+ = A_p-. This
means there are simple relations between the BCS parameters u;+ and v+, i.e.,

Up+ = UV_p— and u_j- = vp+.

Fermi surface

Figure 3.1: The sketch of an isotropic Fermi surface of an isotropic s-wave super-
conductor. kg is the Fermi wave vector, A is the energy gap of the

bulk superconductor.
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The reflection and transmission probabilities of the junction can be calcu-
lated from Eqs. (2.11)-(2.14). The result of the calculations for the values of
four coefficients A(E), B(E),C(FE), and D(F) as functions of energy and barrier
strength are shown in Fig 3.2.

Coefficient

Coefficient

Coefficient
Coefficient

Figure 3.2: The plots of reflection and transmission probabilities at NIS interface
as a function of E/A for different values of the barrier strength Z =
0.0,0.3,1.0and 1.5. A and B are the Andreev and the normal reflection
probabilities. C' and D are the transmission probabilities of electron-

like and hole-like quasiparticle excitation, respectively.

The reflection and transmission coefficients are plotted as a function of E/A
for different the values of the barrier strength: Z = 0.0,0.3,1.0, and 1.5.

When E < A, there are no transmitted quasiparticle excitations C'(F) =
D(E) = 0 for all values of barrier strength. If the barrier strength Z is weak, the
Andreev reflection probability dominates. If the barrier strength Z is strong, the

normal reflection probability is high.
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When E > A, the transmission probability without branch crossing dom-
inates for weak barriers. For strong barriers, the normal reflection probability is
high.

In the case of E = A, one should note that A=1and B=C =D =0,
independent of Z.

When both sides of interface are normal metals the Andreev reflection prob-
ability A(E) = 0 and Ty;y = 1—B(F) = C(E) = (1+Z*)~'. The current across

the junction reduces to the simple form

€L2kF

— Y = GV
Ar2h(1 + 22) NINT

ININ -

which is Ohmic; Gy is the NIN conductance, which is a constant. Therefore,
the normalized current across the junction can be written as

I(Ve) = % / " 4Bl A(B) - BB, (3.3)

Figure 3.3 shows the plots of the normalized currents across the junction
as a function of (Ve)/A with different values of the barrier strength Z. In this
figure, in the low transmission limit (large Z), there is no tunneling current until
|[V|e > A, and the current reaches the Ohm’s law limit when the applied voltage
is large. In the Andreev limit, there is current flowing across the junction even
when (Ve) < A. This is due to the Andreev reflection process, which causes two
electrons to tunnel across the junction.

The tunneling normalized conductance as a function of voltage and the

barrier strength of the junction is given by

G(Ve) = (1+Z*[1+ A(Ve) — B(Ve)]. (3.4)
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Normalized Current

Figure 3.3: The plots of the normalized current as a function of (Ve)/A, for dif-
ferent the values of the barrier strength Z = 0.0, 0.6, 1.0, 3.0 at
zero temperature. Note that each curve attain their asymptotic limits

(Ohm’s law) at high voltage.

Figure 3.4 shows the plots of tunneling normalized conductance as a function of
(Ve)/A at zero temperature for different values of the barrier strength. It should
be pointed out that when Z = 0.0, and (Ve) < A, the normalized conductance
G(Ve) = 2, indicating two electrons are transferred across the boundary. When the
barrier strength is increased, the normalized conductance is small for (Ve) < A.

When (Ve) = A, the normalized conductance is peaked.
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Figure 3.4: The plots of the normalized conductance of a function (Ve)/A, for

various values of Z: 0.0, 0.3, 1.0 and 3.0 at zero temperature.

3.3 Anisotropic s-wave Superconductor

Anisotropic s-wave superconductors are the superconductors with the gap
functions that change their values with the direction in the momentum space. The
rare-earth borocarbides, such as LuNi;B,C, YNiyBy,C, and MgB, are the possible
examples of anisotropic s-wave superconductors. These systems can be considered
quasi two-dimensional, because of their large ¢/a ratio.

In general, the energy gap of anisotropic s-wave superconductor varies with
the angle with respect to a crystal axis. Thus, the tunneling spectroscopy of
anisotropic superconductor depends on the crystallographic orientation of the su-
perconductor. Figure 3.5(b) shows an example of the energy gap when the a-axis

is on the x-axis (thin solid curve) and when the a-axis makes an angle o with the
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Normal metal ) Superconductor

¢ e

electron

Q

—F helike

"1.
p|

Incoming e

Fermi surface
Insulator Energy gaps

(a) (b)

Figure 3.5: (a) The sketch of the reflected and transmitted processes in the NIS
junction. # is the angle between the incident electron beam and the
normal of the interface. (b) the Fermi surface ( thick dashed circle) and
the gap functions of an anisotropic s-wave geometry in the momentum
space. In this figure, a is the angle between the normal of the interface
and the a-axis of superconductor. The thin solid curves represent the

gap when a = 0, whereas the thin dashed line is the gap when a # 0.

x-axis (thin dashed curve).

The wave vectors of both sides are taken to be ¢ =~ ¢, =~ qpcosb,
kI ~ k;~ kpcosf, and qrp = kp. For an anisotropic s-wave superconductor,
the electron-like quasiparticle and the hole-like quasiparticle thus have different

effective pair potentials which are A,+ and A,-, respectively:

Apx=A(1+ecos[4(f F o)) , (3.5)

where ¢ is the parameter of the gap function. Different values of ¢ give different
shapes of the gap function in the momentum space, « is an angle between a-axis
and the z-axis, and 6 is an angle between the direction of a Fermi wave vector and

the z-axis. Ap+ = Ay~ only when o = 0 and 7. The plots of the energy gap for



23

a = 0 as a function of an angle # with different parameter of the gap function ¢

are shown in Fig. 3.6.

! f(y
0.8
o 06 k.
A 04
0z (@) =10
15 -1 -08 0 05 1 15
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0.8
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— 08
)
<] 04
w =10
15 =1 <05 0 08 1 15
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! fry
0.8 !!
— 06 k
T -ii_
<1 04
02
(c) =05

=715 =7 =05 0 0.5 1 15

Figure 3.6: The plots of the gap function of anisotropic s-wave superconductors
as a function of an angle 6 for « = 0. (a) ¢ = 1.0, (b) ¢ = —1.0 and

(c) e = 0.5.

When a##0, the energy gap of both transmitted excitations are different.
Figure 3.7 shows the plots of the energy gaps as a function of § for &« = 7/5 in
two cases: ¢ = 1.0 (b), and € = 0.5 (¢). In each case, the energy gap of the
electron-like excitation A+ is the solid curve and that of the hole-like A_ ;- is the
dashed curve. As can be seen, the magnitudes of A,+ and A_,- are different for

the same the incident angle 6 (except at § = 0, 7/4).
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(a) : Superconductor
E(k, .k, )

e-like frandmittad gxcitation
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kel

At

Figure 3.7: (a) The sketch of the excitation energy of the superconductor when
a#0. Note the inequality in Ag+ and Ag-. The plots of energy gaps
as a function of # when orientation angle a = 7 /5 for (b) ¢ = 1.0 and

(c) e = 0.5 are shown. The solid curves are for Ay+ and the dashed

curves are for A_;-.
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The reflection and transmission probabilities as a function of E/A,,, with
a=0and Z = 1.0 at § = 7/6 are shown in Fig. 3.8. In Fig. 3.8(a) the plots
are for ¢ = 1.0 and in Fig. 3.8(b) they are for ¢ = 0.5. The features of each
probability are similar to those in the case of isotropic s-wave superconductors,
only now the main features, such as the peak in A occurs at E = A(f = 7/6)
instead of at F = A,,,,. (Note that A(f = 7/6) is the gap of the excitation that
has the momentum making an angle # = 7/6 with the z-axis).

The plot of each probability is somewhat different in the case when « # 0.
Figure 3.9 shows the plots of the reflection and transmission probabilities when
a = m/5 for both e = 1.0 and £ = 0.5, and for three different values of 6: 0, 7/4,
and /6. For the case where § = 0, the main features, like the peak in A, of both
cases occur at E = A(6 = 0) and E = A(§ = 7/4), respectively. However, for the
cases when 6 # 0 or § # +7/4, the features in these probabilities are different.
For instance, there is no sharp peak in A any more. There is a plateau, the front
edge of which occurs at Ag+ = A(6 + «) while the back edge of which does at
A_p- = A0 — «). Tt will be seen later on that the sharp peaks in A for # = 0
and 6 = 7 /4 will contribute to the main features in the conductance spectra of

the junction of a#£0.
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(a):e=1.0,=0,6=7/6,Z2=1.0

Tt

A@=7/6)=05A

Tna

Figure 3.8: The plots of reflection and transmission probabilities of anisotropic s-
wave as functions of E for § = 7/6, where Z = 1.0, and a = 0. (a)
for e = 1.0 and (b) for ¢ = 0.5. Note that A, = Ag(1+[g]). A
and B are the Andreev and the normal reflection probabilities, respec-
tively. C and D are the transmitted probabilities of e-like and h-like

quasiparticle excitations, respectively.
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Figure 3.9: The plots of reflection and transmission probabilities as functions of F
when Z = 1.0 and o = /5. (a), (b), (c) are for e = 1.0 at # = 0, 7/4,
and 7/6, respectively and (d), (e), (f) are for ¢ = 0.5, at § = 0,7/4,

and 7 /6, respectively.
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The normalized conductance of the junction is calculated from Eq.(3.2),

which is

where TNIN =

Figure 3.10: The plots of the normalized conductance as a function of (Ve)/A 4z

G(V@) - GNIS(Ve) B j—7:|'//22 dfcost fj_;o dETN]S
Gnin(Ve) fj:/; dfcosOT NN
coscg(s;)(f-)Z2 and  Tyis = [1 + A(ea E) o B(97 E)]
25

Normalized conductance
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at zero temperature for o = 0 with different the values of barrier

strength Z = 0.0, 0.3, 1.0, and 3.0. (a) is when ¢ = 1.0, and (b) is

when ¢ = 0.5.

The plots of the normalized conductance as a function of (Ve) at zero

temperature, with a = 0 and different values of Z are shown in Fig. 3.10. In Fig.
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3.10(a), the parameter of the energy gap ¢ = 1.0 and in Fig. 3.10(b) £ = 0.5.
The normalized conductance spectra in both cases have two main features at
(Ve) = Apin and A4,

When « # 0, there are two more features than in the case of &« = 0. These
new features occur at (Ve) = A(f = 0) and A(f = 7/4), as shown in Fig. 3.11
(which is for the case when a = 7/5). Note that these features are not very
apparent when Z is small. For different «, the values of A(f = 0) and A(f = 7/4)

are different as well. This means that these features would move when « is changed.

Normalized conductance

A(g=0) Ve/A

Narmalized conductance

Figure 3.11: The plots of the normalized conductance as a function of (Ve)/Apaz
with various the value barrier strength Z = 0.0, 0.3, 1.0 and 3.0 and

orientation by angle a = 7/5. (a) e = 1.0, (b) £ = 0.5.

Figure 3.12 shows, for the junction with Z = 3.0, the plots of the normalized
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conductance of the junction with different angle «. Figure 3.12(a) is for when

e = 1.0 and Fig. 3.12(b) is for when ¢ = 0.5.

25

(a):e=10,Z=30
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[N
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n

Normalized conductance

Normalized conductance

Figure 3.12: The plots of the normalized conductance as a function of (Ve)/A,uz
with various the value of angle a = 0, 7/5, and 7/3 for Z = 3.0. (a)
e=1.0, (b) e =0.5.

The movement of these features with the crystal orientation implies that
the NIS tunneling spectroscopy in the tunneling limit can be used to determined
the values of the gap function of an anisotropic s-wave at each point on the Fermi

surface.



Chapter 1V

Tunneling Spectroscopy at Finite

Temperatures

4.1 Introduction

In this chapter, the effect of finite temperatures on the normalized conduc-
tance spectrum is presented. The energy gap of the superconductor is temperature
dependent. It can be computed numerically for weak-coupling superconductors.
However, at temperatures close to the critical temperature T,, the energy gap can

be approximated by (Tinkham, M. 1996)

T\ /2
A(T)%l.MA(l—T) , T~T,

c

and at temperatures close to the zero temperature, the approximation takes the

form ( Bardeen, J., et al. 1957)

A= a)(1 - Ze e T2h) @z o)

Therefore, the energy gap for of the two transmitted excitations of an anisotropic

s-wave superconductor at temperatures close to zero can be written as

Az ~ A1 +ecos[4( F o)]) (1 - \/%exp[—%&])
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where t = T /T, and T¢ is the critical temperature of the superconductor. In BCS
theory, A = 1.764kgT,, which is the magnitude of the energy gap in the bulk of
superconductor at zero temperature. As before, ¢ is the parameter of the energy
gap, « is an angle orientation between a-axis and x-axis, and # is the angle between
the incident electron beam and the z-axis. A,,,; is the maximum magnitude of
the energy gap in the bulk state of the superconductor.

The normalized conductance formula for calculation at finite temperatures
is given by

[T d0cost [T dETyrs 2 f(E — Ve)

G(Ve,0) = —L2

2T dbcost [* dETwin % f(E — Ve)

, (4.1)

where Tyrs = 1+ A(E,0) — B(FE,0) and A(F,0) and B(FE, ) are respectively

the coefficients for the Andreev and normal reflections, which are independent on

cos?(0)

temperature and Ty = T rcos?(@)"

4.2 Isotropic s-wave Superconductor

The normalized conductance of NIS junction is calculated from the Eq.(4.1).
Figure 4.1 shows normalized conductance spectra in the case of isotropic s-wave
superconductor at finite temperatures close to zero temperature. All the features

in the conductance are smeared out and broadened.
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Figure 4.1: The plots of the normalized conductance as a function of (Ve) at

T/Tec = 0.0, 0.1, 0.2, and 0.3. (a) for Z = 0.0, and (b) for Z = 2.5.
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4.3 Anisotropic s-wave Superconductor

The plots of the normalized conductance as a function of applied voltage
in the case where Z = 2.5, and « = 0 at different temperatures are shown in Fig.
4.2. Figure 4.3 shows the plots of normalized conductance as a function applied

voltage where o = /6, and Z = 2.5 at different temperatures.
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Figure 4.2: The plots of the normalized conductance as a function (Ve) at T/T¢ =
0.0, 0.1, 0.2, 0.3 and a = 0, for (a) e = 1.0 (b) € = 0.5.

Similar to the case of isotropic s-wave superconductor, all the features in
the conductance spectrum become broader at higher temperatures. The smearing

effect caused by finite temperatures suggests that if one wants to use the tunneling
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spectroscopy to measure the magnitude of the gap on the Fermi surface, one needs

to do the experiment at 7<0.17..

(a):e=1.0,a=7/6,Z=2.5

sl =
un] [}
— T

o=
BN

Normalized conductance

Normalized condctance

Figure 4.3: The plots of the normalized conductance as a function (Ve) at T/T¢ =
0.0, 0.1, 0.2, 0.3 and o = 7/6, for (a) e = 1.0 (b) € = 0.5.

Figure 4.3 shows the plots of normalized conductance as a function
(Ve)/Apar when o = 7/6 and the barrier strength Z = 2.5 for different the
temperatures T/T¢c = 0.0, 0.1, 0.2, 0.3, and ¢ = 1.0 for Fig.4.3(a), ¢ = 0.5
for Fig. 4.3(b). The peaks of the normalized conductance are lowered when the

temperature is increased.



Chapter V

Conclusions

In this thesis the current and conductance spectra of the normal metal-
insulator-anisotropic s-wave superconductor junction is studied by using the BTK
formalism. This approach makes use of the Bogoliubove-de Gennes equations and
the appropriate boundary conditions to calculate the reflection and transmission
probabilities as well as the current across the junction. In this approach the
dependence on the barrier strength, the interface orientation, and temperature of
the tunneling spectroscopy can be examined.

In the high transmission limit, the conductance spectra show that the An-
dreev reflection dominates at small applied voltage, whereas the normal reflection
does in the low transmission limit.

The dependence of the tunneling conductance spectrum on the crystallo-
graphic orientation is found to be very useful in determining the magnitude of the
energy gap in the momentum space. It is found that there are four distinctive
features in the conductance spectra of anisotropic s-wave superconductors. These
features occur at the voltages corresponding to

(1) minimum energy gap

(2) maximum energy gap

(3) the energy gap of the excitations which have the momentum along the
interface normal

(4) the energy gap of the excitations which have the momentum making the
angle /4 with the interface normal.

These features are very distinctive for the junction with low transparency
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and at low temperatures. The features found at zero temperature tend to be
broadened and smeared out at higher temperatures. Therefore, if one expects to
use the tunneling spectroscopy to measure the magnitude of the gap function of
anisotropic s-wave superconductors, one should do the experiments at low tem-

peratures, at least at the temperatures lower than 10% of the critical temperature.
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